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Abstract

Classification of Hyperspectral images is one of the main problems in the research

field of Remote Sensing and other applications developed through computer vision.

With the advantage of spectral and spatial information, it is possible to distinguish

effectively different materials on the surface. Since last decade, the intensive employ-

ment of Convolutional Neural Networks (CNN) for classification and segmentation

tasks led to high-quality results in the field of Hyperspectral Imagery Classification.

However, these works are not able to perform satisfactorily on data acquired from

various Hyperspectral Imaging Sensors. In this thesis, we propose a novel CNN

architecture for HSI pixel-wise classification to improve the robustness and stability

of the model to the data obtained from various sensors, thus giving state-of-the-art

results. The proposed approach focuses on feature extraction through Dilated Con-

volution and Transposed Convolution. Moreover, the ELU activation function also

played an essential role by activating the neurons with negative input values. Since,

to face dataset imbalance problem, we adopt an oversampling strategy that increases

the samples in minority classes. To prove the validity of the proposed framework,

we tested it on five different HSI datasets and compared the performance with the

most successful previous works. Training of the neural network has been performed

on various ratios of the train, validation, and test data distribution. The evalua-

tion of the model has been done by Three and Five-Fold cross-validation, and the

performances have proven that our approach is competitive with the state-of-art

and exhibits the best results on all the employed datasets, which prove that the

proposed model is very robust under various Hyperspectral datasets irrespective of

their characteristics.

Keywords Deep Learning, Machine Learning, Image Processing, Remote Sens-

ing, Hyperspectral Images, Image Classification, Convolutional Neural Networks,

Dilation Convolution, Transposed Convolution, Exponential Linear Unit, Optimiza-

tion, Resmapling, Principal Component Analysis.
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Chapter 1

Introduction

The objective of this thesis is to develop new and robust Deep Learning (DL) models

for the classification of Hyperspectral Imagery (HSI) without regard to the spatial,

spectral resolution, and scale of the image. However, the previous research shows

us there is a vast variation in the performance of the Deep Learning models con-

cerning the datasets. Moreover, reduce the complexity of the network to maintain

memory computation cost without compromising the performance of the model is a

challenging task.

Since Convolutional Neural Networks are studied on visual-related tasks. There-

fore limited literature on the methods with multiple(small) layers for HSI classifica-

tion is available.

According to our analysis, standard CNNs, such as only standard convolutional

and pooling layers, are not able to extract relevant and robust features for Hyper-

spectral image classification.

Although Deep Learning models have shown their abilities for HSI classification,

still some limitations exist, which reduce the performance of such techniques. In

general, DL models require a considerable number of training samples to train a

large number of parameters in the networks reliably. On the other hand, having

insufficient training samples is a common problem in remotely sensed image classi-

fication.

Furthermore, classical CNNs usually use a pooling layer to capture invariant

features from the input data, but the pooling operation drops the explicit positional

relationship of features.

In Hyperspectral remote sensing, sufficient spectral information and the posi-

tional relationship in a pixel vector are the essential factors for accurate spectral
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classification. Therefore, it is essential to keep the precise positional relationship in

the feature extraction stage.

Besides, when it comes to extracting spectral-spatial features from HSI, it is also

essential to hold the positional relationship of spectral-spatial features.

Moreover, most of the existing DL techniques use a scalar value to describe

the intensity of a feature. In contrast, proposed networks use vectors to represent

features. The usage of vectors improves the feature representation and is a more

assuring method for feature learning. These network properties will align with the

goals of this study and the current requirements in the hyperspectral community.

To address the above statements, in this thesis, we have found that CNN’s can

be effectively employed to classify hyperspectral imagery after building appropriate

CNN architecture with the help of different layers.

Though a productive fusion of extraction of spectral-spatial feature by stan-

dard, transposed, and dilation convolution layers achieve superior performance than

standard spatial or spectral only features extraction in the task of remote sens-

ing land cover classification. For various tasks with different hyperspectral data

and objectives, relevant spectral and spatial features shall satisfy their individual

needs. While spectral information is primary, spatial information is supplementary

for remote sensing hyperspectral image classification. However, spatial and spectral

structure information is essential for the classification task. Even though nowadays

many hyperspectral datasets are available, each of them has different spatial and

spectral structures and also concerning to their scales. Spatial and spectral feature

extraction approaches arise from computer vision and machine learning, respec-

tively. Deep Learning techniques well aligned for spectral-spatial features fusion,

which serve as input to classification and other tasks. Our ultimate aim is to de-

velop efficient and robust hyperspectral image classifier and feature representation

methods for hyperspectral imagery concerning different characteristics.

1.1 Contribution

This research objective has been accomplished by specific techniques; listed below.

• It has proved that predicting hyperspectral data to a precise subspace (or union

of subspace) can increase the separability of the classes. In addition to dealing
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with the problem of high dimensionality, Principal Component Analysis can

expertly handle the selection of principal components of high dimensional data.

Consequently, we evaluated our model performance with a various number of

principal components. Considering fewer principal components may reduce

computation cost. However, there is a chance of information loss from the

original data. The performance stability of the model may also depend on

the precise quantity of principal components concerning the given data. The

selection of specific principal components has considered as a contribution of

this thesis work.

• The proposed approach has several advantages over the standard deterministic

classification, which obtains the ”best” class label for each pixel on different

levels of hyperspectral data sets. In other words, our approach allows us to

assess classification uncertainty. Most importantly, we train the network with

small image patches instead of the entire image. This technique proves that

it easily transfers local information instead of global information. Because

for the pixel level classifiers, local information is more significant. Train the

network from small patches also prevents the over-fitting problem.

• Hyperspectral Imagery data sets are mostly unbalanced in terms of samples

in individual categories. Data imbalance leads to a reduction in the perfor-

mance of the classifier to address this problem, and therefore we use a valid

resampling or oversampling technique to balance the data set concerning the

following category. The effectiveness of this resampling method shows the

desired performance of the model.

• Efficiently exploiting the information coming from multiple features is a chal-

lenging issue in multiple feature learning approaches. Therefore, to address

this issue is a particular case. Specifically, we propose various feature ex-

traction levels to exploit different types of features through the standard,

transposed, and dilation convolutional layers with specific parameters being

considered.

• Additionally, Exponential Linear Unit (ELU) is one of the main element which

can alleviate the vanishing gradient problem during training the network by
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identification of positive values. The output values of the ELU with the neg-

ative inputs become negative values, so the mean of the outputs of activation

function goes near to zero; since the network still able to learn from nega-

tive values, which is an advantage during learning. Implementation of ELU

is robust to the noise of the input to the network. ELU also reduce the com-

putational complexity by reducing the bias shift effect, since, ELU brings the

average gradient closer to the unit natural gradient.

• Finally, We trained on our model with different level data partitioning, such as

we used training, validation, and testing samples from 5% and 10% to 90% with

the difference of 10% of data and a various number of principal components. To

evaluate the model robustness, 3, and 5−Fold cross-validation is an essential

technique, in this work the low standard deviation on 5− Fold and 3− Fold

Cross-validation confirm our approach is stable for each of the datasets.

1.2 Thesis Structure

The rest of the thesis is structured as follows. Chapter 2 presents background con-

cepts of Remote Sensing, Deep Learning and Machine Learning. Chapter 3 explores

related works on hyperspectral imaging technology, feature extraction in both re-

mote sensing, and classification of hyperspectral imagery. Chapter 4 describes about

datasets used for this research. A complete description of proposed approach, al-

gorithms/techniques and technical details are presented in chapter 5. In Chapter 6

gives the experiments and evaluation results of this thesis. Chapter 7 presents de-

tails of accepted publication. At last, the conclusion of the thesis and future works

are described in Chapter 8.
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Chapter 2

Background

2.1 Hyperspectral Imagery on Remote sensing

Over the past several decades, Remote Sensing has experienced dramatic improve-

ments in spatial resolution and acquisition rates. In this thesis, we focused on

Remote Sensing imagery classification of Hyperspectral (HS) Images, which differ

from traditional images taken by SLR, Mobile, and other cameras. Hyperspectral

images(HSI) characteristically described as a spectral sensing method, which is also

known as imaging spectroscopy (IMSPC). IMSPC is the simultaneous acquisition of

images in numerous narrow contiguous spectral bands, typically in the number of

hundreds, and therefore is a three-dimensional cube.

However, RS(Remote-sensing) imagery classification is a complicated method

and requires consideration of many factors. The significant steps of image classifica-

tion and analysis may include perception of a suitable classification system, feature

extraction, image pre-processing, selection of training samples, selection of suitable

classification approaches, post-classification processing, and accuracy estimation.

The users require the computation of the field of study, financial condition, and in-

terpreter’s skills are essential factors guiding the selection of RS data, the design of

the classification method, and the quality of the classification results. This section

describes the understanding of Hyperspectral Images and significant achievements

that may be involved in image classification.

2.1.1 Hyperspectral Imaging

Hyperspectral Imaging (HSI) is a method that combines digital imaging with spec-

troscopy. HSI collects and processes information from over the electromagnetic
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Figure 2.1: spectrum

spectrum as a function of the wavelength, and produces hyperspectral images with

instruments called imaging spectrometers. Spectral images form and analyze spec-

tral radiances at each pixel in the scene, where the objects characterized by their

spatial shape and their spectral radiance. The spectral radiance of an object is its

reflected light intensity as a function of wavelength, which is indicative of the ma-

terial composing the object. Although the human eye can recognize spatial shape

very well, it does not notice spectral radiance characteristics nearly as accurately.

Instead, the human eye observes only a dominant part of spectral radiance, which

observed as the color of the object. The spectral reflectance of an object, considered
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Figure 2.2: spectral signatures

by the value, whcih is the ratio between radiance and the illumination of scene . In

the system, most of the objects identified through their spectral reflectance alone.

The choice of the appropriate spectral bands is essential for the analysis. Indeed,

the deflections of the spectral curves mark the wavelength ranges. Figure: 2.1 for

which the material selectively receives the incident energy. These features are gener-

ally called absorption bands. The overall shape of a spectral curve and the position

and strength of absorption bands in many cases used to identify and assign different

materials. For example, vegetation has higher reflectance in the near-infrared range

and lower reflectance of red light than soils. However, because the human eye is
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a relatively inexperienced observer, it is not always possible to distinguish objects

based upon their observed colors. Multispectral remote sensors such as the Land-

sat Thematic Mapper and SPOT XS produce images with a few moderately broad

wavelength bands. Hyperspectral remote sensors, on the other hand, collect image

data simultaneously in hundreds or thousands of narrow, adjacent spectral bands.

These measurements make it reasonable to assume a continuous spectrum for each

image cell. Hyperspectral images contain a wealth of data, but interpreting them

requires an understanding of precisely what properties of materials we are trying

to measure, and how they relate to the measurements made by the hyperspectral

sensor. The essential elements of an imaging spectrometer are shown in Figure: 2.2.

The development of these sophisticated sensors has involved the convergence of two

related but different technologies: spectroscopy and the remote imaging of Earth

and planetary surfaces. Spectroscopy is the study of light emitted by or reflected

from materials and its variation in energy with wavelength as applied to the field

of optical remote sensing, spectroscopy trades with the spectrum of sunlight that is

diffusely reflected (scattered) by materials at the Earth’s surface. Instruments called

spectrometers (or spectroradiometers) are used to make ground-based or laboratory

measurements of the light reflected from the test material.

An optical dispersing element such as a grating or prism in the spectrometer splits

this light into many narrow, adjacent wavelength bands, and a separate detector

measures the energy in each band. By using hundreds or even thousands of detectors,

spectrometers can make spectral measurements of bands as narrow as 0.01 m over

a wide wavelength range, typically at least 0.4 to 2.4 m (visible through middle

infrared wavelength ranges) in remote-sensing applications. For other applications,

such as astronomy, different wavelength ranges can use (e.g., UV, visible, infrared,

and radio wavelength ranges). Remote sensing images are designed to focus and

measure the light reflected from many adjacent areas on the Earth’s surface. Recent

advances have allowed the design of images that have spectral ranges and resolutions

comparable to ground-based spectrometers.

2.1.2 Spectral Reflectance

In reflected-light spectroscopy, the significant property that we need to obtain is

spectral reflectance: the ratio of reflected energy to incident energy as a function
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of wavelength. Reflectance changes with wavelength for most materials because the

energy at specific wavelengths is scattered or absorbed to different degrees. These

reflectance differences are evident when we compare spectral reflectance curves (plots

of reflectance versus wavelength) for different materials, as in Figure: 2.2. The

overall appearance of a spectral curve and the position and strength of absorption

bands in many cases can be used to identify and discriminate different materials.

For example, vegetation has higher reflectance in the near-infrared range and lower

reflectance in the red range than soils.

2.1.3 Representation of Hyperspectral Images

By the characteristics of HS data, each pixel is a vector; typically, the data repre-

sented by a hyperspectral cube. Because of this cubic representation of the data,

it is fundamental to consider the use of tensors of order three as a mathematical

model for the interpretation of hyperspectral images. Typically, the spatial dimen-

sions respectively associated with 1-mode and 2-mode of the tensor and the spectral

dimension associated with the 3-mode of the tensor. The folding matrix in the

spectral mode (3-mode) of a tensor is of significant interest in the study of data

compared to the folding matrices of the spatial modes. Indeed, the folding matrix

in the spectral mode allows a concrete physical representation of the spectral data

where each column of the folding matrix represents the spectrum of a pixel, un-

like the two folding matrices of spatial modes that are more difficult to interpret,

see Figure: 2.1. Indeed, the folding 3-mode matrix is currently using for spectral

analysis. However, introducing spatial information often allows for increasing the

performances.

To distinguish the material on the surface of the earth depends on the wavelength

of the reflected EMR to the sensor, in Figure: 2.2 explores the reflected EMR was

having different wavelengths of propagated waves concerning the interaction of the

material.

2.2 Machine Learning and Deep Learning

Deep learning (DL) uses a distinct technology, named Multi-Layer Neural Networks,

which implementing Machine learning (ML). DL is the field where the machine
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can perform various tasks requiring human intelligence; simply machines can learn

themselves by mimicking the human brain. The areas of Machine Learning and

Deep Learning are both fit into the broader scope of Artificial Intelligence. For

better understanding, before going with DL, there are some essential concepts we

might know about AI and ML.

Fig-1 illustrates how AI, ML, and DL are related to each other, which includes

three concentric circles; consider each circle is one of the three fields. Deep learning

is a subset of Machine Learning, which is also a subset of Artificial Intelligence.

Figure 2.3: Visual understanding the difference between

Artificial Intelligence, Machine Learning, and Deep Learning.

The definition of AI gives us a complete intuition about it, which is, ” Artificial

Intelligence allows a machine or computer to perform like a human brain, with

the help of a predefined computer program.” With the influence of AI, machines”
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can mimic human behavior in some way. However, AI, including ML, consists of

numerous techniques that allow machines or computers to figure things out through

the data and produce AI applications. Artificial Intelligence introduced in 1956 by

John McCarthy. The aim of AI is a computer or machine to execute tasks, which

are the things that required intelligence are perceived uniquely as humans.

However, AI is a fast-growing advancing technology, made potential by the In-

ternet, that may shortly have significant influences on our daily lives. Although,

with fundamental techniques of AI, already achieved great success in many applica-

tions like Email filtering, Fraud detection, Speech recognition, and personalization.

The solution to these problems turns out to be an AI system not only imitate the

behavior of humans but mimic how humans can learn.

Here, let us discuss some terms during the implementation of AI, ML, and DL;

Techniques, Algorithms, and Models. Techniques are a way of solving problems. For

instance, classification is a technique for grouping similar things, and the Decision

tree is one of the well-known algorithms which we employed initially.

Initially, researchers work with AI to solve problems like playing Chess and a

kind of logic problem. AI techniques contain many rule-based or expert systems;

one of the most widely used techniques in machine learning, which introduced in

the 1980s. However, Primary techniques of AI like rule-based systems are not able

to work well for advanced applications like Image recognition and extract meaning

from text.

In this section, we explored distinct algorithms and models referred to as machine

learning. Algorithms are a series of instructions and rules developed by programmers

to instruct machines to solve the different task-based problems. Technically, Machine

learning algorithms differ from traditional algorithms. ML algorithms allow the

computers or machines used for new and complicated tasks; for instance, image

recognition, classification, or translate pictures into speech.

The significant process of ML is to provide training data to leaning algorithms.

Based on inferences from data, learning algorithms produce a new set of rules. The

principle of generating a new algorithm with a set of appropriate rules referred to

as the ML model. However, different ML models generated with the same learning

algorithm by changing instructions from input or training data. For illustration,

computers can learn how to translate text from one to another language or predict
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the stock market by the same type of learning algorithm.

Although the Internet is one of the keys to the technology behind the tremendous

growth of AI, the Internet Community realizes the challenges and opportunities as-

sociated with AI is essential to improving the secured Internet that people trust. For

example, credit card transaction declined, reduced the personalized emails or ads,

and getting recommendations, which we might interest in when online shopping and

promotions from companies where we are as a customer, all these situations caused

by the working of ML algorithms behind the Internet. Although, a machine learning

model may employ incorporate with three standard techniques, such as Supervised

Learning(SL), Unsupervised Learning(UL), and Reinforcement Learning(RL).

2.2.1 Supervised Learning

Supervised Learning: SL algorithms such as linear regression and logistic regression,

support vector machine (SVM), k-nearest neighbors, decision trees, and artificial

neural networks are using in many applications in the field of Data Science and

computer vision than unsupervised Learning.

SL learns a function by utilizing available data, that function maps an input to

outputs. This type of problem technically we can call it as a function approxima-

tion. We can use different kinds of algorithms (e.g., SVM and Neural Networks)

and the configuration of algorithms (e.g., network architecture or topology and hy-

perparameter) to establish the scope of a possible solution that model may produce.

Briefly, SL is required when we previously know the response for some input repre-

sentations, and we need a model that reproduces specific responses for new inputs.

If we consider a function y=f(x), where x is input sample, and y is output, the aim

is to obtain the function f(), which fits some known samples of x and y.

Besides, SL problems assorted into classification and regression problems.

Classification

Classification: A classification problem is when the output variable is categorized,

and classifiers can be Binary classifiers and Multi-Class Classifier. Binary Classifiers

performs only on two different classes or two possible outcomes, e.g., such as ’cat’ or

’dog,’ ’true’ or ’false,’ and ’yes’ or ’no,’ ’Positive’ or ’Negative.’ Multi-Class Classifier
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performs on two or more distinct classes, e.g., Classification of Soil Types, Vehicle

Types, Object Types, Crop Types.

We have a distinct type of classifiers in the field of ML, such as Naive Bayes

Classifier, Support Vector Machine(SVM), K-Nearest Neighbour(KNN), Decision

Tree, and Random Forest. SL requires training labeled data. To classify data into

labeled groups is the aim of the SL; for this, we need to do label the data initially

to train the model. In technical explanation, for classification where each class or

label has some probability, that can be weighted through associated cost with each

label, than which gives us a final value based on which we can decide to put it some

label or not.

Regression

Regression: A regression problem is when the output variable is a real or continuous

value, such as ’Weight,’ ’height,’ ’price,’ and ’distance.’ The regression problem

which predicts the value from continuous data and classification problem aim is to

predict the input data which belongs to a class, and both are related to prediction.

Regression is a kind of predictive technique that examines the relationship between

a target(dependent) and predictor(independent) variables. The simplest model that

can apply is linear regression, and it tries to fit data with the best hyperplane,

which goes within the points. To modeling and analyze the data, regression is an

essential method. We have many types of regression techniques in the literature, such

as Linear regression(LR), Logistic regression(LogR), polynomial regression, Ridge

regression, Step-wise regression, Lasso regression, and ElasticNet regression. Linear

regression and Logistic regression are the usual techniques.

Linear regression concentrates on the conditional probability distribution of the

response of the values given by the predictors. The only drawback of the Linear

regression is the problem of overfitting. The formulation of LR is Y ′ = bX + A.

Logistic Regression: In early twentieth-century logistic regression used in biologi-

cal sciences, then applications of social sciences also adopted. The logistic regression

aims to find the best fitting model to describe the relationship between the response

of the outcome variable(dependent) and predictor variables (Independent). Depen-

dent variables must be binary and are the values we need to predict. Independent
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variables are that we expect to affect the dependent variable. When the dependent

variables or targets are categorical, logistic regression played an important role, for

instance, email filtering, whether the email is spam or not. Consider the following

example; if we need to classify the above task with linear regression, there is a need

for introducing a threshold value based on which classification of the task. For ex-

ample, if the actual class is spam and predicted constant value is 0.3 and the value

we fixed as the threshold is 0.5, the classified data point is not-spam, this kind of

situation leads to severe consequence in real-time; if in the case of the medical field.

However, to address the above problem, logistic regression used for the classification

problem since the range of the value strictly between 0 to 1.

2.2.2 Unsupervised Learning

Unsupervised Learning is the training of machine utilizing data that is neither classi-

fied nor labeled, which letting the algorithm to work on that data without guidance.

Unlike SL, there no training provided for the machine. Therefore the machine is

bound to observe the hidden structure in unlabeled information by our-self. UL

categorized into two types of algorithms, which are Clustering and Association.

Since these algorithms solving many problems through ML, it is about how

humans learn, but some tasks like speech and handwritten recognition were still hard

for machine intelligence employing AI and ML compare with human intelligence.

Here, one idea changes the future; machines can mimic how humans learn, why not

try to mimic the human brain.

The above idea is the primary source behind developing Neural Networks (NN).

2.3 Artificial Neural Network

Neural Networks(NN) or Artificial Neural Networks are a sort of algorithms modeled

loosely similar to the form of how the brain works. ANN is a computational model

based on the functions and structure of biological Neural Networks. Neural networks

attained great success in many applications. The fundamental advantage of NNs,

they can learn how to recognize patterns. For instance, the NN algorithm can learn

to recognize the given image contains an object, whether it is a Cat or Dog.
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The biological neural system motivates artificial neural networks (or neural net-

works). Neural networks consist of an input layer, hidden layers, and an output

layer. [1] described that in a neural network, a single hidden layer, including a finite

number of neurons, could approximating any continuous function to any desired

accuracy.

In this part, we can understand basic intuition behind the NN, how it works,

and the impact of NN in the digital world.

Artificial neural networks (ANN) assume the essential characteristics of neurons

and their interconnections. We then typically program a computer to mimic these

characteristics. ANNs typically made of interconnected ”blocks or units.” ANN is

an artificial human neuro system to receive, process, and transmit information in

terms of computer science.

Artificial Neural Networks are at the heart of Deep Learning. ANNs are very

powerful and scalable, and which are ideal for handling complex ML tasks similar

to classification, recognition, recommendations, and also for new generation gaming

technology. For example, ANN able to classify massive or billions of images.

ANNs are first introduced in 1943 by Warren McCulloch and Walter Pitts. The

fist ANN architecture composed concerning how biological neurons might work mu-

tually in animals to make complex computations employing propositional logic. The

early-stage 1960s of using ANNs might reduce the popularity, but in the early1980s,

there was a rebirth of attention in ANN as new network architecture and better

training methods invented. Though by the 1990s, there was a powerful machine

learning technique introduced, were favored by most researchers such as SVM. SVM

offers more reliable results and strong theoretical foundations. However, since the

advantage of Data availability, the usage of ANNs is expanding drastically, as com-

pared to ANNs often outperform on complex problems than other ML techniques.

Let us see a simple ANN architecture; called Perceptron.

Before going to know about Perceptron, Let us start with the most significant

five essential basic building blocks to design an ANN, which are Neuron, Input,

Weights, Bias, and Output.

Neuron: what does a neuron do?

Initially, look at the Figure: 2.4 it takes the input and multiplies them by their
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weights, then add all multiplied values. Later, the activation function applies to the

sum.

Figure 2.4: Neuron

The neuron aims to modify the weights, based on numerous samples of inputs

and outputs. So let us say we show the neuron thousands of instances of DOG

images and NON-DOG images, and for each of these examples, we explain what

features are present in the images and how well we are assured they occur.

Based on the data we gave as an input neuron determines, Some features are

crucial and decisive (for instance, every drawing of the dog had a tailpiece in it, so

the weight must be positive and substantial). Some features are not necessary (for

instance, only a few images had two eyes, so the weight must be small). However,

some features are essential and detrimental (for instance, every image containing a

horn has been a picture of a Unicorn, not a Dog, so the weight must be significant

and negative).

2.3.1 Perceptron

Perceptron is an Early Deep Learning Technique Figure: 2.5, which introduces in

1957 by Frank Rosenblatt, it has Linear Threshold Unit(LTU).

Consider input and output are numbers, and Individual weights are associated

with all input connections. A weighted sum of its inputs Equation: 2.2 estimated

by LTU then utilizes step function(Activation function) to the sum and produce the

outcomes Equation: 2.3
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Figure 2.5: Perceptron

WeightedSum = w1x1 + w2x2 ++wnxn = wT · x (2.1)

output(Y ) = step(WeightedSum) = step(wT · x). (2.2)

Figure: 2.5 illustrates, it contains three inputs and outputs, also called a multi-

output classifier, which classifies multiple samples simultaneously into three binary

classes. Learn the rule of the perceptron inspired by Hebbian Learning (Hebb’s
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Rule). Hebb’s Rule: The connection between the two neurons increased whenever

they have the same output. However, perception implements modified Hebb’s Rule

Equation: 2.3, which considered a single sample at a time and made predictions

individually and the wrong prediction of each neuron; it reinforces the connection of

the weight from the input, which would have contributed to the correct prediction.

w
(NextStep)
i,j = wi,j + η(yj − ˆ︁yj)xi (2.3)

Where xi is the ith input of the existing training sample and wi,j is the weights

association between the ith input neuron and jth output neuron. yj is target output,

and yĵ is the output of the ith neuron for the existing training sample, and η is the

learning rate of the training network.

However, the perception is not able to learn intricate patterns because the deci-

sion boundary every output neuron is linear. Perceptron may not be able to explore

class probability as output; it just delivers predictions based on the strict threshold.

For this reason, logistic regression is the right choice for complex tasks.

2.3.2 Multi-Layer Perceptron.

To address the limitations of the perceptron later works implemented a new ar-

chitecture. The following work with a multi-layer perceptron (MLP), also called

the feed-forward neural network, has proved that they can approximate an XOR

operator as well as many other non-linear functions. The MLP is the welcome en-

vironment of deep learning: an excellent place to start when we are learning about

deep learning. Figure: 2.6, which stack multiple perceptron together. Note that

contrary to Perceptron, MLP able to solve the problem with XOR. Formally, a

single-hidden-layer MLP is a function f : R
D → RL, where D is the size of the input

vector X and L is the size of the output vector F (x), such that, in matrix notation:

f(x) = G(b(2) +W (2)(s(b(1)) + w(1)x))) (2.4)

where G and Ss are activation functions, w(1)w(2) are weight matrices and (b(2)(b(2)

represents the bias vectors.
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MLP is a deep artificial neural network. It consists of more than one perceptron,

which is composed of an input layer to collect the data and an output layer that

provides a prediction about the input, and in between those two, an optional number

of hidden layers that are the actual computational processors or workers of the MLP.

MLPs with one hidden layer able to approximate any continuous function.

To train an MLP, we get familiar with all parameters of the model, and here we

utilize Stochastic Gradient Descent with mini-batches. To obtain the gradients, the

set of parameters Θ = W (1),W (2), b(1), b(2) should learn through back-propagation

algorithm.

Multi-Layer perceptron often used over supervised learning problems; they train

on a collection of input-output combinations and learn to model the relationship

among those inputs and outputs. Training includes altering the parameters(weights

and biases) of the model to minimize loss. Back-propagation used to make those

adjustments within parameters relative to the error, and the error itself measured

with some techniques, including by root mean squared error (RMSE).

Training a perceptron. The several basic deep learning algorithms for super-

vised training of the MLP is known as back-propagation. The fundamental proce-

dure to train the perceptron. Initially, A training example presented and propagated

ahead through the network. Then the output error is determined by the usual metric

called mean squared error(MSE):

Error =
1

2
(y − ˆ︁y)2 (2.5)

Where y is the target value, and ŷ is the actual output. MSE is an excellent

choice to calculate the error than other methods. To minimize the network error,

we can use Stochastic Gradient Descent or other optimizers, in early works, SGD is

a standard optimization method.

The aim is to update the weights of the model to minimize the loss function.

The weights are updated using a back-propagation algorithm, which we will ll study

next.
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Figure 2.6: Multi-Layer Peceptron

2.3.3 Back-Propagation

Back-Propagation (BP) algorithms operate by discovering the loss (or error) at the

output and then propagating it back into the network. The weights are updated

to decrease the loss resulting from each unit. Let us try to give some intuition

into how BP works. The primary step in minimizing the error is to determine the

gradient of each node concerning the final output. Since it is a multi-layer network,

identifying the gradient is not very simple. To get the gradients for multi-layer

networks. Let’s take a step back of neural networks and consider a straightforward

system as following Equation: 2.7,2.10, and 2.13: To understand more specifically,

The CNN requires to modify and update its kernel parameters, or weights, for

the given training data. Back-propagation is an efficient method for computing

gradients required to perform gradient-based optimization of the weights in neural
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networks [2]. The distinct combination of weights that minimize the loss function

(or error function) is the solution to the optimization problem. The method requires

the computation of the gradient of the error function at each iteration. Since the

loss function should be both continue and differentiable at every iteration step.

The initial weights of an untrained CNN randomly chosen. Consequently, before

training, the neural network cannot make meaningful predictions for network input,

as there is no relation between an image and its labeled output yet. By exposing

the network to a training data set, comprising images and their labeled outputs

with correct classes, the weights adjusted. Training is the adaptation of the weights

in such a way that the difference between the desired output and network output

minimized, which means that the network trained to find the right features required

for classification. There are two computational phases in a neural network, the

forward pass and the backward pass in which the weights adapted.

Figure 2.7: Processing of data

Consider the Figure: 2.7 we have three inputs which simple processing as:
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d = a− b (2.6)

e = d ∗ c = (a− b) ∗ c (2.7)

Now we require to determine the gradients of a, b, c, and d concerning the output

e. The following cases are very straight forward:

∂e

∂d
= c|∂e

∂c
= d (2.8)

(2.9)

∂d

∂a
= 1|∂d

∂b
= −1 (2.10)

However, for determining the gradients for a and b, we need to apply the chain

rule.

∂e

∂a
=

∂e

∂d
∗ ∂d

∂a
= c (2.11)

(2.12)

∂e

∂b
=

∂e

∂d
∗ ∂d

∂b
= −c (2.13)

To compute gradients through multiplying the input gradient, over a node with

that of the output of that node.

How error Back propagate to the network. The error for layer L-1 should

be defined using the following equation:

e
(i)
L−1 =

(︄
NL∑︂
k=1

WL−1
ik · e(i)L

)︄
∗ f ′

(x)i (2.14)

The error for layer L − 1 should be defined using the following equation: • We

recognize that the gradient of a node is a function of gradients of all nodes from the

next layer. Here, error in a particular node based on the weighted sum of errors on
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all the nodes of the next layer, which take the output of this node as input. Since

errors are calculated using the gradients of each node, the factor comes into the

picture. • f ′(x)(i) relates to the derivative of the activation function for the inputs

getting into that node. Note that x refers to the weighted sum of all inputs in the

present node, before applying the activation function. • By using the chain rule, the

multiplication of the gradient of the current node, i.e., f ′(x)(i) with that of following

nodes which comes from the first half of the right-hand side of the equation.

This process has to be repeated consecutively from the L− 1th layer to the 2nd

layer. Note that the first layer is just the inputs.

2.3.4 Weights

(Parameters) — A weight describes the strength of the connection between neurons

or units. If the weight from node one to node two has a higher magnitude, it means

that neuron one has a more critical influence over neuron two. A weight takes down

the effect of the input value. Weights near zero means, changing this input will not

modify the output. Negative weights indicate that raising this input will decrease

the output. Weight determines how much impact the input will have on the output.

2.3.5 Bias

It is an extra input to neurons, and it is always one and has its connection weight. It

makes sure that when all input data are none (all 0’s), there is going to be activation

in the neuron.

2.4 Convolutional Neural Networks

Convolutional Neural Networks(CNN) or Convolutional Networks are particularly

existing and a standard class of feed-forward networks. CNN’s are very well-suited

for image classification, image recognition, and other computer vision applications.

Before going for the exact structure of convolutional networks, first, describe an

image kernel or filter with associated weights. A kernel utilized over a complete
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input image and often utilizes multiple filters. For instance, if we use four 6x6 filters

to a given input image, and the output pixel with coordinates 1,1 is the weighted

sum of a 6x6 square of input pixels with the top left corner 1,1, and the weights of

the filter are also 6x6 matrix. Output pixel 2,1 is the result of an input square with

the top left corner 2,1 and so on.

For better intuition, let us look at the following example. In the following Figure:

2.8 considers the green color represents an Image Dimensions of 5 (Height) x 5

(Breadth) x 1 (Number of channels, e.g. Grayscale Image, Image with the single-

channel). The element involved in carrying out the convolution operation in the first

part of a Convolutional Layer is called the Kernel/Filter, K, represented in color

yellow. We have selected K Dimensions = 3 (Height) x 3 (Breadth) x 1 (Number of

channels) matrix.

Figure 2.8: Convoluting 5× 5× 1 image with a 3× 3× 1 kernel
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Kernel/F ilter,K =

⎡⎢⎣1 0 1

0 1 0

1 0 1

⎤⎥⎦ (2.15)

Each neuron operates in its receptive field and connected to the following neurons

to reach the entire visual field. Precisely, each neuron reacts to motivates only in

the limited region of the visual field called the receptive field. Individual neurons

in CNN processes information only in its receptive field as well. The layers are

organized in such a way so that they recognize more modest patterns (lines, curves)

and more elaborate patterns (faces, objects).

Let us see a simple CNN architecture in Figure :2.9.

Figure 2.9: An example CNN with two convolutional layers, two pooling layers, and a
fully connected layer which decides the final classification of the image into one of several
categories

A more specific summary of what CNN’s do, it would take the image as input,
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pass it into a sequence of convolutional, non-linear, pooling, and fully connected

layers, and generate an output. The output can be a single class or a probabil-

ity(multi) of classes that best represents the image. Now, the hard part is knowing

about what each of these layers does. So ’let us get into know about some elements

on CNN.

2.4.1 Input

When a computer takes an image as input, the computer understood as an array

of pixel values. Depending on the resolution and size of the image, it sees a 32 ×
32 × 3 array of numbers (The three refers to RGB values). Let us say we have an

image(RGB, color), and 32× 32 dimensions. The representative array is 32× 32×
3. Each of these numbers is given a value from 0to255, which describes the pixel

intensity at a specific coordinate. These numbers, while insignificant for human,

when we perform image classification, are the only inputs available to the computer.

The idea is that give those array of numbers to the computer, and it produces

numbers that represent the probability of the image being a distinct class.

The CNN in Figure: 2.9 is related in architecture to the original LeNet, and

for instance, it classifies an image into four categories: cat, dog bird, or boat (the

original LeNet was used mainly for character recognition tasks). From the input

image, the network accurately specifies the highest probability of an object, e.g.,

cat(0.94) amongst all four classes. Technically the sum of all probabilities in the

output layer should be one.

There are four primary operations in the CNN shown in Figure:2.9

1. Convolution 2. Non Linearity (ReLU) 3. Pooling or Sub Sampling 4. Classifi-

cation (Fully Connected Layer) The above operations are the fundamental building

blocks of every ConvNet, so discovering how this work is an essential start to devel-

oping an in-depth knowledge of ConvNets. Let us get the intuition behind each of

these operations.

Channel is a general term used to refer to a specific component of an image. An

image from a regular digital camera has three channels – red, green, and blue –

imagine those as three two dimensional-matrices stacked over each other (one for
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each color), each holding pixel values in the range 0to255.

A grayscale image has only one channel. Consider grayscale images until this

explanation, so we have a single 2d matrix representing an image. The value of

every pixel in the image or matrix between 0to255 – zero represents black, and 255

represents white.

2.4.2 Convolution

The first layer in a ConvNet is always a Convolutional Layer. Convolution layer

presents to extract features from an input. Convolution collects the relationship

between pixels by learning image features using small squares of input data. Convo-

lution is a mathematical operation that takes two inputs, such as an image matrix

and a filter or kernel. Consider a 5 x 5 green matrix is an image, with pixel values,

are 0, 1, and the green matrix is a filter matrix 3 x 3, as shown in Figure: 2.9.

The Convolution Operation aims to extract high-level features such as edges,

through input image. CNN’s also operate with more than one convolutional layer.

Conventionally, the first ConvLayer is responsible for capturing the Low-Level fea-

tures such as edges, color, gradient orientation. By adding more layers(hidden lay-

ers), the architecture can extract to the High-Level features as well.

As we explained above, every image represents a matrix of pixel values. Consider

a 5 x 5 image with pixel values between 0 and 1. The convolution of the 5 x 5 image

and the 3 x 3 matrix can compute, as shown in the Figure: 2.8.

Take a bit to understand how the computation in Figure: 2.8 is being done. We

slide the orange matrix(consider the orange matrix is a kernel or filter) over our

green matrix (consider the green matrix is an original image) by individual pixel

(’stride’). For every pixel, we compute element-wise multiplication (between the

two matrices) and add the multiplication outputs to perceive the final entity, which

forms a single element of the output pink color matrix (which represents as a feature

map). It is evident from the Figure: 2.8 that various values of the kernel matrix

produce distinct Feature Maps for the corresponding input image. It is necessary to

understand that the Conv operation obtains the local dependencies from the original

or input image. Consider we have two different kernels/filters and one input image.
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Additionally, see how these two filters generate distinct feature maps from the same

input image. Consider, the image and the filters are entirely numeric matrices.

In practice, while training the network, a CNN can learn the values of those

kernels (although we still need to specify parameters such as the number of filters,

size of the filter, and network architecture). The large number of filters we have,

the more image features can be extracted, and the better our network improves at

recognizing patterns in unseen images, it leads to increase computation complexity.

The Feature Map (Convolved Feature) size depends on three parameters that we

require to choose before the convolution operation performed.

2.4.3 Convolution Operation

The Convolution Operation aims to extract high-level features such as edges, through

input image. CNN’s also operate with more than one convolutional layer. Conven-

tionally, the first ConvLayer is responsible for capturing the Low-Level features

such as edges, color, gradient orientation. By adding more layers(hidden layers),

the architecture can extract to the High-Level features as well.

Strides Stride is the number of pixels shifts across the input image. When the

stride is one, then we move the filters to one pixel at a time from to right side.

When the stride is two, then we move the filters to two pixels at a time and so on.

The below fig: Conv 1 shows convolution would work with a stride of one

Padding Sometimes filter does not fit perfectly with the input image. We have

two options: Pad the picture with zeros (called zero-padding). Sometimes, it is ben-

eficial to pad the input matrix with zeros around the border so that we can apply

the filter to bordering elements of our input image matrix. Zero-padding also called

wide-convolution, which allows us to control the size of the feature map. Leave the

portion of the image wherever the filter does not fit, called valid padding, which

holds only a valid part of the image.

Depth Depth corresponds to the number of kernels we use for the convolution

operation. In the network shown in fig: depth, we are performing a convolution of

the original image using three different filters, which offers three separate feature
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maps. These three feature maps stacked two-dimensional matrices; therefore, the

’depth’ of the feature map would be three.

2.4.4 Pooling

Comparable to the Convolutional Layer, the Pooling layer is capable of reducing the

spatial dimension of the convolved Feature. It leads to reduce the computational cost

required to process the data through dimensionality reduction. Furthermore, it is

beneficial for extracting robust features that are rotational and positional invariant,

thus keeping the process of effectively training of the model.

There are two types of Pooling layers: Max and Average Pooling. Max Pooling

yields the maximum value, and Average Pooling yields the average of all the values

from the portion of the image covered by the filter. Max Pooling also acts as a Noise

Suppressant. It rejects the noisy activation’s collectively and also makes de-noising

along with dimensionality reduction. In the case of Max Pooling, we define a spatial

region (for example, a 22 window) and take the most significant element from the

rectified feature map within that window. Instead of taking the most significant

element, we could also take the average (Average Pooling) or sum of all elements in

that window. In practice, Max Pooling has shown to work better.

Average pooling performs dimensionality reduction as a noise suppressing mech-

anism. Therefore, we can say that Max Pooling performs better than Average

Pooling.

2.4.5 Loss Function

There are different loss functions possible for different purposes. In this part, we go

through some of the very often used loss functions, with a set of examples.

The loss function assists in optimizing the parameters of the neural networks.

The loss function aims to minimize the loss for a neural network by optimizing its

parameters or weights. The loss is estimated using loss function by matching the

target or actual value and predicted value by a neural network. Then we use the

gradient descent method to optimize the weights of the network such that the loss

minimized. It is the way to how we train a neural network.
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Mean Squared Error(MSE) When we have a regression problem, one of the

loss function we can use ahead is MSE. As the name implies, MSE loss is measured

by using the mean of squared differences between actual and predicted values. For

instance, we have a neural network; it takes some data related to the house and

predicts its price. In this case, we can use MSE loss. Primarily, in the case where

the output is a real number, we should use the MSE loss function.

Binary Crossentropy(BCE)When we have a binary classification task, one of

the loss function, we can use that is BCE. If we use the BCE loss function, we need

one output node to classify the data into two classes Equation: 2.16 The output

value should be pass through a sigmoid activation function, so the output is in the

range of between 0 and 1.

−(y log(p) + (1− y) log(1− p)) (2.16)

For example, we have a neural network that takes data related to the atmosphere and

predicts whether if there is rain or not. If the output is more than 0.5, the network

classifies there is rain, and if the output is less than 0.5, the network classifies there

is no rain. More the probability score value, the more the chance of raining. During

training the network, the target value fed to the network should be one if it is

raining otherwise zero. One important thing, if we are using the BCE loss function,

the output of the node should be between 0 and 1. It means we have to use a sigmoid

activation function on our final output. Since sigmoid converts any real value in the

range between 0 and 1. What if we are not using sigmoid activation on the final

layer? Then we can pass an argument called from logits as true to the loss function,

and it internally applies the sigmoid to the output value.

Categorical Crossentropy(CCE) When we have a multi-class classification

problem, CCE is one of the loss function we can use. If we are using CCE loss

function, there must be the same number of output nodes as the classes. Moreover,

the final layer output should be passed through a softmax activation so that each

node output a probability value between 0 and 1. For example, we have a neural

network that takes an image and classifies it into a cat or dog, i.e., If N¿ 2, we

determine a separate loss for every class label per observation and sum the result

by Equation: 2.17. If the cat node has a high probability score, then the image is
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classified into a cat otherwise dog. Primarily, whichever class node has the highest

probability score, the image is classified into that class.

−
N∑︂
c=1

yo,c log(po,c) (2.17)

For feeding the target value at the time of training, we have to encode them one-hot.

If the image is of the cat, then the target vector would be (1, 0), and if the image

is of dog, the target vector would be (0, 1). Mostly, the target vector would be of

the same size as the number of classes, and the index position corresponding to the

actual class would be 1, and all others would be zero. What if we are not using

softmax activation on the final layer? Then we can pass an argument called from

logits as true to the loss function, and it internally applies the softmax to the output

value. Same as in the above case.

2.5 Image Classification

2.5.1 Classification Approaches and selection of training data

A satisfactory classification system and an adequate number of training samples

are pre-requirements for a successful classifier. There are three significant obstacles

identified in [3] when medium spatial resolution data used to the classification of

vegetation: adequate hierarchical levels settings for mapping, representing discrete

land-cover factors perceptible by selected RS, and choosing representative train-

ing approaches. In usual, a classification approach is designed based on the user’s

requirement, a spatial resolution of selected RS, adaptability with previous work,

image-processing and classification algorithms accessible, and time limitations. Such

a system should be instructive, exhaustive, and detachable [4]. In various instances,

a hierarchical classification approach utilized to take different requirements into ac-

count. An adequate number of training samples and their representatives is essential

for image classification [5]. Training samples usually collected from fieldwork or by

high spatial resolution aerial and satellite images. Various collection approaches,

such as single-pixel, seed, and polygons, may be used, but they would affect classifi-

cation results, particularly for classifications with high spatial resolution image data
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[6]. When the perspective of a study area is complex and varied, selecting sufficient

training samples becomes complicated. This problem will be complicated if medium

or coarse spatial resolution data are used for classification, because a massive vol-

ume of mixed pixels may happen. Hence, training sample choice must consider the

spatial resolution of the RS data used, availability of ground reference data, and the

complexity of perspectives in the study area.

2.5.2 Data Selection for Remote Sensing

Remote Sensing includes both airborne and spaceborne sensor data; they are differ-

ent in spatial, radiometric, spectral, and temporal resolutions. Understanding the

intensities and flaws of different types of sensor data is necessary for the selection of

proper remotely sensed data for image classification. Previous research [7] has ex-

amined the characteristics of significant types of remote-sensing data. For example,

[8] studied the properties of different remote-sensing data in spectral, radiometric,

spatial, and temporal resolutions, polarization, and angularity. Choosing proper

sensor data is the first substantial move to successful classification for a specific

purpose [7] [9] [10]. It needs considering such factors as user’s requirement, the

scale, and aspects of a study area, the availability of multiple image data and their

properties, cost and time limitations, and the interpreter’s experience in using the

selected image. Scale, image resolution, and the user’s need are the most crucial

factors influencing the selection of RS. The user’s need defines the nature of classi-

fication and the scale of the research area, thus influencing the selection of proper

spatial resolution of RS. Prior research has explored the consequences of scale and

resolution on RS image classification [11]. Overall, a fine-scale classification system

needed at a local level. Thus high spatial resolution data such as IKONOS and

SPOT 5 HRG data are helpful. At a regional scale, medium spatial resolution data

such as Landsat TM/ETM+, and Terra ASTER data are frequently using. Though,

continental or global scale, coarse spatial resolution data like AVHRR, MODIS, and

SPOT Vegetation are preferable. Another major factor influencing the selection of

sensor data is the climatic condition. The hazy natural circumstances in the humid

tropical areas are usually an obstacle for obtaining high-quality optical sensor data.

Therefore, different kinds of radar data serve as an essential supplementary data

source. Since many sources of sensor data are now quickly available, image analysts
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have more alternatives to select suitable RS for a particular type of study. A blend

of multi-sensor data with various image characteristics is often beneficial to the re-

search [7]. In this situation, economic condition is often a crucial factor that affects

the selection of RS and the time and effort that can be devoted to the classification

procedure, hence affecting the quality of the classification results.

2.5.3 Data pre-processing

Image preprocessing may introduce the discovery and restoration of split lines, ge-

ometric rectification or image registration, radiometric calibration and atmospheric

change, and topographic improvement. If various ancillary data used, data exchange

with several sources or formats, and quality evaluation of these data are also required

before they can consolidate into a classification method. Precise geometric rectifi-

cation or image registration of remotely sensed data is a requirement for a mixture

of diverse source data in a classification method. Many textbooks and articles have

reported this topic in detail [4] [12]. If a single-date image for classification, an at-

mospheric restoration may not be needed [13]. When multi-temporal or multisensor

data utilized, atmospheric calibration is necessary; It is particularly reliable when

multisensor data, like Landsat TM and SPOT or Landsat TM and radar data, are

integrated for image classification. A kind of methods, varying from mild relative

calibration and dark-object subtraction to calibration strategies based on compli-

cated models, have been exploited for radiometric and atmospheric normalization

and correction [14] [15] [16]. The topographic improvement would be another essen-

tial aspect if the study area determined in rugged or mountainous regions [17].

2.5.4 Feature Extraction and Selection

Choosing proper variables is an essential step for successfully performing an image

classification method. Several latent variables utilized for image classification, such

as spectral signatures, vegetation records, reconstructed images, textural or contex-

tual learning, multi-temporal images, and ancillary data. Due to different directions

in land-cover separability, utilizing many variables in a classification system may

decrease classification accuracy [18] [19]. It is essential to choose only the variables

that are most effective for separating land-cover or vegetation classes, mainly when
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employed hyperspectral or multi-source data. Many approaches, such as princi-

pal component analysis, minimum noise fraction transform, discriminant analysis,

decision boundary feature extraction, non-parametric weighted feature extraction,

wavelet transform, and spectral mixture analysis [20] [21] [22]employed for feature

extraction, in order to reduce the data redundancy inherent in remotely sensed data

or to extract specific land cover information. The optimal choice of spectral bands

for classifications discussed in [22] [4]. Visual analysis (e.g., bar graph spectral

plots, co-spectral mean vector plots, two-dimensional feature space plot, and ellipse

plots) and statistical approaches (e.g., average divergence, transformed divergence,

Bhattacharyya distance, Jeffreys– Matusita distance) have utilized to recognize an

optimal subset of bands [4]. Fuzzy-Logic expert system for feature selection de-

scribed [23]. Three strategies for optimizing the choice of multi-source data, and

found that these approaches (exhaustive search by recursion, isolated independent

search, and sequential dependent search) applied to a variety of data analyses exam-

ined in [24]. In practice, a comparison of different combinations of chosen variables

implemented frequently, and a useful reference dataset is essential. In particular, a

good representative dataset for each class is critical for implementing a supervised

classification. The divergence-related algorithms frequently utilized to evaluate the

class separability and then to filter the training samples for each class.

2.5.5 Selection of a Precise Classification Approach

Several factors, such as the spatial resolution of the RS, various sources of data, a

classification approach, and the availability of classification software, must be taken

into account when choosing a classification approach for use. Several classification

techniques have their advantages. The query of which classification approach is

proper for a specific study is not easy to answer. Distinctive classification results

may be achieved depending on the classifier(s) chosen. Comprehensive summarizing

of primary classification methods described in 3.2

2.5.6 Post-Classification Processing

Initial per-pixel classification approaches may lead to ‘salt and pepper’ impacts in

classification maps. A primary filter frequently utilized to overcome those noises
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— most of the image classification based on remotely spectral response senses. By

cause of the complexity of biophysical surroundings, spectral uncertainty is preva-

lent among land-cover classes. Therefore, additional data often utilized to change

the classification image based on confirmed expert rules. E.g., forest distribution

in mountainous areas is similar to elevation, slope, and features. Data describing

territory properties used to modify classification results based on the information of

specific vegetation categories and topographic factors. In residential zones, housing

or population density associated with residential land-use distribution patterns, and

such data can utilize to correct some classification challenges happen among com-

mercial and high-intensity rural areas or between recreational grass and crops. Even

though commercial and high-intensity urban areas have similar spectral signatures,

their population densities are considerably distinctive. Furthermore, recreational

grass often appears in urban areas, but grassland and crops are located mainly far

from residential areas, with sparse houses and a less population density. Conse-

quently, expert insight can be caused based on the associations between housing or

population masses and residential land-use classes to support separate recreational

grass from grassland and crops. Prior research has indicated that post-classification

processing is a necessary step in enhancing the quality of classifier performance.

2.5.7 Classifier Performance Evaluation

Evaluation of a trained classifier is a crucial process in the classification system.

Several procedures may be applied, ranging from a qualitative evaluation based on

expert insight to a quantitative accuracy evaluation based on sampling approaches.

To evaluate the performance of classifiers, [25] introduced six principles: robustness,

allow to fully use the information content of the data, accuracy, reproducibility,

equal applicability, and objectiveness. Indeed, no classification algorithm can sat-

isfy all these requirements nor apply to all studies, due to various environmental

settings and datasets applied. [26] recommends the use of multiple criteria to evalu-

ate the appropriateness of algorithms. These rules incorporate with computational

resources, classification accuracy, the stability of the algorithm, and robustness to

noise in the training data. Classification accuracy evaluation is, yet, the most com-

mon approach for estimation of classification performance, which is presents in the

following subsection-2.5.8.
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2.5.8 Classification Accuracy Estimation

Before performing a classification accuracy estimation, one necessitates knowing the

causes of errors [27] [28]. Further to errors from the classification itself, additional

sources of errors, such as position errors resulting from the registration, interpreta-

tion errors, and lower quality of training or test samples, all these errors are influenc-

ing classification accuracy. In the process of accuracy evaluation, considered that the

difference between an image classification result and the reference data is the cause

of classification error. Nevertheless, to provide a reliable report on classification ac-

curacy, non-image classification errors should also be examined, particularly when

reference data not collected from a field study. A classification accuracy evaluation

usually includes three necessary ingredients: responsive design, sampling design, and

estimation, and research procedures [29]. The choice of a proper sampling strategy

[30] is a significant move. The main components of a sampling strategy include

sampling unit (pixels or polygons), sampling design, and sample size [31]. Potential

sampling designs include random, stratified random, systematic, double, and clus-

ter sampling. Detailed description of sampling techniques discovered in previous

literature [32] [33]. The confusion matrix strategy is one of the most widely used

in accuracy estimations [34]. To accurately produce a confusion matrix, one of the

requirements consider the following factors: (1) source data collection, (2) classifi-

cation design, (3) sampling system, (4) spatial autocorrelation, and (5) sample size

and sample unit. The subsequent generation of a confusion matrix, other essential

accuracy estimation components, such as overall accuracy, omission error, commis-

sion error, and kappa coefficient, can be derived. According to earlier research has

described the purposes and presented computation techniques for these elements

[30] [33] [34] [29] [35] [36] [37] [38] [39] [40] [41]. They have estimated the status

of accuracy estimation of image classification and discussed concerning issues. [33]

systematically examined the theory of fundamental accuracy estimation and some

high-level issues involved in fuzzy-logic and multilayer estimations, and described

principles and practical concerns in designing and managing accuracy estimation of

remote-sensing data. The Kappa coefficient is a measure of overall statistical agree-

ment of a confusion matrix, which takes non-diagonal components into account.

Kappa analysis recognized as a powerful method for analyzing a single confusion

matrix and for examining the differences between various confusion matrices [30]
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[40] [41]. Revised kappa coefficient and tau coefficient have developed as improved

measures of classification accuracy [42] [43]. Furthermore, accuracy estimation based

on a normalized confusion matrix has been conducted, which regarded as a more

reliable performance than the conventional confusion matrix [30] [44] [45]. The con-

fusion matrix strategy is only suitable for ‘hard’ classification, considering that the

map classes are jointly independent and exhaustive and that each position belongs

to a single class. This hypothesis is frequently disrupted, particularly for classifica-

tions with coarse spatial resolution imagery. ‘Soft’ classifications have implemented

to depreciate the mixed-pixel problem using fuzzy logic. The usual confusion ma-

trix strategy is not suitable for evaluating soft classification outcomes. Therefore,

many dissimilar measures developed, such as conditional entropy and mutual infor-

mation [46] [15], fuzzy-set approaches [47] [48] [49] and parametric generalization of

Morisita’s index [50]. Nevertheless, one significant problem in assessing fuzzy classi-

fications is the burden of collecting reference data. Further research is thus needed

to find a suitable method for evaluating fuzzy classification issues. In summary, the

confusion matrix approach is the most traditional accuracy estimation strategy for

individual classes. Uncertainty and confidence study of classification outcomes has

obtained significant attention recently [51] [52], and spatially precise data on map-

ping confidence observed as an essential perspective in effectively using classification

results for decision-making [51] [52].

2.6 Materials

2.6.1 Transposed Convolution Layer

Transposed Convolutional(TC) layer, some references use the name deconvolution,

which is unsuitable because it is not a deconvolution. The deconvolution layer

expands the resolution of the feature maps of previous layers of CNN to get the

same resolution as the input image. An easy resizing of the maps is an alternative

as we do for the resizing of an image. However, since a transparent upsampling

accidentally lose details, a more reliable choice is to have a trainable upsampling

convolutional layer, whose parameters are going to change during training.

The TC operation creates the related connectivity as the standard convolution,

though in the reversed direction. We utilize it for up-sampling. Furthermore, the
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weights in the TC are learnable. So we do not need a predefined interpolation

method. Even though TC does not mean to take a convolution matrix and apply

transpose operation. The central intent is that the connection between the input

and the output manipulated in a backward way compared with a regular convolution

matrix. To up-sample the input by adding zeros within the input matrix in a way

that the direct convolution allows the same outcome as the TC. TC performs the

upsample operation and represents the coarse input data to fill in the details during

upsampling, and it the combination of the UpSampling2D and Conv2D layers into

a single layer. However, it is efficient for the dense pixel classification due to adding

zeros to up-sample the input image/matrix before the convolution. Therefore, for

Pixel-wise image classification, a deconvolutional layer is placed in the initial layers

of regular CNN. The down-sampled maps from CNN are upsampled by the decon-

volution layer, producing the feature to predict class labels of the individual pixel

at their location. These predictions compared with the ground truth labels avail-

able, and a loss function is determined, which leads the network towards accurate

prediction by updating the parameters associated with backward propagation. To

obtain things may critical, deconvolutions do exist, but those are not standard in

the field of DL. A transposed convolution is slightly related because it produces the

same spatial resolution a possible deconvolutional layer would. However, the actual

mathematical operation that made on the values is distinctive. A TC convolutional

layer carries out a regular convolution but reverts its spatial transformation.

A network to learn how to up-sample optimally, TC is the best choice. It does

not employ a predefined interpolation technique. TC contains learnable parameters.

In this thesis, initially, we utilize regular convolutions to reduce the input data

into an abstract spatial representation, and then use transposed convolutions to ex-

pand the abstract representation into something of use. TC performs the upsample

operation and represents the coarse input data to fill in the details during upsam-

pling, and it the combination of the UpSampling2D and Conv2D layers into a single

layer.

For example, for super-resolution, the aim is to upscale the input image to higher

resolutions. Therefore TC can be used as an option to traditional approaches like

bicubic interpolation.
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The TC method is similar to the gradient estimate for a traditional convolution,

i.e., the backward pass of a regular convolution and vice versa.

Unquestionably TC’s are more adaptable than classical upsampling methods

such as bicubic interpolation or nearest-neighbor interpolation. There are a few

limitations, such as there can be checkerboard artifacts in the output. Transposed

Convolutions are not able to perform without learning the optimal kernel weights,

compare with classical upsampling methods.

Consider a single value in the input, and distribute it to a neighborhood of points

at the output. The value of the filter defines precisely, and for each output pixel,

it multiplies the input pixel value by the corresponding weight of the filter, then

repeats this manner for every pixel value in the input data, and aggregate values in

each output cell. Since, which is essential to understand, that the kernel values are

defining a significant amount about the input value, then continuing to distribute

over every output cells in the neighborhood.

Let us examine the first case that both input and output channels are 1, with 0

padding and 1 stride. Figure: 2.10 TC1 explains how transposed convolution with

a 22 kernel computed on the 22 input matrix.

We can perform TC operation by given a matrix C(Filter or Kernel) and input

matrix X. Convolution computes results by the Equation: 2.18

Y [i, j] = (X[i : i+ h, j : j + w] ∗K).sum() (2.18)

Where i and j are the pixel coordinates, and h and w are the dimensions of the

input matrix or image. Convolution operation compiles the input values through

the kernel while the TC distributes input values through the kernel, which produces

the shape of output to larger than input shape.

The multi-channel expansion of the TC is identical to the convolution. When

there are multiple input channels, denoted by ci, the TC assigns a khkw kernel

matrix to the individual input channel. If the output has a channel size co, then we

have a cikhkw kernel for each output channel.

As a result, if we feed X into a convolutional layer function f to compute Y=f(X)

and create a transposed convolution layer g with the same hyper-parameters as f
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except for the output channel set to be the channel size of X, then g(Y) should have

the same shape as X. Let us verify this statement.

Figure 2.10: Transposed convolution layer with a 2× 2 kernel.

2.6.2 Dilation Layer

Dilated convolutions help to produce a greater receptive field without negotiating

on the resolution. Hence, the fusion of dilation with other standard convolution

was considered significant [53]. In this work, We perform dilated convolution oper-

ation on the last layer or before fully connected layer of the network with default

dilation factor, i.e., ’1’ to capture context features and the main idea behind to pre-

serve spatial resolution in convolutional networks for image classification. Dilated

convolutions layers help while producing more visually appealing outputs. The

CNN-based approaches usually produce boundary artifacts, distorted structures,

and blurry textures incompatible with surrounding areas. Because CNNs are not

capable of modeling the long-term correlations between the several depth regions

and contextual information. The proposed architecture uses dilated convolutions to

aggregate multi-scale contextual information without losing resolution. There are

two main reasons for the utilization of the dilation layer. Firstly, The architecture

based on the fact that dilated convolutions support the exponential expansion of the

receptive field without loss of resolution [54], which can capture high-level interpre-

tation with broader information. On the other hand, although apparently, features

from last layers of a network have broad receptive fields on the input image, in prac-

tice, they are much shorter [55]. This problem alleviated by dilated convolution.

Figure: 2.11 is an instance of dilated convolution. To obtain the size of the feature

map after dilated convolution unchanged, in our work, we used the default padding

rate and the dilation rate that is ’1’. More details regarding dilated convolution

explained in [54]. The reason behind placing the dilation convolution in the last

layer of the architecture is high-level context, semantics and broader visual cues are
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available. However, by the presence of convolution layers, instead, dilation layers

manage the loss of information. Meanwhile, the captured feature maps with multi-

scale contexts can be adjusted automatically due to their similar resolution. Due to

the loss of spatial information by using only standard convolution may be harmful

to classifying natural images and it leads to significantly reduce the performance of

the classifier when transfer to other tasks those are involved spatially detailed image

understanding. To address this problem, by the fusion of features extracted by the

standard convolution and dilation convolution can apply all kinds of imagery data.

Figure 2.11: An illustration of dilated convolution used to capture context, where the size
of feature map and convolution of a kernel is 5×5and1×1, respectively, both the dilation
rate and the padding rate equal 1.

2.6.3 Exponential Linear Unit(ELU)

In this work, the non-linear activation function used in the network is the Expo-

nential Linear Unit (ELU) function with all corresponding transposed convolution

layers. However, remaining all standard Convolution and Dilation Donvolution lay-

ers used ReLU non-linear activation function.

The most popular activation function conceivably is ReLU. It contains non-

negative activation; therefore, the mean activation of ReLU is more significant than

zero, which Causes a bias shift for a unit in the next layer. Various machine learning
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methods work better with zero-centered, normalized features. Since ELUs contains

negative values, it pushes the mean of the activations closer to zero. They have

mean activations closer to zero; it leads to learning and converges the loss faster

than other activation functions. ELU activation function prevents the problem of

network performance degrading due to so-called Dying Gradients. A dead Rectified

Linear Unit (ReLU) always outputs a zero value, for example, caused by a significant

gradient update. For ReLUs, this is an irreversible process. Recovering a dead

weight is very unlikely since weights are not able to update for a zero gradient. As

the ReLU gradient at zero is zero, weights remain unchanged. Dead weights do

not contribute to the learning process. [56] explains ELU guides not only to faster

learning but also to significantly better generalization performance than ReLUs and

LReLUs on networks with more than five layers. However, ELU shows significant

performance because for dense pixel classification, assign ELU in initial layers may

provide lager information to the following layers. Since appointing ReLU in initial

layers may have a possibility to lose important information by negative values, it

leads to reduce the robustness of the classifier. However, ELU becomes smooth

slowly until its output equal to −α, whereas RELU sharply smoothes. Notice that

is equal to +1 in the following illustration.

The Math The math is not too hard. The equation describes below,

fELU(hk) =

⎧⎨⎩hk if(hk > 0)

α(ehk − 1) if(hk < 0)
(2.19)

If we have input x-value, which is higher than zero, then it is similar to the ReLU

– the outcome going to be a y-value corresponding to the x-value. However, this

time, if the input value x is less than 0, we have a value slightly under 0.

We have the y-value, which depends both on the value of input x and the param-

eter α. We can modify it when we need it. Moreover, we introduce an exponential

operation x, which means the ELU is more computationally expensive than the

ReLU.

The unique information we need to know is that the derivative of the exponent

function is the exponent itself.
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However, ELU becomes smooth slowly until its output equal to −α, whereas

ReLU sharply smoothes. Notice that α is equal to +1 in the following illustration.

∂fELU(hk)

∂wk

=
∂fELU(hk)

∂hk

∂hk

∂wk

. (2.20)

(2.21)

The derivative of the activation function served to backpropagation algorithm

during learning. That is why both the service and its derivative should have low

computation cost.

∂fELU(hk)

∂hk

=

⎧⎨⎩1 (hk > 0)

fELU(hk) + α (hk ≤ 0)
(2.22)

It seems simple enough. The value ofy output is 1 if x is larger than 0. The

output is the ELU function (not differentiated) plus the α value if the input x < 0.

The plot for it looks like Figure: 2.12

The unique information we need to know is that the derivative of the exponent

function is the exponent itself.

FELU(hk) is the forward pass, and its derivative is F ‘(x) for calculating its back-

ward gradients.

The ELU hyperparameter examines the value to which an ELU saturates for

negative net inputs (see Figure: 2.13. ELU reduces the vanishing gradient influence

as rectified linear units (ReLUs), and leaky ReLUs (LReLUs) do. The vanishing

gradient problem is alleviated because the positive part of these functions is the

identity; therefore, their derivative is one and not contractive. In contrast, Tanh

and Sigmoid activation functions are contractive almost everywhere [56]

If we see carefully here, we bypass the dead relu problem while still having some

of the computational speed gained by the ReLU activation function; that is, we still

have some dead components in the network.

However, still, ELU has some limitations, such as it carries longer computation

time, because of the exponential operation included, it does not avoid the exploding

gradient problem, and The neural network does not learn the alpha value.
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Figure 2.12: The differentiated ELU activation function

2.6.4 Dimensionality Reduction

The decrease in the hyperspectral representation space can carry utilizing feature se-

lection or extraction techniques. In both approaches, the aim is to decrease the num-

ber of spectral bands, without loss of information. The process of feature selection

is to pick a representative subset of features from the original data by assessing its

discrimination capabilities according to statistical distance measures among classes

(e.g., Bhattacharyya distance, Jeffries-Matusita distance, and the transformed di-

vergence measure). The feature extraction method addresses the problem of di-

mensionality reduction by projecting the data from the original feature space into

a low-dimensional subspace, which contains most of the original information. The

most widely-known feature extraction method corresponds to Principal Component
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Figure 2.13: The rectified linear unit (ReLU),the leaky ReLU (LReLU, α = 0.1), the
shifted ReLUs (SReLUs), and the exponen tial linear unit (ELU, α = 1.0).

Analysis (PCA), which seeks to reduce the dimension of the data by finding a few

orthogonal linear combinations of the original variables with the most significant

variance. It includes a mathematical procedure that transforms several (possibly)

correlated variables into a (smaller) number of uncorrelated variables called principal

components. Principal component analysis (PCA) is a procedure used to maintain

variation and bring out healthy patterns in a dataset. It is frequently used to make

data easy to examine and visualize.

For example, consider having data with two dimensions, like (height, weight).

This dataset can be plot as points in a plane. However, if we require to bother out

variation, PCA finds a new coordinate system in which every point has a new (x, y)

value. The axes do not mean anything physical; they are combinations of height
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and weight called ”principal components”; those are choosing to give one axis with

lots of variation.

Moderately unsurprisingly, lessening the dimension of the feature space is called

“dimensionality reduction”. There are many ways to achieve dimensionality reduc-

tion, but most of these techniques fall into one of two classes, which are Feature

Elimination and Feature Extraction

In this thesis, data to feed the network, we first use Principal Components analy-

sis to reduce the high dimensionality of the original image (i.e., hundreds of spectral

bands). PCA is a mathematical procedure to move N -dimensional data in another

N -dimensional space where the dimensions are linearly uncorrelated [57]. Addition-

ally, it allows selecting the M most representative dimensions. Consequently, a HSI

pixel xi,j with N spectral bands, can be reduced to a xi,j vector in M -dimensional

space, with M < N . Then, for each pixel in the reduced space, we extract a P × P

patch to use for its classification. Hence, the pixel-wise dataset for HSI pixels clas-

sification includes a collection of patches in the new M -dimensional space.

2.6.5 Resampling or Oversampling

When performing classification algorithms, the structure of our data is of great

importance. Precisely, the balance between the number of observations for each

possible output heavily influences our prediction’s performance. Let us see the

illustration Figure: 2.15 of that with a plot from imbalanced-learn.

As we can see, we are dealing with data that has three different classes that we

are trying to predict with the help of a linear support vector machine algorithm. In

the top-left plot, the yellow class is overlooking the other classes, and the decision

boundaries for the other classes are barely recognizable. As we keep adding more

observations to the underrepresented classes, the decision boundaries change dra-

matically. Thus, when trying to make predictions with regards to a minority class,

we need to find ways to avoid being misled by the majority class.

However, a popular way to undertake the issue of imbalanced data is over-sampling/resampling.

Over-sampling refers to numerous methods that aim to increase the number of sam-

ples from the rare class in the data set. In our case, these techniques increase the

number of fraudulent transactions in our data (usually to 50:50). We might ask why
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Figure 2.14: Imbalanced Data Distribution

one would even do that in the first place. Good question. If we do not balance the

number of samples, most classification algorithms massively focus on the majority

class. As a result, it might seem like our algorithm is achieving superb results when,

in reality, it is merely always predicting the majority class. One popular way to un-

dertake the issue of imbalanced data is over-sampling/resampling. Over-sampling

refers to numerous methods that aim to increase the number of samples from the

rare class in the data set. In our case, our data (usually to 50:50). We might ask why

one would even do that in the first place. Good question. If we do not balance the

number of samples, most classification algorithms massively focus on the majority

class. As a result, it might seem like our algorithm is achieving superb results when,

in reality, it is merely always predicting the majority class.

A better choice to using random naive over-sampling is Synthetic Minority Over-

Sampling Technique(SMOTE). While SMOTE still oversamples the minority class,

it does not rely on reusing previously existing observations. Instead, SMOTE creates

new (synthetic) observations based on the observations in your data. How does

SMOTE do that? To illustrate our point, we have put together a fictional data set.

As we can see in the Figure: 2.16, there are way more triangles than squares in
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Figure 2.15: Imbalanced Data Distribution

this fictional data set. Now, in order to train a more accurate classifier, we would

like to utilize SMOTE to oversample the squares. First, SMOTE finds the k-nearest-

neighbors of each member of the minority class. Let us visualize that for one of the

squares and assume that k = 3.

The visualization of Figure: 2.17 we have identified the three nearest neighbors

of the orange square. Now, depending on how much oversampling desired, one or

more of these nearest neighbors are going to be used to create new observations.

For this explanation, let us assume that we are going to use two of the three nearest

neighbors to create new observations. The next and final step is to create new

observations by randomly choosing a point on the line connecting the observation

with its nearest neighbor.

The dashed lines in the Figure: 2.18 represent the connection between the orange
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Figure 2.16: Visualization Imbalanced Data Distribution 1

square and its green nearest neighbors. The two red squares denote the new observa-

tions added to the data set by SMOTE. The main advantage of SMOTE compared

to traditional random naive over-sampling is that by creating synthetic observations

instead of reusing existing observations, our classifier is less likely to overfit. At the

same time, we should always make sure that the observations created by SMOTE

are realistic. The technique SMOTE uses to create new observations only helps if

the synthetic observations are realistic and could have observed in reality. However,

samples generated by SMOTE make the network more complex.

2.6.6 K-Fold Cross Validation and Data Partition

A cross-validation algorithm is a fundamental tool in the field of Data Science.

It enables us to maintain our data properly. Let us go ahead about what cross-

validation is.
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Figure 2.17: Visualization Imbalanced Data Distribution 2

In Machine learning, we frequently distribute the dataset into Training, Valida-

tion, and Test datasets. Cross-validation is a kind of resampling technique for train

and validates machine learning models. Dividing the dataset with a distinct ratio

in terms of the number of data points or examples to train and validate machine

learning models is a primary feature of cross-validation.

K-fold cross-validation is a simple system to generate a K number of folds ran-

domly. Obtaining the optimal value of K is a significant task. Optimize the value

of K, many kinds of research conveyed using different datasets on parametric and

non-parametric models [58]. In [59] explored leave ′p− out′ cross-validation for den-

sity estimation by the optimization of cross-validation split-ratio; in this thesis, we

focused on finding the value of ′p′ the number of data points to be used get train

and validation sets. More recently, the same author [59] attained optimal split-ratio

for density estimation by the implementation of a L2− loss measure. [60] examines

the predominance and importance of partition-induced covariate shift on different

k-fold cross-validation designs, and the degree of partition-induced covariate shift
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Figure 2.18: Visualization Imbalanced Data Distribution 3

depends on the cross-validation idea considered. In this way, worse schemes may

wreck the precision of a single-classifier performance estimation and also increase

the required number of repetitions of cross-validation to reach a stable performance

estimation.

Training data set — used to train the model, it can vary, yet typically we use 5%

to 90% of the potential data for training.

Validation data set — Once we choose the model that performs well on training

data, we run the model on the validation data set. Which is a subset of the data

usually ranges from 10%to30%, 40%, and so on it depends on the training set. The

validation data set helps implement an unbiased evaluation of the model fitness.

If the error on the validation dataset increases, then the model might suffer from

overfitting.
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Test dataset — Also called a holdout data set. This dataset includes data that

has never used during model training. The test data set serves with the final evalu-

ation of the model. Typically the required size of the test set would depend on the

training and validation sets.

When we are going to build a machine learning model using some data, we often

split our data into training, validation, and test sets. The training set used to train

the model, and the validation set used to validate it on data use during training to

converge the loss of model using the back-propagation algorithm. Finally, the test

set used to evaluate the robustness and performance of the model on data it has

never seen before. The classic approach is to do a simple 60% − 20% split, some-

times with different values like 50% − 30% or 80% − 10% for train and validation

set, remaining data used to test the model. In cross-validation, we do more than

one split. We can do 3, 4, 6, or K number of splits. Those separations are called

Folds, and there are several approaches we can build these folds. For instance,

K fold cross validation The method, Figure: 2.19, involves randomly splitting

the dataset into K groups or folds of approximately equal size. The first fold kept

for testing, and the model trained on K − 1 folds.

The process repeated K times, and each time different fold or a different group

of data points used for validation.

For instance, a simple K-Folds — We split complete data into K folds; consider

K = 5, for example. If we have 5000 examples in our dataset, We split it into 5 folds,

fold 1, fold 2, fold 3, fold 4, and fold 5. Then we build five different models; each

model is trained on 4 folds and tested on the 5th fold. Our first model is trained

on part 1, 2, 3, and 4, and tested on fold 5. Our second model is trained to on fold

1, 2, 3, and fold 5 and tested on fold 4 and so on.

Leave One Out Cross-Validation — This is the high-level method to do

cross-validation. For each data point in our dataset, we build a model using all

other data points and then test it on the selected instance. Stratified Cross-

Validation — Split the complete data into folds, make sure that each fold is a

valid representative of the complete data. The necessary fundamental thing is that

we need the equivalent proportion of several classes in each fold. Most of the time,
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Figure 2.19: Visualization Imbalanced Data Distribution 1

it occurs by arranging them randomly, but sometimes, in complicated datasets, we

have to expect a proper distribution for each fold.

let us look at some practical reasons for the implementation of cross-validation.

Employing Complete Data When we have a small amount of data, splitting

it into training and test set might leave us with a small test set. Suppose we have

only 100 examples if we do a simple 80–20 split, we will get 20 samples in our test

set. It is not enough. We can get almost any performance on this set only due to

chance. The problem is even worse when we have a multi-class problem. If we have

10 classes and only 20 examples, It leaves us with only 2 examples for each class on

average. Testing anything on only 2 examples cannot lead to any real conclusion.

If we use cross-validation in this case, we build K different models so that we can

make predictions on all of our data. For each instance, we predict by a model that

did not see this example, and so we are getting 100 examples in our test set. For the



Chapter 2. Background 54

multi-class problem, we get 10 examples for each class on average, and it is much

better than just 2. After we evaluated our learning algorithm, we are now can train

our model on all our data because if our 5 models had similar performance using

different train sets, we assume that by training it on all, the data may get similar

performance. By doing cross-validation, we can use all our 100 examples both for

training and for testing while evaluating our learning algorithm on samples we have

it has never seen before.

Getting More Matrices As discussed in Employing Complete Data, when we

create five distinct models utilizing our learning algorithm and test it on diverse

test sets, we can make more convinced with the performance of our algorithm. If

we begin with a single evaluation on the test set, we get simply one result. We may

get this result because of an opportunity or a biased test set for some reason. By

training 5 or more different models, we should get sufficient. Suppose we train on

five models, and we consider accuracy as our measurement. We could conclude in

various states. The best aspect is that our accuracy is comparable in all our folds,

say 91.0, 90.5, 91.8, 92.2 and 91.1, which suggests that our algorithm and our data

is compatible, and we can be sure that by training the model on all the data set

we have and extend it in result lead to similar performance. However, we could

complete it in a slightly modified scenario, say 91.0, 54.0, 92.5, 90.5, and 86.8. These

results look strange. It seems like one of 5 folds is from a separate distribution; we

have to move back and make sure that given data is something we expect it is. The

critical outline we can settle up in is when we have a significant difference in our

results, say 70, 54, 98, 500, and 97. In this case, it seems like that our algorithm or

our data is neither compatible, it could be that the algorithm is inefficient to learn,

or the data is very confused or complicated. We need to get more metrics and brings

a necessary outcome of both algorithm and r data via Cross-Validation

Use Models Stacking We need to build a proper pipeline for the models to de-

termine what we expect. Consider, Neural Networks, for instance. It is possible

to build many layers. Every layer having an output of the previous layer, and the

network able to learn a unique representation from the given data, so ultimately,

it yields reliable predictions. Through the back-propagation algorithm, the training
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of several layers is possible. Every layer estimates its error and transfers it back to

the preceding layer. When implementing similar without Neural Networks, we are

not able to train the network in the same way, yet always not possible to get clear

derivative or error, which we give back. For instance, consider the Random Forest

algorithm, which predicts something, and then we require to do a Linear Regression

that will commit to earlier predictions and generate some real number. The signifi-

cant task here, the following model, need to learn on the predictions of the previous

model. The most reliable solution is to use two separate datasets for each model. We

can train the Random Forest on the first dataset. Then, we use the second dataset

to produce a prediction using it. Then using second dataset predictions to train the

second model, which is the logistic regression, and finally, we use the third dataset

to evaluate the complete solution. We make predictions using the primary model,

pass those predictions to the second model, and then compare that to the provided

ground truth, which is the third dataset. If we have limited data, we cannot prepare

it. Additionally, we may not train both models on the equivalent dataset because

the second model learns upon predictions from the first model already seen. It may

lead to over-fit, or it may have reliable results than on another dataset. It suggests

that the second model is trained, but not on the test set. It may manage to another

effect on final evaluation, and it is hard to understand. By the implementation of

the cross-validation technique, it is possible to make predictions on the given dataset

in the same way as described before, and so our second’s models input will be real

predictions on data that our first model never seen before.

Group The Data When we implement a random train-test split of our data, we

believe that our samples are independent. That means that by identifying some

samples may not help us recognize other samples. However, that is not a regular

situation. Suppose a speech recognition scheme. Given that data may combine

different speakers, saying several words. Let us look at verbal digits recognition.

In this dataset, for instance, there are three speakers and 900 recordings (300 for

each speaker). If we do a random split, our training and test set will share the

same speaker saying the same words! Of course, it is an improvement within our

algorithm performance, but if we test the model on a new speaker, our results will

be much worse. The conventional way to do it is to divide the speakers, i.e., use
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two speakers for training and use the third for testing, then we will test the trained

algorithm only on the third speaker. It may not be enough, we want to know how

our algorithm performs on different speakers. We can use cross-validation on the

speaker’s level. We will train 3 models, each time using one speaker for testing and

remain two for training. In this way, we able to evaluate our algorithm better and

finally build our model on all speakers.

Fine-Tune The Parameters Parameter fine-tune is one of the usual and defi-

nite reasons to do cross-validation. Most of the learning algorithms need to tune

the parameters. In case, the number of trees in Gradient Boosting classifier, in a

Neural Network hidden layer size or activation functions, kernel types in an SVM,

and several more. We need to obtain the best parameters for our problem. We do it

by trying different values and choosing the best ones. There are many techniques to

do this. It could be a manual search, a grid search, or some more sophisticated op-

timization. However, in all those cases, we cannot do it on our training test and not

on our test set, of course. We have to use a third set, a validation set. By splitting

our data into three sets somewhat of two, we will tackle all the same issues we talked

about before, particularly if we do not have much data. By doing cross-validation,

we can do all those steps using a single set.

The advantage of utilizing K-fold cross-validation is.

Computation time reduced as we repeated the process only 5 times when the

value of k is 5. Reduced bias Every data points get to be tested precisely once

and employed in training k-1 times The variance of the resulting estimate reduced

as k increases However, the drawback is, the training algorithm is computationally

intensive as the algorithm has to be rerun from scratch k times

2.7 Metrics for Imbalanced data Classification

Classification task having multiple classes, including imbalanced dataset, shows a

complex challenge than a binary classification problem. The skewed distribution

makes many standard machine learning algorithms less effective, particularly in

predicting minority class examples. To address this problem, let us first explain the

problem at round and then consider the ways to overcome it.
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Multiclass Classification: A classification task with more than two classes;

e.g., classify a set of images of fruits which may be apples, banana, or peaches.

Multiclass classification assumes that each sample assigned to a single label: a fruit

can be either an apple or a peach but not both at the same time.

Imbalanced Dataset: Imbalanced data typically introduces to a problem with

classification problems where the classes did not represent equally. For instance, we

have a 3-class classification problem of a set of fruits to classify as bananas, apples, or

peaches with a total of 100 samples. A total of 80 instances assigned label with Class-

1 (Banana), 10 samples with Class-2 (Apples), and the remaining 10 samples labeled

with Class-3 (Peaches). This kind of distribution called an imbalanced dataset and

the ratio of 8 : 1 : 1. Most of classification data sets do not have an exactly equal

number of samples in each class, but a small difference usually does not matter.

There are problems where the class imbalance is not just ordinary. For instance, in

datasets like those that characterize fraudulent transactions are imbalanced. The

vast majority of the transactions are in the ”Not-Fraud” class, and tiny minority

samples are in the ”Fraud” class.

measure model performance: Let us think that we trained our model on

imbalanced data of earlier example of fruits, and as data is heavily biased towards

Class-1 (Bananas) because bananas are 80% of total samples, the model over-fits

on the Class-1 label and predict it in most of the cases. We achieve an accuracy

of 80%, which seems very good at first but looks closely, it may never be able to

classify apples or peaches accurately. Now the question is if the Accuracy, in this

case, is not the right metric to choose, then what metrics to use to measure the

performance of the model?

2.7.1 Confusion Matrix

Confusion Matrix is a performance measurement for a classification algorithm where

output can be two or more classes.

With imbalanced classes, it is easy to get a high accuracy without actually

making useful predictions. So, Accuracy as an evaluation metrics performs sense

only if the class labels uniformly distributed. In the case of imbalanced classes,

confusion-matrix is an excellent technique for summarizing the performance of a

classification algorithm.
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Figure 2.20: Parts of of Confusion Matrix

Figure 2.21: Structure of Confusion Matrix

The confusion matrix is a table that often used to represent the performance of

the classifier on a set of test data for which the actual known values. The confusion

matrix itself is comparatively simple to understand, but the related terminology can

be confusing.

Let us start with an example confusion matrix for a binary classifier to under-

stand quickly.

What can we learn from the matrix-2.21 There are two possible predicted classes:

”yes” and ”no.” If we were predicting the presence of a disease, for example, ”yes”

would mean they have the disease, and ”no” would mean they don’t have the disease.

The classifier made a total of 75 predictions (e.g., 75 patients tested for the presence

of that disease). Out of those 75 cases, the classifier predicted ”yes” 50 times, and

”no” 25 times. In reality, 45 patients in the sample have the disease, and 30 patients

do not. Let us now define the most basic terms, which are whole numbers (not rates):

true positives (TP): These are cases in which we predicted yes (they have

the disease), and they do have the disease.
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true negatives (TN): We predicted no, and they don’t have the disease.

false positives (FP): We predicted yes, but they don’t actually have the

disease. (Also known as a ”Type I error.”)

false negatives (FN): We predicted no, but they actually do have the dis-

ease. (Also known as a ”Type II error.”)

We have added these terms to the confusion matrix, and also added the row and

column totals:

2.7.2 Accuracy

Accuracy is one of the metrics concerning evaluating classification models. Infor-

mally, Accuracy is the fraction of predictions our model got right. Formally, Accu-

racy has the following definition:

Accuracy = NumberofCorrectPredictions
TotalNumberofPredictions

For binary classification, Accuracy can also calculate in terms of positives and

negatives. Figure: 2.20 as follows:

Accuracy = TP+TN
TP+TN+FP+FN

Where

TP = True Positives,

TN = True Negatives,

FP = False Positives,

FN = False Negatives.

Overall Accuracy(OA) Overall Accuracy is telling us out of all of the samples

what proportion outlined accurately. The overall Accuracy expressed as a percent,

with 100% accuracy being perfect classification where all samples were classified

correctly. Overall, Accuracy is not much challenging to calculate and understand
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Figure 2.22: Representation of a Confusion Matrix of classifier evaluation with three
categories

but eventually only provides the map user and producer with necessary accuracy

information. The diagonal elements in the confusion matrix represent the areas

that were correctly classified. To calculate the overall Accuracy, we add the number

of correctly classified samples and divide it by the total number of samples. For

instance consider the Figure: 2.22

Number of correctly classified site: 21 + 31 + 22 = 74 Total number of reference

sites = 95

Overall Accuracy = 74/95 = 77.9% We could also represent this as an error per-

centage, which would be the complement of accuracy: error + accuracy = 100%. In

the above example, the error would be the number of samples incorrectly classified

divided by 95or21/95 = error,= 22.1%. We could also define the overall error by

subtracting the accuracy percentage from100 : 100− 77.9 = 22.1%.
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Figure 2.23: A Simple Structure of Confusion Matrix with two class classification results

2.7.3 kappa Coefficient

The Kappa statistic (or value) is a metric that compares an Observed Accuracy

with an Expected Accuracy. The kappa statistic used not only to evaluate a sin-

gle classifier but also to evaluate classifiers amongst themselves. Besides, it takes

into account agreement with a random classifier, which generally means it is less

misleading than only using accuracy as a metric, for instance, an Observed Ac-

curacy of 80% is a lot less impressive with an Expected Accuracy of 75% versus

an Expected Accuracy of 50%. Computation of Observed Accuracy and Expected

Accuracy is integral to the comprehension of the kappa statistic and represented

through the use of a confusion matrix. Before going to move further, Let us look at

section: 2.7.1 and the following example Figure: 2.23 Consider that built a model

using supervised machine learning on labeled data. It does not always have to

be the case; the kappa statistic frequently used as a measure of reliability within

two human rater/estimator/examiner/judges. Although, columns correspond to one

”rater,” while rows correspond to another ”rater.” In supervised machine learning,

one ”rater” returns ground truth (the actual values of every instance to be clas-

sified), acquired from labeled data, and the other ”rater” is the machine learning

classifier used to perform the classification. Ultimately it does not matter which is

which to compute the kappa statistic, but for clarity’s sake, let us assume that the

columns reflect ground truth, and the rows reflect the machine learning classifier

classifications.

Before we get to the equation for the kappa statistic, one more value is needed:

the Expected Accuracy—this value defined by the accuracy any random classifier

would expect to achieve based on the confusion matrix. The Expected Accuracy is
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directly related to the number of instances of each class (Cats and Dogs), along with

the number of instances that the machine learning classifier agreed with the ground

truth label. To calculate Expected Accuracy for our confusion matrix, first, multiply

the marginal frequency of Cats for one ”rater” by the marginal frequency of Cats

for the second ”rater” and divide by the total number of instances. The marginal

frequency for a certain class by a certain ”rater” is just the sum of all instances the

”rater” indicated were that class. In our case, 15(10 + 5 = 15) instances labeled as

Cats according to ground truth, and 17(10+7 = 17) instances were classified as Cats

by the machine learning classifier. This results in a value of 8.5(15 ∗ 17/30 = 8.5).

Then this is made for the second class as well (and can be repeated for each additional

class if there are more than 2). 15(7 + 8 = 15) instances labeled as Dogs according

to ground truth, and 13(8 + 5 = 13) instances classified as Dogs by the machine

learning classifier. This results in a value of 6.5(15 ∗ 13/30 = 6.5). The final step

is to add all these values together, and finally divide again by the total number

of instances, resulting in an Expected Accuracy of 0.5((8.5 + 6.5)/30 = 0.5). In

our example, the Expected Accuracy turned out to be 50%, as will always be the

case when either ”rater” classifies each class with the same frequency in a binary

classification (both Cats and Dogs contained 15 instances according to ground truth

labels in our confusion matrix).

The kappa statistic can then calculated using both the Observed Accuracy (0.60)

and the Expected Accuracy (0.50) and the formula:

Kappa = (observedaccuracy − expectedaccuracy)/(1− expectedaccuracy)

So, in our case, the kappa statistic equals: (0.60− 0.50)/(1− 0.50) = 0.20.

2.7.4 F1-Score

F1 score is a classifier metric based on Precision and Recall, which calculates an

average of Precision and Recall in a way that indicates the lowest value, however,

why an F1-score is essential to measure the quality of the model. Before going to

understand F1-score, let me introduce two new metrics called precision and Recall.

What are these precision and Recall? lets consider the parts of confusion matrix

from Figure: 2.20

If we look at Wikipedia, the formula for calculating Precision and Recall is as

follows:
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Figure 2.24: Total Predicted Positives

Precision

Lets consider Figure: 2.24

Precision = TruePositive
TruePositive+FalsePositive

From the above equation, we can see that the precision expresses regarding how

accurate our model is out of those predicted positive, how many of them are actual

positive.

Precision is an exceptional measure to decide when the values of False Positive is

high. For example, email spam detection. In email spam detection, a false positive

means that a non-spam email (actual negative) has identified as spam (predicted

spam). The email user might lose relevant emails if the precision is not high for the

spam detection model.

Recall

Let us consider the same logic of Precision for Recall. How Recall has calculated.

Lets consider Figure: 2.25.

Precision = TruePositive
TruePositive+FalseNegative

Here we see, the Recall calculates how many of the Actual Positives our model

takes label it as Positive (True Positive). Applying the same belief, we know that
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Figure 2.25: Actual Positives

Recall shall be the model metric we use to select our best model when there is a high

value incorporated with False Negative. For example, consider fraud detection or

infected patient detection. If a fraud transaction (Actual Positive) predicted as non-

fraud (Predicted Negative), the outcome could be not good for the bank. Similarly,

in infected patient detection, if an infected patient (Actual Positive) went through

the test and predicted as not infected (Predicted Negative), the value associated

with False Negative will be much high if the infection is contagious.

F1-Score

When we consider the Precision and Recall from the literature, we cannot avoid the

additional measure, F1-Score, which is a function of Precision and Recall.

Precision = 2 ∗ Precision∗Recall
Precision+Recall

F1-Score is required when we need to explore a balance between Precision and

Recall. However, what is the main difference between F1-Score and Accuracy?

We have previously noted that accuracy can primarily be contributed by a vast

number of True Negatives, which in most business matters, we do not focus on

much. In contrast, False Negative and False Positive usually has business costs (real

hypothetical). Thus F1-Score might be a more reliable measure in practice if we

need to investigate a balance between Precision and Recall, and there is an irregular

class distribution (a massive number of Actual Negatives).
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Chapter 3

Related Works

3.1 Traditional Approaches

With the advantage of wealth information provided by the hyperspectral imagery,

various kind of applications include geographical research, wetland mapping, envi-

ronmental mapping, and global change research, crop analysis and plant, mineral

identification, and other remote sensing applications are adopted. Since the classi-

fication of each pixel in the hyperspectral image is one crucial requirement for all

these applications. HS Images typically contain precious spectral evidence and high-

resolution spatial structure of materials within hundreds of continuous observation

bands all over the electromagnetic spectrum at each pixel, covering a wide range

of wavelengths captured by satellite spectrometers [61] [62]. In the initial stage, to

solve the classification problem of hyperspectral imagery, most of the research com-

munity focus on, discovering the importance of spectral signatures of hyperspectral

images [63] [64]. However, according to the relation of non-linearity between the

captured spectral information and the corresponding material, these methods are

not suitable to analyze the attributes of HS imagery. Later many feature extraction

methods discovered, including Principal Component Analysis (PCA) [65]. PCA ex-

tracts discriminative features to reduce the set of relevant bands since given spatial

resolution, and neighboring pixels are highly correlated, in this case, spectral signa-

tures contain vast redundant information. Independent component analysis [66] and

linear discriminant analysis (LDA) [67] are used to extract spectral features. Those

features were fed into classifiers to produce the final classification result. HS data

contains structural spectral and spatial features. In terms of data classification ac-

curacy, the structure of features is fundamental. However, classification with above
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traditional methods, there is a possibility to lose the structural information about

original features, and increasing the quantity and variability of available data, the

computational cost may increase exponentially. In literature, we have two types of

classification methods for Hyperspectral imagery: Pixel-level and Image-level classi-

fication. In the last two decades, hyperspectral imagery research community heavily

focused on pixel-level HSI classification algorithms [68], and Kernel learning meth-

ods [69] [70] [71] [72] are achieved satisfactory performance with less computational

cost compared with the traditional methods. The supervised, semi-supervised [73],

and unsupervised [74] machine learning techniques discovered towards HSI classifi-

cation, including K-means clustering [75], K-nearest neighbors [76] [77], maximum

likelihood [78], support vector machine (SVM) [63] [79], random forest [80], logistic

regression, and neural network are played a significant role to solve the classifica-

tion problem. Nevertheless, the SVM has undoubtedly become the most extensively

used approach in HSI classification research [81], then other non- parametric ap-

proaches. In general, compare with unsupervised classifiers, supervised classifiers

attain higher classification results. The most commonly used supervised classifiers

present in [82]. Since kernel learning methods [83] can learn intricate patterns with a

few parameters. Kernel methods are also suitable for datasets, which are limited to

training samples [84]. Multiple kernel learning methods [85] can extract the features

based on groups of bands, contextual, or textural features. However, kernel learning

methods also had some limitations, saying choose an appropriate kernel to solve a

specific problem is tricky. However, according to the accuracy of the system, kernel

methods are not suitable or outperformed in many domains under deep learning

approaches.

3.2 Modern Classification Methods

For two decades, numerous advanced classification approaches, including fuzzy-sets,

artificial neural networks, and expert systems, have extensively employed for image

classification. In [86] explained the status and research preferences of land-cover
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mapping for broad areas. [87]assessed land-cover classification strategies with av-

erage spatial resolution remotely sensed data. [88] [89] particularly concentrate on

image processing strategies and classification algorithms. In usual, image classifi-

cation methods assorted as parametric and non- parametric or hard and soft fuzzy

classification, or supervised and unsupervised, or per- field, per-pixel and sub-pixel.

A brief description of advanced classification strategies provided in the following

subsections. A comprehensive summary of a particular classification method should

refer to cited references.

3.3 Per-pixel classification

Initial per-pixel classifiers typically exhibit a signature by merging the spectra of

all pixels in a training-set for a given feature. The resulting signature contains the

contributions of all materials present in the training pixels but neglects the influence

of the mixed pixels. Per-pixel classification approaches can be parametric or non-

parametric. The parametric classifiers consider that a normally distributed dataset

exists and that the statistical parameters like mean vector and covariance matrix

generated from the training samples are representative. Nevertheless, the hypothesis

of normal spectral distribution is frequently disrupted, especially in complex land-

scapes. Besides, insufficient, non-representative, or multi-mode distributed training

samples can further present uncertainty to the image classification system. A differ-

ent major drawback of the parametric classifiers lies in the problem of integrating

spectral data with additional data. The maximum likelihood may be the most com-

monly used parametric classification approach in practice, because of its robustness

and its easy availability in about any image-processing software.

With a non-parametric classification approach, the hypothesis of a normal distri-

bution of the dataset may not require. No analytical parameters are required to dis-

tribute image categories. Non-parametric classification approaches are consequently

particularly suitable for the association of non-spectral data into a classification

system. Significant prior researches have shown that non-parametric classifiers may

produce better outcomes than parametric classifiers in heterogeneous landscapes

[34] [90]. Between the most usually applied non-parametric classification strategies

are neural networks, decision trees, support vector machines, and expert systems.
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In particular, for a decade, the neural network approaches are widely utilizing. The

neural network has diverse advantages, including its non- parametric nature, arbi-

trary decision boundary capability, easy adaptation to different types of data and

input structures, fuzzy output values, and generalization for use with multiple im-

ages, making it a promising system for land-cover classification [90]. The multilayer

perceptron (MLP) is the popular type of neural network in image classification [91].

However, the variations in the dimensionality of a dataset and the features of train-

ing and testing sets may reduce the accuracy of image classification in [92]. Bagging,

boosting, or a hybrid of both methods used to enhance classification performance in

a non-parametric classification procedure. These methods have been used in deci-

sion trees [27] [26] [93] and a support vector machine [94] to enhance classifications.

3.4 Sub-pixel classification

Most classification methods based on per-pixel information, in which every pixel

classified into one class or category and the land-cover classes are generally partic-

ular. Due to the heterogeneity of landscapes and the lack of spatial resolution of

RS imagery, mixed pixels are usual in medium and coarse spatial resolution data.

The appearance of mixed pixels has been identified as a significant problem, influ-

encing the effective use of RS data in per-pixel classifications [95], [96]. Sub-pixel

classification strategies had exploited to produce a more relevant representation and

accurate area estimation of land covers than per-pixel approaches, mainly when infe-

rior spatial resolution data used [48] [97][49] [98]. A fuzzy description, in which each

location formed of multiple and partial associations of all input classes, is needed.

Several methods have been employed to derive a soft classifier, including fuzzy-set

theory, Dempster–Shafer theory, certainty factor [99], softening the outcome of a

hard classification from maximum likelihood [100], IMAGINE’s sub-pixel classifier

[Huguenin1997], and neural networks [97] [101] [102]. The fuzzy-set strategy [103]

[104] [105], [106] and spectral mixture analysis (SMA) classification [20] [107][108]

are the most famous methods used to succeed the mixed pixel problem. One impor-

tant drawback of sub-pixel classification lies in difficulty in estimating accuracy, as
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discussed in 2.5.8. Spectral mixture analysis has identified as an efficient approach

for dealing with the mixed pixel problem. It evaluates the individual pixel spectrum

as a linear combination of a set of endmember spectra [107] [108]. The outcome of

spectral mixture analysis typically presented in the form of parts of images, with a

single image for each endmember spectrum, serving the area dimensions of the end-

members within the pixel. Endmember choice is one of the most essential aspects in

spectral mixture analysis, and many prior studies [109] [110] [111] [112] [113] [114]

[115] [116] has investigated the approaches. Earlier research has proved that SMA

helps to improve the classification accuracy [107] [117], and is particularly impor-

tant to improve the area estimation of land-cover categories based on coarse spatial

resolution data.

3.5 Contextual classification

Contextual classification approaches have been extended to cope with the difficulty

of intra-class spectral variations Gong1992 [118] [119] [120] [121] [122]. Contextual

classification employs spatial information between neighboring pixels to enhance

classification performance [5] [119] [123] [122]. A contextual classification approach

may employ smoothing strategies, Markov random fields, spatial statistics, fuzzy

logic, segmentation, or neural networks [124] [125] [126] [121] [122]. Usually, pre-

smoothing classification strategies include contextual information as extra bands,

and classification is then accompanied using normal spectral classifiers, during post-

smoothing classification conveyed on classified images earlier developed utilizing

spectral-based classifiers. The Markov random field-based contextual classifiers,

such as iterated conditional modes, are the most commonly used methods in con-

textual classification [125] [122] and have demonstrated to be efficient in enhancing

classification outcomes.
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3.6 Deep Learning Approaches:

The awareness of CNN primarily introduced in [127] then simplified in [128]. Deep

learning(DL) methods actively examined in image classification [129] [130], natu-

ral language processing [131], speech recognition [132], and other computer vision

and pattern recognition tasks. These methods contain two more hidden layers to

extract invariant and discriminant features from input data. For a decade, remote

sensing communities showing great interest in the DL approach. The first time,

HS Image classification using DL in [133]. CNN appeared in [134], where convo-

lutional kernels learned automatically through data clustering. Later deep believe

networks (DBN) used for HSI classification in [135]. Sparse theory and Manifold

learning techniques attained cognitive performance [76] [136] using the mechanism

of a shallow layer. However, these methods are not able to deal with the complex

classification problem. However, there are two types of CNN based methods, which

are spectral and spectral-spatial classifiers. Most of the HSI classification methods

used spectral-spatial information. In [133] combination of PCA, CNN, and Logistic

regression used for spectral and spatial classification. If only spectral approaches

might produce enough results, it does not benefit from the spatial structure of the

HS image. Indeed, neighbor pixels likely share structural relationship information.

The efficiency, robustness of the model may improve due to the utilization of spatial

information during the analysis.

3.7 Transposed Convolution:

Transposed Convolution (TC) also called Fractionally Strided Convolution or De-

convolution in literature [137]. However, TC different from Deconvolution, math-

ematically Deconvolution defined as the inverse of the convolution. Deconvolution

used as a Decoder in DL methods, mostly for segmentation tasks to map the la-

tent features back to input space. For the segmentation task, every Deconvolutional

layer in the DL framework contains Deconvolution operation and unpooling. Un-

pooling up-samples the input feature map based on unpooling shifts, defined by

the corresponding pooling operation of convolutional layers. In [138] proposed a
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framework for semantic segmentation by learning a deconvolution network since De-

convolution densify sparse activation maps obtained by unpooling via convolutional

operation through multiple filters. In [139] proposed an unsupervised deconvolu-

tion network approach based on the convolutional decomposition of images under

sparsity constraints to extract features to capture the mid-level cues impulsively

appears in image data. In [140] implemented a weakly supervised semantic segmen-

tation framework, to build discriminative feature sets, by feature maps generated

from the multiple deconvolutional layers which are robust against false positives,

because the feature maps generated from the deconvolution layers contain less noise

than convolutional layers. In [141] proposed Laplacian pyramid model for recon-

structing sub-band residuals from the high-resolution image, in this work, every

pyramid takes coarse-resolution feature maps as input, and predict high-frequency

resolution residuals by up-sampling the input feature maps using transposed con-

volutions. At different scales by the contexts of objects, transposed convolutions

[142] used to predict the lost spatial information for the segmentation of cell in-

stances. To reduce the computation cost, concerning the trainable parameter, [143]

proposed TCNet (Transposed Convolutional Network), TC is useful for real-time ap-

plications, because they need a simple and effective network for fast computations,

TC can significantly reduce the size of the layers still it goes deeper. In order to

improve the performance of real-time image super-resolution [144] proposed a novel

hourglass-shape structured network called up-down network (UDNet). Usually, all

the existing fast CNN with transposed convolution models able to transform low-

resolution feature representations to high-resolution output. In this work, they are

combining transposed convolution and spatial aggregation, which allows the network

to transfers feature representations between low-resolution space and high-resolution

space. For better mapping, the network can learn multiple times in both low resolu-

tion and high-resolution spaces. In [145], transposed convolution helps to force the

model to focus on learning more details from the image in terms of visual perception

by upscale the feature maps in a residual branch of the proposed network instead of

identity branch, which also stabilize the learning process. Transposed convolution

suffering from the checkboard problem, briefly, there is no direct relationship be-

tween neighboring pixels during learning; this is a unique advantage for pixel-level
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classification problems. However, for object-level classification or recognition appli-

cations learning from neighboring pixels is a great advantage, to learn the network

from adjacent or neighboring pixels on the up-sampling feature maps [146] proposed

an approach called pixel transposed convolution layer (PixelTCL).

3.8 Dilated Convolutions

In this thesis, we adopted Dilation convolution or Atrous-convolutions. Dilated

convolutions layer demonstrated in various tasks like classification, semantic seg-

mentation, image super resolutions with significant improvement of accuracy’s and

which can transfer to various similar datasets, irrespective of their scales, spatial and

channel-wise resolutions. Dilated convolutions are the best alternative to pooling

operations because they contain sparse kernels. Dilated convolutions are Mathemat-

ically dilation convolution operation considered from [137]. Dilated convolution first

introduced in [54], to aggregates multi-scale contextual information, this approach

achieved great success in dense prediction or semantic segmentation task, and also

explained how it achieves the exponential expansion of the output receptive field

through dilation convolution. In order to segment small and crowded object in RS

Imagery as well as for image classification in [147] proposed a semi-supervised ar-

chitecture called local feature extraction module to contain dilation layer on the

top of the network, to address this problem, the combination of the local feature

due to sparsity of the kernel by decreasing the dilation factor. In [136] proposed a

residual network with dilation layer, called dilated residual network. The difficul-

ties from low-resolution feature maps, this work motivates the standard convolution

layer, which produces low spatial resolution feature maps, and reduce classification

accuracy. Since, trained models are not able to afford for best performance on subse-

quent applications, because which require wide-ranging scene understanding, these

problems erased by dilation convolution, dilation layers can increase the resolution

of output feature maps without reducing the receptive field of individual neurons.

Image segmentation tasks, objects appeared on different scales with in the same
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class; those variations are depending on the distance between the object and po-

sition of the camera. To address this kind of problem in [148] introduced a CNN

architecture with multiple dilated convolution blocks. Since, by dilated convolu-

tion, features are separated by a certain distance during the convolution process.

Not only for classification, even dilated convolutions are playing a significant role

in generating density maps. In [149], suggested a CNN based network with dila-

tion layers. In this work, they used dilation layers at the back-end of the network

to extract in-depth features to preserve the spatial information. In [150] recom-

mended an approach for weakly and semi-supervised segmentation. In this work,

they investigate the advantages of dilation layers, and classical CNN models carry

performance differences by their limitation on learning to generate significant image-

level dense object localization maps. Since, by altering the dilation rates, dilation

layers effectively enlarge the receptive fields of convolutional kernels and transfer

the neighbor discriminative information to non-discriminative object regions, those

regions are localization maps in a particular object. Most of the traditional im-

age classifications used convolutional layers. Nevertheless, the drawback with the

CNN contrast with Dilation Convolutions, which consuming enormous computing

resources, to address this problem in [151] proposed the Dilated CNN model with

two modules. Firstly they replaced convolutional kernels of traditional CNN by

dilated convolutional kernels, and tested with handwritten digital recognition data

sets, following they discovered, some information loss due to simple dilated convo-

lutions. Then designed Hybrid Dilation Convolutional Neural Networks to solve the

problem of information loss with varying dilation factor or rates, this hybrid model

forded state of the art results with remote sensing dataset. In [152] proposed an

approach toward semantic segmentation of a satellite image, in this task they used a

mechanism by using dilation convolutions called serial-parallel combination dilated

convolution, which assembles multi-scale features by enlarging the receptive fields.
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3.9 Exponential Linear Unit(ELU)

Exponential Linear Unit (ELU) first introduced in [56] and explored, ELU imple-

ments exponential function about negative inputs, ELU can alleviate the vanishing

gradient problem during training phase thorough identify positive values. ELU has

the same shape as ReLU for the positive inputs. However, the output values of

the ELU with the negative inputs become negative values, so the mean of the out-

puts of activation function goes near to zero, which is an advantage during learning

and robust to noise. ELU also reduce the computational complexity [153] by re-

ducing the bias shift effect, since, ELU brings the average gradient to closer to the

unit natural gradient. By decreasing the forward propagated information and vari-

ation, ELU ensures a noise-robust deactivation state. Not only of computer vision

tasks like segmentation or classification, deep learning adopted in every field, in

[154] explored deep learning and machine learning algorithms in the field of Elec-

trical systems. Specifically for predicting the behavior of energy systems, in this

work, they proposed multi-layered deep neural network for short-term forecasting

about the electric grid, in this work they used different activation function to reach

significant results since ELU gives better performance in terms of Mean Absolute

Percentage Error (MAPE) over other activation functions. They tested ELU with

various combination of hidden layers like ELU with single and two hidden layers

in both cases they attained required performance, and they explored ELU does not

saturate with lager input values, and the average of the ELU function closer to

zero because of the characteristics of the negative portion of the function guarantee

faster and accurate learning. In [155] presented a report about a comparative study

on batch normalization and different activation functions with various networks,

they concluded ELU activation function with Residual and VGG networks achieved

desired performance over others activation function; however, all the networks and

datasets are not suitable to attain better performance with ELU activation function.
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3.10 Patch Wise training

Most of the traditional deep learning algorithms use full image train CNN. How-

ever, according to devices which we are using to train neural networks having limited

memory, in such cases, we are not able to feed larger images to CNN. However, we

can split the entire image into small patches from the training dataset as well as a

validation set. In [156] explored a new architecture called Random Patches Network

(RPNet), to reduce the computational burden as well as to capture the objects tend

to have different scales, which take the random image patches from a single image as

convolutional kernels without any training process. In [157] proposed a framework

to classify hyperspectral images; in this work, they designed two shallow networks,

PCA Whitening and stacking spectral patches. In this work, they split the image

into patches as spectral cubes concerning spectral information, since to avoid com-

putational cost while retaining all spectral bands, they stack spectral patches by

same color channels. In such a case, they extract unique texture patterns from orig-

inal information for the individual color channels. For segmentation task, patch-wise

training showing grate performance. However, size of the patch is a matter for some

cases, in [158] explored the effectiveness of the patch size for segmentation task,

in this work they discovered increasing the size of the patch leads to improve the

classification, performance. [159] proves patch-level classification achieved signifi-

cant results than an image-level classification by Decision Fusion Model, and which

automatically locates discriminative patches by utilizing the spatial relationship of

patches. Patch Based Classifier implemented using convolutional neural networks in

[160] for automatic classification of medical images, in this work due to limited data

they extracted image patches from a single image and the augmented individual

patches to augment entire image, they witnessed patch wise training gives relevant

diagnostic information.

3.11 Imbalanced Data

Class imbalanced data classification has been a hot topic in the research and aca-

demic community. There are many solutions recommended for imbalanced data
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classification and other tasks, from data-level to algorithm-level. In [161] proposed

the most popular data-level approach called Synthetic Minority Over-sampling/re-

sampling Technique (SMOTE) to alleviate the problem of class imbalance and which

prevents the over-fitting problem. However in [162] explored there are severe flaws

with SMOTE, to overcome those conflicts they proposed an approach called Sigma

Nearest Oversampling Based Convex Combination (SNOCC), which reproduce the

original sample distribution naturally by finding nearest neighbor samples, mainly

which renders the new samples by increasing the number of seed samples. However,

especially for minor classes in the imbalanced dataset, in [163] proposed two ap-

proaches, which are borderline-SMOTE1 and borderline-SMOTE2, the approaches

oversample the data from near borderline(near neighbor samples) minority sam-

ples. HS imagery differs from traditional imagery datasets; most of the HS datasets

are imbalanced. [149] proposed an approach, especially for imbalanced HS imagery

datasets based on orthogonal complement subspace projection(OCSP). It works on

major and minor classes of HS datasets, which depends on the size of the dataset,

if dataset larger enough, in order to avoid over-fitting OCSP eliminate or reduce

significant class data to balance with minor classes, if small dataset OCSP create

artificial samples from minor classes until balance all the class distribution in the

dataset. [164] explored a review of problems with imbalanced data, and he ex-

plained different solutions for highly and partially imbalanced datasets for different

real-time applications. Many initial works consider data class imbalance is a chal-

lenge for the classification task, and most of the work proposed data resampling

or over-sampling and under-sampling techniques, but all these considered a data

pre-processing. However, in [165] proposed an approach for the problem of class im-

balance in a two-class classification task called divergence-encouraging auto-encoder

(DEA), which explicitly learn the feature during training from both majority and

minority classes simultaneously.

3.12 A summary of classification Strategies

Whereas many classification strategies are still developing, which strategies are con-

venient for features of interest in previous study areas are not adequately surmised.
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Classification algorithms can be per-pixel, sub-pixel, and contextual based. Per-pixel

classification is yet most generally utilized in practice. Nevertheless, the accuracy

may not satisfy the provision of research because of the influence of the mixed pixel

problem. Sub-pixel approaches have the potential to trade with the mixed pixel

complication and may attain higher accuracy for medium and coarse spatial resolu-

tion images. For higher quality spatial resolution data, though mixed pixels might

lessen, the spectral variation within land categories may also reduce the classifica-

tion accuracy. Per- field classification strategies are most convenient for high spatial

resolution images. When utilizing multi-source information, such as a mixture of

spectral signatures, texture and context information, and additional data, advanced

non-parametric classifiers, like a neural network, decision tree, and knowledge-based

classification, maybe more adapted to handle these complicated data processes, and

thus have obtained growing attention in the remote-sensing community in current

years. The choice of a relevant classifier needs consideration of many factors, such as

accuracy, algorithm performance, and computational resources [26] [119] reviewed

three criteria—the objective of classification, available computer resources, and ef-

ficient detachment of the categories. In practice, the spatial resolution of the RS

data, the use of additional data, the classification technique, the accessible software,

and the expertise analysts may all influence the decision of choosing a classifier. A

related study of diverse classifiers is frequently managed to find the best classifica-

tion outcome for a distinct study [5] [91] [119] [121] [166] [167] [168] [169]. In several

instances, contextual-based classifiers, per-field strategies, and machine-learning al-

gorithms produce a more reliable classification outcome than MLC, even if some

compromises between classification accuracy, time consumption, and computing re-

sources.



78

Chapter 4

Used Datasets

The proposed approach has been evaluated on five benchmark datasets, namely

University of Pavia, Pavia Center, Botswana, Salinas and Indian Pines. All these

datasets are publicly available and employed in many researches in the field. In this

section we report the basic information about Datasets we used.

4.1 University of Pavia

TheUniversity of Pavia dataset, has been acquired using Reflective Optics System

Imaging Spectrometer (ROSIS) over Pavia, in north Italy. This dataset includes a

610 × 610 pixels image with 103 bands. The spatial resolution is 1.3 meters per

pixel. This area presents 9 different kinds of terrains; hence, each pixel annotated

across 9 classes. The ground truth image is shown in the Figure. 4.1(a) and The

class names and corresponding numbers of ground truth observations used in the

experiments listed in the Table:4.1.

4.2 Pavia Center

The Pavia Center dataset has acquired by ROSIS and presents the same number

of classes. The hyperspectral image consists of 102 bands; image size is 1096× 1096

and spatial resolution 1.3 meters. Figure. 4.1(b) depicts the ground truth and the

class names and corresponding numbers of ground truth observations used in the

experiments listed in the Table:4.2.
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(a) (b) (c) (d) (e)

Figure 4.1: (a) Ground truth image of Pavia University Dataset; (b) Ground truth image
of Pavia Center Dataset; (c) Ground truth image of Botswana Dataset; (d) Ground truth
image of Salinas Dataset; (e) Ground truth image of Indian Pines Dataset.

Class Samples

1 Asphalt 6631
2 Meadows 18649
3 Gravel 2099
4 Trees 3064
5 Painted metal sheets 1345
6 Bare Soil 5029
7 Bitumen 1330
8 Self-Blocking Bricks 3682
9 Shadows 947

Table 4.1: Groundtruth classes for the Pavia University scene dataset and their respective
samples number

Class Samples

1 Water 824
2 Trees 820
3 Asphalt 816
4 Self-Blocking Bricks 808
5 Bitumen 808
6 Tiles 1260
7 Shadows 476
8 Meadows 824
9 Bare Soil 820

Table 4.2: Groundtruth classes for the Pavia centre scene dataset and their respective
samples number
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4.3 Botswana

The Botswana has been collected by the Hyperion sensor NASA EO-1 satellite over

the Okavango Delta in Botswana. This image presents 145 bands of size 1476× 256

pixels; spatial resolution is 30 meters per pixel and wavelengths covering 400nm to

2500nm. It includes 14 distinct land cover types. The ground truth data shown

in Figur: 4.1(c), and the class names and corresponding numbers of ground truth

observations used in the experiments listed in the Table:4.3.

Class Samples

1 Water 270
2 Hippo grass 101
3 Floodplain grasses 1 251
4 Floodplain grasses 2 215
5 Reeds 269
6 Riparian 269
7 Firescar 259
8 Island interior 203
9 Acacia woodlands 314
10 Acacia shrublands 248
11 Acacia grasslands 305
12 Short mopane 181
13 Mixed mopane 268
14 Exposed soils 95

Table 4.3: Ground-Truth classes for the Botswana dataset and their respective samples
number

4.4 Salinas

The Salinas data have been collected by AVIRIS sensor with a spatial resolution of

3.7 meters. Image size is 512×217 and each pixel is labeled across 16 classes. Ground

truth reported in Figure. 4.1(d) and The class names and corresponding numbers

of ground truth observations used in the experiments listed in the Table:4.4.. Orig-

inal data consisted of 224 bands, but the 20 ones related to water absorption have
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discarded. Hence, it includes the 204 remaining bands.

Class Samples

1 Brocoligreenweeds1 2009
2 Brocoligreenweeds2 3726
3 Fallow 1976
4 Fallowroughplow 1394
5 Fallowsmooth 2678
6 Stubble 3959
7 Celery 3579
8 Grapesuntrained 11271
9 Soilvinyarddevelop 6203
10 Cornsenescedgreenweeds 3278
11 Lettuceromaine4wk 1068
12 Lettuceromaine5wk 1927
13 Lettuceromaine6wk 916
14 Lettuceromaine7wk 1070
15 Vinyarduntrained 7268
16 Vinyardverticaltrellis 1807

Table 4.4: Groundtruth classes for the Salinas Scene dataset and their respective samples
number

4.5 Indian Pines

The Indian Pines data have been acquired by AVIRIS sensor over the agricultural

Indian Pines site in North-western Indiana with a spatial resolution of 20m per

pixel and consists of 145× 145 pixels and 224 spectral reflectance bands across the

spectral range from 0.2 to 2.4µm. This scene is a subset of a larger one. It consists

of 16 classes. However, the number of channels has been reduced to 200 by removing

bands covering the region of water absorption. We report its ground truth in Fig.

4.1(e) and The class names and corresponding numbers of ground truth observations

used in the experiments listed in the Table:4.5.
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Class Samples

1 Alfalfa 46
2 Corn-notill 1428
3 Corn-mintill 830
4 Corn 237
5 Grass-pasture 483
6 Grass-trees 730
7 Grass-pasture-mowed 28
8 Hay-windrowed 478
9 Oats 20
10 Soybean-notill 972
11 Soybean-mintill 2455
12 Soybean-clean 593
13 Wheat 205
14 Woods 1265
15 Buildings-Grass-Trees-Drives 386
16 Stone-Steel-Towers 93

Table 4.5: Groundtruth classes for the Indian Pines Scene dataset and their respective
samples number
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Chapter 5

Proposed methodology

This chapter presents a proposed methodology of this thesis and thoroughly dis-

cussed. Moreover, further sections we discussed data pre-processing techniques and

the learning process of the proposed network presented. The Figure: 5.2 helps us

to understand the pipeline of the thesis

5.1 Summary

With the evolution of advanced imaging machines, hyperspectral imaging provides

an alternative approach to analyze and tackle traditional problems in remote sens-

ing and computer vision. In order to use sufficient spectral and spatial information

from hyperspectral images, it is necessary to develop a series of methods to extract

a highly comprehensive and discriminative representation of given objects, thus pro-

moting fundamental pattern recognition tasks, such as object detection and recogni-

tion, and image classification. Existing techniques of remote sensing and computer

vision focus on both grayscale based spatial feature or pixel-wise spectral feature.

Although research has been work on the fusion of spatial and spectral information,

there is a high demand for developing novel, effective, and efficient spectral-spatial

feature extraction methods for various applications from industry and society. This

thesis presents a novel spectral-spatial feature extraction methods for hyperspectral

image classification using Deep Learning framework. Which focuses on a funda-

mental topic in computer vision or remote sensing. These methods are obtained

from conventional two-dimensional methods and then prolonged to hyperspectral

images. It is essential to point out that the spatial or spectral information to be ob-

tained varies depending on different tasks or objectives. The final performance of the
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Figure 5.1: Proposed CNN Architecture

model entirely depends on the input data and information from the previous layers

for convolutional neural networks. To extract valuable information through the en-

tire network, we used three different feature extraction layers and well-implemented

activation functions. However, the evaluation of the model is also an important

task. Since high variance in the data leads to miss-classification on unseen data,

to address this kind of situation, train the network with different data distribution,

then we should know how our method efficient for further applications.

5.2 Architecture

In this section, we describe a new CNN architecture to classify individual pixels

of hyperspectral imagery. Proposed architecture aims to classify pixels by starting

from P × P patches. The reduced size of the input, motivate to employ Trans-

posed Convolutions Layers for up-sampling and the Dilated Convolution layer to

exponentially expanding receptive fields without losing resolution or coverage. The

architecture consists of six layers. We found out that in the first two layers, the

network suffered from neurons dying problem. Hence we decided to use Exponential

Linear Unit (ELU) activation instead of Rectified Linear Unit (ReLU). This prob-

lem, also known as ”dying ReLU”, happens when the neuron gets stuck and always

outputs 0. Hence, no gradients flow backward through the neuron, and it can define

as ”dead”. In other words, this stops the learning process of the CNN [56].

The layers include standard Convolution followed by Transposed Convolutions

layers (proposed by [170] as Deconvolution). For more explanation about the effec-

tiveness of the Transposed Convolution explained in sec:2.6.1. Transposed Convolu-

tion is the process of going in the opposite direction of a standard convolution. This
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work is done by preserving the connectivity of the pattern. They aim to densify the

sparse activation of pooling layers and give a dense activation map as output.

In the fourth layer, instead of standard Convolution, we use Dilated Convolution

to create a filter that presents spaces between each pixel. In order to not decrease

the feature map resolution, we choose the Dilated Convolution layer with a dilation

factor of 2. Batch Normalization used to scale the activation and to stabilize the

network by normalizing the output of the previous layer. Moreover, to reduce net-

work overfitting, we introduce Drop Out modules with a factor of 0.5. As in most

classification architectures, the last layer is Fully-Connected, and SoftMax units

provide the output probability for each class.

Finally, we use ADAM (Adaptive Moment Estimation) optimizer [171] because it

presents the advantages of both Adaptive Gradient and Root Mean Square Propaga-

tion. We selected the following parameters: learning rate 0.001; β1 = 0.9; β2 = 0.99.

These values control the decay rates of the exponential past gradients and past

squared gradients, respectively. The proposed architecture reported in Figure.5.1.

5.3 Data pre-processing

5.3.1 Data Preparation

To prepare data, initially, we used Principal Components Analysis 2.6.4 to reduce

the high dimensionality of the original image (i.e., hundreds of spectral bands). PCA

is a mathematical procedure to move N -dimensional data in another N -dimensional

space where the dimensions are linearly uncorrelated [57]. Additionally, it allows

selecting the M most representative dimensions. Consequently, a HSI pixel xi,j with

N spectral bands, can be reduced to a xi,j vector in M -dimensional space, with

M < N . Then, for each pixel in the reduced space, we extract a P × P patch to

use for its classification. Hence, the pixel-wise dataset for HSI pixels classification

includes a collection of patches in the new M -dimensional space.

Secondly, we randomly split the patch dataset into Training, Validation, and

Test sets. Intuitively, the presence of adjacent patches in both, Training and Test

sets, could drive biased classification. Nevertheless, we ignore this fact similar to

the state-of-art works in order to perform a proper comparison with them. To

face the problem of the imbalanced dataset, we operate an oversampling on the
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Figure 5.2: Pipeline of proposed methodology

underrepresented classes of Training and Validation sets. To remark the problem

of class imbalance, in Figure: 2.14, report the percentage distribution across the 16

classes of the Indian Pines dataset. It can be noted the severe imbalance: while

almost the 25% of the samples belong to the class 11, the classes 1, 7, and 9 includes

less than 1% of the samples. The employed oversampling strategy [172] aims to

replicate samples in minority classes. If the largest class includes S samples, after

this process, all the classes will include about S samples.
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5.3.2 Patch Selection

Most of the Neural Networks learned or trained by feeding the entire image or video

for classification, segmentation, or recognition tasks. However, Neural networks

have some limitations; for example, computationally, there is limited memory to

feed images or videos with specific dimensions. For traditional RGB image contains

spatially high resolution, but there are fixed channels. In the case of hyperspectral

or multispectral images, spatially as well as spectrally contains enormous resolution.

Due to large spatial and spectral resolution, neural networks suffered from a heavy

computational burden. During training, there is an information loss, particularly

in the pooling process, due to larger images, to address these problems, most of

the works in literature implemented an important technique, which is called SPLIT

AND RULE. Precisely split the image into random image patches (crop the large

image into many non-overlapped images), then use these patches as input to CNN

instead large image.

Patch-wise Training Image size to train a neural network have some limitation

concerning the computer memory and Graphics Processing Unit (GPU). The images

in the HS data set have huge dimensions so that the full images cannot feed to NN

for training. Train a neural network with a patch-wise manner is a way to deal

with a huge amount of data; in this method, many small patches taken from the

original HS images from the training data set. After training the network, test image

patches fed into the network to yield a classification performance. In remote sensing

applications, satellite images or HS images have high dimensions, comparable to the

aerial image dataset. In the case of classification using neural networks, the training

process implemented using patches of the original image. In patch-wise training,

the global scene context is not applicable here; consider the task is individual pixel

classification. The scene composition remains the same overall data; for example, the

location of all the classes never moves over time. As this information is not going to

be present during training, these global spatial features are not able learned. Hence,

pixel-wise classification/prediction only based on features about spatial and spectral

structure covering an area as the patches. Patch-wise trained networks have more

significant generalizing properties in a sense they can apply on scenes with slightly

different spatial structures.
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5.3.3 Data Set Partitioning

Initially, the patches are selected randomly from the entire HS data set then sepa-

rated into two distinct sets. The first one is the test set. The second one is to train

the network. The second set also separated into two parts, which are train and

validation set. The process we used to create the data sets as described in Figure:

5.3. It is necessary to keep training and test data separate in predictive modeling,

as it restricts further positive results or data leakage.

Neural network performance may improve by increasing the size of the training

data. However, limitations are inflicted by computer memory and computational

time. Maintaining the proper number of input samples, as well as the size of the

patch or input image, is necessary to obtain the optimal result. The following results

Table; 6.9 presents training two networks with the same training data sets and

sizes, using patch size is 55, and Both training data sets have similar compositions

regarding the percentage of pixels per class. Resampling/ oversampling is applied

in this experiment as well. Less patch size, training is more stable. Moreover, when

training a network with small training data set, the difference between training and

validation accuracy increases by every epoch, which is the evidence for overfitting

the training data. However, the other side of using more training is slower and

broader memory usage. Both classification maps show misclassification.

5.3.4 Data Augmentation

We randomly split the patches from the whole image as Training, Validation, and

Test sets. Intuitively, the presence of adjacent patches in both, Training and Test

sets, could drive biased classification. Nevertheless, we ignore this fact similar to

the state-of-art works in order to perform a proper comparison with them. To face

the problem of the imbalanced dataset, we operate an oversampling on the under

presented classes of Training and Validation sets. To remark the problem of class

imbalance, in Fig. 2.14 we report the percentage distribution across the 16 classes

of Indian Pines dataset. It can be noted the severe imbalance: while almost the

25% of the samples belong to class 11, the classes1, 7,, and 9 include less than 1% of

the samples. The employed oversampling strategy [172], aims to replicate samples
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Figure 5.3: Test,Train and Validation Data Splitting

in minority classes. If the largest class includes S samples, after this process, all the

classes will include about S samples.

After oversampling on Training and Validation, we train the proposed network.

For an unbiased test, oversampling is not used on the Test set. Figure 5.2 shows the

pipeline we adopt.

After oversampling on Training and Validation, we train the proposed network.

For an unbiased test, oversampling is not used on the Test set. Figure 5.2 shows the

pipeline we adopt.

5.3.5 Network Learning for Classification

In this section, we describe how the network learns to obtain a robust classifier.

Initially, we describe the technical details which we used for whole research.
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Technical Details: We design the neural network using Keras. Keras is a high-

level neural networks Application Programming Interface (API) written in Python

and capable of works using TensorFlow as backend. Keras, having deep learning

libraries for machine learning, which allows for easy and fast prototyping, and it

supports both convolutional neural networks and recurrent neural networks and

also a combination of both. The network was designed by stacking network layers

on top of each other, as each layer type has its function in Keras. Training process

implemented on NVIDIA Tesla K80, which contains 12 Gigabytes of RAM.

Learning Process We randomly select a certain number of patches(cropped

input images) from the Hyperspectral image for the training and validation sets,

and we use the test data to evaluate the performance of the proposed network.

For each training patch, we crop non-overlapped surrounding 5 × 5 neighboring

pixels from the whole image for learning convolutional layers. The proposed network

contains approximately 2000K parameters, which are learned from several hundreds

of training pixels from each material category. To neglect overfitting and class

imbalance, we augment the training and validation samples by the oversampling

technique.

To learning the proposed network, Adaptive Moment Estimation(ADAM) with

a batch size of 256 samples used with 100 epochs, a momentum of 0.9, a weight

decay of 0.0006, and a gamma of 0.9. We initially set a base learning rate of 0.001.

To learn the network, the last layer of the network is using by a softmax layer,

commonly used for learning convolutional layers. The All layers initialized with a

zero-mean Gaussian distribution with a standard deviation of 0.005. Biases of all

convolutional layers initialized with 1.

Initially, the first layer of the network contains a convolutional layer with the

ReLU activation function, which gen low-level feature maps from the input image.

However, those feature maps do not have complete information. Because when

ReLU receives the negative inputs, neurons able to activate since weights are not

able to update for a zero gradient. As the ReLU gradient at zero is zero, weights

remain unchanged Dead weights do not contribute to the learning process. For this

reason, we lose some information from the initial layers. However, the convolution
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layer reduces the feature maps to the following layer. By the cause of less informa-

tion passes from initial layers, it is difficult to reach optimal performance, especially

for dance pixel classification. To address this problem, we introduce Transposed

convolution in the second layer of the network with the ELU activation function.

Because the ELU activation function prevents the problem of network performance

degrading due to so-called Dying Gradients. Assign ELU in initial layers may pro-

vide significant information to following layers.

Since adopting the Transposed convolution layer, upsample the feature maps.

Consider, dense pixel classification, especially for hyperspectral data classification

most of the neighboring pixels are the same class. In this case, Transposed convolu-

tion split the neighboring pixels into different positions, by shifting the neighboring

pixel network can put the effort to learn individual pixels spectrally and spatially.

ELU fixed with the Transposed convolution layer; ELU activates on the zero inputs

also because bias also exists there. For more information about the ELU activation

function, please refer to the sec: 2.6.3.

Eventually, Dilation layer helps us achieve stable performance. Dilation layer

improves input receptive fields without losing information and resolution; in the

last layers of CNN has high-level feature maps, which are essential to achieve stable

classification performance.

Conv 1 Transposed
2Dconv 1

Conv 2 Transposed
2Dconv 2

Dilation
Conv

Number
of filters

C 3 X C 128 256 64

Kernel
size

3 x 3 3 x 3 4 x 4 4 x 4 2 x 2

Max-
Pool

Max-Pool

Kernel
size

2 x 2 2 x 2

Table 5.1: Parameters Used to Design The Proposed CNN Architecture (C = Number of
Principal Components)
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Chapter 6

Experiments and Results

Note : In this chapter we presents about the experimental procedures and discused

about Results of respected experiments. In section-6.1 and section 6.2 presents the

results which are obtained in initial experiments; those results are published in a

conference 7. Section-6.3 we discussed about all the experiments we done in this

thesis.

6.1 Summary of Experiments

This section gives a brief observation of the following experiments and results. The

lack of a common experimental setting in literature makes very time consuming a

rigorous comparison with state-of-art approaches. For instance, dataset splitting is

often different and this may influence the performances. Moreover, in some works,

no test set is employed. Experimental results undoubtedly prove that the proposed

method is competitive. Actually, a stronger argument in this sense, would require a

different experimental settings for each state-of-art work or the implementation of

all of them. Since, this is beyond the scope of previous methodologies, this thesis

and considered as an achievement.

Initially, the most important observation is the feature extraction stage. Since,

feature extraction to learn the network via standard, transposed convolution and

dilation layers are played most important role in this work.

However, in order to understand about the stability of model, the initial obser-

vation from the presented results, which is increasing the performance of the model

with respect to the number of training samples. Since there is small difference in
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the performance with respect to the number of training samples from 5%to90% of

its data.

The following sections describes experiments with a little deep representation of

results are presented.

6.2 Published Experiment

To demonstrate the validity of the proposed approach we perform a 5-Fold Cross

validation test on the datasets described in chapter-4. PCA is used to reduce the

original number of spectral bands to 30 dimensions, while a patch size of 5 × 5

is chosen. Then, we randomly select 60% of the patches for Training, 20% for

Validation and 20% for Test. Training and Validation set are oversampled and then

the network is trained from scratch. As in most of the literature works, we adopted

overall accuracy (OA), average accuracy (AA), and kappa coefficient (Kappa) for

performance evaluation. OA is the ratio between the number of correctly classified

pixels and the number of all classified pixels. AA is the average of classification

accuracy of all classes, while the Cohen’s Kappa coefficient is used to measure the

agreement of classification for all the classes.

The results show an overall accuracy of 99.93%, 99.99%, 100.00%, 99.99% and

99.81% for Pavia University, Pavia Center, Botswana, Salinas and Indian Pines

dataset respectively.

Finally, for each dataset, we report the results of the most recent works. Since

in the state-of-art works, not all the datasets have been used, we report a different

table for each of them. Moreover, we do not report some AA and Kappa values

because they are missing in the original works. As shown in Tables 6.1, 6.2, 6.3, 6.4,

6.5 the proposed approach outperforms all the other methods for all the datasets.

In Botswana dataset, we even achieve the 100.00% of performance on Botswana

dataset. Moreover, the low standard deviation on 5-Fold Cross validation confirm

our approach is stable for each of the datasets.

For a qualitatively evaluation, we also report the predicted classes in Figures

6.1(a), 6.1(b), 6.1(c), 6.1(d) and 6.1(e).
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(a) (b) (c) (d) (e)

Figure 6.1: (a) Predicted classes of Pavia University Dataset; (b) Predicted classes of
Pavia Center Dataset; (c) Predicted classes of Botswana Dataset; (d) Predicted classes of
Salinas Dataset; (e) Predicted classes of Indian Pine Dataset.

Method [173] [174] [175] [176] [177] Our

OA(%) 99.62 99.64 99.18 98.90 99.39 99.93 ±0.020
AA(%) - 99.61 98.75 98.49 98.85 99.94 ±0.028
KAPPA(%) - 99.53 98.95 98.52 99.20 99.91 ±0.027

Table 6.1: Overall accuracy (OA), Average accuracy (AA) and Kappa coefficient for Pavia
University dataset.

Method [173] [178] [179] [176] [180] Our

OA(%) 99.91 97.81 99.73 99.75 98.85 99.99 ±0.001
AA(%) - 92.81 99.25 99.40 98.43 99.99 ±0.005
KAPPA(%) - 96.88 99.61 99.64 97.90 99.99 ±0.002

Table 6.2: Overall accuracy (OA), Average accuracy (AA) and Kappa coefficient for Pavia
Center dataset.

Method [181] [182] [183] [184] [177] Our

OA(%) 97.44 88.19 89.44 97.93 99.55 100.00 ±0.000
AA(%) 97.80 89.53 90.60 - 99.60 100.00 ±0.000
KAPPA(%) - - 88.57 96.30 99.51 100.00 ±0.000

Table 6.3: Overall accuracy (OA), Average accuracy (AA) and Kappa coefficient for
Botswana dataset.

6.3 Experiments

Note : In this section we present results in many tables. Please consider the main

motivation behind to present all those results, to show the robustness and stability of

the model trained on various experimental settings and quantity of data distribution.
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Methods [173] [174] [185] [176] [181] Our

OA(%) 99.53 98.34 94.76 99.38 99.37 99.99 ±0.014
AA(%) - 99.33 94.75 99.76 99.67 99.98 ±0.009
KAPPA(%) - 98.15 94.16 99.30 - 99.99 ±0.010

Table 6.4: Overall accuracy (OA), Average accuracy (AA) and Kappa coefficient for Sali-
nas dataset.

Methods [173] [174] [175] [186] [177] Our

OA(%) 98.88 97.57 96.87 90.08 99.07 99.81 ±0.065
AA(%) - 98.46 96.75 93.09 98.66 99.83 ±0.068
KAPPA(%) - 97.23 95.67 88.75 98.93 99.79 ±0.074

Table 6.5: Overall accuracy (OA), Average accuracy (AA) and Kappa coefficient for Indian
Pines dataset.

Finally, we pick the lowest (%) of training data i.e., 5% of training data and the

evaluation results presented in tables from 6.11 to 6.30 and the failure results with

the implementation of various standard elements in the literature are presented in

tables from tables: from 6.6 to 6.10.

All the following experiments are implemented by a methodology as section:

6.2 except cross-validation technique( in 6.2 we implemented 5-Fold cross-validation

remaining all the experiments done by 3-Fold cross-validation) and we obtain sat-

isfactory results. Though, according to literature many researchers have developed

best and accurate models of Hyperspectral Image Classification. Nevertheless, those

model are not robust to hyperspectral data obtained from different sensors. How-

ever, The ultimate aim of this thesis is to develop a unique and robust classifier

using Deep Learning and machine learning algorithms for hyperspectral data ob-

tained from different sensor.

To demonstrate the validity of the proposed approach we implemented several

training and evaluation strategies. In this experiments we mainly concentrate to find

the stability and robustness of classifier. We perform a 3-fold Cross validation on the

datasets described in Section 4. PCA helps us to reduce the dimensionality of given

data. Since model performance is depends on the size and the complexity of the input

data. Therefore, most of the state of are methods used 30 principal components,

but, we evaluate our model on different number of PCA components because the

dimensionality of used dataset are not unique. We implement the experiments with
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various quantity of principal components such as 15%, 25%, 50% and 100% on all the

datasets 4 to find is stability point of proposed model with respect to performance

and computation complexity depends on the dimensions of the data. Since, if observe

the these results with lowest is 15% PCA components table:6.11, 6.15, 6.23, 6.19 and

6.27 are very stable with different train and test data distribution and also whcih

consumes very less computation time.

According to literature image classifier performance improves with size of the

training samples and size of input image. However, We perform experiments with

different patch size(croped original image size) 5× 5 and 15× 15 to understand how

learing performance depends on the size of the input image. However, Training and

Validation set are oversampled to address the problem of data imbalance and then

the network is trained from scratch. As per most of the literature works, we adopted

overall accuracy (OA), average accuracy (AA), and kappa coefficient (Kappa) for

performance evaluation. Over All is the ratio between the number of correctly

classified pixels and the number of all classified pixels. Average Accuracy is the

average of classification accuracy of all classes, while the Cohen’s Kappa coefficient

is used to measure the agreement of classification for all the classes.

However, computational cost increased with the size of input image. Still, there

is huge advantage with larger input image for image classification. Though, for

pixel wise classification works well with smaller input images. Since, if task is less

complex, larger input lead to over fitting.

6.4 Experimental Results and Compare with Fail-

ure Cases

In this section, we presented the experimental results obtained from the principal

elements and hyperparameters we used, which are the Transposed Convolution layer

2.6.1, the Dilation layer 2.6.2 and Exponential Linear Unit 2.6.3 comparing with the

results obtained from by using the absence of these elements.

These results explain how the proposed model is robust to various hyperspectral

datasets. In these experiments, we consider all the datasets and 50% 20% and 30%

of data used for train, validation, and testing. Table: 6.6 show the classification re-

sults proposed model in terms of Average Accuracy (AA), in the proposed approach
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used Exponential Linear Unit 2.6.3 we obtained satisfactory results. However, most

of the state of the art research explains that ReLU obtains the optimal results.

However, usage of ELU in initial layers may extract negative features, which pre-

vents information loss. Since, ELU may increase the computational cost, though,

combination with ReLU may converge the generalization error faster. Figure: 6.4(a)

obtained from 6.6 shows the stability of the proposed compare with the presence of

ReLU instead ELU, here the implementation of ELU gives us better performance

then ReLU. However, Figure: 6.4 presents the visual understanding about model

stability. To Table: 6.7 presents the performance results of the proposed approach

compare with the standard convolution layer replaced in place of the dilation layer.

Nevertheless, Tables: 6.8, 6.9 and 6.10 presents the performance results of without

resampling, input image patch size of 15 × 15 instead 5 × 5 and replace the trans-

posed, dilation convolutions with standard convolutions respectively. To deeper

understanding, look at the Figures: 6.4 shows visual understanding about the sta-

bility of proposed model in terms of performance, and the results with respect these

plots are presented in Tables: 6.6 to 6.10. If we observe the the plots of learning

curves 6.2 and 6.3 express there is no overfitting during training.

Botswana Pavia
Univer-
sity

Indian
Pines

Pavia
Center

Salinas

Proposed
Approach

1 0.9996 0.9994 0.9997 0.9998

ReLU 0.9978 0.996385 0.98918 0.99816 0.99915

Table 6.6: Evaluation Results (Average Accuracy) comparing with proposed approach
with the same topology replaced position of ELU With ReLU, and 50% data used to train
the network, 30% data used to test the model
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Botswana Pavia
Univer-
sity

Indian
Pines

Pavia
Center

Salinas

Proposed
Approach

1 0.9996 0.9994 0.9997 0.9998

Convolution 0.997 0.99625 0.99329 0.99857 0.99919

Table 6.7: Evaluation Results (Average Accuracy) comparing with proposed approach
with the same topology replaced Dilation Layer With Standard Convolution Layer

Botswana Pavia
Univer-
sity

Indian
Pines

Pavia
Center

Salinas

Proposed
Approach

1 0.9996 0.9994 0.9997 0.9998

Without
Resampling

0.984759 0.99759 0.71082 0.99843 0.90495

Table 6.8: Evaluation results (Average Accuracy) proposed approach with the same topol-
ogy and without implementation of Resampling or Oversampling

Botswana Pavia
Univer-
sity

Indian
Pines

Pavia
Center

Salinas

Proposed
Approach

1 0.9996 0.9994 0.9997 0.9998

PatchSize
= 15

0.99975 0.95984 0.99277 0.99893 0.99951

Table 6.9: Evaluation results (Average Accuracy) proposed approach with the same topol-
ogy and replaced Patch Size of 5 With 15× 15

Botswana Pavia
Univer-
sity

Indian
Pines

Pavia
Center

Salinas

Proposed
Approach

1 0.9996 0.9994 0.9997 0.9998

Only Con-
volution

0.97777 0.99555 0.72755 0.99854 0.99946

Table 6.10: Evaluation Results (Average Accuracy) comparing with proposed approach
with the same topology replaced Transposed convolution and Dilation Convolution With
Standard Convolution layers
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Split.
Ratio
Tr Vl Ts

AA AA Std.
(±)

oA OA Std.
(±)

K K Std.
(±)

Train
Time

Test
Time

10 20 70 0.99892 1.11E-16 0.9986 1.11E-16 0.9985 1.11E-16 139.6 1.0

20 20 60 0.99940 0.0005 0.99931 0.0006 0.9992 0.00069 180.7 1.0

30 20 50 1 0 1 0 1 0 203.4 1.0

40 20 40 1 0 1 0 1 0 232.9 1.0

50 20 30 1 0 1 0 1 0 269.3 1.0

60 20 20 1 0 1 0 1 0 308.1 1.0

70 10 20 1 0 1 0 1 0 327.8 1.0

80 10 10 1 0 1 0 1 0 352.5 1.0

90 5 5 1 0 1 0 1 0 386.7 1.0

Table 6.11: Botswana Data set 15 % PCA Components

Split.
Ratio
Tr Vl Ts

AA AA Std.
(±)

oA OA Std.
(±)

K K Std.
(±)

Train
Time

Test
Time

10 20 70 0.9986 0.00039 0.9983 0.00041 0.9982 0.0004 160.2 1.0

20 20 60 0.9996 0.0002 0.9996 0.0002 0.9996 0.0002 210.8 1.0

30 20 50 0.9994 1.11E-16 0.9993 0.00E+00 0.9993 0.00E+00 92.2 1.0

40 20 40 1 0 1 0 1 0 273.3 1.0

50 20 30 1 0 1 0 1 0 319.0 1.0

60 20 20 1 0 1 0 1 0 362.3 1.0

70 10 20 1 0 1 0 1 0 392.8 1.0

80 10 10 1 0 1 0 1 0 427.4 1.0

90 5 5 1 0 1 0 1 0 461.1 0.9

Table 6.12: Botswana Data set 25%PCA Components



Chapter 6. Experiments and Results 100

Split.
Ratio
Tr Vl Ts

AA AA Std.
(±)

oA OA Std.
(±)

K K Std.
(±)

Train
Time

Test
Time

10 20 70 0.9970 2.86E-05 0.9964 0 0.9961 1.20E-08 244.1 1.0

20 20 60 1 0 1 0 1 0 318.6 1.0

30 20 50 1 0 1 0 1 0 371.2 1.0

40 20 40 1 0 1 0 1 0 430.4 1.0

50 20 30 1 0 1 0 1 0 500.1 1.0

60 20 20 1 0 1 0 1 0 569.2 1.1

70 10 20 1 0 1 0 1 0 611.0 1.0

80 10 10 1 0 1 0 1 0 677.7 1.0

90 5 5 1 0 1 0 1 0 747.0 1.0

Table 6.13: Botswana Data set 50%PCA Components

Split.
Ratio
Tr Vl Ts

AA AA Std.
(±)

oA OA Std.
(±)

K K Std.
(±)

Train
Time

Test
Time

10 20 70 0.9979 0.0002 0.9976 0.0002 0.9974 0.0002 518.9 1.0

20 20 60 0.9982 0.0005 0.9981 0.0006 0.9979 0.00069 653.7 1.0

30 20 50 0.9995 0.0003 0.9995894910.0002 0.9995 0.0003 777.4 1.0

40 20 40 0.9990 0.0003 0.9989 0.0003 0.9988 0.0003 910.0 1.0

50 20 30 1 0 1 0 1 0 1050.0 1.1

60 20 20 0.9991 6.12 E-04 0.9989 7.25 E-04 0.9988 7.86 E-04 1192.5 1.1

70 10 20 1 0 1 0 1 0 1297.6 1.0

80 10 10 1 0 1 0 1 0 1442.4 1.0

90 5 5 1 0 1 0 1 0 1587.1 1.0

Table 6.14: Botswana Data set 100%PCA Components
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Split.
Ratio
Tr Vl Ts

AA AA Std.
(±)

oA OA Std.
(±)

K K Std.
(±)

Train
Time

Test
Time

10 20 70 0.9880 0.9829 0.9829 0.0008 0.9805 0.0009 380.6 1.2

20 20 60 0.9910 0.0010 0.9906 0.0004 0.9893 0.0004 504.9 1.3

30 20 50 0.9949 0.0012 0.9933 0.0011 0.9924 0.0012 623.8 1.4

40 20 40 0.9988 0.0004 0.9980 0.0005 0.9977 0.0006 750.7 1.5

50 20 30 0.9990 0.0003 0.9986 0.0007 0.9985 0.0008 863.6 1.6

60 20 20 0.9989 0.0003 0.9986 0.0002 0.99851 0.0002 976.2 1.7

70 10 20 0.9994 0.0005 0.9988 0.0008 0.9987 0.0009 1066.9 1.3

80 10 10 1 0 1 0 1 0 1197.0 1.3

90 5 5 1 0 1 0 1 0 1294.5 1.1

Table 6.15: Indian Pines Data set 15%PCA Components

Split.
Ratio
Tr Vl Ts

AA AA Std.
(±)

oA OA Std.
(±)

K K Std.
(±)

Train
Time

Test
Time

10 20 70 0.9920 0.0001 0.9909 0.0003 0.9896 0.0003 510.0 1.2

20 20 60 0.9950 0.0001 0.9949 0.0003 0.9941 0.00043 667.4 1.4

30 20 50 0.9952 0.0008 0.9963 0.0002 0.9958 0.0002 834.3 1.4

40 20 40 0.9996 0.0002 0.9992 0.0003 0.9991 0.0003 997.1 1.6

50 20 30 0.9992 0.0001 0.9991 0.0003 0.999 0.0003 1149.5 1.6

60 20 20 0.9986 0.0006 0.9991 0.0002 0.99907 0.0002 1314.3 1.7

70 10 20 0.9994 0 0.9995 0 0.9994 1.11 E-16 1423.0 1.3

80 10 10 1 0 1 0 1 0 1601.1 1.4

90 5 5 1 0 1 0 1 0 1755.1 1.2

Table 6.16: Indian Pines Data set 25%PCA Components
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Split.
Ratio
Tr Vl Ts

AA AA Std.
(±)

oA OA Std.
(±)

K K Std.
(±)

Train
Time

Test
Time

10 20 70 0.9942 0.0003 0.9922 0.0004 0.9912 0.0005 930.3 1.4

20 20 60 0.9948 6.31 E-05 0.9961 0.0003 0.9956 0.0003 1217.4 1.5

30 20 50 0.9951 0.0001 0.9970 0.0001 0.9966 0.0001 1510.9 1.6

40 20 40 0.99728 0.0007 0.9993 0.0003 0.9992 0.0003 1814.7 1.8

50 20 30 0.9994 0.0002 0.9992 0.0004 0.9991 0.0004 2096.2 1.9

60 20 20 0.9986 0.0012 0.9995 0 0.9994 3.77 E-09 2381.6 2.0

70 10 20 0.9994 0 0.9995 0 0.9994 1.11 E-16 2611.3 1.5

80 10 10 1 0 1 0 1 0 2921.7 1.5

90 5 5 1 0 1 0 1 0 3206.9 1.3

Table 6.17: Indian Pines Data set 50%PCA Components

Split.
Ratio
Tr Vl Ts

AA AA Std.
(±)

oA OA Std.
(±)

K K Std.
(±)

Train
Time

Test
Time

10 20 70 0.9950 0.0004 0.9935 0.0001 0.9926 0.0001 2151.1 1.7

20 20 60 0.9948 0.0004 0.9967 0.0003 0.9962 0.0004 2831.1 1.9

30 20 50 0.9945 0.0007 0.9972 0.00015 0.996 0.0001 3503.9 2.1

40 20 40 0.9981 0.0001 0.9991 0.0004 0.9989 0.0004 4198.1 2.4

50 20 30 0.9998 0.0002 0.9997 0.0003 0.9997 0.00034 4855.6 2.6

60 20 20 0.9977 0.0016 0.9995 0.0003 0.9994 0.0004 5539.4 2.9

70 10 20 0.9994 0 0.9995 0 0.9994 1.11 E-16 6078.3 1.9

80 10 10 1 0 1 0 1 0 6851.4 2.1

90 5 5 1 0 1 0 1 0 7536.6 1.5

Table 6.18: Indian Pines Data set 100%PCA Components

Split.
Ratio
Tr Vl Tt

AA AA Std.
(±)

oA OA Std.
(±)

K K Std.
(±)

Train
Time

Test
Time

10 20 70 0.9977 0.0001 0.9980 5.68 E-05 0.9974 7.56 E-05 1372.3 1.9

20 20 60 0.9986 0.0003 0.9989 0.00016 0.9985 0.0002 1807.4 2.3

30 20 50 0.9989 5.11 E-05 0.9992 3.82 E-05 0.9989 5.06E-05 2262.8 2.6

40 20 40 0.9994 0.0001 0.9993 0.0001 0.9990 0.0002 2712.3 3.0

50 20 30 0.9992 0.0002 0.9994 0.0001 0.9992 0.0002 3147.3 3.3

60 20 20 0.9995 0.0001 0.9994 0.00029 0.99927 0.0003 3614.2 3.6

70 10 20 0.9996 0.0001 0.9995 0.0001 0.9994 0.0001 3866.3 2.3

80 10 10 0.9995 0.0002 0.9997 0 0.9996 3.48 E-09 4353.6 2.5

90 5 5 0.9994 0.0004 0.9996 0.0002 0.9995 0.0002 4735.4 1.7

Table 6.19: Pavia University Data set 15%PCA Components
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(a) (b)

(c) (d)

(e)

Figure 6.2: Loss Convergence Learning Curve of the (a)BOTSWANA (b)INDIAN PINES.
(c)Pavia University, (d)Pavia Center, (e)Salinas Datasets
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(a) (b)

(c) (d)

(e)

Figure 6.3: Training Accuracy Learning Curve Visualization of the (a)Botswana (b)Indian
Pines. (c)Pavia University, (d)Pavia Center, (e)Salinas Datasets
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(a) (b)

(c) (d)

(e)

Figure 6.4: Stability of Proposed approach compared with other failure of other standard
elements using for evaluation on 50 principal components from each of 5 datasets.
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Split.
Ratio
Tr Vl Tt

AA AA Std.
(±)

oA OA Std.
(±)

K K Std.
(±)

Train
Time

Test
Time

10 20 70 0.9973 0.0003 0.9978 4.73 E-04 0.9971 6.27E-04 1395.8 2.0

20 20 60 0.9986 0.0002 0.9989 0.0001 0.9986 0.0002 1874.2 2.3

30 20 50 0.9989 1.82 E-04 0.9990 3.31 E-04 0.9987 4.38E-04 2309.823 2.727

40 20 40 0.9992 0.0002 0.99 2.20 E-04 0.9991 2.92 E-04 2779.8 3.1

50 20 30 0.9994 9.55 E-05 0.9996 6.36 E-05 0.9994 8.43 E-05 3353.0 3.6

60 20 20 0.9993 3.10 E-04 0.9994 3.31 E-04 0.9992 4.38 E-04 4169.0 4.4

70 10 20 0.9993 0.0004 0.9994 2.75 E-04 0.9993 3.65 E-04 4513.9 2.8

80 10 10 0.9998 0.0001 0.9999 0.0001 0.9998 0.0001 5083.8 3.0

90 5 5 0.999 2.83 E-04 0.9998 2.20 E-04 0.9997 2.92 E-04 5546.6 2.0

Table 6.20: Pavia University Data set 25%PCA Components

Split.
Ratio
Tr Vl Ts

AA AA Std.
(±)

oA OA Std.
(±)

K K Std.
(±)

Train
Time

Test
Time

10 20 70 0.9963 0.0007 0.9967 0.0005 0.9956 0.0007 2299.4 2.6

20 20 60 0.9981 0.0001 0.9987 0.0001 0.9983 0.0002 3027.9 3.1

30 20 50 0.9985 0.0003 0.9989 0.0002 0.9985 0.0003 3804.5 3.5

40 20 40 0.9996 0.0001 0.9994 0.0001 0.9993 0.0002 4546.2 4.1

50 20 30 0.9996 0.0001 0.9996 9.71E-05 0.9995 0.0001 5267.8 4.7

60 20 20 0.9996 0.0001 0.9995 0.0001 0.9993 0.0002 5773.7 4.5

70 10 20 0.9995 0.0001 0.9995 0.0001 0.9994 0.0001 5955.1 2.6

80 10 10 1 0 1 0 1 0 6716.2 2.8

90 5 5 0.9996 0.0004 0.9996 0.0004 0.9995 0.0005 7380.1 1.9

Table 6.21: Pavia University Data set 50%PCA Components

Split.
Ratio
Tr Vl Ts

AA AA Std.
(±)

oA OA Std.
(±)

K K Std.
(±)

Train
Time

Test
Time

10 20 70 0.9960 0.0001 0.9966 0.0003 0.9955 0.0004 3948.1 2.8

20 20 60 0.9981 0.0002 0.9987 5.51 E-05 0.9983 7.30 E-05 5199.9 3.3

30 20 50 0.9987 0.0003 0.9989 0.0003 0.9986 0.0005 6479.7 3.8

40 20 40 0.9996 9.38 E-05 0.9994 0.0001 0.9992 0.0001 8157.1 5.3

50 20 30 0.9995 1.20 E-04 0.9996 9.72 E-05 0.9995 1.29 E-04 9546.8 6.0

60 20 20 0.9994 8.17 E-05 0.9994 5.51 E-05 0.9992 7.30 E-05 10815.9 6.7

70 10 20 0.9995 0.0002 0.9996 0.0002 0.9994 0.0003 11505.2 3.5

80 10 10 0.9997 3.80 E-05 0.9997 0 0.9996 1.43 E-09 12633.0 3.5

90 5 5 1 0 1 0 1 0 13954.9 2.3

Table 6.22: Pavia University Data set 100%PCA Components
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Split.
Ratio
Tr Vl Ts

AA AA Std.
(±)

oA OA Std.
(±)

K K Std.
(±)

Train
Time

Test
Time

10 20 70 0.9982 9.40 E-05 0.9992 5.12 E-05 0.9989 7.25 E-05 8779.8 10.6

20 20 60 0.9990 0.0002 0.9996 6.25 E-05 0.9995 8.85 E-05 11851.9 13.7

30 20 50 0.9994 0.0001 0.9998 1.91 E-05 0.9997 2.70 E-05 14927.2 16.2

40 20 40 0.9992 0.0001 0.9997 2.87 E-05 0.9997 4.06 E-05 17764.6 18.7

50 20 30 0.9997 1.17 E-04 0.9999 2.12 E-05 0.9999 3.00 E-05 20791.0 21.5

60 20 20 0.9999 8.46 E-05 0.9999 1.59 E-05 0.9999 2.25 E-05 23700.0 24.7

70 10 20 0.9998 0.0001 0.9999 4.21 E-05 0.9998 5.96 E-05 25030.4 13.4

80 10 10 0.9998 0.0002 0.9999 6.36 E-05 0.9999 9.01E-05 28436.1 14.8

90 5 5 0.9994 0.0001 0.9998 0 0.9998 1.05 E-09 30401.9 8.9

Table 6.23: Pavia Center Data set 15%PCA Components

Split.
Ratio
Tr Vl Ts

AA AA Std.
(±)

oA OA Std.
(±)

K K Std.
(±)

Train
Time

Test
Time

10 20 70 0.9989 5.83 E-05 0.9995 2.84 E-05 0.9994 4.02 E-05 8246.3 10.7

20 20 60 0.9993 0.0001 0.9997 4.53 E-05 0.9996 6.42 E-05 11124.1 13.7

30 20 50 0.9995 0.0001 0.9999 3.37 E-05 0.9998 4.77 E-05 13597.4 13.6

40 20 40 0.9997 0.0001 0.9999 2.87 E-05 0.9998 4.06 E-05 17712.3 20.5

50 20 30 0.9996 1.03 E-04 0.9998 2.81 E-05 0.9998 3.97 E-05 21798.9 24.8

60 20 20 0.9999 6.11 E-06 0.9999 1.59 E-05 0.9999 2.25 E-05 25698.1 28.5

70 10 20 0.9999 6.11 E-06 0.9999 1.59 E-05 0.9999 2.25 E-05 26591.7 15.3

80 10 10 1 0 1 0 1 0 27870.6 15.9

90 5 5 1 0 1 0 1 0 29927.6 9.4

Table 6.24: Pavia Center Data set 25%PCA Components

Split.
Ratio
Tr Vl Ts

AA AA Std.
(±)

oA OA Std.
(±)

K K Std.
(±)

Train
Time

Test
Time

10 20 70 0.9988 0.0001 0.9995 6.88 E-05 0.9993 9.74 E-05 7558.6 5.65

20 20 60 0.9988 0.0003 0.9996 6.36 E-05 0.9995 9.01 E-05 9982.5 7.1

30 20 50 0.9997 0.0001 0.9999 5.44 E-05 0.9998 7.70 E-05 12643.0 8.6

40 20 40 0.9996 0.0001 0.9998 4.43 E-05 0.9998 6.27 E-05 15224.1 10.5

50 20 30 0.9997 6.37 E-05 0.9999 2.81 E-05 0.9999 3.97 E-05 17728.1 11.7

60 20 20 0.9999 6.11 E-06 0.9999 1.59 E-05 0.9999 2.25 E-05 20261.3 13.1

70 10 20 0.9999 6.11 E-06 0.9999 1.59 E-05 0.9999 2.25 E-05 21965.8 7.2

80 10 10 1 0 1 0 1 0 24969.1 7.9

90 5 5 0.9999 2.45 E-05 0.9999 6.36 E-05 0.9999 9.01 E-05 27841.4 6.8

Table 6.25: Pavia Center Data set 50%PCA Components
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Split.
Ratio
Tr Vl Ts

AA AA Std.
(±)

oA OA Std.
(±)

K K Std.
(±)

Train
Time

Test
Time

10 20 70 0.9985 0.0002 0.9993 0.0001 0.9990 0.0001 14544.6 9.0

20 20 60 0.9995 6.02 E-05 0.99981 2.3 1E-05 0.9997 3.27 E-05 19371.3 11.704
8

30 20 50 0.9997 0.0001 0.9998 6.88 E-05 0.9998 9.75 E-05 24250.4 14.1

40 20 40 0.9997 9.40 E-05 0.9999 2.39 E-05 0.9999 3.38 E-05 29272.3 16.5

50 20 30 0.9999 8.79 E-05 0.9999 3.18 E-05 0.9999 4.51E-05 33803.3 18.3

60 20 20 0.99998 6.11E-06 0.99995 1.59 E-05 0.99993 2.25 E-05 37146.4 18.5

70 10 20 0.99993 7.92 E-05 0.99996 2.76 E-05 0.99995 3.90 E-05 40238.7 9.5

80 10 10 0.99999 1.22 E-05 0.99997 3.18 E-05 0.99996 4.51 E-05 45282.4 11.0

90 5 5 1 0 1 0 1 0 49867.4 6.1

Table 6.26: Pavia Center Data set 100%PCA Components

Split.
Ratio
Tr Vl Ts

AA AA Std.
(±)

oA OA Std.
(±)

K K Std.
(±)

Train
Time

Test
Time

10 20 70 0.9993 4.06 E-05 0.9983 5.42 E-05 0.9981 6.04 E-05 1707.2 2.1

20 20 60 0.9997 9.03 E-05 0.9993 0.0002 0.9992 0.0002 2237.8 2.6

30 20 50 0.9998 7.66 E-05 0.9996 0.0001 0.9995 0.0001 2784.4 2.9

40 20 40 0.9997 0.0001 0.9995 0.0001 0.9995 0.0002 3332.7 3.3

50 20 30 0.9999 1.64 E-05 0.99991 2.90 E-05 0.9999 3.23 E-05 3921.8 3.7

60 20 20 0.9998 8.63 E-05 0.9999 7.54 -05 0.9998 8.40 E-05 4450.4 4.1

70 10 20 0.99999 1.31 E-05 0.99996 4.35 E-05 0.99996 4.85 E-05 4858.6 2.6

80 10 10 1 0 1 0 1 0 5401.8 2.9

90 5 5 1 0 1 0 1 0 5930.2 1.9

Table 6.27: Salinas Dataset 15%PCA Components

Split.
Ratio
Tr Vl Ts

AA AA Std.
(±)

oA OA Std.
(±)

K K Std.
(±)

Train
Time

Test
Time

10 20 70 0.9994 4.83 E-05 0.9985 0.0001 0.9983 0.0001 2278.1 2.4

20 20 60 0.9997 3.71 E-05 0.9994 0.0001 0.9994 0.0002 3025.5 2.9

30 20 50 0.9998 3.51 E-05 0.9997 9.05 E-05 0.9996 0.0001 3743.9 3.2

40 20 40 0.9998 4.29 E-05 0.9996 7.54 E-05 0.9996 8.40 E-05 4546.1 3.7

50 20 30 0.9998 6.04 E-05 0.9998 8.71 E-05 0.9997 9.70 E-05 5280.5 4.2

60 20 20 0.99999 1.31 E-05 0.99996 4.35 E-05 0.99996 4.85 E-05 5985.4 4.4

70 10 20 0.99997 1.78 E-05 0.9999 4.35 E-05 0.99993 4.85 E-05 6476.6 2.8

80 10 10 0.99997 4.05 E-05 0.99993 8.71 E-05 0.99993 9.70 E-05 7373.8 3.0

90 5 5 0.9998 0.0001 0.9998 0.0001 0.9998 0.0001 8017.1 2.1

Table 6.28: Salinas Dataset 25%PCA Components
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Split.
Ratio
Tr Vl Ts

AA AA Std.
(±)

oA OA Std.
(±)

K K Std.
(±)

Train
Time

Test
Time

10 20 70 0.9989 0.0005 0.9970 0.0018 0.9967 0.0020 4143.7 3.0

20 20 60 0.9997 5.93 E-05 0.9992 0.0002 0.9992 0.0002 5488.7 3.4

30 20 50 0.9998 8.18 E-06 0.9997 0.0001 0.9997 0.0001 6870.1 4.2

40 20 40 0.9998 2.68 E-05 0.9998 7.85 E-05 0.9998 8.74 E-05 8217.2 4.7

50 20 30 0.9998 1.24 E-04 0.9999 7.68 E-05 0.9999 8.55 E-05 9570.1 5.4

60 20 20 1 0 1 0 1 0 10941.8 6.1

70 10 20 1 0 1 0 1 0 11878.7 3.4

80 10 10 0.99997 4.05 E-05 0.99993 8.71 E-05 0.99993 9.70 E-05 13469.2 3.9

90 5 5 1 0 1 0 1 0 14811.4 2.5

Table 6.29: Salinas Dataset 50%PCA Components

Split.
Ratio
Tr Vl Ts

AA AA Std.
(±)

oA OA Std.
(±)

K K Std.
(±)

Train
Time

Test
Time

10 20 70 0.9992 9.28 E-06 0.9979 0.0001 0.9977 0.0001 9751.8 4.46

20 20 60 0.9996 0.0001 0.9991 0.0003 0.9990 0.0004 12867.3 5.60

30 20 50 0.9996 0.0001 0.9993 0.0004 0.9992 0.0005 16267.5 7.07

40 20 40 0.9998 2.29 E-05 0.9997 7.54 E-05 0.9997 8.40 E-05 19656.8 9.33

50 20 30 0.9998 4.40 E-05 0.9998 5.03 E-05 0.9997 5.60 E-05 22882.5 10.07

60 20 20 0.99996 4.64 E-05 0.9999 0.0001 0.9998 0.0001 26150.7 12.68

70 10 20 0.9999 1.31 E-05 0.9999 4.35 E-05 0.9999 4.85 E-05 28165.1 5.64

80 10 10 1 0 1 0 1 0 34465.4 8.22

90 5 5 1 0 1 0 1 0 41229.6 7.54

Table 6.30: Salinas Dataset 100%PCA Components
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(a) (b)

(c) (d)

Figure 6.5: Stability of Proposed Model on BOTSWANA Dataset With Respect to PCA
and Number of Samples Used For Training, Validation and Testing
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(a) (b)

(c) (d)

Figure 6.6: Stability of Proposed Model on INDIAN PINES Dataset With Respect to
PCA and Number of Samples Used For Training, Validation and Testing
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(a) (b)

(c) (d)

Figure 6.7: Stability of Proposed Model on PAVIA UNIVERSITY Dataset With Respect
to PCA and Number of Samples Used For Training, Validation and Testing
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(a) (b)

(c) (d)

Figure 6.8: Stability of Proposed Model on PAVIA CENTER Dataset With Respect to
PCA and Number of Samples Used For Training, Validation and Testing
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(a) (b)

(c) (d)

Figure 6.9: Stability of Proposed Model on SALINAS Dataset With Respect to PCA and
Number of Samples Used For Training, Validation and Testing
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Figure 6.10: Normalize Confusion Matrix of BOTSWANA Dataset of 10% Training Sam-
ples and 90% Testing Samples
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Figure 6.11: Normalize Confusion Matrix of INDIAN PINES Dataset of 10% Training
Samples and 90% Testing Samples
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Figure 6.12: Normalize Confusion Matrix of PAVIA UNIVERSITY Dataset of 10% Train-
ing Samples and 90% Testing Samples
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Figure 6.13: Normalize Confusion Matrix of PAVIA CENTER Dataset of 10% Training
Samples and 90% Testing Samples
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Figure 6.14: Normalized Confusion Matrix of SALINAS Dataset of 10% Training Samples
and 90% Testing Samples
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Chapter 7

Published Paper

NOTE : I presented here title of submitted and accepted paper with the ICIAP-

2019 20th International Conference on Image Analysis and Processing. All concepts,

details and results are included in the previous chapters.

[1]. Devaram, R.R.; Allegra, D.; Gallo, G.; Stanco, F. Hyperspectral image clas-

sification via convolutional neuralnetwork based on dilation layers. In Proceedings

of the International Conference on Image Analysis andProcessing (ICIAP), Trento,

Italy, 9–13 September 2019; pp. 378–387; DOI: 10.1007/978-3-030-30642-7 34.
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Chapter 8

Conclusion

In this work we explore the problem of pixel-wise HSI classification for data acquired

from various sensors. The propose a framework which includes an oversampling

stage to make benchmark datasets balanced, and a new CNN architecture based

on Dilated and Transposed Convolutions makes model more robust for various hy-

perspectral data. Despite the already high performance achieved by state-of-art

works, our method outperforms all of them and achieves the best performance for

each benchmark dataset. Based on this research, in future works, we are strongly

recommends that the feature extraction stage is significantly important. However,

while extraction of features from CNN, includes transposed Convolution or Dilation

Convolution along with Exponential Linear Unit in Initial layers of the network

may extract valuable features without loss of information. Finally, we conclude this

thesis with, considering to use our architecture for similar problems, like pixel-wise

semantic segmentation on different domains gives better performance.
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