
Hardware/Software Synthesis of Formal
Specifications in Codesign of Embedded
Systems

VINCENZA CARCHIOLO, MICHELE MALGERI, and GIUSEPPE MANGIONI
Università di Catania

CoDesign aims to integrate the design techniques of hardware and software. In this work, we
present a CoDesign methodology based on a formal approach to embedded system specifica-
tion. This methodology uses the Templated T-LOTOS language to specify the system during
all design phases. Templated T-LOTOS is a formal language based on CCS and CSP models.
Using Templated T-LOTOS, a system can be specified by observing the temporal ordering in
which the events occur from the outside.

In this paper we focus on the synthesis of system specified by Templated T-LOTOS. The
proposed synthesis algorithm takes advantage of peculiarities of Templates T-LOTOS. Hard-
ware modules are translated into a register transfer-level language that manages some
signals in order to drive synchronization, while the software modules are translated into C
according to a finite state model whose operations are controlled by a scheduler.

The synthesis of the Templated T-LOTOS specification is based on the direct translation of the
language operators to ensure that the implemented system is the same as the specified one.

Categories and Subject Descriptors: B.0 [Hardware]: General; B.5.2 [Register-Treansfer-
Level Implementation]: Design Aids; C.3 [Computer Systems Organization]: Special-
Purpose and Application-Based Systems; F.4.3 [Mathematical Logic and Formal Lan-
guages]: Formal Languages

General Terms: Design, Verification

Additional Key Words and Phrases: Embedded system, hardware and software synthesis,
codesign

This work carried out with the financial support of the Ministero dell’Università e della
Ricerca Scientifica e Tecnologica (MURST) in the framework of the Project Design Methodol-
ogies and Tools of High Performance Systems for Distributed Applications.
Authors’ address: Istituto di Informatica e Telecomunicazioni, Università di Catania, Viale
Andrea Doria, 6, Catania, I95125, Italy; email: {Vincenza.Carchiolo; Michele.Malgeri;
Giuseppe.Mangioni}@iit.unict.it.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 2000 ACM 1084-4309/00/0700–0399 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000, Pages 399–432.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F348019.348093&domain=pdf&date_stamp=2000-07-01

1. INTRODUCTION

The availability of more and more complex electronic devices at a low price
has boosted the industry of embedded systems considerably. Consequently,
the complexity of such systems has increased, and their field of application
has spread. An embedded system generally consists of hardware and
software components that can be either physically separate or implemented
on the same physical device.

Hw/Sw CoDesign is an attempt to integrate hardware and software
design techniques in a single framework. Its purpose is to give a homoge-
neous approach to the design of embedded systems, aiming to reduce
development time and optimizing the hardware/software tradeoff. A CoDe-
sign methodology must support the designer during the whole development
of the design (that is, from the specification of the requirements to the
implementation of the modules that form the system and the corresponding
communication interfaces).

Several design methodologies have been proposed in literature [Gupta et
al. 1994; Chou et al. 1995; Heish et al. 1997]. In general, they agree on the
presence of a specification phase, a partitioning phase, and a synthesis
phase. One of the fundamental aspects of any CoDesign methodology is the
technique used to define the requirements of the system, since it affects all
the other phases. A specification technique must allow the designer to
specify the system completely and without interpretation errors. The use of
a formal language to specify the behavior of a system has some interesting
properties, in particular it allows the correctness of the design process to be
validated using mathematical methods.

The methodology proposed, as specification language, uses Templated
T-LOTOS (TTL) [Carchiolo et al. 1996], a formal technique based on CCS
[Milner 1980] and CSP [Hoare 1985] algebras. In TTL, the system is
described through its interactions with the surrounding environment.
Thanks to its formal basis, TTL permits the system requirements to be
described very precisely, and above all makes it possible to verify that the
system has some key properties (absence of deadlock, liveness property,
etc.). Besides, in the description of the system, TTL permits a structured
approach, allowing subdivision of a specification into modules.

After describing the system and verifying its correctness, we need to
implement it so that it respects the requirements described through the
specification. This operation implies the choice of the system architecture
and the division of the system into modules to be allocated either to
hardware or to software. In order to complete the design of the system, we
also need to implement the interfaces that permit the exchange of informa-
tion between modules and definition of the rules governing concurrency
between modules.

The synthesis technique presented in detail in this paper takes advan-
tage of TTL. The purpose of the synthesis algorithm is to ensure that the
implemented system is the same as the specified one, through a direct
translation of the language operators (syntax-direct translation approach).

400 • V. Carchiolo et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

This ensures that the device obtained has the same behavior as the
specified one. The problem with this approach is connected to the need to
define, for each operator in the language, a translation rule for both
hardware and software; this makes the development of the translation tool
complex. In the approach proposed in this paper, this difficulty has been
dealt with by taking advantage of the fact that all TTL operators can be
expressed by a limited number of so-called basic operators. However, for
effectiveness, the derived operators have been translated directly in all the
cases in which it was convenient.

In our approach, a TTL module can be directly translated into an
RT-level language or into C (for hardware and software, respectively), with
no need to pass through intermediate formalisms. Hardware and software
modules are translated according to a finite state model whose execution is
controlled by a scheduler. The scheduler is implemented in software, except
for the hardware module initialization part. One of the main problems in
translating a TTL specification is to respect its synchronization semantics
(rendezvous). When synchronization takes place between hardware mod-
ules, it is obtained through appropriate signals; when it takes place
between software and hardware modules, it is obtained through an inter-
face and the scheduler; finally, where only software modules are involved,
it is solved by the scheduler.

This paper deals with a synthesis approach used in the CoDesign
methodology developed by the authors [Carchiolo et al. 1998a].

Section 2 presents a short overview of the approaches to CoDesign that
can be found in the literature, in particular regarding the specification and
synthesis phases. Section 3 introduces the TTL language chosen to specify
the system being developed, and points out the peculiarities that make TTL
interesting in CoDesign. Section 4 summarizes all the phases of the
CoDesign methodology, including the proposed synthesis approach. Section
5 discusses some problems associated with the correct synthesis of a TTL
specification. Section 6 presents the synthesis approach, the algorithms for
translation into C and RTL, and the characteristics of the scheduler.

2. RELATED WORK

The CoDesign methodologies proposed in the literature divide the design
process into the following subproblems:

(1) specification;

(2) verification and/or simulation;

(3) mapping on the target architecture.

Several models and languages have been used for the specification phase.
One of the most common is the finite state machine (FSM) [Kohavi 1978].

It models a system through an input/output function that is evaluated by a
finite automaton. Starting from basic FSMs, several extensions have been
proposed. Extended FSMs (EFSM) [Holtzmann 1991], for example, intro-

Hardware and Software Synthesis • 401

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

duce the concept of nondestructive communication; that is, the written
information can be read by the receiver several times. In behavioral FSMs
(BFSM) [Takach and Wolf 1995], inputs and outputs are partially sorted
according to time, so time constraints can be expressed. CoDesign FSMs
(CFSM) [Chiodo et al. 1993] differ from FSMs because there is an un-
bounded nonzero quantity of time between the input event and the emis-
sion of the output event. The transformation of a CFSM into an FSM
implies a choice for the set of unbounded delay values. Another model for
the specification of systems is the control data/flow graph (CDFG). The
model consists of nodes and arcs; nodes indicate operations, while arcs
indicate relations of dependence between the nodes. Several CoDesign
methodologies are based on the CDFG [Gupta et al. 1994]. The models used
to describe systems also include those based on process networks, such as
the networks of SDL processes [Saracco et al. 1989], and the networks of
communicating sequential processes (CSP) [Hoare 1985].

Several formal languages have been used in CoDesign, most of which are
based on the FSM model. The one that has recently obtained the most
attention is Esterel [Berry et al. 1991], which belongs to the group of
synchronous languages (which also includes Lustre [Caspi et al. 1987] and
Signal [Guernic et al. 1985]). The hypothesis of perfect synchrony, on which
the language is based, implies that the system reacts to its environment
quickly enough to be considered instantaneous. This means that computa-
tion and internal communication take no time. Thanks to this hypothesis,
an Esterel description can be transformed into a single FSM. The advan-
tage is that the behavior of the system becomes highly predictable, since
there is no problem of either synchronization or interleaving of concurrent
processes. One of the main drawbacks with this approach is that the
resulting FSM can have a large number of states. This becomes a problem
when the specification is big and makes great use of concurrency. Esterel is
currently used as a specification language in CoDesign methodology devel-
oped at Berkeley University (POLIS) [Heish et al. 1997]. However, many
studies have been carried out in order to find an effective hardware
implementation of an Esterel specification [Berry and Touati 1993].

StateChart is a graphic specification language based on FSM that per-
mits (among other things) the hierarchical decomposition of the specifica-
tion, the specification of time constraints and concurrency [Drusinski and
Harel 1989]. Finally, several high-level textual languages have been used
in CoDesign, e.g., Cx [Ernst1993a]; Hardware-C [Ku and Micheli 1990];
Verilog [Sternheim et al. 1993], and Promela [Wenban et al. 1993].

The second step consists of validating the specification; simulation is still
the most widely used approach. Many tecniques have been proposed in the
literature; they differ in the method of coupling hardware and software
components. For example, in Gupta et al. [1992], a single custom simulator
is used for both hardware and software, whereas another approach pro-
poses using a software process running on a host computer loosely con-
nected with a hardware simulator [Wilson 1994].

402 • V. Carchiolo et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

The use of models or formal languages permits a better approach to
validation, since it is possible to use the mathematical basis of the
language to carry out more complete verifications. The tools available for
formal verifications can be divided into two categories: theorem proving-
based [Boyer et al. 1995; Gordon and Melham 1992] and finite automata-
based tools [Thomas 1990].

The third problem is mapping the target architecture consisting of
partitioning the specification into hardware and software parts, and then
synthesizing them. Several partitioning techniques have been proposed, see
Catania et al. [1997] and Vahid [1997], for example.

The synthesis is generally carried out starting with a graph representa-
tion of the specification (which can be handled much more easily), and from
a possible allocation of the various components into hardware or software
(from the partitioning phase).

The synthesis of the hardware parts usually takes place according to the
classic techniques of logical synthesis (see De Micheli [1994]).

Conversely, in embedded systems the synthesis of software parts high-
lights new problems. A scheduler to manage software parts is nearly
always required, due to the need to sequentialize a set of tasks that are
generally concurrent in the specification (however, there are some excep-
tions, as in Esterel [Berry et al. 1991]). The scheduler in embedded systems
must respond to criteria of great simplicity and effectiveness, considering
the small dimensions of the system. In this area, much of the knowledge
acquired in the field of operating systems, especially real-time operating
systems (RTOS), has been applied. For an overview of scheduling methods,
see Halang and Stoyenko [1991].

As we said above, in Berry et al. [1991], the authors propose an approach
that takes a single FSM that solves the problem of communication and
concurrency between the modules, starting from the specification in Esterel
of the system as a set of concurrent modules that do not require a
scheduler.

The other approaches in CoDesign tend to subdivide the system into a set
of concurrent tasks, and require the implementation of a scheduler. In this
sense, it is possible to use classicial scheduling algorithms [Shin and Choi
1997] or to develop ad hoc algorithms. This approach is followed, for
example, in Chou et al. [1994], where an algorithm for a feasible scheduling
(respecting timing constraints) is developed starting from a specification in
Verilog.

In Gupta et al. [1994] and Gupta and De Micheli [1994], starting from a
specification in HardwareC, a CDFG is derived, several threads are ex-
tracted from it, and a scheduling algorithm is proposed.

In Chiodo et al. [1995], a synthesis methodology is proposed that starts
from a CFSM specification of the system. Using this specification model it
is possible to obtain an effective hardware implementation. In this ap-
proach, software synthesis takes place by using an acyclic CDFG obtained
from the CFSM specification. This software implementation requires the
presence of a scheduler, even if it is quite simple.

Hardware and Software Synthesis • 403

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

3. TTL

Templated T-LOTOS (TTL) is derived from T-LOTOS, which is a timed
extension of standard LOTOS (Language Of Temporal Ordering Specifica-
tion). LOTOS is a formal description technique (FDT) standardized by ISO
(International Standards Organization) between 1981 and 1988 [ISO-IS-
8807 1988]. LOTOS was specifically developed for open systems intercon-
nection, but is applicable to the description of any system, especially
concurrent and/or distributed ones (see also Bolognesi and Brinksma 1987;
Logrippo et al. 1990]).

The following are the main features of TTL:

—Formal basis: by using a mathematical approach, it allows us to check
that the specification possesses useful properties such as deadlock free-
dom and liveness.

—Concurrency: makes it possible to model systems made up of various
parts that evolved in parallel; a situation typical of hardware systems.

—Modularity: allows time to be saved in the specification phase and leads
to more efficient design, thanks to the reuse of already developed, and
thus carefully tested and optimized, components.

—High degree of abstraction: allows us to concentrate on what is to be done
without being affected by problems regarding actual implementation.
This guarantees that the language is suitable for describing both hard-
ware and software, regardless of the target architecture.

TTL was developed in such a way as to use all the existing tools for
T-LOTOS (e.g., LOLA [Quemada et al. 1989]) with few restrictions.

The language has two components: the first is the description of the
behavior of processes and their interaction, and is mainly based on the CCS
[Milner 1980] and CSP [Hoare 1985] models; the second is the description
of data structures and expressions, based on ACT ONE [Ehrig and Mahr
1990], a language for describing abstract data types (ADTs). In the follow-
ing, we only discuss the behavioral part of the TTL. The data structure part
is the same as in LOTOS; for a complete description, see ISO-IS-8807
[1988] or Bolognesi and Brinksma [1987].

The basic hypothesis of TTL is that the behavior of the system can be
specified by observing from the outside the temporal order in which events
occur. In practice, the system is seen as a black box, which interacts with
the environment by means of events, whose sequence is described by TTL
behavioral expressions.

In TTL, a system is described in terms of processes; the system as a
whole is represented as a process, but it may consist of a hierarchy of
processes (often called subprocesses) that interact with each other and the
environment. The atomic forms of interaction with the outside world are
called events. The syntax of a process in TTL is

process ,process-identifier . ,parameter-list . : 5
,behavior-expression .

404 • V. Carchiolo et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

endproc
where:

,process-identifier . is the name to be assigned to the
process;

,parameter-list . is the list of events with which the
process can interact with the environment;

,behavior-expression . are the TTL expressions that
define the behavior of the process

The recursive occurrence of a process-identifier in a behavioral expres-
sion makes it possible to define infinite behavior (both self and mutual
recursion are possible). A special process that models a completely inactive
process, i.e., one that cannot execute any event, is referred to as stop.

3.1 Basic Operators

3.1.1 Action Prefix. This operator produces a new behavioral expression
from an existing one, prefixing it with the name of an event. If B is a
behavioral expression and a is the name of an event, the expression a;B
indicates that the process containing it first takes part in the event a and
then behaves as indicated by the expression B. The possible events include
one in particular, indicated as i, that represents an internal action, i.e., an
action that can occur without interaction with the environment.

The introduction of types makes it possible to describe structured events:
they consist of a label (gate name) that identifies the point of interaction
(gate), and a finite list of attributes. Two types of attributes are possible: a
value declaration and a variable declaration.

—A value declaration consists of a TTL data item preceded by an exclama-
tion mark. The expression g!E;B, for example, means that the process
offers the value E through the gate g and then behaves as indicated in B.

—A variable declaration is of the type ?x:t, where x is the name of the
variable and t is its sort. The expression g?x:int;B, for instance, means
that the process accepts a value of sort int through gate g, stores it in x,
and then behaves as B.

TTL also allows us to describe timed events, by associating a time attribute
to the gate name, that is, a time interval in which it can take place. In the
same specification we can have both timed and nontimed events. The time
attributes are quite general, so as to permit the modeling of a wide range of
situations, including those typical of control-dominated embedded systems.
It is, for instance, possible to model fixed delays, min/max constraints, and
periodic events [Gupta et al. 1994].

3.1.2 Choice. If B1 and B2 are behavioral expressions, then B1 [] B2
denotes a process that can behave both as B1 and B2. Choosing between
them is made by the environment: if it offers an event that is the initial
event B1, then the former is selected; if, on the other hand, it offers an
event B2, the latter is selected.

Hardware and Software Synthesis • 405

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

Choice, action prefix, and stop are often called basic operators because
they can specify any behavior. All other operators, therefore, can be
expressed in terms of the basic ones, so all the operators described in the
following can be viewed as derived operators.

3.2 Derived Operators

The arbitrary interleaving operator represents the independent composi-
tion of two processes, P1 and P2, and is indicated as P1 ??? P2. If the two
processes have some event in common, P1 ??? P2 indicates their capacity to
synchronize with the environment, but not with each other.

The parallel operator is indicated as P1 \ P2, and it means that the two
processes have to synchronize with each other in all events. P1 \ P2 can
take part in an event if and only if both P1 and P2 can participate.

The general parallel composition is a general way of expressing the
parallel evolution of several processes that synchronize on a given set of
events. It is denoted with the expressionP1 ?@a1, . . . , an#? P2.

The hiding operator internalizes actions. If B is a behaviorial expression
and a1, . . . , an are events, then the expression hide a1, . . . , an in B
represents an expression that behaves like B, but the events a1, . . . , an

have been made internal, i.e., they have become unobservable and occur
spontaneously, without the participation of the environment.

Sequential composition of two processes, P1 and P2, is indicated as P1
.. P2, and it means that when the execution of P1 terminates success-
fully (when, for example, no deadlock situations have occurred), P2 is
executed (“..” is also known as an enabling operator). To mark successful
termination, there is a special TTL process called exit. When exit is
reached by the first process, control passes to the second.

The disruption operator was introduced to facilitate modeling of situa-
tions such as a sudden fall of a connection or the occurrence of an error (in
general, all situations in which a given action disrupts the normal execu-
tion of operations). Given two processes, P1 and P2, P1 [. P2 defines a
process that normally executes P1, but can be interrupted at any time by
execution of any initial action of P2. After the occurrence of such an event,
control passes to P2.

Every TTL behavioral expression can be preceeded by a boolean condi-
tion, a guarding operator, which determines whether the expression is to
be executed or not.

Table I lists all the operators in the language. Several have already been
illustrated; for those not analyzed, the reader is referred to Carchiolo et al.
[1996].

3.3 Modules and Templates

TTL, thanks to modules and templates, allows the designer to create and
use libraries of components. This feature is very useful because it permits
the designer to model already existing components and to reduce develop-

406 • V. Carchiolo et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

ment time by using parameterized blocks which may be present in librar-
ies.

TTL modules are a collection of processes that can be used at any time. A
TTL module comprises a declarative part and a definition part. The first
part exports all the information needed for the designer to use the process;
this part permits us to perform a complete static analysis of the specifica-
tion. The second part represents the implementation of the processes
declared in the previous part. Both a public and a private section can be
defined for each module: the former will be exported and used, whereas the
latter is used for internal matters.

TTL templates are a further extension of process concepts. Templates
allow us to parameterize the names of processes and the types of gates (in
the gate list). Thus, templates are concretized into processes as required.
The use of the modules and of the template is discussed in Carchiolo et al.
[1996].

4. CODESIGN PATH

The CoDesign methodology, in which we find the synthesis approach
presented in this paper, has been developed for the design of control-
dominated embedded systems (that is, systems in which control predomi-
nates dataflow).

Table I. TTL Operators

Name Syntax

inaction stop
termination exit

exit(E1,...,En)
choice B1 [] B2
action-prefix g;B

i;B
gd1. . . dn [SP];B where di is of the form ?x:t or !E

parallel-composition B1 ?@g1, . . . , gn#? B2
B1 ??? B2
B1 \ B2

hiding hide g1, . . . , gn in B
instantiation p @g1, . . . , gn# (E1,...,En)
guarding [GP] 3 B
disabling B1 [. B2
enabling B1 .. B2

B1 .. accept x:t1,...,x:tn in B2
local-definition let x:t15E1, ..., x:tn5En in B

let x:t5E
sum-expression choice g in [g1,...,gn] [] B

choice x:t [] B
par-expression par g in [g1,...,gn] ?@a1, . . . , an#? B

par g in [g1,...,gn] ??? B
par g in [g1,...,gn] \ B

loop-expression loop(guard; value-expression; B1)

Hardware and Software Synthesis • 407

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

In this CoDesign methodology we can outline four fundamental phases,
each consisting of different steps (see Figure 1):

(1) specification;

(2) refinement and decomposition;

(3) partitioning;

(4) implementation;

Below, we will briefly discuss the phases of the methodology.

4.1 Specification

The first phase of the methodology is specification of the system, which, as
we said above, is carried out with TTL. The purpose of this phase is to
express the requirements of the system given by the client in (plain) TTL,
to verify its correctness, and to give a quick prototype to the client for his or
her approval. In fact, a TTL specification can easily be simulated using a
TTL interpreter.

Global Specification and Requirements

RTL and C modules

Description

System

Refinement

Decomposition

Translation

Interfacing and

Scheduling

Cost Evaluation

Minimized

Formal
Verification

Step 1

Step 2

Step N

Refined Specification

Set of Tasks

Partitioning

Mapping

Current Mapping

Mapped modules

Set of Clusters

Decomposition

Refinement
and

Clustering

Implementation

Specification

Fig. 1. Overview of methodology.

408 • V. Carchiolo et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

During the whole specification phase we need to verify that the behavior
as described corresponds to what we want to specify (this operation is
known as model validation). The model that we used for specification
allows us to deal with the problem differently from traditional simulation
methods.

In fact, verification through simulation is carried out by using test
patterns as inputs of the system, and by verifying that the outputs are the
expected ones. This method, however, only allows partial verification of the
system’s behavior. The result is that correctness is assured only for the
verified test patterns.

The use of a formal model as a specification technique gives us the
opportunity to exploit the mathematical base to carry out more complete
verification. For example, we can verify the so-called safety properties, that
is, verify that the system, whatever the inputs might be, never ends up in
undesired states. We can also verify the liveness properties, that is, verify
that a given desired configuration is adopted by the system. The combina-
tion of these two properties also allows us to verify even very complex
situations.

The tools for formal verification can be divided into two categories:
theorem proving-based tools and finite automata-based tools. The former
are tools that assist the designer during mathematical demonstrations
(generally semiautomatically), meaning that they ensure the correct use of
the basic theorems of the model (see Boyer et al. [1995]). The second
category of tools, which exploit the theory of automatons, permits the
verification process to be automatized, even if this approach is often not
feasible due to problems related to state explosion (see Kurshan [1994]).

4.2 Refinement and Decomposition

The refinement and decomposition phase consists of three steps:

(1) refinement;

(2) translation into an intermediate format;

(3) decomposition of the system.

The purpose of the first step is to specificy the requirements in a form
that is easily and effectively implementable. During this step, several
styles of specification are usually adopted. The style of specification (re-
source-oriented, state-oriented, constrain-oriented, or monolithic) for the
different phases of the design is discussed in Brinksma et al. [1987] and
Vissers et al. [1988]; van Eijk [1989] discusses the problem of transforma-
tion from one style of specification to another.

At each refinement step, some functional blocks are divided into simpler
blocks, without changing the behavior of the system. The final goal is to
obtain a specification that is detailed enough to be effectively implemented,
but also correctly describes the requirements of the system.

Hardware and Software Synthesis • 409

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

The equivalence between what is specified at one level of refinement and
the specification at the next level usually takes place through simulation.
The use of languages with a formal base, such as TTL, allows us to use
tools that assist the designer during the refinement phase, and provides
the mathematical certainty that the descriptions at the different levels are
equivalent. In the second step of this phase, the specification is translated
into an intermediate format, called the intermediate graph model (IGM).
This representation is used during the decomposition and synthesis phases.
The purpose of the IGM is to provide an easily manageable representation
for translation into both hardware and software.

Each process that forms the specification is translated into an IGM. Each
node of an IGM represents an operator of the TTL language, directly
synthesizable, or a reference to a process. Figure 2(a) contains an example
of a TTL specification, whereas Figure 2(b) represents the behavioral graph
that is associated to it. Shaded nodes do not represent an operator, but are
used to facilitate interpretation of the graph. The node labelled 0 in the
behavioral graph indicates the point from which to start.

In the last step, called decomposition, the specification is divided into a
set of elements called tasks, according to their parallelism. In this step, no
hypothesis about the target architecture is necessary, nor do we need to
add constraints on the mapping of tasks. Thus, we do not need to reduce
the level of autonomy in the partitioning phase.

The decomposition algorithm operates as follows:

(1) Classification of the IGM into two sets:
—PARA: indicates an instance relating to a process consisting of only

the parallel composition of several processes;
—NOPARA: indicates all the other processes.

(2) Construction of the instance tree (IT). IT represents the behavior of the
system. Each node of the instance tree represents an instance of a
formal process, and the nodes are connected according to the order of
instantiation. In conclusion, the instance tree is made by composing the

Process P[t1,t2,t3]:exit:=
(t1?v:int;i;exit [] t2?v:int;P[t1,t2,t3] [] t3!3:exit) >> P1[t1]|||P1[t3]

endproc

P[...]0

exit

t2?

t3!

t1? i exit

P1[t1] P1[t3]

(a)

(b)

Fig. 2. Example of IGM.

410 • V. Carchiolo et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

IGMs (already classified into PARA or NOPARA) of each formal
process in the specification, after replacing the formal parameters with
the actual ones (if necessary).

(3) System decomposition. The system is decomposed in several sub-
systems, called “tasks.” The tasks are all the processes that are classi-
fied as NOPARA in the IT.

At the end of the decomposition algorithm, the initial specification is
divided into a series of tasks. Figure 3(a) shows a TTL specification,
whereas in Figure 3(b) the relative IT with the labelled nodes is shown. In
Figure 3(b) the hatched nodes are the tasks resulting from the decomposi-
tion process.

4.3 Partitioning

The purpose of the partitioning phase is to choose which of the tasks
resulting from the decomposition step must be allocated to either hardware
or software. The partitioning phase consists of two steps: clustering (not
connected to the architecture), and mapping.

Clustering reduces the number of tasks below a fixed threshold, in order
to reduce the complexity, and therefore the cost (in computational terms) of
the next phase. The purpose of the clustering algorithm in our methodology
is to minimize the degree of coupling between two tasks; this parameter is
defined as the number of interactions between tasks [Carchiolo et al. 1998a].

(a) (b)

main_1

DP4_2

DP1_1

DP4_3

DP2_1 DP3_1

DP2_2

DP4_1

specification example[t1,t2,t3]:noexit

 behaviour

endspec

exm::process main[t1,t2,t3]:noexit:=

((DP1[t1,t2,t3]|{t1,t2,t3]|DP2[t2,t3])|[t2,t3]|DP3[t1,t3])|[t3]|DP4[t3])

endproc

exm::process DP1[t1,t2,t3]:exit:=

 t1?v:int; i; stop

 []

 t2?v:int; exit

 []

 t3!3; exit >> DP4[t1]|||DP4[t3]

endproc

exm::process DP2[t1,t3]:noexit:=

 t1!3; i; DP2[t1,t3]

endproc

exm::process DP3[t2,t3]:noexit:=

endproc

exm::process DP4[t3]:noexit:=

 exm.main[t1,t2,t3]

 t2!1; i; exit [> DP2[t1,t3]

 t3?v:int; i; stop

endproc

Example

Fig. 3. Example of IT.

Hardware and Software Synthesis • 411

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

The degree of coupling is a critical factor for the implementation of the
final device, mainly because the higher its value, the higher the cost of
communication (and therefore of the interfaces) among the modules. The
degree of coupling seems to be an effective heuristic method for reducing
the complexity of the problem. In fact, tasks characterized by a consider-
able amount of interaction will be grouped in the same cluster, and will
therefore be mapped in the same partition. The number of clusters gener-
ated by the clustering step is of great importance for the next step, i.e.,
mapping. In fact, if the number of clusters is too high, the problem of
mapping is too complex; while if the number of clusters is too small, the
mapping algorithm has few chances to obtain a good hardware/software
tradeoff [Carchiolo et al. 1998a].

The mapping step consists of choosing the best allocation for the clusters
according to a number of factors, the most important of which are the
following:

—Performance. This parameter affects the entire design of the system.
According to this principle, a cluster must be allocated in hardware in
order to obtain an improvement in performance.

—Implementation cost. The choice of a good allocation for the modules has
a considerable impact on production costs, since the difference between
the hardware and software realizations is considerable. If some hardware
resources can be shared, this factor must be taken into account.

—Modifiability. This parameter (which is difficult to quantify) favors the
software realization, since software can be modified more easily.

—Communication. We need to consider the additional cost due to the
exchange of data among the blocks allocated in different partitions. In
some cases this cost can be considerable.

The problem of mapping is to decide whether to implement a module in
hardware or in software, according to the evaluation of a cost function (
that takes the parameters mentioned above into account. A practical
approach is to allocate all blocks in hardware, and then to move those tasks
whose (remains within a given value to software (usually called a
hardware-oriented approach, see for example, Gupta and De Micheli
[1993]). Of course, we can also do the opposite, as in Ernst [1993b].

In order to evaluate (correctly, we need to determine the cost of each
task. Some of the approaches proposed in the literature are based on
cosimulation [Wilson 1994; Keutzer 1994]; some are based on soft-comput-
ing techniques [Catania et al. 1995]; and still others on the knowledge of
computed values of (, with reference to libraries of components [Axelsonn
1996]. Another approach simultaneously develops the scheduler and evalu-
ates the impact of the allocation (hardware or software) on ([Kuman and
Alii 1993].

In this paper we do not expressly deal with the problem of mapping.
However, since we can synthesize the tasks (both in hardware and in

412 • V. Carchiolo et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

software) at a low computational cost, we can evaluate some of the basic
parameters for calculating (, and therefore apply some of the techniques
that we find in the literature.

4.4 Implementation

The purpose of the last phase of CoDesign is the synthesis of hardware and
software modules, the interface between these modules, and the scheduling
algorithm.

The target architecture is selected in this phase. It usually consists of a
microprocessor and several hardware components (FPGAs, for example).
One or more modules building the system will be mapped on to these
elements.

The implementation phase is discussed thoroughly in the following
sections.

5. IMPLEMENTATION OF THE SPECIFICATION

The main purpose of the synthesis algorithm presented in the following
paragraphs is to obtain a device with a unique correspondence to the
specification processed during the previous phases of the methodology. This
allows us to avoid intermediate translations into representations, which
have no formal base and which therefore might not assure the consistency
of the final result with the specification input.

In the case of hw, the system is directly synthesized into an RT-level
description. The synthesis into software components is more complex due to
the limits imposed by the nature of software.

In an embedded application, the software components must reduce the
use of dynamic allocation of memory and use of the stack in order to
simplify the architecture of the target device and make the amount of
memory predictable. The language to synthesize TTL is C, due to its
diffusion, and hence the availability of tools and compilers for any micro-
processor.

The presence of software and hardware components imposes the neces-
sity for a scheduler responsible for the following tasks:

(1) it must synchronize all the modules of the system;

(2) it must serialize the software modules that have to share the (single)
microprocessor;

(3) it must be simple and reliable;

(4) it has to use minimal resources (processor, memory, etc.).

The scheduler is subdivided into two parts: the first one manages the
activation of all the modules and the serialization of software; the second is
in charge of the initialization of hardware components. Since the language
is based on the concept of an event, the scheduler is also defined on the

Hardware and Software Synthesis • 413

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

same basis. In fact, it does not select the next process to be activated, but
does select the next event that has to take place.

The synthesis technique used to synchronize the modules is imposed by
the language chosen for the specification: it implies that an event can take
place only when all the processes that want to synchronize are ready to
execute it (rendezvouz). The synchronization protocol was implemented
into a hardware component for this reason. The presence of buffers is not
necessary, as the exchange of signals is absolutely synchronous. The main
disadvantage of this technique is the presence of a higher number of
signals (and therefore of wires) between the modules.

Another characteristic of the synthesis algorithm is the opportunity to
synthesize complex behavior by using only a few translation rules, since
the TTL operators can all be expressed by the basic operators. This fact
allows us to synthesize the device as a set of distinct components that will
only be joined later.

5.1 Restrictions

In this section we present some of the hypothesis on which the synthesis
process is based, and in particular the restrictions we have had to impose
in the use of TTL.

The synthesis of a TTL process can be carried out both after reducing all
the derived operators into basic operators (fine-grained approach) [Henkel
et al. 1994] and by acting on the general form (coarse-grained approach)
[Adams and Thomas 1995] directly.

The basic element of TTL is the event, which consists of the interaction
between processes based on a rendezvous mechanism. Three different types
of interaction are present in TTL: value matching, value generation, and
value passing. The only one that is meaningful for our application is value
passing because it corresponds to the physical reality of devices, and thus it
is the only one we take into account.

The instantiation of processes in TTL plays a fundamental role in the
specification of systems; some situations that are syntactically correct
cannot be used due to the static nature of hardware. The main limit
imposed on the use of processes lies in the use of recursion and in the form
of the gate list. Mutual recursion must be avoided because it is a dynamic
structure, and hence has no correspondence in hardware. Moreover, self-
instantiation is only allowed if the gate list is not modified.

In implementing the choice operator, we have to solve the nondetermin-
ism typical of this operator because it cannot be easily implemented in
either hardware or software.

We are working on discarding some of the above limitations, such as
avoidance of recursion.

6. TRANSLATION

The translation of the TTL specification into the target languages (C and
RTL) is made by operating on the IGM and on the IT, created during the

414 • V. Carchiolo et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

refinement and decomposition phase. The way an IGM is synthesized
depends of course on whether it is implemented in software or in hardware.

In the case of software, each TTL process is translated into a procedure
that implements an FSM obtained from the relative IGM representation.
Each procedure executes the typical instructions of a state in atomic mode;
this means that their execution cannot be interrupted either by the
scheduler or by other modules. This fact allows us to respect the synchro-
nization semantics of TTL.

In the case of hardware synthesis, each IGM state corresponds to a
certain number of registers that are activated through an appropriate
control sequence. In this case, the atomicity of each state is assured
through appropriate signals to synchronize the registers.

Figure 4 shows the architecture of the synthesized system and the
relations among its parts; that is, the scheduler, hardware and software
modules, and the interfaces that will be described in detail later.

6.1 Scheduling

The scheduler is the component of the system that manages activation and
the synchronization of the various modules, whether they are hardware or
software. It is necessary to serialize the software modules represented in
the specification by concurrent processes.

The scheduler consists of software and a hardware parts. The hardware
scheduler is a very simple component that has the task of activating
hardware modules (during the initialization), according to the information
sent by the scheduler software. As we see below, synchronization on events,
in which only hardware modules participate, is solved by implementing the
synchronization protocol directly in hardware. The synchronization on
events involving software modules is solved by the scheduler, whose task
is, among other things, to implement the complex rendezvous protocol of
the TTL.

6.1.1 Software Scheduler. The choice of the appropriate scheduling
algorithm was affected by the need for a complete and reliable manager of
the device, which must avoid the excessive use of resources (memory and
CPU time in particular).

SW
Scheduler Scheduler

HW

Scheduler

Module 1
(SW) (SW)

Module 2
(HW) (HW)

Module NModule i.

Interface

Fig. 4. Scheme of the synthesized system.

Hardware and Software Synthesis • 415

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

Two possible types of scheduling algorithm can be chosen: polling and
interrupt driven. The interrupt-driven technique schedules hardware and
software tasks using interrupts: each task generates an interrupt, which is
managed by the related Interrupt Service Routine (ISR). This technique
introduces some complexity regarding the saving of contexts and the
management of priorities. Moreover, it requires additional memory to store
the contexts, and, in general, a dedicated circuit to manage several inter-
rupt lines. The techniques based on polling algorithms are characterized by
less implementation and management complexity, but by a response time
that is higher (on average) than the technique based on interrupt.

The scheduling algorithm that we use belongs to the second group of
techniques; but is different from classical polling algorithms because scan-
ning is carried out on events rather than on tasks. It is implemented by an
infinite loop, in which synchronization on the various events is checked.
When a synchronization on an event is found out, the processes involved
are activated. In order to explain the operation of the scheduler better, we
need to introduce a logical model of software modules. In Figure 5 we
represent the state diagram of a software module and the possible transi-
tions from one state to the others.

The most significant transitions of Figure 5 are described below. Transi-
tion 1 takes place when a module is ready to synchronize on a given event.
Transitions 2 and 3 are caused by the scheduler. Transition 2 takes place
when the module returns control to the scheduler. Transition 3 takes place
when the scheduler sends the module back to RUNNING. Finally, transi-
tion 4 takes place when the synchronization on a given event has finished,
and the module can go back to the READY state.

Hardware and software modules implement synchronization in different
ways. When software modules are ready to take part in an event (both
transmitting and receiving), they notify their availability to the scheduler.
This does not occur for hardware modules, which notify the scheduler of
their availability to take part in an event only when they are receiving. As
we see below, this difference is due to the solution adopted for the
implementation of synchronization in hardware.

Starting:

Terminating

Running

Starting

Waiting

Notifying

1

4

Instantiation

Stop or Exit

2 3

Synchronizing

Ready

Running:

Ready:

Waiting:

the module is using the CPU

the module is ready to switch, but the CPU is engaged by another module

the module is available for synchronization and is waiting for all the other modules

Notifying:

involved are to be ready.

the module switches in this state after executing the stop or exit operation

initial state all the modules are in, when they have not yet been instantiated.

the module switches to this state as soon as all the other modules involved in
synchronization on the event are ready.

Terminating:

5

Fig. 5. Diagram of the states of a module.

416 • V. Carchiolo et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

The most general case of synchronization is one-to-many (a transmitter
and several receivers), where both hardware and software modules are
involved. Two cases may occur:

(1) the process offering the event (transmitter) is of the software type;

(2) the process offering the event (transmitter) is of the hardware type.

The two cases of synchronization are managed in a different way. In
Figure 6, the general scheduling algorithm is shown, while the manage-
ment of the two subcases mentioned before is described below.

The scheduling algorithm is based on two scanning cycles: one for events
and the other for modules. The first one verifies whether all the modules
involved in synchronization on a given event are ready to take part in the
event (that is, they are all in the SYNCHRONIZING state). Should this be
true (transition 5 in Figure 5), there are two possible scheduler procedures:
CASE1 is called when the transmitter module offering the event is hard-
ware; CASE2 is called when the transmitter module is software.

Procedures CASE1 and CASE2 first manage the exchange of data be-
tween the transmitter and the receivers, and then set the modules in the
READY state. The scanning cycle of the modules sets all the software
modules that are in the READY state (that is, those that are not already
involved in a synchronization) in the RUNNING state.

The CASE1 procedure carries out three basic operations:

(1) The software modules that are synchronizing on the given event are
activated. During this activation, an exchange of values between the
transmitter and the receivers takes place.

(2) An ack is sent to all the hardware receivers involved in the synchroni-
zation. The synchronization signals are sent to the hardware modules,
thanks to an appropriate external circuitry. On reception of the ack
signal, the hardware modules proceed autonomously until they syn-
chronize.

(3) All the modules are set in the READY state because they are ready to
take part in another event.

Fig. 6. Scheduling algorithm.

Hardware and Software Synthesis • 417

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

The basic steps of the CASE2 procedure are as follows:

(1) The ready signal is sent, through an interface, to the transmitter
hardware module. If it is ready to synchronize, it sends back an ack
signal, which is copied in a register of the interface used to notify the
scheduler of the availability to synchronize. Thus the scheduler starts
the synchronization management procedure. Conversely, if the hard-
ware module is not ready to synchronize, the management procedure
terminates. The availability of the hardware module to synchronize will
be retested subsequently.

(2) The same as step 1 of the CASE1 procedure.

(3) The same as step 3 of the CASE1 procedure.

The exchange of values between the transmitter and the receivers takes
place within the CASE1 and CASE2 management procedures, in a different
way according to the type of modules involved. In particular, the receiver
modules read the value transmitted as follows:

(1) A hardware receiver module reads the value transmitted:
—through a register, previously initialized to the value by the transmit-

ter module if it is software;
—through a direct connection if the transmitter is hardware.

(2) A software receiver module reads the value transmitted from a vector
in memory (if the transmitter is software), or from an external register
(if the transmitter is hardware).

6.2 Module Translation

The following section shows the way hardware and software modules are
translated. The main problem is preserving the synchronization semantics
of TTL in the target modules. The software translation manages the
synchronization, thanks to the scheduler, while the hardware translation
uses signals to synchronize the modules.

6.2.1 Synchronization. A generic module, both software and hardware,
is synchronized (with the other modules) on an event through an operation
carried out in two steps: in the first step it notifies the scheduler that it is
ready to take part in the event (WAITING state in Figure 5), while in the
second step it is actually synchronized with other modules (NOTIFYING
state in Figure 5). The last step takes place only when the scheduler finds
out that all the modules involved in a synchronization are ready; then this
information is notified to the modules involved. The exchange of informa-
tion among the modules that are synchronizing takes place through a
vector, which contains an element for each gate of the system.

Let us assume we have two processes, T and R, which, at a certain time,
respectively, offer and are able to accept a value v through a gate g. In this
case two gates are involved in the synchronization, one of which offers a

418 • V. Carchiolo et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

value (condition expressed by the symbol “!”), while the other accepts a
value (expressed by “?”).

This situation is expressed in TTL as

T :5 · · ·g!v; · · ·

R :5 · · ·g?v; · · · (1)

6.2.2 Implementation of the Synchronization in C. The translation of
the event g!v, in the case of software, is shown in Figure 7.

Process T notifies the scheduler to be ready to take part in the event and,
at the same time, sets the value v to be transmitted to the appropriate
entry of the vector VALUE, so that when the synchronization has taken
place, the other processes involved in the synchronization can read this
value.

Figure 8 shows the translation of the event g?v. Process R notifies the
scheduler of its availability for synchronization and, after updating the
state, returns the control to the scheduler. Once the synchronization has
taken place (NOTIFYING state), the scheduler activates all the modules
involved in the synchronization. All the receiver modules read the value
transmitted by the transmitter, and immediately execute the code relating
to the next operator. The receiver reads this item and carries out the code
relating to the next state atomically. The implementation does not change
in the case of N receivers (one-to-many synchronization).

6.2.3 Implementation of the Synchronization in RTL. In RT-level syn-
thesis we have to distinguish between two possible cases: synchronization
between two processes (one-to-one) and the synchronization of one process
with many others (one-to-many).

One-to-One. First, we deal with the problem of one-to-one synchroniza-
tion with a value exchange, irrespective of the value actually exchanged.

Translation of the complex TTL synchronization into RTL requires the
use of several signals to guarantee the semantic correctness of the transla-
tion. So each synchronization operation (event) is associated with three

Fig. 7. Translation of the transmitter into C.

Hardware and Software Synthesis • 419

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

signals: one for the exchange of the data itself, and two others to manage
the synchronization (a ready and an acknowledgment signal). The need for
two signals for synchronization is due to the fact that communication in
TTL is a rendezvous between events.

Let us assume we have the same processes, T and R, shown in the
previous section. Schematically, translation of the event g!v can be repre-
sented as in Figure 9(a). Figure 9(b) is the scheme of the event g?v.

The signal ini ~inj! represents the signal enabling execution of block i ~ j !
and signal outi ~outj! the termination of block i ~ j ! (which coincides with
the signal enabling execution of the block i 1 1). The signal gn is needed
when a choice operator is involved in the synchronization (as can be seen in
Section 3). Translation of block i into hardware is represented in Figure 10,
using the RTL language described in Appendix A.

As we can see from Figure 10, the transmitter waits for the receiver to be
available for synchronization, after which it acknowledges the synchroniza-
tion and exchanges the value (if any). Figure 11 represents the translation
into RTL of the block j.

The behavior of the receiver complements that of the transmitter. In
Figure 10, vT represents the variable containing the value to be trans-
ferred, which in RTL is equivalent to a register. Likewise in Figure 11, vR

is the register which, following synchronization, will contain the value
exchanged.

According to the translation scheme used, the transmitter is translated
in four RTL steps and the receiver in three steps.

One-to-Many. In one-to-many synchronization a transmitter synchro-
nizes with several receivers, which all have to be available for the event.
The RTL coding of the receivers remains unchanged with respect to the one
shown in Figure 11. Coding of the transmitter is similar to that of the
previous case (shown in Figure 10), the only exception is that this time the
transmitter has to ascertain, before sending the ack signal, that all the
receivers are available for synchronization.

Fig. 8. Translation of the receiver into C.

420 • V. Carchiolo et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

Let us assume we have three processes, one transmitter, and two
receivers; they are the same processes shown above. The RTL coding of the
transmitter is given in Figure 12.

The case described in Figure 12 implements a transmitter that is able to
synchronize with two receivers. In the case where more than two receivers
are present, the condition ~grd y1 and grd y2! (see line labelled x in Figure
12) is generalized by using the functional block cond~grd y1, . . . , grd yn!,
which in RTL implements the verification condition.

6.2.4 Implementation of the Choice Operator. The “choice” operator
allows branches to be introduced into the specification. The branch to be
taken is chosen according to the type of event that is occurring. A process

in i in j
(a) (b)

out out

g

g

g

g g

g

g

g

i

n

ack

rdy

n

rdy

ack

vv

j

Ck Ck

i j

! ?

Fig. 9. Scheme of basic interaction events.

Fig. 10. Translation of transmitter.

Fig. 11. Translation of receiver.

Hardware and Software Synthesis • 421

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

carrying out a several-branch choice offers its availability to take part in all
the events indicated by the different branches of the choice. The event on
which the actual synchronization takes place is given according to the
availability of the other processes. As usual, the job of synchronization is
given to the scheduler, which must also inform the process that has
executed the choice expression of the event on which actual synchroniza-
tion took place, in order to determine the way to proceed.

Implementation in C. An n-way choice is represented in TTL below.

T :5 · · ·~~g1!v1; · · ·! @# ~g2!v2; · · ·! @# ~· · ·! @# ~gm!vm; · · ·!!· · ·

R1 :5 · · ·g1?v1; · · ·

R2 :5 · · ·g2?v2; · · ·

···

Rm :5 · · ·gm?vm; · · · (2)

The translation of the choice into C uses a vector called BRANCH, contain-
ing as many elements as there are branches in the choice expression. Each
element of BRANCH stores the next state from which execution begins
when the related event takes place. The translation into C is shown in
Figure 13.

RTL implementation. In explaining the RTL coding algorithm, we as-
sume, for the sake of simplicity, that we are dealing with a two-way choice
(for extension to more general cases, see below). Three different situations
can occur, according to the type of event (accepting or offering a value) in
the choice.

Case 1. Let us assume we have three TTL processes of the following
kind:

T :5 · · ·~g1!v; · · · @# g2!v; · · ·!· · ·

Fig. 12. Translation of transmitter.

422 • V. Carchiolo et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

R1 :5 · · ·g1?v; · · ·

R2 :5 · · ·g2?v; · · · (3)

That is, a process T that is able to synchronize both on the event g1!v and
on the event g2!v, and two processes that can accept a value, the first one
on gate g1 and the second on gate g2.

The RTL coding of the two processes, R1 and R2, is identical to that seen
previously, since from their point of view it makes no difference whether
the process with which they synchronize contains a choice or not. Figure 14
shows the RTL translation of T.

A fundamental point in coding the choice operator is the instruction in
step x in Figure 14; otherwise, the coding can be considered the union of
two synchronization operations of the kind seen previously. The conditional
jump in step x makes it possible to implement the semantics of the choice
operator. If, in fact, neither process R1 nor process R2 is ready to synchro-
nize (expressed by the fact that both ready signals are set to zero), the
instruction jumps to position x, restarting execution of the same instruc-
tion. If, on the other hand, either of the two ready signals goes high, the
algorithm executes a goto and the instruction starts synchronization with
the gate emitting the ready signal. If both ready signals go high at the same
time (i.e., during the same clock cycle), the semantics of the choice operator
allows a nondeterministic choice between the two events it is possible to

Fig. 13. Choice Implementation.

Hardware and Software Synthesis • 423

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

synchronize. In our implementation this indeterminism is solved by choos-
ing one of the possible events a priori. In Figure 14, for instance, if both
g1rd y and g2rd y have a value of 1, the synchronization is on g1. In the more
general case of one-to-many synchronization, the conditions have to be
verified on the logical and of all the ready signals, i.e., as explained in the
case of one-to-one synchronization, g1rd y is substituted by the combinatorial
function cond~g11rd y; g12rd y; . . . !; this is repeated for g2rd y, g1n and g2n.

Case 2. The second case that may occur is complementary to the first,
i.e., where the type of event is acceptance of a value. Let us assume we
have the following TTL processes:

R :5 · · ·~g1?v; · · · @# g2?v; · · ·!· · ·

T1 :5 · · ·g1!v; · · ·

T2 :5 · · ·g2!v; · · · (4)

The RTL translation of processes T1 and T2 proceeds as above. Figure 15
shows the coding of the process R.

Here again, the RTL translation can be considered as the union of two
operations of synchronization with the acceptance of a value. The meaning
of the conditional instruction in step x is the same as in Case 1. This time
the signals g1n and g2n play a fundamental role. If, after the emission of the
signals g1rd y and g2rd y (which signal the availability of process R to
participate both in the event g1?v and in the event g2?v), the processes T1

and T2 are ready for synchronization (expressed by the emission of the
signals g1ack and g2ack), an indeterminate situation will occur and, as in the
previous case, will be solved in favour of the first event. However, if there
were no signal g1n to confirm that process T1 has been chosen for synchro-
nization, both processes, T1 and T2, would reach the synchronization
instruction. This situation is semantically incorrect for T2: not having been
chosen for synchronization, T2 has to remain in the ready state for
synchronization on the event g2!v.

Fig. 14. Translation of process T.

424 • V. Carchiolo et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

Case 3. The last case is a mixture of the previous ones. Let us assume
we have the following TTL processes:

TR :5 · · ·~g1?v; · · · @# g2!v; · · ·!· · ·

T :5 · · ·g1!v; · · ·

R :5 · · ·g2?v; · · · (5)

Here again the RTL translation of T and R presents no difficulties, being
the same as previous cases. Figure 16 gives the RTL coding of TR. If g2!v is
involved in a one-to-many synchronization, g2rd y has to be substituted by
cond~g21rd y; g22rd y; . . . !, as does g2n.

In the more general case of a choice among several events, the RTL
coding method is exactly the same as explained above. The only difference
is that more than two processes must synchronize with each other. Thus
the condition in the first conditional jump (corresponding to step x in the
previous cases) is more complex, because it takes into account all the
signals exchanged among all the processes, but it can be computed easily.
To clarify the procedure, we give an example that extends the situation
shown in Case 1 (the same procedure can be applied to extend the other
cases). Let us extend Case 1 to one in which m processes are able to receive
a value and one process can synchronize with them, as shown in expression
(2).

The RTL code of process T is the same as Figure 14, but the condition is
of the following form:

Fig. 15. Translation of process R.

Fig. 16. Translation of process TR.

Hardware and Software Synthesis • 425

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

if (
`

i51

n
~not cond~gi1rd y; gi2rd y; . . . ;gimrd y!;!

cond~g11rd y; g12rd y; . . . ; g1mrd y!;
~not cond~g11rd y; g12rd y; . . . ; g1mrd y!!and cond~g21rd y; g22rd y; . . . ; g2mrd y!;
. . .
`

i51

n21
~not cond~gi1rd y; gi2rd y; . . . ; gimrd y!!and cond~gn1rd y; gn2rd y; . . . ;

gnmrd y!
)

6.2.5 Synthesis of Derived Operators. This section presents some exam-
ples of the synthesis of derived operators, that is, the TTL operators which
can be defined in terms of other TTL operators. The derived operators
permit the user to simplify specifications and to gain a clearer understand-
ing of the behavior of the system. As stated previously, they are all
obtained by simple composition of the basic operators. In particular, in this
section we show the synthesis of the enable and parallel operators de-
scribed in Section 3.

C Implementation. Let us suppose we have N processes. Their sequen-
tial composition is expressed in TTL as P1 . . P2 PN, whereas
their parallel composition is expressed as P1 \ P2 \ . . . PN. To imple-
ment the enable and parallel operators in software, we use the scheduler.

—In the implementation of the enable operator, the scheduler is informed
by the relevant process of its successful termination, the scheduler then
deactivates the current process and enables the next one. After this
operation, the current process is put in the TERMINATION state and the
next process in the READY state.

—The parallel operator is managed directly by the scheduler, which pro-
vides the necessary mechanism for sequentializing parallel execution.

RTL Implementation. Each process has an input signal, Pstart, which
starts the process, and an output signal Pexit, which is emitted when the
process ends successfully. When the signal Pexit is never emitted (as for
example in a recursive process), we represent it with a floating signal. To
represent a process P graphically in the figures, we use a box with a thick
border. Figure 17(a) shows the result of synthesis in RTL of the behavior
expression P1 . . P2 PN, whereas Figure 17(b) shows the re-
sult of the synthesis of P1 \ P2 \ . . . PN.

For the sake of clarity, we provide a simple example of the synthesis of a
composition of processes using the previously shown operators. The TTL
specification is as follows:

P :5 P1 \ P2 \ P3
where

P1 :5 g1!v1; P1 @# g2!v2; P1
P2 :5 g1?x : integer; P2
P3 :5 P4 . . P5

426 • V. Carchiolo et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

where P4 :5 ~g2?y : integer; exit!

P5 :5 g2?z : integer; P5

Figure 18 shows the result of the synthesis process. The blocks labelled
with a question mark are the translations of the basic receiver, and the
block labelled with the symbol @#2 represents the translation of a two-way
choice; lastly the block labelled EXIT is the implementation of the exit
operator. The figure also shows the interconnections among the blocks and
the input/output signals.

7. CONCLUSIONS

This paper presents all the phases of the methodology, but its focus is on
the synthesis phase.

The proposed design path is presented in depth, pointing out the aspects
that make it interesting in the context of embedded systems. The use of a
formal technique to specify the system is the key point characterizing the
methodology.

Moreover, the kind of formal language we use has a strong impact on the
synthesis phase; the difficulties related to this problem have been stressed
throughout the entire paper; and some toy examples are presented to
clarify the algorithm (some other more complex examples can be found in
Carchiolo et al. [1998b]).

Further studies are needed to optimize the synthesis of both hardware
and software. A critical parameter in embedded systems is memory usage
by software modules. For this reason, we are working on minimizing the
size of the code generated for the software part. Moreover, some studies are

1P

P

P1exit

2

PN

P2exit

PN exit

End

Start

(a)

P PP1 2 N

Start

End

P1 P2 PNexitexitexit

(b)

Fig. 17. Scheme of sequential and parallel composition.

Hardware and Software Synthesis • 427

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

devoted to optimal synthesis of the hardware part, mainly in the implemen-
tation of interfaces between hardware and software. Finally, we are work-
ing on some other languages for register-level hardware description in
order to exploit the large number of available commercial tools.

APPENDIX

A. THE TARGET RTL LANGUAGE

The RTL language in this paper can define the structure of a generic digital
system. Any digital system is modeled using a functional block that
receives information from the external environment via signals, and pro-
cesses them to produce output signals (in response to the environment).
Each functional block is implemented by the control unit and the processing
unit. The first unit provides the signal to synchronize the operations
performed by the second. The full system is based on a single clock which
provides the synchronization. The basic hypothesis is that the circuit must

Ck

P1start

1gack

1gv

1grdy

1
gn

grdy

grdy

gn

gn

2grdy

2gv 2gack

Pexit

gn
2

out out ii
1 2

gn

Ck

startP2

Pstart

P1

P

P2

?

P2

P1exit

exit

Ck

Ck

startP3

2(4)

2(3)

2(3)

2(4)

EXIT

?

?

P3exit

startP4

P4exit

P3
P4

P5

[]
2

Fig. 18. Scheme of an Example.

428 • V. Carchiolo et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

be stable before the clock cycle finishes. Figure 19 represents the logical
scheme of a generic digital system.

The RTL module is defined by the following:

—Components: contains the declaration of the components that make up
the processing unit.

—Control sequence: defines the internal command sequence that must be
emitted by the control unit.

—Permanent assignment: defines an operation that must be repeated every
clock cycle.

The control sequence is made up of steps; each one is numbered and must
be executed in a single clock unit. Each step is made up of one or more
commands that are executed in parallel. All the commands belonging to a
step are separated by ;. Thus, the control sequence has the following form:

i: op1; op2; op3
j: op4; op5

where i and j are the generic step i and step j and opi are the commands.
The main constructs of the language are the assignment and the condi-

tional. The first represents the transfer of a value between two registers.
The right-hand side of the operation can contain any boolean operation.
The two operators are represented as follows:

i: targetRegister: 5 sourceRegister
j: targetRegister: 5 sourceRegister_1 and sourceRegister_2
or...
k: if(c1; c2) then (op1; op2)
h: if(c3; c4) goto (n; m)

To describe a direct connection between elements, the language allows us
to describe the assignment of a value to a line; in this case the assignment
is only valid for one clock cycle. It is described by the operator “5” and is
also used to describe the assignment to output lines.

Processing
Unit Unit

Control

ClockInput Data

Output Data

Fig. 19. Logical scheme of a digital system.

Hardware and Software Synthesis • 429

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

ACKNOWLEDGMENTS

The authors are indebted to Prof. Giovanni De Micheli for many helpful
discussions. We also thank the anonymous referees and the editor for many
helpful comments on the presentation of this paper.

REFERENCES

ADAMS, J. K. AND THOMAS, D. E. 1995. Multiple-process behavioral synthesis for mixed
hardware-software systems. In Proceedings of the Eighth International Symposium on
System Synthesis (Cannes, France, Sept. 13–15, 1995), P. G. Paulin and F. Mavaddat, Eds.
ACM Press, New York, NY, 10–15.

AXELSONN, J. 1996. Hardware/software partitioning aiming at fulfillment of real-time
constraints. J. Syst. Architecture 42, 6-7 (Dec.), 439–464.

BERRY, G., COURONNE, P., AND GONTHIER, G. 1991. The synchronous approach to reactive and
real-time systems. Proc. IEEE 79.

BERRY, G. AND TOUATI, H. 1993. Optimized controller synthesis using Esterelle. In
Proceedings of the International Workshop on Logic Synthesis (May),

BOLOGNESI, T. AND BRINKSMA, E. 1987. Introduction to the ISO specification language
LOTOS. Comput. Netw. ISDN Syst. 14, 25–59.

BOYER, R. S., KAUFMANN, M., AND MOORE, J. S. 1995. The Boyer-Moore theorem prover and its
interactive enhancements. In Computers & Mathematics with Applications Pergamon
Press, Inc., London, UK, 27–62.

BRINKSMA, E., SCOLLO, G., AND VISSERS, C. 1987. Experience with and future of LOTOS as a
specification language. Tech. Rep. INF-87-17. Twente University.

CARCHIOLO, V., MALGERI, M., AND MANGIONI, G. 1996. TTL: A LOTOS extension for system
description. In Proceedings of the Conference on Basys (Basys ’96, Lisbon, Portugal),

CARCHIOLO, V., MALGERI, M., AND MANGIONI, G. 1998. Formal codesign methodology with
multistep partitioning. J. Comput. Aided VLSI Des. 7, 4.

CARCHIOLO, V., MALGERI, M., AND MANGIONI, G. 1998. Synthesis of TTL specification: A case
study. In Proceedings of the MultiConference on CESA98-IMACS,

CASPI, P., PILAUD, D., HALBWACHS, N., AND PLAICE, J. A. 1987. LUSTRE: A declarative
language for real-time programming. In Proceedings of the Fourteenth Annual ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL ’87, Mu-
nich, Germany, Jan. 21-23, 1987), ACM Press, New York, NY, 178–188.

CATANIA, V., MALGERI, M., AND RUSSO, M. 1995. A methodology for codesign based on fuzzy
logic and genetic algorithms. In Proceedings of the 8th International Conference (Melbourne,
Australia, June 1995),

CATANIA, V., MALGERI, M., AND RUSSO, M. 1997. Applying fuzzy logic to codesign
partitioning. IEEE Micro 17, 3, 62–70.

CHIODO, M., GUISTO, P., JURECSKA, A., LAVAGNO, L., SENTOVICH, E., HSIEH, H., SUZUKI, K., AND

SANGIOVANNI-VINCENTELLI, A. 1995. Synthesis of software programs for embedded control
application. In Proceedings of the 32nd ACM/IEEE Conference on Design Automation (DAC
’95, San Francisco, CA, June 12–16), B. T. Preas, Ed. ACM Press, New York, NY, 587–592.

CHIODO, M., GIUSTO, P., JURESKA, A., HSIEH, H. C., SANGIOVANNI-VINCENTELLI, A., AND LAVAGNO,
L. 1993. A formal specification model for hardware/software codesign. In Proceedings of
the International Workshop on Hardware-Software Codesign (Boston, MA, Sept.),

CHOU, P. H., ORTEGA, R. B., AND BORRIELLO, G. 1995. The Chinook hardware/software
co-synthesis system. In Proceedings of the Eighth International Symposium on System
Synthesis (Cannes, France, Sept. 13–15, 1995), P. G. Paulin and F. Mavaddat, Eds. ACM
Press, New York, NY, 22–27.

CHOU, P., WALKUP, E. A., AND BORRIELO, G. 1994. Scheduling for reactive real-time
systems. IEEE Micro 14, 4 (1994), 37–47.

DE MICHELI, G. 1994. Synthesis and Optimization of Digital Circuits. McGraw-Hill, Inc.,
New York, NY.

DRUSINSKI, D. AND HAR’EL, D. 1989. Using statecharts for hardware description and synthesis.
IEEE Trans. Comput.-Aided Des. 8.

430 • V. Carchiolo et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

EHRIG, H. AND MAHR, B. 1990. Fundamentals of Algebraic Specification 2: Module Specifica-
tions and Constraints. Springer-Verlag, New York, NY.

ERNST, R. 1993. Hardware-software codesign of embedded controllers based on hardware
extraction. In Proceedings of the International Workshop on Hardware-Software Codesign
(Boston, MA, Sept.),

ERNST, R., HENKEL, J., AND BENNER, T. 1993. Hardware-software co-synthesis for
microcontrollers. IEEE Des. Test 10, 4 (Dec. 1993), 64–75.

GORDON, M. J. C. AND MELHAM, T. F., Eds. 1993. Introduction to HOL: A Theorem Proving
Environment for Higher Order Logic. Cambridge University Press, New York, NY.

GUERNIC, P. L., BENVENISTE, A., BOURNAT, P., AND GAUTHIER, T. 1985. A data flow oriented
language for signal processing. IRISA Tech. Rep. 246. IRISA, Rennes, France.

GUPTA, R. K., COELHO, C. N., AND DE MICHELI, G. 1992. Synthesis and simulation of digital
systems containing interacting hardware and software components. In Proceedings of the
29th ACM/IEEE Conference on Design Automation (DAC ’92, Anaheim, CA, June 8-12), D.
G. Schweikert, Ed. IEEE Computer Society Press, Los Alamitos, CA, 225–230.

GUPTA, R. K., COELHO, C. N., AND DE MICHELI, G. 1994. Program implementation schemes for
hardware-software systems. IEEE Computer 27, 1 (Jan. 1994), 48–55.

GUPTA, R. K. AND DE MICHELI, G. 1993. Hardware-software cosynthesis for digital
systems. IEEE Des. Test 10, 3 (Sept. 1993), 29–41.

GUPTA, R. K. AND MICHELI, G. D. 1994. Constrained software generation for hardware-
software systems. In Proceedings of the International Workshop on Hardware-Software
Codesign,

HALANG, W. AND STOYENKO, A. 1991. Constructing Predictable Real Time Systems. Kluwer
Academic Publishers, Hingham, MA.

HEISH, H., LAVAGNO, L., PASSERONE, C., SANSOE, C., AND GIOVANNI-VINCENTELLI, A. 1997.
Modeling microcontroller peripherals for high-level co-simulation and synthesis. In Pro-
ceedings of the Fifth International Workshop on Hardware/Software Codesign (Braun-
schweig, Germany, Mar. 1997),

HENKEL, J.-R., BENNER, T., ERNST, R., YE, W., SERAFIMOV, N., AND GLAWE, G. 1994. COSYMA:
a software-oriented approach to hardware/software codesign. J. Comput. Softw. Eng. 2, 3
(1994), 293–314.

HOARE, C. A. R. 1985. Communicating Sequential Processes. Prentice-Hall International
Series in Computer Science. Prentice-Hall, Inc., Upper Saddle River, NJ.

HOLTZMANN, G. 1991. Design and Validation of Computer Protocols. Prentice-Hall, New
York, NY.

ISO. 1988. Information processing systems, open system interconnection LOTOS, A formal
description technique based on the temporal ordering of observational
behaviour. ISO-IS-8807.

KEUTZER, K. 1994. Hardware/software co-simulation. In Proceedings of the 31st Annual
Conference on Design Automation (DAC ’94, San Diego, CA, June 6–10, 1994), M. Loren-
zetti, Ed. ACM Press, New York, NY, 439–440.

KOHAVI, Z. 1978. Switching and Finite Automata Theory. McGraw-Hill, Inc., New York, NY.
KU, K. AND MICHELI, G. D. 1990. Hardware C: A language for hardware design version

2.0. Tech. Rep. CSL-TR-90-419. Stanford University, Stanford, CA.
KUMAN, S. AND ALII, 1993. A framework for hardware/software codesign. IEEE Computer 26,

12 (Dec.), 39–45.
KURSHAN, R. P. 1994. Automata-Theoretic Verification of Coordinating Processes. Princeton

University Press, Princeton, NJ.
LOGRIPPO, L., MELANCHUCK, T., AND DUWORS, R. 1990. The algebraic specification language

LOTOS: An industrial experience. In Proceedings of the ACM SIGSOFT International
Workshop on Formal Methods in Software Development (Napa, CA, May 9–11, 1990), M.
Moriconi, Ed. ACM Press, New York, NY, 59–66.

MILNER, A. 1989. A Calculus of Communicating Systems. Springer Lecture Notes in
Computer Science, vol. 92. Springer-Verlag, New York, NY.

Hardware and Software Synthesis • 431

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

QUEMADA, J., PAVEN, S., AND FERNANDEZ, A. 1989. State exploration by transformation with
LOLA. In Proceedings of the Workshop on Automatic Verification Methods for Finite State
Systems, Lecture Notes in Computer Science, vol. 407. Springer-Verlag, New York.

SARACCO, R., SMITH, J. R. W., AND REED, R. 1989. Telecommunications Systems Engineering
Using SDL. Elsevier North-Holland, Inc., New York, NY.

SHIN, Y. AND CHOI, K. 1997. Enforcing schedulability of multi-task systems by hardware-
software codesign. In Proceedings of the Fifth International Workshop on Hardware/
Software Codesign (Braunschweig, Germany, Mar. 1997).

STERNHEIM, E., MADHAVEN, R., SINGH, R., AND TRIVEDI, Y. 1993. Digital Design and Synthesis
with Verilog HDL. Automata.

TAKACH, A., WOLF, W., AND LEESER, M. 1995. An automaton model for scheduling constraints
in synchronous machines. IEEE Trans. Comput. 44, 1 (Jan. 1995), 1–12.

THOMAS, W. 1990. Automata on infinite objects. In Handbook of Theoretical Computer
Science, Vol. B: Formal Models and Semantics, J. van Leeuwen, Ed. MIT Press, Cambridge,
MA, 133–191.

VAHID, F. 1997. Modifying min-cut for hardware and software functional partitioning. In
Proceedings of the Fifth International Workshop on Hardware/Software Codesign (Braun-
schweig, Germany, Mar. 1997).

VAN EIJK, P. 1989. Tools for LOTOS specification style transformation. Tech. Rep. Memo.
89-35.

VISSERS, C. A., SCOLLO, G., AND VAN SINDEREN, M. 1988. Architecture and specification style in
formal description of distributed systems. In Proceedings of the Conference on Protocol
Specification, Testing and Verification (Amsterdam), North-Holland Publishing Co., Am-
sterdam, The Netherlands, 189–204.

WENBAN, A. S., O’LEARY, J. W., AND BROWN, G. M. 1993. Codesign of communication
protocols. IEEE Trans. Comput., 46–52.

WILSON, J. 1994. Hardware/software selected cycle solution. In Proceedings of the Interna-
tional Workshop on Hardware-Software Codesign.

Received: December 1997; accepted: December 1997

432 • V. Carchiolo et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 5, No. 3, July 2000.

