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Abstract: Orexin plays a significant role in the modulation of REM sleep, as well as in the regulation
of appetite and feeding. This review explores, first, the current evidence on the role of orexin in the
modulation of sleep and wakefulness and highlights that orexin should be considered essentially as a
neurotransmitter inhibiting REM sleep and, to a much lesser extent, a wake promoting agent. Subse-
quently, the relationship between orexin, REM sleep, and appetite regulation is examined in detail,
shedding light on their interconnected nature in both physiological conditions and diseases (such
as narcolepsy, sleep-related eating disorder, idiopathic hypersomnia, and night eating syndrome).
Understanding the intricate relationship between orexin, REM sleep, and appetite regulation is
vital for unraveling the complex mechanisms underlying sleep-wake patterns and metabolic control.
Further research in this field is encouraged in order to pave the way for novel therapeutic approaches
to sleep disorders and metabolic conditions associated with orexin dysregulation.
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1. Introduction

Sleep is a complex physiological process that consists of different stages, including
rapid eye movement (REM) sleep. REM sleep is characterized by vivid dreaming, rapid
eye movements, and muscle atonia. Although not completely understood, it is clear that
REM sleep accomplishes many fundamental functions: information processing by replay-
ing neural activity experienced during wakefulness, modulation of synaptic and neural
transmission, cortical plasticity, memory consolidation, and a series of physical functions
particularly interesting for this review, such as the regulation of feeding behavior, auto-
nomic nervous system, body temperature, and response to stress, among many others [1].

The regulation of REM sleep is a finely tuned process involving various neurotrans-
mitters and neuropeptides [2], among them orexin plays a pivotal role. The regulation of
the sleep-wake cycle and of the various stages of sleep is very complex and still under
study, according to current knowledge, among the neurons involved in the regulation
of REM sleep there are the cholinergic ones, which are activated in association with fast
cortical rhythms also during wakefulness, but much less during NREM sleep [3]. Much
less is known about glutamatergic neurons, although it is known that, by innervating the
cortex and subcortical regions that promote arousal, they appear to fire during wakeful-
ness and REM sleep. Furthermore, the GABAergic neurons in the Pedunculopontine and
Laterodorsal Tegmental Nuclei regions seem mainly wake-active, but some may be more
active during REM sleep than in NREM sleep [3]. Orexin-A and -B are neuropeptides
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essential for regulating wake and REM sleep [1]; indeed, intracerebroventricular injection
of orexin-A increases wake and suppresses REM sleep for several hours and chemogenetic
activation of the orexin neurons increases wake and strongly suppresses REM sleep [4]. The
orexin neurons also produce glutamate and the inhibitory neuropeptide dynorphin, and
co-release of glutamate from the orexin neurons can excite target neurons [5], suggesting
a close interconnection with the aforementioned neurotransmitter pathways, within the
control of the REM sleep, although further studies are needed.

Since its identification, in 1998, orexin has been known to regulate feeding behavior [6].
This also determined the choice of its name from the Ancient Greek word
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ρεξις (órexis,
meaning “desire” or “appetite”). An independent group, at the same time, identified it
as “hypocretin” [7] and underlined its similarity with the gut hormone secretin. For this
reason, and due to its hypothalamic origin, these authors choose the name “hypocretin”.
Soon after, orexin and hypocretin were recognized to be the same neurotransmitter and
there is now a general agreement on the use of the term hypocretin to refer to the gene or
genetic products and orexin to indicate the protein.

It should be said that orexin includes two similar peptides, deriving from the hy-
pothalamic prepro-orexin, called orexin A and B, corresponding to hypocretin 1 and 2, and
formed by 33 and 28 amino acids, respectively. Also, two different orexin receptors have
been identified (orexin receptor 1 and 2); orexin A acts through both receptor 1 and 2 while
orexin B only acts through receptor 2 [8]. However, in this article we will not distinguish
between these two peptides, in order to keep the text more easily readable.

As seen above, orexin plays a significant role in the modulation of REM sleep, as well
as in the regulation of appetite [9]. This article explores, briefly, the relationship between
orexin, REM sleep, and appetite regulation, with the aim to provide a reappraisal of the
role of orexin in the regulation of REM sleep and to shed light on the interconnected nature
between them and appetite.

2. The Role of Orexin in REM Sleep Regulation

Orexin is primarily synthesized in the lateral hypothalamus and acts as a neuro-
transmitter. According to the current knowledge, it plays a key role in the regulation of
sleep-wake cycles, promoting wakefulness and inhibiting REM sleep. Orexin-producing
neurons in the hypothalamus project to several brain regions involved in sleep regulation,
such as the brainstem and thalamus [10].

During wakefulness, orexin neurons are highly active, releasing orexin into their
target regions. The release of orexin promotes arousal, enhances alertness, and helps
maintain a state of wakefulness. However, during REM sleep, the activity of orexin
neurons decreases, resulting in a reduction of orexin release. Interestingly, recent studies in
primates have clearly shown that the highest concentrations of orexin are recorded until
just after the monkeys go to sleep and then falling through the night and reaching the
lowest concentrations around wake time [11,12]. Then, orexin concentrations start rise
linearly. Only after some hours of wakefulness, orexin concentrations reach a plateau
during the early evening. Data in humans, although less consistently, agree with this
circadian distribution of orexin levels in the cerebrospinal fluid (CSF) [13–15].

This pattern is definitely not what one should expect if one of the main roles of orexin
is that of maintaining wakefulness, since it would be quite difficult to explain why orexin
is at its lowest levels in the morning hours when alertness is maximum and sleepiness is
unlikely and is maximum around the sleep onset, when sleepiness is likely to be maximum.
On the contrary, it fits quit well with the notion that inhibits REM sleep and, indeed, it
decreases gradually during the night, concurrently with the well know increase in REM
sleep as the night progresses.

The discrepancy between the supposed alerting role of orexin and the CSF data has
also been supposed to be due to a hypothetical long delay between the release of orexin
and its appearance in lumbar CSF [15]. However, this was only a suggestion based on no
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evidence and a much easier interpretation of the data is that the main role of orexin is not
that of promoting alertness.

Figure 1 shows, schematically, the complex interplay between sleep pressure (Pro-
cess S), alerting signals (Process C), alertness level and CSF orexin levels along the 24-h
sleep/wake cycle [14,16].
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alerting signals (Process C) [14,16], alertness level and CSF orexin levels [15] along the 24-h
sleep/wake cycle.

Considering orexin essentially as a neurotransmitter inhibiting REM sleep and, to
a much lesser extent, a wake promoting agent, also fits with the objective observations
reported about sleep in patients with narcolepsy type 1 in whom a deficit in orexin rep-
resents the main biological hallmark. In fact, these patients show full (sleep onset REM
sleep episodes) or partial (sleep paralysis, cataplexy, hypnagogic hallucinations) intrusions
of REM sleep during wakefulness. In addition, nocturnal sleep is also disturbed in these
patients and is not characterized by an increased nonREM sleep time but, again, by an
increase in REM sleep which also occurs early after thee subjects fall asleep.

In physiological conditions, the decrease in orexin activity during the second part
of the night, when REM sleep preferentially occurs, is essential for the initiation and
maintenance of this sleep stage. By inhibiting orexin release, the brain allows for the
expression of REM-specific features, such as muscle atonia and vivid dreaming.

There is a general idea that one of the main roles of orexin is to promote wake-
fulness [17]. This has also represented at least part of the rationale to promote orexin
receptor antagonists for the treatment of insomnia and to promote sleep [18]. How-
ever, although several neurotransmitters, including hypocretin/orexin, histamine, nore-
pinephrine, serotonin, dopamine, adenosine and acetylcholine, certainly contribute to the
mechanisms supporting wakefulness, none of them seem to be individually necessary for
maintaining wakefulness [19].

Orexin receptor antagonists are a class of medications designed to block the action of
orexin at its receptors. By doing so, these drugs are believed to inhibit the wake-promoting
effects of orexin, ultimately leading to increased sleep duration and improved sleep conti-
nuity. Numerous polysomnographic studies have investigated the effects of orexin receptor
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antagonists on sleep architecture in both healthy individuals and patients with sleep disor-
ders [18]. These studies have consistently shown that orexin receptor antagonists improve
sleep parameters and promote sleep continuity. Studies have generally reported that the
administration of orexin receptor antagonists was associated with a significant increase in
total sleep time and reduced sleep latency, but also enhanced or at least preserved REM
sleep, unlike traditional hypnotics, and sometimes decreased nonREM sleep [20]. It is
intuitive to think that if orexin essentially favors wakefulness, antagonizing its receptors
should enhance sleep as a whole, especially nonREM sleep which is physiologically more
represented than REM sleep. On the contrary, orexin receptor antagonists have shown a
remarkable ability to enhance REM sleep regulation, in particular [20].

For all the above reasons, it is our opinion that a careful rethinking and reconsidera-
tion of the main role of orexin should be carried out in the scientific literature since this
would translate into a different pharmacological approach to the treatment of conditions
in which orexin is deficient (narcolepsy type 1) [21] or is believed to be upregulated, such
as insomnia [18].

3. Other Functions of Orexin

Orexin, however, plays a multifunctional role in regulating various physiological pro-
cesses. Besides sleep-wake regulation and appetite control, its functions encompass energy
homeostasis, autonomic nervous system modulation, and cognitive function, reflecting its
significance in maintaining overall homeostasis.

3.1. Energy Homeostasis

Beyond its involvement in feeding behavior, orexin is crucial in maintaining energy
homeostasis. It orchestrates energy expenditure, thermogenesis, and lipid metabolism
through interactions with various metabolic centers in the brain. Studies in animal models
suggest that orexin deficiency can lead to reduced physical activity and increased fat
accumulation, underscoring its role in energy balance [22,23].

Energy homeostasis is a crucial physiological process that maintains a balance between
energy intake and energy expenditure in the body. Dysregulation of this process can lead
to obesity, diabetes, and other metabolic disorders. Orexin-producing neurons in the
lateral hypothalamus are activated by both fasting and food deprivation, suggesting a
role in promoting food-seeking behavior [6]. These neurons project widely to other brain
regions involved in appetite regulation, such as the paraventricular thalamic nucleus and
the nucleus accumbens [24]. Activation of orexin neurons stimulates food intake, while
inhibition reduces food consumption [25].

Beyond its role in feeding behavior, orexin also influences energy expenditure. Orexin
receptors are expressed in various tissues, including brown adipose tissue and skeletal
muscles, which are involved in thermogenesis and energy dissipation [26,27].

Orexin also has an impact on glucose homeostasis. It interacts with insulin-producing
beta cells in the pancreas and affects glucose-stimulated insulin secretion [28,29].

Leptin, a hormone produced by adipose tissue, is a key player in energy homeostasis
by regulating satiety and energy expenditure. Orexin and leptin interact in a complex
manner to regulate feeding behavior and energy balance [30].

Thus, orexin is a neuropeptide that plays a significant role in the regulation of energy
homeostasis by influencing feeding behavior, energy expenditure, and glucose homeosta-
sis. Its complex interactions with other hormones, such as leptin, further highlight its
importance in maintaining energy balance. Dysregulation of orexin signaling has been im-
plicated in metabolic disorders, making it a potential pharmacological target for therapeutic
interventions aimed at addressing obesity and related conditions.
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3.2. Regulation of the Autonomic Nervous System

Orexinergic pathways also play a role in the stress response, contributing to the
activation of the hypothalamic-pituitary-adrenal axis. Dysregulation of orexin signaling is
associated with autonomic dysfunction and cardiovascular disorders [31–33].

The autonomic nervous system is a critical component of the peripheral nervous
system responsible for regulating involuntary physiological functions, such as heart rate,
blood pressure, digestion, and respiratory rate. Emerging evidence suggests that orexin
also plays a significant role in modulating the autonomic nervous system and it has been
shown to influence the activity of both the sympathetic [34] and parasympathetic [35]
nervous systems [36]. Moreover, orexin is involved in the regulation of the cardiovascu-
lar [34] and respiratory [37] functions through its actions on the autonomic nervous system.
Dysregulation of orexin signaling may contribute to autonomic dysfunctions, making it a
potential target also for therapeutic interventions in disorders involving autonomic nervous
system imbalances.

3.3. Cognitive Function

Cognitive function refers to the mental processes that enable us to perceive, think,
reason, and remember. Emerging evidence suggests that orexin may also influence cognitive
function, including memory consolidation and attention. Orexin receptors are found in
brain areas related to memory, and studies have linked orexin to the modulation of cognitive
processes. Moreover, orexin has been implicated in the regulation of emotional responses
and mood, further supporting its involvement in cognitive function [38,39].

Arousal is a critical component of cognitive function, as it affects attention, alertness,
and information processing. As also reported above, orexin has a significant influence
on arousal and wakefulness [40], as well as on attention (the ability to focus on specific
stimuli while filtering out irrelevant information) [41]. Learning and memory are funda-
mental cognitive functions essential for acquiring and retaining new information; orexin
may influence these processes through its enhancing effects on synaptic plasticity [42].
However, the exact mechanisms of orexin’s impact on cognitive function certainly require
further investigation, also for their potential implications for developing novel therapeutic
strategies targeting cognitive dysfunction in CNS disorders.

4. The Relationship between Orexin, REM Sleep, and Appetite

In addition to its role in sleep regulation, orexin is also involved in the regulation of
appetite and energy homeostasis. Orexin neurons project to the lateral hypothalamus, a
region known to be involved in appetite control. Through its interaction with other brain
regions, orexin helps regulate feeding behavior and energy balance [43].

In physiological conditions, REM sleep is most abundant towards the end of the
main nocturnal sleep episode. As nocturnal sleep lasts for hours, it is accompanied by a
physiological fasting, and the abundant REM sleep in the last part of the night also acts as
an appetite suppressant [44]. Consequently, REM sleep is believed to have some sort of
anti-obesity function [45] and that the loss of REM sleep, especially in the last sleep hours
in habitually short sleepers, might enhance appetite and contribute to weight gain. Foods
are also selected for their hedonic (emotional) properties, it is reasonable to believe that
REM sleep might play a role in the development of food preferences and dislikes [44].

The link between orexin, sleep, and appetite is further supported by different studies
showing that disruptions in the orexin system can significantly affect food intake and
metabolism [9]. Orexin-deficient animals and individuals with narcolepsy often exhibit
increased food consumption, especially for high-calorie foods, indeed narcolepsy is often
accompanied by weight gain and metabolic disturbances [11]. This suggests that orexin
is involved in regulating food reward and the hedonic aspects of eating [46]; however,
how orexin deficiency/lack translates into weight gain and metabolic disturbances is
unclear and in apparent contradiction with the orexin’s facilitation of food intake and
food-seeking behavior. In this respect, it should be noted that narcoleptic patients and
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orexin-deficient animals are hypophagic [47,48] and show body mass index-independent
metabolic alterations. Thus, a complex, yet not completely known mechanism needs to be
invoked to explain this contradiction.

In addition, sleep-related eating disorder (SRED), a nonREM sleep parasomnia charac-
terized by an interruption of overnight fasting with episodes of sleep feeding [49], is very
frequent in narcolepsy type 1 (in which there is orexin deficiency), but not in idiopathic
hypersomnia (in CSF orexin levels are within the normal limits) [50]. Orexin receptor
agonists have shown efficacy in treating narcolepsy [21]. Thus, these agents may offer a
targeted approach to manage SRED by modulating orexin signaling and disrupting the
abnormal sleep-related feeding patterns. However, further research is necessary to eluci-
date the specific molecular mechanisms underlying orexin’s involvement in SRED and to
conduct clinical trials to assess the safety and effectiveness of orexin-targeted therapies in
this unique sleep disorder.

Another evidence that the circadian trend of orexin can influence appetite is repre-
sented by the video-polysomnographic observation of the episodes of nocturnal feeding
in patients with night eating syndrome, a condition different from the above-mentioned
sleep-related eating disorder, in whom evening hyperphagia occurs with consumption of at
least 25% of the daily caloric intake after the evening meal. In these patients, the duration
of feeding episodes and the latency of falling asleep in the early evening hours, when
orexin levels are relatively low (Figure 1) are significantly longer than in episodes of food
ingestion during nocturnal awakenings in nonREM sleep, when orexin levels are high [51].
Moreover, awakenings from night sleep with feeding occur almost entirely during nonREM
sleep (during which orexin is relatively high), as opposed to REM sleep (when orexin levels
are lower) [51].

Furthermore, orexin interacts with other neuropeptides and neurotransmitter systems
involved in appetite regulation, such as neuropeptide Y and melanin-concentrating hor-
mone, through an involvement of the paraventricular nucleus of the hypothalamus and
the nucleus of the solitary tract; these interactions contribute to the complex regulation of
feeding behavior and energy balance [52].

The involvement of orexin in both sleep homeostasis and appetite could have impor-
tant implications in the prevention of neurodegenerative and tumor diseases, in light of the
evidence underlining a role of this neurotransmitter in both processes, according to a mecha-
nism of inverse comorbidity [53]. After all, recent studies suggest the use of drugs that act on
orexinergic receptors also in the treatment of different cancers including colon, pancreas and
prostate cancers [54] and neurodegenerative diseases [55,56] such as Alzheimer’s disease
(AD) where orexinergic system dysregulation promotes sleep-wake cycle impairment [57]
and also interacts with CSF AD biomarkers, such as beta-amyloid and tau proteins. Along
this line, the role of nutrition in sleep medicine [58] and secondary prevention strategies is
continuously increasing both in oncology and neurodegeneration [59,60].

AD, for instance, is associated with early alterations in the orexinergic system.
Liguori et al. [57] found significantly dysregulated orexin in the cerebrospinal fluid of
AD patients, correlated to a dysregulation of their sleep-wake cycle, suggesting an im-
paired orexinergic tone in the disease. Similarly, Parkinson’s disease (PD) has been linked
to alterations in the orexin system. A significant loss of orexin-producing neurons in the
hypothalamus of PD patients, which was associated with sleep disturbances and weight
loss commonly observed in PD has been reported [61].

Beyond its role in feeding behavior, emerging evidence suggests that orexin may
have neuroprotective properties. Studies in animal models have demonstrated that orexin
can protect against neurodegeneration by promoting cell survival and reducing oxidative
stress [62]. It has also been observed that orexin seems to be implicated in neurodegen-
eration, with an involvement of mitochondrial processes, in both AD [63] and PD, in the
latter case likely mediated by long non-coding RNAs [64] which play a role in reverse
comorbidity mechanisms between cancer and neurodegeneration [65]. These findings raise
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the intriguing possibility that the orexin system could be a potential pharmacological target
for therapeutic interventions in neurodegenerative diseases as well.

Feeding disturbances in neurodegenerative diseases are prevalent and significantly
impact the overall health and quality of life of affected individuals. These disturbances
can manifest as changes in appetite, alterations in eating patterns, and difficulties with
swallowing or chewing. In diseases such as AD, PD, and Huntington’s disease, feeding
disturbances often occur as the disease progresses and can be associated with cognitive
and motor impairments [66]. For instance, individuals with AD may experience a loss
of appetite and forget to eat, leading to unintended weight loss. In PD, difficulties with
swallowing, known as dysphagia, can increase the risk of choking and aspiration pneumo-
nia [67]. Understanding and managing these feeding disturbances are essential to ensure
adequate nutrition, prevent complications, and enhance the overall well-being of patients
with neurodegenerative diseases.

The intricate relationship between orexin and feeding behavior in neurodegenera-
tive diseases provides a fascinating area of research with significant clinical implications.
While disturbances in the orexin system have been observed in various neurodegenerative
disorders, further studies are needed to fully understand the underlying mechanisms
and to develop targeted therapeutic approaches. The investigation of orexin in the con-
text of neurodegenerative diseases may lead to innovative treatment strategies and con-
tribute to the overall understanding of the complex pathophysiology of these devastating
disorders [62,68].

Moreover, in many types of cancer, an upregulation of the orexinergic system has
been reported [53] that seems to have a dual effect [69]. In fact, in some tumors apoptosis
has been observed associated with orexin upregulation while, in others, a proliferative
effect has been found. These effects are mediated by complex metabolic changes including,
among others, glucose transport and uptake and insulin. Feeding behavior and metabolism
play a significant role in cancer development and progression. Obesity, which often results
from excessive calorie intake and sedentary lifestyle, has been associated with an increased
risk of various cancers, including glioma, colorectal, lung, and breast cancers, cervical and
ovarian cancers, and cancer of the corpus uteri [70]. Orexin’s role in regulating feeding
behavior and energy homeostasis implicates it as a potential mediator of the obesity-cancer
link. For this reason, both antagonists or agonists of the orexin receptors are potential
treatments for tumors expressing orexin receptors.

Dysregulation of the orexin system has also been implicated in the pathophysiology
of obstructive sleep apnea [71]. Orexin receptor agonists have shown potential in animal
studies by increasing reducing the frequency of sleep apnea events [72]. However, prelimi-
nary human studies are still contradictory [73,74]. Additionally, orexin receptor antagonists
have demonstrated effectiveness in promoting sleep and decreasing wakefulness, which
may be beneficial for certain types of sleep apnea [18]. However, more research is needed
to fully understand the complex interactions between orexin signaling and sleep apnea
and to develop safe and effective orexin-based therapies for individuals suffering from this
prevalent sleep disorder. Further clinical trials evaluating the impact of orexin modulation
in sleep apnea are necessary to validate its therapeutic potential and address the unmet
needs in sleep apnea management.

A novel interesting research area could also evaluate the role of orexin in modulating
drugs for the treatment of eating disorders (as evidenced by recent studies on animal
models [75,76]), especially if also associated with sleep disorders. However, the effect of
this neurotransmitter on REM sleep, which plays an important role in sleep physiology,
appetite, cognitive functions and metabolism [77], should be reconsidered.

5. Treatment Perspectives

As our understanding of orexin’s role in the brain deepens, novel treatments that
target orexin system to address several medical conditions effectively are becoming clearer.
Besides the obvious possible use of orexin receptor agonists in narcolepsy and antagonists
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in insomnia, several other disorders might benefit from a specific action on orexin by
pharmacological agents [78].

As see above, the orexin system is also involved in regulating appetite and feeding
behavior, orexin receptor antagonists have been studied as potential treatments for obesity
by reducing food intake and promoting weight loss [79]. However, the challenge lies
in achieving a balance between appetite suppression and potential side effects. Future
treatments may involve more selective orexin-targeting agents or combination therapies
with other appetite-regulating systems to address obesity effectively.

In the light of what has been discussed, it is important to focus attention on the future
perspectives concerning the modulation of orexinergic circuits in the treatment of metabolic
disorders. In fact, orexin plays a role not only at a central level, but also at a peripheral
level (gastrointestinal tract, adrenal cortex, gonads, and pancreas). Thus, the orexin pep-
tide/receptor system is also involved in cardiovascular modulation, and neuroendocrine
and reproduction regulation [80]. On the other hand, some reports have highlighted the
role of orexin in the metabolic syndrome in patients with schizophrenia [81,82] and in
adolescents without psychiatric pathologies [83], although further studies in this regard
are also desirable in other clinical conditions.

The intertwining of the orexin system with the brain’s reward circuitry has prompted
studies on its involvement in addiction and substance abuse. Orexin neurons have
been found to modulate the dopaminergic system and therefore reinforcing effects of
drugs of abuse, making them potential targets for addiction treatment. Animal and
human studies using orexin receptor antagonists have shown promise in reducing drug-
seeking behavior [84]. Future clinical trials may explore the use of orexin-targeted
therapies as adjunct treatments for addiction to complement existing behavioral and
pharmacological interventions.

Moreover, orexin has been implicated in anxiety and mood disorders due to its in-
fluence on stress responses, emotional regulation and affective disorders. Some studies
suggest that dysregulation of the orexin system may contribute to the development of
anxiety disorders, such as generalized anxiety disorder and post-traumatic stress disor-
der. Future treatments targeting orexin system could potentially lead to novel therapeutic
options for individuals with these conditions [85,86].

Gene therapy and cell-based therapies represent cutting-edge approaches that hold
significant promise for the treatment of disorders related to orexin deficiency. These
techniques involve introducing genes or cells that can produce functional orexin or repair
damaged orexin neurons [87,88]. For narcolepsy and other disorders characterized by
orexin neuron loss, gene therapy and stem cell transplantation could potentially rescue
normal orexin signaling and alleviate symptoms.

Another emerging approach in treating sleep disorders and related conditions in-
volves using neurostimulation to modulate the activity of orexin-producing neurons. Deep
brain stimulation and transcranial magnetic stimulation are examples of non-invasive or
minimally invasive techniques that could be explored to regulate the activity of orexin
neurons and restore balance in sleep-wake cycles [89,90].

The orexin system is a fascinating pharmacological target for future treatments of
various medical conditions, particularly sleep disorders. As researchers delve deeper into
the intricacies of orexin’s role in the brain and its impact on sleep regulation, appetite,
addiction, mood, and more, novel therapeutic approaches are likely to emerge. From
selective orexin receptor modulators to gene therapy and neurostimulation, the future
holds exciting possibilities for leveraging orexin-targeted treatments to improve the lives
of individuals affected by these conditions. As with any emerging medical interventions,
safety and efficacy will remain primary concerns, and extensive research and clinical
trials will be necessary to validate these promising approaches fully. Nevertheless, the
potential for orexin-targeted therapies to revolutionize sleep medicine and other fields of
neuroscience is undeniably exciting.
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6. Conclusions

Orexin, a neuropeptide primarily produced in the lateral hypothalamus, plays a
crucial role in the regulation of REM sleep and appetite. By inhibiting REM sleep and, to a
much less extent, promoting wakefulness, orexin helps maintain a balance between sleep
and wakefulness.

Understanding the intricate relationship between orexin, REM sleep, and appetite
regulation is essential for unraveling the complex mechanisms underlying sleep-wake
patterns and metabolic control. Further research in this field may pave the way to identify
new pharmacological targets and to develop novel therapeutic approaches to sleep disor-
ders and metabolic conditions associated with orexin dysregulation. Some examples are
provided in the research agenda below:

• In consideration of the multiple functions of orexinergic circuits in sleep and metabolic
disorders, it should be assessed the possible use of orexinergic receptor antagonists in
other pathologies, in addition to the current indications;

• If orexin receptor antagonists could be a viable option for the treatment of eating
disorders and metabolic disorders should be addressed with specific studies;

• Considering the interactions found with dopaminergic circuits, further studies should
be carried out in humans to test the possible use of drugs acting on orexinergic circuits
for the treatment of anxiety, post-traumatic stress disorder and addiction (also often
associated with eating disorders);

• Considering the reports on the association between nocturnal sleep eating disorders
and REM and NREM sleep, probably highly related to the modulation of orexinergic
circuits, further studies on humans are desirable to better understand the pathogenetic
and therapeutic role of orexin in these disorders;

• More attention should be paid to the effect of the use of orexinergic antagonists in
insomnia on the appetite of these patients.
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