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Abstract: Micro-Fabric Analyzer (MFA) is a new GIS-based tool for the quantitative extrapolation
of rock microstructural features that takes advantage both of the characteristics of the X-ray images
and the optical image features. Most of the previously developed edge mineral grain detectors are
uniquely based on the physical properties of the X-ray-, electron-, or optical-derived images; not
permitting the exploitation of the specific physical properties of each image type at the same time.
More advanced techniques, such as 3D microtomography, permit the reconstruction of tridimensional
models of mineral fabric arrays, even though adjacent mineral grain boundaries with the same atomic
density are often not detectable. Only electron backscatter diffraction (EBSD) allows providing high-
performing grain boundary detection that is crystallographically differentiated per mineral phase,
even though it is relatively expensive and can be executed only in duly equipped microanalytical
laboratories by suitably trained users. Instead, the MFA toolbox allows quantifying fabric parameters
subdivided per mineral type starting from a crossed-polarizers high-resolution RGB image, which is
useful for identifying the edges of the individual grains characterizing rock fabrics. Then, this image
is integrated with a set of micro-X-ray maps, which are useful for the quantitative extrapolation of
elemental distribution maps. In addition, all this is achieved by means of low-cost and easy-to-use
equipment. We applied the tool on amphibolite, mylonitic-paragneiss, and -tonalite samples to
extrapolate the particle fabric on different metamorphic rock types, as well as on the same sandstone
sample used for another edge detector, which is useful for comparing the obtained results.

Keywords: image segmentation; grain boundary detection; fabric analysis; ArcGIS

1. Introduction

Petrogenetic processes are mostly controlled by chemical–physical counterbalancing
factors such as deposition mechanisms vs. diagenesis for sedimentary rocks, emplace-
ment or flow dynamics vs. crystal solidification velocity for plutonic and volcanic rocks,
respectively, and deformation vs. recovery processes for metamorphic rocks. In this
view, the quantitative restitution of mineralogical composition and fabric arrangement
of rock constituents are crucial parameters to be determined in unravelling most of the
geological processes.

In the last decade, many efforts have been focused on the development of quantitative
extrapolation techniques that are useful for obtaining more increasingly performing rock
microstructural features.

All these methods can be summarized in three different groups, which are subdivided
in function of the image acquisition physical properties.

The first group is the optical image-derived methods. These methods are based on
three crucial points: (a) the image-acquiring methods; (b) the prefiltering process; and (c)
the algorithm used for edge detection extraction [1–7].
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The second group is defined as High-resolution X-ray Computed Tomography (HRXCT)
or micro-CT (µCT). This is a frequently used non-destructive 3D imaging and analysis
technique for the investigation of a large variety of geomaterials, which is based on the
differentiated X-ray absorption of a rotating 3D sample [8–11].

Finally, the third group can be described by the electron backscatter diffraction (EBSD)
methods. Electron backscatter diffraction is a method based on the interaction between an
electron beam and a crystal lattice where the diffracted electrons create a pattern that can
cause specific fluorescent effects. The method provides crystallographic data regarding
the microstructure of a sample through the elaboration of the diffraction pattern sensitive
to crystal orientation. This method is able to characterize grain boundaries as well as
differentiate between crystallographically different phases [12–14].

All the optical image-derived methods start from the acquisition of thin section images,
which are acquired from an optical microscope or by a high-resolution light polarized
scanner. Most of these methods necessitate the stacks of multiple image acquisitions at
different crossed polarizers orientation in order to minimize the effect of the boundaries
disappearing between two adjacent mineral grains of the same species during rotation [4,6].
The acquiring of the stacked optical image is even more true if it is necessary to acquire
images that are useful for computing the preferential orientation of quartz c-axis pattern
via the definition of the Achsenverteilungsanalyse (AVA) [15–18]. In this case, indeed, it is
necessary to acquire several images at different polarizers orientation often accompanied
also by images acquired with λ e.g., [16] or λ/4 retardation plates [15]. These methods
require relatively low-cost equipment, the software used are often open-source, and also,
the cost of the single analysis is equally inexpensive, as it is only functional to the time
taken by the operator. The potentially obtainable results can be of high quality, even if the
three-dimensional extrapolations are affected by the approximations attributable to the
calculation of the equivalent sphere for every single grain [7].

X-ray micro-CT gives probably the most fascinating result and is becoming more and
more popular in Earth Science research studies. This is because it is a real non-destructive
3D analytical method that is very useful, for instance, for the study of stone materials of
cultural interest. However, the high cost of the necessary devices, accompanied by the need
to use highly specialized personnel both in the acquisition and in the post-processing phase,
as well as the scarce availability of open-source software, make this methodology a not yet
routinely analytical procedure. Furthermore, in order to obtain a complete definition of the
stereographic orientation of each single constituent grain within a single sample, the final
output necessitates often the combination of micro-CT with complementary techniques, in
order to take advantage of the increased computational possibilities for image correlation
and advances in the field of these techniques. This is because adjacent grains with the same
or similar atomic density are scarcely distinguishable.

EBSD methods are surely the best approach in unraveling the microstructural-related
geological features e.g., [19], since the detection of single grains includes both the function
of their chemical composition and their lattice orientation. This is implying that it is
possible, for instance, to use algorithms modeled on the Voronoi cells (i.e., limited regions
in the 2D or 3D space, characterized by points that share one or more properties with an
initial specific seed). The Voronoi-based algorithm is a very powerful method to isolate
homogeneous regions of space with similar physical characteristics. Nevertheless, the high
cost of the necessary devices, accompanied by the need to use highly specialized personnel,
especially in the acquisition stage, make this methodology, also, in this case, a not yet
routinely analytical procedure.

For the above reasons, a very routinely applied method to extrapolate quantitative
petrographic and microstructural studies of rock specimens at the thin section scale can
be derived by the integration of the modal abundance and mineralogical compositions,
which are obtainable from X-ray maps elaboration [20–24], with the extrapolation of the
particle fabric parameters (i.e., those parameters that define the size, shape, and orientation
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of the particles in space), and they are also constrainable starting from optical image scans
through the application of algorithms for grain-boundary detection e.g., [1,2,25–29].

In this paper, we provide for the first time a new Geographic Information Sys-
tems (GIS)-based toolbox (Micro-Fabric Analyzer—MFA). MFA integrates the two above-
mentioned practical approaches, at the same time, via the sequential application of the
multivariate statistical analysis of micro-X-ray fluorescence (µXRF) maps of entire rock
thin sections, which are accompanied by a supervised segmentation. This combined ap-
proach has been integrated within a totally new ArcGIS® toolbox structured by means of
“ready-to-run” tools, which are chained together also with new original Python scripts (i.e.,
Model Builder), the latter being useful to execute iteratively complex calculation through
personalized executables.

Micro X-ray fluorescence was chosen due to its very user-friendly capability accompa-
nied by a very low cost for every single analytical session. Furthermore, unlike conventional
XRF, which has a typical spatial resolution ranging in diameter from several hundred mi-
crometers up to several millimeters, µXRF uses X-ray optics to restrict the excitation beam
size or focus the excitation beam to a small spot (up to 10 µm) on the sample surface,
obtaining a geometrical resolution consistent with most of the rock-constituents dimension.

As already mentioned, most of the applied optical-derived methods, which are useful
to extrapolate rock fabric parameters, involve the processing and segmentation of multiple
images normally acquired through an optical microscope or a high-resolution scanner under
crossed polarizers with different orientations e.g., [4,6,30]. This is in order to obtain both for
the automatic vectorization and/or hand-made digitalization all the potential boundaries of
the rock-forming grains; in turn, these are useful for deriving size descriptors, shape factors,
and orientations [31–36] applicable to all the geosciences disciplines e.g., [31,37–43].

In recent years, the use of increasingly efficient algorithms for image processing,
which are implemented in Geographic Information Systems (GIS), are giving more highly
performing and encouraging results [4,6,44–49]. The highly performing results of the
algorithms are synergistically integrated with the strength of the GIS, which is based on the
following capabilities: (i) to manage and overlap big data structured in a database that is
potentially interoperable e.g., [50]; (ii) to integrate and process different spatial information,
both in raster and vector format; and (iii) to carry out a semi-automated post-processing
editing stage of vector objects. For these reasons, the use of a GIS is particularly indicated
for extrapolating, handling, and analyzing fabric information from images of rocks or thin
sections [4,6,18,44,46,51–53], as well as allowing users to overcome the issue of linking
fabric data to the thin section reference frame. Furthermore, the use of the Model Builder
graphical modeler in the ArcGIS® software allows the tuning of a designed sequence of
operations to fulfill specific purposes.

Generally, the algorithms used for the processing of images acquired from thin sections
are based on the following: (i) edge detection techniques [1,4,5,25,46], which use gradient
tools to detect sharp color changes and thus identify grain boundaries; (ii) region detection
techniques [4,6,44], which homogenize neighboring pixels having similar color intensities,
by applying focal filters within a fixed distance, in order to outline grains; (iii) threshold
detection techniques [38,54], which unify the range of pixels with similar color intensities to
obtain a binary image composed by grains and background; and finally, (iv) a combination
of all the techniques described above [6].

The sequential automated application of the techniques mentioned above is useful
to elaborate the mineral grain boundaries and grain maps, starting from a single high-
resolution thin section optical scan. This former stage of the procedure is carried out via the
tool named Grain Size Detector (GSD), which permits delineating the grain boundaries of
all the rock constituents of the thin section without determination of the mineral type. The
second stage of the procedure is subordinate to the acquisition of a mineral classification
map obtained via the application of the first cycle of the software Quantitative X-Ray Map
Analyzer (Q-XRMA) [21], which permits obtaining the mineral classification of an entire
thin section starting from the elemental µXRF maps. This intermediate and external stage
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from the MFA is necessary to allow the overlap of the two intermediate outputs useful
for the application of the final tool (i.e., Mineral Grain Size Detector—Min-GSD), which
associates a specific mineral name at the digitized polygon of the single grain.

More in particular, the GSD allows users to create maps of polygon objects representing
grains, with all the associated fabric parameters (e.g., grain area, perimeter, long and
short axis, aspect ratio, orientation). For the segmentation step, the GSD tool adopts the
Segment Mean Shift (SMS) algorithm, which is implemented in ArcGIS® software. The SMS
algorithm identifies features (i.e., “segments”, “grains”) in the input imagery by grouping
adjacent pixels that have similar colors and given spatial relationships.

Through the processing of a mineral classification map of the same area processed
by the GSD, the Min-GSD assigns each polygon to a given mineral, and a map of the
grain boundaries categorized according to the pairs of minerals that are in contact is
also obtained.

Overall, we propose a novel workflow (Figure 1), which includes four main steps: (i)
the acquisition of optical scan and X-ray maps of the entire thin section via high-resolution
scanners and electron microscope/microprobe, respectively; (ii) image processing to obtain
vectorized grains and classified minerals, by using the GSD and Q-XRMA tools; (iii) the
georeferencing of these maps in ArcGIS® environment; and finally, (iv) the mineralogical
classification of vectorized grains, which makes available a detailed quantitative description
of the rock texture.
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Figure 1. The workflow of the Micro-Fabric Analyzer.

As an application of the tool, we analyzed an amphibolite sample, a mylonitic-
paragneiss and -tonalite sample, in order to extrapolate particle fabric on different metamor-
phic rock types. Finally, the same sandstone sample used by the ArcGIS-based edge detector
of [4] was also processed with the MFA toolbox to compare obtained results. The particle
fabric as well as the grain sizes, number of grains, mineral modal abundances, and pairs of
mineral contacts are obtained too and correctly stored within a user-friendly geodatabase.
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2. Materials and Methods

Several steps are necessary to obtain grain boundaries and related measurements,
spanning from the filtering of input images, to calibration, segmentation, classification, and
the calculation of size and shape descriptors. All of the fabric parameters derived by the
GSD tool are calculated starting from four fundamental grain size descriptors, namely the
area, the perimeter, the length, and the width (see Appendix A). Since these are expressed in
the number of pixels, they are converted into micrometers by relating them to the size of the
thin section. To speed up the procedure as a whole, we used the Model Builder embedded
in ArcGIS® 10.5 (equipped with the Spatial Analyst Extension) to design, edit, and manage
graphic models and automate the complex workflows of the GSD and Min-GSD. These
workflows string together sequences of geoprocessing tools, feeding the output of one tool
into another tool as input.

2.1. Input Images

To run the GSD and Min-GSD tools, a high-resolution optical scan and, respectively,
X-ray maps of thin sections classified via Q-XRMA are required.

We acquired optical scans in transmitted light under crossed polarizers by using an
Epson V750 Pro dual-lens system scanner. The choice of the scan resolution was a trade-off
between image quality and processing time. High-resolution images (e.g., pixel size ≈
2–4 µm, Table 1), can better reveal grain boundaries compared with low-resolution images,
but they require more hard drive storage and longer processing time (Table 1) since the
pixel matrix can be quite large (e.g., 15,000 × 9300 pixels). In contrast, the acquisition of
low-resolution images (e.g., pixel size≈ 10–85 µm) can result in merging small neighboring
grains into a single grain, but it reduces the image processing time (Table 1), as the pixel
matrix is smaller (e.g., 680 × 375 pixels). After several tests with different samples acquired
at different resolutions, we found that a resolution of ≈5 µm of pixel size corresponding
to a scan resolution of 4800 dpi (Table 1) is an optimal trade-off for image quality, hard
drive storage of the inputs/outputs obtained by the Micro-Fabric Analyzer (MFA), and
processing time.

Table 1. Hard drive space allocation and processing time used by the Micro-Fabric Analyzer at different image resolutions.

Optical Scan
Resolution (dpi)

Pixel Size
(µm × px−1)

Input Hard Drive
Space Allocation (MB)

Output Hard Drive
Space Allocation (MB)

Processing Time
(Minutes)

2400 ≈10.58 ≈5–15 ≈40–80 ≈10–15′

3200 ≈7.94 ≈5–25 ≈60–150 ≈20–80′

4800 ≈5.29 ≈10–30 ≈100–300 ≈30–120′

6400 ≈3.97 ≈30–50 ≈200–400 ≈60–180′

12,800 ≈1.98 ≈65–100 >400 >240′

Major element X-ray maps (i.e., Na, Mg, Al, Si, P, K, Ca, Ti, Mn, Fe) of the entire thin
section were acquired by using a µ-XRF Eagle III-XPL spectrometer equipped with an
Energy Dispersive Spectroscopy (EDS) Si(Li) detector and with an Edax Vision32 micro-
analytical system, which is located at the Department of Mineralogical and Petrological
Sciences, University of Torino. Maps were collected with a resolution of 576 × 320 pixels
and a spatial resolution of about 65 µm in both x and y directions was used.

2.2. The Micro-Fabric Analyzer Toolbox: Grain Size Detector (GSD) Tool

The GSD has a simple graphical interface (Figure 2), and it requires a single high-
resolution optical input image (Figure 3a,b). The tool consists of five main parts:

(i) The data storage management through the creation of directories where the outputs
will be stored. In this case, the tool prompts the user to specify both the name of the
analyzed sample and the path where the output folder will be created (Figure 2);
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(ii) The image segmentation performed by the application of the SMS followed by Itera-
tive self-organization (Iso) cluster classification.
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The SMS uses three different parameters named spectral detail, spatial detail, and
minimum segment size, to group adjacent pixels having similar colors, and appropriately
identify the segments constituting the input image (Figure 2).

The spectral detail (value range: 1.0–20.0) allows the user to separate objects based
on color characteristics. A small spectral detail value results in a few segments (Figure 3c),
each one covering a large area, and a relatively small number of grains are separated
(smoothing effect); instead, a higher spectral detail value results in a higher number of
segments and can separate grains having similar color (Figure 3c). The default value is
set to 15.5. Nevertheless, the user can control the intensity of spectral smoothing to help
obtain features of interest by modifying this value according to the sample studied.
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Figure 3. GSD tool segmentation steps: (a) the thin section optical image (39.1 × 23.1 mm2 in size with a pixel size of
5.29 µm). Inset represents Figure 3b; (b) magnification of the thin section; (c) the outputs of the Segment Mean Shift
algorithm at different settings of spatial and spectral detail parameters; (d) the segmented image obtained with values of 14
for both spatial and spectral details; (e) (e1–e3) schematization of the iso-cluster classification by choosing four classes: (e1)
the pixel color intensities of the segmented image. Colored numbers are used to emphasize groups of pixels with similar
color intensities; (e2) the result of the clustering process applied to the single pixel; (e3) the identification of classes; (e4)
results obtained from the iso-cluster classification if 16 classes are given.
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The spatial detail (value range: 1.0–20.0) allows the user to separate objects based on
the proximity between features in the input imagery. Opposite to the spectral detail, higher
values result in larger segments with a greater smoothing effect, whereas smaller values
allow the distinction between small objects clustered together (Figure 3c). The default
value is set to 16.0. Similar to spectral detail, the user can control the intensity of spectral
smoothing accordingly to the sample investigated.

The minimum segment size gives the minimum size (i.e., area), in pixels, for a group
of contiguous pixels to trace a grain. All segments smaller than the specified value will
be merged with their best fitting neighbor segment. Smaller values produce less homo-
geneous segments by preserving color differences due, for instance, to original mineral
zoning or twinning, whereas higher values minimize these effects. A value of 200 pixels
(corresponding to a grain having an equivalent diameter of ≈85 µm) is set by default in
the tool, as it is considered the suitable value to remove artifacts and obtain an optimal
segmentation for a thin section scan with a resolution of ≈5 µm of pixel size. Nevertheless,
the user can control the minimum size to help obtain features of interest, by modifying this
value in the case of samples with small grains.

The iso-cluster classification applies to the SMS output (Figure 3d), allowing finding
clusters (i.e., classes) of pixels assigned to specific segments on the basis of the statistical
distribution of the pixel color intensities (Figure 3e), computing the minimum Euclidean
distance when assigning each pixel to a cluster. In this case, users must define the number
of potential clusters (i.e., the maximum number of classes that can result from the clustering
process) representative of the segments constituting the input image. Small values are ad-
vised to classify rocks with few minerals, whereas a high value is suitable for polymineralic
rocks having minerals with different spectral characteristics. The default value is set at
32 classes, but the optimal value depends on the sample, and it is recommended to start
by checking the result obtained with a high number, and then to decrease the number of
classes if necessary. It is adopted here as a preliminary operation to the subsequent phase
of identifying the edges of the segments;

(i) The edge enhancement by applying gradient e.g., [44] and dilation filters e.g., [7]
(Figure 2).

The gradient filter is a type of Sobel edge detection algorithm that calculates the range
(i.e., differences between the largest and smallest values) of the pixels in a neighborhood to
detect regions that represent edges on an input image by assigning the obtained values
to the targeted pixels in a new output image. The gradient filter is useful for identifying
contacts between different classes in the classified image (Figure 4a), excluding all the pixels
not representing grain boundaries. This condition occurs when the difference between
the largest and smallest value of the pixel matrix is equal to zero (Figure 4b). Once the
class corresponding to a difference value equal to zero has been obtained, all the others
are merged into a single class representing the rough boundaries of the grains (Figure 4c).
The GSD allows the user to select the shape and the dimension of the neighborhood area
between different options, which are explained in detail in the help menu of the tool
(Figure 2). The default neighborhood is a square rectangle with a width and height of
three-pixel units, but the user can choose proper values as a function of the investigated
sample. Higher values of the pixel units will result in a thickening of the grain boundaries.
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Figure 4. GSD tool filtering and vectorization steps: (a) the output of the iso-cluster algorithm by choosing 16 classes; (b) the
output of the gradient filter; (c) the extraction of rough boundaries; (d) the output of the dilation filter; (e) the output of the
thinning function placed on the thin section; (f) the map of the digitized polygons representing rock-forming grains; (g) the
output of the Minimum Boundary Geometry (MBG) algorithm; (h) schematization of the measurements collected through
the MBG. Length and width represent, respectively, the long and short axis of the grain, whereas θ is the angle, measured
clockwise, between the vertical direction (y) and the length of the grain (θ = 71◦ in the figure).
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The gradient filtering is followed by the application of two rounds of dilation filter.
The dilation filter replaces the targeted pixel with the highest value in the neighborhood,
and thus, it thickens the grain boundaries (Figure 4d), minimizing the risk of under-
segmentation and the occurrence of tiny spurious grains. Analogously to the gradient
filter, the default neighborhood is a square rectangle with a width and height of three-pixel
units. Each round of dilation filter is followed by a thinning function [55] applied to the
rasterized grain boundaries, which reduces the number of pixels representing the width of
the boundaries to obtain a linear feature one-pixel wide (Figure 4e);

(i) The vectorization step to convert, in vector format (i.e., polylines), the rasterized
skeleton of the boundaries. Where the intersections between these polylines form
a closed area, polygons (containing attributes regarding their area and perimeter
in pixels), representative of rock-forming grains, are automatically digitized. This
operation is performed throughout the whole image, obtaining the thin section grains
(Figure 4f);

(ii) The collection of measurements, by adopting the Minimum Bounding Geometry
(MBG) algorithm e.g., [5]. Such a tool creates boxes having the smallest width enclos-
ing each polygon (Figure 4g), in order to collect data about elongation (i.e., length and
width axes) and orientation of the grains (Figure 4h). Furthermore, by combining data
of the area, perimeter, length, and width of the grains, the tool calculates five fabric
parameters more (i.e., aspect ratio, equivalent diameter, roundness, shape factor 1,
shape factor 2; Table 2) as defined in the Appendix A. In this case, the tool prompts
the user to specify the pixel size of the input image.

Table 2. Example of the dataset of grain size descriptors and shape factors derived from the GSD tool.

Attributes Values

Object ID 1 2 3 4 . . . n
Length Orientation (clockwise
from vertical direction: 0◦; 180◦) 95.86 30.16 100.65 80.98 104.07

Width 82.02 71.58 62.57 81.98 60.09
Length 144.24 118.94 128.25 188.97 138.57
Area 8449.21 5720.06 6166.03 12175.11 5658.97
Aspect Ratio 1.76 1.66 2.05 2.31 2.31
Equivalent Diameter 103.75 85.36 88.63 124.54 84.91
Perimeter 384.96 300.38 354.36 464.03 319.46
Roundness 0.57 0.60 0.49 0.43 0.43
Shape Factor 1 1.18 1.12 1.27 1.19 1.20
Shape Factor 2 0.72 0.80 0.62 0.71 0.70

2.3. Classification of Rock-Forming Minerals via the Q-XRMA Tool

The Q-XRMA tool [21] is here adopted only to process the element µXRF maps of the
entire thin section. In this perspective, we adopted the first analytical cycle of the Q-XRMA,
which consists of various stages implying a multivariate statistical data handling of the
X-ray maps based on the sequential application of the Principal Components Analysis and
the supervised Maximum Likelihood Classification [1]. Such an application allows users
to distinguish mineral phases across the analyzed thin section as well as extrapolate the
associated modal percentages.

2.4. The Micro-Fabric Analyzer Toolbox: Mineral Grain Size Detector (Min-GSD) Tool

The Min-GSD shows a simple graphical interface (Figure 5) and it allows users to join
the output obtained by the GSD (i.e., the map of polygons) with the output of the Q-XRMA
(i.e., the map of minerals) to assign to each polygon a specific mineral phase. It requires,
as a preliminary operation, a georeferencing step of the mineral classification map and of
the thin section scan within the ArcGIS environment (Figure 6a), as these images do not
contain specific spatial reference information, as well as they are not perfectly stackable
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because of the different resolution. In this case, it is necessary to use accurate location data
to align the raster data of the map of minerals to the thin section coordinate system, to
achieve a reliable overlap between the two images.

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 12 of 28 
 

 

 
Figure 5. ArcGIS® Graphical User Interface of the Min-GSD tool: (1) the name of the investigated sample; (2) the path of 
the outputs folder; (3) the polygon map obtained by the GSD tool; (4) the georeferenced mineral classification map ob-
tained by the Q-XRMA; (5) the help menu of the tool showing hints about the required inputs. Green circles on the left 
side mark mandatory inputs. 

 
Figure 6. Outputs of the Min-GSD tool operational steps: (a) the overlap between the georefer-
enced map of minerals obtained by Q-XRMA on the thin section image. The white square repre-
sents figure b; (b) results of the raster to point conversion of the mineral classification map; (c) 
map of the digitized grains quantified per mineral phase; (d) grain boundaries map showing con-
tacts of mineral couples. Mineral abbreviations from [56]. 

Figure 5. ArcGIS® Graphical User Interface of the Min-GSD tool: (1) the name of the investigated sample; (2) the path of the
outputs folder; (3) the polygon map obtained by the GSD tool; (4) the georeferenced mineral classification map obtained by
the Q-XRMA; (5) the help menu of the tool showing hints about the required inputs. Green circles on the left side mark
mandatory inputs.

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 12 of 28 
 

 

 
Figure 5. ArcGIS® Graphical User Interface of the Min-GSD tool: (1) the name of the investigated sample; (2) the path of 
the outputs folder; (3) the polygon map obtained by the GSD tool; (4) the georeferenced mineral classification map ob-
tained by the Q-XRMA; (5) the help menu of the tool showing hints about the required inputs. Green circles on the left 
side mark mandatory inputs. 

 
Figure 6. Outputs of the Min-GSD tool operational steps: (a) the overlap between the georefer-
enced map of minerals obtained by Q-XRMA on the thin section image. The white square repre-
sents figure b; (b) results of the raster to point conversion of the mineral classification map; (c) 
map of the digitized grains quantified per mineral phase; (d) grain boundaries map showing con-
tacts of mineral couples. Mineral abbreviations from [56]. 

Figure 6. Outputs of the Min-GSD tool operational steps: (a) the overlap between the georeferenced map of minerals
obtained by Q-XRMA on the thin section image. The white square represents figure b; (b) results of the raster to point
conversion of the mineral classification map; (c) map of the digitized grains quantified per mineral phase; (d) grain
boundaries map showing contacts of mineral couples. Mineral abbreviations from [56].



ISPRS Int. J. Geo-Inf. 2021, 10, 51 12 of 26

The tool consists of four main parts:

(i) The data storage management. Analogous to the GSD, the tool asks the user to specify
both the name of the analyzed sample and the path where the output folder will
be created;

(ii) A raster to vector conversion applied to the map of classified minerals, in which a
point feature is created at the center of each pixel (Figure 6b). Each point preserves
(as an attribute) the mineral phase of the parent pixel in the classified map;

(iii) The join, based on the spatial relationships, between the attributes of the map of
polygons obtained through the GSD tool and the points storing the mineral phase
attribute. With this operation, the tool appends, through the “Contains Clementini”
function [57], the mineral phase attribute to the attributes of the map of polygons,
with the exception that if the join feature (i.e., the points) is entirely on the boundary
(no part is properly inside or outside) of the target feature (i.e., the polygons), the
feature will not be matched. The “Contain Clementini” function defines the boundary
of the polygon as the line separating inside and outside, the boundary of a line is
defined as its endpoints, and the boundary of a point is always empty. To ensure a
reliable assignment of the mineral attribute to the polygon, the tool calculates the most
frequent mineral phase attribute among the points enclosed within each polygon.
When it is impossible to determine the most frequent mineral phase attribute among
the points enclosed within a given polygon, this will not be assigned to any mineral
phase, and it will not be kept in the final output. This step allows users to obtain
the map of grains subdivided per mineral phase (Figure 6c) and quantify texture
characteristics for single mineral phases (Table 3);

(iv) The vectorization step to derive a map of grain boundaries, where each bound-
ary maintains information about the contact between a specific couple of minerals
(Figure 6d).

Table 3. Example of the dataset of mineral grain size descriptors and mineral shape factors derived
from the Min-GSD tool.

Attributes Values

Object ID 1 2 3 4 . . . n
Length Orientation (clockwise
from vertical direction: 0◦; 180◦) 95.86 30.16 100.65 80.98 104.07

. . . . . .
Same of Table 2 Same of Table 2

. . . . . .
Mineral Pl Ilm Ttn Amp Pl

3. Results

An amphibolite (Figures 4a and 7), a mylonitic paragneiss (Figure 8), and mylonitic
tonalite (Figure 9) are analyzed with the Micro-Fabric Analyzer, to evaluate the potential
and limits of the tool and its effectiveness, when coarse-medium grained and relatively
fine-grained metamorphic rocks are investigated.
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To assess the validity of the tool, a comparison between the results obtained on a
sandstone sample by the MFA and the ArcGIS-based Thin Section GIS tool developed
by [4], is presented.
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3.1. Amphibolite

The selected amphibolite sample is made up of garnet, amphibole, clinopyroxene,
plagioclase, pyrite, ilmenite, and titanite mineral phases (Figure 6a), which show different
spectral characteristics and variable grain sizes from small (<100 µm) to large (>1000 µm)
crystals. Garnet and clinopyroxene show well-shaped large crystals ranging from 500 to
1500 µm in size, whereas amphibole and plagioclase can be found both as large grains and
smaller ones grown up as symplectite on garnet.

We applied the GSD by using values of 14, 12, and 200 (Table 4), respectively, for
the spectral detail, spatial detail, and minimum segment size. In this way, the tool is able
to recognize grains having an equivalent sphere diameter at least greater than 84 µm,
incorporating the grains below the detection limit in the surrounding ones. This choice
pushed us toward a better segmentation of the input image, selecting a trio of parameters of
the SMS that highlights the separation between the various segments, reducing noise and
smoothing effects, and minimizing the risk of an over-segmentation. The default value was
selected for the iso-cluster classification (Table 4), which resulted in good discrimination
between minerals, since no homogenizations between different grains in contact with
similar spectral characteristics nor spurious segmentations within the same individual
were observed. The GSD permitted digitizing 34,804 grains (Figure 7a) showing a grain
size distribution ranging from 84 to 1542 µm (Figure 7b) on the basis of the equivalent
diameter (DEQU, see Supplementary Materials). The ≈95% of the sample (i.e., 32,856
polygons) consists of grains having a size between 84 and 300 µm (Figure 7b), whereas the
remaining 5% (i.e., 1948 polygons) is made up of grains with a size higher than 300 µm.
Despite being few in number, the largest grains (DEQU > 300 µm) cover an area equal to
25% (i.e., 224 mm2) of the investigated sample.

Table 4. Micro-Fabric Analyzer settings used to process the selected samples.

Amphibolite Mylonitic
Paragneiss

Mylonitic
Tonalite Quartzarenite

Spectral Detail 14 15 15 14
Spatial Detail 12 18 19 6

Minimum Segment Size 200 50 100 100
Number of Classes 32 16 16 40

Gradient Filter 3 × 3 3 × 3 3 × 3 3 × 3
Dilation Filter #1 4 × 4 2 × 2 2 × 2 7 × 7
Dilation Filter #2 4 × 4 2 × 2 2 × 2 5 × 5

Pixel Size (µm × px−1) 5.29 5.29 5.29 0.665

Results obtained by the Min-GSD (Figure 7c) permitted us to classify 31,687 mineral
grains predominantly given by brown amphibole (i.e., 8506 polygons), plagioclase (i.e.,
8391 polygons), and hornblende (i.e., 6206 polygons), constituting a total modal amount of
≈73% (Figure 7d), which is typical of an amphibolite. Other major mineral constituents are
clinopyroxene (i.e., 4116 polygons; ≈13% of the sample) and, to a lesser extent (≈5% of the
sample), ilmenite (i.e., 1855 polygons) and titanite (i.e., 1546 polygons), whereas minor con-
stituents (less than 1.5% of modal amount) are given by pyrite (i.e., 448 polygons), apatite
(i.e., 379 polygons), and garnet (i.e., 224 polygons) (Figure 7d). The contact map between
mineral pairs (Figure 7e) shows that the majority occurs between the same mineralogical
phase (e.g., pl-pl, and amp-amp, Figure 7f), and to a lesser extent between amphiboles and
plagioclases, amphiboles and pyroxenes, and plagioclases and pyroxenes, while minor
mineral pairs make up less than 2% of total contacts (Figure 7f).

As a final result of the entire “Micro-Fabric Analyzer” procedure, a complete quan-
titative description of the investigated thin section in terms of grain size distribution
(Figure 7b), mineral modal abundances (Figure 6a), mineral grain percentages (Figure 7d),
and mineral contacts percentage (Figure 7f) is obtained e.g., [47].
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3.2. Mylonitic Paragneiss

The mylonitic paragneiss sample (Figure 8a) has a mineralogical assemblage given
by quartz, K-feldspar, plagioclase, biotite, amphibole, and white mica (Figure 8c). The
sample is characterized by a pre-shear migmatitic layer testified by quartz-feldspar layers
alternating with microcrystalline biotite, which is in association with intensely fractured
amphibole crystals. Quartz is constituted by small grain (<50 µm) and tiny amounts of
cryptocrystalline quartz infill fractures within K-feldspar and plagioclase porphyroclasts,
whereas white mica is also present as tiny crystals within the quartz-feldspar levels.

Since the intense deformation underwent by the sample and the numerous presences
of fractures affecting the largest clasts, values of 15, 18, and 50 (Table 4), respectively
for the spectral detail, spatial detail, and minimum segment size were selected to obtain
performing segmentation results. The spectral detail selected allowed us to maintain
high discrimination between large grains, whereas the high spatial detail allowed us to
homogenize fractures, inclusions, and zonings affecting porphyroclasts. The minimum
segment size fixed the grain detection limit at ≈40 µm in terms of equivalent sphere
diameter. This choice can lead to the digitization of spurious grains especially in the case
of samples characterized by small grains, but, at the same time, it can be useful to avoid
under-segmentation phenomena that would prevent the correct detection of the grain
boundary of the larger grains, with consequent overestimation of their actual size. Sixteen
classes were selected for the iso-cluster classification (Table 4).

The GSD permitted digitizing 118,142 grains (Figure 8b) showing a grain size distri-
bution ranging from 41 to 2776 µm (Figure 10a). Almost the entire sample (i.e., ≈97%)
consists of grains (i.e., 115,001 polygons) having a size between 41 and 200 µm (Figure 10a),
whereas the remaining 3% (i.e., 3141 polygons) is made up of grains with a size higher than
200 µm. Despite the low percentage, grains with a DEQU > 200 µm cover an area equal to
24% (i.e., 208 mm2) of the investigated sample.

Results obtained by the Min-GSD (Figure 8c) permitted us to classify 75,033 mineral
grains (Figure 10c) with a predominance of plagioclase (i.e., 33,379 polygons), biotite (i.e.,
15,049 polygons), and quartz (i.e., 12,970 polygons), constituting a total modal amount of
≈82% (Figure 10c). Other major mineral constituents are amphibole (i.e., 5395 polygons;
7.19% of the sample), K-feldspar (i.e., 3789 polygons; 5.05% of the sample), and to a lesser
extent, white mica (i.e., 2770 polygons; 3.69% of the sample). Rare (less than 0.2% of the
modal amount) ilmenite (i.e., 147 polygons) and apatite (i.e., four polygons) (Figure 10c) can
be observed. The map of pairs of mineral contact (Figure 8d) shows that ≈33% of the grain
boundaries is constituted by the contact between plagioclase grains (Figure 10e). High
contact percentages are found also between biotite, quartz, amphibole, and K-feldspar.

3.3. Mylonitic Tonalite

The mylonitic tonalite (Figure 9a) is constituted by a mineralogical assemblage made
up of quartz, K-feldspar, and plagioclase wrapped by a microcrystalline matrix (Figure 9c).
Quartz grains develop various ribbon-like structures often interrupted by several systems
of fractures. Plagioclase and K-feldspar are present both as porphyroclasts and tiny grains,
showing frequent deformation twins and intense fracturing. The tonalite sample (top of
Figure 9a) also shows a sharp contact with a mylonitic skarn (bottom of Figure 9a) marked
by a layer of cryptocrystalline quartz. The skarn is constituted, mainly, by an association of
calcite, K-feldspar, and quartz, which is accompanied by subordinate scapolite, amphibole,
and clinopyroxene. Calcite is the most abundant mineral observable in the matrix as
cryptocrystalline grains (<50 µm).

In order to digitize properly both small and large rock-forming grains, we selected values
of 15, 19, and 100 (Table 4), respectively, for the spectral detail, spatial detail, and minimum
segment size, while sixteen classes were adopted for the iso-cluster classification (Table 4).

The GSD results permitted us to identify 59,329 grains (Figure 9b) having a grain
size distribution ranging from 58 to 1761 µm (Figure 10b). Analogously to the mylonitic
paragneiss, the 92% sample is constituted by tiny grains (i.e., 54,617 polygons) having a size
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between 58 and 200 µm (Figure 10b). The remnant 8% of the sample (i.e., 4712 polygons)
is made up of grains with a size higher than 200 µm and covering an area of 39% (i.e.,
≈326 mm2) of the investigated sample.
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The Min-GSD (Figure 9c) labeled 53,936 mineral grains (Figure 10d), highlighting
K-feldspar mica (i.e., 15,720 polygons; ≈29% of the sample), quartz (i.e., 12,641 poly-
gons; ≈23% of the sample), and the potassium-rich matrix (i.e., 9000 polygons; ≈17%
of the sample) as the most abundant minerals characterizing the tonalite. The skarn is
mainly composed of calcite (i.e., 10,533 polygons; ≈20% of the sample) and scapolite
(i.e., 3429 polygons; ≈6% of the sample), with minor amphibole (i.e., 571 polygons) and
clinopyroxene (i.e., 515 polygons) constituting less than 2% of the sample (Figure 10d).
Figure 9d shows that the most frequent contacts between minerals occur between the same
main mineralogical phase (e.g., kfs-kfs, qz-qz, cal-cal, Figure 10f).
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3.4. Quartzarenite

A sandstone sample (Figure 11a) used by [4] to develop an ArcGIS-based edge detector
(i.e., Thin Section GIS.tbx—TSG), was here processed through the MFA with the aim to
make a comparison between the obtained results with the two different tools. Ref. [4]
have addressed the question of the construction of mineral grain size distribution maps
by developing a tool that requires three different-oriented optical input images of the
same thin section to detect grain boundaries. Such a choice permitted the authors to
enhance the recognition of the edges between neighboring grains that could have the same
crystallographic orientations. We decided to compare the MFA with the TSG, since both
were developed in the ArcGIS environment, allowing quick comparison of the results
obtained in terms of edge detection and grain quantification, with the difference that the
MFA requires only one input image. In addition, both tools use the same gradient and
dilation filters to reduce noise in the input images for improving the recognition of the
grain boundaries and the same algorithms to digitize the polygons representative of the
rock grains.
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The sample investigated show quartz crystals with sharp contact and, in rare cases, an
undulate extinction, which could affect the grain boundary detection with the consequent
digitization of spurious sub-grains. With the intent to limit this potential hindrance, we
selected 14, 6, and 100, respectively for the spectral detail, spatial detail, and minimum
segment size. In this case, the low value of the spatial detail permitted high differentiation
between neighboring grains showing similar colors (Figure 11b), minimizing an under-
segmentation of the image that would result by using a higher value. The comparison
between the edge detection obtained by the TSG (Figure 10c) and MFA (Figure 10d) shows
pieces of evidence of over- (white circle in Figure 11c,d) and under-segmentation (red
arrows in Figure 11c,d) in both tools. If we consider the same regions in the input image
where such segmentation issues occur, both tools show, in some cases, more performing
results than each other (black circle and arrows in Figure 11c,d). The results obtained by
TSG are more segmented with the consequent digitization of a greater number of spurious
grains (959 grains, Figure 11e) than the result obtained with MFA (576 grains, Figure
11f), while the influence of under-segmentation affects the results of both instruments in a
similar way. We focused and selected those grains with no segmentation errors to make
data comparisons in terms of grain sizes and orientations (Figure 12).
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derived by the TSG and the MFA.

We compared the areas, the lengths of the long and short axes, and the orientations
(Figure 12) derived from the TSG and the MFA on the same grain. We have found close
relationships for the grain area (R2 ≈ 0.99), the length of the short axes (R2 ≈ 0.96), and
the length of the long axes (R2 ≈ 0.94) between the polygons digitized by the two different
tools, whereas the orientation of the grain derived by the MFA shows differences with
respect the TSG-digitized polygons (R2 ≈ 0.61). This is due to small differences in the grain
shape obtained by the MFA that influence the creation of the boxes by the MBG algorithm.
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4. Discussion

Image processing of thin section scans or micrographs has proven to be a powerful
tool for the quantitative extrapolation of rock microstructural features in different fields of
geosciences e.g., [1,4,6,31,33,34,49,58–61]. Using optical thin section images for the grain
boundary detection revealed to be more efficient for identifying the edges of the individual
grains characterizing rock fabrics, with respect to the image analysis performed starting
from mineral physical–chemical properties (e.g., backscattered electron images, X-ray maps,
or X-ray tomography) where the shared boundary of two grains of the same mineral species
is always indistinguishable. This is partly true, using a single optical input image. In this
case, indeed, the grain boundaries between two equal mineral species disappear from
sight when the minerals also share the same crystallographic orientation. Automated edge
detection techniques require, as a fundamental step, the segmentation of the native optical
image. Common issues in applying the segmentation process could be the creation of false
grains (i.e., over-segmentation) where fractures, undulate extinctions, or zonings occur, or
the disappearance of some grains (under-segmentation) at the contact between two clasts
(e.g., red arrows in Figure 11f) displaying a similar birefringence color [44] or if they are
smaller than the detection limit dictated by the resolution of the starting image.

When using the “Micro-Fabric Analyzer”, an under-segmentation (i.e., missing grain
boundaries) can occur due to the use of an input RGB image acquired at a single orientation
of the polarizers, and it is more frequent if low and high values are selected, respectively,
for the spectral and spatial detail parameters of the SMS algorithm. In contrast, an over-
segmentation (i.e., false grain boundaries) is promoted when high and low values are
chosen, respectively, for the spectral and spatial detail, or a low value of the minimum
segment size is selected. Despite these potential hindrances, the use of the GIS strengthens
the method, which could imply a somewhat higher amount of manual editing at the end of
the segmentation step.

An appropriate combination of the tool parameters can minimize the segmentation
issues, but the usual complexity of a rock texture implies that a manual editing session is
typically necessary to correct for under- and/or over-segmentation. The GIS environment
is especially suited for the editing of vectors and can allow for a relatively easy correction of
the segmentation issues e.g., [6,44]. The GIS environment is also ideal to query the vector-
based maps of the rock texture on the basis of the grain attributes, and this capability can
be used to obtain enhanced visualizations of the micro-structural characteristics, which are
capable of showing patterns that cannot be recognized through the standard observation
of a thin section e.g., [44]. The georeferencing of the map of classified minerals with respect
to the original thin section scan is another possible source of error and depends on the
operator’s ability to overlay the two images. However, georeferencing maps is a basic
operation in GIS, and this issue can be easily overcome as the practice increases. Finally,
this method has the advantage of providing a detailed measurement of a very large number
of grains in a short time if compared to hand tracing.

Results obtained by using thin section optical scans with a pixel size of ≈5 µm of
three rock samples constituted by mineral with different grain sizes highlighted how
the MFA is able to digitize fairly accurately large polygons (DEQU > 200 µm). Smaller
polygons can be digitized as well, but they increase the chance of running into fake grain
creations that would require more post-processing editing. The comparison between the
TSG tool developed by [4], which uses three input images of the same region from a thin
section, and the MFA shows very similar results in terms of edge detection and grain
size (Figure 11). In particular, the possibility of properly setting the parameters of the
segmentation algorithms of the MFA according to the sample investigated allows us to
obtain more performing results by minimizing possible over-segmentation phenomena
(Figure 11d). The grain parameters quantified by the TSG and MFA show close relationships
to each other (R2 ≈ 0.9) except for the grain orientation (R2 ≈ 0.6), which results in the
parameter being more susceptible to small changes in the digitized grain boundary.
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Automatic or semi-automatic methods such as the Micro-Fabric Analyzer toolbox
open new perspectives in the quantitative analysis of rock texture. This tool allows the user
to obtain from the investigated samples some numerical information that can be displayed
as derivative maps (Figures 7 and 10). The large number of the derived fabric parameters
(e.g., Table 2 and Supplementary Materials) permits detailed microscopic characterization
of the sample thanks to a microscopic information system e.g., [6] in which each detected
grain is accompanied by dimensional, geometrical, and compositional data structured in a
database (Tables 2 and 3 and Supplementary Materials). Preliminary versions of the tools
embedded in the Micro-Fabric Analyzer toolbox have been already successfully applied in
several works. The GSD has revealed to be a valuable asset to conduct vorticity analysis
and strain rate estimation on mylonites [53], to integrate microtomography investigations
in the reconstruction of the geological evolution of metamorphic rocks [62], and to improve
the characterization of plutonic rocks by describing specific textural features such as
a potential fabric anisotropy [63]. These applications provide only an idea of the new
perspectives opened in the quantitative analysis of rock texture by automatic or semi-
automatic methods such as the Micro-Fabric Analyzer toolbox. Furthermore, the integration
of a mineralogical distribution map of an entire thin section derived from the classification
of µ-XRF elemental maps enhances significantly the mineral phase recognition. The Min-
GSD tool allows the automatic attribution of a mineral phase to each polygon grain in
a statistically meaningful way (Figure 6), avoiding a manual mineral phase assignment
e.g., [6]. This step is also crucial in quantifying the type and the frequency of contacts
between minerals (Figrues 7e,f, 8d, 9d, and 10e,f), which influence mineral reactions and
grain boundary diffusion. This last development opens up the possibility to investigate in
a more appropriate way the solid-state reaction progress in metamorphic rocks as well as
in ceramics and mortars e.g., [39,64].

5. Conclusions

We presented a new GIS-based procedure for the semi-automatic analysis of a rock
thin section micro-structure. The procedure was created with the Model Builder visual
programming language embedded in ArcGIS® and is available as a Toolbox extension
(Micro-Fabric Analyzer.tbx) as supplementary material. The toolbox, starting from trans-
mitted light images acquired under crossed polarizers and micro-X-ray maps, allows grain
boundary detection, mineral classification, texture characterization, and modal analysis.
The toolbox can help users extract quantitative information from rocks through better
quantification of the fabric parameters useful to describe different evolutionary stages
of a given rock, whose features often derive from counterbalancing factors controlled by
mineral crystallization, mineral reaction, grain boundary diffusion, deformation, etc.

As final remarks, we can summarize the following: (i) the toolbox constitutes a simple
and a relatively fast means to derive the microstructural information of a rock if compared to a
hand-tracing procedure; (ii) the Segment Mean Shift algorithm used in the GSD segmentation
tool can be tuned to fit the characteristics of different rocks, and the application of a specific
sequence of gradient, dilation, and thin functions improves the output reducing artifacts from
the segmented image; (iii) each grain polygon is issued with a thorough set of measurements
(size descriptors and shape factors) stored as attributes, and they can be easily located within
the reference frame of the thin section; (iv) comparison with existing methods shows similar
results in terms of edge detection and quantification of the grain parameters; (v) the grain
orientation derived by the MFA is most affected by changes in the digitized polygon shape; (vi)
on the basis of the georeferencing of the mineral classification map and the original thin section
scan, the Min-GSD package allows an automatic statistically meaningful labeling of each
polygon with a mineral phase, without the need for manual mineral identification; (vii) the
entire procedure takes full advantage of GIS in terms of management and visualization of the
derived data, which are stored in an easily queryable database. The use of GIS allows easy
editing of vectors to correct issues in the segmentation process, enhanced visualization of the
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fabric as colored maps, and the straightforward generation of plots illustrating the texture
characteristics of the sample.

Supplementary Materials: The following are available online at https://www.mdpi.com/2220-996
4/10/2/51/s1, Micro-Fabric Analyzer (S1).
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Appendix A

Area (A)

The grain area represents the sum of the areas of all pixels enclosed within a polygon:

A = Asqpx

where A is the area of a specific grain and Asqpx is the total area of the pixels.
As the area must be converted into micrometers, we applied a conversion function

that takes into account the pixel size of the thin section:

A
(
µm2

)
= pixel size × Asqpx.

Perimeter (P)

The grain perimeter represents the total number of pixels along the grain boundary
and it is calculated as follows:

P = Ppx.

Similar to the area, the perimeter, P, is converted into micrometers according to the
following:

P (µm) = pixel size × Ppx

where Ppx is the total number of the pixels along the boundary of the digitized grain.

Length (L)

https://www.mdpi.com/2220-9964/10/2/51/s1
https://www.mdpi.com/2220-9964/10/2/51/s1
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The grain length represents the total number of pixels along the long axis of the rectangle
obtained through the Minimum Bounding Geometry algorithm, and it is calculated as follows:

L = Lpx.

In addition, in this case, the length parameter is converted into micrometers according
to the following:

L (µm) = pixel size × Lpx.

Width (W)

The grain width represents the total number of pixels along the short axis of the rectangle
obtained through the Minimum Bounding Geometry algorithm, and it is calculated as follows:

W = Wpx.

Again, the width parameter is converted into micrometers according to the following:

W (µm) = pixel size × Wpx.

Length Orientation (Clockwise from vertical direction: from 0◦ to 180◦)

The length orientation is the clockwise angle (i.e., the azimuth) between the grain
length parameter and the vertical direction, y (see Figure 4h).

Aspect Ratio (AsR)

The grain aspect ratio is used for strain analysis, as it grows with increasing strain,
from 1 to infinity, and it is calculated as follows:

AsR =
L
W

where L and W are respectively the long and short axes of the grain.

Equivalent Diameter (DEQU)

The equivalent diameter is the diameter of a circle having the same area as the grain,
and it is calculated as follows:

DEQU = 2

√
A
π

.

Roundness (R)

The roundness parameter is the reciprocal of the aspect ratio and limited to values
between 0 and 1.

Shape Factor 1 (SF1)

The Shape Factor 1 measures the deviation of a given grain from a reference shape, which
is here considered the circle. We adopted the formulation of [33], and it is calculated as follows:

SF1 =
P

2
√

πA
.

This shape factor can assume values between 1 for a circle and ∞ for something
infinitely noncircular.

Shape Factor 2 (SF2)

Similar to SF1, the Shape Factor 2 measures the deviation of a given grain from a circle,
and it is calculated according to [33] as follows:

SF2 =
4πA

P2 .

This shape factor assumes values between 1 for a circle and 0 for something infinitely
noncircular.
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