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Abstract: CircRNAs are a class of non-coding RNAs able to regulate gene expression at multiple
levels. Their involvement in physiological processes, as well as their altered regulation in different
human diseases, both tumoral and non-tumoral, is well documented. However, little is known about
their involvement in female reproduction. This study aims to identify circRNAs potentially involved
in reproductive women’s health. Candidate circRNAs expressed in ovary and sponging miRNAs,
already known to be expressed in the ovary, were selected by a computational approach. Using real
time PCR, we verified their expression and identified circPUM1 as the most interesting candidate
circRNA for further analyses. We assessed the expression of circPUM1 and its linear counterpart
in all the follicle compartments and, using a computational and experimental approach, identified
circPUM1 direct and indirect targets, miRNAs and mRNAs, respectively, in cumulus cells. We found
that both circPUM1 and its mRNA host gene are co-expressed in all the follicle compartments and
proposed circPUM1 as a potential regulator of PTEN, finding a strong positive correlation between
circPUM1 and PTEN mRNA. These results suggest a possible regulation of PTEN by circPUM1 in
cumulus cells and point out the important role of circRNA inside the pathways related to follicle
growth and oocyte maturation.

Keywords: circRNAs; ovarian follicle; female gametogenesis; PTEN; PUM1

1. Introduction

In the last few decades, there has been a spread of large-scale genome sequencing
studies that have revealed that only 2% of the mammalian genome produces translated
RNAs (mRNAs), while the remaining part is transcribed into non-coding protein RNAs
(ncRNAs) [1]. Originally, this portion of the human genome was considered a by-product
of massive transcription with less biological meaning. However, today, it is commonly
thought that ncRNAs have many important regulatory functions [2]. They participate in
multiple biological pathways, regulating physiological and pathological processes [3–7].
NcRNAs may be classified according to their function into the following: housekeeping
ncRNAs (rRNAs, tRNAs, small nuclear RNAs, small nucleolar RNAs, and telomerase
RNAs) and regulatory ncRNAs. The last ones, depending on their lengths, are further
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categorized into small non-coding RNAs (ranging from 50 to 200 nt) and long non-coding
RNAs (more than 200 nt). A particular class of regulatory ncRNA is the circular RNAs (cir-
cRNAs) [8]. CircRNAs are characterized by a peculiar circular shape, lacking free terminal
structures, derived from non-canonical splicing events of linear pre-mRNA (back-splicing)
that generate 3′ and 5′ ends covalently joined together. This peculiar round structure
promotes their stability and protects them from degradation using RNA exonucleases or
RNase R [9]. Usually, circRNAs are expressed at low levels and show cell type- or tissue-
specific expression, indicating their potential regulatory roles [10]. Their ability to sponge
microRNAs (miRNAs), acting within the competing endogenous RNA (ceRNA) network,
is relatively well known. Based on this system, a specific circRNA can impair miRNA
activity, influencing the expression of mRNA miRNA targets [11,12]. Moreover, circRNAs
can regulate the expression of their host genes using the interaction with RNA polymerase
II; they can interact with RNA-binding proteins, and some of them can be translated into
proteins. Their involvement in physiological processes as well as their altered regulation in
different human diseases is well documented [13–16].

Cumulus cells (CCs) are a subset of granulosa cells (GC) surrounding oocytes. The
existence of an oocyte–cumulus cell regulatory loop is necessary for follicle development
and the acquisition of oocyte competence.

Various papers have shown the importance of regulatory networks based on ncRNAs
in human oocytes and CCs and, in particular, the involvement of circRNAs in regulating
molecular functions related to human reproduction [17–21]. CircRNAs have been charac-
terized by high-throughput sequencing in human CCs, and they have been proposed to
be potentially involved in endometriosis-associated infertility [22] and in polycystic ovary
syndrome (PCOS) [20,23,24].

In animal models, circRNA expression has been well characterized in the ovary (GCs,
CCs, and oocytes), in the testes, placenta, and embryo, and also in germ line stem cells,
embryonic stem cells, and induced pluripotent stem cells [25]. However, only in a few
cases has the regulatory role of circRNAs been functionally demonstrated [26]. Cao Z.
and colleagues demonstrated for the first time in 2019 that circRNAs are dynamically and
highly expressed in a developmental stage-specific manner in CCs and oocytes and that
maternally expressed circRNAs are essential for porcine oocyte meiotic maturation and
early embryo development [25].

In this study, using different approaches, we proved the expression of the little-
known circPUM1 specific isoform in the different compartments of a mature human
ovarian follicle (Figure 1). This circRNA arises from the PUM1 gene, a member of the
Pumilio RNA-binding protein family. PUM family proteins are ubiquitously present across
eukaryotes, including yeast, plants, and humans, and perform their regulatory role at
post-transcriptional/translational levels [27]. The high evolutionary conservation of the
RNA-binding domain and functions suggest that human proteins play a crucial role in
the translational regulations of embryogenesis, cell development, and differentiation [27].
We verified the co-expression of circPUM1 with the mRNA of its host gene and, using a
computational and experimental approach, identified circPUM1 as a potential regulator of
PTEN, finding a strong positive correlation between circPUM1 and PTEN mRNA. These
results suggest the possible regulation of PTEN by circPUM1 in CCs and point out the
important role of circRNA in the female reproduction system.
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2. Materials and Methods
2.1. Selection of circRNAs Expressed in the Ovary

In order to pinpoint the circRNAs performing a significant role inside the ovarian folli-
cle and to understand their biological functions, we intersected different public databases,
performing a bioinformatic analysis, as described below and in Figure 1.

Using the Tissue-Specific CircRNA Database (TSCD) “http://gb.whu.edu.cn/TSCD
(accessed on 10 February 2023)”, we obtained a list of circRNAs specifically expressed in
the ovary. This list of circRNAs was matched to high-throughput sequencing analysis of
circRNAs in normal human ovaries by Hongcai Cai et al., 2018 [28]. We considered the
common circRNAs and selected only the circRNAs annotated in the circBase database
“http://www.circbase.org/ (accessed on 12 February 2023)”. In order to detect circRNA–
miRNA interactions significant in the ovary, in parallel, we compared the list of circRNAs
expressed in the ovary (Figure 1) with the list of circRNAs sponging miRNAs expressed in
the ovary [29]. This last list was obtained by ENCORI (Encyclopedia of RNA Interactomes)
“https://rnasysu.com/encori/ (accessed on 12 February 2023)”, which identified the inter-
actions, supported by CLIP-seq data, between miRNAs already known to be expressed in
the ovary [29] and all human-annotated circRNAs.

2.2. Patient Enrollment

Participants enrolled in this study were women having undergone ovarian stimula-
tion protocol and intracytoplasmatic sperm injection (ICSI) at the IVF Center Cannizzaro
Hospital Catania (Italy). Healthy women whose primary infertility was caused by male
factors were included in the study; those with pathologies that could influence oocyte
quality, such as endometriosis, polycystic ovary, and ovarian insufficiency, were excluded
from the study, as well as heavy smokers and overweight women.

Our research followed the tenets of the Declaration of Helsinki. The patients gave their
informed consent to use their CCs and follicular fluid (FF). Women undergoing infertility
treatment and already having a successful pregnancy donated the supernumerary oocytes.
These oocytes were vitrified after their collection and thawed for our research application.

2.3. Sample Collection

CCs, FFs, and oocytes were independently collected. CC samples were collected
according to the protocol reported by Caponnetto et al., 2022 [21]. Three to seven CC
samples per patient were collected from the oocytes mechanically using needles and set

https://www.biorender.com/
http://gb.whu.edu.cn/TSCD
http://www.circbase.org/
https://rnasysu.com/encori/
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aside individually. The total removal of the cumulus and corona cells continued using both
enzymatic (hyaluronidase) and mechanical (pipetting) methods in order to identify oocytes
in metaphase II (MII). Only the cumulus cells from the MII oocytes were washed in the
culture medium and frozen at −20 ◦C.

The collection of FF samples was performed as reported by Caponnetto et al., 2021 [5].
Briefly, in order to remove residual follicular cells and any blood traces, FF samples were
centrifuged for 20 min at 1000× g at 4 ◦C; the supernatant was collected and stored at
−20 ◦C until use. Only FF samples without any massive blood contaminations and in
which nuclear mature oocytes (MII) were identified were included in the study.

At the end of the injection, the oocyte supernumeraries for the fertilization were vit-
rified. After the decision of the couples to donate surplus oocytes for research, 3 oocytes
coming from 2 different patients were thawed and used for molecular applications. Com-
mercially available total RNAs from physiological brain, heart, and liver tissues were
obtained from Ambion (Austin, TX, USA).

2.4. RNA Isolation and Purification

Total RNA isolation and purification from CC samples were performed by TRIzol®

(Thermo Fisher Scientific, Waltham, MA, USA), according to the manufacturer’s instruc-
tions. Total RNA from FF samples was isolated as follows: RNA was isolated separately
from two aliquots of 200 µL of the same FF sample by using the Qiagen miRNeasy Mini Kit
(Qiagen, GmbH, Hilden, Germany), according to Qiagen Supplementary Protocol, for the
purification of the RNA (including small RNAs) from serum or plasma. The two aliquots
of the same FF sample were mixed together in the final step of the procedure. RNA precip-
itation protocol was performed in order to increase the final yield of RNA. Briefly, RNA
was eluted in 200 µL of RNAse-free water; combined with 20 µg of UltraPure Glycogen
(Thermo Fisher Scientific, Waltham, MA, USA), 0.1 volumes of 3 M sodium acetate, and
2.5 volumes of ice-cold absolute ethanol; and incubated at –80 ◦C overnight. RNA was then
washed three times in ice-cold 75% ethanol, resuspended in 7 µL of RNAse-free water, and
stored at –80 ◦C for further analyses.

Total RNAs from CCs and FFs were quantified by a spectrophotometer. Samples
showing a 260–280 ratio absorbance of approximately 2.0 were considered.

According to previously published protocols, RNA from human oocytes was extracted
by thermolysis; the samples were incubated for 1 min at 100 ◦C in order to release nucleic
acids [30,31].

2.5. Gene Expression Analysis

In order to amplify circRNAs and mRNAs, primer design was performed by using the
NCBI primer blast tool “https://www.ncbi.nlm.nih.gov/tools/primer-blast/ (accessed on
30 March 2023)”. For the detection of circular isoforms, divergent primers were designed;
convergent primers were used for the detection of linear mRNAs (Table 1). Primer pairs
were tested in silico, and all those recognizing more than one circular isoform produced by
the same host gene were discarded. Only in the case where it was not possible to obtain
primer pairs for the specific circRNA isoform, two primer pairs were designed and tested.
All specific circRNA primer pairs were tested in human CCs, as well as the expression of
the circRNAs selected.

Total RNA was amplified in a one-step reaction by the RNA-to-Ct™ 1-Step Kit (Thermo
Fisher Scientific, Waltham, MA, USA) using convergent and divergent primers already
mentioned and reported in Table 1.

MiRNA gene expression analysis was performed by using single TaqMan microRNA
assays. Total RNA was reverse transcribed through the TaqMan™ microRNA Reverse
Transcription Kit (Thermo Fisher Scientific, Waltham, MA, USA) using miRNA-specific
primers and then amplified by the TaqMan™ Universal Master Mix II (Thermo Fisher
Scientific, Waltham, MA, USA) by using specific TaqMan™ assays, according to the manu-
facturer’s instructions.

https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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Table 1. Primer sequences.

# Gene ID Host Gene Forward Primer Sequence Reverse Primer Sequence Product Length (bp)

1 hsa_circ_0088943 NUP188 TGAAACTGGCATTCTCCGTCA GGGCACTGAAGTAGCATGTTG 107

2 hsa_circ_0077150 PHIP CATCACTACAGGTGAAGTATTACAG CTCCAGGAACACTTTGAGGAAT 111

3 hsa_circ_0077147 PHIP TCTGGGATGCTGGAACCCTT AGTCATCAGAACCCAGCACTAA 112

4
hsa_circ_0004079 (1)

TRIP12
CACACGCCAAAAGACCACG TAGACTGCACTTTGGGTGCC 125

hsa_circ_0004079 (2) GCTAGTACCAGGTCACATTTAG TTAGACTGCACTTTGGGTGC 98

5 hsa_circ_0068888 WHSC1 AGTGTCGGGTTACCCTTGGT CACAGAAAAGCAGACAGCTCG 271

6 hsa_circ_0011233 PUM1 GAGGCCACGTCCTGTCATTG TGAGTCCTCCTGCTGGTCTGA 95

7
hsa_circ_0043064 (1)

MYO1D
CCTGAAGGCAAACTGAGCAT GCACAATCACTCGAGACTTTGA 121

hsa_circ_0043064 (2) TACAGAGGTGACCAAGCGAC CTCCTGGCTGTTGCACAATC 113

8 GAPDH GAPDH TGCACCACCAACTGCTTAGC GGCATGGACTGTGGTCATGAG 87

9 linear PUM1 PUM1 CCTTCAGACCAGCAGAATGAGA ATTGCAAAGACTGGGGCTGT 127

10 BCL2 BCL2 CATGTGTGTGGAGAGCGTCAA GCCGGTTCAGGTACTCAGTCA 83

11 PTEN PTEN GACAATCATGTTGCAGCAATTCA CCCATAGAAATCTAGGGCCTCT 123

12 TP53 TP53 GAGCACTGCCCAACAACAC GTCTGGTCCTGAAGGGTGAA 85

All quantitative RT-qPCR reactions were performed on the QuantStudio™ 7 Flex
Real-Time PCR system (Thermo Fisher Scientific), according to the supplier’s protocol.
GAPDH was used as the endogenous control gene for the normalization of linear and
circular transcripts [32–35]. RNU6 was used as the endogenous control for miRNA gene
expression data normalization.

2.6. Prediction of circRNA–miRNA–mRNA Interactions

After the identification of possible miRNAs interacting with the circPUM1 isoform
(as reported in Section 2.1), we identified the mRNAs targeted by these miRNAs using the
miRTarbase 9.0 beta database “https://miRTarBase.cuhk.edu.cn/ (accessed on 20 March
2023)” [36]. We queried the database by selecting only the validated bindings assessed by
the reporter luciferase assay experiment.

2.7. Statistical Analysis

Pearson’s correlation coefficient (r) was used to evaluate the correlation between the
expression of circPUM1 and its linear counterpart and circPUM1 and its direct and indirect
interactors. Statistical significance was assessed by setting a p-value ≤ 0.05 as the cut-off.

2.8. Genomics of circPUM1

The sequences of human circPUM1 were retrieved from circBase “http://www.
circbase.org/ (accessed on 1 April 2023)”. The chromosome, the nucleotide position,
the genomic and spliced sequence lengths, and the gene symbol were determined by
the Circular RNA Interactome database “https://circinteractome.nia.nih.gov/index.html
(accessed on 1 April 2023)”.

3. Results
3.1. CircRNA Selection

The comparison between the list of circRNAs specifically expressed in ovaries from
TSCD and the circRNAs expressed in normal ovaries reported by Hongcai Cai et al.,
2018 [28] resulted in a list of 545 common circRNAs, 106 of which were annotated in the
circBase database. Among them, seven circRNAs were potentially able to interact with
miRNAs highly expressed in the ovary [29]. Table 2 shows the selected circRNAs, their
host genes, and the miRNAs interacting with them.

https://miRTarBase.cuhk.edu.cn/
http://www.circbase.org/
http://www.circbase.org/
https://circinteractome.nia.nih.gov/index.html
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Table 2. Selected circRNAs.

# circRNA ID Host Gene Host Gene ID miRNAs

1 hsa_circ_0088943 Nucleoporin 188 NUP188 hsa-miR-16-5p
hsa-miR-214-3p

2 hsa_circ_0077150 Pleckstrin homology domain
Interacting protein PHIP

hsa-miR-16-5p

3 hsa_circ_0077147 hsa-miR-16-5p

4
hsa_circ_0004079 (1) Thyroid hormone receptor

interactor 12 TRIP12
hsa-miR-372-3p
hsa-miR-18a-5p
hsa-miR-214-3phsa_circ_0004079 (2)

5 hsa_circ_0068888 Wolf–Hirschhorn syndrome
candidate 1 WHSC1 hsa-miR-16-5p

hsa-miR-214-3p

6 hsa_circ_0011233 Pumilio RNA-binding family
member 1 PUM1 hsa-miR-16-5p

hsa-miR-214-3p

7
hsa_circ_0043064 (1) Myosin ID MYO1D hsa-miR-16-5p
hsa_circ_0043064 (2)

3.2. CircRNA Expression

The amplification of the seven circRNAs revealed that (i) all circRNAs were expressed
in human CC samples and showed Ct values ranging from 26 to 39 (Figure S1A), and (ii) am-
plified products showed only a single peak and non-specific amplification or primer dimer
formation (Figure S1B). Only hsa_circ_0077150, hsa_circ_0004079 (1), hsa_circ_0004079 (2),
and hsa_circ_0011233 showed Ct values ≤ 33 (Figure S1A,C). circPUM1 (hsa_circ_0011233)
was selected for further analyses, since it showed a lower Ct value and was the most
efficiently amplified (Figure S1).

3.3. Genomics of circPUM1

circPUM1 (hsa_circ_0011233) originates from the PUM1 host gene (Pumilio RNA-
binding family member 1). This gene encodes a member of the PUF family, evolutionarily
conserved RNA-binding proteins related to the Pumilio proteins of Drosophila, and the fem-
3 mRNA-binding factor proteins of Caenorhabditis elegans. PUM1 (chr1: 30931506-31065717
GRCh38/hg38) is composed of 22 exons, and two spliced transcript variants encoding
different isoforms have been described: NM_014676.3 and NM_001020658.2. PUM1 is
the host gene of 62 circRNA isoforms, as annotated in the circBase database [8,10,37–39].
Among these, our isoform of circPUM1 is an exonic circRNA, 527 nt long, originating from
the 15th, 16th, and 17th exons of the NM_0014676.3 transcript by a back-splicing process
(Table 3 and Figure S2).

Table 3. Information from the CircInteractome database (https://circinteractome.nia.nih.gov/index.
html (accessed on 20 November 2023)).

circRNA ID Hsa_circ_0011233

Location chr1:31422979-31426828

Genomic Length 3849 bp

Spliced Seq Length 527 bp

Best Transcript NM_014676

Gene Symbol PUM1

3.4. CircPUM1 and Its Linear Counterpart Are Expressed in the Follicular Microenvironment

CircPUM1 and its linear counterpart are expressed in the follicular microenvironment,
as well as in three different physiological tissues: the brain, heart, and liver. A similar
expression trend, reported as the ratio circPUM1/PUM1, was observed in CC samples,
oocytes, and the other tissues (Figure 2A,C,D); otherwise, FF samples showed a higher
variability of circPUM1 and PUM1 expressions (Figure 2B). A significant and positive

https://circinteractome.nia.nih.gov/index.html
https://circinteractome.nia.nih.gov/index.html
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correlation between circPUM1 and PUM1 linear transcript in CCs (Pearson’s correlation
coefficient: r = 0.84, p = 0.002) (Figure 3A) was observed. The correlation was stronger
when all samples were considered together (r = 0.94, and p < 0.0001) (Figure 3B).
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3.5. CircPUM1 and Its RNA Interactors in CC Samples

The computational analysis revealed that miR-16-5p and miR-214-3p were poten-
tially sponged by circPUM1. We experimentally assessed that miR-16-5p and miR-214-3p
were expressed in our CC sample cohort and identified their validated targets using the
miRTarbase. As expected, the miRTarbase returned several mRNA targets for miR16-5p
and miR-214-3p, among which we selected BCL2, PTEN, and TP53. In particular, BCL2
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was selected, since its interaction with miR-16-5p was demonstrated by both strong and
less-strong evidences and was assessed by several studies reported in literature. For the
same reasons, PTEN was chosen as the interactor of miR-214-3p. Moreover, the proteins
encoded by these mRNAs, as well as the TP53 protein, perform important and well-known
functions in folliculogenesis [36].

Among these, we focused our attention on BCL2, PTEN, and TP53. In particular, both
miRNAs shared two of them, BCL2 and TP53, while PTEN is only targeted by miR-214-
3p. All the mRNA targets selected were found to be expressed in our studied CC cohort
(Figure 4).
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3.6. Correlation between circPUM1 and mRNA Expression Levels in CCs

In our CC samples, we found a strong positive correlation between circPUM1 and
PTEN (r = 0.92, p = 0.004) (Figures 5 and 6A) and also between miR-214-3p and PTEN
(r = 0.86, p = 0.016). A significant positive correlation between circPUM1 and miR-16-5p
was observed (r = 0.68, p = 0.04) (Figures 5 and 6B). However, there was no significant
correlation between circPUM1 and miR-214-3p expressions in CCs (Figures 5 and 6C).
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4. Discussion

In recent years, the discovery of novel ncRNAs has been greatly increased by high-
throughput sequencing. Advances in sequencing technology and library preparation
protocols, as well as computational biology have increased our knowledge about the pres-
ence of ncRNAs in prokaryotes and eukaryotes [40]. RNA sequencing provides researchers
with insights into transcriptome in a cell-specific or tissue-specific manner and in different
states of cellular differentiation [40,41]. However, in order to further investigate the bio-
logical and functional roles of RNA molecules, experimental validation using biochemical
techniques and functional assays are needed, revealing the crucial roles of many ncRNAs
in human health and disease [40,42].

Our study, using computational and experimental approaches, allowed us to identify
a little-known circPUM1 isoform that could potentially play an important regulatory role
inside ovarian follicles, controlling follicle maturation and meiosis resumption (Figure 1).

Several circPUM1 isoforms have already been identified in different cellular models,
and their roles in the regulation of gene expression inside specific cellular processes have
been demonstrated [43–49]. However, to date, little is known about the hsa_circ_0011233
isoform identified in this study.

The host gene, PUM1, is a member of the Pumilio RNA-binding protein family, evolu-
tionarily conserved across species. In the human genome, we found two PUM genes closely
related to each other, PUM1 and PUM2, spanning about 150 kb (on chromosome 1p35.2)
and 80 kb (on chromosome 2p23–24), respectively. The indistinguishable RNA-binding
specificities of PUM1 and PUM2 suggest potential overlapping functions [50]. PUM1
regulates several biological processes, such as embryonic development, functioning and
development of the nervous system, rRNA processing, ribosome biogenesis, chemotac-
tic cell movement, and also stem cell and germ cell maintenance [27]. The maintenance
and self-renewal of stem cells might be an ancestral function of Pum, as demonstrated
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in Drosophila [51], Plasmodium falciparum [52], and zebrafish [53], as well as other model
organisms. In mice, it has been demonstrated that maternal PUM1 is an essential post-
transcriptional regulator during mammalian embryogenesis, regulating the stability of
maternal mRNAs. PUM1 has been found to be expressed in oocytes of different organisms,
such as Xenopus [54] and zebrafish [55], and it is involved in the control of meiosis. One
of the mechanisms of action could be the post-transcriptional regulation of the mRNA of
Cdk1, the kinase that dimerizes with cyclin B1, forming the metaphase-promoting factor
(MPF) [56]. Moreover, knock-out experiments have revealed that PUM1 is essential in the
mammalian germline, such as in the establishment of the primordial follicle pool, meiosis,
and female reproductive competency, while PUM2 does not have a detectable function in
these processes [57].

Here, we have demonstrated that circPUM1 is expressed in the ovarian follicle mi-
croenvironment, specifically in CCs and oocytes and also in FF samples (Figure 2). We
found a strong and positive correlation between circPUM1 and its linear isoform (PUM1
mRNA), not only in the ovary but also in different tissues (Figure 3). Indeed, in FF, we
found a higher variability between our circRNA and its linear counterpart, which could be
expected because in biological fluids, the expression levels of RNA transcripts are affected
by the secretion mechanisms and do not depend exclusively on their transcriptional levels
inside the cells. However, the inclusion of FF samples in the correlation analysis, shown in
the Figure 3B, did not negatively affect the result.

These data suggest that our circRNA isoform could perform similar functions as the
linear counterpart and could play synergistic roles in regulating specific cellular processes
involved in follicle growth and oocyte maturation. The synergic roles of circRNAs and
their host genes have already been described in literature [58].

In addition, the correlation with their linear counterparts could be dynamically reg-
ulated, and the regulation of circRNAs on their corresponding host genes is a critical
mechanism for their function [58]. In this regard, it is important to note that in some
regulatory circuits, circRNAs and their host genes can be part of feedback loops. Changes
in the expression of one component (circRNA or host gene) can influence the expression of
the other, contributing to dynamic regulatory mechanisms [58]. Evaluating the expressions
of PUM1 mRNA and the circRNA could be interesting under specific conditions that impair
oocyte quality.

Another important characteristic supporting the potential role of circPUM1 inside
the ovarian follicle is the strong positive correlation with PTEN (phosphatase and tensin
homolog) mRNA (Figures 5 and 6A). PTEN is a well-known tumor suppressor gene that
plays a significant role in ovarian follicle development, GC function, and overall female
reproductive health. PTEN is an indispensable molecule that maintains the dormancy of
the primordial follicle pool, inhibiting the PI3K signaling pathway that controls primordial
follicle survival and activation; regulates cyclic follicular recruitment; causes ovulation
in GCs; and stimulates meiosis resumption in the oocyte [59,60]. PTEN down-regulation
is an important step in the cyclical activation of primordial follicles. The depletion of
the primordial follicle pool leads to the end of female reproductive life, and it has been
demonstrated that in mice lacking PTEN, the entire primordial follicle pool becomes
activated, causing premature ovarian failure [61,62]. Dysregulation of PTEN in the ovaries
can also have implications for fertility, ovarian disorders, and even ovarian cancer [63].
Recently, it has been demonstrated that in human GCs, PTEN expression is associated with
In Vitro Fertilization (IVF) outcomes [64].

The relationship between circPUM1 and PTEN implies common mechanisms of reg-
ulation that could be mediated by miRNAs. However, although we found a strong and
positive correlation between circPUM1 and PTEN, we did not observe any correlation
between circPUM1 and miR-214-3p (Figures 5 and 6C). It is important to note that the
interaction between miRNAs and circRNAs within the ceRNA regulatory mechanism
decreases miRNA availability, promoting target gene expression without necessarily chang-
ing miRNA levels [65]. However, the regulation of PTEN by circPUM1 could be due to a
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different network of regulation not mediated by miR-214-3p. Different miRNAs or other
ncRNAs could be involved in this mechanism of regulation.

Unexpectedly, we found a strong and positive correlation between miR-214-3p and
PTEN (Figure 5). The positive correlation between a miRNA and its target genes has been
described in several cancer models, and specifically, a positive correlation between PTEN
and miR-214 has been found in breast cancer [66,67]. Recent studies indicate that miRNAs
could also be implicated in the positive regulation of gene transcription by a phenomenon
known as RNA activation (RNAa) [68].

In addition, we did not find any correlations between circPUM1 and the validated
targets of miR-16-5p, BCL2 and TP53 (Figure 5), although we found a strong and posi-
tive correlation between circPUM1 and miR-16-5p (Figures 5 and 6B). These data could
suggest that circPUM1 does not play any regulatory role in the expressions of BCL2 and
TP53, even if it could share regulatory mechanisms with miR-16-5p. However, miR-16-
5p could exert its function inhibiting the translation of the targets without any effect on
transcript degradation.

It is important to underline that our data were obtained in a physiological model
and allowed us to identify a little-known cirRNA isoform, derived from the PUM1 gene
and able to regulate PTEN. We propose that this study, suggesting circPUM1 as a possible
regulator of PTEN, represents an important starting point for further investigations in
order to understand the complex molecular mechanisms involved in reproductive women’s
health. Further studies investigating the relative expressions of PUM1 and its interactors or
regulators in female disorders will be needed.

5. Conclusions

The field of circRNA research in female reproduction is still relatively young, and
ongoing studies continue to provide new insights into the specific roles and mechanisms of
circRNAs in these processes. The complexity of circRNA functions and their interactions
with other biomolecules make this area of research both exciting and challenging for
scientists in the field of reproductive biology.
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