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Abstract: Endothelial dysfunction (ED) is frequently encountered in transplant medicine. ED is
an argument of high complexity, and its understanding requires a wide spectrum of knowledge
based on many fields of basic sciences such as molecular biology, immunology, and pathology.
After hematopoietic stem cell transplantation (HSCT), ED participates in the pathogenesis of var-
ious complications such as sinusoidal obstruction syndrome/veno-occlusive disease (SOS/VOD),
graft-versus-host disease (GVHD), transplant-associated thrombotic microangiopathy (TA-TMA),
idiopathic pneumonia syndrome (IPS), capillary leak syndrome (CLS), and engraftment syndrome
(ES). In the first part of the present manuscript, we briefly review some biological aspects of factors
involved in ED: adhesion molecules, cytokines, Toll-like receptors, complement, angiopoietin-1,
angiopoietin-2, thrombomodulin, high-mobility group B-1 protein, nitric oxide, glycocalyx, coag-
ulation cascade. In the second part, we review the abnormalities of these factors found in the ED
complications associated with HSCT. In the third part, a review of agents used in the treatment of ED
after HSCT is presented.

Keywords: endothelial dysfunction; transplant-associated thrombotic microangiopathy; liver sinu-
soidal obstructive syndrome/veno-occlusive disease; capillary leak syndrome; idiopathic pneumonia
syndrome; engraftment syndrome; acute graft-versus-host disease

1. Introduction

The endothelium is a thin structure composed of a monolayer of flattened cells, cover-
ing the inner part of blood vessels and playing a pivotal role in vascular homeostasis [1].
The endothelium is provided with molecules and mechanisms with antithrombotic and
anti-inflammatory functions and a set of molecules that retain prothrombotic properties. A
balance among them maintains normal antithrombotic and anti-inflammatory status [2]
(Figure 1).

The shift from the basal state to the procoagulant and inflammatory condition is
referred to as endothelial activation; prolonged endothelium activation will lead to en-
dothelium dysfunction (ED).

ED refers to the inability of endothelium cells (ECs) to determine vasodilatation of
the vessel wall. ED is associated with reduced nitric oxide (NO) production, increased
adhesiveness of leukocytes and platelets, increased endothelium permeability, and finally,
apoptosis of EC [3]. ED is believed to play an essential role in cardiovascular diseases, renal
diseases, infections, liver diseases, and multiorgan failure [4]. More widely, dysfunction of
the vascular endothelium has been considered a hallmark of human diseases [1]. Notably,
an endothelial activation induced by cytokines may contribute to the pathophysiology of
COVID 19 disease [5–7].
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Figure 1. The endothelial cells state results from the balance of various inflammatory/anti-
inflammatory factors.

ED is also frequently found in many complications arising in transplant medicine [8].
After allogeneic HSCT, many clinical factors play pathogenetic roles in ED. Some are
common to other clinical settings such as advanced age, diabetes, hypertension [9,10].
However, others such as alloreactivity, infections, immunosuppressive agents, and, in
HSCT, pretransplant conditioning are specific to the transplanted patients [11,12] (Figure 2).
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Figure 2. Pathogenic factor in endothelium-related complications after allogeneic hematopoietic stem
cell transplantation.

The term alloreactivity is widely accepted and used. Immunological reactions after
an allogeneic HSCT are heterogeneous and may determine ED by different mechanisms.
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Class I and II histocompatibility antigens, expressed on EC, may be the targets of immuno-
logic attack [13]. The expression of class II antigens in EC is induced by γ interferon and
down modulated by fluvastatin and everolimus [14].

After solid organ transplantation, antibody-mediated rejection is believed to represent
antibody and complement-dependent injury to the microvasculature. When rejection is
diagnosed after solid organ transplantation, the alloimmune reaction is readily apparent
from the histopathology of the transplanted organ (leukocytes infiltrate, vascular damage,
complement deposition, thrombosis) [15,16]. It results in allograft dysfunction, allograft
loss, and accelerated graft vasculopathy [17]. However, in the rejection setting, the immuno-
logical mechanisms may also involve a cytotoxic T-cell response or NK response [16,18].

After allogeneic HSCT, the target of an alloimmune attack can be, at least theoretically,
the entire vascular tree of the recipient. For instance, and as proof, graft-versus-host disease
(GVHD) is associated with endothelium damage characterized, at the immunohistochem-
istry level, by perivascular infiltrate of activated lymphocyte and by an increased level
of von Willebrand factor (v-WF) [19]. However, at gross histopathology, the evidence of
alloimmune reaction is scarce. The reasons for that paucity have not yet been clarified [20].

Although alloimmunity can be the initiating trigger, other mechanisms besides direct
cytotoxicity may occur, and innate immunity may take part in tissue damage without any
histologically visible cellular effector mechanism [21]. In the context of innate immunity,
the release of cytokine, along with the activation of complement and Toll-like receptors,
is a potent mediator of tissue damage. In determining ED, infections or administration of
pharmacologic agents may also act as important cofactors.

A three steps model has been proposed [22]. Predisposition for ED may be the first
step. Conditioning and tissue damage (second steps) act on this baseline status to determine
subclinical ED. Finally, as the third step, alloimmunity or infections or pharmacological
agents may further increase the prothrombotic/proinflammatory status, causing the full-
blown clinical picture.

2. Factors Important in Pathophysiology of Transplant-Associated Endothelium Dysfunction
2.1. TNF-α and Other Pro-Inflammatory Cytokines

EC is actively involved in innate immunity mechanisms such as cytokine sensing,
leukocyte interaction and activation, and the recognition of danger-associated molecules
as pathogen-associated molecular patterns (PAMPs) and damage-associated molecular
patterns (DAMPs). However, in addition to being an important organ in innate immunity,
the endothelium is also of vital relevance in connecting adaptive immunity with the
innate branch. EC can respond to inflammatory and anti-inflammatory cytokines. Pro-
inflammatory cytokines such as TNF-α, IL-1, IL-6, and IFN-γ activate the endothelium
and, on the other hand, when stimulated with TNF, IL-1, or endotoxin, the endothelium
itself can produce TNF-α, IL-6, IL-5, IL-8, MCP-1P. Furthermore, ECs express and secrete a
wide range of chemokines. These short-range molecules attract specific leukocytes subsets,
allowing their extravasation across the endothelium.

All these factors influence the prothrombotic-inflammatory state of EC through intra-
cellular signaling or by extracellular membrane-based activities [23].

TNF-α is a cytokine produced by macrophages and lymphocytes [24,25]; TNF-α is
considered the orchestrator of immunity; it plays a pivotal role in endothelial activation.
The effects of TNF-α on EC are multiple, apart from inducing IL-6, IL-8, and the produc-
tion of chemokines. TNF-α determines an increased expression of adhesions molecules
on endothelium; other effects of TNF-α are the induction of iNO, production of ROS,
NADPH oxidase increase, increased thromboplastin synthesis, reduction in thrombomod-
ulin, increased PAI-1, induction of metalloproteinase, increased angiopoietin-2, and of an
alarmin called HMGB-1 [26–31]. All these factors result in endothelium prothrombotic and
inflammatory activation and increased vascular permeability (Figure 3).
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TNF-α levels are elevated during various complications that follow the HSCT [32,33],
and TNF-antagonists are helpful in their treatment. Upon stimulation with TNF-α, en-
dothelial cells’ signal transduction involves NF-κβ signaling associated with p38 MAPK
(Figure 4).
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These constituents will act on EC in an autocrine way, further amplifying the inflamma-
tory state of the EC. In such a way, TNF-α may trigger an amplifying and self-perpetuating
loop (Figure 5).
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2.2. Engagement of Adhesion Molecules and Toll-like Receptors

The interplay between endothelium, leukocytes, and platelets is a well-studied mecha-
nism for endothelium activation and the induction of procoagulant-inflammatory states [29].
Increased endothelium expression of ICAM-1, VCAM, selectin, and PECAM allows rolling,
adherence, and transmigration of leukocytes [34,35]. Endothelial chemokines participate
in the adherence and transmigration of specific leukocyte populations. Platelets greatly
facilitate the interaction of leukocytes with the endothelium. The adhesion of leukocytes
represents a strong activation stimulus on the endothelium through the production of
superoxide, which inactivates endothelium-derived nitric oxide. Neutrophil activation
also leads to the release of NET that will determine complement activation and deposition
of C5b-9 [36]. The engagement of ICAM-1 induces the phosphorylation of cytoskeleton-
associated proteins, including FAK, paxillin, p130Cas, and cortactin. ICAM-dependent
phosphorylation of these proteins remodels the endothelial cytoskeleton to influence cell
spreading, migration, and activation [37].

Cross-linking of VCAM-1 results in the activation of Rac1 signaling, which induces
weakening of tight junctions through Rho-dependent induction of stress fibers.

Toll-like receptors (TLRs) are membrane structures able to ligate PAMPs and DAMPs.
Just as with antigen-presenting cells, a complete array of Toll-like receptors is present on EC.
Ligands that engage Toll-like receptors are fungal, bacterial, and viral structures such as LPS,
poly I:C, MASP, HBGB-1, RNA, and DNA. Endogenous antigens may engage the TLR-2,
TLR-4, and TLR-9. After transplantation, Toll-like receptor activation may derive from
bacteria translocated from the intestinal wall, from cell necrosis with a consequent increase
in HMGB-1, and from tissue damage induced by the alloreaction. After HSCT, different Toll-
like receptor genotypes are associated with the risk of invasive aspergillosis, hemorrhagic
cystitis, increased frequency of severe GVHD, relapse incidence, and mucositis [38].

Toll-like receptors’ engagement in endothelial cells increases permeability, influences
adhesion molecules, and activates proliferation, migration, sprouting, and angiogenesis [39].
In EC binding of Toll-like receptors activate in EC the signal transduction terminating in
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NF-κβ synthesis, having, therefore, a proinflammatory effect through secretion of various
inflammatory cytokines (TNF-α, IL-1, IFN-α, IFN-beta, IL-8).

2.3. Endothelium Activation by Antibodies

After a solid organ transplantation, EC is recognized by HLA antibodies as well as
non-HLA antibodies. Non-HLA antibodies are poorly defined in their specificity and do
not activate complement but may still determine graft injury.

Apart from complement deposition, antibodies against EC in patients who received a
solid organ transplantation might determine EC activation. Antibody-induced EC activa-
tion is associated with an increase in the expression of leukocyte adhesion molecules and
cytokine production [40].

Anti-HLA antibodies may also transduce proinflammatory signals to EC indepen-
dently from complement activation, and this is a different mechanism involved in chronic
rejection and post-transplant vasculopathy [41].

Further, alloimmune-mediated injury of the endothelium has been shown to lead to
aberrant expression of self-proteins and subsequent generation of autoantibodies.

On the other hand, anti-EC antibodies do not always have adverse effects.
Antibodies against EC may positively affect the graft outcome, a phenomenon known

as “accommodation”. It is a resistance of the transplanted organ to antibody-induced
injuries. The mechanisms underlying this process may involve an antibody-induced expres-
sion of prosurvival and cytoprotective proteins or regulation of the terminal components of
complement [42].

In addition to adhesive molecules and HLA antigens, EC expresses other antigens
involved in EC activation by monoclonal antibodies, such as anti-CD33 and anti-CD19.
In more detail, CD33 antigen is expressed on endothelial cells of the liver. On this basis,
the infusion of the conjugates of CD33 with calicheamicin can determine liver toxicity and
SOS/VOD [43].

The CD19 antigen is expressed in mural pericytes in the central nervous system (CNS):
This may explain the CNS toxicity that, in about 10% of cases, is associated with the
infusion of genetically modified lymphocytes transduced with anti-CD19 molecules [44,45].
Under this condition, adherence of lymphocytes to endothelium is facilitated, leading
to EC activation and transmigration inside the CNS, where lymphocytes release soluble
cytokines such as IL6 and interferon gamma [46,47]. High levels of inflammatory cytokines
can activate the CNS endothelium and pericytes. Therefore, central nervous system toxicity
develops from increased vascular permeability. It can manifest in different forms, from
edema, localized in the cortical area to microthrombi formation [48].

2.4. Cadherin

Cadherin is an adhesion molecule that connects the lateral sides of EC and is involved
in endothelium permeability. Angiopoietin-2 can readily increase EC permeability through
the internalization of cadherin. Matrix metalloproteinase also plays a significant role
in loosening the intercellular adhesion molecules [49]. Serum obtained from patients
affected by capillary leak syndrome can induce the repositioning of cadherin in a HUVEC
monolayer [50].

2.5. High-Mobility Group B-1

The protein high-mobility group B1 (HMGB-1) is an “alarmin” produced by monocytes
and necrotic cells. It binds to DNA, promotes transcription and repair. HMGB-1 protein
is also a potent Toll-like receptor activator. In such a way, HMGB-1 increases adhesion
molecules’ expression and some inflammatory cytokines (TNF-α, MCP1, IL8) and receptors
(RAGE), (Figure 6). Cytokines derived from the HMGB1-induced EC activation determine
a further increase in HMGB-1, and, in this manner, an amplification of the inflammatory
stimulus may be established.
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HMGB-1 induces dendritic cells to secrete IL-6, which is pivotal in increasing interleukin-17
(IL-17)-producing alloreactive T cells [51].

2.6. Angiopoietins

Angiopoietins are glycoproteins belonging to the family of endothelial growth fac-
tors and promote angiogenesis by binding the tyrosine kinase receptor Tie-2 expressed
in vascular endothelium [52]. The most investigated family members are represented by
angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2). When Ang-1 binds to Tie-2, it induces
a prompt receptor autophosphorylation [53]. The crucial role exerted by the Ang-1-Tie-2
signaling pathway in vascular development has been finely demonstrated in animal models.
In Ang-1−/− knockout mice (and Tie-2−/− mice), an impairment of vasculogenesis with
consequent embryonic lethality has been observed [54]. In Ang1−/− embryos, ultrastruc-
tural analyses provided evidence of a less complex vascular structure characterized by few
ECs, which were poorly associated with extracellular matrix and supporting cells [55].

Conversely, Ang-2 has been demonstrated to retain antagonistic effects on the Tie-2
receptor [56]. In this regard, Ang-2 overexpression in the transgenic murine model is
responsible for embryo lethality, characterized by vascular alterations comparable to those
observed in Ang-1/Tie-2 knockout mice [56].

Apart from their effect on angiogenesis, the interplay between Ang-1 and Ang-2 has a
pivotal role in the endothelial equilibrium among proinflammatory and anti-inflammatory
states. The Tie-2 receptor keeps EC in a resting state, and it is maintained tonically activated
by Ang-1.

Ang-1 is produced by pericytes and preserves the integrity of the endothelial barrier
through multiple mechanisms—namely, preventing endothelium leakage upon exposition
to edema-inducing agents (platelet-activating factor, serotonin, or vascular endothelial
growth factor), lowering leukocyte adherence to EC, and inhibiting TNF-promoted leuko-
cyte extravasation [57–60]. Indeed, Ang-1 negatively regulates the expression of molecules
that mediate the interaction between leukocytes and endothelium cells at a transcriptional
level, ICAM-1, VCAM-1, and E-selectin [61]. Moreover, Ang-1 promotes EC cell survival
by upregulating the expression of the antiapoptotic protein survivin via the PI3K/Akt
pathway [62–64].

Ang-2 interferes with Ang-1 signaling and determines endothelial cell activation and
leukocyte recruitment, with a consequent increase in permeability and prothrombotic state.



J. Clin. Med. 2022, 11, 623 8 of 29

This increased permeability is also due to the disruption of vascular microarchitecture. In
this regard, Ang-2 weakens VE–cadherin junctions, thus generating gap formation and
impairing the interaction between EC and pericytes with consequent pericyte loss [65,66].
Contrary to Ang-1, Ang-2 sensitizes EC to inflammatory mediators such as TNF-α and
thrombin [67,68].

Ang-2 is produced by EC, in an autocrine manner, through the secretion of Weibel–
Palade granules. When secreted, Weibel–Palade granules deliver other factors such as
preformed IL-8, vWF, and adhesion molecules (Figure 7).
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Endothelium damage constitutes a key element in the development of multiorgan
dysfunction, and thus, given that Ang-1 and Ang-2 contribute to endothelial activation,
their plasmatic values are helpful biomarkers in predicting the severity of sepsis. Increased
levels of Ang-2 are associated with high mortality also in ARDS and in SARS-CoV-2
infection [69]. It has been reported that the administration of Ang-1 prevents organ failure
in animal models of sepsis [70].

Ang-1 is produced by pericytes, a cell population of mesenchymal ontogeny that covers
and adheres to the abluminal surface of endothelial cells (ECs) in arterioles, precapillary
venules, and capillaries.

Pericytes secrete many cytokines, angiogenic molecules, and growth factors. They
are provided with plasticity and can differentiate into other mesenchymal cell types, such
as smooth muscle cells, fibroblasts, and osteoblasts. Pericytes may thus contribute to
maintaining function or tissues regeneration. Pericytes have pleiotropic roles in EC, vessel
stabilization, vascular tone regulation, and local and tissue homeostasis maintenance.

Ang-1 and Ang-2 have opposite effects on pericytes. After exposure to TNF-α, Ang-1
increased survival of pericytes, whereas Ang-2 increased apoptosis in these cells [71].
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2.7. Coagulation Cascade

Thrombin, which acts as the promoter of fibrin formation, is a potent activator of
endothelial cells. When activated, the endothelial cells produce procoagulant molecules
(such as the tissue factor and the von Willebrand factor), which are responsible for the
activation of the coagulation cascade and the recruitment of platelets. Moreover, the
balance between the t-PA and the PAI-1 during endothelial activation is switched toward
inhibition of fibrinolysis. Thus, the imbalance of t-PA and PAI-1 contribute to thrombotic
predisposition by reducing fibrinolysis.

A state of hypercoagulability was demonstrated after marrow transplantation, in
association with a reduction in anticoagulants (protein C, protein S, and AT III), an increase
in procoagulants (factor VIII, fibrinogen, and vWF antigen), and changes in fibrinolytic
parameters (t-PA and PAI-1) [72–77].

Despite the evident abnormalities found in the level of coagulation factors during
transplantation, the role of coagulation is considered secondary to endothelium activa-
tion and not a primitive cause of endothelium-based complications. However, it may
have a role as a cofactor. Consistent with this view, genetic mutations associated with
thrombosis did not increase the rate of endothelium based-complications after transplanta-
tion [78]. Changes in levels of coagulation factors have been found helpful as biomarkers
for VOD [79,80].

2.8. Nitric Oxide

Nitric oxide (NO) is a gaseous molecule that plays a relevant role in maintaining nor-
mal endothelial function and inhibiting inflammation. NO downregulates the expression of
proinflammatory cytokines and chemoattractants by inhibiting the NF-κβ pathway [81–83].
NO is produced from arginine by three enzymes: neuronal (nNOS), endothelial (eNOS),
and inducible nitric oxide synthase (iNOS).

nNOS and eNOS are expressed in neuronal and endothelial cells, respectively. eNOS
acts by allowing the synthesis of cGMP [84] with a consequent decrease in intracellular
Ca++, which determines smooth muscle relaxation and consequent vasodilatation [85].
Moreover, eNOS also determines an increase in cGMP levels in platelets, resulting in
reduced platelet activation and reduced adhesion to the endothelium [86,87]. e-NOS can
inhibit apoptosis of endothelial cells by S-nitrosylating caspase and other proteins that
participate in the process of apoptosis [88]. Shear stress inside a vessel is a physiological
stimulus for NO production by EC [89,90].

iNOS is mainly expressed by immune cells, and its production is stimulated by several
mediators such as TNF-α, IL-6, and viral or bacterial components (lipopolysaccharide) [91].
Inducible NO (iNO) acts as a potent inhibitor of viral replication. It modulates the immune
response through the rewiring of macrophages from the M1 state to the M2 state, which
stops the proinflammatory insult to the tissues, limiting cytokine secretion [92,93].

Inducible NO (iNO) plays a role in microcirculatory dysfunction in sepsis. Lethal
septic shock is accompanied by high levels of nitric oxide synthase (iNOS) activity [94,95]
and significantly elevated concentrations of nitrite and nitrate in the plasma.

Notably, NO production can be negatively affected by certain drugs used in post-
transplant settings such as cyclosporin [96,97].

Several studies have suggested NO as a possible contributor to endothelial damage
in transplant-related toxicities. In murine GVHD models, suppressing NO production
is related to increased weight loss, reduced overall survival, and defective hemopoietic
reconstitution [98]. Similarly, in rat models of the hepatic sinusoidal obstructive syndrome,
decreased NO levels are involved in the physiopathology of the disease [99]. NO downreg-
ulation has also been found in transplant-associated thrombotic microangiopathy [100].

2.9. Glycocalyx

Glycocalyx (GC) is a thin internal layer coating of the luminal side of the endothelium;
its width is about 0.2–0.4 millimicron. Soluble proteins, glycoproteins, and proteoglycans
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constitute GC. The proteoglycans (syndecans, glypicans) bind to glycosaminoglycans: acid
hyaluronic (IA), heparan sulfate (HS), dermatan sulfate, and chondroitin sulfate. The total
volume in a human body is 1,5 L [101].

Important biochemical constituents are embedded in this matrix, such as growth
factors, antithrombin III, and other molecules. Albumin will adhere to GC, contributing to
the formation of the endothelium surface layer (ESL).

In physiological conditions, GC will act as an endothelium protection structure. GC
reduces the ability of leukocytes and platelets to adhere to EC, thus inhibiting the activation
of EC. GC can sense shear stress, and in response, it will increase NO synthesis inside
EC [102]. In such a way, GC plays an essential role in regulating permeability and reducing
the prothrombotic and proinflammatory status of EC.

The glycocalyx is degraded by sheddases: ADAMS, matrix metalloproteinase hyaluronidase,
and heparanase-1. Heparanase-1 is activated during sepsis. Heparanase activation plays a
role in sepsis-associated respiratory distress. The lysis products generated from heparan
sulfate and hyaluronan, such as low molecular weight hyaluronic acid, have a proinflam-
matory action by activating Toll-like receptor 4. When it occurs, the lysosome activation
and export of lysosome content are followed rapidly by the GC’s degradation. In an experi-
mental heart model, the application of TNF may induce rapid GC destruction. Other agents
with a destructive effect on GC are LPS, bradykinin, adenosine, and C-reactive protein.
Hyperglycemia may cause GC injury, possibly by generating reactive oxygen species.

Syndecan-1 increases in plasma during GC degradation and the level of syndecan-1
predicts mortality in sepsis. GC is also degraded during hypervolemia. The atrial natriuretic
peptide may determine an increase in permeability of blood vessels through a direct action
on GC [103].

2.10. Thrombomodulin

Thrombomodulin (TM) is a glycoprotein synthesized by endothelial cells and by
other cells of mesodermal derivation. It has many actions that contribute to maintaining
EC in an antithrombotic, anti-inflammatory state [104]. TM increases the activation rate
of protein C (PC), and activated PC (APC) inhibits coagulative cascade (precisely by the
inhibition of factor V-a and factor VIII-a). TM has other actions dependent on activated
protein C. It detoxifies histones, interfering with neutrophil extracellular traps (NET) [105].

Moreover, in vitro studies suggested that APC exerts its anti-inflammatory actions
at a gene level by modulating the expression of several genes involved in EC apoptosis
and in leukocyte adhesion. In endothelial cells, APC reduces NF-κβ translocation in the
nucleus, and consequently, it inhibits the expression of downstream NF-kB-depended
genes, including antiapoptotic protein (Bcl-2) and adhesion molecules (VCAM-1, ICAM-1,
E-selectin) [106]. In leukocytes, APC inhibits the AP-1 transcription factor reducing their
release of inflammatory cytokines [107].

In addition to such mechanisms that are PC dependent, TM has other anti-inflammatory
actions that are PC independent. These are based on a specific structural domain of TM, the
lectin-like domain. TM on endothelial cells can bind Lewis molecules, thereby inhibiting the
Lewis-dependent adhesion of leukocytes on EC. The lectin-like domain of TM may combine
with the “endogenous alarmin” HMGB-1, a potent inducer of endothelial cells inflammatory
response and EC apoptosis. When blocked by the TM lectin-like domain, the HMGB-1
cannot bind its receptors on EC (TLR 4 and RAGE), which are potent proinflammatory
receptors. TM contributes to the inhibition of C3b by factor I [106] (Figure 8).

TM may have a physiopathologic role in thromboembolic disorders, ischemia–reperfusion
syndromes, sepsis, malignant hypertension, and ARDS [108–110]. A single study reported
that administration of recombinant TM significantly reduced acute GVHD (a-GVHD) and
ameliorated OS after allogeneic hematopoietic stem cell transplantation [111]. TM has been
found clinically helpful as a therapy for DIC in children [112–114] and ARDS [108].



J. Clin. Med. 2022, 11, 623 11 of 29

J. Clin. Med. 2022, 11, x FOR PEER REVIEW 11 of 30 
 

 

2.10. Thrombomodulin 
Thrombomodulin (TM) is a glycoprotein synthesized by endothelial cells and by 

other cells of mesodermal derivation. It has many actions that contribute to maintaining 
EC in an antithrombotic, anti-inflammatory state [104]. TM increases the activation rate of 
protein C (PC), and activated PC (APC) inhibits coagulative cascade (precisely by the in-
hibition of factor V-a and factor VIII-a). TM has other actions dependent on activated pro-
tein C. It detoxifies histones, interfering with neutrophil extracellular traps (NET) [105]. 

Moreover, in vitro studies suggested that APC exerts its anti-inflammatory actions at 
a gene level by modulating the expression of several genes involved in EC apoptosis and 
in leukocyte adhesion. In endothelial cells, APC reduces NF-κβ translocation in the nu-
cleus, and consequently, it inhibits the expression of downstream NF-kB-depended genes, 
including antiapoptotic protein (Bcl-2) and adhesion molecules (VCAM1, ICAM-1, E-se-
lectin) [106]. In leukocytes, APC inhibits the AP-1 transcription factor reducing their re-
lease of inflammatory cytokines [107]. 

In addition to such mechanisms that are PC dependent, TM has other anti-inflamma-
tory actions that are PC independent. These are based on a specific structural domain of 
TM, the lectin-like domain. TM on endothelial cells can bind Lewis molecules, thereby 
inhibiting the Lewis-dependent adhesion of leukocytes on EC. The lectin-like domain of 
TM may combine with the “endogenous alarmin” HMGB-1, a potent inducer of endothe-
lial cells inflammatory response and EC apoptosis. When blocked by the TM lectin-like 
domain, the HMGB-1 cannot bind its receptors on EC (TLR 4 and RAGE), which are potent 
proinflammatory receptors. TM contributes to the inhibition of C3b by factor I [106] (Fig-
ure 8). 

TM may have a physiopathologic role in thromboembolic disorders, ischemia–reper-
fusion syndromes, sepsis, malignant hypertension, and ARDS [108–110]. A single study 
reported that administration of recombinant TM significantly reduced acute GVHD (a-
GVHD) and ameliorated OS after allogeneic hematopoietic stem cell transplantation [111]. 
TM has been found clinically helpful as a therapy for DIC in children [112–114] and ARDS 
[108]. 

 
Figure 8. Antithrombotic and anti-inflammatory effects of thrombomodulin. 

2.11. Complement Activation 
Complement activation may occur by different mechanisms: canonical, alternate, and 

lectin pathways. Genetic abnormalities in the alternative pathway of complement activa-
tion are frequently found in thrombotic microangiopathy syndromes. 

Figure 8. Antithrombotic and anti-inflammatory effects of thrombomodulin.

2.11. Complement Activation

Complement activation may occur by different mechanisms: canonical, alternate,
and lectin pathways. Genetic abnormalities in the alternative pathway of complement
activation are frequently found in thrombotic microangiopathy syndromes.

The alternative pathway of complement activation occurs on the vessel wall and is
due to the spontaneous hydrolysis of C3 molecules in C3b. The alternative pathway of
complement activation requires factor B, which binds to C3b. Factor H (FH) is a regulator
of the activity of the alternative complement pathway. Factor H inhibits complement
activation by acting on the generation of C3b. Five-factor H-related (FHR) proteins enhance
complement activation by competing with the regulators FH.

Factor I (FI) is an inhibitor of complement pathways. FI can degrade complement C3b
and C4b, in the presence of factor H, C4b-binding protein, complement receptor 1, or CD46.
Membrane cofactor protein (MCP) is a membrane-bound complement regulator that acts
as a cofactor for the factor I-mediated cleavage of C3b and C4b. Mutations in membrane
cofactor protein (MCP; CD46) may predispose to the development of atypical hemolytic
uremic syndrome (a-HUS).

In a-HUS, a congenital abnormality may be found in the following genes: complement
factor H, complement factor I (CFI), membrane complement protein (MCP), complement
factor B (CFB), C3, and complement factor H-related (CFHR) [115].

Autoantibodies against factor H [116] may also be the basis of an acquired form of
a-HUS. These abnormalities lead to uninhibited C3 convertase C3bBb on endothelium and
the formation of the lytic complex C5b-9. The deletion of complement factor H-related
genes (CFHR3-CFHR1) has been associated with autoantibodies against FH [117].

Multiple abnormalities in the complement, either acquired or inherited, might be
relevant for the pathogenesis of atypical hemolytic uremic syndrome [118].

The lectin-like domain of TM acts as a negative regulator of the alternative pathway
(AP) of complement activation by accelerating the inactivation of C3b [119]. Mutations
in TM genes may be found in some a-HUS patients [120]. The lectin pathway of comple-
ment is essential in natural immunity since it is activated from antigens from different
microbes (bacterial, fungi, and viruses). Lectins are divided into two families: ficolins and
collectins. They bind with naturally occurring mannose-binding serine proteases that are
lectin associated (MASP). The complex can bind surface glycoconjugate in pathogens (pat-
tern recognition molecules), determining phagocytosis and activating the lectin pathway
of complement.
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The lectin pathway of complement is activated in diverse types of TMAs. MASP-2
levels are highly elevated in all TMA patients. Moreover, using an MVEC experimental
model [121], inhibition of MASP-2 (the effector mechanism of the lectin pathway) has a
beneficial effect on the injury mediated by plasma obtained from TMA patients.

2.12. Neutrophil Extracellular Trap (NET)

Neutrophils can extrude chromatin outside their cytoplasm, and this structure, known
as “neutrophil extracellular trap” (NET), can bind histones and other proteins. In these traps,
microbes, such as bacteria, fungi, and viruses, are destroyed. NET is a defense mechanism
against infections. Further, NET can amplify immune responses and activate complement
and coagulation. NETs are suggested to be responsible for ED by both endothelial activation
and damage. In vitro experiments have demonstrated that NETs have endothelial cytotoxic
effects in a time- and dose-dependent manner [122]. Recently, the association of neutrophil
extracellular traps with the development of thrombotic thrombocytopenic purpura, and the
hemolytic uremic syndrome has been reported [36]. NETosis can determine complement
activation and deposition of C5b-9 [123,124].

2.13. Endothelin-1

Endothelin-1 (ET-1) is a peptide isolated from endothelial cells, with potent vasocon-
strictive action. Aside from its effect on vascular smooth muscles, it retains proinflammatory
properties. It has been revealed that ET-1 promotes cytokine production and leukocyte
recruitment. Indeed, its expression is upregulated under endothelial stress conditions,
and it is elicited by ROS, ANg-2, and thrombin. ET-1 can trigger mast cell degranulation,
leading to the release of IL-6 and TNF-α [125].

Moreover, it is responsible for the release by monocytes of the neutrophil chemoattrac-
tant IL-8 [126]. In vascular endothelial cells of the brain, elevated levels of ET-1 induce the
expression of the adhesion molecules ICAM, VCAM, and E-selectin [127]. ET-1 induces
signaling through epidermal growth factor receptor transactivation, oxidative stress in-
duction, rho-kinase, and the activation (ET-receptor A) or inhibition (ET-receptor B) of the
adenylate cyclase/cyclic adenosine monophosphate pathway. Endotoxin, TNF-α, CSA, and
IL-1 upregulate and stimulate the release of the endothelin-1; as a result, ET-1 is released at
high levels in sepsis [128].

2.14. Microvesicles

Microvesicles may be viewed as a portion of the cell membrane released outside the
cell. They are derived from many cell types, including endothelium cells, lymphoid cells,
mesenchymal cells, platelets, and antigen-presenting cells.

They function as coagulation activators, transporters between tissue, mRNA, miRNA,
protein, and lipid-based signaling. They are sources of free DNA and RNA. Microvesicles
are involved in coagulation, monocyte activation, immunity response, and induction of
tolerance [129].

In GVHD-affected patients, increased secretion of microvesicles has been demon-
strated. Microvesicles containing CD3+CD4+, CD3+CD8+, and CD3+HLA-DR+ may reflect
the cell-mediated immune response and be more valuable than sIL-2R for monitoring and
evaluation of a-GVHD [130].

Activation of endothelial cells is followed by the delivery of microvesicles in the
systemic circulation. Since they are rich in procoagulant molecules, the secretion of mi-
crovesicles can further activate endothelium.

3. Clinical Pictures of Endothelial Dysfunction after Allogeneic HSCT

From the clinician’s point of view, the involvement of endothelium after allogeneic
HSCT is frequent and may manifest in practice, with different clinical pictures. This issue
has been the object of several reviews during the last decade [12,131,132]. A number of
organ-specific diseases such as SOS/VOD, IPS, CLS, ES, and TA-TMA have their pathogen-
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esis in EC dysfunction. All these diseases may terminate in multiorgan failures (MOFs).
However, there is no agreement on which clinical picture has to be considered as derived
from systemic endothelial dysfunction [132]. Primarily, venous-occlusive disease, capillary
leak syndrome, and engraftment syndrome are not considered by all authors as dependent
on a systemic endothelial dysfunction [132]. In contrast, some authors retain that EC has a
relevant role in corticosteroid-refractory acute graft-versus-host disease.

3.1. SOS/VOD

SOS/VOD is characterized by increased bilirubin, body weight increase due to liq-
uid retention, and painful liver enlargement. Conditioning intensity and conditioning
type play significant roles, together with age, underlying diagnosis, and the state of liver
parenchyma [133]. The main histopathological findings are round-up of EC, EC detach-
ment, and downstream embolization of EC, together with hemorrhage in Disse space and
narrowing of the centrum-lobular vein [134]. The increase in body weight, which can reach
10–20% of the basal value, and the lack of response to diuretic treatment, demonstrate that,
in this disease, endothelium damage is systemic. Severe forms of SOS/VOD may progress
to multiorgan failure with renal, lung, or CNS toxicity, thus confirming the systemic nature
of this disease. SOS/VOD is more frequent in conditions of increased HLA distance be-
tween donor and recipient, but no concomitant and overt a-GVHD is evident in most of
these cases.

In SOS/VOD, nitric oxide synthase activity is reduced in liver cells [99]. HMGB-1
has been found to be involved in models of VOD induced experimentally by monocro-
taline [135]. An upsurge in the level of HMGB-1 follows the administration of Monocro-
taline. Activation of endothelium cells in VOD is demonstrated by an increased level of
vWF, ICAM1, VLA4, and Ang-2 [136].

3.2. Capillary Leak Syndrome (CLS)

An increase in body weight, blood pressure reduction, tachycardia, and sudden de-
crease in serum albumin is the cluster of clinical abnormalities found in capillary leak
syndrome. In the idiopathic form, a monoclonal immunoglobulin is frequently present
in the plasma. Secondary CLS may be associated with severe infections or with the ad-
ministration of pharmacological agents, such as interleukin-2, GM-CSF, gemcitabine, and
monoclonal antibodies anti-CD19 and anti-CD22. High serum levels of Ang-2 and VCAM1
have been found in patients affected by idiopathic CLS.

A significant increase in body weight (>2.5%) has been reported after allogeneic HSCT
in 20–30% of all patients [137]. Severe hydric retention is associated with reduced survival
and a higher risk of severe GVHD [138]. Patients at risk for CLS at the start of conditioning
may be identified as having a high EASIX score [139].

3.3. Idiopathic Pneumonia Syndrome (IPS)

IPS criteria include evidence of widespread alveolar injury with symptoms and signs
of pneumonia in the absence of active lower respiratory tract infection. Diagnosis is made
after the exclusion of commonly found pulmonary infections. It requires an intensive
diagnostic workup, including at least a bronchoalveolar lavage. Alloreactivity toward lung
tissue after HSCT in SCID mice is accompanied by signs of activation of lung EC [140].
Further, in the development of experimental IPS, an injury to the vascular endothelium
has been observed [141]. Vessels in the lung are surrounded by a dense mononuclear
cell infiltrate. There is apoptosis of ECs, presence of activated cytoplasmic caspase 3, and
TUNEL positivity of nuclei. Cytotoxicity via the Fas-FasL pathway contributes to the
development of experimental IPS. A role for TNF alpha has been hypothesized [142]. The
expression of ICAM-1, VCAM-1, and eNOS are increased in lung biopsies of patients
developing IPS [143].

However, over half of the patients diagnosed with IPS have a virus detected in bron-
choalveolar lavage (BAL) samples [144]. The significance of these viruses in the pathogenic-
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ity of pneumonia remains unclear, although emerging evidence suggests that at least in
the case of human herpesvirus 6 (HHV-6), these viruses may lead to lung injury and raises
plausible concern that IPS may have been misdiagnosed in earlier studies. Alloimmune
reactions toward lung tissue and infections may interact and be cofactors.

An imbalance between Ang-1 Ang-2 may also have a role in IPS. This imbalance
has been found in ARDS [145]. A four-endothelial biomarker panel, including elevated
angiopoietin-2/angiopoietin-1 ratio, vascular cell-adhesion molecule, and von Willebrand
factor, is useful in identifying acute respiratory distress syndrome [146].

3.4. Engraftment Syndrome (ES)

Diagnostic criteria for engraftment syndrome, according to T. Spitzer, include major
criteria (non-infectious fever, skin rash, and non-cardiogenic pulmonary edema) and mi-
nor criteria (weight gain, hepatic/renal dysfunction, or transient encephalopathy) [147].
Diagnosis is reached with the development of two or more of the previously cited symp-
toms within 96 h of the start of neutrophil recovery (absolute neutrophil count > 100).
According to Maiolino, diarrhea is a further criterion of this syndrome. In the time frame of
peri-engraftment, it is possible also to observe lung abnormalities such as diffuse ground-
glass opacities, often with septal thickening and small pleural effusions [148]. ES has
been described after autologous transplantation in patients mainly affected by multiple
myeloma, POEMS syndrome, amyloidosis, and autoimmune diseases [149,150]. ES is,
however, possible in patients affected by other underlying diagnoses.

The distinction between ES and autologous GVHD is difficult since both syndromes
may present the involvement of the skin and diarrhea. Indeed, the relationship between
autologous GVHD and ES is still debated, and these two clinical pictures may represent
the same disease. ES has overlapping signs also with capillary leak syndrome.

ES is frequent after syngeneic HSCT [151]. ES has also been described after allo-
geneic HSCT. Indeed, not-infectious fever and manifestations of a vascular leak (edema
with weight gain) may occur during granulocyte recovery in both the auto- and allotrans-
plantation settings [152]. ES may precede a-GVHD, these two diseases being temporally
associated, or ES may represent an initial stage of a-GVHD [153]. Therefore, in the allo-
geneic setting, the distinction of ES and a-GVHD is a matter of debate.

3.5. Transplant-Associated Thrombotic Microangiopathy (TA-TMA)

Micro-angiopathic anemia is a predominating feature. Clinical and laboratory signs are
anemia, schistocytes, hemolysis, increase in LDH and decreased haptoglobin, hypertension,
fever, decreased renal function, and proteinuria [154–156]. It may involve the kidney, the
central nervous system, and the intestinal tract, and can be associated with pulmonary
hypertension and serosal surface effusions.

According to Jodelle, it may present in a severe form in up to 18% of all patients in a
pediatric population. TRM in patients having signs of the disease may be as high as 48%.

TA-TMA has been considered an endothelial form of a-GVHD. In most of these cases,
a previous a-GVHD episode is present, or a-GVHD at the time of TA-TMA diagnosis is
still ongoing, although with apparently minimal clinical signs [157]. However, TA-TMA
may also appear after autologous HSCT. The pretransplantation patient’s risk factors are
a-GVHD, previous transplantation, MUD donor, and myeloablative conditioning [158,159].

In some cases, calcineurin inhibitors are significant contributors, and regression of
signs has been reported after their discontinuation [155], although this remains a contro-
versial issue [159]. In some other cases, infections may play essential roles as cofactors
(aspergillus, HHV6, BK, adenovirus, CMV).

Intestinal TA-TMA is characterized by abdominal pain and may cause significant gas-
trointestinal bleeding. Differential diagnosis from intestinal a-GVHD may be problematic.
Nishida et al. showed that intestinal thrombotic microangiopathy might mimic clinically a
progressive a-GVHD [160]. Histopathology of intestinal biopsy shows microangiopathic
changes in the gastrointestinal vasculature. Histologic features include endothelial cell
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swelling, endothelial cell separation, perivascular mucosal hemorrhage, intraluminal schis-
tocytes, intraluminal fibrin, intraluminal microthrombi, loss of glands, and total denudation
of mucosa [161,162].

Laskin et al. have reported complement activation after TA-TMA in HSC transplan-
tation. These authors found in renal biopsy C4d in the vessel [163]. Indeed, complement
activation has been demonstrated in this type of TMA with an increase in C5b-9 [164,165].
Subsequently, similar complement regulatory defects to those found in a-HUS were identi-
fied in a small series of pediatric patients affected by TA-TMA [166].

Complement activation due to genetic deletion of CFI and CFH has also been demon-
strated in children suffering transplant-associated thrombotic microangiopathy [167] (Figure 9).
However, further confirmations of this physiopathological view are needed, in children as
well as in adults.
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A two-step pathogenetic process of TA-TMA may be hypothesized. Genetic abnor-
malities such as deficiency of complement regulatory proteins (CFI, CFH, complement
genes CFHR1-CFHR3) may be predisposing factors. Subsequently, high dose chemother-
apy, a-GVHD, factor H autoantibody, or infections will lead to endothelium damage and
complement activation [115,159,166,168].

A reduced level of NO has also been found in TA-TMA [169]. High levels of NET
predict TA-TMA; NETosi can determine complement activation and deposition of C5b-9.
In TA-TMA, the immunosuppressive agents and infections are suspected of contributing as
copathogens [170,171].

The concentration of soluble products derived from complement activation (C5b-9,
C3a) may be measured in plasma. It could help in predicting the diagnosis and severity of
TA-TMA [164,172–174].

3.6. Endothelial Dysfunction and GVHD

Conditioning and a-GVHD are linked to cytokine secretion and endothelium dysfunc-
tion. vWF levels measured after conditioning anticipate and predict GVHD [175]. A high
level of Ang-2 at the start of conditioning and later early after transplantation also predicts
GVHD and TRM. Ang-2 levels since admission are higher in patients who will develop
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a-GVHD. Ang-2 remains high in patients affected by corticosteroid-refractory GVHD, while
it is reduced in patients responding to treatment of GVHD. Endothelium damage is an
important mechanism in the physiopathology of the disease, and it is FAS driven. There are
some situations in which ED manifest during severe and protracted a-GVHD. We observed
severe ED in the gastrointestinal tract and the CNS following an episode of a severe form
of acute GVHD.

Patients with corticosteroid-refractory a-GVHD exhibited elevated serum levels of
Ang-2, sTM, HGF, and IL-8 post-transplantation, compared with patients with sensitive
a-GVHD and patients without a-GVHD (Dietrich et al. 2013). A high level of Ang-2
persisting after first-line therapy is a marker of corticosteroid-refractory GVHD [176], and
ED may explain gastrointestinal signs and symptoms in these patients. Luft hypothesized
that endothelial cell vulnerability and dysfunction, rather than refractory T-cell activity,
drive the pathophysiology of corticosteroid-refractory GVHD [22,176].

A double hit has been proposed. In patients having a high Ang-2 level at pretransplan-
tation (first hit), the occurrence of severe GVHD (second hit) will be followed by a risk of
high NRM and a poor prognosis [177]. These data underline that endothelium damage may
have an essential role in GVHD pathophysiology, especially in corticosteroid-refractory
patients (Figure 10).
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4. Therapeutic Interventions for EC Dysfunction
4.1. Defibrotide

Defibrotide is indicated in the severe form of SOS/VOD. In the INT study, the complete
remission rate that can be achieved will depend on the age and the presence of MOF, and it
varies between 40% and 70% [178]. Very severe forms of SOS/VOD have an unsatisfactory
outcome [179].

In vitro activity on endothelial cells has been extensively studied, and it can reduce
endothelial activation by lowering adhesion molecules expression and leukocyte adherence
in several experimental models [180].

Defibrotide use has been explored in TM-TMA; in a limited number of patients affected
with TM-TMA, the administration of a low dosage of defibrotide induced disease remission
in all cases [181]. In a small study (ClinicalTrials.gov NCT03384693), administration of
defibrotide as prophylaxis of TA-TMA resulted in very low NRM. The use of defibrotide

ClinicalTrials.gov
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as prophylaxis for acute GVHD in patients showing high risk has been proposed since
a pediatric study found a reduction in transplantation toxicity and a reduction in severe
GVHD [182]. In an experimental mouse model, prophylaxis with defibrotide reduces
acute-GVHD and improves survival [183].

4.2. Anti-complement Agents

Blocking the complement system with eculizumab is currently the most effective
treatment to circumvent the poor outcome in patients with severe TA-TMA [184].

In 2014, Jodelle reported that six patients were treated using eculizumab and 4/6 re-
sponded [185]. A single-center study reported eculizumab effective in 50% of adult patients,
and a-GVHD was the only factor associated with inferior results [186].

At MD Anderson, in 5 years, 10 patients received eculizumab in an uncontrolled and
retrospective study [187]. The anti-complement agent was associated with a change in
immunosuppression. The OS in the eculizumab-treated cohort was better, compared with
patients not receiving eculizumab. After transplantation, patients require modification of
the dose according to CH50.

A recent meta-analysis on 116 patients suggests that eculizumab improves overall sur-
vival and response rate in patients with TA-TMA [188]. However, randomized, controlled
trials and prospective studies are needed.

Narsoplimab is a monoclonal antibody able to inhibit MASP-2. It has been found
effective in thrombotic microangiopathy of COVID-19 patients [189]. Narsoplimab has been
studied in the treatment of IgA nephropathy, a disease in which the lectin pathway of com-
plement is involved; narsoplimab reduced the progression of this kidney disease [190,191].
Narsoplimab has also been studied in TA-TMA, and preliminary results have been reported
(EHA 2018).

Since these anti-complement agents have high costs, there is a need for diagnostic tests
that can guide after allogeneic HSCT the selection of patients to be treated.

4.3. Anti-CD20 (Rituximab)

This agent is currently employed in cases of TMA not responsive to plasma ex-
change [192].

Moreover, it is used in the setting of TMA associated with LES [193]. Some cases
of patients affected by TA-TMA and improvement after treatment with anti-CD20 have
been reported [194–196]. In recipients after transplantation, the development of antibodies
against factor H [166] might be an indication of anti-CD20 treatment.

4.4. Withdrawal of Calcineurin Inhibitors

Cyclosporin (CSA) modifies the endothelium, and it increases the synthesis of throm-
boxane A2 while decreasing the production of prostacyclin (PGI-2) [197,198].

CSA inhibits NOS [199]. Disturbances in constitutive and inducible NOS in the
vascular wall may predispose to vasospasm, contributing to hypertension and vascular
diseases. CSA inhibits angiogenesis induced by vascular endothelial growth factor (VEGF);
VEGF activates the transcription of COX2, and CSA [175] inhibits this effect of VEGF on
cyclooxygenase (Cox)-2 [200]. On this basis, withdrawal of CSA or switching to tacrolimus
has been advocated in patients affected by TA-TMA [201]. However, other data do not
support the usefulness of this practice [159].

4.5. Therapeutic Plasma Exchange

Therapeutic plasma exchange (TPE) has been widely used in treating TA-TMA since
the procedure is active in TTP disease (Moschowitz’s disease). However, its efficacy
in the TA-TMA setting is limited, with response varying in the literature from 25% to
75% [202–204]. Clinically, the improvement is observed on the serum level of LDH and
transfusion requirement, but survival remains very poor [204]. In TA-TMA patients, TPE
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is not able to prevent evolution into chronic kidney disease [205]. Moreover, the rate of
complication of TPE is significant [206–208].

4.6. Thrombomodulin

TM has been found clinically helpful as a therapy for DIC in children [112–114] and
for ARDS [108]. After allogeneic hematopoietic stem cell transplantation, a study reported
that TM administration significantly reduced a-GVHD and ameliorated OS [111]. This
result has been confirmed in a subsequent study [209]. TM has been found effective, after
allogeneic HSCT, in cases of TA-TMA, SOS/VOD, and ES [210–216].

4.7. Statins

They are active in various diseases based on endothelial dysfunctions, such as car-
diovascular disease and rheumatoid arthritis [217]. Statins have pleiotropic effects and
can increase NO production in EC [218,219]. In a mice model, statins ameliorate the
histopathologic signs of GVHD injury [189]. Statins increase the levels of Ang-1 [220]. In
humans, prophylaxis using pravastatin after allogeneic HSCT reduces the incidence of
SOS/VOD [221].

4.8. Angiopoietin1 Mimetics

Vasculotides is an Ang-1 mimetic provided with an anti-inflammatory effect. In
animal models, it has been found to be helpful in various conditions such as hemor-
rhagic shock, pneumonia [222,223], strokes [224,225], and in preventing pathologic vascular
leakage [226,227].

4.9. Alpha-1Anti-Trypsin (A1AT)

A1AT has an inhibitory effect on the expression of genes induced by TNF-alpha in
endothelial cells, thereby reducing endothelial cell activation [228]. A1AT is also able to
reduce the harmful effects of heme on EC [229]. Additionally, A1AT has immunoregulatory
effects and decreases the production of IL-8, IL-6, TNF-a, and IL-1b. It promotes the
differentiation and expansion of FoxP3+ regulatory T cells (Tregs).

A1AT has a demonstrated role in treating corticosteroid-refractory acute GVHD. Their
anti-inflammatory and immunoregulatory effects merit further studies in treating compli-
cations based on ED in the transplantation setting [230].

5. Conclusions and Working Hypothesis

ED is recognized in many transplant-associated complications as VOD, TAM, CLS, ES,
and a-GVHD. Pathogenic mechanisms are different among these complications, and we
described only some of the known factors involved. In fact, the role of other factors (such as
heparanase and metalloproteinase) needs to be studied [231]. Moreover, the heterogeneity
of EC across different organs is a factor that limits the generalization of the present status
of the knowledge.

The spectrum of complications to which ED contributes may even be broader than
presently accepted. EC dysfunction can be the basis for the increased rate of cardiovascular
disease found in a later phase of HSC transplantation [157].

Furthermore, ED may have a role in other transplant-associated complications, such
as posterior reversible encephalopathy syndrome (PRES). PRES is a neurologic disease
characterized by brain edema, which is worsened by CSA treatment. It may be considered
an endothelium disease of the vascular bed of the central nervous system [22].

The endothelium is involved in the production of T-regulatory lymphocytes [232] and
hence in the generation of tolerance. Endothelium dysfunction, therefore, could have a role
in those clinical situations marked by a delay in the development of tolerance, such as the
so-called late-onset a-GVHD.

Moreover, ED may have a role in the physiopathology of poor marrow function. This
is a severe complication arising late after transplantation. The post-transplant poor graft
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function is associated with damage in the hematopoietic niche [233]. Since the niche has a
vascular component [234], it can be hypothesized that endothelium dysfunction may be
involved in poor graft function.

All complications described here based on ED may evolve or progress to multiorgan
failure syndrome (MOF), despite new and specific treatment. This may be explained by
an auto-perpetuating mechanism, sustaining endothelial damage independently from the
initial noxae. Endothelium activation may trigger a complex cascade of parallel inflam-
matory mediators that lead to end-organ damage independent of the initial mechanism of
ED. Although this, as a general mechanism, can occur in other clinical settings, it can be
hypothesized that alloimmunity greatly facilitates this process. Therefore, the goal is to
prevent ED via augmentation of endothelial repair.
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