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Abstract: The recent covid crisis has provided important lessons for academia and industry regarding
digital reorganization. Among the fascinating lessons from these times is the huge potential of data
analytics and artificial intelligence. The crisis exponentially accelerated the adoption of analytics
and artificial intelligence, and this momentum is predicted to continue into the 2020s and beyond.
Drug development is a costly and time-consuming business, and only a minority of approved drugs
generate returns exceeding the research and development costs. As a result, there is a huge drive
to make drug discovery cheaper and faster. With modern algorithms and hardware, it is not too
surprising that the new technologies of artificial intelligence and other computational simulation
tools can help drug developers. In only two years of covid research, many novel molecules have
been designed/identified using artificial intelligence methods with astonishing results in terms of
time and effectiveness. This paper reviews the most significant research on artificial intelligence in de
novo drug design for COVID-19 pharmaceutical research.

Keywords: artificial intelligence; machine learning; drug design; COVID-19; structure-based drug
design; ligand-based drug design

1. Introduction

In December 2019, in Wuhan, China, a was patient diagnosed with atypical pneumonia.
Just a few months later, on 11 March 2020, the COVID-19 pandemic was announced by
the World Health Organization. Today, it is still a considerable concern for humanity [1].
A problematic aspect for clinicians to address is that the disease caused by the virus can
cause a broad spectrum of symptoms and disease outcomes. In most cases, the virus
results in common influenza-like symptoms (cough, fever, and fatigue) or even remains
asymptomatic. However, in 10 to 20% of the patients, inflammation results in more
complicated conditions that have resulted in more than 5.5 million deaths to early 2022 [2].
Because of the COVID-19 pandemic, the research on developing new treatments/therapies
and vaccines against the virus, including drug repurposing and de novo design, gained
remarkable significance and implications at the global level, and time plays a fundamental
role in this field [3,4]. Drug development is long and expensive process; it is estimated that
during the years 2000 to 2015, the average cost of developing a newly approved drug was
over USD 2.5 billion per single approved molecule. Commonly, it takes up to 15 years from
the design of a single drug to reach the market, and less than 15% of selected compounds
that are tested on humans, are later proved as safe and effective and can be finally used [5,6].
It sounds reasonable that humanity can’t wait 15 years for the development of a new
molecule for COVID-19 treatment and in this case, the computational chemistry applied in
drug design is helping accelerate research and providing stunning results.

AI refers to machines, mainly computers, working like humans. In AI, machines
execute tasks such as speech recognition, solving problems, and learning. Machines can
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work and act like humans if they have enough instruction and knowledge. AI systems
can be divided into four groups based on machines’ ability to use past experiences to
predict future decisions: (1) Machine learning refers to AI where machines are not explicitly
programmed to perform tasks, but they learn and improve from training automatically.
Deep learning is a subdivision of machine learning based on artificial neural networks
for predictive analysis. (2) Natural language processing (NLP) is the interaction between
computers and human language. (3) Automation and robotics aim to allow monotonous
and repetitive tasks to be performed by machines. (4) Machine vision—machines can
capture visual information and then analyze it [7]. AI has been used in applications to solve
specific problems throughout industry and academia. Like electricity or computers, AI is a
general-purpose technology that has a multitude of applications. It has enhanced language
translation, image recognition, credit scoring, e-commerce, and many other aspects of
our lives.

In the field of computer-aided drug discovery (CADD), the scientific community
worldwide is regularly developing new technologies and algorithms to obtain hit com-
pounds in a short time and reduce the overall cost [8]. Nowadays, the introduction of
artificial intelligence (AI) and all the related techniques such as deep learning (DL), machine
learning (ML), and other classical computational chemistry tools to drug discovery has had
a significant effect on the success rate and velocity of novel pharmaceutical identification [9].

AI and classical CADD tools can be used alone or combined to produce new ap-
proaches that integrate a broad range of algorithms with enhanced prediction capabilities.
CADD is classically classified into two methods: structure-based drug design and ligand-
based drug design. Both are faces of the same coin and massively rely on force fields,
scoring functions, and algorithms to evaluate and rank the studied molecules’ energy
contribution in the targeted macromolecular biological system. While computer-aided
structure-based drug design (e.g., docking) depends on the actual 3D structure of the
targeted binding site of the targeted receptor protein to understand the stabilizing interac-
tions at the molecular level between the studied ligand/receptor system, the ligand-based
drug design (e.g., 3D-QSAR modeling) approach relies on the recognition of a database
of already-known ligands interacting with the target receptor. Both structure- and ligand-
based technologies have several success stories and play key roles in the drug modern drug
discovery process [10–14]. In this context, several of these approaches have recently been
employed to research novel drug candidates against COVID-19. The absence of complete
protection from vaccination and powerful drugs for the treatment of the infection, the muta-
bility of the virus, and the mortality rate impel the fast discovery of novel molecules active
against COVID-19, and CADD is believed to be a valuable tool to achieve this goal [15].
Moreover, AI and ML have been broadly exercised from the beginning of the pandemic
in discovering new treatments, vaccines, and drug repurposing, and helping clinicians in
pharmaceutical-related big-data analysis and explanation for a better understanding of the
outcome of the disease. Ongoing evidence shows that AI is being exploited to find potential
novel molecules, repurpose drugs, find novel drug targets, and design novel and more
effective vaccines. This review describes the current state of the art and the stunning results
of AI and ML in the last two years of research in the field of de novo drug design since
the COVID-19 pandemic started. Despite occasional difficulty in classification due to the
multidimensional structure- and ligand-based approaches used, we divided the review into
three main sections reflecting the application of the AI in each paper (i.e., if most AI used is
structure- or ligand-based for the multidimensional approaches), a section regarding de
novo vaccine design is also presented.

2. Structure-Based Artificial Intelligence Methods for Small Molecules

The SARS-CoV-2 spike protein (S protein) is the leading mediator of viral entry into
cells, and thereby infection, by binding the human angiotensin-II converting enzyme
(ACE2) and therefore represents an attractive target for drug therapies [16]. Recently,
Srinivasan et al. developed a surrogate multi-task neural network (MTNN) model that
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replaces docking simulation in the finding of new molecules targeting the spike pro-
tein [17]. Monte Carlo algorithms and recurrent neural networks (RNN) were used to
explore the chemical space of millions of potential molecules using SMILES input. In this
way, they discovered 97,973 new molecules, not included in the existing starting databases.
The molecules were docked using Vina for their ability to bind the pocket region of the
SARS-CoV-2 S-protein/ACE2 complex (SARS-CoV-2 S-protein (NCBI Reference Sequence
YP_009724390.1)/ACE2 receptor (PDB ID: 2AJF) [18]. The docking calculation search space
was chosen as 1.2 nm × 1.2 nm × 1.2 nm and includes the binding pocket located at the
S-protein/ACE2 interface [19].

Several molecules with good scores were selected and compared to FDA-approved
drugs and the BindingDB dataset. Despite identifying compounds with great binding
affinity, MTNN performance had to be improved using active learning and extending the
training data to have a correlation between the SMILES string and Vina scores considering
the larger domain of SMILES space. This method increased the number of molecules
selected to over 300,000. Of these, 200 promising molecules were chosen using Vina scores
as selection criteria.

This method accelerated the exploration of the vast chemical space represented by
SMILES strings to evaluate structural features and discover structural similarities between
top-performing candidates.

Many of the reported computational studies have selected molecules with high affinity
to the spike protein. However, these studies are limited to the receptor ACE2/protein spike
interface [19]. This represents a limitation since it dramatically reduces the possibility of
identifying potential allosteric inhibitors of ACE2-spike complex formation, leading to
identification of a limited number of potentially active compounds.

To overcome this, a new machine learning approach, namely SSnet, was used to
identify new potential drugs by screening a library of approved drugs from the DrugBank
and ZINC databases [20] targeting two different conformations (open and closed) of the
ACE2 receptor as well as ACE2 in complex with the S1 domain of the S protein, that is
the protein responsible for binding with human cells [21]. After cross-validation of the
hits using the Autodock Vina scoring function [22], the SSnet approach was extended to
a library of 750,000 molecules in BindingDB to gain additional information regarding de
novo drug design.

After that, to accelerate the identification of high-affinity scaffolds to test for their
in vitro activity, a web interface, where molecules are grouped according to their similarity
on a 2D map and colored based on binding affinity to the protein, was developed. This
system allows selecting a certain point of the interface to explore the effect of singular
scaffolds and functional groups on the binding score or affinity. Moreover, this approach
can be applied to other therapeutical targets besides COVID-19.

SARS-CoV-2 3CLpro main protease (Picornain 3C-like protease, also referred to as Mpro

for the main protease) is a homodimeric cysteine protease representing an attractive target
for trans-variant activity since no mutations have yet been observed in this protein.

High-throughput virtual screening (HTVS) coupled with ML experiments have been
performed to obtain potential virtual inhibitors against the targeted protein rather than
trusting commercial “corona-focused libraries”. The system was associated with an ML
classification experiment where each compound is indexed into the chemical space of
Mpro inhibitors, viral protease inhibitors, or a new chemical space. This approach has the
advantage of taking into consideration potential drugs that would otherwise have been
omitted and gaining information into the possible mechanism of action of the selected
compounds [23]. Initially, the ZINC 15 library [24] was employed, and over 9 million com-
pounds with a molecular weight below 200 g/mol were selected. The target SARS-CoV-2
Mpro crystal structure downloaded from the database has the PDB ID 6Y7M [25]. HTVS
docking was performed using CmDock docking calculations considering the QuickProp,
QPlogS descriptor that indicates possible soluble compounds, and 200 hits were selected.
A set of Mpro inhibitors and viral cysteine protease inhibitors collected in the ChEMBL
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database with experimental IC50 < 100 µM were selected, and a set of 208 chemical descrip-
tors were calculated to organize the compounds from the perspective of their representative
chemical space [26].

Using this HTVS method, a set of top-scoring compounds that could inhibit SARS-
CoV-2 main protease were identified for further compound prioritization in biological
evaluation experiments (Table 1).

Table 1. Selected top-scoring compounds by HTVS on the SARS-CoV-2 main protease.

n Structure CmDock Docking Score

1 −32.51

2 −29.02

3 −26.80

4 −25.58

5 −25.53

6 −25.05

7 −24.76

8 −24.51
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Table 1. Cont.

n Structure CmDock Docking Score

9 −24.17

12 −24.01

11 −23.98

12 −23.61

13 −23.53

14 −23.26

15 −23.18

A different research group screened a library of molecules for their potential ability
to inhibit SARS-CoV-2’s main protease (Mpro) and the receptor-binding domain (RBD) of
the spike protein by using the molecular docking software AutoDock Vina [27]. Mpro is
a peculiar cysteine protease of the coronavirus family and has a crucial role in mediating
viral replication and transcription. The absence of a homologous human protease makes
this protein an important target against COVID-19 [28].

The studies included 7675 molecules from the African Natural Product Database
(AfroDB) and North African Natural Product Database (NANPDB), 43 FDA-approved
antivirals, and 940 compounds derived from a machine learning study on viral Mpro [29].
AfroDB and NANPDB 470 were filtered using an ADMET predictor in order to include in
the study only the compounds with low toxicity and molecular weight between 250 and
350 g/mol.
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A library of 2430 compounds was selected and docked for the Mpro-ligand complex and
RBD-ligand complex using Autodock Vina. A total of 36 compounds with binding affinities
≤−7.5 (kcal/mol) against both RBD and Mpro were selected and characterized for their binding
affinity. After that, a predictor of biological activity using a Bayesian-based approach was
accomplished and led to identifying 6 novel potential bioactive molecules. The leads selected
NANPDB2245, NANPDB2403, fusidic acid, ZINC000095486008, ZINC0000556656943, and
ZINC001645993538 (Figure 1) were subjected to molecular mechanics simulations involving
molecular mechanics Poisson–Boltzmann surface area (MM/PBSA) calculations that showed
stable protein–ligand complexes with all the compounds with free binding energies <−3.58
kcal/mol with each receptor. The compounds identified showed good pharmacological profiles
with little toxicity. However, in vitro studies are still needed to corroborate the findings.

Figure 1. Ligand ID and structures of selected hit compounds.

Recently, Born et al., devised a new method for discovering and synthesizing drugs
against SARS-CoV-2 [30]. This procedure merges biology and chemistry for target-driven
molecular design associated with an automatic synthesis plan generator and can be virtually
applied to any protein target. The approach uses deep generative models that implement a
conditional molecule generator to propose drug candidates by exploring the latent space of
proteins and small molecules. The promise of this approach is the possibility to generalize
to unseen targets.

In this way, a conditional molecular generator can produce novel structures expressly
designed to target a protein of interest [31]. In this work, 41 SARS-CoV-2-related protein
targets, as labeled in UniProt, have been retrieved, among which Mpro and spike are the
most targeted ones.

The first step of the procedure consists of encoding the selected protein sequence in a
continuous and compressed latent space. The latent representation of the profile is decoded
through the molecular decoder of trained variational autoencoders (VAE), generating valid
molecules as drug candidates. Prediction studies of the toxicity were also performed by
employing the Tox21 database [32], and the molecules were screened against 12 toxicity
assays of nuclear receptor and stress response pathways. Finally, they were divided into
toxic and non-toxic. The selected compounds’ binding affinity was predicted using a
multimodal deep learning model that classified compound–protein interaction samples as
binding or non-binding.

To assess the feasibility of synthesizing the generated compounds, the retrosynthetic
pathways of a subset of candidates for each target were assessed using the interface of
IBM RXN (https://rxn.res.ibm.com/, accessed on 10 February 2022) [21]. For half of the

https://rxn.res.ibm.com/
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generated molecules, the synthetic route could be accomplished in one or two steps starting
from commercially available materials indicating that they are attractive drug candidates.

The founders of COVID Moonshot, a non-profit, open-science consortium of scientists
from around the world dedicated to discovering globally affordable and easily manufac-
tured antiviral drugs against COVID-19, demonstrated the utility of a de novo design using
machine learning with synthesis route prediction [33]. The purpose of the study was to
generate potential new drugs targeting the main protease (Mpro) of the novel coronavirus.
In fact, while classic approaches tend to modify existing compounds, exploring limited
chemical space, this machine learning method searches in a larger chemical space. The
inconvenience of this approach is the expense of synthetic accessibility, but this can be
overcome using machine learning to predict the synthetic route.

The learning-to-rank machine learning model [34] here reported consists of a classifier
that predicts the activity of a molecule compared to another compound by considering
the difference in pharmacophore fingerprint. The output is plotted in a curve reporting
the relative activities of the considered compounds. The ligands’ ranking is better than
a model that directly learns IC50. The model used for training was the FastAI Tabular
model (J. Howardet et al., https://github.com/fastai/fastai, accessed on 10 February 2022)
with the initial input features composed by Morgan, Atom Pair, and Topological Torsion
fingerprints implemented in RDkit (RDKit: Open-Source Cheminformatics Software, https:
//www.rdkit.org, accessed on 10 February 2022).

After a selection of reasonable chemical perturbations, a fragmentation of synthetically
accessible bonds, including amides and aromatic C–C and C–N, were performed, generating
8.8 million molecules that were compared to the most potent molecule in the dataset. The
manifold platform was used to predict the synthetic route prediction of the identified
compounds (https://postera.ai/manifold, accessed on 10 February 2022). Finally, the best
five predicted molecules with no more than 4-step synthesis prediction were synthesized
and evaluated for their ability to inhibit Mpro by fluorescence assay and are reported in
Table 2, together with the most potent molecules obtained from the training set. Compound
16 that showed the best IC50 was also tested against OC43 coronavirus in a live-virus assay
showing low cytotoxicity and discrete activity toward the virus (EC50 = 13 µM).

The Oak Ridge National Laboratory Summit supercomputer was used for in silico
drug discovery using enhanced sampling molecular dynamics (MD) and assembly docking
using the popular docking program Autodock Vina [35]. The Summit supercomputer is
currently the fastest in the United States, hosted at the Oak Ridge Leadership Computing
Facility (OLCF). Summit is an IBM AC922 system consisting of 4608 large nodes, each
with six NVIDIA Volta V100 GPUs per node. The temperature replica exchange molecular
dynamics (T-REMD) routine [36,37], which was chosen here for the MD calculations (see
below), uses the interconnect not only to allow for parallelization of a single simulated
molecule but also to communicate between separate replicas of the system, each carried
out at a different temperature, and performs exchanges between replicas to accelerate the
conformational sampling of the structures [38].

The 24 systems analyzed comprise nine protein domains. Two of these, RBD of protein
S (spike) and the N-terminal region of protein N (nucleocapsid), are structural domains
that are bound within the virion. Protein N is used for packaging the viral genome and is
essential for virion assembly [39]. The remaining seven domains come from non-structural
proteins (NSPs) 3, 5, 9, 10, 15, and 16, which form the replication complex and are involved
in many key tasks that create new viral particles (Table 3) [40].

https://github.com/fastai/fastai
https://www.rdkit.org
https://www.rdkit.org
https://postera.ai/manifold
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Table 2. The 5 compounds with predicted routes < 4 steps. The top 3 compounds from the training
set, with potency and cytotoxicity measurements.

Top 5 predicted compounds

Top 3 training set compounds

Table 3. 24 different model systems.

Protein/System (PDB Code)

S (spike) Protein Receptor Binding Domain
(RBD)/“Apo” (PDB ID: 6W41)

MPro/dimer, CHARMM-GUI default
protonation (PDB ID: 6Y2E)

MPro dimer/HIE protonation variant
(PDB ID: 6WQF)

NSP15 (endoribonuclease)/hexamer
(PDB ID: 6VWW)

NSP10/monomer (PDB:6W4H)
N (nucleocapsid) N-terminus

phosphoprotein/tetramer (PDB ID: 6M3M)
NSP9/monomer (PDB ID: 6W4B)

PLPro/monomer “charged” protonation
variant (PDB ID: 6W9C)

S Protein RBD/Complexed with ACE2 (PDB
ID: 6W41)

MPro/dimer, “charged” protonation variant
(PDB ID: 6WQF)

MPro monomer/HID41 protonation variant
(PDB ID: 6WQF)

NSP15 (Endoribonuclease)/monomer (PDB ID:
6VWW)

NSP16/monomer (PDB:6W4H)
N (nucleocapsid) N-terminus phosphoprotein/
tetramer complexed with Zn (PDB ID: 6YVO)

NSP9/dimer (PDB ID: 6W4B)
PLPro/monomer “neutral” variant (PDB ID:

6WRH)

MPro/monomer, CHARMM-GUI default
protonation

(PDB ID: 6Y2E)
MPro monomer/HIE41 protonation variant

(PDB ID: 6WQF)
MPro dimer/HID41 protonation variant (PDB

ID: 6WQF)
NSP10:NSP16 Complex (Methyltransferase)

(PDB ID: 6W4H)
N (nucleocapsid) N-terminus
phosphoprotein/monomer

(PDB ID: 6M3M)
N (nucleocapsid) N-terminus
phosphoprotein/monomer

alternate crystal structure (PDB ID: 6YVO)
NSP3 ADP ribose phosphatase/asymmetric

unit
(PDB ID: 6W02)

NSP3 ADP ribose phosphatase (PDB ID: 6W02)
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Two different docking databases were used—a potential ligand database merging the
contents of SWEETLEADS [41] and the NCI-diversity database, yielding 13,757 compounds,
and the Enamine database using an accelerated version of Autodock (Autodock-GPU).

The authors used an experimental screening database of 2900 chemicals tested by
the National Institutes of Health, National Center for Advancing Translational Sciences
(NCATS) and listed at https://opendata.ncats.nih.gov/covid19/databrowser, accessed on
10 February 2022), to compare with positives identified experimentally by NCATS.

Interestingly, all four experimentally tested compounds (i.e., 100% of the tested com-
pounds in the top 10 lists) were strongly active.

The ensemble docking performed affects database reuse limited to approximately
10,000 compounds. Many of these compounds are expected to be quite promiscuous in
binding to targets. Two of the compounds identified in the richest 1% of the prelimi-
nary protein S screening have been reported in two registered clinical trials (quercetin
and hypericin).

Pirolli D. et al., with the support of machine learning approaches, reported a structure-
based virtual screening as an effective strategy to discover inhibitors of protein–protein in-
teractions (PPIs) between SARS-CoV-2 RBD and human ACE2 using the ZINC database [42].

Using different ligand- and structure-based approaches, a customized virtual screening
(VS) strategy was set up. The first step of the VS strategy was the selection of a library
focused on small molecule PPIs from a dataset of 2 million compounds, using a ligand-
based approach capable of recognizing chemical characteristics and scaffolds common to
known modulators. For this purpose, a convolutional neural network (cNN) was trained
to obtain a QSAR model capable of identifying potential PPI modulators within a virtual
library of unknown molecules. The molecules classified by the cNN-based QSAR as
potential PPI modulators were further filtered by the expected toxicological properties to
discard compounds harmful to human health. The resulting virtual library was hooked to
ACE2 to identify compounds with the best binding affinity for the spike protein interaction
surface. The dataset of 30,029 ligands obtained from QSAR modeling and toxicity analysis
against the druggable site-4 pocket region was used to screen for effective inhibitors of
the protein–protein interactions of the SARS-CoV-2 RBD/ACE2 tip. Then a virtual Glide
screening in SP mode was performed, and the next phase was done by XP docking. Based
on the docking score, the first 15,015 classified ligands (50%) were selected and reassessed
with Prime MM-GBSA to estimate their binding free energy. The compounds were then
filtered based on distance constraints by selecting only small molecules within 4.5 Å away
from any atom of Tyr83 and Gln24 residues. The remaining 9730 molecules were then
grouped based on their diversity, and the resulting 973 virtual hit compounds were further
assembled into 66 clusters using interaction fingerprints.

The results indicated that most of the compounds screened share a high similarity
(0.6–0.7) with the training set.

Four compounds were selected as potential ACE2 surface binders capable of prevent-
ing RBD spike recognition and thus infection (Table 4). The presence of an aromatic region
facilitates the interaction with ACE2 Phe28 (compounds 2 and 3) and Tyr83 (compounds 1
and 4). Furthermore, ACE2 Gln24 and Tyr83 contribute to the stabilization of ligands 1, 2,
and 4 within the binding site by forming hydrogen bonds to their hydroxyl groups. Com-
pound 1 is stabilized by the hydrogen bonds formed by the catechol with the oxygen atom
Gln24 and the cycloheptyl fraction with Tyr83. Similarly, compound 2 is hydrogen-bonded
to Tyr83 and Gln24 oxygen atoms by its hydroxyl and carbonyl oxygen atoms.

https://opendata.ncats.nih.gov/covid19/databrowser
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Table 4. Structures and calculated free binding energies (MM-GBSA score, in kcal/mol) of four
top-ranking compounds.

Name Structure IUPAC Name MM-GBSA Score
(kcal/mol)

Compound 1

N-[(1-
hydroxycycloheptyl)methyl]-

N-methyl-2,3-
dihydroxybenzamide

−42.21

Compound 2

[({[4-(dimethylamino)phenyl]-
methyl}carbamoyl)-

methyl][2-(2-
hydroxyethoxy)ethyl]-

methylazanium

−42.07

Compound 3
N-[({[4-(diethylamino)phenyl]-

methyl}(methyl)carbamoyl)-
methyl]-2-acetamidoacetamide

−40.95

Compound 4

2-{1-[({[(2-
hydroxyphenyl)methyl]-

carbamoyl}amino)methyl]-
cyclohexyl}acetamide

−39.5

3. Ligand-Based Artificial Intelligence Methods for Small Molecules

F. Pereira et al., succeeded in predicting five new inhibitors against SARS-CoV-2
Mpro using a CADD method based on a quantitative structure-activity relationship (QSAR)
classification model that was built from 5276 organic molecules extracted from the ChEMBL
database. Virtual screening was then performed using 11,162 marine natural products
(MNPs) retrieved from the Reaxys® database. From the QSAR approach, 494 MNPs were
selected and subsequently subjected to molecular docking against the Mpro. Among the
evaluated compounds, five MNPs have been proposed as the most promising marine drugs
as inhibitors of SARS-CoV-2 Mpro, among them a benzo[f]pyrano [4,3-b]chromene (Reaxys
ID 7450892), notoamide I (Reaxys ID 19384758), hemindole SB beta-mannoside (Reaxys
ID 26845562), and two derivatives of bromoindole (Reaxys IDs 10,714,788 and 10720065)
Figure 2 [43].

Figure 2. MNPs have been proposed as the most promising marine drug leads as inhibitors of SARS-
CoV-2 Mpro.Combining a generative recurrent neural network model with transfer learning methods
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and active learning algorithms, R. Yassine et al. designed a novel set of small molecules capable of
effectively inhibiting the 3CL protease in human cells [44]. The novelty of this work is the use of
active learning methods with generative recurrent neural networks (RNNs) containing long-term
memory cells (LSTM). The active learning method facilitates the selection process by focusing on the
areas of the chemical space that have the best chance of success, considering structural novelties. The
authors built a database consisting of multiple datasets such as FDA-approved drugs (from the ZINC
database), natural products (from SuperNatural), and a manually developed database representing
drug-like bioactive molecules. In the first phase of this study, by applying the RNN deep learning
methodology, the LSTM-based RNN model was created to generate reliable and high-quality SMILES
to design new drugs. Subsequently, molecules structurally similar to drugs with known activity
against the specific SARS-CoV-2 target were generated. In this way, they were able to find a model
capable of discovering new drugs using fragment-based drug discovery (FBDD) to create a library
containing a series of SMILES inspired by the well-known compounds. The model generated 25,000
small molecules from the learned chemical space as described above. After removing duplicates
and identical molecules from the database used for training, the remaining dataset consisted of
22,173 molecules. These molecules were then subjected to other filters such as physicochemical
properties, drug similarity, and synthetic accessibility, resulting in a set of 6962 molecules. The
generated molecules were then screened for affinity to the 3CL protease. After the virtual screening, a
total of 41 molecules were obtained, with a virtual screening score of less than −7.0 kcal/mol. Among
these, four molecules resulted in a binding affinity score lower than −18 kcal/mol (Figure 3).

Figure 3. The generated molecules by R. Yassine et al., with the lowest binding affinity scores.

The reported model developed by F. P. Silva-Jr et al., also outperformed the Chemprop
model available for free on an external test set of fragments shielded against SARS-CoV-2
Mpro [45]. The method is divided into three main phases—formation and validation of
the generative model based on general chemistry, development of the model for Mpro

chemical space of SARS-CoV-inhibitors, and formation of a classifier for the prediction of
bioactivity using transfer learning. Using the improved classifier to predict the bioactivity
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of the 70,000 valid SMILES, the authors classified 1697 active molecules, and the Uniform
manifold approximation and projection (UMAP) plot showed good to optimal overlap
between the predicted results and the actual value of inhibition for Mpro inhibitors in the
studied chemical space. Among the resulting molecules, 20 compounds were classified as
high-confidence hits, with probabilities ranging from 0.99 to 1.0. These molecules found to
be potential inhibitors were then subjected to a docking simulation using the crystalline
structure of SARS-CoV-2 Mpro (PDB: 6W79). Nine compounds showed binding poses
similar to experimentally validated inhibitors in X-ray crystal complexes with Mpro. These
molecules include three benzotriazoles and four benzothiazolylketones, a peptidomimetic,
and an N-(2-pyridyl) acetamide derivative (Figure 4).

Figure 4. The nine compounds reported by F. P. Silva-Jr et al., that showed similar binding positions
to the experimentally validated inhibitors in X-ray crystal complexes with Mpro.

Roy et al. recently identified new chemical entities (NCEs) starting from a dataset of
approximately 1.6 million drug-like small molecules from the ChEMBL database, which
were collected for pre-training of a generative model [46]. The set of molecules obtained
after applying the physicochemical property filters was screened using RDKit by applying
the following four filters: Pan Assay Interference Compounds, the BRENK filter, the NIH
filter, and the ZINC filter. These filters use rules to avoid toxic compounds and synthetically
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impractical molecules. Potential NCEs for synthesis and testing against SARS-CoV-2 were
finally subjected to docking simulation and selected using a virtual screening score cutoff
of −8.5 kcal/mol. The results showed that 5 of the top 15 compounds have a high virtual
screening score and a remarkable similarity to existing protease inhibitors, notably one of
these NCEs possessed a higher virtual screening score of −9.1 kcal/mol (Figure 5).

Figure 5. NCEs with the highest virtual screening score and a remarkable similarity to existing
protease inhibitors.

The unique approach to data curation coupled with random forest (RF) analysis by K.
Cooper et al., produced a specific target and validated predictive fingerprints (PFFs) that
have a high predictability value on multiple targets such as plasma kallikrein, HIV protease,
NSP5, NSP12, AT-1, and the JAK family. This broad applicability to different biologically
relevant targets (protease, RNA polymerase, G protein-coupled receptor (GPCR), tyrosine
kinase, and a phenotypic assay) as well as to different chemotypes within a target is an
important strength and differentiator of the applied methodology. The capability of this
methodology allows for each target to create a binary decision tree for inactive or active
compounds or a ternary decision tree for weakly active, moderately active, and highly
active compounds also suggests that the models could be used for virtual screening of
libraries of target-specific compounds to select the most active compounds for synthesis
and/or clinical testing. Regarding the SARS-CoV-2 target, about 5600 FDA-approved
drugs were examined in this study. Molecules that showed more than 75% inhibition were
considered active, and among the wide range of FDA-approved drugs, 267 were identified
as active. Leveraging the bioactivity data of ChEMBL and a subset of the data, it was
trained on physicochemical characteristics from the set of 110 chemical properties, and a
set of 868 compounds was then used to establish a binary classification model capable of
predicting whether a molecule was active or inactive in the test; overall the model was able
to identify the bioactivity with an accuracy of 65% [47].

E. Glaab et al., reported a combined virtual screening study, molecular dynamics (MD)
simulation, machine learning, and in vitro experimental validation analysis, which led
to the identification of small molecule inhibitors of 3CLpro with micromolar activity and
to a pharmacophore model. The methodology consisted of a filtering system involving
screening multiple receptors and ligands in combination with a final MD simulation to
confirm the binding stability of the selected compounds. The structural screening was
then integrated with machine learning-based screening for compound selection using a
molecular-descriptive dataset derived from known ligands and non-ligands for 3CLpro. The
best compounds selected using these in silico screening methods were then experimentally
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evaluated to determine the subset of stable ligands and their 3CLpro inhibitory activity
using the in vitro Forster-type resonance energy transfer (FRET) assay. From the various
screening analyses conducted, 95 molecules were identified and tested. Seven of these
compounds were confirmed active, and one of them showed the lowest IC50 value of
31 µM [48].

The deep learning (DL) model can generate 1D or 2D sequences ligands structures.
However, rational drug design requires 3D ligand structures that target the crystalline
structure of proteins. To solve this problem, Q. Bai and coworkers developed MolAICal
software, which allows to generate 3D drugs in the 3D pocket of protein targets by combin-
ing the merits of the deep learning model and classical algorithm. The software essentially
consists of two modules. In the first one, FDA-approved drug fragments are used to train
the Wasserstein-based deep learning model generative adversarial networks (WGANs).
The generated fragments of the deep learning model are further used to grow the 3D
ligands in the protein pocket. In the second module, drug-like molecules from the ZINC
database are used to train the WGAN-based deep learning model. Then the affinities
between the generated molecules and the proteins are evaluated through molecular dock-
ing experiments with AutodockVina. The membrane protein glucagon receptor (GCGR)
and the non-membrane target SARS-CoV-2 Mpro were chosen to analyze the drug design
capabilities of MolAICal. In this way, the software can generate various ligands that have
an ever-higher 3D structural similarity with the ligand crystallized in the active site of
GCGR or SARS-CoV-2 Mpro [49].

Mekni N. et al., developed a machine learning approach using support vector machine
(SVM) classification, to share new knowledge for designing novel Mpro inhibitors from a
dataset of two million commercially available compounds. The model was able to classify
two hundred new chemotypes as potentially active against the viral protease [50].

Feature selection was made by implementing a python3 script using the Sklearn li-
braries. The script is available in the GitHub repository (https://github.com/NedraMekni/
COVID-19, accessed on 10 February 2022).

The selection of the characteristics was based on the training set, with the aim of
identifying the crucial molecular descriptors able to explain the possible correlation be-
tween the activity of the Mpro inhibitors and their chemical structures, implemented the
elimination of the recursive characteristics of the random forest (RF-RFE) in order to select
relevant molecular descriptors [51], leading to the automatic optimization of the number
of features to be selected and to the definition of the optimal number of decision trees
to build the forest. Compounds labeled as active by SVM were subsequently evaluated
through consensus docking studies on two PDB structures, and their binding modes were
compared with known protease inhibitors. Of the 25 facilities analyzed, only five (5RF6,
5RGW, 6WCO, 5R82, and 6W79) met the criteria. On these five PDBs, factor B (mean of the
PDB B-value) was checked to assess the quality of the protein structure.

The five best compounds selected by consensus were then subjected to molecular
dynamics to investigate the stability of the binding interactions.

MD simulations at 200 ns were performed on the two best performing PDBs (6WCO
and 5RGW) to verify the stability of the interactions recovered within the crystal structure.

The five best compounds selected by consensus were then subjected to molecular
dynamics to investigate the stability of the binding interactions. It should be noted that the
compounds selected by SVM showed all the essential interactions reported in the literature.

Joel Kowalewski and Anandasankar Ray, collected test data from 65 known human
target proteins that could interact with SARS-CoV-2 proteins, including the ACE2 recep-
tor [52]. Next, they trained machine learning models to predict the inhibitory activity
and used them to examine FDA-registered chemicals and approved drugs (~100,000) and
~14 million purchasable chemicals. The results were then filtered for mammalian toxicity
and vapor pressure. Potential volatile candidates were proposed as drugs for inhalation
therapies as the nasal cavity and airways are the first bottlenecks for infection. They also
identified some candidates that may act on multiple targets.

https://github.com/NedraMekni/COVID-19
https://github.com/NedraMekni/COVID-19
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S. Ekins et al., implemented several machine learning methods to develop predictive
models from recent in vitro SARS-CoV-2 inhibition data and used them to prioritize addi-
tional FDA-approved compounds for in vitro testing selected from our in-house library
of compounds [53]. From the compounds predicted using a Bayesian machine learning
model, lumefantrine, an antimalarial, was selected for testing and showed limited antiviral
activity in cells, whereas it was shown to bind (Kd 259 nM) to the spike protein using
microscale thermophoresis. Several other selected compounds were tested in vitro by other
research groups and found to be quite active. This combined machine learning approach
and in vitro testing can be expanded to virtually screen available molecules with predicted
activity against SARS-CoV-2 WIV04 and other circulating variants.

4. Artificial Intelligence Methods Vaccine Design

An in silico deep learning approach was proposed to predict and design a multiepitope
vaccine (DeepVacPred), in combination with in silico immunoinformatics and deep neural
network strategies. The DeepVacPred computing system directly predicted 26 potential
vaccine subunits from the SARS-CoV-2 tip protein sequence [54].

The DNN architecture to block 26 fragments in the SARS-CoV-2 spike protein as
candidates for the vaccine subunit was the first step proposed by the authors. Subsequently,
linear B cell, CTL, and HTL epitopes were used to select and construct the final vaccine.

All overlapping protein fragments with a length of 30 aa were generated by the spike
protein sequence 1273 aa SARS-CoV-2. DeepVacPred first tested these protein sequences
and predicted 132 potential vaccine subunits. Following this prediction, DeepVacPred
provided 26 potential vaccine subunits for further evaluation and construction. These
subunits were those most likely to contain B cell epitopes and multiple T cell epitopes and
have high antigenicity and low allergenicity.

In silico methods were used to study linear B cell epitopes, cytotoxic T cell epitopes
(CTL), helper T cell epitopes (HTL) in the 26 candidate subunits.

The B cell epitopes, predicted on the 26 vaccine subunits, are parts of antigens that
bind to immunoglobulin or antibody, capable of activating B cells to provide the immune
response [55]. Linear B cell epitopes were predicted from four online servers, including
BepiPred [56], SVMtrip [57], ABCPred [58], and BCPreds [59]. First, they used BepiPred for
the main forecast and the other three servers to check the results of the BepiPred forecast.
Additionally, the proprietary RaptorX server was used to evaluate the surface accessibility
of SARS-CoV-2 to validate that the B cell epitopes in those subunits were well exposed.

CTLs recognize infected cells using class I MHCs to bind to certain CTL 26 epitopes.
The NetMHCpan 4.1 server [60] 43 was used to predict potential CTL epitopes. All overlap-
ping 9aa peptide sequences in the 14 vaccine subunits were tested with the 12 most common
class I alleles of human leukocyte antigen (HLA), including HLA-A1, HLA-A2, HLA-A3,
HLA-A24, HLA-A26, HLA-B7, HLA-B8, HLA-B27, HLA-B39, HLA-B44, HLA-B58, and
HLA-B62, to evaluate their binding affinities and predict potential CTL epitopes [61,62].

HTL helps other immune cells’ activity and recognizes infection by using MHC class
II to bind with specific HTL epitopes [63]. The NetMHCIIpan 4.0 [64] server was used to
predict potential HTL epitopes. All overlapping 15aa peptide sequences in the 14 vaccine
subunits were tested with the 13 most common HLA Class II alleles, including HLA-DRB1-
0101, HLA-DRB1-0301, HLA-DRB1-0401, HLA-DRB1-0701, HLA-DRB1 -0801, HLA-DRB1-
0901, HLA-DRB1-1001, HLA-DRB1-1101, HLA-DRB1-1201, HLA-DRB1-1301, HLA-DRB1-
1401, HLA-DRB1-1501, and HLA-DRB1-1601, to evaluate their binding affinities and predict
potential HTL epitopes [64]. The total HLA score was calculated for each vaccine subunit.

The 3D structure of the designed vaccine was then predicted, refined, and validated by
other in silico tools. The GalaxyRefine [65] server was employed to refine the 3D structure
model of the final vaccine. Among the five refined models predicted by GalaxyRefine,
model 2 was chosen as the final vaccine model based on its quality scores with a reported
RMSD of 0.58.
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In conclusion, this proposed artificial intelligence (AI)-based vaccine discovery facility
accelerated the vaccine design process and built a 694 aa multiepitope vaccine containing 16
B cell epitopes, 82 CTL epitopes, and 89 HTL epitopes, which promise to fight SARS-CoV-2
viral infection with good antigenicity, population coverage, and good physicochemical
properties and structures, providing great potential for next stage of COVID-19 vaccine
design with actual clinical trials.

AI was used in another study to predict the rationale for designing universal vaccines
against SARS-CoV-2, which contain an extensive repertoire of T-cell epitopes capable of
providing coverage and protection to the global population. To achieve these goals, the
authors profiled the entire SARS-CoV-2 proteome through the 100 most frequent HLA-A,
HLA-B, and HLA-DR alleles in the human population, using the presentation of the cell
surface antigen infected with host and immunogenicity predictors from the NEC Immune
Profiler suite of tools and generated sufficiently complete epitope maps [66].

Antigen (AP) presentation was predicted by a machine learning model that integrates
information from several HLA binding predictors (in this case, three distinct HLA binding
predictors trained on IC50 nm binding affinity data) and 13 different antigen processing
predictors. The emitted AP score ranged from 0 to 1 and was used as an input to calculate
immune presentation (IP) through the epitope map, penalizing those peptides that have
degrees of similarity when compared to the human proteome, and rewarding peptides that
are less similar. The resulting IP score represents those presented HLA peptides that can be
recognized by circulating T cells.

Epitope maps were created for all viral proteins and an example based on IP scores for
proteins containing the candidate CD8 and CD4 epitopes for the 100 most frequent human
HLA-A, HLA-B, and HLA-DR alleles.

Epitope hotspots that shared significant homology with proteins in the human pro-
teome were removed to reduce the possibility of inducing off-target autoimmune responses.
In addition, the antigen presentation and immunogenic landscape of all non-synonymous
mutations in 3400 different virus sequences in the GISAID database with the AP poten-
tial of the Wuhan Genbank reference sequence were also analyzed to identify a trend by
which SARS-CoV-2 mutations are expected to have a reduced potential to be introduced by
host-infected cells and, consequently, be detected by the host’s immune system.

In order to assess whether epitope hotspots are solid enough across sequenced and
mutant strains of SARS-CoV-2, the AP-based Monte Carlo epitope hotspot statistical model
was used, and 10 virus sequences were analyzed among the 10 most mutated viral se-
quences across different geographical regions [67]. Most of the hotspots were present in all
sequenced viruses; however, the hotspots were eliminated and/or new hotspots emerged
in these divergent strains.

This is the first computational approach to generate vaccine designs from large-scale
epitope maps of SARS-CoV-2, optimized on diverse T-cell immune responses across the
global population.

Finally, an HLA haplotype database of approximately 22,000 individuals was evalu-
ated to develop a “digital twin” simulation to model the effectiveness of different combina-
tions of hotspots in a diverse human population; the approach identified an optimal variety
of epitope hotspots that could provide maximum coverage in the global population.

The CD8 epitope maps of these optimized epitope hotspots are based on AP pre-
dictions of the peptides presented on the surface of the host-infected cells and visible to
the host’s CD8 T cells. Furthermore, these antigen-presented peptides are subject to IP
predictions, which infer the epitopes most likely to activate a T cell.

In conclusion, the authors combined antigen presentation at the infected host cell
surface and immunogenicity predictions from the NEC Immune Profiler with a robust
Monte Carlo and digital twin simulation in order to delineate the entire SARS-CoV-2
proteome and identify a subset of epitope hotspots that could be exploited in rational
vaccine design to provide broad coverage across the global population [68].
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Kesarwani et al., examined data acquired from proteomic analyses of human cell
lines infected with SARS-CoV-2 and COVID-19 patient samples to identify peptides useful
for diagnostics and vaccine development. Initially, a large-scale meta-analysis of changes
in 358,558 SARS-CoV-2 protein sequences detected in samples from 42 countries was
performed. For sequence conservation analysis, a protein data cluster was generated for
each SASR-CoV-2 protein. Hence, there were 5 regions and 14 regions for the nucleocapsid
and spike proteins, respectively [69].

Two cell lines and four proteomes from naturally infected human patients were used
for high-confidence identification of peptides using viral and human protein sequences
as references. In total, 361 and 81 peptides of viral origin were identified in cell lines
and patient samples, respectively. A few peptides with varying lengths were found from
different parts of the same proteins, including 57 component peptides of the spike protein.
Of these 57 peptides, three are components of the S1 (14–685), S2 (686–1273), and RBD
(319–541) regions of the spike protein, respectively.

Therefore, the authors explored host responses to the virus in both cell lines (colon
carcinoma-2 and H1299) and naturally infected COVID-19 patient samples. Many proteins
are involved in biological processes related to the immune system, such as regulation of
immune responses, leukocyte migration, autophagy, processing, immune system develop-
ment, antigen presentation, or leukocyte-mediated cytotoxicity.

323 and 143 human peptides were identified in the cell line and patients, respectively.
Only five (MDGA1, PIK3C2A, FOXP2, DCAF5, and IVD) were detected in both sample sets.
While MDGA1 plays an important role in inhibitory synapse formation [70], PIK3C2A is
involved in several intracellular traffic and signaling pathways [71]. FOXP2 is a transcrip-
tion factor that can regulate hundreds of genes in different tissues, including the brain [72].
DCAF5 is a receptor of the CUL4-DDB1 E3 ubiquitin-protein ligase [73], and IVD is an
enzyme essential for the beta-oxidation of mitochondrial fatty acids.

Thirty-three proteins were found and matched entries in the InnateDB database. Most
of these proteins are involved in immune-related functions such as protein binding (TAB1,
SREBF2, HSP90AA1, RB1, STAT3, DCN, IL1R1, BNT3A2, PIK3R2, CCR6), transferase
activity (TREM2, ABL1, S100A12, C4BPB), the protein dimerization (UBE2N, CSF1R) and
lipopeptide binding (EPS8, CD36) [74].

Once the proteins related to the immune system process were identified from the
patients’ cell line and proteomes, they were used to generate a protein interaction network.
The generated protein interaction network, which includes 403 nodes and 671 edges,
identified higher-ranking hubs and bottlenecks.

Therefore, multi-step filtering was applied to identify potential diagnostic peptides.
Initially, to avoid cross-reactivity, the identified peptides (442) were filtered to exclude
peptides from the human and human saliva microbiome (418) and subsequently peptides
from a targeted group of pathogenic bacteria and viruses (129). Subsequently, using the
results of the RNA-Seq data analysis of the infected cell lines, the expression of the selected
peptides was verified to avoid the selection of poor peptides for diagnostic purposes.
Then, four antigenic peptides were selected for attachment to known viral T-cell receptor
(TCR), class I and II peptide major histocompatibility complex (pMHC), and paratopes
sequences identified. They also tested the paratope binding affinity of SARS-CoV-1 T and B
cell peptides that had previously been experimentally validated. The resulting antigenic
peptides have a high potential for generating antibodies specific to SARS-CoV-2, and the
peptides of the paratopes can be used directly to develop a COVID-19 diagnostic assay

The antigenic peptides found in this study have a high potential for generating anti-
bodies specific to SARS-CoV-2, and the paratopes peptides can be used directly to develop
a COVID-19 diagnostic assay. In addition, the paratope binding affinity of SARS-CoV-1
T and B cell peptides that had previously been experimentally validated was also tested.
The assembled paratopes showed a greater binding affinity for SARS-CoV-2 antigens and
proteins than SARS-CoV-1.
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In conclusion, the authors in this study explored both the cell line and proteomes of
naturally infected COVID-19 patients via in silico methods and identified four SARS-CoV-2
antigens and three antigen-binding peptides that could be used to develop diagnostic assays.
The proposed antigenic peptides can be used for antibody generation, and the paratopes
sequences can be used directly for COVID-19 diagnostic test and vaccine development.

5. Conclusions and Perspective

AI technologies have shown impressive ability in COVID-19 research, from real-time
tracking of the virus spread to the development of novel drugs and vaccines faster than
ever before. Unfortunately, the high number of positive cases and deaths from COVID-19
infection and the absence of effective treatments and complete cover by vaccination persist
in influencing global health, necessitating the discovery of novel molecules for the cure
and prevention of the infection. Structural definition of targetable proteins for therapy and
prevention of the infection has recently boosted the structure-based virtual identification of
small molecules. The discovery of some promising compounds has driven the optimization
of those scaffolds through ligand-based drug design.

In this review, we reported and discussed the more cutting-edge technologies in the
field of COVID-19 de novo drug design, from ligand-based AI technologies, where only the
ligands’ structures are considered to train the models, to structure-based AI technologies,
where the protein target is also taken into account in the process of drug design, and
to vaccine design aided by AI. ML on its own and other AI-based technologies are of
critical importance in responding to problems in COVID-19 research. They are proven
to be efficient tools to quickly analyze large amounts of data, estimate drug repurposing
against COVID-2019, identify the association of these repurposed drugs, or estimate dosage
adjustments and other clinical issues such as early diagnosis, identifying people at risk,
and predicting disease evolution [75,76].

The de novo drug design field is also part of the AI-lead research in the COVID-19 field.
As reported in this review, several molecules have already been identified from impressively
large databases of billions of compounds. Additionally, pairing different approaches
considering all the information produced by omics sciences should lead to developing
personalized strategies. Due to the mutability of this RNA virus and the emergence of drug
resistance problems, it is mandatory to start considering targeting multiple targets which
may be more effective and help in overcoming future drug resistance.

Interestingly, although none of the de novo-identified molecules has entered clini-
cal trials, some of the repurposed molecules identified by AI technologies have entered
this phase. These are mainly already used and approved antibiotics, anti-inflammatory,
antivirals, anticancer, and ACE2, and some other drugs, that are already in clinical tri-
als according to ClinicalTrials.gov (https://clinicaltrials.gov/, accessed on 10 February
2022) [77]. In conclusion, as the pandemic crisis has exponentially accelerated the adoption
of analytics and AI, it is not surprising that AI leads the research on prevention, not only of
COVID-19-related issues but also many for other diseases in the following decade, speed-
ing up the drug design process and placing AI at the forefront of the battle against public
health problems.

Author Contributions: Conceptualization, G.F. and A.R.; formal analysis, C.Z., V.P., G.F., D.G. and
A.R.; investigation, C.Z., V.P., G.F., D.G. and A.R.; resources, C.Z., V.P., G.F., D.G. and A.R.; writing—
original draft preparation, C.Z., V.P., G.F. and D.G.; writing—review and editing, C.Z., V.P., G.F. and
A.R.; supervision, A.R. and G.F.; project administration, A.R. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

https://clinicaltrials.gov/


Int. J. Mol. Sci. 2022, 23, 3261 19 of 21

Data Availability Statement: Data sharing not applicable to this article as no data sets were generated
or analyzed during the current study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cucinotta, D.; Vanelli, M. WHO Declares COVID-19 a Pandemic. Acta Biomed. 2020, 91, 157–160.
2. Pastorino, R.; Pezzullo, A.M.; Villani, L.; Causio, F.A.; Axfors, C.; Contopoulos-Ioannidis, D.G.; Boccia, S.; Ioannidis, J.P.A.

Change in age distribution of COVID-19 deaths with the introduction of COVID-19 vaccination. Environ. Res. 2022, 204, 112342.
[CrossRef] [PubMed]

3. Gupta, R.K.; Nwachuku, E.L.; Zusman, B.E.; Jha, R.M.; Puccio, A.M. Drug repurposing for COVID-19 based on an integrative
meta-analysis of SARS-CoV-2 induced gene signature in human airway epithelium. PLoS ONE 2021, 16, e0257784. [CrossRef]
[PubMed]

4. Sultana, J.; Crisafulli, S.; Gabbay, F.; Lynn, E.; Shakir, S.; Trifiro, G. Challenges for Drug Repurposing in the COVID-19 Pandemic
Era. Front. Pharmacol. 2020, 11, 588654. [CrossRef] [PubMed]

5. Brown, D.G.; Wobst, H.J.; Kapoor, A.; Kenna, L.A.; Southall, N. Clinical development times for innovative drugs. Nat. Rev. Drug
Discov. 2021. [CrossRef] [PubMed]

6. Wouters, O.J.; McKee, M.; Luyten, J. Estimated Research and Development Investment Needed to Bring a New Medicine to
Market, 2009–2018. JAMA 2020, 323, 844–853. [CrossRef] [PubMed]

7. Glikson, E.; Woolley, A.W. Human Trust in Artificial Intelligence: Review of Empirical Research. Acad. Manag. Ann. 2020, 14,
627–660. [CrossRef]

8. Yu, W.; MacKerell, A.D., Jr. Computer-Aided Drug Design Methods. Methods Mol. Biol. 2017, 1520, 85–106.
9. Schneider, P.; Walters, W.P.; Plowright, A.T.; Sieroka, N.; Listgarten, J.; Goodnow, R.A., Jr.; Fisher, J.; Jansen, J.M.; Duca, J.S.; Rush,

T.S.; et al. Rethinking drug design in the artificial intelligence era. Nat. Rev. Drug Discov. 2020, 19, 353–364. [CrossRef]
10. Floresta, G.; Apirakkan, O.; Rescifina, A.; Abbate, V. Discovery of High-Affinity Cannabinoid Receptors Ligands through a

3D-QSAR Ushered by Scaffold-Hopping Analysis. Molecules 2018, 23, 2183. [CrossRef]
11. Floresta, G.; Abbate, V. Machine learning vs. field 3D-QSAR models for serotonin 2A receptor psychoactive substances identifica-

tion. RSC Adv. 2021, 11, 14587–14595. [CrossRef]
12. Floresta, G.; Amata, E.; Barbaraci, C.; Gentile, D.; Turnaturi, R.; Marrazzo, A.; Rescifina, A. A Structure- and Ligand-Based Virtual

Screening of a Database of “Small” Marine Natural Products for the Identification of “Blue” Sigma-2 Receptor Ligands. Mar.
Drugs 2018, 16, 384. [CrossRef]

13. Floresta, G.; Cilibrizzi, A.; Abbate, V.; Spampinato, A.; Zagni, C.; Rescifina, A. 3D-QSAR assisted identification of FABP4 inhibitors:
An effective scaffold hopping analysis/QSAR evaluation. Bioorg. Chem. 2019, 84, 276–284. [CrossRef]

14. Floresta, G.; Gentile, D.; Perrini, G.; Patamia, V.; Rescifina, A. Computational Tools in the Discovery of FABP4 Ligands: A
Statistical and Molecular Modeling Approach. Mar. Drugs 2019, 17, 624. [CrossRef]

15. Francis, A.I.; Ghany, S.; Gilkes, T.; Umakanthan, S. Review of COVID-19 vaccine subtypes, efficacy and geographical distributions.
Postgrad. Med. J. 2021, 1–6. [CrossRef]

16. Gallagher, T.M.; Buchmeier, M.J. Coronavirus spike proteins in viral entry and pathogenesis. Virology 2001, 279, 371–374.
[CrossRef]

17. Srinivasan, S.; Batra, R.; Chan, H.; Kamath, G.; Cherukara, M.J.; Sankaranarayanan, S. Artificial Intelligence-Guided De Novo
Molecular Design Targeting COVID-19. ACS Omega 2021, 6, 12557–12566. [CrossRef]

18. Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient
optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [CrossRef]

19. Mohapatra, S.; Nath, P.; Chatterjee, M.; Das, N.; Kalita, D.; Roy, P.; Satapathi, S. Repurposing therapeutics for COVID-19: Rapid
prediction of commercially available drugs through machine learning and docking. PLoS ONE 2020, 15, e0241543. [CrossRef]

20. Verma, N.; Qu, X.; Trozzi, F.; Elsaied, M.; Karki, N.; Tao, Y.; Zoltowski, B.; Larson, E.C.; Kraka, E. SSnet: A Deep Learning
Approach for Protein-Ligand Interaction Prediction. Int. J. Mol. Sci. 2021, 22, 1392. [CrossRef]

21. Karki, N.; Verma, N.; Trozzi, F.; Tao, P.; Kraka, E.; Zoltowski, B. Predicting Potential SARS-CoV-2 Drugs-In Depth Drug Database
Screening Using Deep Neural Network Framework SSnet, Classical Virtual Screening and Docking. Int. J. Mol. Sci. 2021, 22, 1573.
[CrossRef]

22. Koes, D.R.; Baumgartner, M.P.; Camacho, C.J. Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking
exercise. J. Chem. Inf. Model. 2013, 53, 1893–1904. [CrossRef]

23. Jukic, M.; Skrlj, B.; Tomsic, G.; Plesko, S.; Podlipnik, C.; Bren, U. Prioritisation of Compounds for 3CL(pro) Inhibitor Development
on SARS-CoV-2 Variants. Molecules 2021, 26, 3003. [CrossRef]

24. Sterling, T.; Irwin, J.J. ZINC 15—Ligand Discovery for Everyone. J. Chem. Inf. Model. 2015, 55, 2324–2337. [CrossRef]
25. Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L.; Becker, S.; Rox, K.; Hilgenfeld, R. Crystal structure of

SARS-CoV-2 main protease provides a basis for design of improved alpha-ketoamide inhibitors. Science 2020, 368, 409–412.
[CrossRef]

http://doi.org/10.1016/j.envres.2021.112342
http://www.ncbi.nlm.nih.gov/pubmed/34748775
http://doi.org/10.1371/journal.pone.0257784
http://www.ncbi.nlm.nih.gov/pubmed/34582497
http://doi.org/10.3389/fphar.2020.588654
http://www.ncbi.nlm.nih.gov/pubmed/33240091
http://doi.org/10.1038/d41573-021-00190-9
http://www.ncbi.nlm.nih.gov/pubmed/34759309
http://doi.org/10.1001/jama.2020.1166
http://www.ncbi.nlm.nih.gov/pubmed/32125404
http://doi.org/10.5465/annals.2018.0057
http://doi.org/10.1038/s41573-019-0050-3
http://doi.org/10.3390/molecules23092183
http://doi.org/10.1039/D1RA01335A
http://doi.org/10.3390/md16100384
http://doi.org/10.1016/j.bioorg.2018.11.045
http://doi.org/10.3390/md17110624
http://doi.org/10.1136/postgradmedj-2021-140654
http://doi.org/10.1006/viro.2000.0757
http://doi.org/10.1021/acsomega.1c00477
http://doi.org/10.1002/jcc.21334
http://doi.org/10.1371/journal.pone.0241543
http://doi.org/10.3390/ijms22031392
http://doi.org/10.3390/ijms22041573
http://doi.org/10.1021/ci300604z
http://doi.org/10.3390/molecules26103003
http://doi.org/10.1021/acs.jcim.5b00559
http://doi.org/10.1126/science.abb3405


Int. J. Mol. Sci. 2022, 23, 3261 20 of 21

26. Gaulton, A.; Bellis, L.J.; Bento, A.P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani,
B.; et al. ChEMBL: A large-scale bioactivity database for drug discovery. Nucleic Acids Res. 2012, 40, D1100–D1107. [CrossRef]

27. Kwofie, S.K.; Broni, E.; Asiedu, S.O.; Kwarko, G.B.; Dankwa, B.; Enninful, K.S.; Tiburu, E.K.; Wilson, M.D. Cheminformatics-Based
Identification of Potential Novel Anti-SARS-CoV-2 Natural Compounds of African Origin. Molecules 2021, 26, 406. [CrossRef]

28. Citarella, A.; Scala, A.; Piperno, A.; Micale, N. SARS-CoV-2 M(pro): A Potential Target for Peptidomimetics and Small-Molecule
Inhibitors. Biomolecules 2021, 11, 607. [CrossRef] [PubMed]

29. Ton, A.T.; Gentile, F.; Hsing, M.; Ban, F.; Cherkasov, A. Rapid Identification of Potential Inhibitors of SARS-CoV-2 Main Protease
by Deep Docking of 1.3 Billion Compounds. Mol. Inform. 2020, 39, e2000028. [CrossRef] [PubMed]

30. Born, J.; Manica, M.; Cadow, J.; Markert, G.; Mill, N.A.; Filipavicius, M.; Janakarajan, N.; Cardinale, A.; Laino, T.; Martinez, M.R.
Data-driven molecular design for discovery and synthesis of novel ligands: A case study on SARS-CoV-2. Mach. Learn.-Sci.
Technol. 2021, 2, 025024. [CrossRef]

31. Meyers, J.; Fabian, B.; Brown, N. De novo molecular design and generative models. Drug Discov. Today 2021, 26, 2707–2715.
[CrossRef]

32. Huang, R.; Xia, M.; Nguyen, D.-T.; Zhao, T.; Sakamuru, S.; Zhao, J.; Shahane, S.A.; Rossoshek, A.; Simeonov, A. Tox21Challenge
to Build Predictive Models of Nuclear Receptor and Stress Response Pathways as Mediated by Exposure to Environmental
Chemicals and Drugs. Front. Environ. Sci. 2016, 3, 85. [CrossRef]

33. Morris, A.; McCorkindale, W.; Consortium, T.C.M.; Drayman, N.; Chodera, J.D.; Tay, S.; London, N.; Lee, A.A. Discovery of
SARS-CoV-2 main protease inhibitors using a synthesis-directed de novo design model. Chem. Commun. 2021, 57, 5909–5912.
[CrossRef]

34. Agarwal, S.; Dugar, D.; Sengupta, S. Ranking chemical structures for drug discovery: A new machine learning approach. J. Chem.
Inf. Model. 2010, 50, 716–731. [CrossRef]

35. Acharya, A.; Agarwal, R.; Baker, M.B.; Baudry, J.; Bhowmik, D.; Boehm, S.; Byler, K.G.; Chen, S.Y.; Coates, L.; Cooper, C.J.; et al.
Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to COVID-19. J. Chem. Inf. Model. 2020, 60,
5832–5852. [CrossRef]

36. Earl, D.J.; Deem, M.W. Parallel tempering: Theory, applications, and new perspectives. Phys. Chem. Chem. Phys. 2005, 7,
3910–3916. [CrossRef]

37. Sugita, Y.; Kitao, A.; Okamoto, Y. Multidimensional replica-exchange method for free-energy calculations. J. Chem. Phys. 2000,
113, 6042–6051. [CrossRef]

38. Bernardi, R.C.; Melo, M.C.R.; Schulten, K. Enhanced sampling techniques in molecular dynamics simulations of biological
systems. Biochim. Biophys. Acta 2015, 1850, 872–877. [CrossRef]

39. Chang, C.K.; Hou, M.H.; Chang, C.F.; Hsiao, C.D.; Huang, T.H. The SARS coronavirus nucleocapsid protein—Forms and
functions. Antivir. Res. 2014, 103, 39–50. [CrossRef]

40. Astuti, I. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response.
Diabetes Metab. Syndr. 2020, 14, 407–412. [CrossRef]

41. Novick, P.A.; Ortiz, O.F.; Poelman, J.; Abdulhay, A.Y.; Pande, V.S. SWEETLEAD: An in silico database of approved drugs,
regulated chemicals, and herbal isolates for computer-aided drug discovery. PLoS ONE 2013, 8, e79568. [CrossRef]

42. Pirolli, D.; Righino, B.; De Rosa, M.C. Targeting SARS-CoV-2 Spike Protein/ACE2 Protein-Protein Interactions: A Computational
Study. Mol. Inform. 2021, 40, e2060080. [CrossRef]

43. Gaudencio, S.P.; Pereira, F. A Computer-Aided Drug Design Approach to Predict Marine Drug-Like Leads for SARS-CoV-2 Main
Protease Inhibition. Mar. Drugs 2020, 18, 633. [CrossRef]

44. Yassine, R.; Makrem, M.; Farhat, F. Active Learning and the Potential of Neural Networks Accelerate Molecular Screening for the
Design of a New Molecule Effective against SARS-CoV-2. Biomed. Res. Int. 2021, 2021, 6696012. [CrossRef]

45. Santana, M.V.S.; Silva, F.P., Jr. De novo design and bioactivity prediction of SARS-CoV-2 main protease inhibitors using recurrent
neural network-based transfer learning. BMC Chem. 2021, 15, 8. [CrossRef]

46. Bung, N.; Krishnan, S.R.; Bulusu, G.; Roy, A. De novo design of new chemical entities for SARS-CoV-2 using artificial intelligence.
Future Med. Chem. 2021, 13, 575–585. [CrossRef]

47. Cooper, K.; Baddeley, C.; French, B.; Gibson, K.; Golden, J.; Lee, T.; Pierre, S.; Weiss, B.; Yang, J. Novel Development of Predictive
Feature Fingerprints to Identify Chemistry-Based Features for the Effective Drug Design of SARS-CoV-2 Target Antagonists and
Inhibitors Using Machine Learning. ACS Omega 2021, 6, 4857–4877. [CrossRef]

48. Glaab, E.; Manoharan, G.B.; Abankwa, D. Pharmacophore Model for SARS-CoV-2 3CLpro Small-Molecule Inhibitors and in Vitro
Experimental Validation of Computationally Screened Inhibitors. J. Chem. Inf. Model. 2021, 61, 4082–4096. [CrossRef] [PubMed]

49. Bai, Q.; Tan, S.; Xu, T.; Liu, H.; Huang, J.; Yao, X. MolAICal: A soft tool for 3D drug design of protein targets by artificial
intelligence and classical algorithm. Brief. Bioinform. 2021, 22, bbaa161. [CrossRef] [PubMed]

50. Mekni, N.; Coronnello, C.; Langer, T.; Rosa, M.; Perricone, U. Support Vector Machine as a Supervised Learning for the
Prioritization of Novel Potential SARS-CoV-2 Main Protease Inhibitors. Int. J. Mol. Sci. 2021, 22, 7714. [CrossRef] [PubMed]

51. Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J.C.; Sheridan, R.P.; Feuston, B.P. Random forest: A classification and regression tool for
compound classification and QSAR modeling. J. Chem. Inf. Comput. Sci. 2003, 43, 1947–1958. [CrossRef]

52. Kowalewski, J.; Ray, A. Predicting novel drugs for SARS-CoV-2 using machine learning from a >10 million chemical space.
Heliyon 2020, 6, e04639. [CrossRef]

http://doi.org/10.1093/nar/gkr777
http://doi.org/10.3390/molecules26020406
http://doi.org/10.3390/biom11040607
http://www.ncbi.nlm.nih.gov/pubmed/33921886
http://doi.org/10.1002/minf.202000028
http://www.ncbi.nlm.nih.gov/pubmed/32162456
http://doi.org/10.1088/2632-2153/abe808
http://doi.org/10.1016/j.drudis.2021.05.019
http://doi.org/10.3389/fenvs.2015.00085
http://doi.org/10.1039/D1CC00050K
http://doi.org/10.1021/ci9003865
http://doi.org/10.1021/acs.jcim.0c01010
http://doi.org/10.1039/b509983h
http://doi.org/10.1063/1.1308516
http://doi.org/10.1016/j.bbagen.2014.10.019
http://doi.org/10.1016/j.antiviral.2013.12.009
http://doi.org/10.1016/j.dsx.2020.04.020
http://doi.org/10.1371/journal.pone.0079568
http://doi.org/10.1002/minf.202060080
http://doi.org/10.3390/md18120633
http://doi.org/10.1155/2021/6696012
http://doi.org/10.1186/s13065-021-00737-2
http://doi.org/10.4155/fmc-2020-0262
http://doi.org/10.1021/acsomega.0c05303
http://doi.org/10.1021/acs.jcim.1c00258
http://www.ncbi.nlm.nih.gov/pubmed/34348021
http://doi.org/10.1093/bib/bbaa161
http://www.ncbi.nlm.nih.gov/pubmed/32778891
http://doi.org/10.3390/ijms22147714
http://www.ncbi.nlm.nih.gov/pubmed/34299333
http://doi.org/10.1021/ci034160g
http://doi.org/10.1016/j.heliyon.2020.e04639


Int. J. Mol. Sci. 2022, 23, 3261 21 of 21

53. Gawriljuk, V.O.; Zin, P.P.K.; Puhl, A.C.; Zorn, K.M.; Foil, D.H.; Lane, T.R.; Hurst, B.; Tavella, T.A.; Costa, F.T.M.; Lakshmanane, P.;
et al. Machine Learning Models Identify Inhibitors of SARS-CoV-2. J. Chem. Inf. Model. 2021, 61, 4224–4235. [CrossRef]

54. Yang, Z.; Bogdan, P.; Nazarian, S. An in silico deep learning approach to multi-epitope vaccine design: A SARS-CoV-2 case study.
Sci. Rep. 2021, 11, 3238. [CrossRef]

55. Sanchez-Trincado, J.L.; Gomez-Perosanz, M.; Reche, P.A. Fundamentals and Methods for T- and B-Cell Epitope Prediction. J.
Immunol. Res. 2017, 2017, 2680160. [CrossRef]

56. Jespersen, M.C.; Peters, B.; Nielsen, M.; Marcatili, P. BepiPred-2.0: Improving sequence-based B-cell epitope prediction using
conformational epitopes. Nucleic Acids Res. 2017, 45, W24–W29. [CrossRef]

57. Yao, B.; Zhang, L.; Liang, S.; Zhang, C. SVMTriP: A method to predict antigenic epitopes using support vector machine to
integrate tri-peptide similarity and propensity. PLoS ONE 2012, 7, e45152. [CrossRef]

58. Saha, S.; Raghava, G.P. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 2006, 65,
40–48. [CrossRef]

59. El-Manzalawy, Y.; Dobbs, D.; Honavar, V. Predicting linear B-cell epitopes using string kernels. J. Mol. Recognit. 2008, 21, 243–255.
[CrossRef]

60. Li, M.; Jiang, Y.; Gong, T.; Zhang, Z.; Sun, X. Intranasal Vaccination against HIV-1 with Adenoviral Vector-Based Nanocomplex
Using Synthetic TLR-4 Agonist Peptide as Adjuvant. Mol. Pharm. 2016, 13, 885–894. [CrossRef]

61. Nielsen, M.; Lundegaard, C.; Blicher, T.; Lamberth, K.; Harndahl, M.; Justesen, S.; Roder, G.; Peters, B.; Sette, A.; Lund, O.; et al.
NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence.
PLoS ONE 2007, 2, e796. [CrossRef]

62. Emini, E.A.; Hughes, J.V.; Perlow, D.S.; Boger, J. Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic
peptide. J. Virol. 1985, 55, 836–839. [CrossRef]

63. Nielsen, M.; Lundegaard, C.; Blicher, T.; Peters, B.; Sette, A.; Justesen, S.; Buus, S.; Lund, O. Quantitative predictions of peptide
binding to any HLA-DR molecule of known sequence: NetMHCIIpan. PLoS Comput. Biol. 2008, 4, e1000107. [CrossRef]

64. Reynisson, B.; Barra, C.; Kaabinejadian, S.; Hildebrand, W.H.; Peters, B.; Nielsen, M. Improved Prediction of MHC II Antigen
Presentation through Integration and Motif Deconvolution of Mass Spectrometry MHC Eluted Ligand Data. J. Proteome Res. 2020,
19, 2304–2315. [CrossRef]

65. Heo, L.; Park, H.; Seok, C. GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucleic Acids Res. 2013, 41,
W384–W388. [CrossRef]

66. Dimitrov, I.; Flower, D.R.; Doytchinova, I. AllerTOP—A server for in silico prediction of allergens. BMC Bioinform. 2013, 14, S4.
[CrossRef]

67. Ali, M.; Pandey, R.K.; Khatoon, N.; Narula, A.; Mishra, A.; Prajapati, V.K. Exploring dengue genome to construct a multi-epitope
based subunit vaccine by utilizing immunoinformatics approach to battle against dengue infection. Sci. Rep. 2017, 7, 9232.
[CrossRef]

68. Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected
with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [CrossRef]

69. Kesarwani, V.; Gupta, R.; Vetukuri, R.R.; Kushwaha, S.K.; Gandhi, S. Identification of Unique Peptides for SARS-CoV-2 Diagnostics
and Vaccine Development by an In Silico Proteomics Approach. Front. Immunol. 2021, 12, 725240. [CrossRef] [PubMed]

70. Takeuchi, A.; O’Leary, D.D. Radial migration of superficial layer cortical neurons controlled by novel Ig cell adhesion molecule
MDGA1. J Neurosci. 2006, 26, 4460–4464. [CrossRef] [PubMed]

71. Domin, J.; Pages, F.; Volinia, S.; Rittenhouse, S.E.; Zvelebil, M.J.; Stein, R.C.; Waterfield, M.D. Cloning of a human phosphoinositide
3-kinase with a C2 domain that displays reduced sensitivity to the inhibitor wortmannin. Biochem. J. 1997, 326, 139–147. [CrossRef]

72. Lai, C.S.; Fisher, S.E.; Hurst, J.A.; Vargha-Khadem, F.; Monaco, A.P. A forkhead-domain gene is mutated in a severe speech and
language disorder. Nature 2001, 413, 519–523. [CrossRef]

73. Jin, J.; Arias, E.E.; Chen, J.; Harper, J.W.; Walter, J.C. A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which is
required for S phase destruction of the replication factor Cdt1. Mol. Cell 2006, 23, 709–721. [CrossRef]

74. Zou, Z.; Xie, X.; Li, W.; Song, X.; Tan, Y.; Wu, H.; Xiao, J.; Feng, H. Black carp TAB1 up-regulates TAK1/IRF7/IFN signaling
during the antiviral innate immune activation. Fish Shellfish Immunol. 2019, 89, 736–744. [CrossRef]

75. Russo, G.; Reche, P.; Pennisi, M.; Pappalardo, F. The combination of artificial intelligence and systems biology for intelligent
vaccine design. Expert Opin. Drug Discov. 2020, 15, 1267–1281. [CrossRef]

76. Malik, Y.S.; Sircar, S.; Bhat, S.; Ansari, M.I.; Pande, T.; Kumar, P.; Mathapati, B.; Balasubramanian, G.; Kaushik, R.; Natesan, S.;
et al. How artificial intelligence may help the COVID-19 pandemic: Pitfalls and lessons for the future. Rev. Med. Virol. 2021, 31,
e2205. [CrossRef]

77. Pires, C. A Systematic Review on the Contribution of Artificial Intelligence in the Development of Medicines for COVID-2019. J.
Pers. Med. 2021, 11, 926. [CrossRef]

http://doi.org/10.1021/acs.jcim.1c00683
http://doi.org/10.1038/s41598-021-81749-9
http://doi.org/10.1155/2017/2680160
http://doi.org/10.1093/nar/gkx346
http://doi.org/10.1371/journal.pone.0045152
http://doi.org/10.1002/prot.21078
http://doi.org/10.1002/jmr.893
http://doi.org/10.1021/acs.molpharmaceut.5b00802
http://doi.org/10.1371/journal.pone.0000796
http://doi.org/10.1128/jvi.55.3.836-839.1985
http://doi.org/10.1371/journal.pcbi.1000107
http://doi.org/10.1021/acs.jproteome.9b00874
http://doi.org/10.1093/nar/gkt458
http://doi.org/10.1186/1471-2105-14-S6-S4
http://doi.org/10.1038/s41598-017-09199-w
http://doi.org/10.1016/S0140-6736(20)30183-5
http://doi.org/10.3389/fimmu.2021.725240
http://www.ncbi.nlm.nih.gov/pubmed/34630400
http://doi.org/10.1523/JNEUROSCI.4935-05.2006
http://www.ncbi.nlm.nih.gov/pubmed/16641224
http://doi.org/10.1042/bj3260139
http://doi.org/10.1038/35097076
http://doi.org/10.1016/j.molcel.2006.08.010
http://doi.org/10.1016/j.fsi.2019.04.040
http://doi.org/10.1080/17460441.2020.1791076
http://doi.org/10.1002/rmv.2205
http://doi.org/10.3390/jpm11090926

	Introduction 
	Structure-Based Artificial Intelligence Methods for Small Molecules 
	Ligand-Based Artificial Intelligence Methods for Small Molecules 
	Artificial Intelligence Methods Vaccine Design 
	Conclusions and Perspective 
	References

