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Abstract

During the last few years, smartphones have seen a marked increase in popularity, due
to its many attractive features such as GPS functionality and apps such as e-mail clients,
address book, and many more. The world’s most popular mobile Operating System is
Android, consequently Android devices are at the center of much research which discuss
their points of strengths and weaknesses. An important tool of Android smartphones is
Application Programming Interface (API); it is a combination of benefits, meaning they
allow to create user services, and risks, especially for user privacy. Taking advantage of
the API, it is possible to make data travel from our device and third parties via network
and vice versa.

This thesis analyzes the data flow on smartphones with Android Operating System.
We present, through the APIs and the network, how the user’s information leaves the
mobile device, putting the user’s privacy at risk and how the information invades the
device influencing user behavior.

We deal with various techniques to create useful services for citizens through user pro-
filing and how similar procedures can be used to create attack scenarios to steal personal
data, highlighting users misunderstandings about the use of their data by applications.

Moreover advanced tools were presented to guide the user in using the mobile device
and understanding the behavior of apps installed on the device, protecting their security
and avoiding the loss of sensitive information.

Each proposed solution has been tested with multiple real datasets containing data
taken from mobile devices, demonstrating the potential of methods proposed.
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Chapter 1

Introduction

Today’s users spend more time using their electronic devices, such as PCs, tablets and
smartphones. A smartphone (or smart phone or touch phone or mobile device) is a
portable, battery-powered device that combines the features of a mobile phone with those
of processing and transmitting data typical of the world of personal computers; it also
uses sensors to determine the location (i.e. GPS position) and to acquire other elements
of the environment surrounding the user.

In the last few years, smartphones have seen a marked increase in popularity, so much
that users prefer to use the mobile device in lieu of a portable device. Since 2010, the
mobile phone is the new personal computer, the desktop computer is not going away,
but the smartphone market has grown fast [1]. Smart phones are used as computers by
more people and for more purposes and they are generally cheaper than computers, more
convenient because of their portability, and often more useful with the context provided
by geolocation.

Since 2011, smartphone sales were expected to exceed desktop PCs1. This migra-
tion to smartphone is also due to its many attractive features which tend to increase and
improve every day, such as GPS related functionalities and apps such as e-mail clients,
address book, and many more [2]. The mobile phone initially was an essential tool, within
the reach of a few, whose possession fulfilled the function of constantly making a priv-
ileged number of users ”socially engaged and important” traceable in real time, today,
smartphone has become an object of entertainment daily; users use it to follow the com-
munities of different social networks, as well as to share photos, chats, links, voice notes.
Soon the smatphone has responded and fueled the common need to be close, overcom-
ing the boundaries of space and time, profoundly transforming the possibilities of daily
relationships, favoring the possibility of increasing opportunities for intimacy and, some-
times, even those of violation of freedom, personal spaces and private information.

1L. Snol. More smartphones than desktop PCs by 2011.
http://www.pcworld.com/article/171380/more smartphones than desktop pcs by 2011.html.
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Among the devices on the market, Android operating system (OS)2 stands out which
powers billions of devices ranging from phones to watches, tablets, TVs, and more.
In 2014, Android has become the most popular operating system, surpassing Windows
Phone, iOS and Firefox OS [3]. The success of Android OS is partly due to open archi-
tecture and the popularity of its application programming interface (API) in the developer
community [4, 5]. Android OS offers an ample amount of apps, available on the official
app market. Among the many features, applications also offer services to users, various
of them take advantage of the GPS coordinates; given the technologies tracing one’s geo-
graphical position, it becomes increasingly easier to acquire information relating to users’
GPS coordinates in real time. This availability has triggered several studies based on user
positioning, such as the analysis of the flows of people in the cities [6], or the predic-
tion of people movements [7], or the improvement of services that identify the points of
interest [8, 9].

Generally, apps provide enhanced services which can be discovered simply by search-
ing some keywords and apps can be easily installed on a smartphone according to needs
and preferences. Once installed, they have access to several resources available on the
smartphone, by resorting to appropriate APIs [10]. Resources are the like of sensors for
reading GPS user coordinates, amount of light, etc., file system for reading and storing
data, user contacts, microphone, etc. In an Android device, resources (like GPS com-
ponent, to read the user coordinates) are managed under Android OS dangerous level
permissions [11]. Moreover, several other resources, such as bluetooth, are managed un-
der Android OS normal level permissions. While for dangerous level permissions users
are asked to grant the app access to resources, normal level permissions are automatically
granted to an app using the related resources.

Despite providing useful features, sometimes such apps behave as a gateway for sen-
sitive data to flow over the network; the user can experience a loss of control over her
own data, since it becomes unknown whether an app, or a remote side, uses her personal
data, such as e.g. location, contacts, etc. [12, 13]. In fact, although the Android OS per-
mission system was created to protect the user and his privacy, it is vulnerable to some
attacks [14, 15]. Such attacks can create several inconveniences for users, including loss
of private information. Smartphone attack types include cellular networks, Bluetooth, the
Internet (via WiFi or 3G/4G network access), USB, and other peripherals [16], some of
these attacks come from mobile applications. Indeed, today’s society is in constant move-
ment and change, thanks to mobile technology, cloud or Internet of things, nevertheless,
a system (comprising Android OS and all the installed apps) so capable of acting and

2www.android.com
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reacting becomes an attack vehicle that can allow someone to:

• acquire data improperly: access the smartphone to acquire sensitive information
such as geographic location, telephone contacts and more. The process usually
takes place by inducing the victim user to download an app that is able to extract
information and send it to a server through a network connection. Even if the user
cannot see an attack or malfunctions on the system, he undoubtedly has a clear loss
of control over what the data is, who knows his data, where data is and who does
what with data.

• enter data into the system: send information to the user in order to influence his
choices or thoughts. The reading of advise (for example through recommenda-
tion systems or targeted advertising) or false information (for example the so-called
fakenews) can influence the restaurant where to have lunch, the detergent to buy or
worse influence political choices.

It is commonly accepted that, to provide services, the smartphone asks user’s private
information, which creates smartphone security problems both in the case of theft, leaks
of data or data sniffing, and increasing problems due to the ample time spent connected to
the web world, thus reinforcing the need to have a ”SECURE SYSTEM” to prevent illicit
operations [17].

1.1 Network impact on Android devices privacy

The interest in smartphones grows with the desire to remain always connected to stay
in close contact to the world, to see the latest videos posted by some other users, the
latest news on the world or to communicate with friends via social networks and more.
Nowadays, the risks connected to smartphones and their applications derive essentially
from the fact that our mobile phones are constantly connected and consequently localized,
and that the large number of data and information contained in them, from phone books
to diaries, from photos to notes, can be known, processed, stored, used by third parties of
whom we have no awareness or control (see Figure 1.1).

The INTERNET PERMISSION is the needed related normal permission for using the
network. When this permission is used together with others, generally dangerous level
permissions, allows sharing information between our device and third parties via internet.
There is a set of information that reaches the user (i.e. advertising, recommendation
systems, etc.) and a set of information concerning the user himself is transmitted out of
the device (i.e. GPS position, telephone contacts, voice messages, etc), exploiting to the
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Figure 1.1: The connection between our device (on the left) and third parties (on the right) via the
connection network. The arrows indicate the direction in which the information is traveling.

network. The user is often not aware of the leakage of his data, consequently, a set of
issues are raised: what data are sent / received; to whom data arrive; how these data are
used; how and when user privacy is preserved.

All these problems arise when data cross the boundary between our device and the
network connection. Thus, new needs are born in terms of security for the protection of
the user connected and the related risks. Among the major risks involved there are: risks
of leaking sensitive information and the risks to receive unsolicited information that can
for example alter our state of thought or simply become useless because not complying
with our needs.

In brief, users who are continuously connected to the network can take advantage of
different services dedicated to them, often useful for the user but at the same time risky:
leak of data, which are continually sent without having full knowledge of it; absorb non-
relevant information, as the user may receive targeted advertising or unsuitable news for
his interests. Consequently, it is important for the user to be fully aware of the boundary
between his own device and the outside world to actually know which data enters his
device and which data leaves it.

1.2 User knowledge and security problems

It seems that there is still a long way to go to increase the awareness of European citizens
in terms of personal data protection, especially regarding the use of apps. According to
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the latest data released by Eurostat on the occasion of Data Privacy Day3, in fact, 28% of
the inhabitants of one of the EU member countries have never limited apps from access
into personal information. Even worse, seven out of a hundred people do not even know
that it is possible to carry out such limitation of accesses on their smart phones. Yet, 75%
of Europeans interviewed (between 16 and 74 years of age) use a smartphone on a daily
basis for personal purposes.

To facilitate users, Android developers have introduced the concept of permissions,
so that the user can choose which authorization to grant to each application. But, yet,
several studies have shown that users pay limited attention to permission requests and
have a limited comprehension on permissions. Surveys have reported that less than 20%
of users paid attention to permissions during installation, and only 3% can remember
them [18, 19]. This leads to the conclusion that permissions are not properly used by
the user and, consequently, the user often confirms permissions he does not understand or
remember. This leads to having applications with too many permissions granted and leads
to canceling the usefulness of the system of permissions because the user is not able to
understand them. In addition, some applications (like twin applications) can easily trick
users, i.e. by simulating the behavior of a known application they can extract sensitive
data from the user.

So, the first problem related to user security, revolves around the naivety of users and

their lightness in data sharing.
Another problem related to user security is the management of permissions. For

protecting the user, several resources of the Android OS are shielded by permissions,
therefore apps have to declare the needed permissions before accessing the related re-
source [10]. There are two main permission levels normal and dangerous: normal-level
permissions are accepted by the user automatically upon installation of the app; danger-
ous level permissions are asked to the user, who can grant them by means of a dialog
window on a per-use basis at runtime. However, the first level, normal level permission,
leaves the user unaware of which resources the app is accessing and when the app is using
them; such a category includes the use of Internet, access of network state, use of phone
vibration, etc. For the second level, dangerous permission, the user is given an alert when
a corresponding resource is used (such an alert can be disabled by the user); such a cate-
gory includes the use of the camera, contacts, location, microphone, phone, storage. For
both levels, whether the app uses gathered data only locally or send them remotely is
unknown. Usually, apps declare some set of normal permissions together with some set
of dangerous permissions. It is mostly their combined use that can lead to some privacy

3https://ec.europa.eu/eurostat/web/products-eurostat-news/-/EDN-20190128-
1?inheritRedirect=true&redirect=%2Feurostat%2F
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breach. Let us suppose that dangerous permissions are declared to enable the app access
some sensitive data, as the user contacts, and normal permissions are declared to access
internet or perform background activities. Now, the combined use of both permissions
would allow an app to send sensitive data over the network, even while the user is not
interacting with the app. Some studies have reported such effects, such as e.g. malicious
apps that declare dangerous permissions: WRITE SMS, SEND SMS, FINE LOCATION;
and declare normal permission INTERNET [20]. Normal permissions could allow an app
to violate the privacy of the users, and increase the risk of data loss. E.g. a user might
know that her GPS coordinates are read if she navigates in a map, however does not know
that the app could run in background and send updated data read from GPS, continuously.
This is because Android OS allows an app to run in the background and connect to the In-
ternet. Then, as soon as the user grants access to some data (e.g. her position or contacts)
to the app, such data may flow over the network, without letting the user know about it.
For such an app, normal permissions FOREGROUND SERVICE and INTERNET have
to be declared, in addition to dangerous permission LOCATION.

Once granted, dangerous permissions would allow an app to extract user sensitive
information, which could be then used to harm the user. E.g. dangerous permissions
are asked by an app when it needs to read GPS coordinates, or the phone contacts, etc.
Moreover, after consent has been granted, data could be read or sent over the network
for the whole duration of the app execution, without restriction or temporal limitation.
This might lead to a loss of control on how data are used. The problem of dangerous
permissions is hidden in the unsupervised handling of transmission of data from the device
to a remote server. The user loses control of the data because she does not know when
and with what frequency the data are read or forwarded. E.g. if a user opens a map in
an app, this app asks the permission to access the GPS data on the device, however the
data coordinates can be read and sent over the network even after leaving the map dialog
window, without user awareness. In addition, if the app accesses other data, the risk of
revealing sensitive data is higher due to the possible correlation between different parts of
data.

Finally, it is interesting to highlight the influence of information on the reader. Users
are very influenced by the news they receive, for this reason among the hot topics we
also find the study of human thoughts. The interpretation of human thoughts is a very
important field, because it allows us to achieve a variety of results, shown by several
widely used applications [21]. E.g. many companies need to analyze opinions that users
have expressed on some products. Thanks to the widespread use of the smartphones, users
share information and thoughts on the net with greater ease and simplicity, so, this field
has gained more and more attention and thousands of people tend to have collaborative
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and entertaining web-based relationships (e.g. being members of internet social networks
and forums) as an integral part of their life. Hence, many Internet pages reflect people’s
thoughts, feelings and opinions.

For all the reasons listed above, it is important to protect the user by analyzing the
data entering and leaving the device and guiding the user towards a greater awareness of
their own risks.

1.3 The proposed approach

Nowadays, user privacy is widely discussed in various fields because many companies
focus their business on the collection and combination of data (especially sensitive data).
Smartphones are one of the most used means for data mining, given their widespread use
and the large quantity of data they offer.

This thesis discusses the data management on Android smartphones and the permis-
sions system that is a combination of risks and benefits [20]; the work offers an analysis of
the users risks and it focuses on the border between the device and the network connection
to analyze and study what is spread around, which data originates from the device, and
what information comes from third parties. The study is widely based on data analysis
and their flow and highlights how it is possible to create:

• scenarios of attack: the APIs allow users to create new attacks to extract user sen-
sitive data. In several studies, the use of normal and dangerous permissions have
been linked to possible attacks and loss of sensitive data [22, 23];

• user profiling: through the use of user profiling it is possible to create services ded-
icated to users that help people in everyday life. There are many services illustrated
in the literature such as: extracting interesting positions and travel sequences [24],
the process of aligning a sequence GPS with the road network on a digital map,
useful for pre-processing step for many applications, such as traffic flow analy-
sis [25] or the analysis of the attractiveness of the shopping center to benefit traffic
management and urban planning [26].

• tools of protection: both services and attacks create a leak of personal data, so it is
important to create a protective shield for the user. In literature, there are several
frameworks that identify a possible attack on the device including Andromaly [27],
a framework that realizes a host-based malware detection system that continuously
monitors various features and events obtained from the mobile device and then ap-
plies some machine learning based detectors to classify collected data as normal
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(benign) or abnormal (harmful). Among these, many methods are based on permis-
sion monitoring, e.g. AndroidLeak [12] that automatically detects potential privacy
leaks in apps based on maps of permissions and other apps data.

In this thesis, we will illustrate several ways to create services for citizens from a data
collection based on user profiling and we will investigate attack scenarios for users of
Android devices, giving some practical examples of the problems related to the gathering
of user location.

To assist the user in containing his data, we will present two elaborate defense mech-
anism capable of alerting the user to possible threats, i.e. loss of data. Two approaches
have been presented that warn the user in real time to alert them of the operations per-
formed by the applications. By means of these works, users can understand whether a
newly installed app works in the background by sending large amounts of data, or how
an application works, that is every time data is taken, what data is taken and how often.
These new approaches are a good contribution to user privacy.

Finally, these new approaches have been evaluated with real data and applications;
consequently, due to the large amount of data that can be taken from the devices, filtering
and parallel programming techniques were used for analysing them in order to gain some
knowledge needed to protect the user. Pre-processing of data allows better and more
reliable results to be obtained and also reduces the response times of algorithms for data
management.

1.4 Thesis structure

Thesis is structured as follows. Chapter 2 discusses the required fundamentals for the
work described in further chapters; the chapter presents an overview of Android and its
APIs, useful for extracting information from the device, together with attacks on Android
OS, data leak and users privacy risks. Following, we discuss the advantages and disad-
vantages of user profiling and the methods present in the literature to protect the user.

Chapter 3 deals with how to take advantage of data extracted from smartphone. The
Chapter discusses user services and attacks created through the API. It introduces benev-
olent tools with the aim of improving services for citizens, in particular we present two
approaches, the first with the several intent, for example to enhance public transporta-
tion or transportation planning and the second with the intention of helping the user to
find Points Of Interest (POIs). Such data can be used, also, to attack the user, in fact,
subsequently a type of attack is presented for Android devices.
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Having introduced how the data can be extrapolated, the Chapter 4 explains how the
data can be entered into the device and its effects for the user. POI recommendation is one
of such services, which is to recommend places where users have not visited before; the
Chapter discusses of a service based of POI recommendation. The recommendation is re-
inforced by the opinion of other users who have already visited the place, so, such Chapter
introduces the concept of Sentiment Analysis. Sentiment analysis and opinion mining is
the field of study that analyzes people’s opinions, sentiments, evaluations, attitudes, and
emotions from written language [28]. The chapter ends with a targeted advertising attack
which silently tracks the user position.

Chapter 5 discusses countermeasures to protect the user in order to shield her from
attacks or data loss. It introduces two innovation techniques and, furthermore, it explains
how to apply the second method illustrated for the attacks discussed in Chapters 3 and
4. Finally, Chapter 6 gives conclusions for this thesis.
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Chapter 2

Background And Related Works

Android is the world’s most popular mobile Operating System (OS), powering billions
of devices [3]. Users of Android OS devices can download an app from the market and
install it on their device. Sometimes such apps behave as a gateway for sensitive data to
flow over the network and user can experience a loss of control over her own data, since
it becomes unknown whether an app, or a remote side, uses her personal data, such as
e.g. location, contacts, etc. [12, 13]. Consequently, through of applications, users are
easy prey for attacks, for example stealing personal data but at the same time using the
services of apps have better navigation and profiling. We give the definition of attack and
service.

An attack (or cyber attack) is any maneuver, used by individuals or even state orga-
nizations, which affects information systems, infrastructures, computer networks and/or
personal electronic devices through malicious acts, generally coming from an anonymous
source, aimed at the theft, alteration or destruction of specific targets in violation of sus-
ceptible systems. Generally, the greatest risk is the theft of confidential and personal data.
Given the high growth of smartphones, there is an increase in cyber attacks on security on
smartphones. A Kaspersy report sounds the alarm bell: virus-infected smartphones are
growing rapidly, in fact, between the end of 2017 and the end of 2018, they have doubled.

Furthermore, a service is an application created with the aim of facilitating users using
the smartphone; it can perform long-running operations in the background, and it gener-
ally provide an user interface. For example, starting from GPS data, services are created
for smart city solutions. The term “smart city” is used to describe applications of complex
information systems to integrate the operation of urban infrastructure and services such
as buildings, transportation, electrical and water distribution, and public safety [29].

The popularity of smartphones as well as problems arising from the lack of security
have been widely documented [14, 15]; to provide services, the device requires user’s
private information, which creates smartphone security problems both in the case of theft,
loss or data sniffing, and increasing problems due to the ample time spent connected to
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the web world. It reinforces the need of a ‘secure system’ to prevent illicit operations [17]
and the need to improve the security in such devices has become paramount.

In this chapter we discuss everything required to guide the reader toward the work
of this thesis. In Section 2.1 we introduce the Android smartphone world. The section
explains how to access resources through the APIs, introduces the security mechanisms
created by the Android developers, namely the permission system and discusses about
problems related to user security. Here, a list of well-known APIs and a list of the most
used and sensitive permissions to privacy are shown.

In Section 2.2 we introduce the Android vulnerabilities analyzed during the aforemen-
tioned thesis work. The main topic is the attack on the devices Android with the purpose
of damaging the user and steal personal data. The subcategories exposed are malware and
Man-in-The-Middle attacks.

In Section 2.3 we explore the concept of user profiling. The combination of data and
their correlation is a source of great gain as it allows an actor to acquire useful information
in the market. Thanks to the analysis of large amounts of users data it is possible to create
more effective studies and test them with real data. In this section, we discuss how to
use this data for services based on user profiling. We offer an introduction of some data
management techniques (filtering, parallelism) and illustrates datasets used in our tests
together with the related works in the literature. Datasets have data that come mainly
from smartphones, gathered via some APIs.

In Section 2.4 we discuss of tools to protect the user, in particular we discuss tech-
niques to detect data loss and others to detect presence of malware.

2.1 Android Operating System

Since 2012, Android OS popularity has surpassed Symbian and iOS, being installed on
over half (52.5%) of all smartphones shipped [30]. In 2014, Android has surpassed Win-
dows Phone, iOS and Firefox OS [3]. Since April 2017, Android is the most widespread
mobile OS in the world, with a market share of 62.94% of the total, followed by iOS with
33.9%1.

Android OS has been developed by Google Inc. and is based on Linux OS kernel; it
is considered an embedded Linux distribution, since almost all GNU utilities are replaced
by Java counterparts.

Currently, most Android apps are being developed in Java, use the Android Software
Development Kit (SDK), and are compiled to Java bytecode. They are then converted

1www.supinfo.com/articles/single/4760-history-of-android-evolution



Chapter 2. Background And Related Works 13

from Java Virtual Machine-compatible class files to Dalvik-compatible, or DEX (Dalvik
Executable), files that run on Android Dalvik Virtual Machine (DVM). During the An-
droid app build process, DEX files are bundled into an Android Application Package
(APK) file. While not all Java bytecode can be translated to DEX, many Java libraries are
compatible with Android OS.

Security problems on Android are well known; smartphone security has matured con-
siderably, and the literature has reported several papers, including an introduction to An-
droid security [31], and smartphone security surveys [32]. One of the security mecha-
nisms embedded in Android OS is the permission system. Android library APIs that give
apps the possibility to access some critical resource, such as microphone, contacts, etc.
are managed by the permission system.

2.1.1 API and Permissions

The extrapolation of data creates new problems in terms of user security and privacy [33],
partially due to the misunderstanding of security policies by users [18, 13].

Android library APIs [34] that give apps the possibility to access device resources;
the following provides the list of some APIs, i.e. classes and methods, that can be used
to extract useful information from an Android device with a description of such Android
APIs and we show the relationship between the described APIs and the corresponding
Android class (see Table 2.1).

• LocationManager is a class providing access to the system location services. Its
method getLastKnownLocation(String provider) returns a Location indicating the
data from the last known location point obtained from the given provider.

• WifiInfo describes the state of any WiFi connection that is active or is in the process
of being set up. The getSSID() method returns the service set identifier (SSID) of
the current 802.11 network.

• WifiManager class provides the primary entry point for managing all aspects of
WiFi connectivity. Method getWifiState() provides the WiFi enabled state, and get-

ConnectionInfo() returns dynamic information about the current WiFi connection,
if any is active.

• TrafficStats class provides network traffic statistics. These statistics include bytes
transmitted and received and network packets transmitted and received, over all
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interfaces, over the mobile interface, and on a per-UID basis. Methods getMobil-

eRxBytes() and getMobileTxBytes() return the number of bytes received and trans-
mitted, respectively, across mobile networks since device boot.

• PackageManager class lets us retrieve various kinds of information related to the
application packages that are currently installed on the device. Method getAppli-

cationInfo(String packageName, int flags) gives information about a certain pack-
age/application, and method getInstalledApplications(int flags) returns a list of all
application packages that are installed on the device.

• NetworkInfo describes the status of a network interface. Method getType() re-
ports the type of network to which it pertains, and method isConnected() indicates
whether network connectivity exists and whether it is possible to establish connec-
tions and pass data.

• ConnectivityManager monitors network connections (WiFi, GPRS, UMTS, etc.).
Method getNetworkInfo(Network network) returns the connection status about a
given network, whereas method getAllNetworks() returns an array of all networks
currently tracked by the framework.

• BatteryManager analyses the battery level. Method extra-level() gives a value
which is an integer representing the current battery level, from 0 to extra-scale
which contains the maximum battery level.

• RunningAppProcessInfo gives information about a running process. E.g. process-

Name() returns the name of the process that this object is associated with.

In Android OS, resources are protected by a mechanism based on permissions, which
has been widely discussed in the literature [35, 36], and constitutes a weak point suitable
for attacks and data leak.

Android library APIs [34] that give apps the possibility to access some critical re-
source, such as microphone, contacts, etc. have been assigned a permission level. Then,
apps wishing to call such APIs have to declare the corresponding permission in a file,
bundled into the APK, dubbed AndroidManifest.xml.

Android developers have grouped permissions into different levels of protection [11],
i.e. normal and dangerous, mainly2. The levels refer to the intended use of a permission,
as well as the consequences of using the permission.

2Another level available is Signature, and if used the app key has to match the platform key to access
core platform packages.
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Table 2.1: Android APIs

Package Class Level Since
version

android.location LocationManager 1 1.0
android.net.wifi WifiInfo 1 1.0
android.net.wifi WifiManager 1 1.0
android.net TrafficStatNow 1 1.0
android.net NetworkInfo 1 1.0
android.net ConnectivityManager 1 1.0
android.os BatteryManager 1 1.0
android.app RunningAppProcessInfo 3 1.5
android.content.pm ApplicationInfo 1 1.0
android.net Network 21 5.0

NORMAL permission level is for APIs considered mostly harmless for the privacy
of users, or for the operation of other apps. Apps have to declare such permissions and
Android OS then grants them immediately upon installation of an app. Essentially, the
user is unaware of the declaration of such permissions. An example of APIs under normal
permission level is the one for setting the time zone. A selection of normal permissions is
shown in Table 2.2.

DANGEROUS permission level is for APIs that affect users private data, or could po-
tentially affect phone calls, or the operation of other apps. Such permissions, similarly
to normal ones, must be declared by an app. Since version 6.0 of Android OS (released
on October 5, 2015), the user has to grant access to the app at runtime, before the app
can use the corresponding APIs [35]. Figure 2.1 shows how requests are performed at
runtime. The second time the request is performed, the user can choose to grant access
permanently. An example is the permission to read user contact data 3. The whole list of
dangerous permissions is given in Table 2.3.

When executing an Activity or code Fragment that uses an Android library API the
corresponding permission has to be declared. E.g. WakeLock Android library API class
lets an app force the device stay on; any app using WakeLock has to declare the an-
droid.permission.WAKE LOCK normal permission before using the methods available
from class android.os.PowerManager.WakeLock.

The above described permission levels and mechanisms are not meant to check, nor
trace, control flows or data flows within an app at runtime [20]. I.e., once an app has
gained a set of dangerous permissions, the moments in which an app is using APIs under
such a set of permissions is unknown. E.g. the events or user inputs that trigger the use

3developer.android.com/guide/topics/permissions/overview
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Figure 2.1: Initial permission dialog (left) and secondary permission request with option to turn
off further requests (right).

of the microphone for an app is unknown to the device owner. Therefore, an app having
asked permission to use the microphone and internet could send samples of recorded
sound any time during its execution, even while in background. The user remains unaware
of it, however it poses a serious risk to privacy.

In the next section we illustrate the problems of user privacy due to permission man-
agement, together with the interventions of such problems present in the literature.

2.1.2 Privacy risks related to permission management

One of the problems of Android mobile devices is related to the risk of private data flowing
from the device to an unknown remote actor via API. By systematically analysing the
Android APIs code, a previous research study has shown the APIs that are unprotected by
any permission, and using them allows an app to discover sensitive data, such as device
id, setting data, power modes, etc., as well as perform actions such as set volume, change
alarm tones, etc. [37]; even when APIs are protected by permissions, some unexpected
app behaviour cannot be averted. E.g. an app could turn on the microphone, having
previously obtained the needed permission, when the user is checking the list of messages
or when the app runs in background, this leads to risks for users [38]. Otherwise, while
the user could be aware that an app is reading her contacts (or GPS coordinates) and has
allowed the app to access them, she is unaware that her data are transmitted remotely.
E.g. the ACCESS WIFI STATE permission allows applications to access information about
Wi-Fi networks and is a normal permission level. In literature, a well-known example
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Permissions Description
ACCESS LOCATION EXTRA COMMANDS Allows an application to access extra location provider commands
ACCESS NETWORK STATE Allow applications to access information about networks
ACCESS NOTIFICATION POLICY Marker permission for applications that wish to access notification pol-

icy
ACCESS WIFI STATE Allow applications to access information about WiFi networks
BLUETOOTH Allows applications to connect to paired bluetooth devices
BLUETOOTH ADMIN Allows applications to discover and pair bluetooth devices
BROADCAST STICKY Allows an application to broadcast sticky intents
CHANGE NETWORK STATE Allows applications to change network connectivity state
CHANGE WIFI MULTICAST STATE Allows applications to enter Wi-Fi Multicast mode
CHANGE WIFI STATE Allows applications to change WiFi connectivity state
DISABLE KEYGUARD Allows applications to disable the keyguard if it is not secure
EXPAND STATUS BAR Allows an application to expand or collapse the status bar
FOREGROUND SERVICE Allows a regular application to use Service.startForeground
GET PACKAGE SIZE Allows an application to find out the space used by any package
INSTALL SHORTCUT Allows an application to install a shortcut in Launcher
INTERNET Allows applications to open network sockets
KILL BACKGROUND PROCESSES Allows an application to call ActivityMan-

ager.killBackgroundProcesses(String)
MODIFY AUDIO SETTINGS Allows an application to modify global audio settings
NFC Allows applications to perform I/O operations over NFC
READ SYNC SETTINGS Allows applications to read the sync settings
READ SYNC STATS Allows applications to read the sync stats
RECEIVE BOOT COMPLETED Allows an application to receive the Intent that is broadcast after the

system finishes booting
REORDER TASKS Allows an application to change the Z-order of tasks
REQUEST INSTALL PACKAGES Allows an application to request installing packages
SET ALARM Allows an application to broadcast an Intent to set an alarm for the user
SET TIME ZONE Allows applications to set the system time zone
SET WALLPAPER Allows applications to set the wallpaper
SET WALLPAPER HINTS Allows applications to set the wallpaper hints
TRANSMIT IR Allows using the device’s IR transmitter, if available
USE BIOMETRIC Allows an app to use device supported biometric modalities
VIBRATE Allows access to the vibrator
WAKE LOCK Allows using PowerManager WakeLocks to keep processor from sleep-

ing or screen from dimming
WRITE SYNC SETTINGS Allows applications to write the sync settings

Table 2.2: A selection of normal level permissions
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Permissions Description Group
READ CALENDAR Allows an application to read the user’s calendar data CALENDAR
WRITE CALENDAR Allows an application to insert or update calendar data CALENDAR
READ CALL LOG Allows an application to read the user’s call log CALL LOG
WRITE CALL LOG Allows an application to write (but not read) the user’s call log

data
CALL LOG

PROCESS OUTGOING CALLS Allows an application to see the number being dialed during an
outgoing call with the option to redirect the call to a different
number or abort the call altogether

CALL LOG

CAMERA Required to be able to access the camera device CAMERA
READ CONTACTS Allows an application to read the user’s contacts data CONTACTS
WRITE CONTACTS Allows an application to write the user’s contacts data CONTACTS
GET ACCOUNTS Allows access to the list of accounts in the Accounts Service CONTACTS
ACCESS FINE LOCATION Allows an app to access precise location LOCATION
ACCESS COARSE LOCATION Allows an app to access approximate location LOCATION
RECORD AUDIO Allows an application to record audio MICROPHONE
READ PHONE STATE Allows read only access to phone state, including the phone

number of the device, current cellular network information, the
status of any ongoing calls, and a list of any PhoneAccounts
registered on the device

PHONE

READ PHONE NUMBERS Allows read access to the device’s phone number(s). This is
a subset of the capabilities granted by READ PHONE STATE
but is exposed to instant applications

PHONE

CALL PHONE Allows an application to initiate a phone call without going
through the Dialer user interface for the user to confirm the
call

PHONE

ANSWER PHONE CALLS Allows the app to answer an incoming phone call PHONE
ADD VOICEMAIL Allows an application to add voicemails into the system PHONE
USE SIP Allows an application to use SIP service PHONE
BODY SENSORS Allows an application to access data from sensors that the user

uses to measure what is happening inside his/her body, such as
heart rate

SENSORS

SEND SMS Allows an application to send SMS messages SMS
RECEIVE SMS Allows an application to receive SMS messages SMS
READ SMS Allows an application to read SMS messages SMS
RECEIVE WAP PUSH Allows an application to receive WAP push messages SMS
RECEIVE MMS Allows an application to monitor incoming MMS messages SMS
READ EXTERNAL STORAGE Allows an application to read from external storage STORAGE
WRITE EXTERNAL STORAGE Allows an application to write to external storage STORAGE

Table 2.3: The whole dangerous permissions list
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is the use of such permission to extrapolate the user’s physical position without them
noticing [39]. Moreover, apps often gain more privileges than strictly needed, and the
several resources used can be combined in a way to breach privacy [40, 20].

Thus, some weaknesses have been observed on Android OS permission design and
mechanisms and in literature works has proposed to analyse apps in order to check whether
sensitive data sources are connected to unwanted sinks [41, 42].

In such a context, the most discussed permissions are the dangerous-level permissions

followed by their companions normal-level permissions. Despite the apparent innocence
of using normal-level permissions, in several studies, the use of these has been linked to
possible attacks and loss of sensitive data [38, 43].

Then, Android has several weaknesses that put the user at risk, among these is per-
mission management as it is sometimes possible to collect sensitive data without the user
being aware of it, that is exploiting normal level permissions.

Several techniques have been developed to protect the user’s privacy. In [44, 45, 46]
the privacy breaches are tackled with cryptographic systems, which can reduce the risk for
the user. In other research works, e.g. in [47], each user first disguises her private data, and
then sends it to the data collector. Therefore, a Randomized Perturbation (RP) technique
is used to disguise private data [48]. Moreover, anonymisation techniques can be used,
however these introduce some attack problem, making datasets not very useful [49, 50].

The various techniques alone are not able to protect the user, but they can be a good
remedy to mitigate the user’s risks, as we will see in the next chapters.

2.2 Vulnerability of Android

The exponentially growing number of Android apps, unofficial app developers and secu-
rity vulnerabilities existing in the Android OS encourage malicious to create attacks on
smartphones to steal private information from users or to damage app markets and the
reputation of developers. Since the Android OS is an open source platform that allows the
installation of third-party market apps, it is possible installs Android malware able to con-
trol of the device, steal private information from users, consume excessive battery power
and turn the device in a zombie machine. Furthermore, Android security is built upon a
permission-based system which is widely criticized for its coarse-grained control of appli-
cation permissions and the inefficient permission management, by developers, marketers
and end-users [51].

Recent studies have shown that the mobile app market is hosting some apps that are
malicious and vulnerable, and putting at risk millions of devices. This is more evident
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on Android markets, where in some cases apps have been found infected with malware
and spywares and, in other case, attacks come from external sources, such as evil twin of
WiFi networks (such attacks can be in the specific Man-in-The-Middle attacks). In evil
twin attack, an adversary clones an access point for malicious purposes including malware
injection or identity theft [52].

There are many (malicious) applications work by exploiting the users private and
monetized information stored in a users smartphone and among these, nearly half of An-
droid malware are multi-functional Trojans that steal personal data stored on the users
phone4. In addition, in order to extract sensitive information, there are attacks from ex-
ternal sources, among them stand out the attacks Man-in-The-Middle [53].

In this section, we discuss attacks on Android devices; we analyze the concept of
malware, that is software installed inside the device, and the concept of Man-in-The-
Middle that uses external attacks.

2.2.1 Malware

A MALWARE [54, 55] is a generic term for all types of unwanted software (e.g., viruses,
worms or trojan horses) that constitutes a serious security threat to users. E.g., it could
consist of a snippet of code inside an apparently trusted app, which acts against the user
unknowingly. In fact, such a snippet of code could access saved data, as well as gather
everything typed on the keyboard, and/or store any action carried out by the user. Finally,
malicious code could periodically send acquired data to a server allowing an attacker to
analyse and eventually use them for illicit purposes.

2.2.2 Related Work

Smartphone platforms provide application developers with rich capabilities, which can
be used to compromise the security and privacy of the device holder and her environ-
ment [56]. The work in [56] examines the feasibility of malware development in smart-
phone platforms by average programmers that have access to the official tools and pro-
gramming libraries provided by smartphone platforms, including Android OS, Black-
Berry OS, Symbian OS, Apple iOS and Windows Mobile 6 OS.

In the literature we find various descriptions of attacks designed for Android mobile
devices [57, 58, 14]. Davi et al. discuss permission redelegation attacks on Android [59],
they introduce the problem and present an attack on a vulnerable deputy.

4Q2 IT evolution threat report.
http://www.securelist.com/en/analysis/204792299/IT Threat Evolution Q2 2013.
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Among the older malware, as discussed in [60], there are: 1) DroidKungFu: the first
version of DroidKungFu malware was detected by research team in June 2011 and it was
considered one of the most sophisticated Android malware at that time. 2) AnserverBot:
it was discovered in September 2011 and it is piggybacks on legitimate apps and is being
actively distributed among a few third-party Android Markets in China. The malware
aggressively exploits several sophisticated techniques to evade detection.

Among of the malware attacks there are (complete list in [61]):

• Bluetooth attacks: attacker could insert contacts or SMS messages, steals victim’s
data from their devices and can track user’s mobile location.

• SMS attacks: attacker can advertise and spread phishing links.

• GPS location attacks: user’s current location and movement can be accessed with
global positioning system (GPS) hardware.

2.2.3 Man-In-The-Middle

The MAN-IN-THE-MIDDLE (MITM) concept is used to describe the attack that occurs
during communication between a consumer and a legitimate organization. Through the
MITM, the attacker is able to sniff packets through encrypted communications between
two parties [62, 53].

2.2.4 Related Work

Recently, with the growth of smartphone users, the risks to smartphone owners have be-
come victims of MITM attacks. WiFis are at the centre of many attacks on the privacy of
users, who rely on devices such as smartphone or tablet [63, 64]. Among various method-
ologies, attacks based on the enabled phone’s WiFi connectivity options stand out, so
that the device can be connected to fake WiFi network without an explicit user operation;
exploiting so-called Man-in-The-Middle attack [65, 66]. For example, in [67] the WiFi
connection enabled option is used to connect the device to fake access points, or in [68]
a detection mechanism was created to find an evil twin Access Point attack which steals
sensitive data. Most of these types of attacks are exploited when the WiFi in the devices
is active, so they no longer have any merit if the WiFi is turned off.
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2.3 User profiling

User profiling is the process of collecting information about an user in order to construct
their profile. Knowing users is the fundamental starting point for any marketing strategy
and thanks to new technologies based on artificial intelligence, it is possible to profile
users like never before.

The massive spread of ICT, the Internet and the growing use of social networks have
increased and simplified user profiling, this is also due to use of the API with which
it is possible to extract various information of the Android device. This information is
used to create large datasets with which the developers create services for users with the
backstage of have to adapt to the management of millions of data and the use of techniques
for reviewing and cleaning the data.

In this section we discuss of concept of big data and how to manage large amounts
of data for the analysis of information that can be extracted from mobile devices, which
allow user profiling. We see some services dedicated to users which use information of
smartphone and we illustrate a set of datasets on the web and take from real devices.

2.3.1 Data characteristics and management

The term of big data is mainly used to describe a huge amount of data that able us to
capture, link, collect, store and organize information. Today, big data related to the service
provided by Internet companies grow rapidly, as for Google or Facebook services [69].
This growth is also fueled by data sharing via smarpthones.

Big data brings about new opportunities for discovering new knowledge, helps us to
gain an in-depth understanding of the hidden values, but introduce several challenges,
including how to capture, transfer, store, clean, analyze, filter, search, share, secure, and
visualize data [70]. Data management becomes an increasingly demanding job as each
device processes data and puts it on the network, facilitating information sharing. Thus,
the use of techniques for the management of large amounts of data has become a source
of great interest.

In general, big data shall mean the datasets that could not be perceived, acquired,
managed, and processed by traditional IT and software/hardware tools within a tolerable
time [69]. Because of different concerns, scientific and technological enterprises, research
scholars, data analysts, and technical practitioners have different definitions of big data.
So, an relevant challenge of big data is how to effectively organize and manage such
datasets.
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There are many tools for studying and analyzing big data. Two interesting strategies
for processing large amounts of data are:

• Redundancy reduction and data compression: generally, there is a high level of
redundancy in datasets. Redundancy reduction and data compression is effective to
reduce the indirect cost of the entire system on the premise that the potential values
of the data are not affected. For example, most data generated by sensor networks
are highly redundant, which may be filtered and compressed at orders of magnitude.

• Parallel Processing: by splitting a job in different tasks and executing them simul-
taneously in parallel, a significant boost in performance can be achieved. Among
other models, the most famous is MapReduce [71] and a famous use of the paradigm
is in Hadoop MapReduce. The latter is a software framework for easily writing ap-
plications that process vast amounts of data; a MapReduce job usually splits the
input data-set into independent chunks that are processed by the map tasks in a
completely parallel manner. The framework sorts the outputs of the maps, which
are then given as input to the reduce tasks. The framework takes care of scheduling
tasks, monitoring them and re-executes the failed tasks [71]. Therefore, MapRe-
duce gives developers a paradigm to organise their tasks, and each new application
has to be adapted to fit MapReduce’s main two steps as follows:

– Map is the first task, which takes input data and converts it into a set of data,
where individual elements are broken down into tuples (key/value pairs).

– Reduce takes the output from a map task as input and combines those data
tuples into a smaller set of tuples. The reduce task is always performed after
the map task.

Such techniques are a good starting point for data cleaning and to speed up computa-
tional computation and therefore have faster responses.

2.3.2 Related Work

In this section we analyze the literature for jobs related to user profiling by creating ser-
vices that take advantage of information taken from mobile devices. We will introduce
the concept of GPS user trajectories analysis and the study of Points Of Interest (POIs),
offering new services for citizens as recommendation systems based on POIs.

GPS trajectories analysis: researchers have ventured into several studies concerning
the analysis of user trajectories. This interest is driven by the possibilities it offers for
marketing and the many services that can be offered to users.
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In the literature, we can find a lot of research that analysed the information to ex-
trapolate new knowledge. Since 2005 researchers have faced the problem of analysing
trajectories according to space-time. The first studies on the analysis of trajectories of-
fer an overview on how it is possible to analyze the trajectories starting from a set of
POIs [72]; the analysis of trajectories from a set of points of interest (POIs) has been ini-
tially performed in [73, 72]. Over the years, these analyses have fed other different studies
on trajectories, such as finding the probability of moving from one POI to another, using
e.g. the Markov chains [7, 74], and then creating methods that predict the next movements
of users by analysing their POIs.

Another type of analysis is the search for the similarity between the trajectories. In the
literature we find this field studied in various ways according to the concept of similitude.
In [72], two similar trajectories are defined as paths crossing in the same area several
times, regardless of their time-spatial details, i.e. time-frame or direction. In [73], the
authors identify two similar trajectories regardless of their geographical location (in fact,
analyzing the problem that faces issues related to the analysis of videos or images).

Yet, high-density points have been studied very carefully [75], to carry out various
analyzes on the dead spots (called standstill), in order to find e.g. the waiting time in places
such as supermarket, bus stop or points of interest (like a museum). An improvement on
the comparison between trajectories is the approach proposed in [25] that describes an
algorithm to align the points of the trajectory with a map making the trajectory more
homogeneous and precise.

Recent research, due to the introduction of GPS in the eigenvector and the need to
tackle environmental pollution, analyzes the trajectories of the means of transport, such
as taxis, facing the problem of traffic jams [76, 77, 78, 77, 76, 79]. For example, an
innovation method is discuss in [78] which discusses how to exchange traffic information
via a vehicle-to-vehicle communication connection.

However, none of the said studies aims at providing the quantitative amounts (such as
e.g. number of people flowing in a trajectory, their average speed, etc.) that our approach
achieves, which are useful for analysing, improving and proposing smart transportation
services as well as logistic support.

POIs and recommendation systems: A recommendation system is a content filter-
ing software that creates customized recommendations specific to the user so as to help
him in his choices. Recommendation systems are divided into three main categories [80]:
collaborative filtering, (CF), content-based filtering and (CB) and hybrid filtering (HF).
Content-based filtering [81] makes recommendations based on user choices made in the
past (for example, if a user likes to drink a carbonated drink like coca cola, the sys-
tem offers recommendations for similar gaseous drinks such as sprite). Collaborative
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filtering [82] allows users to give ratings about a set of elements, so that when enough
information is stored on the system, it is possible to make recommendations to each user
based on information provided by those users that have the most in common with them
(for example, if Bob and Alan have seen the same horror films, one of the films of the
same category seen by Bob is suggested to Alan and vice-versa). The hybrid technique is
a mixture of the first two.

In the literature, several studies use collaborative filtering to suggest itineraries or
Points of Interest (POIs). A POI is a well-known concept in literature [83, 84, 72], that
is defined as an object associated with a latitude and a longitude which at least one per-
son would reasonably be expected to have an interest or an utility. POI recommendation
is one of the services available, suggesting places for users to visit [85]. In [86], the
authors propose time-sensitive trip routes, consisting of a sequence of locations with as-
sociated timestamps. In [87] the authors propose a recommendation for itineraries based
on multiple user-generated GPS trajectories. In [88] the authors propose a user-based col-
laborative filtering with time preference to explore user preferences on places visited and
offer a recommended itinerary.

The weaknesses of such approaches are: 1) the works do not identify the point closest
to the user; 2) recommendation systems are not updated in real-time; 3) the works do not
automatically calculate points of interest. In contrast, our proposed work overcome such
weaknesses.

2.3.3 Examples of Datasets

There are many datasets which are available for research purposes; these datasets help
researchers to find new knowledge. Below is a list of datasets, they have been used to test
approaches described in the drafting of the thesis:

• Device Analyzer: in 2013, Device Analyzer app was created [89, 15] and, thanks
to the support of around 12,500 users, managed to collect a large amount of data on
mobile devices from around 167 countries. Device Analyzer (DA) project and app
aimed at collecting a large scale data of phone usage. It gathered data about run-
ning processes, wireless connectivity, the phones location, GSM communication,
battery state and a number of system parameters. Users gave their contribution by
downloading and installing an app that collects user data. Hence, a dataset that
captures the real-world uses of Android devices was formed. All data were locally
stored in a timestamped key-value store for periodic upload to a central server. DA
app attempted to minimise its impact by scheduling uploads when the device was
charging and with a 802.11 connection available. DA app captured more than 200
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different events, the keys of data collected include: net (contains information about
the state of network interfaces including the received byte number and sent byte
number); location (position of device); power (information about the current bat-
tery); sms (contains information about incoming and outgoing text message); WiFi
(contains information about currently visible WiFi networks). The designers of the
DA offered us a set of data of over 950 users while respecting the privacy of con-
tributors.

• Geolife Trajectories: this GPS trajectory dataset was collected in (Microsoft Re-
search Asia) Geolife project by 182 users in a period of over three years (from
April 2007 to August 2012). A GPS trajectory of this dataset is represented by a se-
quence of time-stamped points, each of which contains the information of latitude,
longitude and altitude [90, 24, 91]. The data are organized in folders; each folder
identifies a user and for each user several files, each for the recordings on a day, are
given. Each file contain several records, each with the following fields: Latitude;
Longitude; All set to 0 for these datasets; Altitude; Date in number of days (after
12/30/1999); Date as a string; Timestamp. GeoLife has already been used several
times in the literature due to data accuracy (about a value every 3 seconds) and the
large amount of data [92, 90, 24, 91, 93].

• T-Drive trajectory: This dataset contains the GPS trajectories of 10,357 taxis dur-
ing the period of Feb. 2 to Feb. 8, 2008 within Beijing. The total number of points
in this dataset is about 15 million and the total distance of the trajectories reaches to
9 million kilometers [94, 95]. Each line of a file has the following fields, separated
by comma: taxi id, date time, longitude, latitude.

• Taxi Rome: Dataset of mobility traces of taxi cabs in Rome, Italy. It contains GPS
coordinates of approximately 320 taxis collected over 30 days [96]. Each taxi driver
has a tablet that periodically ( 7s) retrieves the GPS position and sends it to a central
server. Tablets have different version of Android and different brand. Despite its
small size, the dataset has been used in several searches [97, 98, 99].

• Taxi Trajectories: Taxi trajectory data [100] is the GPS trajectories collected by
101 taxies equipped with GPS sensors in Beijing area [115.421387, 39.437614] x
[117.321785, 40.609333] of longitude and latitude during a month, from 30 October
2010 to 30 November 2010. The positions saved by the mobile GPS device were
almost one point per minute.
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• Truck Trajectories: Truck trajectory data, referred to as Truck, is the GPS trajec-
tories collected by 100 trucks equipped with GPS sensors in China during a period
from August 2015 to October 2015. The space covered by the registered path is the
large area [86.882817,0.230753] × [172.467424,43.405276]. Each taxi is saved
as a separate text file and each data point is saved as a line with: id; timestamp;
latitude; longitude; speed; direction.

• Yelp: Yelp is a review forum that allows users to post their comments on a public
place, restaurant or other services and to associate a number of stars ranging from 1
to 5 to give their own rating, in which the lower the number of stars the lower user’s
liking. The number of stars was used to evaluate the stability of the algorithm [101].

• WiFi New York: a list of New York City Wi-Fi hotspot locations. The dataset
contains 3.345 elements, for each associated with a location in New York. The
dataset was created on July 14, 2015 and the last update was done in April 4, 2019.
Each record is valued by 30 columns. Among them we find: Type (for example
free or limited free, Partner Site); Name (name of the WiFi); Location (area, for
example: Bowne Park or Joyce Kilmer Park); SSID (the alphanumeric key that
uniquely identifies the network); Latitude and Longitude (GPS coordinates).

2.4 Tools of protection

In response to the rapid spread of smartphone, attacks and user risks increase, therefore
with the advent of the great Android giant and above all due to the large distribution of
smartphones, in recent years the research has turned to the defend of the user, creating
tools to protect the privacy and confidentiality of data. This implies a real need for tools
that can detect malicious applications that steal information from users and this becomes
increasingly complex as even benign applications read the private data and consequently
it is not easy to estimate a priori if a data flow is legitimate.

In the next section we analyze the studies in the literature regarding user protection,
in particular we discuss techniques to detect threats such as malware or data loss.

2.4.1 Related Work

Numerous researches have discussed how to identify privacy risks in mobile apps and de-
signed privacy-enhancing technologies to mitigate the identified threats. Several studies
have analysed permissions of apps, defining the authorisation as a serious security prob-
lem, mainly due to the misunderstanding of them by users [22, 13] who ignore potential
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problems by choosing to trust an app store. Specifically, in [13], it is shown how an ig-
norant user or an organisation can fall prey to an app. Android OS adopts the ”principle
of least privileges”, however apps are often overprivileged [20, 40]. As a consequence,
the permission system can hardly guarantee realistic security [22]. According to [23], it
seems that there are no visible differences in the permission list used in malware with
respect to the ones used in benign apps. The absence of diversity makes classification
more complex and highlights that checking how permissions are used at runtime can be
more effective.

Thus, an Android app can seriously threatens security and the user in terms of escala-
tion of privileges, remote control, price theft and loss of privacy. An app that has access
to corporate data is a potential channel for such threats.

Techniques for detecting malware can be divided into three main categories [102]:

1. static analysis methods: check the code without running it;

2. dynamic analysis techniques: monitor execution and inspect interactions with the
outside, thus detection is performed by collecting data at runtime [103].

3. hybrid analysis techniques: combine both static and dynamic analysis methods.

Dynamic analysis of malware has received a lot of attention in the research commu-
nity. Analysis systems such as CWSandbox [104], and Anubis [105] execute malware
samples within an instrumented environment and monitor their behaviour for analysis
and development of defense mechanisms. Most dynamic analysis techniques mainly op-
erate when samples are unpacked. Furthermore, static and dynamic analysis solutions are
mainly based on:

• signature, i.e. the identification of unique signatures that define the malware,

• heuristic, i.e. rules determined e.g. by machine learning techniques or by experts
are used to detect malware.

Recently, classification algorithms have been employed to automate and extend the
idea of heuristic based methods. In these methods, the binary code of a file or the be-
haviour of an app during execution is represented and some classifiers learn correspond-
ing models in order to classify new (unknown) apps as harmful or benign [106, 107, 108].
There are already several frameworks that identify a possible attack on the device includ-
ing Andromaly [27], a framework that realizes a host based malware detection system that
continuously monitors various features and events obtained from the mobile device and
then applies some machine learning based detectors to classify collected data as normal
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(benign) or abnormal (harmful) [27]. Moreover, in [109], it has been determined whether
a newly requested permission type is benign or not by using machine learning techniques
based on previous user preferences.

Many methods are based on permission monitoring, e.g. among static methods, there
are: Adrienne [35], a tool to detect over privilege in compiled Android apps; Androi-
dLeaks [12], automatically detecting potential privacy leaks in apps based on maps of
permissions and APIs; Drebin [110] implementing a classifier based on APIs and other
apps data; Fan [111], proposing malware detection systems based on API log data min-
ing. Yet, FlowDroid [41] is a tool that exercised static data flow analysis to find dangerous
code in Android apps. Other research works have looked for malware according to the
past behavior of the user [112, 109].

However, the available tools implementing their proposed techniques have three sig-
nificant flaws: 1) they are not very user-friendly as they must be downloaded separately
and subsequently it is only possible to test the application through the command line. For
this reason they are not very efficient for average users. 2) The common ground of these
methods is to find a correct measurement to identify malware; all these works are based
on already known behavior or signatures. This is a limitation to identify new threats not
yet known or little used. 3) these tools are based on the analysis of the study of harmful
permissions, as they are more relevant than the other Android levels ”in particular normal-
level”, but this is a limitation as there are, to date, attacks that can be based on normal
permissions, as we will see in the following chapters.

2.5 Conclusion

In this chapter all the bases and related works have been presented, to understand and
evaluate the contributions presented in other chapters.

The great success of the Android devices has been confirmed in literature but at the
same time the big gaps in terms of security has been widely documented. Attacks on
smartphones and user privacy risks have been introduced. These attacks and risks arise
mainly from the continuous connection to the network and the gaps in the Android per-
missions system.

In addition, techniques for the creation of services for citizens have been illustrated
based on user profiling. These services also come to life thanks to the various information
available from the devices via API. To reinforce this notion, several datasets have been
listed that will be used in the experiments present in this thesis work to create attacks,
services and user protection tools.
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Chapter 3

Manipulation of user data via network

Smartphones are the center of attention of millions of people; the mobile device is used
for multiple reasons (address book, e-mail clients and many more) and offers services of
several type and genre, satisfying the tastes of the whole community. Generally, these
services require an active connection to keep up to date and to share information on the
network. This constant and continuous connection to the network creates various prob-
lems for the user’s security due to the leakage of their information which occurs through
the use of API.

The huge use of smartphones allows new services to be created every day to facilitate
the user in their daily life by offering applications to calculate the traffic density, calculate
the number of people in a building, discover points of interest, etc. Many of these ser-
vices have a knowledge base take from devices such as tablets, smartphones or TVs. For
this reason, data from smartphones is widely sought after and used (see Chapter 2.3.3).
Simultaneously, via API, it is possible to extract sensitive user information and forward
it on the network. This mechanism, protected in part by the permission system, is an
attack point that exploits various permission weaknesses to access user information (see
Chapter 2.2.1).

In this chapter we focus on the potential of analyzing data taken from devices. We
present two services for citizens that are based on the use of GPS data taken from smart-
phones and a possible attack on smartphone users highlighting the feasibility of the ap-
proach:

• the first service proposes an approach that identifies the flows of people from col-
lected GPS data. This in turn enables us to compute significant parameters, such
as people average speed, amount of travelling people, etc. A proper solution for
data filtering and analysis has been implemented and tested against real data, which
reduces as much as possible running time by lowering the number of needed com-
parisons. The ability to gain insights on people flows can have many outcomes
in the area of smart transportation, e.g. the efficacy of transportation means can
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be assessed, then potential improvements can be suggested on public transporta-
tion means, infrastructures, etc. In this study, our contributions include: provide a
method capable of extrapolating a large amount of data providing the quantitative
amounts which are useful for analysing, improving and proposing smart transporta-
tion services as well as logistic support or to deal with traffic jams. This makes the
algorithm multi-functional, as we will see during the test phase.

• the second service illustrates a method for finding a set of Points Of Interest (POIs),
which we determine using the DBSCAN algorithm. In this study, our contributions
include a solution to identity POIs through a set of trajectories. The method is the
search for Points Of Interest from user trajectories and not from a predefined list.

• the approach describes an attack able to track the user position by known WiFi
(open and private); based on permission levels and mechanisms proper of Android
OS, this section proposes an approach whereby an app attempting to connect to
WiFi networks could reveal the presence of some known access points, thus the
geographical location of the user, while she is unaware of such a feature. This
is achieved without resorting to GPS readings, hence without needing dangerous
level permissions. This work presents a new attack to Android mobile devices that
can determine geographical location by attempting WiFi connections, which users
are unaware of. Unlike previous studies, the attack comes from a misleading app,
installed on the device, that forces WiFi to be enabled. Our approach is compatible
with all Android OS versions, despite the security policies of the latest version, and
does not require dangerous-level permissions.

All approaches are based on GPS coordinates. In the first two case, the coordinates
are offered by the user, while in the third approach the coordinates are identified in an
illicit but feasible way, highlighting the vulnerabilities of Android devices.

3.1 Identification Service of Spatio-Temporal Flows

The wide-spread use of mobile devices provides us with useful data on people GPS posi-
tions. This section aims at proposing a solution for analysing the trajectories of users and
gain knowledge that can be used to enhance public transportation, transportation planning,
both communication and transport infrastructures, etc.

An approach is proposed for revealing significant quantitative characteristics of peo-
ple movements, such as e.g. the largest amounts of people travelling between several parts
of the city, their average speed, and the very frequently used paths. For the said aim, we
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Figure 3.1: Two examples of trajectory according to the first definition. Each trajectory is referred
to one user.

devise novel automatic means to “clean” and analyse data; starting from row data rep-
resenting GPS positions, cleaning aims at safeguarding us from errors in GPS measures
and repeated points. Then, data analysis determines spatially similar paths for different
users and computes their length in kilometers. Furthermore, the algorithm automatically
identifies the number of users in frequent paths. Such a quantitative analysis offers means
to determine long and shared paths.

Data gathered by this solution could be used to improve services for the citizens in
several ways. E.g. during an evacuation in case of emergency it would be possible to
determine, and then check, clear and assist the most used paths. The experiments section
illustrates some application fields. For a better understanding of the approach, we give a
set of definitions like the definition of trajectories or similarity.

According to [113], a trajectory is formally defined as follows:

Definition 1. A GPS trajectory is a list of GPS data points {p0 =(x0,y0, t0), p1 =(x1,y1, t1), ..., pn =

(xn,yn, tn)}, where ∀i ∈ [0,n], pi = (xi,yi, ti) with ti < ti+1, and xi, yi and ti represent lon-
gitude, latitude, and timestamp, respectively.

Spatial similarity is defined as follows.

Definition 2. Two trajectories are spatially similar if they pass through the same n points
in the same temporal order. In other words, given two trajectories T1 = {a0,a1,a2, . . . ,an},
T2 = {b0,b1,b2, . . . ,bn} they are spatially similar if it exists a set of points s= {p0, p1, p2, . . . , pn}
for which s ∈ T1 and s ∈ T2.
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Figure 3.2: Two examples of flows. In each example, each color is referred to one user. In first
example, the flow density is equal to 25; in the second example, flow is equal to 32

Figure 3.3: Integration of a flow in a map. The density is equals to 43 and the distance is equals to
1.1 kilometers.
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According to [113], the distance d(pi, p j) between point pi and point p j, when their
coordinates are given by latitude (lt) and longitude (lg), is defined as follows.

d(pi, p j) =

2Rarcsin

√︃
sin2 lti − lt j

2
+ cos lti cos lt j sin2 lgi − lg j

2
(3.1)

where R is a constant, given by the Earth radius. This formula distance called HAVER-
SINE FORMULA, yields high precision due to the use of constant R.

For all the definitions comparing coordinates, we consider that two points are overlap-
ping (equal in a mathematical sense) if their distance computed using the above distance
formula is less than 300m. This distance is considered the upper limit distance for two
consecutive bus stops, hence let us find the amount of people transiting in an area having
a radius of 150m, which is useful to determine whether to serve them with the same bus
stop1.

We further define flow and flow density.

Definition 3. A flow is a continuous and uniform movement of people in one direction
on the trajectory.

Definition 4. A flow density is the number of users travelling through the same flow.

For our purposes we have identified, at a 4-hour interval from each other, the following
six time slots:

1. from 00:00 to 03:59;

2. from 04:00 to 07:59;

3. from 08:00 to 11:59;

4. from 12:00 to 15:59;

5. from 16:00 to 19:59;

6. from 20:00 to 23:59.

The proposed algorithm is independent of the above time slots, which can be freely
set according to the analysis at hand.

We define the temporal similarity as follows.
1This parameter as well as others that can be found in the remainder of the section can be configured

and tuned for the analysis at hand without loss of generalisation for our approach.
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1 public void clearData() {

2 order_trajectory();

3 deleteOutline();

4 clearTrajectory();

5 }

Figure 3.4: Data cleaning code which includes trajectory sorting, removal of outliers and noise
removal.

1 public void order_trajectory() {

2 Collections.sort(this.getTrajectory());

3 long tmp = 0;

4 for (Point point : this.getTrajectory()) {

5 if(tmp < Long.parseLong(point.getData())) {

6 tmp = Long.parseLong(point.getData());

7 }

8 }

9 }

Figure 3.5: Code sorting the trajectories based on the timestamp.

Definition 5. Trajectories that are spatially similar are said temporally similar if the peo-
ple movements occur in the same time slot.

It is possible to see two examples of trajectories in Figure 3.1, two examples of flows
in Figure 3.2 and an example of integration of a flow in a real map in Figure 3.3.

Section 3.1.1 explains the described approach, taking advantage of the two steps for
the pre-processing phase. Subsequently the Section 3.1.2 illustrates experiments and re-
sults with the possible scenarios of action.

3.1.1 Algorithm to determine Flows of People

The proposed data analysis algorithm aims at achieving the set of similar trajectories that
are the most shared among users and higher than a given threshold. To do this, two phases
were carried out: data cleaning phase performs a data cleanup (see Section 2.3.1) and
calculation of trajectories identifies the Spatial Temporal flows.

1) DATA CLEANING PHASE: the significant fields retained in our study are: latitude,
longitude and timestamp. For a given trace, data points have been sorted according to
their timestamp, in order to find a trajectory out of recorded points (see Definition 1). For
each user, its recorded data have been considered as a whole. Hence, for a user all the po-
sitions and movements are available as one trajectory. Each trajectory has been “cleaned
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1 public void clearTrajectory() {

2 int distanceMin = 150;

3 ArrayList<Point> tmp = new ArrayList<Point>();

4 for (int i = 0; i < points.size() - 1; i++) {

5 int indice = i;

6 tmp.add(points.get(i));

7 while (i < this.points.size() - 1 &&

(points.get(indice).calculate_distance_in_meters(points.get(i + 1))

< distanceMin)) {

8 i++;

9 }

10 }

11 points = tmp;

12 }

Figure 3.6: Code and example of removal of noise. In the code (at the top) you can see the code
written in Java 8 in which points that are less than the value set in DISTANCEMIN are removed.
Below, in the figure, an original trajectory with high density points (left) and its transformation in
a trajectory with uniformly geographically-spaced points.

up” by removing outliers and noise. Since GPS measures can be affected by some er-
ror, e.g. in urban centers due to skyscrapers [114], a search for anomalous shifts, hence
outliers, was carried out on each trajectory. Each point was compared to the n previous
points and n subsequent points (we have set n as 5 in our experiments) to detect abrupt
changes in speed, and if this is the case, the anomalous point was considered an outlier
and removed. Noise removal aims at finding points that are too close to each others, in or-
der to offer a more homogeneous trajectory having almost equally geographically spaced
points (instead of equally time-spaced recordings). Therefore, the points that are less than
150 meters between each other have been removed (distance is computed according to the
Formula 3.1).

Figure 3.7 shows on the left an initial trajectory with high density points, and then on
the right a trajectory resulting after executing the second cleaning step, i.e. the removal
of high density points. Overall, data pre-processing and cleaning has a fundamental role
because it offers us simpler data to manage and cleaner data.

Figure 3.6 shows that given an initial trajectory (on the left), the first cleaning step
removes points with sudden changes in speed from the trajectory comparing it with the 5
previous points and the 5 further points. Once the anomalous point has been identified, it
will be removed from the trajectory (on the right). Below each image we find the list of
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1 public boolean deletePoint(Point p) {

2 for (int i = 0; i < points.size() - 2; i++) {

3 String vehicle_A = points.get(i).locate_vehicle(points.get(i +

1));

4 String vehicle_B = points.get(i +

1).locate_vehicle(points.get(i + 2));

5 if (!vehicle_A.equalsIgnoreCase(vehicle_B)){

6 if (checkNear(i + 2)) {

7 points.remove(points.get(i + 2));

8 }

9 }

10 }

11 }

Figure 3.7: Code and example of removal of outliers. In the code (at the top) you can see the code
written in Java 8 in which line 3 and 4 hypothesizes the vehicle that is being used to check the
speed change; if there is a change of vehicle for a single moment the point is considered an outlier.
In Figure (in the bottom) you can see an example of anomalous points highlighted in red that is
removed from this step.

speeds from one point to another from left to right.
In the Figure 3.4, 3.5, 3.7, 3.7 we show the code snippet for the Data Cleaning Phase.
2) CALCULATION OF TRAJECTORIES: The calculation of the trajectories involves

the calculation of the following parameters: (i) the amount of people travelling in the
same trajectory, i.e. the flow density; (ii) the set of spatio-temporal similar trajectories
that are the most shared by a minimum number of users; and (iii) the average speed on
each trajectory.

For searching spatially similar trajectories, users are analysed in pairs to identify
whether they share GPS points. This computation may require a considerable amount
of time, as execution time is proportional to the number of users to be analysed and the
length of their trajectories. Consequently, an advanced algorithm has been devised that
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1 List<Integer> pts =

2 IntStream.range(0, t1.getTrjSize())

3 .boxed()

4 .filter(i -> t2.getTrj().contains(t1.getTrj().get(i)))

5 .collect(Collectors.toList());

Figure 3.8: The algorithm written in Java8 to search for similar trajectories, where t1 and t2 are
two trajectories.

reduces the number of comparisons and can be run in parallel. To ease parallelism and
avoid conflicts, our algorithm uses Java 8 stream processing libraries, hence it scales to
any number of cores and threads, providing a higher speed-up when a higher number of
cores becomes available [115].

Firstly, the algorithm (see Figure 3.8) gathers the indexes of points, as list pts, oc-
curring in both trajectories, lists t1 and t2, which are within 200m. Specifically, line 2
enumerates i from 0 to the number of points (i.e. length) of t1, and line 4 keeps the in-
dex i of the point found in both t1 and t2. Secondly, from all indexes in pts, it checks
whether the shared points found form a path, by comparing their mutual distance with
200m. Finally, it takes all the longest paths above a threshold of 1km.

Checking whether any point is in both trajectories of length n requires performing
comparisons on the order of n2. Whereas, finding subsequences of points having length
n/2 requires performing comparisons on the order of n3. Therefore, the first solution is
faster than the second.

Once a shared trajectory has been found, we identify how many users pass for that
trajectory using again the code above. Then, parameter t1 represents the trajectory found
and t2 represents the trajectory of a generic user. When the resulting list has the same
number of values as t1 then the user corresponding to t2 is counted as passing in trajectory
t1. Now, if the spatially-similar trajectory has a density greater than 10% of the total
number of users, it is said a flow. Moreover, for each trajectory labelled as a flow, we count
the number of users passing on the trajectory on each defined time slot, and also compute
the average speed of users. For each trajectory, the time-stamp of its first point lets us find
the time slot it belongs to. The speed is computed by the ratio between travelled meters
and needed time (difference between the last and the first time-stamp of the trajectory).

3.1.2 Experiments and Results

The approach has been tested against several datasets (see Table 3.1 and Chapter 2.3.3
for details):
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Table 3.1: List of datasets used for experiments.

Dataset GPS points Users Period The sampling
rate

Area

Taxi Trajectories
Data

4,297,047 100 from Nov 1,
2010 to Nov
30, 2010

one point per
minute

Beijing

Truck Trajecto-
ries Data

10,059,584 100 from Aug.
2015 to Oct.
2015

one point per
minute

China

Geolife GPS Tra-
jectories

18,021,911 182 from Apr.
2007 to Oct.
2011.

each 1-5 sec-
onds or each
5-10 meters
per point

Beijing

1) GEOLIFE DATASET: Data gathered by GPS devices and recorded have to be trans-
formed before applying the actual data analysis in our approach. Transformation is meant
to remove useless pieces of data, and anomalous data. This helps speed up the following
data analysis. The steps to be performed on data and constituting preprocessing are as
follows.

1. Conversion to CSV: the GeoLife project offers the data in a PLT format, therefore
the first step is to convert them to CSV to have more control on data (i.e. it is easier
to visualize data and perform checks).

2. Removing superfluous fields: the fields 3, 4, 5, 6 (described in the previous Sec-
tion 2.3.3) have been removed, as useless for our proposed analysis and our pur-
poses.

3. Sorting positions and achieving trajectories: the available recorded positions of a
given trace have been sorted according to the timestamp field, in order to achieve a
trajectory out of the positions.

4. For each user, all of its recorded data, which were available as several files, one for
each day, have been considered as a whole. Hence, for a user all the positions and
movements are available as one trajectory (for that user).

Our pre-processing and cleaning operations (”Data Cleaning Phase”) managed to re-
move around 400 outliers for each trajectory; and between 60% to 90 % of points, due
to waiting areas, for each trajectory. The algorithm, illustrated in Section 3.1.1, takes in
input 182 trajectories and as a reference trajectory a user (which can be chosen by taking
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Table 3.2: Results of the data analysis with the Geolife dataset.

meters people slot 1 slot 2 slot 3 slot 4 slot 5 slot 6
p s p s p s p s p s p s

2650 22 17 2.81 13 1.08 16 1.16 14 3.01 6 0.22 11 0.07
3052 19 9 4.80 8 2.22 11 2.58 1 5.43
2046 39 25 0.05 28 0.43 15 2.45 16 4.21 1 0.03 6 6.69
2645 44 24 6.45 24 13.18 21 11.35 10 5.24 3 11.27 12 12.74
2407 33 10 14.97 10 11.08 10 11.51 2 16.42 1 21.46 5 9.54
2566 19 10 4.12 10 12.97 10 8.72 2 16.89 3 11.12 3 0.52
3123 18 6 3.53 6 10.14 9 7.66 6 8.26 2 11.61 2 0.23
2037 19 11 12.07 10 8.63 3 8.12 5 7.30 1 10.64
2092 18 23 10.98 26 6.86 24 16.62 11 19.33 7 8.97 10 3.35
7431 18 7 16.89 11 24.93 9 17.16 6 23.06 3 21.48 3 21.85

the user with the longest trajectory) and returns all flows having density is greater than 10
% of the number of users.

Table 3.2 shows a sample of the results found by our data analysis. Each row corre-
sponds to each single flow found, and gives: the distance travelled (the distance between
the starting point and the end point of the flow); the flow density, i.e. the number of dif-
ferent users travelling on that flow (in column denoted by people); and for each time-slot
(from 1 to 6), the flow density (denoted by p), and the average speed in m/s (denoted by
s). The total flow density counts how many different people have travelled in the whole
day, hence it does not count how many times in different time slots, which is instead in
the flow densities for each time slot. Some flows have the length of a few kilometers and a
low average speed, this could correspond to areas having a high traffic or that are crossed
on foot.

Figure 3.9 shows a trajectory that has a very low average speed (0.21m/s). The density
of the flow is equal to 25. The area is almost 2.3km in lenght. This finding suggests that
the adoption of a public transportation means would assist users previously travelling on
foot or lessen traffic congestion.

Figure 3.10 shows two flows found by our analysis. The first flow covers the space
between the two bus marks on the bottom-part of the figure and is about 2km. The second
flow is given by all plotted points and covers about 2.7km. This finding could be used to
propose one bus line for the combined path, and a bus stop where we have found that one
path stops.

So, results shown that it is possible to identify relevant flows. We detected 25 flows in-
volving more than 10% of the users. In addition we have also found some paths involving
more than 30% of the users.



Chapter 3. Manipulation of user data via network 41

Figure 3.9: An area where traffic goes at low
speed. Each color is an user.

Figure 3.10: An area where traffic can be im-
proved by combining trajectories and proposing
a public transport means.



Chapter 3. Manipulation of user data via network 42

2) TAXI DATASET: Taxi trajectory data [100] is the GPS trajectories collected by 100
taxies equipped with GPS sensors in Beijing area [115.421387, 39.437614] x [117.321785,
40.609333] of longitude and latitude during a month, from 30 October 2010 to 30 Novem-
ber 2010. The positions saved by the mobile GPS device were almost one point per
minute.

Each taxi is saved as a separate text file and in these files, a data point is saved as a
line with the format: id; timestamp; latitude; longitude; speed; direction. For tests, the
last two fields were excluded and each trajectory was reordered based on the timestamp
as the previous dataset.

The algorithm in Section 3.1.1, takes in input 100 trajectories of taxi. The first step
was data pre-processing. Thanks to this step, it lightened the data of around 400 outliers
and eliminated about 70% - 80% by removing the noise (for each trajectory).

Once the data processing is complete, the algorithm starts with the identification flows.
For a comparison with the first methodology, the temporal flows were initially ignored.
Therefore, it has obtained about 80 flows with a minimum distance of 1 km and with a
minimum number of users equal to 8% (or 8 out of 100). Subsequently, an estimate was
made of the time required to direct agents towards the time slots suggested to users. In
this case it has been verified that the preferred time slot is between 08:00 and 11:59, but
each POI can be associated with its own time slot.

Finally, in general, the algorithm takes a trajectory as a reference to the extrapola-
tion of flows, in this case the tests were performed taking about 10% of the trajectories
(randomly chosen) and all the results were assembled together. In the Table 3.3 the de-
tails of the experiments. Examples of flows are shown in Figure 3.11, Figure 3.12 and
Figure 3.13.

3) TRUCK DATASET: Truck trajectory data, referred to as Truck, is the GPS trajec-
tories collected by 100 trucks equipped with GPS sensors in China during a period from
August 2015 to October 2015. The space covered by the registered path is the large area
[86.882817,0.230753] × [172.467424,43.405276].

As the previous dataset, each taxi is saved as a separate text file and each data point is
saved as a line with: id; timestamp; latitude; longitude; speed; direction, but for tests, the
last two fields were excluded and each trajectory was reordered based on the timestamp.

In this case, the algorithm was tested with a set of Truck trajectories. The first step
was data pre-processing. Thanks to this step, for each trajectory, it has lightened the data
by approximately between 0.001% and 0007% by eliminating outliers and by around 70%
- 80% removing the noise. In this case, a minimum distance between two points was set
equal to 250 meters for elimination of noise; this choice was made due to the high number
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Table 3.3: The following table presents an overview of the tests performed with three datasets.
Each record contains: the name of dataset used (dataset); the reduction of the number of points in
the trajectories thanks to the phase of preprocessing of the data containing the minimum distance
between two points for the removal of noise (Distance), the percentage reduction of the points
thanks to step 1 (Noise) and the percentage reduction of the points thanks to step 2 (Outliers);
the time slot most chosen by users (Time Slot); the number of flows found (Number of flows); the
maximum density detected among flows (Maximum Density); the maximum distance in meters of
the longest flow found (Maximum distance). All the flows detected have a minimum number of
8% of the total number of users and a minimum distance of 1 kilometer.

Dataset Preprocessing Time Slot Number
of
flows

Max
Den-
sity

Max
Dis-
tance

Distance Noise Outliers
Geolife 150 90% 0,004% 00:00-07:59 25 53 3052
Taxi 150 80% 0,002% 08:00-11:59 79 70 1716
Truck 250 60% 0,002% 16:00-19:59 114 31 1718

of points present in each trajectory and almost allows to halve the response times of the
algorithm with a minimum number of derisory flows.

Subsequently the algorithm started by taking 10 trajectories at random and using them
as a reference for a comparison between all other trajectories. Therefore, it has obtained
about 114 flows with a minimum distance of 1 km and with a minimum number of users
equal to 8% (or 8 out of 100). For these test, it has been verified that the preferred time
slot is between 08:00 and 11:59, but, even in this case, each POI can be associated with
its own time slot. In the Table 3.3 the details of the experiments. Examples of flows are
shown in Figure 3.14, Figure 3.15 and Figure 3.16.

Table 3.3 reports the results. Each result can be associated with a specific area based
on the data used:

• Geolife trajectories: it is possible to use these data to create suggestions for urban
services in the city; that is starting from flows of people move on foot, by means
of our algorithm, it is possible to identify flows with high density from one point to
another in the city, suggesting bus stops (see Figure 3.9 and Figure 3.10).

• Taxi trajectories: it is possible to exploit the algorithm to prevent traffic jams, since
the set of trajectory analyzed encloses a set of taxi routes. By reveling the areas
where generally more taxis can be found (identified by a high density flow), it is
possible to create statistics on road traffic.

• Truck trajectories: similarly as for taxis, it is possible to make forecasts on traffic
but in this case a lower number of entities within the flow is sufficient since the
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Figure 3.11: Flow with total length of 1075 me-
ters and a total number of users of 43. Each color
corresponds to a taxi ride.

Figure 3.12: Flow with total length of 1158 me-
ters and a total number of users of 28. Each color
corresponds to a taxi ride.

Figure 3.13: Flow with total length of 1570 me-
ters and a total number of users of 20. Each color
corresponds to a taxi ride.
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Figure 3.14: Flow with total length of 1208 me-
ters and a total number of users of 19. Each color
corresponds to a truck ride.

Figure 3.15: Flow with total length of 1255 me-
ters and a total number of users of 28. Each color
corresponds to a truck ride.

Figure 3.16: Flow with total length of 1372 me-
ters and a total number of users of 18. Each color
corresponds to a truck ride.
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objects under consideration are trucks and they lead regardless of traffic slowdown
due to their large dimension.

Finally, using this approach, it is possible find Points Of Interest in the city. Starting
from these flows, it is possible to extrapolate the Points Of Interest by making a match
between the POIs of the analysed city (removable from datasets present on the web) and
the points close to each detected flow (with a maximum distance of 100 m).

3.2 Point of Interest Detection Service

Given the extraordinary use of mobile devices and various technologies tracing one’s geo-
graphical position, it becomes increasingly easier to acquire information relating to users
GPS in real time. This availability has triggered several studies based on user positioning,
such as the analysis of the flows of people in the cities [6] or the prediction of people
movements [7]. This has also led to the improvement of services that identify the Points
Of Interest for a city to offer benefits to users who want to find a specific place.

A Point of Interest, commonly abbreviated POI, is defined as an object associated with
a latitude and a longitude which at least one person would reasonably be expected to have
an interest or an utility.

This section proposes an approach to identify POIs from an automatic analysis of
a real dataset offered by the Geolife experiment [91] and others. The points found by
our analysis were verified by matching the results with Google maps data. It was con-
firmed that they correspond to real POIs, i.e. parks and restaurants, hence validating our
approach.

3.2.1 Methodology for Determining POIs

An extensive series of experiments has been performed in order to study the movements
of users in different situations. In this section, a method to extract StayPoints (SPs) is
described and then a clustering algorithm is used to find important places, called POIs, as
it can be easily seen that places that are of interest attract several persons at the same time.
The algorithm is divided into two steps: Data Cleaning and Grouping of Trajectories and
StayPoints detection:

1) DATA CLEANING AND GROUPING OF TRAJECTORIES: the first step in our analy-
sis was the data cleaning of the trajectories, based on the speed of their GPS points, with
the goal to remove inconsistent data. Considering a trajectory, a sequence of GPS points
ordered by the time of recording, we computed the velocity of a point as the ratio of the
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Figure 3.17: Plot of clean trajectories in the selected Beijing metropolitan area. Axis:
X=longitude, Y=latitude.

distance from it and its consecutive (applying the Haversine formula illustrated in Equa-
tion 3.1) and the difference of time recording them. If this velocity exceeds 100 m/s, the
second point was deleted. Another case is when the velocity appeared in the form 0/0,
this noise was caused by the GPS device that did not run properly.

Furthermore, by plotting the trajectories, we can see a second problem: some paths
appear broken (not continuous) probably due to the presence of buildings or tunnels that
disturb the GPS signal (in some areas the recording is lost). The filtered data were then
grouped into 6 time slots of 4 hours each: Slot1 [00:00:00, 03:59:59], Slot2 [04:00:00,
07:59:59] and so on, in order to analyse the movement during different time slots.

Related to experiments with the Geolife dataset, information about these slots are
shown in Table 3.4 and for time Slot 3’s trajectory data we have drawn the GPS data on
the map to get a rough idea of the users’ activity in this period of time in this area (see
Figure 3.18).

2) STAYPOINTS (SPS) DETECTION: For every slot of time, after grouping trajectories
by users, the second step of our work was the StayPoints (SPs) detection [116]. When we
find a region in which a user has spent a considerable time on its surroundings, the centroid
(the mean of coordinates of the points belong to it) of this cluster represents an SP. The
algorithm that we implemented for the SP detection needs as input a TimeThreshold and
a DistanceThreshold. In general, if an individual stays over 20 minutes (TimeThreshold)
within a distance of 200 meters (DistanceThreshold), a SP is detected.

We obtained many SPs for every time slot, as shown in Table 3.5. For the Slot 3’s
trajectories the plot of their SPs is in Figure 3.19. Then, we focused on POIs that cluster
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Table 3.4: Information about different time slots

Time Total number of
Slot GPS Points Trajectories Users

1 3978234 5878 156
2 3729429 4302 150
3 4976744 6613 166
4 3107232 4702 168
5 889076 1505 114
6 1341196 2537 129

Data: A trajectory T={p i,p i+1,. . .}, a distance threshold (DistThr) and time
span threshold (TimeThr)

Result: A set of stay points SP ={}
i=0, cardinality traj= |T |
while i < cardinality traj do

j = i+1;
while j < cardinality traj do

dist=distance ( p i, p j );
if dist > DistThr then

δ time=time p j−time p i;
if δ time >TimeThr then

S.coords=MeanCoords({p k|i < k < j});
S.arrive time=time p i;
S.left time=time p j;
SP.append(S);
break;

end
end
j = j+1;

end
i = j;

end
return SP

Algorithm 1: Pseudocode for SPs detection
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Figure 3.18: Map with the trajectories of Slot 3 in relation
to the first experiments.

Figure 3.19: StayPoints of the trajectories on Slot 3 in re-
lation to the first experiments.
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together SPs of different users (at least 10), and checked if, in different time slots, the
users that previously had a common POI move together to another one. We applied DB-
SCAN to the SPs obtained as it works well with large geographical dataset and likewise
can be adapted for any distance functions. DBSCAN (Density-Based Spatial Cluster-
ing of Applications with Noise) is a popular unsupervised learning method, proposed in
1996 [117], has been used in model building and machine learning algorithms.

The advantages of DBSCAN are as follows:

• it is very good for separating clusters of high density versus clusters of low density
within a given dataset;

• unlike K-means, DBSCAN does not require the user to specify the number of clus-
ters to be generated;

• DBSCAN can find any shape of clusters, i.e. the cluster doesn’t have to be circular;

• DBSCAN can identify outliers.

The goal of this algorithm is to identify dense regions, which can be measured by
the number of objects close to a given point. Two important parameters are required for
DBSCAN: Epsilon (”Eps”) and minimum points (”MinPts”). The parameter Eps defines
the radius of neighbourhood around a point x. It is called the EPS-neighbourhood of x.
The parameter MinPts is the minimum number of neighbours within ”Eps” radius.

The last step of our work was to filter the POIs detected according to popularity. We
considered only POIs with a number of users greater than 8 or 10 (called Popular POIs),
in order to understand users interaction and similarity. E.g. for time Slot 3 we obtained
9 POIs shared by a minimum of 11 individuals to a maximum of 80 individuals (see
Figure 3.21).

3.2.2 Results of Experiments

The experiments confirm that users stop in the same areas for some common reasons,
such as visiting a tourist attraction or taking advantage of the same service and remain
in certain areas in common time slots. Additionally, these tests reveal that people move
together from one POI to another. The approach has been tested against several datasets
(see all details in Table 3.6):

1) GEOLIFE TRAJECTORIES DATASET: we have acquired the data from the database
Geolife which contains about 18 thousand trajectories with a total distance of 1,292,951
kilometers and a total duration of 50,176 hours (see Section 2.3.3). Most of the trajec-
tories were logged in a dense representation, e.g. every 1∼ 5 seconds or every 5∼ 10
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meters per point. For our research we have chosen the range of longitude and latitude of
[116.1,39.7]× [116.7,40.13] (Beijing metropolitan area of 51 kilometers per 48 kilome-
ters, see Figure 3.17). The trajectories of this dataset have been selected on 6 time slots of
4 hours each. Slot1 = [00:00:00, 03:59:59], Slot2 = [04:00:00, 07:59:59] and so on. The
algorithms for SPs and POIs detection were started on each time interval. For the first
phase the TimeTrh was chosen equal to 20 minutes, the DistThr (200 m) was unchanged
instead. The execution time of the SPs detection algorithm for 100 trajectories was about
16 minutes. The clustering algorithm DBSCAN determined clusters for each time slot,
with min points equal to 10 or 15 and eps from a minimum of 200 meters to a maximum
of 400 meters. The execution times were from 240 ms to 1.44s. On average 20 clusters
(see Table 3.5) have been found for every time slot (120 POIs in total, for a minimum of 9
POIs to a maximum to 29) and that represent significant places for users, i.e the centroids
of these clusters are POIs. E.g. for time Slot 3 with the minimum number of SPs neces-
sary to make a cluster as 15 and the eps equal to 200 meters, 29 clusters have been, hence
29 POIs (see Figure 3.20) it has considered Popular POIs with a number of users greater
than 10, for time Slot 3 it has obtained 9 POIs shared by a minimum of 11 individuals
to a maximum of 80 individuals. The total of Popular POIs on all 6 time slots was 36;
looking for the most distant pairs of points they have 8 km of longitude difference, 25 km
of latitude difference on this area [39.91, 116.263] x [116.368, 40.128]. These places of
interest in question started from the north in Yangyang Paradise (amusement park), up to
the Cultural Palace of Nationalities in Fuxingmen Inner Street in south, crossing Chang-
ping District, Haidian District with Tsinghua Park, Beijing Shi and Zhongguancun. So,
for our data, the clustering algorithm DBSCAN has determined clusters for all SPs. We
set MinPts equal to 10 or 15 and Eps from a minimum of 200 meters to a maximum of
400 meters. We obtained on average 20 clusters for every time slot (see Table 3.5) that
represent significant places for users, i.e. the centroids of these clusters are POIs. E.g.
when we considered time Slot 3 and we set that the minimum number of SPs necessary
to make a cluster as 15 and the Eps equal to 200 meters, we obtained 29 clusters, hence
29 POIs (see Figure 3.20).

2) TAXI TRAJECTORIES DATASET: The SP detection algorithm with a distance thresh-
old of 200 meters and a time threshold of 5 minutes was applied: 31621 SPs were obtained
with an execution time of 51 minutes and 9 seconds. The identified Popular POIs can be
found in the area [116.094, 39.791] x [116.608, 40.093], they are concentrated on Beijing
and the pairs of more distant points are on 45 km of longitude and on 35 km of latitude.
Relatively to the POIs detection in this dataset, the parameters set in the DBSCAN were
eps equal to 200 meters and minimum points (SPs) equal to 8. This algorithm produced
560 clusters whose centroids are the POIs, with an execution time of 10.2 seconds. So
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they have been filtered to analyze the Popular POIs, i.e. the POIs shared by at least 8
taxis: the total number of them are 257. Out of a total of 101 vehicles, the popular points
obtained were visited from a minimum of 8 taxis to a maximum number of 95.

3) TRUCK TRAJECTORIES DATASET: looking for SPs in Truck Dataset the parame-
ters DistThr = 200 meters and TimeThr = 10 minutes have been chosen. A total of 54962
Sps were identified, in a time of 5 h 1 minute and 5 seconds. In Figure 3.22 it is possible
to see trajectories recorded by trucks and their SPs, they pass through these provinces:
Shānxı̄ Shěng, Shǎnxı̄ Shěng, Gansu, Henan, Hubei, Hebei, Beijing Municipality, Hunan,
Sichuan, Guizhou, Yunnan, Guangxi Zhuang Autonomous Region, Guangdong, Jiangxi,
Anhui, Fujian, Zhejiang and Shanghai Municipality. The result of the SP detection algo-
rithm are visible in Table 3.6. The choice of different values of time threshold set in the
SP detection is due to the different nature of the three datasets: for taxis a reasonable time
of stay is 5 minutes, for trucks 10 minutes if it has consider the bays, for Geolife dataset,
which includes routes of users on foot, it have chosen DistTrhr equal to 20 minutes. These
parameters have been validated by the average speed value relative to the flows found, in
the vicinity of the Popular POIs. For POIs detection the spatial threshold in DBSCAN
remained unchanged (eps = 200m) and the min points = 8 as in the previous case. The
clustering execution time was 5.31 seconds with 1065 POIs detected. According to the
minimum number of taxis (8 out of 101), the popular POIs obtained were 127: they are
shared by a minimum number of 8 trucks and a maximum number of 24 trucks.

They cross the counties: Shangsi, Longzhou, Tiandong, Long’an, Mashan, Pingnan,
Teng, Yunan, the prefecture cities: Chongzuo, Wúzhōu, Yunfu, the districts Jinchengjiang
and Yun’an, the Luoding city and the Kunming Subdistrict. Popular POIs obtained cov-
ered the area [106.880591, 21.609655] x [113.670971, 24.685619], with 700 km of dif-
ference in longitude and 350 km of latitude difference between the two most distant pairs
of points. From west to east touched the cities: Chongzuo, Nanning, Guigang, Qinzhou,
Fangchenggang, Beihai, Yulin, Wuzhou, Zhaoqing, Foshan, Canton and Dongguan.

Definitely, experiments have shown that in different time slots a set of different indi-
viduals move together to the same POIs, like parks, departments of Universities, shopping
centres, hostels, parking spaces, libraries, stadiums, banks, metro and bus stops. This sug-
gests us a similarity between users. The Points Of Interests found were verified by means
of Google Maps. For each dataset used, consisting of data referring different categories
of people and movements, it was shown that the points of interests are compatible with
the nature of the dataset and the behavior of the users who collected them. In fact, Points
Of Interests have been found in service areas, supplies and spare parts sales outlets with
regard to users with trucks; service buildings and companies for businessmen traveling by
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Table 3.5: Results about SPs and POIs obtained

Time Total number of DBSCAN
Slot SPs Users POIs Popular POIs Eps(km) MinPts

1 2966 122 18 8 0.3 15
2 3772 124 27 8 0.25 15
3 4146 145 29 9 0.2 15
4 1899 130 24 6 0.2 15
5 751 84 13 4 0.4 10
6 545 84 9 1 0.4 10

taxi; and places of study and work for participants of the Microsoft Research Asia Geolife
project.

Among the points of interest (POIs) found we have:

• Chaofan Weiye Kejiao Bookstore with coordinates:

39.98405510061326, 116.3204636235443;

• Haidian Stadium with coordinates:

39.987213527969644, 116.30248430595732;

• Beijing Rural Commercial Bank Zhongguancun Branchcon with coordinates:

39.980016801082485, 116.30856309688643;

• Beihang University with coordinates:

39.98011363182701, 116.34218061609567.

• Satellite Building Parking Lot with coordinates:

39.97673497237701, 116.33137904408086.

For validating the results of our algorithm finding POIs, each discovered site was
checked against Google Maps. Hence, the above list consists of actual sites, being POIs
according to Google Maps, which are within a radius of 100 meters from the POIs found
by our algorithm.

From our results we can conclude the following:

• it is possible to find the POIs from a set of trajectories.

• it has been verified that the POIs correspond to well-known places, e.g. restaurants,
parks, etc;
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Figure 3.20: POIs obtained for the trajectories on
time Slot 3.

Figure 3.21: POIs with a number of users greater
than 10 for the trajectories of time Slot 3.

Figure 3.22: Trajectories of Truck dataset and
their detected SPs.
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Table 3.6: Results in terms of StayPoints (SPs) obtained when analysing three datasets.

Dataset DistThr (m) TimeThr (mn) SPs obtained
Taxi 200 5 31,621
Truck 200 10 54,962
Geolife 200 20 14,079

• the visiting hours of the POIs are uniform, therefore each POI has a time slot pre-
ferred by users. In general, the most frequent time slot is between 08:00 and 12:00;

• it has been shown that there is a correlation of people moving from one POI to
another in the city.

Finally, in experiments the execution time of DBSCAN on the 6 time slots ranges
from a minimum of 240 ms to a maximum of 1.44 s. The implementation uses Python 3,
and the experiments were run in a host having an Intel Xeon CPU E5-2620 v3 2.40GHz,
with RAM 32,0 GB.

3.3 Attack on the user based on traceability

In this section presents a new attack to Android mobile devices able to identify their geo-
graphical location by attempting a WiFi connection, which users are unaware of. Unlike
the other studies, the attack comes from a misleading app installed by the user in her
device that forces WiFi to be enabled and then detect the user’s position. The goal of a
malicious agent is that of using an app to track the position of the device without giving
any warning to the user. This is possible thanks to an appealing application, or an App
Twin (e.g. an app letting the user log into two different accounts of the same service at the
same time) of a well-known app, and a WiFi dataset containing SSIDs and GPS coordi-
nates. First of all, Section 3.3.1 presents how to carry out the attack on an Android device
and the needed permissions. Then, Section 3.3.2 shows how to find, for WiFi networks,
SSID and GPS coordinates thanks to the use of open data.

The approach is compatible with all Android OS versions, despite the new security
policies of the latest version and does not require dangerous-level permissions.

The solution to the prevention of the attack was postponed to Chapter 5, which ex-
plains the defense technique and subsequently how this technique is adaptable to the
aforementioned attack. The defense mechanism firstly informs the user in real-time about
the normal and dangerous-level permissions used by the application, then the user is given
the possibly to block the current operation performed, by means an appropriate injected
conditional code.
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1 public void WiFiSearch() {

2 boolean inactiveWifi = false;

3 if (!isWifiEnabled()) {

4 inactiveWifi = true;

5 enableWifi();

6 }

7 List<WifiEntity> wifiEntities = database.wifiDao().getAll();

8 for (WifiEntity entity : wifiEntities) {

9 wifiConf.SSID = String.format("\"%s\"", entity.getSsid());

10 setCryptography(entity.getCryptographyType(), entity.getKey());

11 int netId = wifiManager.addNetwork(wifiConf);

12 if (tryToConnect(netId, entity.getSsid()) break;

13 }

14 if (inactiveWifi) disableWifi();

15 }

16 private boolean tryToConnect(int netId, String ssid) {

17 wifiManager.disconnect();

18 if (!wifiManager.enableNetwork(netId, true)) return false;

19 sendInfoToServer(deviceid, ssid);

20 return true;

21 }

Figure 3.23: Code trying to connecting to known WiFi networks.

3.3.1 Misure Case based on Sensing WiFi Networks

To carry out the attack, it is first necessary to induce the user to download the app. This can
be done by creating an appealing app or an app twin or an app similar to a well-known one.
Once the app has been downloaded and installed, it works in the background performing
the following activities: (i) turn WiFi on, (ii) use a provided list of known networks (see
next paragraph) and tries to connect to each one. Then, as soon as a connection has been
successful, (iii) it sends a feedback to the server (with the device ID and the SSID of the
found WiFi network). Finally, (iv) it disconnects the device and disables the WiFi (if it
has been enabled by the app). The information that arrives at the server suffices to identify
the user’s position, since the GPS coordinates associated with the SSID are looked up on
a known dataset.

Figure 3.23 shows the detail of the attack. Lines 3 to 6 turn the Android WiFi on if
needed. Line 7 reads WiFi networks data from a database. On the for loop (lines 8-13),
each network is configured and, tryToConnect(int, string) method (lines 16-21) attempts
to connect to the configured network, then if successful a server is notified (line 19).
Finally, if needed, the WiFi is turned off (line 14).

After the user has successfully connected to a WiFi, for performing subsequent con-
nections attempts, the WiFi list used will have been updated by the server, which has
given the highest priority to the nearest WiFi networks according to their geographical
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location.
The permission-level required for the above set of steps is normal, therefore no warn-

ing will be shown to the user at runtime and the app will run undetected. The necessary
permissions are as follows: CHANGE WIFI STATE to perform operations on the WiFi
(class WiFiManager), i.e. to enable, disable and connect to a WiFi network; and INTER-
NET to send information to a server.

In order to carry on a misuse case, an app needs a set of public and private WiFi
network ids. The attacker determines, a priori, the type of attack to carry on. E.g. the
attacker chooses whether he wishes to monitor the overall movements of the victim, or
whether to keep track of the victim on a given area. In the first case, to reveal her position
the device has to be hooked to many WiFi networks, hence a list of a wide number of free
WiFi networks ids is used. In the second case, the knowledge of a few WiFi networks
(on the selected area) suffices, therefore the attacker can take advantage of knowing only
some private WiFi networks.

For each public WiFi network, the SSID and the geographical location are needed.
Public WiFi lists can be found on several websites that offer open data. E.g., DatiOpen2

is one of the major Italian Open Data databases, and it offers a list of WiFi networks in
Rome area, hence the data needed by our proposed scenario. In this case, the dataset has
over 1600 WiFi networks and tells whether each WiFi network is public or private.

For each private WiFi network, it is necessary to know the password and the type
of encryption (such data are read by means of line 7 of WiFiSearch() method, shown
in Figure 3.23). Private WiFi networks can be chosen individually by the attacker who
provides the app with data of some controlled WiFi networks, because the password (in
general not public) is a fundamental element for connecting to the network.

Figure 3.24 shows geo-localised free WiFi networks in New York City. Such data are
available from Open Data initiatives for many cities around the globe.

3.3.2 Distributed Interactions for the Misuse Case

This section details the interactions of a malicious app running on an Android device,
detecting the presence of a WiFi network, and a server side. Figure 3.25 depicts the main
steps aiming at disclosing the device location.

The malicious app will periodically contact the server side, providing its device id and
(implicitly with the http request) the IP address assigned by the Internet Service Provider

(ISP). There are several IP geolocalisation APIs and datasets the server side can use as

2http://www.datiopen.it
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Figure 3.24: A portion of data.cityofnewyork.us dataset, having 3345 SSIDs available in New
York City.

an ip2gps service (see Table 3.8). Even though IP geolocalisation is not always reli-
able [118], this can be used as a coarse indication of the device position, and as a starting
point to filter from a large amount of SSIDs for the entire globe. Hence, knowing the IP
address allows the server (at least) to exclude all the public SSIDs belonging to differ-
ent countries or cities. The more widespread the servers of an ISP the more accurate the
inferred position.

The geolocalised IP information, resolved by the ip2gps service, is then used to update

the position cache saved on the server side. This will collect the history of all position
data gathered from the device, and in turn will give a list of likely nearby public SSIDs to
be used for the WiFi networks scanning.

With the getScanList() the server side will ask for the first most probable public SSIDs

the device should be close to, according to the available information inside the position

cache, prioritising when needed the networks located in more popular areas (e.g. city
centre, shopping malls, etc.).

This reduced SSIDs list, say [netA, netB, netC] will then be forwarded to the de-
vice as a response to its periodic request. Then, for each SSID, the device will attempt
a password-less connection, hence performing a WiFi scan, yet without requiring the
dangerous-level permission (not needed when using the network details for an attempted
connection). In case none of the connection attempts succeeded, a new list will be re-
quested (the next most probable ones). In case a connection attempt succeeded (e.g. netY

in Figure 3.25) this information will be sent to the server side, which will use the ssid2gps

dataset to get a more precise gps position for the device, and then update its position
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Figure 3.25: Flow diagram of the misuse case for disclosing a device location. The malicious app
on the device communicates to a server side, and the server side uses two geolocalisation datasets:
ssid2gps and ip2gps (see Table 3.7 and Table 3.8). Such datasets collect and translate sensed
network ids into GPS coordinates, and let the server elicit the list of public SSIDs the device will
be probably close to.
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Table 3.7: Dataset examples of geolocalised free WiFi SSIDs

Location Free WiFi
SSIDs

Reference

Open Data Initiatives
Rome 1,566 datiopen.it
New York City 3,345 data.cityofnewyork.us
Austin 1,575 data.austintexas.gov

Commercial Initiatives
North Amer-
ica

667,275 www.wifimap.io

South Amer-
ica

550,733 www.wifimap.io

Europe 1,278,081 www.wifimap.io
Asia Pacific 252,070 www.wifimap.io
Middle East 1,103,220 www.wifimap.io
Africa 626,381 www.wifimap.io
Worldwide 100.000.000+ www.wifi-

map.it.aptoide.com
Worldwide 600.000 www.wiffinity.com

Table 3.8: Dataset examples of geolocalised IP addresses

Dataset IPs Scope Reference
ip2c.org 4,272,142,696 country about.ip2c.org
GeoLite2 3,226,865 (blocks) city dev.maxmind.com
IP2Location Lite 2,959,842 latitude/longitude lite.ip2location.com
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cache. Next requests for a scan list will be answered giving the SSIDs close to the last
one the device had connected to, in an attempt to constantly track the device position.

3.4 Conclusions

Nowadays, thousands of users use their mobile device to gain access to new information
in relation to their geographical location. This innovation has given rise to new services,
such as reading GPS coordinates in order to receive information on nearby Points Of
Interest.

In this chapter we have analyzed how our information extrapolated from our device
can be used for both benign and malicious purposes. We have presented two services
for citizens. The first approach aims at identifying all the flows starting from a set of
recorded points; the approach can give the volume of people moving in an area and find
out whether there is low speed, congestion, lack of public transport means. The second
approach aims to identify all points of interests common to several users starting from
a series of recorded trajectories. It has been verified that the POIs correspond to well-
known place, for example banks or schools. Both services were tested with real data from
the Geolife project. This highlights the usefulness of data, in fact, if well structured and
rich, a single dataset can allow us to implement more services.

Furthermore, we have a misuse case consisting of the steps a malicious app could
perform in order to reveal the user position. The app would try to connect to known
WiFi networks and when successful send this occurrence to a server. For attempting WiFi
connections to known networks, an app needs to declare just normal-level permissions,
hence no alert is given to users. Moreover, the server receiving network ids, when connec-
tions have been successful, can associate them with GPS locations, e.g. by using freely
available datasets. This attack shows how the user can be tracked without awareness,
highlighting one of the weaknesses of Android devices.

In Chapter 5 a protection tool is illustrated to guarantee the integrity of the data to
the user and help him / her in understanding the data and its transmission of data on the
network.
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Chapter 4

Influence of the smartphone on users

Until a few years ago the transmission methods were radio, TV and billboards, nowadays
there are new communication services to keep people up to date that is via smartphones.
The smartphone is the bridge for sending information on places, roads, entertainment or
news, through various services used by means of apps.

These services are able to passively influence the user, as the reading of news creates
an imperceptible user influence. For example, the study of fakenews in the political sphere
on social media was of great importance; it has been shown that users actions and political
choices have been conditioned by the reading of the information. Furthermore, reading
that one place is more quoted than another stimulates the user to give it greater importance.

These same services generally make (sometimes improper) use of the GPS position
of the device, for advertising purposes, too. It is necessary to preserve the users’ position
in respect of their privacy, to avoid sending targeted advertising or other similar tools.

In this chapter, we focus on useful services supplied with lawful procedures and on
third-party services that illegally inject information about smartphone, harming the user.

We present an application that sends communications to users, that is we propose an
approach providing users with personalised recommendations of places of interests, such
as libraries, museum, restaurants, etc, taking advantage of a multi-agent system. The
approach offers a better experience by giving additional dynamic data (e.g. popularity, as
number of users) to a list of Points Of Interest (POIs), and by exploring their temporal
relations. The approach was designed to preserve the privacy of users, i.e. it does not
reveal the position of users. The selection of points is also created based on the opinions
of the users, through Sentiment Analysis techniques, this produces a more reliable service
in which the common opinion prevails and not only those with greater power or money.
Therefore, the analysis of feelings allows us to identify the flows of interest of ordinary
people and to study and analyze user preferences, obtaining excellent business strategies.
In literature, there are many tools concerned with the study of opinions, attitudes and
emotions of people. So, we discuss about an innovative analysis and extraction method
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that identifies people’s opinions at the sentence-level. This method is based on rules
derived from Italian grammar but it is easily adaptable to other languages.

Furthermore, we describe an attack on the user consisting in sending him targeted
advertising by tracking his position. It shows how an app using only the permission to
access Wifi networks could send some private data unknowingly from the user. This attack
again emphasizes the fragility of user privacy and Android vulnerabilities. An advanced
mechanism is proposed in the next chapter to shield user private data, and to selectively
obscure data an app could spy.

In the first job, my contributions are as follows:

(a) it is possible for a user to immediately see the nearest recommended points by dy-
namically modifying the next point of the itinerary according to current needs;

(b) this research is the first approach in the tourism sector that deals with preserving
users privacy in two ways: 1) using a centralized server the agents do not know each
other directly to exchange information, 2) extracting information on the POIs and an
approximate user location only when the user is near the POI;

(c) the integration of the recommendation system with the multi-agent system is an in-
novative method that encompasses the merits of both fields, allowing for constantly
updated and reliable Points Of Interest;

(d) the work is the first service for tourists that integrates the concept of sentiment anal-
ysis, illustrating an advanced method based on automata.

In the second work, my contributions are as follows:

(a) unlike the other studies, the attack comes from a misleading app installed by the user
in his device that forces WiFi to be enabled and then detects the users position;

(b) based on my knowledge, this research is the first concrete implementation of the
attack using ”access wifi network permission” and gives all details how to simulate
the attack.

4.1 Point Of Interest Recommendation

POI recommendation is a service which suggests places to visit for users [85]. This
section proposes an approach for POI recommendation using collaborating agents with
a centralised server. The server dynamically acquires information coming from agents,
which are held on the users mobile device, creating new suggestions about the next place
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to visit. Common knowledge is important because, by definition, each agent can indepen-
dently infer information and share it with the group.

Thanks to the collaborating agents in our architecture, the proposed approach provides
users with: (i) a list of POIs, and for each point, (ii) further information based on real time
data gathered from other users, which helps her choose the next destination with greater
awareness. A key objective is to have this information as close as possible to real time
data, and rank places according to feedback from other users, the most frequent time slots
and the time spent visiting a place by other users.

4.1.1 Multi Agent System

The multi-agent system offers various opportunities and benefits. In this section we make
a brief introduction of multi agents and related works in the literature.

Multi Agent System: In this approach, an agent is an application installed on an
Android device that tracks the user movements around Points Of Interest (POIs), in order
to suggest new places to visit [83]. A Multi-Agent System (MAS) is formed by a network
of computational agents that, directly or indirectly, interact with each other [119]. In this
work agents indirectly communicate among themselves as each sends data to a centralised
server, hence preserving its identity. In an initial phase, each agent receives from a known
server a set of POIs, computed by means of the DBSCAN algorithm [117] (as described in
the following Chapter 3). Starting from such a list, each agent collects information about
the device on which it runs, in relation to POIs visited by the user and sends them to the
server. The server processes them to offer detailed and updated information on POIs, in
order to suggest POIs recently visited and appreciated by the user.

Specifically, POIs recommendation is based on a multi-agent system performing the
following steps (see Figure 4.2 and Figure 4.3).

Step 1: the server sends to agents the list of known POIs for a city. Each POI has been
previously determined by the DBSCAN algorithm [117] discussed in Paragraph
3.2. Each POI has the following information:

• the most visited time slots;

• the number of agents present on the site (POI) in real time;

• a set of site feedbacks, created by a sentiment analysis algorithm that anal-
yses the comments released by users;

• a rating estimated from previous information that recommends (or dismiss)
the POI to the user.
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There are several sentiment analysis techniques all with the common purpose
of identifying the user’s opinion and that can be integrated into this system [120,
121, 122, 123, 28]; some are dedicated to specific languages as in [124] which the
analyzed language is Chinese. In the Section 4.2 we present a possible algorithm
that uses automata designed for the Italian language that can be integrated with
the recommendation system.

Step 2: thanks to the rating, the agent chooses a place of interest which the user can visit.
As soon as the GPS coordinates are in a range of less than one kilometer from
the coordinates of a POI, then the position will be sent to the centralised server,
which can determine the number of users present. The GPS coordinates are only
sent when in controlled areas in order to preserve user privacy.

Step 3: once the visit is over, the user can use the agent to issue comments on the place
visited. This information will be sent to the server, and there it will be analysed
using sentiment analysis algorithms, which in turn lets the server determine a
score that identifies whether the POI was satisfactory for the user.

Step 4: the agent will again receive the list of POIs by adding information for a specific
POI related to the site already visited based on the experiences of previous users.

In summary, points are computed by an algorithm that: (i) analyses all data coming
from several mobile devices as collected by agents; (ii) computes POIs that are well-
known and constantly visited by users, therefore creating the recommendation system for
the users. To suggest POIs, the variables used are: the list of points of interest visited by
other users, the time slots of visits and a score assigned by users as soon as their visit to
the point of interest is over.

Figure 4.1 shows the overview of the recommendation system; each agent, Alice and
Bob, collects information related to POIs visited by user. For each POI visited, the data
forwarded to the server are: the GPS position of the device, visiting hours (through a
timestamp), the name of a place, an evaluation score of the place (i.e. a number from
0 to 5). To forward such data, the user needs to authorise the application to share his
GPS position. After receiving a feedback, the server processes them, creating for each
point a list of information containing: time slot preferred by the users, an approximation
of the number of people (that is agents) visiting the site at that time, the user feedback
obtained from the average of the scores. The union of this information is used to drive the
recommendation system.



Chapter 4. Influence of the smartphone on users 66

Thus, the recommendation system consists of giving each user the most significant
POIs for him, based on the user previous experiences. Finally, these points are sorted ac-
cording to the user current distances. E.g. if there is a POI near him in which the number
of people is high, and the time slot corresponds, and users have appreciated the visit (hav-
ing assigned a positive score), then such a POI is suggested to the user by alerting agent
Claire (see Figure 1). Otherwise, if the place has not been appreciated by other users or
the time slot does not correspond, the algorithm labels that place as not recommendable.
Therefore, each agent observes the users behaviour and areas they visit and offers recom-
mendations based on current GPS positions and the experiences gained by other agents.
The recommendation system is created thanks to the processing of information on the
server, sent by agents.

Multi-agent integration offers a new perspective on this field. The most important
properties of the agents in this proposed recommendation system are the following.

• Agents are independent: if an agent stops working the others continue their work
without consequences.

• Agents are mobile: they are easily transportable thanks to their integration in the
mobile application.

• Agents are reliable: given that the GPS coordinates are extrapolated directly from
the device, avoiding to obtain false information.

• Agents work by preserving user privacy: there is no continuous sending of the
users positions, instead the server only receives data when agents are near POIs,
and the coordinates sent to the server are displaced by a bounded random amount,
thus preserving the users privacy. More specifically, two important steps are taken
to offer greater security to users: (i) users share the location only if they are close
to a well-known POI, i.e. their position falls within 300 m from the POI); (ii) the
position is processed through data masking techniques, i.e. it is saved in the central
server after a displacement has been added. Having altered the position does not
affect the recommendation system and guarantees better protection for the user.

In this context, security and robustness are features embedded in all the agents, work-
ing together by means of a centralised server. Thus, thanks to a system based on multi-
agents, and a centralised server, it is possible to create a recommendation system based
on the experience and appreciation of users, able to suggest points of interests to users,
while ensuring user privacy.

Related Work: Several studies have proposed the use of multi-agent systems (MAS)
[119] to a wide range of different domains. In 1998, a study described a supporting system
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Alice Bob
send opinion

collect,  
analyse, 

and merge 
data

Claire

recommend POI

server

Figure 4.1: Recommendation system consisting of agents Alice and Bob gathering opinions, a
server, and agent Claire receiving a recommendation.

for suggesting possible purchases during shopping based on the GPS position with the
use of agents [125]. In general, there are two main approaches to MAS developments:
centralized policies (CMAS) and decentralized policies (DMAS) [126].

• A centralized approach consists of taking all of the decisions in one place. In a
typical CMAS, a central server collects all the relevant data that come from the
different actors (that is, agents) and identifies the decisions for each agent according
to the global system state. The centralized view of the system can be described by a
multi-agent Markov decision process model, a good example is presented in [127].

• A decentralized approach consists of making each entity responsible for its own
decision. In a typical DMAS, an agent cannot see other agents’ local states and local
actions, and has to decide the next local action on its own. Thus, each agent has only
a partial view of the system’s global state, and different agents have different partial
views. A good example is in [128] whose authors propose a decentralized multi-
agent decision process framework that provides the basis for a decision-theoretic
study of decentralized policies.

The decentralized architecture has advantages in synchronization, reusability, scala-
bility, and modularity [129, 130]. However, the complexity of decentralized systems is
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Table 4.1: Differences between this approach (this) and other existing work

Feature [86] [87] [88] [134] [136] [138] this
visiting time v v v
visiting order v v v v v
visiting duration v v v v v
location based service v v v
uses data always up to date v v v v
use economic smart devices v v v v
use multi agent system v v v v
calculates points of interest v
preserve privacy v

greater than that of centralized ones. Although decentralization shows obvious advan-
tages, decentralization also has its own drawbacks, including that agents cannot predict
the group behavior based only on the available local information, possible instability, and
sub-optimal decisions.

Due to the importance of total knowledge, our choice fell into the first category. More-
over, the centralized server is able to filter information offering advices to users without
sending their sensitive data; this preserves the user’s privacy.

In recent years, the CF recommendation systems have been supported by the use of
Multi-Agents. For example, in [131] the authors worked on a multi-agent system that
allows for improving and optimizing the energy consumption of smart homes. Each elec-
trical device is configured as a virtual agent. These agents work simultaneously and to-
gether to reduce consumption while ensuring user comfort, energy costs and maximum
energy savings. Agent-based recommender systems have been proposed in the last years
in different scenarios including the tourism [132, 133, 131, 134, 135, 136, 137]. For ex-
ample, in [134], the authors present the Turist@ system based on multi-agent technology
to give personalized tour attraction recommendations more effectively, highlighting the
usefulness of finding points near the user. Similarly, [136] illustrates an application to
better plan travel decisions based on multi-agent system. The authors of [137] propose a
system that is able to produce recommendations for both individuals and groups.

Table 4.1 summarises the differences between this approach and other existing works
in location recommendation. Note that, only the proposed approach makes use of gath-
ered data to compute Points Of Interests, which therefore emerge and change while users
interact with the provided system; additionally, several precautions have been taken to
ensure anonymity of the user identity and their location.
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Figure 4.2: Schematic of Centralised Server. Each device
identifies an agent.

Figure 4.3: Schematic of POI recommendation. Each
device sends its own information to a centralised server
which processes them and suggests a new POI for agents.
Using the experiences of users based on time, duration,
their personal feedback and the next goal, the rating is cal-
culated that suggests a next goal to the leading agent.
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4.1.2 An Application Model

Such a cooperation can generate a benefit for groups of people who share the same inter-
ests (tourists, students, etc.). Thanks to the exchange of information between agents and
servers, it is possible to define the rules for our recommendation system based on POIs
(see Figure 4.3).

An application model was created for our purpose. This application extracts informa-
tion from the device through the API and suggests the recommended and closest points of
interest based on the GPS position of the device. In Figure 4.4 it is possible to list some
suggested points with the information taken from the illustrated approach; for each POI
the user can access the ratings gathered from other people comments, as well as give her
comments. We can see, in Figure 4.4, four nearby points labeled as POIs in Beijing:

• Grand View Garden: a public park with

GPS coordinates 39.870300, 116.356922

• Former Residence of Mao Dun: a museum, in particular the home of a famous
writer from China with

GPS coordinates 39.938926, 116.404114

• Confucius Temple: a Buddhist temple famous for its vantage point with

GPS coordinates 39.947785, 116.412522

• Beijing Capital International Airport: airport area in Beijing with

GPS coordinates 40.070854, 116.582163

For validating the results of our algorithm finding POIs, each discovered site was
checked against Google Maps. Hence, the above list consists of actual sites, being POIs
according to Google Maps, which are within a radius of 100 meters from the POIs found
by our algorithm.

In summary, thanks to the discussed algorithm, it is possible to find a set of POIs
based on gathered trajectories. In our experiments, such data were gathered by Geolife,
Taxi and Truck experiments, and the set of POIs were used as a knowledge base for our
recommendation system. The large amount of data was instrumental for validating our
approach.

For the above proposed multi-agent system, a setting in our agent application on the
smartphone allows collecting GPS coordinates. This is useful for a geographical location
were there are no previously gathered trajectories. Then, we can continually extract the
trajectories of users and updating both suggestions for users and POIs recommendation.
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Figure 4.4: User is presented with a list of POIs and associated dynamic data.

Using such a setting, each agent releases to the server the GPS coordinates and its identity
periodically, however to take into account privacy concerns, the user identity is masked,
and the GPS location is randomly moved by at maximum 100 meters. Then, we obtain a
trajectory which is not very precise, however still useful. As trajectories are dynamically
gathered, also POIs are determined dynamically, as data arrive to the server. This is
possible since our DBSCAN implementation performs well.

4.2 Sentiment Analysis

The interpretation of human thoughts is a very important field, because it allows us to
achieve a variety of results, shown by several widely used applications [21]. E.g. many
companies need to analyze opinions that users have expressed on some products. This
complex and useful work is called Sentiment Analysis (SA) and it is the computational
study of people’s opinions, evaluations, attitudes and emotions [139].

Thanks to the web this field has gained more and more attention, because thousands
of people tend to have collaborative and entertaining web-based relationships (e.g. being
members of internet social networks and forums) as an integral part of their life. Hence,
many Internet pages reflect people’s thoughts, feelings and opinions. Since 2008, SA has
begun attracting attention: e.g. some researchers have focused on web forums to show the
usefulness of their techniques for classifying feelings in documents [140].

A large number of papers in the SA field have been published in the literature [28,
141, 140, 142, 132, 133, 131, 134, 135, 136, 137]. We propose a new approach for
SA that processes text according to automata. By using three finite state automata that
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implement Italian grammar rules, we are able to identify sentences that express an opin-
ion. In particular, given a sentence we will label it as having positive, negative or neutral
sentiment.

Despite the complexity of the Italian language we have obtained very good results
in terms of accuracy of the classification and recall. We have implemented the approach
using the MapReduce style in Java, hence speeding up execution as much as possible [71].

Thus, a presentation of the lexicon follows and in the next section we explain how the
automata work, the tests performed and the study of a parallel approach.

To determine the phrase’s orientation it is very important to be careful with the lexicon.
Therefore, the first step is to extract the keywords. We classify words according to the
following categories [143]:

1. Words of common sentiment: the terms having the same meaning regardless of the
context, such as buono (good, delicious) and cattivo (bad, nasty);

2. Parts of speech (PS): terms that indicate, reinforce or deny an expression; such as
in poco attraente (not very attractive) or tanto attraente (very attractive), poco and
tanto are terms limiting or reinforcing a sentiment, hence classified as PS;

3. Negations: words that may change the sentiment opinion, e.g. non (not).

Negation is tricky because the same word accompanied by negation may change the
orientation of a sentence. E.g.

Il mio nuovo pc è potente (my new pc is powerful)
versus

Il mio nuovo pc non è potente (my new pc is not powerful).
In our proposed approach words appearing in a sentence are classified as belonging to

one of the following categories (see Table 4.2).

1. Verbs (V): a subset of the Italian verbs comprising all the verbs that are mostly used
to express an opinion. Such a subset includes verbs: essere (be) and avere (have);
and other verbs used in similar contexts: trovare (find), sembrare (look), restare

(stay), vedere (see).

2. Articles (A): the list of articles, such as e.g. il (the).

3. Sentiments (S): a list of words related to emotions, e.g. bello (beautiful) and brutto

(ugly). This list consists of two subsets: a set expressing positive sentiments, such
as carino (nice) or dolce (sweet); and a set for negative sentiments, such as cattivo

(bad) or pesante (heavy).
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Table 4.2: Lists of sample words for each identified category, including positive and negative
sentiments and adverbs, and prepositions.

positive sentiment negative sentiment positive adverb negative adverb preposition
importante (important) inquietante (disturb-

ing)
esatto (exact) per nulla (in no way) ad (for)

ampio (ample) sporco (dirty) pure (also) niente (anything) in (in)
pulito (clean) brutto (ugly) certamente (sure) quasi (almost) dalla (from)
bello (beautiful) pesante (heavy) assolutamente (abso-

lutely)
purtroppo (unfortu-
nately)

alla (at the)

migliore (best) problema (problem) semplicemente (sim-
ply)

neanche (neither) agli (at the)

gentile (dear, gentle) guerra (war) molto (very) nemmeno (neither) sulle (on)
grazioso (pretty) odioso (hateful) sempre (always) appena (just) nello (in)

Figure 4.5: Examples of conversion of sentences based on the lexicon. For example: Il (the)
becomes A, nuovo (new) becomes O, etc

4. Negations (N): it only contains the word non (not).

5. Adverbs (D): a list of adverbs such as veramente (really), poco (little), molto (a
lot). This list is made up by two subsets of positive adverbs such as molto (very)
or davvero (really) and negative adverbs such as poco (little) or purtroppo (unfor-
tunately).

6. Pronoun (Y): it only contains the word uno (one).

7. Superlative (X): it only contains the word più (most).

8. Prepositions (P): a list of prepositions such as dentro (into) and in (in).

9. Other (O): the words not belonging to the above lists.

The S and D categories have two subsets because they change the meaning of the
sentence and consequently its orientation.

Then, each word found in a sentence is mapped to a category. Let us analyse the
sentence Il ragazzo è amichevole (The boy is friendly). This sentence is mapped to AOVS.
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By performing slight modifications of the above sentence we can change its orientation.
Indeed: Il ragazzo è amichevole (The boy is friendly) and Il ragazzo è molto amichevole

(The boy is very friendly) are positive sentences. Il ragazzo non è molto amichevole (The
boy is not very friendly) and Il ragazzo è poco amichevole (The boy is unfriendly) are
both negative sentences.

For a correct interpretation of the sentence you must firstly convert each word in the
letter of the category to which they belong (see Figure 4.5).

4.2.1 Performing Sentence Analysis

In order to analyse sentences, we have implemented three finite state automata. In par-
ticular, the algorithm uses an extension of finite-state automata, that is automata with
ε-Transitions (ε-NFA).

An ε-Transition allows an automaton to change its state spontaneously, i.e. without
consuming an input symbol. In diagrams, such transitions are depicted by labeling the
appropriate arcs with ε .

For each automaton we have two final states, one for positive sentiment and one for
negative sentiment. Each analysed sentence has a corresponding score. The score (S)
starting from 0 is incremented or decremented by 1 if it is accepted by one of the three
automata. Specifically, we add 1 if it is accepted by a final state that indicates a positive
opinion and we subtract 1 if it is accepted by a final state that indicates a negative opinion.
Finally, sentence is labelled according to the value of score S when S is greater than
zero, the sentence has a positive sentiment, when S is equal to zero, the sentence has a
neutral sentiment and when S is less than zero, the sentence has a negative sentiment (see
Figure 4.6).

AUTOMATON 1: the first finite state automaton represents all sentences having the
form:

verb + article + other + sentiment
which is a ordered sequence of the form VAOS, named according to the initials of

the categories of words, and all the possible variations, i.e. some words can be inserted
in the said sequence, without changing the expressed sentiment. For example: NVAOS,
VAOAS, NVAODS (see Table 4.3 for the list of all sequences).

One example of sentences having such a form is: L’elefante è un animale molto bello

(The elephant is a beautiful animal). According to our analysis, each word is mapped
into a category (see Table 4.2 and Figure 2), hence for the above sentence we have the
following sequence (of categories) AOVAODS.
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Figure 4.6: Automaton 1 recognising sentiments for sentences having form verb + article + other
+ sentiment

Another example for such a form is: Il telefono ha uno schermo davvero molto re-

sistente (The phone has a very durable screen), which would give a sequence of categories
as AOVAODDS.

Figure 4.6 shows the automaton recognising the above sequence VAOS and its varia-
tions, the initial state is q0 and the final states are q7 and q6. Every sentence accepted by
this automaton because ending in state q7 will be labeled with +1 (positive sentiment),
whereas when ending in state q6 it will be labeled with −1 (negative sentiment).

The automaton in Figure 4.6 scans words of a given sentence and remains in state q0
(initial state) until a verb or a negation has been found. Each transition from a state to
another is labelled with the marker of the identified word category.

AUTOMATON 2: this automaton handles sentences in which the sentiment is expressed
before the name to which it refers, i.e. the name can be mentioned after the sentiment, or
it can be missing. Moreover, no words expressing the names can be in between the verb
and the sentiment. Therefore, Automaton 2 manages the sentences having the form:

Verb*+ Sentiment + Other*
which is a sequence VSO and where * indicates that it is optional. E.g. the sen-

tence La tua moto ha un bel colore (your motorbike has a beautiful color) gives sequence
AOOVASO, which is accept by automaton 2. On the contrary, the sentence La tua moto

ha un colore bello (your motorbike has a beautiful color) gives the sequence AOOVAOS,
which is accept by automaton 1.

Let us take another sentence, i.e. Il film non è stato molto interessante (The film was
not very interesting), which when processed gives sequence AONVDS. This is a varia-
tion of the previous VSO sequence, and accepted by automaton 2, since D (adverb) is a
modifier for S (hence VS or VDS are similar), moreover O can be missing.

As for the previous automaton, this one (see Figure 4.7) scans words of a given sen-
tence and remains in state q0 (initial state) until a Verb or Negation (not) has been found.
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Figure 4.7: Automaton 2 recognising sentiments for sentences having form verb + sentiment +
other

Figure 4.8: Automation 3 recognising sentiments for sentences having form verb + article/pronoun
+ superlative + sentiment

Then, the following words can trigger a transition towards the next states.
AUTOMATON 3: There are several studies attempting to classify a comparative sen-

tence. In [144] authors analysed all comparative opinions (including comparative and
superlative).

There is a thin difference between sentences using comparatives and ones using su-
perlatives. In the first case the subject expresses a comparison, while in the second the
subject expresses an opinion [145]. We have only chosen to consider the phrases that
belong to the second category. This is represented by automaton 3.

The automaton manages the sentence with superlative excluding the phrase of com-
parative e.g. La mia città è più interessante della tua (my town is more interesting than
yours). The exclusion is due to the ambiguity of the sentence itself because the sentence
does not express a true opinion, but only makes a comparison. Therefore, the third au-
tomaton represents all sentences having the form:

verb + article/pronoun + superlative + sentiment
which is a sequence VAXS or a sequence VAYS, and their variations.
Figure 4.8 shows the automaton, which works analogously to the previous ones. Note

that given sentence L’auto è la più bella del mondo (the car is the most beautiful in the
world) the resulting sequence AOVAXS is accepted.

SEQUENCE GENERATION FROM AUTOMATA: by following all the possible paths
from the initial state to the end states for each of the given automaton, we can list all the
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Table 4.3: Sequences generated from the three proposed automata. The sentiment (S) and ad-
verb (D) categories contain positive and negative words, that is: D = {positive adverbs, negative
adverbs}; S = {positive sentiments, negative sentiments}.

Automaton 1 Automaton 2 Automaton 3
VAOS VDAS VYPOXS
NVAOS NVDAS NVYPOXS
VAOAS VASO VYPXS
NVAOAS NVASO NVYPXS
VDAOS VDASO VPAXS
NVDAOS NVDASO NVPAXS
VAODS VDS VAXS
NVAODS NVDS NVAXS
VAOPOAS VDDS VDAXS
NVAOPOAS VDADS NVDAXS
VAOPOS DS
NVAOPOS DAS

S
NS

possible words sequences that are accepted. Table 4.3 shows the partial lists of accepted
sequences.

4.2.2 Experiments and results

The above proposed rules for finding the sentiment of a sentence have been embedded
into a developed tool, which has allowed us to test the approach on unstructured text. We
have considered two collections of data:

1. Collection T1: a set of about 1000 sentences that have been extrapolated from
various web forums.

2. Collection T2: a set of about 800 sentences that have been extrapolated from the
Yelp platform.

The selected targets are hotels and mobile phones in both data collections. The tests
were performed using the described approach and Serendio algorithm. Thus, we can
compute precision and recall for both approaches.

Below is an introduction of the data collection (Web Forum and Yelp) and of the
Serendio algorithm.

WEB FORUM: all sentences have been randomly extrapolated from different web
forums (like Tripadvisor). We target “Restaurant”, ”smartphone” and ”Hotel”. Each
sentence has been manually labeled with a score (S2) which identifies the sentiment ex-
pressed:

• the score -1 identifies a “NEGATIVE” sentiment;

• the score 0 identifies a “NEUTRAL” sentiment;
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Figure 4.9: Description of the phases of the algorithm. Input: Huawei P9 e’ lo smartphone
migliore del 2016 (Huawei P9 is the best smartphone for 2016). Output: positive sentiment.

• the score +1 identifies a “POSITIVE” sentiment.

For the validation of our approach, we used our algorithm to predict the sentiment ex-
pressed by comment and then compared it with the sentiment resulting from the assigned
score (S2).

In other words, the algorithm was applied to each sentence and the score (S) was
calculated (Table 4.4 shows some examples of analyzed sentences). If S and S2 express
the same sentiment (negative, neutral or positive), we consider the algorithm’s result as
correct. Subsequently, accuracy and recall were calculated and discussed in Section 4.2.3.

YELP: we collected our data from Yelp platform using the Yelp’s API. Yelp is a
review forum that allows users to post their comments on a place, restaurant or other and
to associate a number of stars ranging from 1 to 5 to give their own rating which represents
the user’s satisfaction, that is a low number of stars corresponds to a poor acceptance (and
viceversa).

We assume that for each user comment the number of stars is an accurate measure for
the sentiment express of the review, that is:

• if number of stars is less than 3 then it is considered as ”NEGATIVE” sentiment;

• if number of stars is equal to 3 then it is considered as ”NEUTRAL” sentiment;
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Table 4.4: A sample of sentences used for sentiment analysis taken from web forums. Column
1 shows the automata that accept a sub-sequence of the sentence; column 2 shows the sentence
labeled; column 3 shows the lexicon corresponding to the sentence; column 4 shows the sentiment
identified by the proposed algorithm, that is positive if score is greater than zero, neutral if score is
equal of zero and negative if score is less than zero; column 5 shows the state finale of automation
that accept the sentence (see column 1).

A SENTENCE PATTERN LABEL Final
State

1 Huawei P9 è lo smartphone migliore del 2016 (Huawei P9 is
the best smartphone for 2016)

OOVAOS+PO positive q6

1 Lo Zenfone 3 ha un prezzo molto competitivo (The Zenfone 3
has an inexpensive price)

AOOVAOD+S+ negative q6

1 Lo Zenfone 3 ha un prezzo poco competitivo (The Zenfone 3
has an expensive price)

AOOVAOD-S+ negative q7

1 OnePlus ha una versione di Android molto leggera (OnePlus
has a very light version of Android)

OVAOPOD+S+ positive q6

1 OnePlus ha una versione di Android molto pesante (OnePlus
has a very heavy version of Android)

OVAOPOD+S- negative q7

1 L’hotel Verdi non ha un aspetto grazioso (The Verdi hotel does
not look pretty)

AOONVAOS+ negative q7

2 L’iPhone è un bel telefono (The iPhone is a beautiful phone) AOVASO positive q4
2 La telecamera dell’iPhone non è per nulla competitiva (The

iPhone camera is by no means competitive)
AODONVD-D-S+ negative q7

2 L’iPhone é un ottimo dispositivo sia dal punto di vista hardware
che software (The iPhone is an excellent device both from hard-
ware and software point of view)

AOVASO positive q4

2 L’iPhone è davvero molto bello (The iPhone is really beautiful) AOVD+D+S+ positive q4
3 La camera dell’hotel Verdi è la più bella del mondo (The Verdi

hotel room is the most beautiful in the world)
AODOOVAXS positive q8

3 L’iPhone é uno dei più potenti (The iPhone is one of the most
powerful)

AOVYPXP positive q8

• if number of stars is greater than 3 then it is considered as ”POSITIVE” sentiment;

For testing, we used our method to find the sentiment expressed by user comments
and then compared it with the sentiment expressed by the number of stars (Table 4.5
shows some examples of analyzed sentences). If the match is compatible, we consider
the algorithm is result as correct. So in short, the number of stars was used to evaluate the
stability of the algorithm. Finally, accuracy and recall were calculated and discussed in
the section 4.3.

SERENDIO APPROACH: We have compared our algorithm with an approach devel-
oped by the Serendio team. Serendio is a simple and practical lexicon based approach to
SA [123]. The approach extracts and analyzes sentiments for a given product and feature
set.

In Serendio approach the lexicon is created through the following categories:

• common or default sentiment words (positive and negative sentiment words that
have the same sentiment value in different domains, i.e. ”good”);

• negation words (words which reverse the polarity of sentiment; i.e. ”not”);
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Table 4.5: A sample of sentences used for sentiment analysis with Yelp. Column 1 shows the
sentence labeled (post); column 2 shows number of stars associated with the post; column 3 shows
the score of our algorithm and column 4 shows if there is compatibility between our result and the
number of associated stars.

POST NR
STARS

SCORE LABEL

Un locale davvero bello. Perfetto per le cenette romantiche.
L’ambiente è raffinato, ma i proprietari sanno metterti a tuo agio.
Cibo ottimo e presentato in..
(A really nice place. Perfect for romantic dinners. The environ-
ment is refined, but the owners know how to put you at ease.
Great food and presented in ..)

4 1 Match
compati-
ble

Esperienza pessima. Scegliamo questo ristorante per la notte di
capodanno. Prezzo: 80 a persona, una cifra non bassa e che
aveva creato in noi aspettative..
(Bad experience. We choose this restaurant for New Year’s Eve.
Price: 80 per person, a non-low figure that had created expecta-
tions in us..)

1 -1 Match
compati-
ble

• blind negation words (words which points out the absense or presence of some
sense that is not desired in a product feature, i.e. “needs”);

• split words (words that are used for splitting sentences into clauses, i.e. “but”).

Moreover, it includes a preprocessing phase for text normalization in an appropriate form
to extract the sentiments. This phase has not been implemented in our experiments be-
cause it is more appropriate for studies of tweets (not included in our sentences).

The core of the Serendio algorithm is based on the sentiment calculation; sentiment
calculation (SentiSum) is the aggregation of the sum of the sentiment bearing emotions of
the sentence. The algorithm processes a list of words taken from lexicon and assigns to the
analyzed sentence a SentiSum as follows: extrapolating words present in the sentiment
list (including positive and negative sentiments) and changes the sentiment polarity of the
word if it occurs in proximity to a negative word (two word distance). For example: ”The

restaurant is not good.”, the sentiment word ”good” becomes a negative word.
So, for each word in the sentiment list (common or default sentiment word) that is

present in the sentence (or clauses), if the word is a “positive sentiment” then +1 will
be added to the SentiSum, if the word is a “negative sentiment” then −1 will be added
to the SentiSum. In addition, the presence of blind negation words indicate a negation
sentiment. Accordingly, initializing the SentiSum variable to zero and after doing the
described steps:

• if calculated SentiSum is greater than 0, then the sentence will be tagged as ”POSI-
TIVE” sentiment;

• if calculated SentiSum is equal to 0, then the sentence will be tagged as ”NEUTRAL”
sentiment;
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Table 4.6: Overview of my results. Comparison of the proposed and Serendio approach for SA.

Collection Source Algorithm TP FP FN Precision Recall F-Score
T1 Forum Our approach 309 107 86 0.743 0.782 0.762

Serendio 285 127 83 0.642 0.774 0.730
T2 Yelp Our approach 405 90 216 0.818 0.652 0.726

Serendio 402 92 217 0.813 0.649 0.722

• if calculated SentiSum is less than 0, then the sentence will be tagged as ”NEGA-
TIVE” sentiment.

Serendio has been implemented in the Java language. The lexicon has been manually
created using the same words as our algorithm.

4.2.3 Results and Comparison of models

Our sentiment approach and corresponding tool has detected sentiment for all sentences
given with a high degree of precision. Table 4.6 shows measures of Precision, computed
as T P

T P+FP , and Recall, computed as T P
T P+FN , where TP is True Positive, FP is False Pos-

itive, and FN is False Negative. Low rate of recall is influenced by the restricted list of
feelings (about 50 positive and about 30 negative), which can be expanded with more
words.

We have compared our algorithm with an approach developed by the Serendio team.
The Serendio algorithm has been implemented taking cues from [123], and executed by
giving it the same list of feelings and negations used in our tests. Table 4.6 gives Precision
and Recall for the two approaches. We also provide the F-score, which is 2

1/r+1/p , as a
measure of a test’s accuracy that combines precision (p) and recall (r).

It can be seen that our proposed approach and algorithm is aimed at more precise
results, thanks to the accurate proposed text analysis. We identify more opinions than the
Serendio algorithm, these results are more precise and we found less false positives (FP).
It is possible to see a total report of the results of T1 and T2 in Figure 4.10.

4.2.4 Parallelization approach

Given the huge amount of text sentences that are available and that are generated on the
web continuously, we have implemented a parallel version of the proposed algorithm
using Java version 8. Such a Java version provides a significant support inspired by the
Map Reduce paradigm, and introduces an easy to use concept of parallelism for the proper
use of modern multicore architectures.
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Figure 4.10: Results are an arithmetic mean of the calculated data using the T1 and T2 collections.

1 public void SentimentAnalysis() {

2 map ((k, w)} -> (k, replace(w));

3 reduce ((k,v)} -> (k, concatenate(v)))

4 forEach (v -> checkPattern(v))

5 }

Figure 4.11: Algorithm for finding positive or negative sentiment in a sentence

In Java 8, all the classes that implement the Collection interface have a default method
that returns a Stream object, which then provides methods for creating sequential or par-
allel execution on the streams.

In Java 8 API package, java.util.stream supports functional-style operations on streams
of elements, such as map-reduce transformations on collections. Type Stream<T>, rep-
resents a sequence of elements and supporting sequential and parallel aggregate opera-
tions.

The implemented algorithm is given in Figure 4.11 and it splits each sentence into
words (w), and then associates the relative map-reduce key (k), which identifies the posi-
tion of the word in the document.

The algorithm has the following methods:

• replace(word) is the method that replaces the word with a label (or character) that
identifies the category of membership for the word, such as article, sentiment, ad-
verb, etc. (see Table 4.2);

• concatenate(letter) is the method that concatenates letters according to their key (i.e.
position in the sentence);

• checkPattern(phrase) is the method that taking a sequence of word categories com-
putes a score according to the automaton recognising it (as discussed in Section 4.2.1).
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Table 4.7: Execution times for the sequential (S) and parallel (P) approach based on the size of the
processed files

sentences approach execution time (s)
11 M S (1 core) 287
11 M P (8 cores) 170
16 M S (1 core) 436
16 M P (8 cores) 270
19 M S (1 core) 529
19 M P (8 cores) 325
22 M S (1 core) 575
22 M P (8 cores) 362
26 M S (1 core) 696
26 M P (8 cores) 427

Therefore, given a sentence, each word is mapped to a category, each category is con-
catenated to others in the same sentence, and each sequence is matched to precomputed
ones that automata have generated. All the steps are performed in parallel thanks to the
Java 8 stream APIs.

Table 4.7 shows the execution times for a sequential approach and a parallel approach
for several millions (from 11 to 26) of sentences processed. As the table shows, we have
obtained an execution time up to 48% shorter for the parallel algorithm, compared to the
sequential version.

4.3 Attack and Targeted Advertising

In this last section of the chapter, we present a type of attack that injects news into the
device by locating it without the user’s consent. The identified attack scenario consists of
two communicating sub-systems: an app running on an Android OS device and a server-
side. The app aims at capturing data available on the device side, i.e. mainly the SSIDs of
nearby wifi, and forward them to the server. The server analyses data and might use them
to create targeted ads campaigns based on the user’s current geographical location.

The identified scenario is a means to highlight the role that a set of normal permissions
have for the user privacy, and to show how to make use of such permissions to find the
user’s geographical location.

4.3.1 Creating a Knowledge Base

An app that aims at gathering data related to SSID and geo-locations, once installed on
the device would run in the background, and periodically:
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Table 4.8: For the creation of our knowledge base the following methods of Android OS APIs were
used, upon declaration of the related permissions; column Type identifies whether the permission
level is normal (N) or dangerous (D), according to Android API level 27.

Description Permissions Type Class Method
User Identification None None Settings Secure getString( ContentResolver

resolver, String name)
User Device Model None None Build.Model -
Check wifi status ACCESS WIFI STATE N WifiManager isWifiEnabled()
Turn on/off wifi ACCESS WIFI STATE,

CHANGE WIFI STATE
N WifiManager enableOrDisableWifi(bool)

Search for known SSID ACCESS WIFI STATE N WifiManager getScanResults()
Calculate signal level ACCESS WIFI STATE N WifiManager calculateSignalLevel(String

RSSI, int level)
Describe connection sta-
tus

ACCESS NETWORK
STATE, INTERNET

N NetworkInfo isConnected()

Communicate to server ACCESS NETWORK
STATE, INTERNET

N HttpURL-
Connection

writeStream(OutputStream
out), readStream(Input-
Stream in)

Get latitude and longi-
tude in degrees

ACCESS COARSE LO-
CATION or ACCESS
FINE LOCATION

D getLatitude(),
getLongitude()

• turn on the wifi (only if turned off);

• read SSIDs sensed nearby;

• send collected information to the server-side.

If the location of sensed wifi SSIDs are known, the app estimates the user’s GPS
position based on the SSIDs and their signal strengths. Conversely, if SSIDs are unknown,
the app asks the user permission to read the current GPS location, if she accepts, the app
will then send the position with the detected SSID. For the APIs reading the GPS position,
the app need a dangerous level permission, hence the user has to grant such a permission.

Upon receiving data, the server-side stores, merge, and analyses them. Merging data
includes an operation such as the following. SSID values which have been associated
with GPS coordinates by an app on a device are shared with apps on other devices whose
GPS coordinates are not available. Data analysis is performed in order to send targeted
ads according to captured SSIDs, using an algorithm that filters ads conforming to geo-
locations.

For such an app, the needed permissions and their level are: ACCESS WIFI STATE
(normal), CHANGE WIFI STATE (normal), INTERNET (normal), ACCESS NETWORK
STATE (normal), ACCESS COARSE LOCATION (dangerous), ACCESS FINE LOCA-
TION (dangerous). For more details, see Table 4.8.

The following illustrates the relevant code implemented for the app to carry out ac-
cesses to SSIDs sensed by an Android device. Figure 4.12 shows the getWifiList() method
that returns all the wifis detected by the device (in the form of a list of strings). In de-
tail, the type of attribute wifi is declared as a WiFiManager; the wifiSSIDList() method
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1 public List<String> getWifiList() {

2 List<String> toReturn = new ArrayList<>();

3 if(wifi.isWifiEnabled()) {

4 toReturn = wifiSSIDList();

5 } else {

6 enableWifi();

7 toReturn = wifiSSIDList();

8 disableWifi();

9 }

10 return toReturn;

11 }

Figure 4.12: The Java code to perform the wifi scan: it enables the wifi (if turned off), looks for
the available SSIDs and turns off the wifi (if it was off).

1 private void enableWifi() {

2 if(!wifi.isWifiEnabled()) {

3 wifi.setWifiEnabled(true);

4 }

5 }

Figure 4.13: The Java code to check if the wifi is active. In case of wifi off, it is activated.

calls found in lines 4 and 7 start a scan for the active wifis and get the SSID attribute of
each ScanResult object returned. In line 3, it is checked whether the wifi connectivity
is already active; if it is not, it will be activated and then deactivated, in lines 6 and 8,
respectively. The methods for activation and deactivation are shown in Figure 4.13 and
Figure 4.14. The implementation of wifiSSIDList() method is shown in Figure 4.15 and
uses the getScanResults() method to have the SSIDs.

4.3.2 Architecture of a Leaking Service

Android GPS APIs can be used by an installed app to access user position. Considered
the related privacy implications, for using such APIs an app has to ask the user to grant

1 private boolean disableWifi() {

2 if(wifi.isWifiEnabled()) {

3 wifi.setWifiEnabled(false);

4 return true;

5 }

6 return false;

7 }

Figure 4.14: The Java code to check if the wifi isn’t active. In case of wifi on, it is deactivated.
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1 private List<String> wifiSSIDList() {

2 List<String> toReturn = new ArrayList<>();

3 List<ScanResult> availNetworks = wifi.getScanResults();

4 if (availNetworks != null &&availNetworks.size() > 0) {

5 for (ScanResult sr : availNetworks) {

6 toReturn.add(sr.SSID);

7 }

8 }

9 return toReturn;

10 }

Figure 4.15: The Java code to read and return the list of available WiFi SSIDs.

a dangerous-level permission, i.e. the user has to explicitly allow the app to gather GPS
coordinates. The request to access the device position can be motivated by some func-
tionality, such as giving an alert for some goods to buy in a to-do list when the device
position is close to a grocery shop. This will allow a server-side to leak this information
also for other purposes, such as for advertisements. In fact, without further policy en-
forcement [41, 42], once the access to the dangerous-level permission has been granted,
the user has no control on how that information will be used by the device. The only thing
that the user can do is to deny the dangerous permission.

However, it is still possible to spot the user position even without asking for a dangerous-
level permission, i.e. by only leveraging normal-level permissions a “partial” data leak,
such as the list of available SSIDs, can be viable, without the user knowing about it. By
asking for a SSIDs list of the nearby wifi connections, it is possible to infer the device
position, then affecting user privacy. A properly designed server-side can collect and fuse
leaked data with the ones sensed from other close-by devices, using an underhand crowd
approach to complement partial data and improve the spotting precision.

Figure 4.16 shows the server-side architecture for an Android app able to leak device
positions. In our example, the use case is a simple cloud-based to-do-list service accessed
through an Android app installed on user devices. This app can ask access to several
resources (shown in Table 4.8), such as the device id, the SSIDs list with the related
signal strength, and optionally for the GPS position, the only one needing the dangerous
permission, whose access can be denied by the user. Other data can be sensed to build a
more comprehensive user profile, such as the device model which can give some insights
about the user income, useful to target ads.

Along with legitimate behaviour, the app can periodically send the sensed data to the
server-side through the API gateway, covered by the access to the Trusted Services of
the given app, such as to sync the to-do-list with other owned devices. These data are
collected and stored by a Leaked Data Collector, adding a timestamped record linked to
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SSID: netC

  deviceID: <dev2>
  SSIDs:  {netA, netB, netC}
  GPS: none

SSID: netB

GPS
+

WiFi

WiFi

SSID: netA

API gateway

  deviceID: <dev1>
  SSIDs:  {netA, netB}
  GPS: <position>

Leaked Data
 Collector

Trusted Services

Ad 
Service

Leaked Data
 Fusion

Figure 4.16: Server-side architecture: covered by the trusted service behaviour, sensitive device
data can be collected and fused to refine users position. Such data can be then given to third party
services (e.g. for advertising), affecting user privacy.

1 {

2 androidId : "f05e06f3398c5769",

3 phoneModel: "Samsung SM-G920F",

4 timestamp : 10023945,

5 ssidList: [

6 "ssid1",

7 "ssid2",

8 ... ,

9 "ssidN"],

10 position:

11 {

12 lat: 111.1111,

13 lng: 22.3334

14 }

15 }

1 [

2 {

3 ssidName: "ssid1",

4 position {lat: 11.333, lng: 223.44}

5 },

6 {

7 ssidName: "ssid2",

8 position {lat: 12.33223, lng: 23.47764}

9 },

10 ...

11 {

12 ssidName: "ssidN",

13 position {lat: 11.3388,lng: 923.447}

14 }

15 ]

Figure 4.17: An example of JSON Objects sent to (on the left) and received from (on the right)
the server.
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specific user by the given device id. Figure 4.17 (on the left) shows an example of a JSON
data record sent from the device to the server through the API gateway.

The Leaked Data Fusion component will fuse the collected records to build a user
profile, inferring the position, when the GPS location has not been provided, by using
wifi information. In the simple example depicted in Figure 4.16 there are two devices
running the given to-do-list app: dev1 and dev2. The former has granted the access to
both the GPS and wifi information (which we call master), the latter only to the wifi one
(which we call slave).

The SSIDs list sensed with normal permissions can give a clue about the device po-
sition, and given two devices the more SSIDs in common the closer they are. The fusion
component can then cluster the devices with similar SSIDs lists, which are supposed to
be close, even though their exact position is unknown (in case of a slave). Information
about signal strength can also be used to weight the clustering algorithm and obtain a
better clustering precision.

Then, the GPS of a master can be used to infer the position of all the other slaves in
the same cluster, with a precision proportional to the SSIDs the slave has in common with
the master and the related signal strength. Hence, a single close-by device providing GPS
coordinates suffices to locate many other devices that have denied GPS use.

The server could also be provided with the GPS position of some known SSIDs, fur-
ther improving the precision of inferred slave positions. This information can be obtained
by leveraging external services like WiGLE1, by a manually provided list (mapping known
restaurants, parks or public buildings SSIDs), or inferred by the fusion component, in a
similar way used to spot slaves. Figure 4.17 (on the right) shows a list example of known
SSIDs coordinates that are used by the server to improve the spotting precision. This can
also be sent to the devices for a self GPS-less positioning, using signal strength to estimate
those SSIDs proximity.

4.4 Conclusions

Nowadays, thousands of users use their mobile device to gain access to new information
in relation to their geographical location. This innovation has given rise to new services,
such as reading GPS coordinates in order to receive information on nearby Points Of In-
terest (POIs). In this chapter we discussed an application for creating recommendations
for POIs. Thanks to the points listed above, the proposed multi-agent system, exchanging

1https://wigle.net
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information with the centralised server, has been used for the creation of a recommen-
dation approach for POIs. The assembly of the research of the Points Of Interest of the
previous Chapter with the multi-agent system offers a reliable, innovative and always up-
to-date method, key concepts in this era where it is fundamental to have data updated in
real time.

However, in recent years, various privacy-related attacks have been performed on mo-
bile devices, due to their widespread use and their multiple functions. This chapter has
presented a possible attack scenario for owners of Android devices, because it is pos-
sible to extract information on the users position (i.e. sensed SSIDs) without the user’s
authorisation, hence violating privacy. The use of these permissions to retrieve the user
position is a technique extensively discussed in the literature but, unlike the others, our
work implements a practical example of using this attack, explaining the various steps of
the application and validating this study.

The information on the users position can be used in various ways as it allows user
monitoring; an example, used in our approach, is to create a targeted advertising service.

Furthermore, to overcome such weakness we will present a defence mechanism that
protects user privacy, and can alert the user id or sensed SSIDs to mask such data (tech-
nique described in the Chapter 2.1.2); such defense mechanism is discussed in Chapter 5.
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Chapter 5

Advanced methods for data protection

In this chapter, we presents two approaches to safeguard users of Android devices, both
protect the user from unlawful actions caused by applications installed on the device:

• Detecting Android Malware: we illustrate an approach to identify at runtime whether
an operation carried out in the device is legit or not. For this, we monitor the previ-
ous behaviour of the user. An application has been created that collects data relating
to the user’s data traffic (such as WiFi downloaded bytes) in the background, allow-
ing us to establish whether a new operation on the device is in line with previous
ones. This gives life to a new kind of security enforcement on the device. The ex-
periments were performed by collecting data taken from Android devices and have
shown that anomalous operations can be detected with a high probability.

• Mitigating Privacy-related Risks: in order to preserve privacy, a novel and gen-
eral defence solution is proposed, protecting data and resources in Android devices.
Moreover, users are given the ability to configure which accesses have to be pre-
vented and which are granted. As a proof of concept, our protection solution has
been embedded in Wikipedia app, however is general and available for any app.
To validate our approach, it is proposed as a solution for the attacks described in
the previous chapters. Thus, in the next section it was illustrated how to use this
technique in detail to be able to implement a countermeasure with each attack.

In our contribution a specific signature is not using. Consequently, by not knowing
a priori the signature of the malware we can detect known malware and little known
malware. In the first case a new approach has been created to identify new malware based
on the profile on device owners, while in the second case the user is given the freedom of
choice and control over data in a simple and intuitive way and taking into consideration
also the normal permissions, allowing greater flexibility.
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5.1 Detection of malicious actions

We present a new approach to safeguard the user by analysing their behaviour, collecting
data from the continuous monitoring of the used device, e.g. number of packets sent,
GPS, WiFi, Bluetooth, number of bytes received, number of bytes sent, etc. Our intent
is to use knowledge gained on the use of a smartphone to detect anomalous operations,
hence by examining previous user actions and then check whether a new operation is
suspicious. An usual operation (legal transaction) is an operation that the user performs
regularly and this classification (as usual) is determined by the statistics performed on user
activities. An anomalous operation (illicit transaction) can derive from three scenarios:
(i) operation triggered by someone other than the owner of the device (malware); (ii)
operation erroneously initiated by the user; (iii) new user habits. In the third case the user
would be authenticated and trigger the update of their profile.

This work aims at evaluating user habits and for this other useful information are
checked, such as time and date, to understand when and where the user generally uses
data connection. By collecting data and making statistics, it can then be estimated, with a
certain probability, whether an action is usual or not. The approach has been tested on a
portion of collected datasets offered by the authors of Device Analyzer (see Section 2.3.3)
and confirmed the validity of our approach.

5.1.1 Approach based on Observations on User Activities

Everyday, users download a large amount of bytes during their Internet access for various
reasons. By analysing the user’s habits we can identify whether a new action is legit, i.e.
according to the previous user behaviour, or anomalous with a high probability. The idea
put forward is to perform a statistical analysis based on weekly/monthly reports of the
user’s activity, in order to identify the type of operations usually performed at runtime.
E.g. consider a user that generally performs updates on Monday or Thursdays between
09.00 and 12.00 in a place with some given GPS coordinates. If it happens that she
performs updates in a different time slot or in a different day of the week, this would raise
an alarm, then asking the user to authenticate to complete data loading/unloading.

The proposed method consists of the following phases. Firstly, data collection: dif-
ferent users have different habits, hence each user has to be profiled separately. For each
user, data collected relates to generated traffic, such as the number of bytes transmitted
and received. This can be picked through the operating system APIs (for Android de-
vices see Section 2.1.1). Secondly, statistics: data obtained was used to build three types
of statistics, according to time intervals, weekly reports, and data connections. For each



Chapter 5. Advanced methods for data protection 92

user, one or more of the above statistics can be referred to, according to their habits. Fi-
nally, labelling requests: thanks to the previous accumulated statistics, it is possible to
label a new action as usual or not. If an action is too far from the usual user actions it will
be labeled as anomalous.

Case Study: the approach has been tested using a set of data provided by the Device
Analyzer (DA) app. Data summarises user activities, however no sensitive data has been
collected.

A) ANALYSIS AND DATA COLLECTION: during the first step, we organised and fil-
tered data collected by the DA app. We have mainly used the following keys:

1. system/device: the type of device.

2. system/model: the model of device.

3. net/interface/tx and net/interface/rx: they are the keys that identify, respectively, the
number of bytes transmitted and received.

4. power/battery/level: it indicates the battery level.

5. phone/celllocation/cid and phone/celllocation/lac: it indicates coordinates of GSM
Base Station.

6. wifi/connected/ssid: it indicates the value of ssid wifi to which the device is at-
tached.

Data used for this study involve five users. Collected data were updated on average
every millisecond and concern a timeframe ranging from 4 months to a maximum of one
year.

B) STATISTICS: for each user, traffic data, in relation to the weekly, daily and monthly
consumption, were characterised. Moreover, wifi connection identifiers were collected
and analysed. The statistics were mainly performed on two blocks of data: bytes trans-
mitted (e.g. including net/interface/rx and net/interface/tx keys), and connected wifi (e.g.
including wifi/connected/SSID key). These data were analysed together with the date and
time in which the same data has been saved. Data concerning transmitted bytes are pro-
cessed to analyse them according to the day of the week and the time slots. The time slots
considered were four: 00:00-05:59; 06:00-11:59; 12:00:17:59: 18:00:24:00. Instead, data
on wifi identifiers were divided by days of the week, and frequencies were computed. The
median was computed on these groups in order to have a statistic of average consumption.
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The statistics were made on the first two months of data available to users and tested
with data available for the following months. The results have shown a degree of stability
with a low error rate.

C) LABEL A NEW REQUEST: by analysing the movements collected for each user, we
can create the rules, according to summarisation and statistics, that label a new action as
usual or anomalous. When a new operation is carried out (by the user or in the background
by the apps) our model, according to the decisions taken in the previous weeks, will
assign the label. In case of unusual actions (actions labeled as anomalous), the user must
authenticate himself to complete the operation. Therefore, this phase allows us to add a
new level of security to the device.

5.1.2 Experiments

Experiments were performed on data offered by the authors of DA (see Chapter 2). In
order to assess the performance of our proposal, we considered three types of statistics.

1. Statistics for time slots: the tests were divided by time slots, that is at the following
time intervals: 00:00-05:59; 06:00-11:59; 12:00:17:59: 18:00:24:00. For each in-
terval, it was reported the median value of the data (upload/download) transmitted.
Data were taken for mobile internet and WiFi.

Figure 5.1 shows the trend for time slots on a day. The x-axis gives the months
in which data are measured, and the y-axis gives the amount of bytes transmitted.
Plots give the median of bytes transmitted for up to 8 months. Note the stability
of the median over the months. Such an analysis for time slots can be considered
a good starting point to identify whether an action is usual or anomalous, because
users evenly tend to consume bytes in the same time slot.

2. Weekly statistics: these were performed of the median of bytes transmitted ac-
cording to the day of the week. The purpose is to identify whether a user generally
transmits the same number of bytes based on one week or tends to download and
upload data on specific days as e.g. the weekend. Data were taken for mobile inter-
net and WiFi.

Figure 5.2 represents the amount of data used on each day of the week. Months
are on the x-axis, and the amount of bytes transmitted on the y-axis. Plots indicate
the median of bytes downloaded for up to 8 months, and each represent data for
one day of the week. Note that the plots become stable from the second month and
roughly remain stable for the first eight months. A maximum allowable error rate is
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Figure 5.1: Statistics for time slots on a day. User 2 tends to consume more bytes during the
interval 18:00-24:00, hence a large daily consumption could rise an alarm. User 4 has a uniform
behaviour in all time slots. User 5 tends to use less data on the first time slot.
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Figure 5.2: Statistics for transmitted data by day of the week.
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about 20 MB. An exception, in our tests, is user 5 who, after four months, increases
the number of bytes transmitted for each day of the week. We have observed that
after this increase the amount of data used is stable for the following months.

3. Statistics related to WiFi connections: study of the transmission of bytes on a
WiFi network.

Figures 5.3 shows the WiFi connection frequency for each user. We can make the
following two conclusive observations. Firstly, for every user, the highest frequency
value is observed on the first month, and this is then constant for the whole period of
the data available. An exception to this is user 2 (not represented in the graphs) who
prefers the mobile connection, then there are insufficient data on wifi connections
to perform statistics. Consequently, in general each user tends to frequently connect
to the same WiFis. Secondly, some users only connect on certain days of the week.

Statistics were possible thanks to information taken from smartphones. These data
were taken through specific APIs discussed in Section 2.1.1. We now describe the rela-
tionship between the above Android APIs (see Chapter 2.1.1) and the keys of the dataset
used in the tests.

1. conn/wifi/state is used to verify whether the device is connected via WiFi. To
receive this information, the WifiManager class is used, which through the EX-

TRA WIFI STATE() method returns a string that indicates whether WiFi is enabled,
disabled, enabling, disabling, or unknown.

2. wifi/connected/SSID is used to verify which WiFi is used. This information is given
by the WifiInfo class and its method getSSID() that returns the service set identifier
(SSID) of the current 802.11 network.

3. net/interface/rx is used to derive the number of bytes received. We used the Traffic-

Stats class, and method getMobileRxBytes() to read the number of bytes received.

4. net/interface/tx is used to derive the number of bytes transmitted. TrafficStats class
and its getMobileTxBytes() method give the number of bytes transmitted.

5.1.3 Monitoring and responding runtime

To show the validity of the assumptions in this approach, i.e. the gathering of statistics
which can be used to classify the runtime operation being performed, we created a pro-
totype app for Android devices. The app has been implemented in Java, and properly



Chapter 5. Advanced methods for data protection 97

Figure 5.3: Monthly frequency of wifi connections for users. For user 2 the wifi 1, 3, 5 have
the greatest frequencies since the first month. For users 4 and 5 wifi 1 frequency has a different
magnitude than the others, from the first month.
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Table 5.1: Permission list obtained from AndroidManifest.xml

Permission Required by
Access Network State the class ConnectivityManager
Access Wifi State the class WifiManager
Access Fine Location the class LocationManager
Bluetooth Bluetooth Adapter
Read Contacts to access the phone contacts
Receive Boot Completed the broadcast action an-

droid.intent.action.Boot.Completed
Process Outgoing Calls android.intent.action.New.Outgoing.Call
hardware location gps Needed for API greater than 25
hardware location network Needed for API greater than 25

detects data usage by resorting to the identification of Android APIs [146]. Once in-
stalled on the device, the app works in the background and monitors the device every time
a data connection is made. This is possible thanks to the BroadcastReceiver component.
In fact, the component listens to the entire system by triggering specific events; in our
case, the onReceive() function is invoked, which, by using the Intent (which identifies the
operation performed) will verify whether a data connection has been made.

When a connection is established, our app starts extracting various data from the de-
vice such as GPS position and byte number received/transmitted, and then later initiates
the process of analysis of the data. In order to extract and study device data, the user must
authorise our app to access its data, such as data from a WiFi connection. Permissions
were set for this by using the AndroidManifest.xml file as shown in Table 5.1. When
data is captured, it is sent to a server and saved to a database. This database will then be
queried to make statistics.

The developed app is made of and therefore runs the following methods:
create() initialises variables and saves them in a database through writeData() and

manageData() methods that are respectively located in DB and in Manager class.
start() about every one second updates the values of variables through Android APIs

using different methods (e.g. readTxFromDevice()) that are located in Capture data class
and launches, via Manager class, two methods. saveAndAnalyzer(): save data and update
value for statistics via Statistics class; as described above, it starts three type of statis-
tics: statistics for time slots (through forTimeSlot() method), weekly statistics (through
weekly() method) and statistics related to wifi connections (through relatedToWifi() method).
checkInRuntime(): thanks to the collected data and related statistics using the matchData()

method in the Statistics class for each new action returns true if it is labeled as benign or
false. In case of false output, the method starts the warning using the launchAlert() method
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Figure 5.4: The UML diagram illustrates the classes implemented to monitor any illegal appli-
cation operations using three types of statistics (based on time slot, weekly intervals and SSID
WiFi).

and asks the user to identify himself with login and password (verifyCredential()). The
last two methods are implemented by the Authentication class.

The application needs some time for creating user statistics, after that it can work
through the statistics collected. Thanks to the intervene() method, an alert can be launched
to the user at runtime, indeed e.g. if data downloaded is excessive in relation to statistics,
the program will ask the user to authenticate. To continuously retrieve runtime data,
a thread has been created that requires updating data every second, allowing to have a
satisfactory control of the actions made. The execution time varies and depend on: the
data already held on the DB (then the amount of data to be analysed), the type of device
connection, the type of device.

The complete class diagram is shown in Figure 5.4 and the interaction between the
various methods is described in Figure 5.5.

5.2 Mitigation of user information leakage

In this section, we propose a way to embed a defence mechanism inside the workings of
an Android device. Such a proposed defence mechanism is general and powerful enough
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Figure 5.5: The UML collaboration diagram represents the temporal order of execution of the
main methods and the collaboration between the entities.

to block unwanted accesses to sensitive data, and to let the user choose the configuration
of accesses to resources. The proposed solution intercepts calls to selected APIs whose
access could be not desired. Then, according to user preferences, access could be blocked
or could be simply notified on the display. Interception of API calls from an app can be
provided by means of aspect-oriented technology, or by app bytecode rewriting.
We have built several tests on top of Wikipedia app, however our solution is general and
shows the ability of the proposed approach to give alerts, record logs, or block calls to
APIs that we want to protect. Users are given an additional configuration panel to express
their preferences.

This work becomes useful for the risks to which the user is exposed, discussed in the
Chapter 2. In fact, in the section we discuss how normal permissions can damage the user
and his privacy and how his data can be extrapolated without explicit requests to the user.

5.2.1 Defense Mechanism based on the analysis of apps

As described above, the proposed solution intercepts calls to selected APIs whose access
could be not desired. Then, according to user preferences, access could be blocked or
could be simply notified on the display. Interception of API calls from an app can be
provided by means of aspect-oriented technology, or by app bytecode rewriting.
The aim of the proposed approach is to provide to an Android OS user: (i) additional
defence and (ii) clues, against apps accessing resources usually shielded by the normal
permissions level. Then, the running app is prevented from accessing some sensitive
data, or sending such data over the network, and the user is given the possibility to grant
or deny access to single apps, or requests, anytime, by an additional control panel de-
signed for normal and dangerous permissions. Thanks to our approach, users are given
valuable transparency on the use of their data by apps, and have a maximum comfort in
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Figure 5.6: Users can choose to inhibit or allow an app to use resources managed by normal or
dangerous permissions.

the use of apps. Transparency is achieved by sending configurable alerts at runtime to
the user. Such alerts trace the information the app is requesting and which permissions is
using. Alerts consist of messages that have to be highly visible, though small in size, so as
that they do not affect the usability of the app, and offer additional clues. A tool has been
developed to find and modify the behaviour of all API calls to Android libraries (under
the dangerous and normal permissions) applicable to any version of Android. Such a tool
monitors the use of permissions, and gives us at runtime the vision of which API the app
is calling. The tool uses aspect-oriented programming for recording, alerting and check-
ing configurations, at the moment an app makes a call to a guarded API. Let’s analyze the
various steps below:

A. Setting grants in a fine-grained fashion: The user is provided with a control panel let-
ting her set which apps are granted access to resources. Such a panel includes all resources
that need dangerous permissions and a subset of resources needing normal permissions.
The selected normal permissions belong to those considered as data loss contributors (see
Table I in Chapter 2). For each app, by using the ON/OFF switches, the user can grant
or revoke the use of the various permissions (see Figure 5.6). The use of APIs related
to granted permissions will be recorded and will provide alert messages to the user, as
described in next section. For the revoked permissions, according to the required ser-
vice, and for the correct functioning of the app, corresponding APIs will not be used, and
substituted by default values.

Let us suppose that the user wants to see a map, then the app forces her to give con-
sent on the reading of her position, it would be possible to obscure the GPS coordinates
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Figure 5.7: The user is shown an alert panel displaying the use of some resource by the app. This
refers to the authorization of the location group.

by adding a displacement to the real coordinates. Alternatively, if an app reads the Wifi
information, an altered name can be given by randomly changing letters. E.g. WLUCTU-
NICT would become WAUATANACA by simply replacing the letters with even positions
with the letter A. Other permissions need not be obscured by means of default values,
and instead can be used according to the user setting, i.e. used only when authorisation is
granted. An example of such permissions is normal permission WAKE LOCK, which if
disabled prevents an app from awakening the device, hence methods of WakeLock class
are simply not called.

B. Alerting Users: The provided mechanism for alerting users, firstly listens to the
permissions accessed by an app, and, every time an authorisation is requested, sends a
warning message to the user (see Figure 5.7).

The alert message offers the following information:

• an icon to give an immediate understanding of the permission used by the app;

• the details of the used permission;

• the number of times the app has already performed such a request.

C. Intercepting API calls: Aspect-Oriented Programming (AOP) is a powerful technique
that lets developers implement a crosscutting behaviour in a modular way. Generally, an
aspect consists of one or more pointcuts and one or more advices; and may contain meth-
ods and attributes, as in a class. A pointcut is a predicate that matches join point (i.e.
points during the execution of a program). Pointcuts define when aspects have to inter-
vene to change the flow of a program. An advice is associated with a pointcut expression
and runs at any join point matched by the pointcut. Advices implement the logic con-
sisting of additional operations to be performed by an aspect when reaching a given join
point [147], [148]. AOP is a practical solution for adding layers of security checks in an
app. We have defined an appropriate pointcut that lets us intercept all the calls that an app
performs to specific APIs. E.g., the code shown below implements an example of point-
cut that intercepts calls to APIs related to GSM cell data. When such calls have just been
matched at runtime, an around advice intervenes to: (i) check whether permission has
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been granted, (ii) log the activity, (iii) create a warning message and show it, and (iv) re-
turn a default value when permission has not been granted (method conventionalResult()

implements the logic to find such a default value according to the given parameter rep-
resenting the point of code that has been trapped. A conversion table has to be proposed
for it). In our approach a warning is given to the user for both dangerous and normal
permissions. Therefore, the user will be shown a dialogue window giving the count of all
invocations that have been required cumulatively by the app.

// TraceAspectj.java

import org.aspectj.lang.ProceedingJoinPoint;

import org.aspectj.lang.annotation.Around;

import org.aspectj.lang.annotation.Aspect;

import org.aspectj.lang.annotation.Pointcut;

@Aspect

public class TraceAspect {

private static final String GENERIC_POINTCUT_METHOD = "call(*

android.telephony.gsm.GsmCellLocation.*)";

@Pointcut(GENERIC_POINTCUT_METHOD)

public void methodPointcut() {

}

@Around("methodPointcut()")

public Object weaveJoinPoint(ProceedingJoinPoint joinPoint) throws

Throwable {

Object result;

if (permissionGranted(joinPoint) {

result = jp .proceed();

alertPermission(jp. toString () ) ;

}

else{

result = conventionalResult(joinPoint);

}

return result;

}

}

In our approach a warning is given to the user for both dangerous and normal permissions.
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Therefore, the user will be shown a dialogue window giving the count of all invocations
that have been required cumulatively by the app.

5.2.2 Masking Techniques

The conventionalResult() method change option according to a on/off button of the con-
trol panel. If a button is in on, the conventionalResult method don’t work and the app
carries out its normal tasks, while if a button is in off, the conventionalResult() method is
invoked and returns fictitious data or disable the service.
For example, if I have a Vibrator in off, conventionalResult() method deactivates the vi-
brator of the device. Below there is a list of pointcuts analyzed with behavior of the
conventionalResult() method:

• ANDROID.PROVIDERS.CALENDARCONTRACT: to read calendar data, an applica-
tion must include the READ CALENDAR permission in its manifest file. It must
include the WRITE CALENDAR permission to delete, insert or update calendar
data. In reading, the conventionalResult() method returns all records as empty,
so an app can not read users personal information.

• ANDROID.PROVIDER.CALLLOG and ANDROID.PROVIDER.CALLLOG.CALLS: the
CallLog provider contains information about placed and received calls, while the
Calls class contains the recent calls. CallLogs contain information about outgoing,
incoming and missed calls. You must have the READ CALL LOG and
WRITE CALL LOG permissions to read and write to the call log, as well as
READ VOICEMAIL and WRITE VOICEMAIL permissions to read and write voice-
mails. The conventionalResult() methods hides call information.

• ANDROID.LOCATION.LOCATION and ANDROID.LOCATION.LOCATIONMANAGER:
together the Location class, LocationManager class provides access to the system
location services. All Location API methods require ACCESS COARSE LOCATION
or ACCESS FINE LOCATION permissions. The conventionalResult()method
returns a likely position (close to the real one, but not exactly that).

• ANDROID.OS.VIBRATOR: the class operates on the vibrator on the device. Requires
permission VIBRATE. The conventionalResult() method disable vibration in
our device.
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• ANDROID.NET.CONNECTIVITYMANAGER: this class answers queries about the
state of network connectivity; it also notifies applications when network connectiv-
ity changes. Here, the conventionalResult() method can change WiFi informa-
tion, that is, I can fool the application by claiming that WiFi connection is off. So
application don’t access to my connect. This allows me to isolate the connection of
that single application. The application does not necessarily continue to work.

• ANDROID.NET.NETWORKINFO or ANDROID.NET.CONNECTIVITYMANAGER.NET-
WORKCALLBACK: android.net contains classes that help with network access, in
particular android.net.NetworkInfo (or ConnectivityManager.NetworkCallback) is
used for notifications about network changes. Requires ACCESS NETWORK STA-
TE permissions. In this case, the conventionalResult() method changes net-
work information like SSID, name, etc. For example, a WiFi name can be altered
through the ramdom replacement of letters.

• ANDROID.NET.WIFI.WIFIINFO: describes the state of any WiFi connection that
is active or is in the process of being set up. Requires ACCESS WIFI STATE,
CHANGE WIFI STATE. The conventionalResult()method roughly works like
the previous pointcut ”ANDROID.NET.NETWORKINFO”.

• ANDROID.BLUETOOTH.BLUETOOTHCLASS: represents a Bluetooth class, which
describes general characteristics and capabilities of a device. The
conventionalResult() method roughly works like the previous pointcut
”ANDROID.NET.NETWORKINFO”.

From 1 to 3 above, the classes need dangerous permissions and from 4 until the end
classes need normal permissions.

5.2.3 Experiments

In order to demonstrate the validation of the approach, we have integrated the mechanism
with Wikipedia app. Tests were carried out by combining our aspects and Wikipedia App.
Wikipedia is a multilingual, web-based, free encyclopedia based on a model of openly ed-
itable and viewable content, a wiki. It is the largest and most popular general reference
work on the World Wide Web and is one of the most popular websites according to Alexa
rank.
The chosen app was Wikipedia in order to demonstrate the potential and versatility of
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our defense solution. Despite the complexity of Wikipedia app, the overall result, af-
ter weaving it with our proposed aspects, has not compromised or slowed down op-
erations. Thanks to our approach, it was possible to view all the accesses to sensi-
ble resources performed by the app at runtime (see Figure 5.8). In the Wikipedia app,
the declared normal permissions are: ACCESS NETWORK STATE, INTERNET, RE-
CEIVE BOOT COMPLETED, VIBRATE, WAKE LOCK. Moreover, the declared dan-
gerous permissions are: ACCESS FINE LOCATION, GET ACCOUNTS, WRITE EX-
TERNAL STORAGE. Other permissions are: AUTHENTICATE ACCOUNTS, MAN-
AGE ACCOUNTS, BIND JOB SERVICE (as a Signature permission). In this case,
all authorisations with an explicit request from the user will be displayed in the con-
trol panel (see Figure 5.6). For our tests, the following permissions have been dis-
abled, by using the provided control panel: ACCESS FINE LOCATION, VIBRATE,
ACCESS NETWORK STATE. For the calls that access the GPS position (requiring AC-
CESS FINE LOCATION), when permission was not granted, the alternative result (given
by method conventionalResult()) returns a likely position (close to the real one, but not
exactly that). The app works without any error, and plots a slightly modified position on
the map, and other functionalities are not affected. In other tests, we have not granted
VIBRATE permissions. For Wikipedia app, the Vibrate permission is used for notifica-
tions. Therefore, when notification is needed, vibration has been bypassed by an aspect
blocking the execution of notificationChannel.enableVibration(true), usually called when
an alert is created. Thus, the notification alert works properly, however the device does
not vibrate. Finally, when ACCESS NETWORK STATE has not been granted, the app
only displays data in the local cache, however it shows a message warning the user of a
failed connection (see Figure 5.9). Therefore, the user can read some page even when the
connection to the network has been disabled. In summary, for all the tests where permis-
sions were not given the app did not experience any error and other functionalities, rather
than the ones temporarily disabled, were unaffected.

IN SUMMARY: potentially, apps send data (private or not) over the network, however
users are not always informed on such a leak. We have proposed a new approach to
perform an accurate screening on the use of permissions by an app, enabling users to
view and check undesirable behaviours. To monitor permission use, this section proposes
a prototype that fully identifies dangerous and normal permission use points at runtime.
The adopted mechanisms can clearly reconstruct malicious behaviours of apps to facilitate
the monitoring of data loss. The approach has been tested with Wikipedia app, however
it is general and can be included in any app without having to reprogramming it, and by
reusing the provided aspect code (or an extension of it).
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Figure 5.8: Test with Wikipedia app.

Figure 5.9: Although the device is actually connected to the internet, not granting permission
ACCESS FINE LOCATION prevents the app from accessing the network. The app continues
working with cached data only.
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5.3 Countermeasures taken for attack scenarios

The measurement mechanisms described can be used for different types of attacks, both
malware and external attacks (see Chapter 2.2).

In the previous chapters two types of attacks have been described. Both attacks extract
sensitive information from the device without giving clear information to the owner of the
device. Both techniques use WiFi connections to track the user’s location.

In this section we will use the second technique described to inform the user of the pos-
sible leakage of information. Thanks to the masking techniques, the user, once informed,
decided whether to hide his information to evade the attack. Therefore, among the various
scenarios we present below two possible ways to use the second defense mechanism.

5.3.1 Defense for the Attack on the user based on traceability

The wide-spread availability of open WiFi networks on smart cities can be considered
an advanced service for citizens. However, a device connecting to access points gives
away its location. On the one hand, the access point provider could collect and analyse
the ids of connecting devices, and people choose whether to connect depending on the
degree of trust to the provider. On the other hand, an app running on the device could
sense the presence of nearby WiFi networks, and this could have some consequences
on user privacy. Based on permission levels and mechanisms proper of Android OS, in
Section 3.3.1, we proposed an approach whereby an app attempting to connect to WiFi
networks could reveal the presence of some known access points, thus the geographical
location of the user, while she is unaware of such a feature. This is achieved without
resorting to GPS readings, hence without needing dangerous-level permissions. In this
section, we propose a way to counteract such a weakness in order to protect user privacy.

After having shown the hostile activities that an app on an Android device performs,
and its interactions with a server side, we show a way to block the app from carry on such
activities, hence protecting the user privacy.

As mentioned above, the attack involves the connection to certain WiFi networks and
sending the user device ID to a server, in order to identify the victim and map the location.
There are two moments when our defence mechanism can act. Both drastically reduce
the data provided to the attacker. The first moment is when the app reads the device
ids, the second is when the app attempts a network connection. Inspired by the above
method, for bypassing or blocking calls to Android APIs, the defence mechanism consists
of hardening an app modifying its code, by using Aspects Oriented Programming (AOP),
to intercept a specific call and then masking the device id or the WiFi connection details.
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@Aspect public class BlockNetAspect {

private static final String PCUT =

"call (* android.net.wifi.WifiManager.addNetwork(..))";

@Pointcut(PCUT) public void blockedNetID() {}

@Around("blockedNetID()")

public Object blockNet(ProceedingJoinPoint jp) throws Throwable {

if (inWhiteList(jp)) return jp.proceed();

return -1;

}

}

Figure 5.10: An aspect intercepting calls to addNetwork() method of WifiManager and executing
instead blockNet() method. The call on line 9 checks whether the net id is on the white list and if
so lets the call go through, otherwise a connection failure value is returned.

Assuming that the user can manage a white list, the aspect will let an app access only
the WiFi networks in it. The white list, managed by a proper control panel, contains just
the WiFi networks the user trusts, such as e.g. the ones at home, work, known shopping
mall, etc. By trapping calls to addNetwork() method (lines 3 and 5 in Figure 5.10), the
additional code checks whether the call to connect has an SSID contained in the white list,
then connection is attempted, otherwise will return -1, not having attempted connection.

A further protection aspect can be deployed which checks whether the device ID is
read by an app. Reading the device ID can be trapped by guarding calls to methods of
android.provider.Settings.Secure class.

By checking every time the device ID is read, it is possible to mask the id, giving
instead a fake one that changes periodically.

By employing the first protection aspect, the attacker will receive sparse or no data,
whereas using the second protection aspect he will receive an incorrect device ID. In
both cases, the attack cannot be carried on: the attacker cannot identify the user and
consequently cannot monitor his movements, or identify the exact number of people who
hook onto a WiFi network, and the users crossing a specific area.

5.3.2 Defense for the Attack and Targeted Advertising

Apps running on a smartphone have the possibility to gather data that can act as a fin-
gerprint for the user. Such data comprise the ids of nearby wifi networks, features of the
device where apps are running, etc. Such data can be a precious asset for offering e.g.
customised transportation means, news and ads, etc. Additionally, since wifi ids can be
easily associated to GPS coordinates, from the users frequent locations it is possible to



Chapter 5. Advanced methods for data protection 110

guess their home address, their shopping preferences, etc. Unfortunately, existing privacy
protection mechanisms and permissions on Android OS do not suffice in preventing apps
from gathering some data, such as e.g. wifi ids, which can be used as a surrogate for GPS
coordinates. In Section 3.3.1, we have shown how an app using only the permission to
access wifi networks could send some private data unknowingly from the user. In this
section, an advanced mechanism is proposed to shield user private data, and to selectively
obscure data an app could spy.

Android libraries provide several APIs to determine the device position (i.e. geoloca-

tion) [10]. The most obvious one is android.location.LocationManager class, which
gives an app the current GPS coordinates, along with the ability to receive a notification
when reaching a chosen area (e.g. the destination of a travel route). However, the de-
vice position could also be determined using other signal information, such as the cellular
GSM/LTE state. The collaborative initiative of OpenCellID dataset1 provides the GPS
positions of over 36 million unique GSM Cell IDs. By knowing the list of the cell tow-
ers sensed on the device, which is given by android.telephony.TelephonyManager

class, it is possible to geolocate the user device with a fair level of precision. This can be
preferred to GPS for coverage improvement (i.e. inside buildings), or to reduce the energy
consumption, avoiding the activation of the GPS receiver.

WiFi information can be used in a very similar way. Wigle2 dataset lists over 565
million geolocated WiFi SSIDs around the globe. By scanning the WiFi networks to
obtain the list of visible SSIDs, given by android.net.wifi.WifiManager class, the
device position can be disclosed, again without using the GPS sensor.

An app has to declare dangerous-level permissions ACCESS FINE LOCATION or
ACCESS COARSE LOCATION, before using the APIs revealing the list of nearby WiFi net-
works or to get the cell id, and the user will be asked to grant permissions at runtime. For
the WiFi scan this was only added in Android APIs version 283, which is the last Android
release at the date of writing. However, according to the official Android Distribution

Dashboard4, currently the number of Android devices using the latest Android version is
less than 11% of all Android devices in use (July 2019).

The enforcement of the said dangerous-level permissions restricts WiFi scanning ca-
pabilities when looking for surrounding possibly unknown SSIDs. However, it is possible
for an app to attempt a connection to a known access point without needing dangerous-
level permissions, hence without asking the user to grant permission at runtime. By using

1http://wiki.opencellid.org
2https://wigle.net
3https://developer.android.com/guide/topics/connectivity/wifi-scan
4https://developer.android.com/about/dashboards
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@Aspect public class TraceAspect {

private static final String PCUT =

"call (* android.provider.Settings.Secure.*)";

@Pointcut(PCUT) public void blockedMethods() {}

@Around("blockedMethods()")

public Object weaveJP(ProceedingJoinPoint jp) throws Throwable {

Object result = conventionalResult(jp.toString());

viewRequestedPermission(jp.toString());

return result;

}

}

Figure 5.11: An aspect intercepting readings of the device ID. Every call to methods of Secure
class is trapped by pointcut PCUT (line 3, 5) and weaveJP() method is executed. Then, the call on
line 9 changes the device ID, and the call on line 10 sends an alert to the user.

such a feature and by leveraging the OpenData about free WiFi networks, the proposed
approach presents a misuse case for determining the device position with a fair level of
precision.

More specifically, a malicious app can be implemented to force the Android device to
systematically try to connect, and suddenly disconnect, to a list of known open (i.e. with
no password required), and even some password-protected, geolocated WiFi networks, in
the quest for locating the user.

Open data initiatives taken by several government institutions, such as for the City of
Rome5 and New York City6, give access to datasets about geolocated open WiFi SSIDs,
e.g. to help tourists in finding a free network access near monumental buildings or his-
torical sites. Moreover, other WiFi Finder apps like WiFi Map7, used to spot nearby free
WiFi networks while sharing newly discovered ones, often provide commercial plans for
developers needing API access to the overall geolocated dataset.

Given the risk of information leakage, in this section we propose an enhanced defence
mechanism that manages to protect user privacy. For the scenario illustrated above, an
app can gather the device id and the SSID of close-by wifi networks and pass them to a
server. This can be considered a violation of the user’s privacy, since the former gives
the server a surrogate for the user identity, and the latter a close approximation of her
position.

To overcome such a privacy violation, the app can be automatically transformed, e.g.

5http://www.datiopen.it/it/opendata/Provincia di Roma WiFi
6https://data.cityofnewyork.us/City-Government/NYC-Wi-Fi-Hotspot-Locations/yjub-udmw
7https://www.wifimap.io
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by means of the Aspects Oriented Programming (AOP), to intercept all the calls for read-
ing the device id.

Therefore, the call pertaining to the User Identification request (see Table I) is in-
tercepted by our provided aspect and, periodically, or when a command is given by the
user, the ID is altered using masking techniques, before being sent to the server (see Fig-
ure 5.11). Moreover, the user can be alerted of such an access. For example, we could
simply apply the Caesar cipher [149] with a value n defined by the user. That is with n =
2, the ID d83c84d1176a3547 becomes f05e06f3398c5769.

In this way, even though the server has the SSIDs of close-by wifi networks, it is
unaware of the real user id, hence several data analyses become not meaningful. E.g. the
server cannot properly compute the user frequent locations, since the user id varies with
time, or cannot profile the user because the real id is hidden by multiple (fake) ids.

Similarly, the read operation of SSIDs can be captured and the real values can be
changed upon each reading operation, before the app can send them to the server. Making
the values of SSIDs vary for each read operation renders the server data base useless,
since a device cannot be associated with a list of known nearby wifis.

On one hand, data leaks can be very difficult to spot among all communications with
a server legit from a functional point of view, hence they cannot be blocked. On the other
hand, the proposed aspects selectively block private information, and could be automat-
ically made available just before deployment by an agent handling the app market or a
certification authority that aims at hardening the app.

5.4 Conclusions

Potentially, apps send data (private or not) over the network, however users are not always
informed on such a transmission and, so, the apps can send confidential data to third
parties without authorization.

In this last section we have presented two innovative methods based on real-time
behavior of applications to detect traces of threats or danger actions. The first defense
mechanism collects statistics on user behavior and it identifies whether an operation is
conforms to the user’s habits, creating the first user’s protection. This mechanism was
tested with a set of data from real Android devices, validating our thesis.

The second defence mechanism performs an accurate screening on the use of permis-
sions by an app, enabling users to view and check undesirable behaviours. To validate our
approach it was first of all tested on a famous app ”Wikipedia App” and it was also used
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as a countermeasure for two attacks that take information from the device without requir-
ing the agreement to access the geographical position (for example the GPS position or
information concerning the WiFi).

To monitor the user, these approaches use both normal and dangerous permissions at
run time, highlighting the importance of processing normal-level permissions.

The proposed approaches can make a big contribution to the user’s security, as they
allow to protect the user informing him in runtime of possible data loss or loss of control
of his device.
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Chapter 6

Conclusions

Today, the favorite pastime of every person is to stay connected to their mobile phone to
take advantage of the multiple functions or to talk with friends and relatives via social
media. This disproportionate use has led to new research in the field of smartphone to
analyze devices and the side effects of their abuse. In literature, there are various research
on service for user, possible attacks and various countermeasures to protect the user, his
data and his private life.

In this thesis, benefits and risks of data flows traveling from/to the smartphone through
the network have been studied, exploiting APIs. The APIs are an important resource for
Android Operating System, they allow to extract interesting data from the device such as
GPS position, telephone contacts, information on the WiFi to which the device is con-
nected, etc.

During this work, APIs were used to analyze the sending (information entered on
the network) and receiving (information coming from the network) of data from smart-
phone; we dealt with creating services for the user, scenarios of attacks against users and
advanced methods for safeguarding user.

The services are useful for users because they offer important information to citizens,
such as searching for a specific place (like local or museum). In this thesis, three different
services have been illustrated with the main purposes of improving the quality of public
transport services and improving the management of points of interests (that is, detecting
these places in large cities and creating recommendation services for users).

Services are possible thanks to a knowledge base that can be extracted from smart-
phones; by extrapolating trajectories of users, new knowledge can be obtained to offer
innovative and always updated services. The services created are able to extrapolate many
different useful information, solving problems of different nature, such as the identifica-
tion of points of interest or traffic management. In literature, there are not similar works,
so flexible that it is possible to be adapted to more problems. Furthermore, some of these
services have been integrated with a multi-agent system, making the information always
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up-to-date and more compliant with the user who uses it, giving a strong innovation. Each
service has been created in respect of the user’s privacy.

Subsequently, two attacks were created for Android devices. The first attack extrapo-
lates data from smartphone processing them and silently identifying the user’s geograph-
ical position. The second illustrates an alternative technique for extrapolating the GPS
position of the device in order to send targeted advertisements describing the influence
on the user of such news. Methods offer two different ways to monitor the victim, with-
out being aware of it and without Android making explicit requests, since it does not use
dangerous level permissions, that is, which require explicit user consent. This new mon-
itoring techniques, tested on the latest versions of Android, highlight how there are flaws
on the Android operating system, even today.

To conclude, two advanced methods for protecting user data have been presented. The
first method monitors user activities, while the second monitors application requests. Both
work in real time and offer instant alarm messages to the user helping them to understand
the general actions of the device. In detail, the first method identifies anomalous oper-
ations, that is not customary to the user’s standard behavior, while the second analyzes
dangerous and normal permissions to warn the user of what information is requested by
the single applications. The main features of these new techniques that can mitigate user
privacy are: the ability to find malware that is always different and without knowing its
signature, receiving notification messages in runtime for the user who is notified of an
action potentially damaging and analyzing normal and dangerous permissions.

The methods were tested with real data taken from mobile devices or taken on the
net. Due to the large amounts of extracted data, filtering and parallelism methods have
been implemented to offer ”clean” data and fast responses, demonstrating the feasibility
of searches in real fields. Thanks to these techniques, response times have been halved by
over 50 %.
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