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Synopsis

Can the meaning of derivatives with integer order be generalized to

derivatives with non-integer orders?

With these few words, in 1695, Leibniz rised to L’Hôpital, for

the very first time, the question of Non-Integer Order derivative.

The answer was:

What if the order will be 1/2?

In this way was born an ongoing topic studied for more than 300

years and that today is noticed as Fractional Caclulus, that is the

calculus of integrals and derivatives of any arbitrary real or complex

order. It’s importance is demonstrated in widespread flieds of science

and engineering. In fact fractional integrals and derivatives are applied

in the theory of control and modeling of dynamical systems, when the

controlled system and/or the controller is described by a fractional

differential equations. Important field of interest for fractional calculus

are Fluid Flow, Electrical Networks, Chemical Physics, Optics and Sig-

nal Processing. This research thesis within the XXVI Ph.D. Course in



Synopsis II

Systems Engineering is centered on Fractional, or also noticed as Non-

Integer Order, Systems. The Ph.D. Thesis’ purpose is to present the

auto-tuning procedure of Fractional Order PID Controllers (PIλDµ)

proposing also a future implementation via fractional order elements.

The Thesis is organized in four chapters to outline the different research

activity phases developed during the Ph.D. course. In the Chapter 1

an overview on Fractional Order Systems is presented. The Chapter 2

focuses on the auto-tuning procedure proposed for Non-Integer Order

Proportional-Integral-Derivative (PID) controllers and some examples

are presented. The Chapter 3 is divided in two parts: the first one is

dedicated to the modeling and control of Ionic Polymer Metal Compos-

ite (IPMC) and than a study on Fractional Order Elements modeling

as possible building block for controller implementation is proposed.

Finally the conclusions are presented in the Chapter 4.
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1

Fractional Calculus and Fractional Order

Systems

In this chapter a brief introduction on Fractional Calculus and

Fractional Order Systems is given. This chapter’s aims is to

present and remind some fundamental theoretical notions on

applications and implementations of fractional order systems

throw some historical notes and definitions.
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1.1 Fractional Order Differintegral Operator:

Historical Notes

Until 1695 the derivative calculus was identified with the operator

D = d
dx

and the nth derivative of a function f was expressed by

Dnf(x) = dnf(x)
dxn where n must be defined as a positive integer number.

Thanks to a cross talk between L’Hôpital and Leibniz, in which the

first one asked, in 1695, what meaning could be assumed from Dnf

if n was non integer, the study of fractional calculus began to affect

many mathematicians like Euler, Laplace, Fourier, Abel, Liouville and

Riemann. The process of born of modern fractional calculus takes from

1695 until 1884 when was included in this theory the operator Dm,

where m could be rational or irrational, positive or negative, real or

complex [1]. My researches on fractional order systems and their appli-

cations allow me to understand how important is the fractional calcu-

lus and its application in a very large scale even outside mathematics

fields like design of heat-flux meters, bioengineering and artificial mus-

cles design, dissemination of atmospheric pollutants and so on. One

of the most relevant characteristics of fractional derivatives is to well

describe memory and hereditary of materials properties in comparison

with integer order modeling. It also allow to justify many behaviors

that a classic mathematical approach doesn’t explain. The fractional

approach in derivatives and integrals was unexplored in engineering,

because of its complexity, the apparent self-sufficiency of the integer

order calculus and the fact that it does not have a fully acceptable
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geometrical or physical interpretation. Moreover it represents more ac-

curately some natural behavior related to different areas of engineering,

bioengineering [2, 3], viscoelasticity [4, 5, 6], robotics [7, 8, 9], control

theory [10, 11] and signal processing [12, 13, 14]. Fractional integrals

and derivatives also appear in the theory of control of dynamical sys-

tems [15, 16] that present some intrinsic fractional order behavior that

needs fractional order calculus to be explained. To represent systems

with nonlinear complex phenomena and high-order dynamics the Frac-

tional Order approach could be useful because the arbitrary order of

derivatives gives more tools to explain a specific behavior. It is also

important the fact that fractional order derivatives depend on all the

history of the system. The nonlocal characteristics like infinite memory

in the behavior of real dynamical systems, in fact allows the fractional

calculus to take relevance in engineers’ attention [17, 18, 19]. To im-

plement fractional derivative functions in logical circuit there are three

different strategies to simulate fractional order systems [26, 27]:

• Computational methods based on the analytic equation that present

multiple parameters and could be very difficult to analyze because

any single point in function history must be analyzed.

• Approximation through a rational system in discrete time that re-

place the analytical system with the equivalent in frequency space

discrete one. Those methods suggest to truncate the model in time

domain and require the same number of coefficients as samples to

the detriment of the characteristic of infinite memory.
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• Approximation of the fractional system using rational function in

continuous time that approximate by rational continuous approach

truncating the series and for this reason it must be limited to a

specific frequency range of operation as it is shown in next chapters.

From the electronic point of view other three methods using ana-

logical circuit with fractional order behavior could be introduced to

obtain the response of a fractional order system:

• Component by component implementation [24] in which the approxi-

mation of the Transfer Function is done by a recursive Low Pass Fil-

ter circuit. Unfortunately this approach presents a limited frequency

band of work and a poor accuracy given by the approximation itself.

• Field Programmable Analog Array (FPAA) [62] that allows to change

the fractional order system dynamical behavior modifying the FPAA

circuit.

• Fractional order impedance component using a capacitor with frac-

tional order behavior [29].

1.2 Review on Preliminaries and Definitions

From a mathematica point of view, fractional, or non integer order,

systems can be considered as a generalization of integer order systems

[20], [21]. As previously introduced, the derivative and integral operator

could be generalized with the following notation:
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Dα =



























∂α

∂tα
α > 0

1 α = 0

∫ t

a
(dτ)−α α < 0

(1.1)

with α ∈ ℜ. The study of fractional systems may be approached in

the time domain by using the following non integer order integration

operator [22]:

∂−mh(t)

∂t−m
=

1

Γ (m)

∫ t

0

(t− y)m−1h(y)dy (1.2)

Many mathematicians have formulated equations to describe frac-

tional order behavior, but the most frequently used for the general

fractional differintegral are the following tree [20, 22]:

• Grunwald-Letnikov :

Derivative:

Dαf(t) = lim
h→0

1

hα

[
(t−α)

h
]

∑

m=0

(−1)m
Γ (α+ 1)

m!Γ (α−m+ 1)
f(t−mh) (1.3)

Integral:

D−αf(t) = lim
h→0

hα
[ (t−α)

h
]

∑

m=0

Γ (α +m)

m!Γ (α)
f(t−mh) (1.4)

where [.] means the integer part and h(t) may be any function for

which the integral in (1.2) exists.

• Riemann-Liouville:

Derivative:



1.2 Review on Preliminaries and Definitions 6

Dαf(t) =
1

Γ (n− r)

dn

dtn

∫ t

a

f(τ)

(t− τ)r−n+1
dτ (1.5)

Integral:

Iαc f(t) =
1

Γ (α)

∫ t

c

f(τ)

(t− τ)1−α
dτ (1.6)

with (n− 1 < r < n) and where Γ (.) is the Gamma function.

• Caputo:

Dαf(t) =
1

Γ (m− α)

∫ t

0

f (m)(τ)

(t− τ)α−m+1
dτ (1.7)

with (n− 1 < r < n).

In the Riemann-Liouville and Caputo definition it appears the fac-

torial function Γ (.) defined by:

Γ (m) =

∫

∞

0

e−uum−1du (1.8)

defined for positive real m. The definition of fractional derivative

easily derives from(1.2) by taking a suitable integer n order derivative

and a suitable non integer m order integral to obtain an n − m = q

order one:

∂qf(t)

∂tq
=
∂n−mf(t)

∂tn−m
=

1

Γ (m)

∂n

∂tn

∫ t

0

(t− y)m−1f(y)dy (1.9)

that becomes the canonical first order derivative if q = 1(n = 2, m =

1) .



1.3 Fractional Calculus in Laplace Domain 7

1.3 Fractional Calculus in Laplace Domain

As it is known, it is often convenient to perform the analysis of sys-

tems dynamical behaviors in the frequency domain. For that reason

it is necessary to highlight that the Laplace Transform of fractional

derivatives has not so big differences respect to the integer one. Same

considerations could be done on the Inverse Laplace Transformation

in case of systems with only frequency response known. Generally, the

Laplace Transform is defined with the following equation [23, 24]:

L{Dα
t f(t)} = sαL{f(t)} −

n−1
∑

k=0

sk[Dα−j−1f(0)] (1.10)

where n is an integer such that n − 1 < α < n. It can be noticed

that this transform takes into account all initial conditions from the

first to the nth − 1 derivative. In that case we can obtain the same

expression for the Fourier Transform if s is replaced with jw. It also

could be noticed that if all the derivatives are zero the expression would

be simplified with the following one:

L{Dα
t f(t)} = sαL{f(t)} = sαF (s) (1.11)

Likewise the non integer order integrators 1/sα could be easily ob-

tained replacing α with −α and considering f(t) = δ(t), the Dirac

impulse. In this case, using the Caputo definition 1.7, we obtain:

L

{

tα−1

Γ (α)

}

=
1

sα
(1.12)
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and its Inverse Laplace Transform:

L−1

{

1

sα

}

=
tα−1

Γ (α)
(1.13)

From this equation it could be easily obtained the generic fractional

system impulse response equation:

L−1

{

k

(s+ a)α

}

= k
tα−1e−at

Γ (α)
(1.14)

In systems theory is important to obtain a time domain representa-

tion of the impulse response of a system (Y(s)/U(s)). It is notice that

from the 1.11 combined with the 1.14 we can obtain:

Y (s)

U(s)
=

1

(s+ a)α
⇒ (s+ a)αY (s) = U(s) (1.15)

that becomes:

sαY (s− a) = U(s− a) (1.16)

if substituting s with (s− a).

Applying the Inverse Laplace Transform we obtain:

L−1{sαY (s− a)} = L−1{U(s− a)} ⇒
∂α

∂tα
[eaty(t)] = eatu(t) (1.17)

So we have obtained a non integer order differential equation with

a finite number of terms that has, both for system input and output,
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an exponential time dependence. If we want to explain that system in

the common time-varying state space representation:











∂αx(t)
∂tα

= A(t)x(t) +B(t)u(t)

y(t) = C(t)c(t) +D(t)u(t)

(1.18)

we must have A(t) = 0, B(t) = eat, C(t) = e−at and D(t) = 0.

1.4 Geometrical Interpretation

As it is noticed, a geometrical explanation in integral order calculus

that relates some physical quantities, for example, the relationship be-

tween position and speed of an object to explain the instant rate of

change of a function, is well-accepted. Unfortunately in fractional or-

der calculus, some geometrical interpretation has been proposed only

since last decade. One of them proposes a probabilistic explanation

using the Grünwald-Letnikov definition in 1.3 and 1.4 [25]. If:

0 < α < 1 (1.19a)

γ(α,m) = (−1)m
Γ (α + 1)

m!Γ (α−m+ 1)
(1.19b)

the value of the function at present time is obtained if m = 0, while

if m > 0:

−
∑

m=1

γ(α,m) = 1 (1.20)
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We can noticed that if m 6= 0 the value of γ vanishes it the analysis

point is far from present. Therefore, the expected value of a random

variable X could be expressed by:

−

inf
∑

m=1

γ(α,m)x(t−mh) (1.21)

where:

P (X = x(mh)) = |γ(α,m)| (1.22)

with m = 1, 2, ... and 0 < α < 1. In this case values near the present

time have a bigger weight on the results than the far ones as it is shown

in Fig. 1.1

Fig. 1.1. Tenreiro fractional order derivative interpretation.
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1.5 Most Important Properties of Fractional

System

One of the most important tool in system and control theory is the

Bode analysis trough Bode Diagrams that allow to study fractional

order systems using the same criteria adopted for integer order ones.

As well as integer systems, the common Laplace-like Transfer Function

of a fractional system could be written as follow:

G(s) =
Y (s)

U(s)
=
bms

βm + bm−1s
βm−1 + ...+ b0s

β0

ansαn + an−1sαn−1 + ...+ a0sα0
(1.23)

where α, β ∈ ℜ, β0 < ... < βm−1 < βm and α0 < ... < αn−1 < αn.

Analyzing the Transfer Function:

F (s) =
k

(s+ a)α
(1.24)

and assuming s = jω, we obtain:

F (jω) =
k

(jω + a)α
=

[

k1/α

(jω + a)

]α

=

[

k1/α

a

1

(1 + jω
a
)

]α

(1.25)

that in a Magnitude/Phase notation could be written as:

F (jω) =

∣

∣

∣

∣

k1/α

a

1

(1 + jω
a
)

∣

∣

∣

∣

α

e
jα∠

[

k1/α

a
1

(1+
jω
a )

]

(1.26)

from which Bode Magnitude and Phase could be calculated with:

∣

∣

∣

∣

F (jω)

∣

∣

∣

∣

dB

= 20log10

[

k1/α

a

1
√

1 + ω2/a2

]α

(1.27)
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∠F (jω) = α∠

[

k1/α

jω/p+ 1

]

= −α arctan
ω

p
(1.28)

These equation leads to the diagrams reported in Figg. 1.2 and 1.3

It is quite evident that the fractional order α modulates the slope

of the magnitude diagram providing a useful parameter for open loop

synthesis of the controller and in the meanwhile modulates the scale

of the phase law leading the phase angle approach to −απ/2 for ω →

∞. To consider the impulse canonical responses of a fractional order

system, the (1.14) could be taken into account and written as follow:

f(t) = L−1

{

k

(s/p+ 1)α

}

= L−1

{

kpα

(s+ p)α

}

= kpα
tα−1e−pt

Γ (α)
(1.29)

It could be easily noticed that if α < 1 and t → 0, f(t) is infinite

as it is shown in Fig. 1.2, but the step response can be calculated for

any positive α accordingly to the Cauchys theorem hypothesis on the

existence of the integral [30]. In fact if the Incomplete Gamma Function

definition is introduced as follows:

Γ (α, x) =

∫ x

0

e−yyα−1dy (1.30)

the step response of fractional system can be calculated by:

g(t) =

∫ t

0

f(t)dt = k
Γ (α, pt)

Γ (α)
(1.31)

As it is shown in Fig. 1.4, all those applications, like fast control

schemes [31] or image processing [32], in which a high speed is required
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Fig. 1.2. Magnitude Bode Plot of fractional system F (s) = 1/(s+1)α with α = 1 (solid),

α = 0.5 (dashed), α = 1.5 (dotted).

Fig. 1.3. Phase Bode Plot of fractional system F (s) = 1/(s + 1)α with α = 1 (solid),

α = 0.5 (dashed), α = 1.5 (dotted).
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could be successfully exploited accordingly to the faster response of

systems with α < 1 and the infinite value of the derivative for t = 0.

Fig. 1.4. Step response of a fractional system for different values of α (dashed) α = 0.5,

(solid) α = 1, (dotted) α = 1.5.

1.6 Impulse Response of a Generic Non-Integer

Order System

In time domain analysis there are several examples of systems that can

be explained by the following transfer function:

F (s) =
X(s)

U(s)
=

k

sα + a
(1.32)
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The inverse Laplace transform of this equation is not analytically

derivable, but a series expansion of it can be easily obtained. As it is

known the previous equation could be written as:

F (s) =
k

sα + a
=

k

sα

∞
∑

n=0

(−a)n

snα
(1.33)

Applying the (1.13) to each term of the sum the following equation

is obtained:

f(t) = L−1
[

k

sα

∞
∑

n=0

(−a)n

snα

]

= ktα−1
∞
∑

n=0

(−a)ntnα

Γ (nα + α)
(1.34)

that represents he impulse response and whose graphs for different

values of α with a = k = 1 are shown in Fig. 1.5

Fig. 1.5. Impulse response of f(t) with α varying from 0.25 to 2 in 0.25 increments.
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Auto-tuning procedure of Fractional

Order PID Controllers

This chapter focuses on the introduction of an auto-tuning

procedure for fractional order PIλDµ controllers. The tun-

ing procedure is developed into tree main steps: at first a

Relay-Test was performed to identify the process, in the next

step the PIλDµ parameters are calculated to satisfy project

specs of phase margin (φm)and cut-off frequency (ωcg), in the

end closed loop step response performances of the PIλDµ con-

troller is evaluated. To highlight the ductility of PIλDµ con-

trollers instead of integer PID some simulations were per-

formed and presented at the end of this chapter. In the first

section a brief introduction on the characterization procedure

of a PIλDµ controller designed to stabilize a first-order plant

with delay-time is presented. In the second section the Relay-

Test auto-tuning method is introduced and through a feed-

back algorithm it is also described the routine adopted to

design the PIλDµ accordingly to the project specifications of

phase margin and cross-over frequency [33]. In the third sec-
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tion the performances are evaluated through two examples of

closed loop step response [34].
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2.1 Design procedure of a Fractional Order PID

Controller

The increasing interest on PIλDµ tuning techniques could be justified

to the widespread industrial use of PID controllers and their non-integer

order representation potentiality. A new procedure to define the param-

eters of fractional order PIλDµ controllers that stabilize a plant with

delay-time is introduced in this section. The study of fractional order

dynamical systems in control systems theory and practice has been

marginally due to the absence of mathematical methods. In last ten

years a grown of interest has been registered and the first systematic

approaching is the three CRONE (Commande Robuste d’Ordre Non

Entier) control generations that represent the framework for fractional

order system application in that area [31], [35], [36], [37]. The first pa-

per on PIλDµ could be associated to Igor Podlubny [12] in which he

demonstrated a better response in controlling fractional order systems

than classical PID. After this, other authors have studied this mat-

ter and focused on some important aspects of this fractional systems

[38], [39], [40]. In these last papers an analog implementation of non

integer order integrator based on Field Programmable Analog Array

(FPAAs) has proposed to implement a PIλDµ controller. During the

last decades, numerous methods, even based on characterizing the dy-

namic response of plants using first-order model with time delay, has

been developed for setting P, PI and PID controllers parameters. The

approach developed in [41], in which a generalization of the Hermite-
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Biehler theorem was derived to compute the set of all stabilizing PID

controllers for a given linear and time invariant plant, constitutes the

first attempt to find a characterization of these systems.

The aim of this thesis is to find a complete solution to the charac-

terizing set problem of non integer order PIλDµ controllers applied to

Fractional Order Systems (FOS), fixing previously the fractional orders

of the integrative (λ) and derivative (µ) actions.

In the following a new auto-tuning procedure of Fractional Order PID

Controllers is proposed. A first order process with a time delay could

be modeled with the following Transfer Function:

G(s) =
k

1 + Ts
e−Ls (2.1)

were k is a steady-state gain of the plant, L is the time delay and

T is the time constant of the plant. The generic step response of that

system is shown in Fig. 2.1.

Fig. 2.1. Open-loop step response.
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A fractional order PID controller could be modeled by the formula

(2.2), as introduced in [12].

C(s) = PIλDµ = Kp +Ki
1

sλ
+Kds

µ (2.2)

were λ is the the integrator order and µ is the differentiator order

(λ, µ ∈ C). If it is assumed u as command signal, y as plant output

and G(s) the plant to be controlled by the controller C(s), the feedback

control system could be represented by the diagram in Fig. 2.2.

Fig. 2.2. Feedback control system.

As explained in [45] and [46], the extension of derivation and integra-

tion orders from integer to complex numbers provides a more flexible

tuning strategy and therefore an easier way to achieve control require-

ments with respect to classical PID controllers. Another approach, de-

scribed in [47] and [48], is characterized by the use of a new strategy to

control first-order systems having a long time delay. In this last work it

has been applied a robustness constraint which allow to force the phase

of the open-loop system to be flat at the gain crossover frequency. The

main drawback of PIλDµ auto-tuning algorithm lies in the following



2.1 Design procedure of a Fractional Order PID Controller 21

[49]: during the phase of plant identification at a frequency with a phase

lower than −180◦ (plant of order greater than two), it is required to

look for a negative value for the delay in the auto-tuning equation. In

this section it has described the improved relay test routine that allows

to overcome this limitation. From a designer point of view, given the

desired crossover frequency ωcg and phase margin ϕm, the proposed

procedure allows to design a PIλDµ controller able to ensure a closed

loop system which is both robust versus gain variations and with an iso-

damping step response. Commercial auto-tuned controllers are based

on PID structure and could be divided in two main families accordingly

to their tuning technique:

• 1st or 2nd Ziegler-Nichols method based on the opened/closed loop

step response with not tuned controller

• Relay-Test method based on a feedback loop with periodic output

oscillation controlled by a relay

These two main categories differ also in controller synthesis methods,

algorithm used to set parameters or the plant dynamic.

2.1.1 Plant Identification and Controller Auto-Tuning

Considering Dµ as the non integer order derivative and D−λ as the

non integer order integration in time domain [50], [51] and Kp, Ki and

Kd as control action coefficients, the PIλDµ, whose block diagram is

shown in Fig. 2.3, could be model with (2.3):
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Fig. 2.3. Fractional Order PID block diagram.

y(t) = Kp +KiD
−λu(t) +KdD

µu(t) = Kp

[

1 +
Ki

Kp
D−λ +

Kd

Kp
Dµ

]

u(t)

(2.3)

It is clear that the Laplace Transfer Function of the (2.3) rise to

(2.4):

PIλDµ(s) =
Y (s)

U(s)
= Kp

[

1 +
1

Ti
s−λ + Tds

µ

]

(2.4)

were Ti = Kp/Ki and Td = Kd/Kp are integrative and differential

time constants. As integer order PID, the three actions (proportional,

integrative and derivative) play a main rule in the design of the PIλDµ

controller because, as it is known, the proportional one (Kp) sets the

crossover frequency ωcg without modifying the phase margin, the inte-

gral one (Ki) reduces noises and steady state errors, but leads to a rise

of the overshoot and a reduction of phase margin that are stabilized by

the derivative action (Kd). To satisfy specifications on phase margin

ϕm and crossover frequency ωcg, the control system designed in Fig.

2.4 was studied and implemented.
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Fig. 2.4. Block diagram of the closed loop system.

The auto-tuning procedure has been divided into two steps. The

fist one, the Relay-test phase, was used to identify the process at the

desired crossover frequency, while the second one, the PIλDµ Auto-

tuning phase, allowed to determine the controller parameters in order

to ensure a robust and iso-damping system response. After these phases

of identification and auto-tuning (Relay and Delay blocks in Fig. 2.4)

the switch is commuted on the designed PIλDµ controller and the

system works in closed loop form.

2.1.2 Relay-test phase

The choice of relay feedback is motivated by the possible integration of

the system identification and control both in the algorithm and into the

control device. It is noticed that if a system rise the stability limit the

pure imaginary poles give to the system a periodicity and the system

start to oscillate with a magnitude depending on starting conditions.

If another parametric variation take place, the imaginary poles assume
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a little real value and than the oscillation runs to infinite. As it is

shown in Fig. 2.4, in the direct chain an ideal relay with a symmetric

instantaneous nonlinearity was inserted. If a sinusoidal signal sin(t) =

A sin(ωt) is applied, the output is a periodic signal w(t) with the same

frequency of the input one and a ±d amplitude. This output signal

could be therefore written in Fourier series as follow:

w(t) =

∞
∑

n=1

(An sin(nωt) +Bn cos(nωt)) (2.5)

Due to the low pass filter behavior of the system, the higher order

harmonics could be skipped and than the (2.5) could be approximate

to:

w̃(t) = A1 sin(ωt) +B1 cos(ωt)) (2.6)

were:

A1 =
1

π

∫ 2π

0

w̃(t) sin(ωt) dωt (2.7)

B1 =
1

π

∫ 2π

0

w̃(t) cos(ωt) dωt (2.8)

Assuming than:

Y =
√

A2
1 +B2

1 (2.9a)

ϕ = arctg(
B1

A1
) (2.9b)

the (2.6) could be written as:
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w̃(t) = Y sin(ωt + ϕ) (2.10)

Than the descriptive function N(A) associated to the nonlinearity

could be formulated by:

N(A) =
Y ejϕ

A
(2.11)

As it is shown in Fig. 2.5 the output signal is a square wave with

±d amplitude.

Fig. 2.5. Ideal Relay I/O behavior.

From the (2.7) and (2.8) it is obtained:

A1 =
1

π

∫ 2π

0

w̃(t) sin(ωt) dωt =
1

π

∫ 2π

0

d(t) sin(ωt) dωt =
4d

π
(2.12a)

B1 = 0 (2.12b)

and than the (2.11) could be evaluated as:

N(A) =
4d

πA
(2.13)

Once the descriptive function was evaluated, it was used to replace

the ideal relay in the system control chain as it is shown in Fig. 2.6
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Fig. 2.6. Relay-test block diagram.

Considering a null reference signal and skipping the direct chain

delay, it is obtained:

y = N(A)G(jω)e = N(A)G(jω)(−y) (2.14)

were e is the error between the reference and the output signals and

G(jω) represents the plant frequency response. It is easy to understand

that, if the direct chain delay is taken into account, than the limit

condition of the stability is given by the pseudo-characteristic equation:

N(A) ∗G(jω) ∗ e−jωθa = −1 (2.15)

Equation (2.15) allows to determine the condition for which the

process goes to the limit of stability, approaching the limit cycle os-

cillations. When this oscillation is held, the plant output signal is a

permanent oscillation with fixed amplitude Ac and frequency ωc =
2π
Tc
.

Than the magnitude and the phase of the system are therefore given

by:

|G(jωc)| =
1

|N(Ac)|
=
Acπ

4d
(2.16)
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∠G(jωc) = −π + θaωc (2.17)

Equation (2.17) permits to easily change the oscillation frequency ωc

by acting on the delay θa to identify the process at different frequencies.

Varying appropriately θa it is therefore possible to identify the system

at the desired crossover frequency ωcg. If, in the direct chain of the Fig.

2.6, the ideal relay is replaced with a relay with hysteresis, of ±x and

±d amplitude, the descriptive function results:

N(A) =
4d

πA
e−j arcsin(

x
A
) (2.18)

This approach lets to identify the process at a specific crossover fre-

quency ωcg given by the specifications of the control system. In order to

determine the correct θa value, so that ωc = ωcg, the following iterative

Relay-test routine has been implemented:

1) Two delays θ−1,θ0 and the corresponding ω−1,ω0 are fixed as the

initial condition of the algorithm.

2) For n steps, the following iterative relation is applied:

θn =
ωcg − ωn−1

ωn−1 − ωn−2
(θn−1 − θn−2) + θn−1 (2.19)

3) If the current value of delay θn is negative, a zero is added into the

forward chain and the procedure restarts from the beginning.

4) If the comparison between ωc and ωcg is close to zero (≈ 0.01) the

procedure is stopped.

At the end of the iteration the identification of the process at the

given frequency is obtained as:
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G(jωu) = |G(jωu)| e
j∠G(jωu) (2.20)

were ωu is the real crossover frequency (ωu ≃ ωcg) and:

|G(jωu)| =
1

N(An)
=
Anπ

4d
(2.21a)

∠(G(jωu) = −π + θaωu (2.21b)

One of the improvement given by this work is related to point 3), in

fact the possibility to identify the process with an order greater than

two has been ensured by adding a zero into the forward chain.

2.1.3 PI
λ
D

µ Auto-tuning phase

From now on the PIλDµ transfer function assumes the following form:

PIλDµ(s) = kcx
µ

(

λ1s+ 1

s

)λ (
λ2s+ 1

cs+ 1

)µ

(2.22)

were it is possible to distinguish three different control actions, a

Proportional action, a Proportional-integrative action and a Proportional-

derivative action. The proportional one is assumed as kcx
µ = N(A)xµ =

1 to let the system be robust to gain variations.

Proportional-integrative action

The proportional-integrative action is obtained through the term:

PIλ(s) =

(

λ1s+ 1

s

)λ

(2.23)
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This term is intended to flatten the phase of the system around ωcg

in order to obtain a system more robust to the gain variations. With

this in view the phase slope ν close to ωcg is computed by using the

following relation:

ν =
ϕn+1 − ϕn−1

ωn+1 − ωn−1
(2.24)

where ωn−1 and ϕn−1 are respectively the frequency and the phase

at the n − 1 iteration of the Relay-test. The delay θn+1 at the n + 1

iteration is evaluated via the following relation:

θn+1 = θa + |θa − θn−1| (2.25)

The phase of the PIλ(jω) block is given by:

ϕ
(

PIλ(jω)
)

= −λ arctan

(

1

λ1ω

)

= λ
(

−
π

4
+ arctan(λ1ω)

)

(2.26)

and its derivative assumes the form:

d
(

ϕ
(

PIλ(jω)
))

dω
= λ

(

λ1

1 + (λ1ω)2

)

(2.27)

To obtain a flat phase slope, (2.27) must assume the opposite value

of the slope given in (2.24) at ω = ωcg, so it holds:

λ

(

λ1

1 + (λ1ωcg)2

)

= −ν (2.28)

This relation depends both from λ and λ1. In order to find both

values, the first step is to derivate (2.26) with respect to λ1 as it follows:
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d
(

ϕ
(

PIλ(jω)
))

dλ1

= λ
1− (λ1ωcg)

2

(

1 + (λ1ωcg)
2)2

To obtain that derivative equal to zero, the following condition must

be granted:

1− (λ1ωcg)
2 = 0

that is satisfied if:

λ1 =
1

ωcg
(2.29)

From the (2.28) λ is calculated as:

λ = −ν

(

1 + (λ1ωcg)
2

λ1

)

= −ν

(

2

λ1

)

(2.30)

By fixing the previous obtained values of λ and λ1 the proportional-

integrative block has been designed and the following open loop transfer

function

Gflat(s) = PIλ(s) ∗G(s) (2.31)

ensures a flat phase around the crossover frequency ωcg.

Proportional-derivative action

After the set of the proportional-integrative action, to satisfy the phase

margin ϕm and the crossover frequency ωcg specifications it is used the

term:
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PDµ(s) =

(

λ2s+ 1

cs+ 1

)µ

(2.32)

The block diagram after the proportional-integrative action is shown

in Fig. 2.7

Fig. 2.7. PDµ control block diagram.

The open loop transfer function is now:

F (s) = PDµ(s) ∗Gflat(s) (2.33)

that, with s = jwcg, assumes the form:

F (jωcg) = ej(ϕm−π) = cos(ϕm − π) + j sin(ϕm − π) (2.34)

while for equation (2.31) it holds:

Gflat(jωcg) = |Gflat(jωcg)|e
jϕ(Gflat(jωcg)) =

= |Gflat(jωcg)| ∗ (cos (ϕ (Gflat(jωcg))) + j sin (ϕ (Gflat(jωcg)))) (2.35)

Substituting (2.34) and (2.35) in (2.33), the following transfer func-

tion for PDµ(jωcg) is obtained:
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PDµ(jωcg) =

(

λ2jωcg + 1

xλ2jωcg + 1

)µ

=
F (jωcg)

Gflat(jωcg)
= a1 + jb1 (2.36)

where x takes into account of the high frequency pole added to guar-

antee the implementation of the controller, a1 and b1 are respectively

the real and the imaginary part of the PDµ(jωu). Once a1 and b1 are

determined, the module ρ and the phase φ are calculated by:

ρ =
√

a21 + b21 (2.37a)

φ = tan−1
b1
a1

(2.37b)

Considering:

(a1 + jb1)
1
µ = ρ

1
µ ∗ ej

Φ
µ = ρ

1
µ

(

cos

(

Φ

µ

)

+ j sin

(

Φ

µ

))

equation (2.36) can be rewritten as:

(

λ2jωcg + 1

xλ2jωcg + 1

)

= (a1 + jb1)
1
µ = a+ jb (2.38)

and then:

a = ρ
1
µ ∗ cos

(

Φ

µ

)

(2.39a)

b = ρ
1
µ ∗ sin

(

Φ

µ

)

(2.39b)

From the equation (2.38) the following conditions hold:

a =

(

x(λ2ωcg)
2 + 1

(xλ2ωcg)2 + 1

)

(2.40a)
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b =

(

λ2ωcg − xλ2ωcg

(xλ2ωcg)2 + 1

)

(2.40b)

λ2 =

(

b2 + a(a− 1)

bωcg

)

(2.40c)

x =

(

a− 1

b2 + a(a− 1)

)

(2.40d)

By applying the below reported iterative algorithm it is possible to

determine x, λ2 and µ that represent the design parameters of (2.36).

1 µ is first fixed to a small value (ex. µ = 0.48)

2 from the equation (2.39a) and (2.39b), a and b are calculated

3 from the equation (2.40c) and (2.40d), λ2 and x are estimated

4 until x > 0, a > 1 e and b > 0, µ is iteratively incremented if x ≤ 0

or a ≤ 1 or b ≤ 0 to obtain the minimum value µmin

5 x and λ2 are respectively estimated at µmin

By adding the conditions a > 1 and b > 1, to the traditional one

x > 0, and starting with µ > 0.48 the algorithm converge recursively,

being more efficient than the one proposed in [52].

2.1.4 Numerical Examples

In order to validate the procedures introduced in the previous section,

the following three systems has been considered:

G1(s) =
0.55

s(0.6s+ 1)
e−0.55s (2.41a)

G2(s) =
1

s2(2s+ 1)
(2.41b)

G3(s) =
1

s(2s+ 1)
(2.41c)
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PI
λ
D

µ auto-tuning procedure for G1(s)

The system G1(s) to be identified and controlled was characterized by

the following Transfer Function:

G1(s) =
0.55

s(0.6s+ 1)
e−0.55s (2.42)

As it can be noticed it presents three elements: a positive gain, two

poles, one in s = 0 and one pole in s = 1.667 and a time delay. In this

example the design specifications have been fixed as:

• ωcg = 2.3 rad
sec

• ϕm = 60◦

• Gain variations robustness

In Fig. 2.8 the Bode Diagrams for the (2.41a) are shown.

Fig. 2.8. G1(s) Bode Diagrams.

In Fig. 2.9 is reported the designed Simulink model for the Relay-

test.
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Fig. 2.9. G1(s) Simulink model for Relay-Test.

As it is shown, the following blocks were used:

• A null reference signal.

• Two ideal relays with output voltage equal to |d| = 5V in symmetric

working mode.

• Two delay, the first one to insert the θn iterative delay and the

second one to apply the delay to the G1(s) Transfer Function.

• The G1(s) Transfer Function.

• Two workspaces to record the time and the output value arrays.

Following the iterative procedure described in the previous section,

the first step was to apply the starting delay θ−1 = 0.05s to calculate

ω−1 as:

ω−1 = 3.7556
rad

s

The same procedure is applied with θ0 = 0.1s and ω0 was obtained

as:



2.1 Design procedure of a Fractional Order PID Controller 36

ω0 = 3.0442
rad

s

From the two coupled (ω−1, θ−1) and (ω0, θ0) the new delay θ1 =

0.1523s was evaluated and applied to the Simulink block diagram to

obtain the new θ2 and so on. The iteration stopped when |ωcg − ωn| ≈

0.01 were obtained. As it is shown in Table 2.1 a good approximation

were obtained at the 4th iteration at which ωu = 2.3015 ≃ ωcg.

n θn(s) ωn

(

rad
s

)

−1 0.05 3.7556

0 0.1 3.0442

1 0.1523 2.5974

2 0.1871 2.3854

3 0.2011 2.3108

4 0.2031 2.3015

Table 2.1. G1(s) Relay-Test iterations.

After the Relay-test, the PIλDµ modeling phase has began. The

corresponding value A4 = 0.896V to the couple (ω4, θ4) was evaluated

and given to the model to identify the Transfer Function module and

phase at the desired frequency ωu:

|G(jωu)| = −17.0314dB (2.43a)

∠G(jωu) = −153.1652
◦ (2.43b)

To estimate the phase slope around ωu a θµ−δ = 0.1631 was ap-

plied and from the (2.25) the θu+δ = 2.5269s was calculated. From
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the Simulink model the corresponding values of ωu−δ = 2.5269 rad
s

and ωu+δ = 2.1217 rad
s

were calculated and applied in the (2.21b) to

obtain the phases ϕ(G(jωu−δ)) = −2.7295rad and ϕ(G(jωu+δ)) =

−2.6258rad. From the (2.24) the phase slope µ = −0.2558 was es-

timated and than the PIλ parameters calculated (λ1 = 0.4345 and

λ = 1.1774). The PIλ Transfer Function resulted:

PIλ =

(

0.4345s+ 1

s

)1

.1774 (2.44)

In Fig. 2.10 the obtained Bode Diagrams are shown.

Fig. 2.10. PIλ Bode Diagrams.

The open-loop system Transfer Function is obtained from the (2.31)

with the following module and phase:

|G1flat(jωu)| = −23.2334dB

∠G1flat(jωu) = −200.638
◦
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From the G1flat(jωu) and imposing the phase margin ϕm = 60◦

the PDµ parameters has been calculated and obtained the following

Transfer Function:

PDµ =

(

7.6985s+ 1

4.7137 ∗ 10−4s+ 1

)0.93

(2.46)

The corresponding Bode Diagrams are shown in Fig. 2.11.

Fig. 2.11. PDµ Bode Diagrams.

Applying the PIλ and PDµ Transfer Function founded, the project

specifications for the open-loop control system were evaluated as fol-

lows:

|F (jωu)| = 1.29dB

∠F (jωu) = −120.378
◦

ϕm = −120.378 + 180 = 59.622◦
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The related Bode Diagrams are shown in Fig. 2.12.

Fig. 2.12. Open-loop control system Bode Diagrams with PIλDµ.

Once the PIλDµ controller was modeled, the step closed loop re-

sponse was evaluated using the Simulink model shown in Fig. 2.13,

in which the proportional (Kp), the non integer order integrative (s−λ)

and the non integer order derivative (sµ) actions are shown.

Fig. 2.13. Simulink block diagram of the controlled system.
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The step response in shown in Fig. 2.14 in which the gain variation

robustness is also shown.

Fig. 2.14. Controlled system step response and gain variations (K = 1 in black, K = 0.5

in red, K = 3 in blue and K = 6 in green).

PI
λ
D

µ auto-tuning procedure for G2(s)

In the second example the following process Transfer Function was

considered:

G2(s) =
1

s2(2s+ 1)
(2.48)

The system to be identified and controlled, whose Bode Diagrams

are shown in Fig. 2.15, was characterized by a unit gain, two poles in

s = 0 and one pole in s = 0.5.

In this example the design specifications have been fixed as:

• ωcg = 1.97 rad
sec
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Fig. 2.15. G2(s) Bode Diagrams.

• ϕm = 60◦

• Gain variations robustness

To start the relay-test routine, whose Simulink model is shown in

Fig. 2.16, the relay output voltage was set to |d| = 8V and the initial

delay was fixed to θ−1 = 0.05s obtaining the first oscillating output

signal y−1 for the closed loop system.

Fig. 2.16. G2(s) Simulink model for Relay-Test.

The amplitude, the period and the frequency of this output signal

are computed obtaining A−1 = 0.5753v, T−1 = 2.156s and ω−1 =
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2.9143 rad
s
. The same computation is done fixing a new θ0 = 0.1s and

obtaining A0 = 1.1322v, T0 = 3.042s and ω0 = 2.0655 rad
s
. Starting from

the evaluated couples (ω−1,θ−1) and (ω0,θ0) and by applying equation

(2.19), the new delay value θ1 = 0.1056s is obtained. The relay-test

iterative procedure has been stopped when |ωcg − ωn| ≈ 0.01. The

iteration results are shown in Table 2.2 where it possible to note that

the desired cross-over frequency ωu = 1.9727 ∼= ωcg is reached at the

fourth iteration.

n θn(s) ωn

(

rad
s

)

−1 0.05 2.9143

0 0.1 2.0655

1 0.1056 2.01

2 0.1096 1.9727

Table 2.2. G2(s) Relay-Test iterations.

As it can be noticed, the 2nd iterations gave a good approxima-

tion obtaining ωu = 1.9727 ≃ ωcg. By substituting the value of the

amplitude and the oscillation period, obtained at the final iteration

(A2 = 1.2365V and T2 = 3.185s), in equation (2.16) and (2.17) it

was finally possible to determine the amplitude and the phase of the

G2(s) at wcg, that take respectively the values |G(jωcg)| = −24.2173dB

and ϕ (G(jωcg)) = −257.6122
◦, which are very close to the real values

of G2(s). Once the module and the phase of G(s) were determined

at the cross-over frequency, the tuning phase of the PIλDµ controller

started. As in the previous example, the first control block that has been
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considered was the integral one. To estimate the phase slope around

ωcg, a value of θcg−δ = 0.08s was applied in equation (2.25) obtaining

θcg+δ = 0.1392s with the corresponding frequencies ωcg−δ = 2.3074 rad
s

and ωcg+δ = 1.7512 rad
s
.

Then from equation (2.17) it was possible to determine the phases

ϕ (G(jωu−δ)) = −2.957rad and ϕ (G(jωu+δ)) = −2.8978rad. The phase

slope ν = −0.1064 was therefore obtained from the equation (2.24)

and finally from equation (2.29) and (2.30), λ1 = 0.5069 and λ =

0.4198 were determined so that the integral part of the fractional order

controller was fixed:

PIλ(s) =

(

0.5069s+ 1

s

)0.4198

(2.49)

In Fig. 2.17 the Bode Diagrams for the PIλ controller are shown.

Fig. 2.17. PIλ Bode Diagrams.
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From equation (2.31) it was possible to compute |G2flat(jωcg)| =

−25.4309dB and ∠ (G2flat(jωcg)) = −276.5
◦, showed also in Fig. 2.18.

Fig. 2.18. G1flat(jω) Bode Diagrams.

The successive PDµ tuning phase has been performed, as described

previously, looking for a ϕm = 60◦. According to the described pro-

cedure, the parameters µ = 1.826, x = 6.45 ∗ 10−7, λ2 = 4.4251 and

c = x ∗ λ2 = 2.8542 ∗ 10−6 were determined so that the PDµ block

assumed the form:

PDµ(s) =

(

4.4251s+ 1

2.8542 ∗ 10−6s+ 1

)1.826

(2.50)

The module and phase of the open-loop control system Transfer

Function were calculated as follow:

|F (jωu)| = 0.4327dB

∠F (jωu) = −117.022
◦
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ϕm = −117.022 + 180 = 62.978◦

In figure 2.19 the Bode Diagrams of the PIλDµ(jω) controller is

plotted.

Fig. 2.19. PIλDµ(jω) Bode Diagrams.

The Simulink model of the PIλDµ controller is shown in figure

2.20, where the integro-differential equations of fractional order have

been implemented according to the definition of Grunwald-Letnikov in

[53]. By using this definition it is not necessary to approximate the frac-

tional order PID controller with a transfer function of integer and high

order so, as a consequence, the simulation results speed and without

approximation.

The step responses of the controlled system are shown in figure 2.21,

where it can be observed that the system exhibits robust performances

to gain variations, keeping constant the overshoot of the time response.
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Fig. 2.20. Simulink block diagram of the controlled system.

Fig. 2.21. Controlled system step response and gain variations (K = 5 in blue, K = 10

in green, K = 15 in red and K = 25 in magenta).

PI
λ
D

µ auto-tuning procedure for G3(s)

In the last example the following process Transfer Function was con-

sidered:

G3(s) =
1

s(2s+ 1)
(2.52)
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It is relevant to outline that the proposed designed strategy has

been implemented on an HIL (Hardware In the Loop) system, aDspace

board, while previous examples systems to be controlled have been sim-

ulated via their transfer function. Both the Relay-test and the PIλDµ

Auto-tuning have been in fact designed to be applied on real world

system using the HIL approach. The system to be identified and con-

trolled, whose Bode Diagrams are shown in Fig. 2.22, was characterized

by a unit gain, one poles in s = 0 and one pole in s = 0.5.

Fig. 2.22. G3(s) Bode Diagrams.

• ωcg = 1.97 rad
sec

• ϕm = 60◦

• Gain variations robustness
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Before designing the controller by using the HIL board, the system

to be controlled has been realized in the circuit shown in Fig. 2.23, in

which a TL082 Operational Amplifier, a R = 10KΩ, a RL = 20KΩ, a

C = 100µF and a CL = 100µF were used.

Fig. 2.23. OPAM implementation of the G3(s) system.

The implemented Transfer Function could be modeled as follow:

G(s) =
eo(s)

ei(s)
=

1

−RCs(RLCLs+ 1)
(2.53)

In Fig. 2.24 the adopted experimental setup, in which the design

and synthesis of the PIλDµ controller is realized by using the dSPACE

board connected to the plant, previously realized on a breadboard, is

shown.

The relay-test routine has been implemented through the Simulink

model shown in Fig. 2.25 in which it is possible to note that the plant

was interfaced to the dSPACE system through internal ADC and DAC

converters.
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Fig. 2.24. Experimental setup.

Fig. 2.25. RTI relay-test block diagram.

In order to identify the system at the desired crossover frequency,

acting in real-time on the delay θa, a graphic interface, shown in Fig.

2.26 has been developed by using the ControlDesk environment.

The output signal, used during the design phase, is shown in Fig.

2.27. It is possible to note that the amplitude Ac = 1.261V and the

desired cross-over frequency ωu = 1.9761 rad
sec
∼= ωcg were reached with

the delay θa = 0.1296s and the relay output |d| = 8V .
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Fig. 2.26. Relay-Test routine in ControlDesk.

Fig. 2.27. Output signal of the Relay-test.

By substituting these values in equations (2.16) and (2.17) it was

finally possible to determine the magnitude and the phase of the sys-

tem, respectively |G3(jωcg)| = −18.15dB and ϕ (G3(jωcg)) = −165.3
◦,

that resulted very close to the real values. Once the module and the

phase of experimental system were determined, the tuning phase of

the PIλDµ controller started. To estimate the phase slope around

ωcg, a value of θcg−δ = 0.0796s was applied in equation (2.25) ob-

taining θcg+δ = 0.1796s, where the corresponding frequencies are

ωcg−δ = 2.575 rad
s

and ωcg+δ = 1.671 rad
s

respectively. From equation
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(2.17) the phases ϕ (jωcg−δ) = −2.937rad and ϕ (jωcg+δ) = −2.841rad

were determined and then the corresponding phase slope ν = −0.1058

was obtained from equation (2.24).

The PIλDµ Auto-tuning procedure has been implemented trough

the sfuntion blocks in a Simulink model shown in Fig. 2.28. It possible

to see that the parameters have been determined so that the PIλDµ(s)

controller assumed the form:

PIλDµ(s) =

(

0.506s+ 1

s

)0.4181 (
10.446s+ 1

0.0007s+ 1

)0.736

(2.54)

Fig. 2.28. PIλDµ auto-tuning procedure in ControlDesk on dSPACE system.

The Simulink model of the PIλDµ controller is shown in Fig. 2.29.

The integro-differential equations of fractional order have been imple-

mented according to the definition of Grunwald-Letnikov as in [20].
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Fig. 2.29. RTI block diagram of the fractional experimental system for different gain

values.

The CaptureSettings instrument is added in the ControlDesk project

for the acquisition of the step responses while varying the open loop

gain K. The step responses of the controlled system are shown in Fig.

2.30. It is possible to observe that the system exhibits robust perfor-

mances to gain variations, keeping constant the overshoot of the step

responses.

Fig. 2.30. Step responses with different gain values.



3

Fractional Order Elements: Modeling and

Realization

This chapter is focused on the modeling and realization of

fractional order elements. In the first and second sections a

brief introduction on Electro Active Polymers and Ionic Poly-

mer Metal Composite (IPMC ) is presented. In the third sec-

tion a novel class of composite materials (IPMC ) capable of

electromechanical reversible transduction are presented. They

can be modeled by fractional Transfer Function and for that

reason a grey box approach to identify IPMC actuators is pro-

posed. Moreover the proposed Transfer Functions are ruled by

using the device geometrical parameters in such a way to guar-

antee the control of the transducer during the design phase:

after a theoretical discussion on experimental validation of

the proposed approach is reported. In the fourth section a

study on characterization of IPMC as Fractional Order Ele-

ments (FOE) is presented. The goal is to define a fabrication

procedure that allows to realize a FOE with the desired non

integer order characteristics. This element is proposed as the
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basic building block of Fractional Order Controllers realiza-

tion.
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3.1 Introduction on Electro Active Polymers

New applications in a number of interesting fields, such as of bio in-

spired robotics, active prostheses, smart textiles, artificial tissues and

organs and novel sensors, just to mention a few, will be possible, in

the near future, largely because of new polymeric materials that are

becoming available thanks to strongly interdisciplinary research activ-

ities including material sciences, engineering, mechanics, and biology.

These new materials are able to sense external stimuli and react to

them, e.g. by changing their shape, so that they are not anymore pas-

sive tools but will be capable to cooperate to reach our objectives. A

key role in the deep changes described above is played by Electro Ac-

tive Polymers (EAPs), i.e. polymers that exhibit a mechanical reaction

to an electrical stimulus and viceversa. EAPs could be divided in two

different classes: Dry-EAP, which are characterized by a deformation

caused by the local distribution of the electric field, fast dynamics, but

need high voltage supply and Wet-EAP in which the deformation is

linked to the ionic diffusion. This last class of EAPs presents a low volt-

age supply activation, but lower dynamics and strength density [54].

The interest on EAPs is quite recent, it is dated to the end of last cen-

tury and it raised partly as the consequence of the discovery of some

electroactive materials that are capable to undergo deformations larger

that 100% , offering electromechanical properties that cannot be ob-

tained by classes of competitive materials. They are also generally light

and flexible so that are known as artificial muscles. The capability of
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EAPs to react to electrical inputs with significant mechanical changes

makes them suitable candidates to be used as mechanical actuators. It

has been also shown that for a lot of EAPs electromechanical transduc-

tion phenomena are reversible, so that one technology could be used

both to realize actuators and sensors paving the road to obtain smart

materials that incorporate both capabilities [55]. Among EAPs, dur-

ing the last two decades, Ionic Polymer Metal Composites (IPMCs)

have been extensively studied, due to a number of promising charac-

teristics, including the possibility to obtain very large deformations as

reaction to a voltage signal of few volts. IPMCs belongs to the class

of ionic EAPs, since transduction phenomena are due to ionic motion

or ionic diffusion. Also, they need a solvent, generally water, to work

properly. It is generally accepted that one of the main drawbacks of

IPMC based actuator is represented by the large dependence on their

response of factors such as fabrication process, water content and tem-

perature [56]. As a result IPMCs can not be used in open loop schemes

and control strategies are needed to improve IPMC based applications

[57], [58], [59]. Controlling strategies require the knowledge of models

to be used in the design of the IPMC controller. Moreover such models

should be scaled as a function parameters that are under designer that

can fix those parameters in order to obtain the desired system perfor-

mance [60]. It has been reported that IPMCs have a fractal electrode

structure [61] and that non integer transfer functions can be used to

describe their transduction properties [62]. IPMCs consist of a layer of

ionic polymer, whose thickness is generally of the order of 100µm, inter-
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posed between two conductive layers, to realize the electrodes. Nobile

metals, such as platinum or gold, are used to this purpose. Electrodes

are used both to impose the electrical stimulus when an IPMC is used

as an electromechanical transducer, and to collect electrical signals,

when the IPMC is used as a sensor. The polymer most widely used is

Nafion, a perfluorinated alkene produced by DuPont [63]. Since Nafion

shares with Teflon its antiadherent electrodes cannot be simply ap-

plied to the polymer and a chemical plantation procedure need to be

used. Following the standard impregnation reduction procedure pro-

posed by Dr. Oguro [64], a sheet of Nafionr117, whose thickness was

about 180µm, was first allowed to soak in a platimun salt solution,

typically PtNH3Cl2. As the second step the membrane was soaked

in a reducing agent, allowing metallic dendritic structure to build into

the ion exchange membrane and to realize the electrodes at the mem-

brane surface. It is generally accepted that such dentritic structure

plays a main role in the electromechanical coupling behavior of the

IPMC transducer since it contributes in largely increase the effective

area of the electrodes. Also the dentritic nature of the electrodes sug-

gested the fractional order modeling of IPMCs [65], [66]. The electrodes

realized by using the procedure described so far are quite thin and since

the thickness of electrodes contribute to reduce the electrode resistance

(ideal electrode are supposed to be perfect conductor) a secondary plat-

ing process has been implemented. As a result of the production steps,

a sample soaked in water and whose thickness was about 200µm was

obtained. This has been further cut to obtain the transducers with the
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desired shape, i.e. rectangular strips with different length and width.

Different theories have been proposed to explain the electromechani-

cal transduction properties of IPMCs. More specifically, Tadokoro and

Yamagami proposed, in their paper (citeTadokoro), that the actuation

mechanism is due to the migration of mobile ions under the effect of the

external electric field. Moreover, Nafion is among the most hydrophilic

materials counter ions carry parasitically a number of water molecules

so that this part of the membrane expands while the opposite occurs at

the anode region and the IPMC bands. The transduction phenomenon

has been also explained by considering the electrostatic interactions

within the polymer [68]. The stress according to Nemat-Nasser is due

to electrostatic forces that generate because of the interaction between

ions. For the case of the IPMCs used as sensors the deformation pushes

the solvent and mobile ions so that an electric signal can be collected

at the electrodes. A mature technology should produce devices for the

solution of applications, in new fields and/or with performances that

cannot be obtained by using competing technologies. The evolution of

a technology requires the comprehension of relevant phenomena. This

phase requires the experimental investigation of the new devices and

the modeling of their behavior, with relevant efforts. The product of

this phase is mathematical models, that with an adequate level of accu-

racy, describe the behavior of the novel devices. This allows the user to

predict the effects of his choices during the design step of new devices.

Models can be generally classified into:
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• Black Box Models, that approximate the behavior of a device un-

der test by using solely experimental data without any attempt to

describe the underlying mechanisms. Also, they lack any general-

ization capability and are of little or no utility for devices different

from that used for the model identification [69], [70].

• White Box Models, that try to describe the observed behavior of

devices by the comprehension of the phenomena involved in the

transduction process. They have opposite pros and cons with respect

to black box models, since they are very hard to be investigated,

depending on parameters that cannot be directly observed, and,

generally are inaccurate so that might be not very useful for the

designer [71], [68].

• Gray Box Models, that represent a useful compromise between the

competing requirements of simplicity, accuracy and generality. They

are obtained on the basis of some well understood theories and use

parameters that can be experimentally determined. Moreover pa-

rameters can be used that depend only on the characteristic of the

materials, so that the model can be scaled on the basis of the geom-

etry size of the device under test or under design [72], [60], [73].

IPMCs are generally considered as a pinned beam and the Eulero

Bernoulli theory is used for modeling. The transduction phenomena

are then modeled by using suitable coupling terms in a similar way as

for the case of piezoelectric devices [74]. In that paper is also shown

the necessity to model the Young modulus a complex function of the

input signal. The same holds true for the electromechanical coupling
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term that assumes the form of a complex function of the applied signal

frequency.

3.1.1 IPMC Structure, Working Principles and

Manufactoring

IPMCs are based on a polymer containing ions, also called ionic poly-

mers, that are weakly linked to the polymer chain and metallized via

a chemical process, on both sides, with a noble metal, to realize the

electrodes. There are a number of different types of ionic polymers

available but the typical IPMC used in many investigations is com-

posed of a perfluorinated ion-exchange membrane, Nafionr117, which

is surface-composite by platinum via chemical process (Fig. 3.1.

Fig. 3.1. Structure and Working Principle of IPMC.

The Platinum electrodes often consist of small, interconnected metal

particles which are made to penetrate into the ionic polymer membrane.

This results in the formation of electrodes with dendritic structures [62],
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[75] which extend from the surface into the membrane. Working as an

actuator, when an external voltage is applied across the thickness of

the IPMC, mobile cations (H+) in the polymer will move toward the

cathode. Moreover, if a solvent is present in the sample, the cations will

carry solvent molecules with them. The cathode area will expand while

the anode area will shrink. If the tip of the IPMC strip is free the poly-

mer will bend toward the anode; thus a force will be delivered. On the

other hand, when the IPMC works as a sensor, it exploits the mechan-

ical displacement of the polymer for the generation of a ionic current

inducing a potential difference. In general the relationship between the

applied potential and absorbed current will be affected by the ionic

current and the solvent flow within the sample and by the interaction

of the ions and the solvent molecules with the polymer/metal interface.

The devices described in this section are made of a Nafionr117 films

with thickness tNaf = 180µm and sizes 4x4cm that was pre-treated

by successive boiling for 30min in HCl2N and deionized water. Ethy-

lene glycol (EG) was used as the solvents and Platinum as the elec-

trodes. Two platinum metallization were obtained by immersion of the

Nafionr117 membrane in a solution of Pt(NH3)4Cl2 with molecular

weight equal to Mw = 334.12. This immersion time is here referred

to as Absorption time. The platinum solution was obtained by dissolv-

ing 205mg of the complex in 60ml of deionized water and adding 1ml

of ammonium hydroxide at 5%. In order to increase the performance

of the device, a dispersing agent (Polyvinylpyrrolidone with molecular

weight Mw = 10000 ) has been added. Moreover, a secondary metal-
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lization was performed via deposition. Then the samples were boiled in

0.1M of HCl for 1h. In order to obtain the IPMC with EG as solvent,

Nafionr117 membranes were soaked overnight in a beaker containing

pure EG and, finally, heated to 60 ◦ C for 1h.

3.2 Modeling phase and Parametric Control of

Fractional Order IPMC Actuator

IPMC actuators suffer because of a large number of influencing factors

that do not allow adequate open loop working conditions and they re-

quire the use of controlling strategies. IPMC controllers can be designed

by using suitable device models. Here a non integer order transfer func-

tion is used to model IPMC actuators [76], [77], [78], [79]. In the present

section the IPMC model is scaled as a function of the actuator length

and the control law has been parameterized according to this physical

parameter. When a voltage signal is applied across the thickness of

the IPMC, mobile cations will move toward the cathode. Moreover the

cations will carry solvent molecules with them with a resulting bending

of the membrane.

3.2.1 Experimental Setup

Considering the beam parameters, the length Lfree and the cross-

sectional dimensions with thickness t and width w, it will be assumed

that the beam vibrates in the vertical plane. The experimental setup,

shown in Fig. 3.2, was composed of an Agilent Technologies 33220A
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20MHz signal generator to impose the voltage input signal to the

membrane, a Baumer Electrics OADM12U6430 distance laser sensor

to measure the tip deflection and a National Intruments I/O board for

data acquisition. A picture of the implemented setup is shown in Fig.

3.3.

Fig. 3.2. Scheme of experimental setup.

Fig. 3.3. Experimental setup picture.

Light from the laser diode was focused onto the end of the cantilever

and the absorbed current was transduced by using a shunt resistor.

As an example the voltage input imposed to the membrane and the

deflection of the cantilever tip are shown respectively in Fig. 3.4(a)

and 3.4(b), respectively.

The voltage input signal was a chirp signal with 3Vpp amplitude

spanning from 500mHz to 100Hz. Using a sampling frequency equal
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Fig. 3.4. Voltage input applied to the membrane (a), Deflection of the cantilever tip

measured with the laser sensor (b).

to 1000samples/s, 10000 samples were obtained for a data acquisition

campaign lasting 10s. The output signal acquired, the deflection of the

cantilever tip, showed clearly that the IPMC reaches the maximum

deflection in the resonance condition. Processing these data in Matlab

Environment, the transfer functions voltage-current, current-deflection

and voltage-deflection have been obtained, supposing that the system

was linear, using the tfestimate Matlab function. In Fig. 3.5 the voltage-

deflection transfer functions, for three different length values of the

membrane are shown.

The frequency analysis of the IPMC behavior was limited to the

frequency range of 0.5 − 100Hz because this was the range on which

IPMCs work as actuators. By the inspection of Bode diagrams it is

easy to note that the three systems present a non integer order be-

havior [80], in fact the module of the Bode diagrams presents a slope

equal to ±m ∗ 20db/decade, and the phase Bode diagrams present a

phase lag equal to ±m ∗ 90◦, where m is a suitable real number. The

system can therefore identified by fractional order models which allows

to obtain good modeling performance by using a small set of parame-
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Fig. 3.5. Module and phase of three IPMC samples with different length.

ters [60],[62]. The fractional order models of the system has been de-

termined by using the Marquardt algorithm [81] to the available data.

The Levenberg-Marquardt method is commonly used to solve nonlinear

least squares problems that have to be faced when fitting a parame-

terized function to a set of measured data by minimizing the sum of

the squares of the errors between the data points and the function.

The Levenberg-Marquardt curve-fitting method is actually a combina-

tion of two minimization methods: the gradient descent method and

the Gauss-Newton method. It is similar to a gradient-descent method

when the parameters are far from their optimal value, and acts more

like the Gauss-Newton method when the parameters are close to their

optimal value.
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3.2.2 Modeling Phase

The models obtained for the voltage-deflection transfer function, have

been determined according to the following relation:

G(s) =
k

sn(s2 + 2sα + α2 + β2)m
(3.1)

with n = 0.62 and m = 1.15. An analysis on the IPMC beams was

performed taking into account six membranes of different length, from

15mm to 30mm. In particular the Bode Diagrams of the membranes

of 15mm, 20mm and 30mm are shown in Fig. 3.6.

Fig. 3.6. Module and phase of three IPMC samples of 30mm, 15mm (.) and 20mm(-)

of length.

In order to perform the IPMC control system design the resonance

frequency as been parameterized (3.2) as a function of the membrane

length, so that the parametric controller can be designed.
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fr = 0.09L2 − 6.4L+ 130 (3.2)

Parameter α and β depends of the IPMC membranes length as

reported in Table 3.1.

L(mm) fr(Hz) α β

15 53.86 26 330

18 41.50 25 262

20 35.36 20 223

25 24.31 10 153

27 21 10 133

30 16.36 7 103

Table 3.1. Model parameters according to the sample length.

The relationship between α, β and the length L of the membrane

has been fixed through the following first order equation, accordingly

to the interpolation shown in Fig. 3.7:

α = −1.34L+ 45.9 (3.3a)

β = −15.02L+ 540.2 (3.3b)

In Table 3.2 are reported the real values of α and β and their esti-

mations obtain by using the linear approximation in (3.3a) and (3.3b)

respectively.

From the (3.1 it is also possible to parameterize the resonant fre-

quency with respect to α and β obtaining the following relations:



3.2 Modeling phase and Parametric Control of Fractional Order IPMC Actuator 68

Fig. 3.7. Linear interpolation of α(L) and β(L).

Experimental data 1st order model

L(mm) fr(Hz) α β fr(Hz) α β

15 53.86 26 330 50 25.8 314.9

18 41.50 25 262 42.82 21.78 269.8

20 35.36 20 223 38.06 19.1 239.8

25 24.31 10 153 26.15 12.4 164.7

27 21 10 133 21.39 9.72 134.7

30 16.36 7 103 14.24 5.2 89.6

Table 3.2. Comparison between IPMCs acuator parameters and corresponding estima-

tion.
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α = ξωn (3.4a)

β = ωn

√

1 + ξ2 (3.4b)

3.2.3 Parameterized control of the membrane

Starting from the non integer order IPMC model (3.1), a parametric

controller, depending on the membrane length L has been designed.

The goal of the control system was to stabilize the closed loop system,

to enlarge the bandwidth and to ensure a good tracking error. As it is

shown in Fig. 3.8, the controller was characterized by the presence of

three blocks: C(s) = Ca(s)Cb(s)Cc(s).

Fig. 3.8. Control scheme block diagram.

Each part of the controller had a different role:

• Ca(s) has been added in order to guarantee a finite error to the step

input. It consists in a zero with slope 0.62 and in a gain that has

been fixed during a trial and error procedure.

Ca(s) = 33s0.62 (3.5)

item Cb(s) is the parameterized block and has been added to obtain

a good phase margin at the desired crossover frequency.
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Cb(s) =
(1 + sτ)3

(1 + s τ
m
)3

(3.6)

where m = 10 and

τ =
0.5

(2πfr ∗ 3.5)

• Cc(s) has been designed to guarantee a good tracking error inside

the desired band width.

Cc(s) =
(1 + s

16π
)

(1 + s
2π
)

(3.7)

The obtained open loop and closed loop transfer functions Bode

Diagrams are reported in Fig. 3.9 and 3.10 respectively, in which it

can be observed that a crossover frequency greater than 50Hz has

been obtained for any membrane length, corresponding to a bandwidth

greater than 80Hz. Regarding the phase margin the worst case (Mφ =

20◦) and the best one (Mφ = 80◦) have been obtained for the 15mm

and 30mm membrane length respectively..

3.3 Experimental characterization of novel

Fractional Order Elements

As introduced in the previous section, Ionic Polymer Metal Compos-

ites (IPMCs) are electroactive materials made of ionic polymer thin

membranes with Platinum metallization on their surfaces. They are

interesting materials due to, besides their electromechanical applica-

tions as transducers, also to their electro-chemical features and to the
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Fig. 3.9. Bode Diagrams of the open loop control system.
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Fig. 3.10. Bode Diagrams of the closed loop control system.

relationship between the ionic/solvent current and the potential field.

Their electro-chemical properties thus suggest the possibility for ex-

ploiting them as compact Fractional Order Elements (FOEs) with a

view to defining fabrication processes and production strategies that

assure the desired performances. In this section the experimental elec-

trical characterization of a brand new FOE setup in a fixed sandwich

configuration is proposed. Two different characterization through ex-

perimental data are here presented:

• FOE devices with different Platinum absorption times (5h, 20h) [82]
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• FOE devices with different Polyvinylpyrrolidone dispersing agent

concentrations (0.0005mol, 0.001mol, 0.002mol) [83]

First, a preliminary linearity study was performed for a fixed input

voltage amplitude in order to determine the frequency region where the

FOE can be approximated as linear, then a frequency analysis was car-

ried out in order to identify a coherent fractional order dynamics in the

Bode diagrams. Such analysis take the first steps towards a simplified

model of IPMC as a compact electronic FOE for which the fractional

exponent value depends on fabrication parameters as the absorption

time and the dispersing agent concentration. From the manufactory

process described in Section 3.1.1, the obtained IPMC was cut into

strips of size 1x1cm and dried for one week. Some IPMC sample are

shown in Fig. 3.11.

Fig. 3.11. IPMC samples.
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3.3.1 FOE devices with different Platinum absorption times

Two different IPMC membranes have been fabricated with different

absorption times, 5h and 20h in order to study the relationship be-

tween such a fabrication parameter and the fractional order dynamics

of the FOE device. The two membranes will be here referred to re-

spectively as FOE5h and FOE20h. The new FOE device here proposed

consists of an IPMC strip of 1x1cm mechanically fixed within a Plexi-

glas sandwich configuration in series with a resistor with R = 46Ω as

shown in the schematic in Fig. 3.12. The input voltage signal (Vin) was

driven by a waveform generator (Agilent 33220A) through a condition-

ing circuit made of an operational amplifies in buffer configuration (ST

TL082CP). The output voltage (Vout) was measured through a pair

of copper electrodes (1x1cm and thickness 35µm) printed on a PBC

board and in direct contact with the entire platinum electrodes.

Fig. 3.12. FOE sandwich configuration schematic.

Both the input Vin and output Vout signals were acquired by using

a National Instrument (NI USB-6251 ) board and processed by the
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LabV iewr software. A schematic of the experimental setup is reported

in Fig. 3.13.

Fig. 3.13. IPMC FOE Experimental setup.

A preliminary linearity analysis based on experimental data has

been performed in order to determine the frequency band where the

FOE device can be approximated as linear. Under the linearity hypoth-

esis a frequency domain characterization approach was performed. It

has been based on the Bode Diagrams of the Transfer Function ob-

tained by the ratio between the output (Vout) and the input (Vin) volt-

age in the frequency domain:

G(s) =
Vout(s)

Vin(s)
(3.8)

Measurements have been performed on the two membranes FOE5h

and FOE20h. A set of sine voltages with amplitude of 4Vpp was ap-
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plied as input and the output voltage was measured. For each mem-

brane different measures were performer varying Vin frequency in the

range from 10mHz to 10kHz with 10Hz step. MatlabTMtools were

then used to estimate the modulus and phase of the acquired signals.

As literature has shown how IPMC membranes working as transduc-

ers present a nonlinear component in the electro-mechanical model and

show an hysteretic behavior in the relationship between applied voltage

and absorbed current [60] the hypothesis of linearity must be verified

in this work in order to consider the frequency response as a coher-

ent characterization for IPMC. Moreover, being the system nonlinear,

such characterization is valid only for the given input voltage ampli-

tude (4Vpp). Lissajous curves have been therefore studied in order to

characterize the linearity of the IPMC as FOE. A Lissajous curve was

obtained at each frequency for the complete experimental range for

both FOE5h and FOE20h. Fig. 3.14, Fig. 3.15, Fig. 3.16 and Fig. 3.17

show such curves for the device FOE5h.

Moreover Fig. 3.18 shows zoomed curves for sample frequencies of

50mHz, 1Hz, 9Hz and 4kHz. It is worth noticing that at low fre-

quencies the nonlinear component dominates and the Lissajous curves

have a non-elliptic shape. In particular under the 1Hz frequency the

curves show nonlinearity, while 1Hz is a frequency of transition from

nonlinearity to linearity. For frequencies higher than 1Hz the Lissajous

curves’ shape can be considered elliptic. The FOE20h shows the same

trend in the Lissajous curves, therefore the same conclusion about lin-

earity has been extended to it.
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Fig. 3.14. FOE5h Lissajous curves on measured Vin and Vout voltages in the frequency

range between 10mHz to 700mHz.

Fig. 3.15. FOE5h Lissajous curves on measured Vin and Vout voltages in the frequency

range between 800mHz to 50Hz.
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Fig. 3.16. FOE5h Lissajous curves on measured Vin and Vout voltages in the frequency

range between 60Hz to 3kHz.

Fig. 3.17. FOE5h Lissajous curves on measured Vin and Vout voltages in the frequency

range between 4kHz to 10kHz.
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Fig. 3.18. Shape analysis of FOE5h Lissajous curves on measured Vin and Vout at

50mHz (top-left), transition between non-elliptic to elliptic shape at 1Hz (top-right),

elliptic shape at 9Hz (bottom-left) and 4kHz (bottom-right).

Such considerations are confirmed by literature [60], where the

IPMC model as transducer is represented by a nonlinear component

connected to capacitive elements. At low frequencies the capacitance

are considered open circuits and the nonlinearity dominates the global

behavior. As the frequency increases the linear capacitive effect of

IPMC becomes significant and dominant with respect to the nonlinear

component. For that reasons the FOE device has been approximated

as linear in a frequency range from 1Hz to 10kHz. Given the conclu-

sion on linearity assessed by the Lissajous plots, the Bode Diagrams

of the (3.8) at each frequency have been obtained by using the exper-

imental data in the frequencies range between 10mHz to 10kHz for
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both the devices FOE5h and FOE20h in the linearity range from 1Hz

to 10kHz. In such a range, it was observed that both FOE devices

show a fractional order behavior, here identified with α, in a limited

span of frequencies where the Bode Diagrams present a module slope

of α∗20 dB
dec

and a phase lag of α∗90◦ both depending on the α ∈ ℜ frac-

tional order exponent. In the specific, in the frequency range between

1Hz to 100Hz:

• FOE5h has shown an average slope in the module diagram of 1 dB
dec

,

determining α = 0.05. The phase diagram showed an average phase

of −4.5◦ being coherent with the fractional exponent related to the

modules −α ∗ 90◦ = −4.5◦.

• FOE20h showed an average slope in the module diagram of 6 dB
dec

,

determining α = 0.3. The phase diagram showed an average phase

of −27◦ showing coherence with the fractional exponent related to

the modules −α ∗ 90◦ = 27◦.

In Fig. 3.19 and 3.20 the Module and Phase Diagrams of the 3.8 of

the FOE5h and FOE20h respectively are shown.

In Fig. 3.21 the linear approximation, expressed by the (3.9), of the

relationship between the fractional order exponent of the IPMC system

(α) and the variation of the absorption time (h) is shown.

α = 0.0066h+ 0.03 (3.9)
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Fig. 3.19. FOE5h Module and Phase Diagrams in frequencies range from 10mHz to

10kHz.

3.3.2 FOE devices with different Polyvinylpyrrolidone

dispersing agent concentrations

As introduced in previous sections, during the IPMCs manufactory pro-

cess, in order to increase the device performances, a dispersing agent

(Polyvinylpyrrolidone - PVP) is added. Considering this, three different

FOE membranes have been fabricated with different PVP concentra-

tions, 0.0005mol, 0.001mol and 0.002mol in order to study the rela-

tionship between such a fabrication parameter and the fractional order
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Fig. 3.20. FOE20h Module and Phase Diagrams in frequencies range from 10mHz to

10kHz.

dynamics of the FOE device itself. The membranes will be here re-

ferred to respectively as FOE0.0005, FOE0.001 and FOE0.002. The same

circuit used to characterize the FOE5h and FOE20h has been used

in this study and the membranes strip of 1x1cm were mechanically

fixed within a Plexiglas sandwich configuration as it is shown in Fig.

3.13. The input voltage signal (Vin = 4Vpp) was driven by the Agilent

33220A waveform generator and the output voltage (Vout) was mea-

sured through a pair of copper electrodes (1x1cm and thickness 35µm)
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Fig. 3.21. Linea approximation of α referred to absorption time variation.

printed on a PBC board and in direct contact with the entire platinum

electrodes. Both the input Vin and output Vout signals were acquired

by using a National Instrument (NI USB-6251 ) board and processed

by the LabV iewr software. A preliminary linearity analysis based on

experimental data has been performed in order to determine the fre-

quency band where the FOE device can be approximated as linear.

Under the linearity hypothesis a frequency domain characterization

approach was performed. It has been based on the Bode Diagrams of

the Transfer Function obtained by the ratio between the output (Vout)

and the input (Vin) voltage in the frequency domain. Measurements

have been performed on the three membranes FOE0.0005, FOE0.001 and

FOE0.002. A set of sine voltages with amplitude of 4Vpp was applied as
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input and the output voltage was measured. For each membrane differ-

ent measures were performer varying Vin frequency in the range from

100mHz to 9kHz with a100b step were a = 1, 2, ..., 9 and b = 0, 1, ..., 5

so to evaluate the logarithm plots in each point of the five decades. The

(3.8) Bode Diagrams, obtained by using the experimental data in the

frequencies range between 100mHz to 9kHz, of the three devices are

shown in Fig. 3.22.

Fig. 3.22. Bode Diagrams of FOE0.0005 (red), FOE0.001 (blue) and FOE0.002 (magenta).

As it was noticed by the plot analysis, the linearity range was as-

sumed in the decade from 10Hz to 90Hz. Moreover, being the system

nonlinear, such characterization is valid only for the given input volt-

age amplitude (4Vpp). Lissajous curves have been therefore studied in

order to characterize the linearity of the IPMC as FOE. A Lissajous

curve was obtained at each frequency for the complete experimental

range for both FOE0.0005, FOE0.001 and FOE0.002 devices. Fig. 3.23,
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Fig. 3.24 and Fig. 3.25 show such curves for the devices FOE0.0005,

FOE0.001 and FOE0.002 respectively highlighting the linearity behavior

(green circle) in that frequency range.

Fig. 3.23. FOE0.0005 Lissajous curves on measured Vin and Vout voltages at frequency

10Hz (purple) and 90Hz (blue).

In such a range, it was observed that both FOE devices show a

fractional order behavior in a limited span of frequencies where the

Bode Diagrams present a module slope of m ∗ 20 dB
dec

and a phase lag

of m ∗ 90◦ both depending on the m ∈ ℜ fractional order exponent.

This exponent was evaluated both for modules and phase Diagrams

and a singular consideration has been made: these devices presented a

different fractional order exponent for the two characteristics (module
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Fig. 3.24. FOE0.001 Lissajous curves on measured Vin and Vout voltages at frequency

10Hz (purple) and 90Hz (blue).

Fig. 3.25. FOE0.002 Lissajous curves on measured Vin and Vout voltages at frequency

10Hz (purple) and 90Hz (blue).
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and phase) in both three cases. In Tab. 3.3 the obtained value are

reported.

αgain αphase

FOE0005 0.0123 0.0057

FOE001 0.0084 0.0039

FOE002 0.0046 0.0013

Table 3.3. α values referred to different PVP concentrations.

In Fig. 3.26 the evaluated αgain and αphase in relation with the PVP

concentration variation are shown and analyzing the plots, the following

two linear approximations of the fractional exponent related to the

PVP concentration was obtained:

αgain = −5.13PV Pmol + 0.01486 (3.10a)

αphase = −2.93PV Pmol + 0.00716 (3.10b)

Fig. 3.26. Variation of αgain (on the left) and αphase (on the right) referred to PVP

concentration.
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With the (3.10a) and (3.10b) it was obtained a linear relationship

between the concentration of dispersing agent (PVP) used in the man-

ufactory process and the fractional order of the devices produced.



4

Concluding remarks

This Ph.D. Thesis was focused on Fractional Order Control and Frac-

tional Order Elements. The main goal was to highlight the new role

of Non-Integer Order Systems in the area of control engineering and

circuits. In the first chapter an introduction on fractional order systems

and an overview on the main principles of fractional calculus has been

reported. In the next parts the thesis describes different application of

such systems. The second chapter was dedicated to the introduction

of an effective auto-tuning procedure for PIλDµ controllers and their

analog and digital applications. The third chapter proposed an inno-

vative model of Ionic Polymer Metal Composites (IPMCs) devices and

their control. These models are able to better describe the behavior

of this polymer that are particularly attractive for possible applica-

tions in different fields, such as robotics, aerospace, biomedicine, etc.

In the same chapter two analysis on manufactory parameters choice

for IPMCs fabrication as Fractional Order Elements (FOEs) has been

proposed. In particular the absorption time and dispersing agent con-

centration parameters have been considered. These results represent a
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first steps toward a simplified model of IPMC as a compact electronic

FOE by defining the relationship between fabrication parameters, as

the absorption time and the dispersing agent concentration with the

fractional exponent and the bandwidth. These devices could represent

the starting building vlock for the implementation of analog fractional

order controllers.
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