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Abstract: We study and compare the time evolutions of concurrence and quantum discord in a driven
system of two interacting qubits prepared in a generic Werner state. The corresponding quantum
dynamics is exactly treated and manifests the appearance and disappearance of entanglement.
Our analytical treatment transparently unveils the physical reasons for the occurrence of such
a phenomenon, relating it to the dynamical invariance of the X structure of the initial state.
The quantum correlations which asymptotically emerge in the system are investigated in detail
in terms of the time evolution of the fidelity of the initial Werner state.

Keywords: sudden death of entanglement; quantum discord; Werner state

1. Introduction

Entanglement sudden death is a phenomenon that was widely investigated during recent years
in the case of open quantum systems [1] and represents the decrease of the entanglement to zero in
a finite time. For example, the entanglement sudden death was studied in the following quantum
systems: two atoms locally coupled to the modes of their cavities [2], two qubits in an X state under
the action of phase damping, amplitude damping, bistability noise [3], polarization-entangled photon
pairs under the influence of polarization mode dispersion [4], or amplitude damping channel [5].
On the other hand, the opposite concept, i.e., sudden birth of entanglement was considered in Ref. [6]
by using the dissipative process of spontaneous emission and in Ref. [7], where the dynamics of two
quantum emitters, which interact with a stationary electromagnetic field out of thermal equilibrium,
is in detail explained.

Over recent years a lot of attention has been devoted to the analysis of the combined process,
i.e., sudden death, followed by revival of entanglement. These two linked phenomena have been
investigated in the case of two qubits interacting with a common reservoir [8,9], trapped atoms or ions
under the influence of applied pulses [10], two cavities interacting with independent reservoirs [11],
quantum systems subjected to a classical random external field [12], two-level atoms in the presence
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of a single mode quantized field [13], dark-soliton qubits [14], a diamond sample interacting with a
solid-state spin bath [15].

In this paper, we investigate the quantum dynamics of two interacting qubits, each one subjected
to a local time-dependent magnetic field. Our main goal is to verify the occurrence of sudden death
and rebirth manifestations in the time evolution of the quantum correlations arising between the two
qubits in such a controlled, time-dependent, physical scenario. To this end we investigate the time
dependence of the concurrence to reveal the presence of entanglement between the two qubits. Since,
however, to know that the system is in a separable state does not preclude the possible existence
of nonclassical correlations in this state, in this paper we go beyond the concurrence. Indeed we
exactly evaluate in which way the quantum discord goes with time, since it captures all kinds of
nonclassical correlations (entanglement included) and then can be different from zero even when there
is no entanglement.

Quantum discord (QD) is defined in Ref. [16] as the difference between the quantum
generalizations of two equivalent classical expressions of the mutual information. It is of interest
to highlight that the quantum discord possessed by a bipartite system, especially when it is in a
separable state, is today considered a possible resource for the development of quantum technologies,
especially in the quantum computation field [17–19]. In other words, the idea that the presence of
quantum correlations necessarily requires the existence of entanglement must be considered wrong [20].
Thus, given that finding nonclassical correlations in a composite quantum system would provide a
strategic key to improving the yield of the quantum information processing, the study of quantum
discord has received a great impulse in recent years [21–24]. In general, unfortunately, the analytical
formula of quantum discord is difficult to be obtained, since it requires an extremization procedure.
The reason making computing QD so difficult stems from the fact that the time required for such a
target becomes exponentially larger and larger as a function of the dimension of the Hilbert space
of the bipartite system under scrutiny [25]. In the case of continuous variable systems, for example
Gaussian states, an explicit formula of quantum discord was however found, if one restricts the
set of all quantum measurements to Gaussian ones [26,27]. A comparison between discord and
entanglement of a two-mode Gaussian state, as well as the study of non-Gaussianity under the
influence of local baths was made in Refs. [28–31]. On the other hand, for discrete quantum systems
such as for two qubits, the characterization of quantum discord is difficult to be made in the general
case. For the particular situation of the so-called class of two-qubit X states, the quantum discord
was evaluated first numerically [32], and then analytically [33,34]. To exploit such a result in the
study of the quantum dynamics of our system, it is necessary to prepare it in a mixed X state. To this
end in this paper we assume that the initial state of the system is a generic Werner state [35]. It is
of relevance that quite recently a new method for synthetizing and characterizing these states have
been reported [36,37]. Werner states are X states exhibiting intriguing nonlocal correlations [38] and,
therefore, play an important role in the quantum information processing. All these features make
of special interest investigating their dynamics when the physical scenario evolves under controlled
time-dependent fields.

Our aim in this paper is two-fold: on one hand, we show that sudden death, followed by revival of
entanglement, occurs in the case of two-spin-1/2 particles in the presence of time-dependent magnetic
fields. On the other hand, a detailed comparison between the dynamics of concurrence and quantum
discord is made, carefully dwelling on those situations when the mixed state is separable, but is
described by non-zero quantum discord. Over recent years many papers comparing concurrence and
quantum discord in a 4-dimensional Hilbert space have been published. Some of them [33,39–42]
report this comparison in an appropriate space of the real parameters characterizing a priori selected
families of mixed states. Others, instead, show the dynamical evolution of concurrence and quantum
discord, generated in a chosen open and time-independent physical scenario [43–49]. At the best of
our knowledge only one paper analyzing the time evolution of concurrence versus that of quantum
discord, generated by a time-dependent Hamiltonian—when the system is prepared in a convex
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combination of two Bell states, has been published so far [50]. The analytical solutions found for the
Hamiltonian model given in Ref. [51] constitutes the platform on which the exact evaluation of both
concurrence and quantum discord on this paper is based.

The paper is organized as follows. In Section 2 we review the concept of the canonical form of X
states. This section is quite important, since all the mixed states used in this paper are X states and
the evaluation of quantum discord is based on transforming an arbitrary X state to its canonical form.
Section 3 is devoted to the Hamiltonian model of two-spin-1/2 particles subjected to time-dependent
magnetic fields. We show that the initial X structure of the density operator is preserved during
the evolution of the system under scrutiny. A detailed analysis of the dynamics of the concurrence
and quantum discord, including a comparison between their behaviors, is presented in Section 4 by
considering that at the initial time the density operator of the two qubits is a Werner state. A special
class of one real parameter two-qubit states, which represents an extension of that of Werner states,
is constructed easily showing that the separability condition of the Werner initial state still holds for
the evolved states too. By using the approach of Li [34] presented in Appendix B, we compute the
quantum discord of the two qubits subjected to magnetic fields. In addition, we show that sudden
death, followed by revival of entanglement, occurs for some interval of values for the parameter α

which characterizes the initial Werner state. Furthermore, we present in Section 5 an explanation
of the asymptotic behavior of the two measures of correlations studied in the previous sections,
i.e., concurrence and quantum discord. This interpretation is based on the time evolution of the fidelity
between the initial Werner state and the evolved Werner state. Our conclusions are drawn in Section 6.
The exact solutions of the two-spin-1/2 particles described by the Hamiltonian model of Section 3
are presented in detail in Appendix A. Appendix C is devoted to the analysis of the behavior of
both concurrence and quantum discord when constant magnetic fields are applied. The analytical
expression of the fidelity between the Werner state and the generalized Werner state is obtained in
Appendix D.

2. Preliminaries: Canonical Form of X States

The Bloch generalization of the density operator of a qubit to the case of two-qubit systems is
given by the parametrization introduced by Fano [52]. The general expression of a two-qubit density
operator acting in the Hilbert spaceHA ⊗HB is [52,53]:

ρ =
1
4

(
I ⊗ I + r · σ ⊗ I + I ⊗ s · σ +

3

∑
m,n=1

tmn σm ⊗ σn

)
, (1)

where σj, with j = 1, 2, 3 are the Pauli operators. Equation (1) represents the Fano parametrization of ρ.
The vectors r and s are real, their expressions being rj = Tr(ρ σj ⊗ I) and sj = Tr(ρ I ⊗ σj). The matrix
T defined by tmn is a real matrix, with tmn = Tr(ρ σm ⊗ σn), where m, n = 1, 2, 3.

Let us briefly discuss the transformation of a two-qubit density operator under a local unitary
transformation. For any single-qubit unitary transformation U there is a unique rotation O such that:

U n · σ U† = (O n) · σ. (2)

Let us denote by ρ̃ the transformed density operator obtained by applying a local unitary
transformation UA ⊗ UB: ρ̃ = UA ⊗ UB ρ U†

A ⊗ U†
B. Hence, the parameters r, s, and T transform

as [53]:

r̃ = OA r; s̃ = OB s,

T̃ = OA T OT
B , (3)

where OA and OB are related to UA and UB, respectively, through Equation (2).
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A widely studied family of two-qubit states is the so-called class of X states, whose density
operator is characterized by non-vanishing entries only along the diagonal and the anti-diagonal:

ρx =


ρ11 0 0 ρ14

0 ρ22 ρ23 0
0 ρ32 ρ33 0

ρ41 0 0 ρ44

 , (4)

where ρjj are real, with j = 1, 2, 3, 4, while the off-diagonal terms are complex. Let us denote
ρ14 = |ρ14| ei ϕ14 and ρ23 = |ρ23| ei ϕ23 . In addition, one has ρ41 = ρ∗14 and ρ32 = ρ∗23. The unit
trace condition is given by ∑4

j=1 ρjj = 1, while the positivity condition reads ρ11ρ44 ≥ |ρ14|2 and
ρ22ρ33 ≥ |ρ23|2. All the matrices are represented in this paper in the ordered computational basis
{| 00 〉, | 01 〉, | 10 〉, | 11 〉}. The Fano parametrization of an X state is given by:

rx : 0, 0, r;

sx : 0, 0, s; (5)

Tx =

 T11 T12 0
T21 T22 0
0 0 T33

 .

The link between the general form (4) and its Fano parametrization (5) is given by [54]:

r = ρ11 + ρ22 − ρ33 − ρ44,

s = ρ11 − ρ22 + ρ33 − ρ44,

T11 = 2 Re[ρ23 + ρ14],

T22 = 2 Re[ρ23 − ρ14],

T33 = ρ11 − ρ22 − ρ33 + ρ44,

T12 = 2 Im[ρ23 − ρ14],

T21 = −2 Im[ρ23 + ρ14].

One can diagonalize T by applying two rotations OA and OB along the Ox3-axis, associated with
the following local unitary operation, according to Equations (2), (3) [55–58]:

ŨA ⊗ ŨB = e−i (ϕ14+ϕ23) σ3/4 ⊗ e−i (ϕ14−ϕ23) σ3/4. (6)

The canonical form of a general X state is ρcan
x = ŨA ⊗ ŨB ρx Ũ†

A ⊗ Ũ†
B [55]:

ρcan
x =


ρ11 0 0 |ρ14|
0 ρ22 |ρ23| 0
0 |ρ32| ρ33 0
|ρ41| 0 0 ρ44

 . (7)

The Fano parametrization of the canonical form of the X state (7) is given by T = diag(c1, c2, c3):

rcan = r = ρ11 + ρ22 − ρ33 − ρ44,

scan = s = ρ11 − ρ22 + ρ33 − ρ44,

c1 = Tcan
11 = 2 (|ρ23|+ |ρ14|), (8)

c2 = Tcan
22 = 2 (|ρ23| − |ρ14|),

c3 = Tcan
33 = T33 = ρ11 − ρ22 − ρ33 + ρ44.
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Therefore, the canonical form of the Fano parametrization of the density operator of an X state is
given by:

ρcan
x =

1
4

(
I ⊗ I + r σ3 ⊗ I + s I ⊗ σ3 +

3

∑
j=1

cj σj ⊗ σj

)
. (9)

Since the quantum correlations remain invariant under local unitary transformations, the method
of bringing an arbitrary X state to its canonical form is of great importance. A deep understanding of
the description of the canonical form of the Fano parametrization of an X state is crucial for evaluating
different measures of quantum correlations. To compute the quantum discord of some specific X states,
we will use the approach presented here in Section 4.

3. Time-Dependent Hamiltonian Model and the Related Evolution Operator

Consider a two-spin-1/2 system under the influence of two time-dependent magnetic fields
Bk(t) = (0, 0, Bk(t)), where k = A, B. We denote by gA and gB the real, positive, dimensionless
coefficients that contain the corrections to the coupling terms between each spin and the local magnetic
field applied on it. One can define [51]:

ωk(t) =
1
2

µB gk Bk(t),

where k = A, B. The two-spin-1/2 Hamiltonian model we discuss here has been investigated in
Ref. [51]:

H = h̄ωAσ3 ⊗ I + h̄ωB I ⊗ σ3 + γ11σ1 ⊗ σ1 + γ22σ2 ⊗ σ2 + γ33σ3 ⊗ σ3 + γ12σ1 ⊗ σ2 + γ21σ2 ⊗ σ1. (10)

Such a model has been used [51] to describe two interacting spin-1/2’s subjected to local, generally
time-dependent, magnetic fields [ω1(t) and ω2(t)], while the coupling parameters are intended to be
time-independent. The first three interaction terms account for anisotropic Heisenberg interaction,
while the last two terms stem from asymmetric dipole-dipole [59] and Dzyaloshinskii-Moriya [60,61]
interactions.

In Ref. [51], it has been proved that as a consequence of the symmetry properties of H, the time
evolution operator, solution of the Schrödinger equation ih̄U̇ = HU, keeps the following X structure
at any time

U(t) =


a+ 0 0 b+
0 a− b− 0
0 −b∗− a∗− 0
−b∗+ 0 0 a∗+

 , a±(t) ≡ |a±(t)|eiφ±a (t), b±(t) ≡ |b±(t)|eiφ±b (t), (11)

where the parameters a±(t) and b±(t), in general, depend on the Hamiltonian parameters.
Since U(0) = I ⊗ I, then a±(0) = 1 and b±(0) = 0. In addition, it has been shown [51] that the

2× 2 unitary operators

U± = e∓iγ33t/h̄

(
a± b±
−b∗± a∗±

)
are the time evolution operators generated by the following single spin-1/2 Hamiltonians

H± =

(
Ω± Γ±
Γ∗± −Ω±

)
± γ33 I,

where
Ω±(t) = h̄[ωA ±ωB], Γ± = (γ11 ∓ γ22)− i(±γ12 + γ21). (12)
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An interesting dynamical property of the Hamiltonian model consists of the fact that the
X structure of an initial state is preserved during the evolution [50]. Indeed, suppose that the
two-spin-1/2 system is initially prepared in a general X state, as given by Equation (4). The non-zero
entries of the X-state ρ(t) = U(t)ρx(0)U†(t) may be expressed as follows

ρ11(t) = |a+|2ρ11 + |b+|2ρ44 + 2 Re[a+b∗+ρ14]

ρ14(t) = ρ∗41(t) = a2
+ρ14 − b2

+ρ41 − a+b+(ρ11 − ρ44)

ρ22(t) = |a−|2ρ22 + |b−|2ρ33 + 2 Re[a−b∗−ρ23] (13)

ρ23(t) = ρ∗32(t) = a2
−ρ23 − b2

−ρ32 − a−b−(ρ22 − ρ33)

ρ33(t) = |b−|2ρ22 + |a−|2ρ33 − 2 Re[a−b∗−ρ23]

ρ44(t) = |b+|2ρ11 + |a+|2ρ44 − 2 Re[a+b∗+ρ14].

We emphasize that such a dynamical decomposition was successfully used: (1) to bring to light
peculiar physical effects like the coupling-based Landau-Zener transitions in the two-qubit system [62],
as well as (2) to treat and solve the exact dynamics of more complex system like two interacting
qutrits [63,64], two coupled qubits [65] and N spin 1/2’s coupled through high order interaction
terms [66].

4. Dynamics of Concurrence and Quantum Discord of the Evolved Werner State for
Time-Dependent Magnetic Fields

The results mentioned in the previous section may be summarized claiming that the solution
of the dynamical problem of the two coupled spin-1/2’s may be traced back to the solution of two
independent single spin-1/2 dynamical problems [51]. However, depending on the time-profiles of
the two magnetic fields, we might not be able to analytically solve the sub-dynamical problems too.
In Ref. [51] the following exactly solvable time-dependent scenarios have been proposed:

Case 1. The two magnetic fields vary over time as follows

h̄ωA,B(t) =
|Γ+|

cosh(2τ+)
± |Γ−|

cosh(2τ−)
. (14)

Case 2. The two magnetic fields vary over time as follows

h̄ωA,B(t) =
|Γ+|

cosh(2τ+)
± |Γ−|

4

[
3

cosh(τ−)
− cosh(τ−)

]
, (15)

where we have defined

τ± :=
|Γ±|

h̄
t. (16)

We underline that such cases are just two exactly solvable examples that can be derived by
the knowledge of analytical solutions of the single spin-1/2 dynamical problem. Other analytically
solvable cases may be constructed based on the solutions reported in Refs. [67–73].

Let us suppose that at the initial time t = 0 the state of the two-spin-1/2 system is a Werner
state [35]:

ρ
(α)
W =

1− α

4
I ⊗ I + α |Ψ− 〉〈Ψ− |, (17)

where |Ψ− 〉 = 1√
2
(| 01 〉 − | 10 〉) is the singlet state and α ∈ [− 1

3 , 1]. The Werner state (17) is a
particular X state (4), being characterized by:
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ρ11 = ρ44 =
1− α

4
,

ρ22 = ρ33 =
1 + α

4
,

ρ23 = ρ32 = −α

2
,

with all the other entries equal to zero.
By using Equation (13) we find the expressions of the non-zero elements of the evolved density

matrix ρ(t) = U(t)ρ(α)W U†(t), where U(t) is given by Equation (11):

ρ11(t) = ρ44(t) =
1− α

4
,

ρ22(t) =
1 + α

4
− α Re[a−b∗−],

ρ23(t) =
α

2
(b2
− − a2

−) = ρ∗32(t), (18)

ρ33(t) =
1 + α

4
+ α Re[a−b∗−].

An equivalent expression of the evolved state can be written as follows:

ρ(t) =
1− α

4
I ⊗ I + α |ψ(t) 〉〈ψ(t) |, (19)

where we have denoted

|ψ(t) 〉 = U(t) |Ψ− 〉 = c01(t)| 01 〉+ c10(t)| 10 〉. (20)

The states (20) belong to the class of the so-called Werner–Popescu states [38], since the
evolution operator U cannot be represented as the tensorial product of unitary operators acting
in the bidimensional Hilbert spaces of the two qubits. The time-dependent coefficients c01(t) and c10(t)
are given by:

c01(t) =
1√
2

exp
(

i
γ33

h̄
t
)
(a− − b−) , (21)

c10(t) = − 1√
2

exp
(

i
γ33

h̄
t
)
(a∗− + b∗−) . (22)

In the following sections, we investigate the behavior of the concurrence and quantum discord
for the two cases (14) and (15), with the two qubits initially prepared in the Werner state (17).

4.1. Concurrence

To investigate the dynamics of the correlations, we use as a measure of entanglement of the
two qubits the concurrence, which was introduced by Wootters [74,75]. Consider a pure state | φ 〉 =
a | 00 〉+ b | 01 〉+ c | 10 〉+ d | 11 〉. Then the concurrence for such a state is:

C(| φ 〉) = 2 |a d− b c|. (23)

If the initial state is the singlet one |Ψ− 〉, i.e., the Werner state (17) with α = 1, then the evolved
state under the influence of the magnetic fields is given by |ψ(t) 〉 (20).

The concurrence has the expression C(|ψ(t) 〉) = 2 |c01 c10| according to Equation (23), where
c01 and c10 are given by Equations (21) and (22). With the help of Equations (A4) and (A8) from the
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Appendix A, we find the analytical expressions of the concurrence for the two cases of the applied
magnetic fields:

C(|ψ(t) 〉) =
√

1− tanh2(2τ−) sin2(2τ−) for the Case 1 of Equation (14);

C(|ψ(t) 〉) =

√
1− 4 tanh2(τ−)

cosh2(τ−)
sin2[sinh(τ−)] for the Case 2 of Equation (15). Both expressions

were first written in Ref. [51]. The dynamics of the concurrence is shown in Figure 1. By using
the analytical expression of concurrence of the state |ψ(t) 〉, one obtains that the concurrence never
vanishes in both cases of the applied fields.

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

Τ-

C

0 1 2 3 4 5 6
0.2

0.4

0.6

0.8

1.0

Τ-

C

Figure 1. Concurrence when the state at t = 0 is the singlet state |Ψ− 〉 in the Case 1 of
Equation (14)—left, and in the Case 2 of Equation (15)—right.

If ρ is the density operator of a two-qubit system, then its spin-flipped state is given by ρ′ =

(σ2 ⊗ σ2) ρ∗ (σ2 ⊗ σ2), where ρ∗ is the complex conjugate of ρ. The matrix ρ ρ′ is a non-Hermitian
matrix [74,75], and it can be proven [76] that its four eigenvalues are real and non-negative. Let us
denote these eigenvalues by ν1, ν2, ν3, and ν4, in decreasing order. The concurrence is defined by
C(ρ) = max{√ν1 −

√
ν2 −

√
ν3 −

√
ν4, 0}.

The expression of the concurrence of the Werner state (17) is [33]:

C(ρW) = max
{

3 α− 1
2

, 0
}

.

For α ∈ ( 1
3 , 1] the concurrence is greater than zero, which means that the Werner state (17)

is inseparable.
The expression of the concurrence of an arbitrary X state was found in Ref. [3]:

C(ρx) = 2 max {0, |ρ23| −
√

ρ11 ρ44, |ρ14| −
√

ρ22 ρ33} . (24)

Let us define the state | ξ 〉 of two qubits as follows:

| ξ 〉 = µ| 01 〉+ ν| 10 〉, (25)

with µ and ν complex parameters satisfying |µ|2 + |ν|2 = 1. We construct a special class of two-qubit
mixed states, which includes the family of the Werner state, as follows:

η
(α)
µ,ν =

1− α

4
I ⊗ I + α | ξ 〉〈 ξ |, (26)

where α ∈ [− 1
3 , 1] and the two complex parameters µ and ν satisfy the normalization condition of

| ξ 〉. It is worth noticing that not all the states belonging to the class defined by Equation (26) are
Werner–Popescu states, since some of them may be unitarily generated acting independently on the
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two qubits. For µ = 1/
√

2 and ν = −1/
√

2, the state η
(α)
µ,ν becomes the Werner state (17). The mixed

states ρ(t) of Equation (19) is a subclass of the set of states η
(α)
µ,ν , obtained for the particular case

µ = c01(t) and ν = c10(t), with c01 and c10 given by Equations (21) and (22). The state (26) is an X state
described by the non-zero elements:

ρ11 = ρ44 =
1− α

4
,

ρ22 =
1− α

4
+ α |µ|2,

ρ33 =
1− α

4
+ α |ν|2,

ρ23 = α µ ν∗.

By using the expression of the concurrence of an X state given by Equation (24), one obtains:

C(η(α)
µ,ν ) = max {0, g (α, µ)} , (27)

where
g (α, µ) = 2 |α| |µ|

√
1− |µ|2 − 1− α

2
. (28)

Let us analyze in detail the expression of the concurrence, by investigating the two possible
intervals for α. For α ∈ [− 1

3 , 1
3 ], one has g (α, µ) ≤ 0 for any |µ| ∈ [0, 1] and, therefore, the concurrence

is equal to zero:

C(η(α)
µ,ν ) = 0 for any |µ| ∈ [0, 1] and α ∈

[
−1

3
,

1
3

]
. (29)

Since ρ(t) is a subclass of the mixed states η
(α)
µ,ν , this fact explains the vanishing concurrence for

ρ(t) characterized by α ≤ 1/3 for both cases of the two magnetic fields shown in Figures 2 and 3-left.
For α ∈

(
1
3 , 1
]
, instead, the equation g (α, µ) = 0 may be cast in the following form:

α =
1

1 + 4 |µ|
√

1− |µ|2
. (30)

If we represent Equation (30) in the α-|µ| plane, the curve α(|µ|) distinguishes the region wherein
the concurrence vanishes from the one where the concurrence is positive. In other words, Equation (30)
defines in the α-|µ| plane the border between appearance and disappearance of entanglement between
the two spins within the class of the generalized Werner states ηα

µ,ν. In particular when α ≤ 1/3 the
concurrence is zero whatever µ is. When, instead, α > 1/3 there always exists an α-dependent interval
[|µ1|, |µ2|] within which the concurrence is different from zero. In Figure 4 we plot α in terms of |µ| by
using Equation (30) for which the concurrence of the state η

(α)
µ,ν is equal to zero.

We obtain the following expression of the concurrence of the state η
(α)
µ,ν :

C(η(α)
µ,ν ) =


0 for |µ| ∈

[
0, 1

2 −
√

3α2+2α−1
4α

]
2 α |µ|

√
1− |µ|2 − 1−α

2 for |µ| ∈
(

1
2 −

√
3α2+2α−1

4α , 1
2 +

√
3α2+2α−1

4α

)
0 for |µ| ∈

[
1
2 +

√
3α2+2α−1

4α , 1
]

It is easy to see that C(η(α)
µ,ν ) = C(ρW) = (3α− 1)/2 under the condition |µ| = 1/

√
2. This implies,

in particular, that we get the same value of the concurrence of ρW [Equation (17)] if we substitute |Ψ− 〉
with |Ψ+ 〉.

It is worth noticing, in addition, that
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η
(α)
µ,ν (t) =

1− α

4
I ⊗ I + α | ξ(t) 〉〈 ξ(t) |,

meaning that the generalized Werner states η
(α)
µ,ν evolve keeping their α-dependent structure. Hence

the time evolution of a generalized Werner state characterized by a particular value of α generates
only “horizontal movements” in the α-|µ| plane in Figure 5. This circumstance implies that during its
time evolution, a generalized Werner state may enter into or go out the non-zero-concurrence region
identified in Figure 5. For example, if we consider the entangled generalized Werner state defined by
α = µ = 0.5 as the initial condition, it may happen that at a certain time instant, µ becomes less than
≈0.25. In this case, then, a sudden death of entanglement is exhibited. Of course, if |µ| comes back to
its original value in a finite interval of time, a rebirth of entanglement would follow a plateau of zero
concurrence. Such a possibility is confirmed by the plots reported in a following subsection, where we
compare the concurrence and the quantum discord in time for our two-spin system under the two
exactly solvable time-dependent scenarios (14) and (15).

Figure 2. Concurrence (left) and quantum discord (right) for the two-qubit system when the initial
state is the Werner state (17) in the Case 1 of Equation (14) in terms of the parameter α ∈ [− 1

3 , 1] of the

Werner state and τ− = |Γ− |
h̄ t .

Figure 3. Concurrence (left) and quantum discord (right) for the two-qubit system when the initial
state is the Werner state (17) in the Case 2 of Equation (15) in terms of the parameter α ∈ [− 1

3 , 1] of the

Werner state and τ− = |Γ− |
h̄ t.



Entropy 2020, 22, 785 11 of 24

0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

ÈΜÈ

Α

Figure 4. Plot of α in terms of |µ| by using Equation (30) for which the generalized Werner state η
(α)
µ,ν is

characterized by a vanishing concurrence.

Figure 5. Concurrence of the generalized Werner states η
(α)
µ,ν in terms of α and |µ|.

Suppose that the initial state of the two qubits is the Werner state ρ
(α)
W . By using Equation (27),

we find the analytical expression of the concurrence of the evolved Werner state ρ(t) of Equation (19).
When the applied magnetic fields have the expression of Equation (14), i.e., Case 1, we get:

C(ρ(t)) = max
{

0, |α|
√

1− tanh2(2τ−) sin2(2τ−)−
1− α

2

}
. (31)

The analytical expression of the concurrence when the magnetic fields are described by Case 2,
i.e., by Equation (15), is given by:

C(ρ(t)) = max

{
0, |α|

√
1− 4

tanh2(τ−)

cosh2(τ−)
sin2[sinh(τ−)]−

1− α

2

}
. (32)
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For obtaining the analytical expressions of the concurrence given by Equations (31) and (32), we
have employed Equations (A2), (A4) and (A5) for Case 1, and Equations (A6), (A8) and (A9) for Case 2,
respectively. In addition, we have considered γ12 = γ21, which leads to φΓ− = 0 (see Equation (A1)).

We plot the concurrence of the state ρ(t) in terms of the parameter α of the initial Werner state
and τ− defined by Equation (16) in Figures 2 and 3-left. From them one can notice that the concurrence
is equal to zero for ρ(t) characterized by α ≤ 1/3 for both cases, Case 1 and Case 2, of the two
applied magnetic fields. We have presented an analytical proof of this fact, by showing that according
to Equation (29), zero concurrence occurs for the generalized Werner state η

(α)
µ,ν for the particular α

satisfying α ≤ 1/3 for any value of µ.

4.2. Quantum Discord

A different important measure of quantum correlations we investigate in this paper is quantum
discord. The quantum discord can be evaluated for an X state by using the approach presented
in Appendix B. Since the evolved Werner state ρ(t) is an X-state, we can use the results given in
Appendix B for computing the quantum discord according to Equation (A17): D(ρAB) = I(ρAB)−
C(ρAB). We plot, in addition, quantum discord of ρ(t) in terms of α and τ− in Figures 2 and 3-right.

4.3. Comparison between the Concurrence and Quantum Discord of the Evolved Werner State

Our purpose in this subsection is to make a detailed comparison between the concurrence and
quantum discord of a given evolved Werner state ρ(t), i.e., for a fixed value of α.

We present the evolution of both concurrence and quantum discord in terms of τ− defined by
Equation (16) for Case 1 and Case 2 of the applied magnetic fields. For α ∈

[
− 1

3 , 1
3

]
, both in Case 1

and Case 2, the concurrence is equal to zero as expected (see Figures 6a and 7a). For α ∈
(

1
3 , 1
)

in
Case 1, there are zero-plateaux for concurrence and the discord is non-zero (see Figure 6b). In this case,
the phenomenon of sudden death of entanglement, followed by revival of entanglement occur many
times.
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Figure 6. Concurrence (black, solid) and quantum discord (red, dashed) when the state at t = 0 is the
Werner state (17) in the Case 1 of Equation (14) in terms of τ− = |Γ− |

h̄ t for: (a) α = 0.25, (b) α = 0.55.

In Case 2, for α ∈
(

1
3 , 0.582

)
, there is a unique zero-plateau for concurrence and the discord is

non-zero [see Figure 7b]. It is interesting to note that such a zero-plateau zone reduces to a single
point when α ≈ 0.582 at the time instant τ− ≈ 1.115 (see Figure 7c). The quantum discord, instead,
remains different from zero: D ≈ 0.049. For α ∈ (0.582, 1), the phenomenon of sudden death and
revival disappears since in this case the concurrence, as well as the quantum discord, is larger than
zero (see Figure 7d).
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We emphasize that the plots reported and discussed above confirm the predictions exposed in a
previous subsection. Such plateaux, indeed, can be explained in the light of the observation based on
the α− |µ| relation in Equation (30).

Finally, we underline that in Ref. [77], Xia et al. have found an analogue process to our case (c)
above on concurrence, but for quantum discord. They have investigated the dynamics of an open
system, where the quantum channel was a stochastic dephasing channel along the z-direction. In
Figure 7 of Ref. [77], they have shown that sudden death and sudden birth of quantum discord occur
for a two-qubit Bell-diagonal state. which presents a curve with the minimum value zero for quantum
discord. One knows that if the quantum discord is equal to zero, then the concurrence is also zero,
since a zero-discord state is separable. Therefore, in Ref. [77], they have presented sudden death and
birth of both quantum discord and concurrence.

A further interesting investigation to be made is the case of constant magnetic fields applied
on the two qubits found initially in the Werner state. This needs a different treatment as shown in
Appendix C. A new parameter β is introduced, which influences the behavior of the shape of both
concurrence and quantum discord as one can see in Figures A1 and A2.
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Figure 7. Concurrence (black, solid) and quantum discord (red, dashed) when the state at t = 0 is the
Werner state (17) in the Case 2 of Equation (15) in terms of τ− = |Γ− |

h̄ t for: (a) α = 0.25, (b) α = 0.55,
(c) α = 0.582, (d) α = 0.9.

5. Dynamical Origin of the Asymptotic Behavior of Quantum Correlations

In this section, we provide a dynamical interpretation of the asymptotic behavior of both
the concurrence and quantum discord exhibited by the system. To this end we evaluate the time
dependence of the fidelity of the Bell state |Ψ− 〉 with respect to its evolved state |ψ(t) 〉 = U(t) |Ψ− 〉,
defined in Equation (20), getting:

F (|Ψ− 〉, |ψ(t) 〉) = |〈ψ(t)|Ψ−〉|2 = |a−(t)|2 cos2 (φ−a )+ |b−(t)|2 sin2 (φ−b ) , (33)
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in accordance with Equations (21) and (22). In Figure 8 we plot the fidelity (33) versus τ− highlighting
different asymptotic behaviors for large τ− in the two cases, constant and oscillatory, respectively.
Exploiting Equations (A4) and (A5) one easily confirms that in Case 1 the asymptotic behavior of
F (|Ψ− 〉, |ψ(t) 〉) is time-independent and equal to 1/2. This circumstance suggests that the asymptotic
evolved state |ψ(τ− � 1) 〉 is an equally weighted coherent superposition of the Bell states |Ψ+ 〉
and |Ψ− 〉. Such an intuitive prediction may be analytically supported mathematically acquiring the
following form

|ψ(τ− � 1) 〉 ≈ −ie−2iτ− |Ψ+ 〉+ |Ψ− 〉√
2

. (34)

The concurrence of this state reads C = | cos(2τ−)| and reproduces the asymptotic oscillations
exhibited by the concurrence C(|ψ(τ−) 〉) in Figure 1-left. The structure of |ψ(τ− � 1) 〉, as given by
Equation (34), transparently explains the dynamical origin of the oscillations dominating the time
evolution of the concurrence (as well as of the quantum discord) for large τ−.

In view of Equations (A8) and (A9), the fidelity in Case 2, instead, asymptotically exhibits infinitely
many maxima closer and closer to one as well as infinitely many minima closer and closer to zero.
Such a behavior is well illustrated in Figure 8-right and suggests that the system asymptotically tends
to reach a complete oscillatory regime between the states |Ψ− 〉 and |Ψ+ 〉. Even in this case such a
prediction may be legitimated evaluating |ψ(τ− � 1) 〉 related to Case 2, which can be cast in the
following form

|ψ(τ− � 1) 〉 ≈ − cos
(

sinh(τ−)
2

− 3π

4

)
|Ψ+ 〉 − i sin

(
sinh(τ−)

2
− 3π

4

)
|Ψ− 〉. (35)

One can easily check that the concurrence for such a state reaches its maximum value C = 1.
It is possible to interpret such a result claiming that the system goes from |Ψ− 〉 to |Ψ+ 〉 and back
through states whose concurrence is closer and closer to one as time goes on. Incidentally, examining
Equation (35), one can convince oneself that the semi-period of these oscillations progressively vanishes.
Thus, as in Case 1, the structure (35) of |ψ(τ− � 1) 〉 in Case 2 transparently brings to light the
dynamical origin of the plateaux exhibited by the concurrence as well as by the quantum discord in
Figure 8-right.
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Figure 8. Fidelity when the initial state is the singlet state, i.e., α = 1 in Case 1—left and in
Case 2—right.

Finally, in Figure 9 the fidelity between the Werner state and the evolved Werner state is reported
versus the dimensionless time τ− for different values of α. The analytical derivation of the expression
of the fidelity between the Werner state and the generalized Werner state is reported in Appendix D by
Equation (A24). Furthermore, one replaces the parameters µ and ν of the generalized Werner state
by c01(t) and c10(t), respectively, according to their expressions (21) and (22) in order to obtain the
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analytical expression of the fidelity between the Werner state and the desired state, i.e., the evolved
Werner state.

We see that the curves of Figure 9 exhibit a time behavior qualitatively similar to the ones related
to the pure state |Ψ− 〉. The physical reason lies on the fact that as pointed out before, the time
evolution of the Werner state, according to the Hamiltonian model under scrutiny, is traceable back by
the time evolution of the state |Ψ− 〉. The parameter α practically scales the curves as it happens for
the fidelity in Figure 9 as well as for the concurrence in Figure 7.
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Figure 9. Fidelity versus dimensionless time τ− = |Γ− |
h̄ t when the initial state is the Werner state in

Equation (17) for α = 0.25 (black, solid), α = 0.55 (red, dashed), and α = 0.9 (blue, dot-dashed) in
Case 1—left and Case 2—right.

6. Conclusions

In this paper, we have investigated the emergence and the time behavior of the quantum
correlations generated in a driven system of two interacting spin-1/2’s subjected to local
time-dependent magnetic fields. To this end, we have studied the evolution of the concurrence and the
quantum discord when the system is acted upon by specific fields for which the exact time evolution
operator is known [51]. The specific time-dependent (controlled) scenarios we analyzed are based on
the capability of generating a sech pulse. The problem of a single spin subjected to a sech pulse dates
back to the 1930s and has been formulated and treated by Rosen and Zener [78]. Since the experimental
setup for such a pulse turns out to be easily realizable [79–81], even today it is still of theoretical and
applicative interest and appears indeed in many-spin Hamiltonian models [82–84]. The application of
inhomogeneous and time-dependent magnetic fields on a pair of coupled spins exploits the so-called
Scanning Tunneling Microscopy (STM) [85–91]. The exchange interaction between the spin on the
tip of the Microscope and the spin of interest in the pair origins the local and desired magnetic field.
The geometrical relative configuration between the tip and the target spin is adjustable enabling,
at least in principle, the generation of effective local time-dependent magnetic fields at will. It is
of relevance moreover to emphasize that even if the exact treatment of the quantum dynamics of
time-dependent Hamiltonian models are rare, our ability to find the evolution operator is not limited
to the cases we have reported [70]. The two scenarios selected in this paper are exemplary ones since
they are non-trivial, exactly treatable as well as within the experimental reach.

The symmetry properties of our time-dependent Hamiltonian model play a crucial role since it
guarantees that an initial X density matrix evolves keeping such a structure at any time instant and, on
the other hand, that the quantum discord of such a state could be analytically determined [50]. This is
why we choose an X state as initial condition and in this class we concentrate on generic α-parametric
Werner states.

Our analysis exactly predicts in both time-dependent scenarios the presence of sudden
death-sudden revival phenomena in the concurrence as well as a non-vanishing quantum discord.
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Many papers deal with the same issue, but mainly focusing on open quantum systems where
death and rebirth of entanglement stems instead from the interaction with the surrounding
environment [8,9,13,14]. We emphasize that our prediction of the zero-concurrence plateaux is
based on the knowledge of the structure of the class of the extended Werner states η

(α)
µ,ν , which

enables a transparent distinction between domains of zero concurrence and domains of non-vanishing
concurrence in the α-µ parameter space as illustrated in Figures 4 and 5.

Comparing the two plots in Figure 1, we finally notice a peculiar difference in the asymptotic
behavior of concurrence and quantum discord in the two controlled scenarios investigated in this
paper. We succeeded in interpreting the dynamical origin of such a difference evaluating the time
behavior of the fidelity of the initial Werner state with respect to the evolved one.

A possible perspective of the present work could consist of studying the same two-spin system in
the presence of a quantum harmonic oscillator bath making in this way more realistic the physical
scenario. The quantum dynamics of this open quantum system could be treated with the Feshbach
approach leading to the consideration of appropriate effective non-Hermitian Hamiltonians [92,93] or,
alternatively, it could be based on the partial Wigner transpose approach [94].
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Appendix A. Analytical Solutions of the Hamiltonian Model

In this Appendix we provide some results that were obtained in Ref. [51]. Let us define:

φΓ± := − arctan
[
±γ12 + γ21

γ11 ∓ γ22

]
. (A1)

Case 1. If the two magnetic fields vary over time as follows

h̄ωA,B(t) =
|Γ+|

cosh(2τ+)
± |Γ−|

cosh(2τ−)
,

then the solutions for the two fictitious spin-1/2 particles are (see Equation (11)):

|a+(t)| =

√
cosh(2τ+) + 1

2 cosh(2τ+)
, |b+(t)| =

√
cosh(2τ+)− 1

2 cosh(2τ+)
, (A2)

φ+
a (t) = − arctan[tanh(τ+)]− τ+, φ+

b (t) = φΓ+ − arctan[tanh(τ+)] + τ+ −
π

2
, (A3)

|a−(t)| =

√
cosh(2τ−) + 1

2 cosh(2τ−)
, |b−(t)| =

√
cosh(2τ−)− 1

2 cosh(2τ−)
, (A4)

φ−a (t) = − arctan[tanh(τ−)]− τ−, φ−b (t) = φΓ− − arctan[tanh(τ−)] + τ− −
π

2
. (A5)

Case 2. Likewise, if the two local magnetic fields change in time as

h̄ωA,B(t) =
|Γ+|

cosh(2τ+)
± |Γ−|

4

[
3

cosh(τ−)
− cosh(τ−)

]
,
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then the solutions, in this case, read

|a+(t)| =

√
cosh(2τ+) + 1

2 cosh(2τ+)
, |b+(t)| =

√
cosh(2τ+)− 1

2 cosh(2τ+)
, (A6)

φ+
a (t) = − arctan[tanh(τ+)]− τ+, φ+

b (t) = φΓ+
− arctan[tanh(τ+)] + τ+ −

π

2
, (A7)

|a−(t)| =
1

cosh(τ−)
, |b−(t)| = tanh(τ−), (A8)

φ−a (t) = − arctan
[
tanh

( τ−
2

)]
− 1

2
sinh(τ−), φ−b (t) = φΓ− − arctan

[
tanh

( τ−
2

)]
+

1
2

sinh(τ−)−
π

2
. (A9)

Appendix B. Quantum Discord for X States

Quantum discord is an important tool for measuring quantum correlations in a bipartite quantum
system, which was defined by Olivier and Zurek [16], being based on the non-equivalence in the
quantum case of two classical definitions of the mutual information. The classical mutual information
can be defined in two ways:

I(A : B) = H(A) + H(B)− H(A, B); (A10)

J(A : B) = H(A)− H(A|B), (A11)

where H is the Shannon entropy, while H(A|B) is the conditional Shannon entropy. In the classical
case, the definitions (A10) and (A11) coincide.

For the generalization to the quantum case, one must consider a bipartite state ρAB [16]:

I(ρAB) = S(ρA) + S(ρB)− S(ρAB), (A12)

with S(ρ) being the von Neumann entropy S(ρ) = −Tr(ρ log2 ρ), while ρA(B) := TrB(A) (ρAB) denote
the reduced states of the two subsystems. Equation (A12) represents the quantum mutual information
between the two subsystems, A and B. The quantum analogue of the formula (A11) is more complicated
and depends on the von Neumann measurements made on the second system B. Let us denote by
{ΠB

k } the set of one-dimensional projectors performed on the system B. The final state of the system
A, after the measurement on the system B led to the outcome j is [16]:

ρA|ΠB
j
=

1
pj

TrB(I ⊗ΠB
j ρAB I ⊗ΠB

j ), (A13)

where the probability is given by pj = Tr(ρAB I ⊗ΠB
j ). The quantum conditional entropy is obtained

by considering all the possible outcomes:

S(ρA|{ΠB
j }
) = ∑

j
pj S(ρA|ΠB

j
). (A14)

The associated quantum mutual information, which generalizes Equation (A11), is

J (ρAB)|{ΠB
j }

= S(ρA)− S(ρA|{ΠB
j }
). (A15)

In Refs. [16,95] the classical correlation is defined by considering the supremum over all the
possible von Neumann measurements {ΠB

k }:

C(ρAB) = sup
{ΠB

j }
J (ρAB)|{ΠB

j }
. (A16)
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The quantum A-discord is defined as [16]:

DA(ρAB) = I(ρAB)− C(ρAB), (A17)

being a measure of quantum correlations of a two-party quantum state. In addition, there is a
second definition, namely the quantum B-discord, which considers the von Neumann measurements
performed on the first system. The quantum discord is asymmetric under the change A ↔ B, i.e.,
it depends on which subsystem the measurements are made on. In this paper, we use the quantum
A-discord, which we will call it briefly D(ρ) = DA(ρ).

We have shown in Section 3 that if one starts with a two-qubit system found in an X state, then
the evolved state under the influence of the two external magnetic fields is also an X state described
by ρx(t). If the input state is the Werner state, then the elements of the density operators ρx(t) are
given by Equations (18), whose Fano parametrization is given by Equation (5), i.e., being described
by a non-diagonal matrix T. By applying the local unitary transformation (6), one can bring the state
ρx(t) to its canonical form given by Equation (9), as we have discussed in Section 2. Furthermore, we
use the algorithm found by Li et al. for evaluating the quantum discord of an X state in the canonical
form [34]. First, we compute the parameters r(t), s(t), c1(t), c2(t), c3(t) by using Equations (8) and (18).
The eigenvalues of the canonical X state (9) are given by [34]:

λ1,2 =
1
4

[
1− c3 ±

√
(r− s)2 + (c1 + c2)2

]
,

λ3,4 =
1
4

[
1 + c3 ±

√
(r + s)2 + (c1 − c2)2

]
. (A18)

Let us define the monotonically decreasing function u for x ∈ [0, 1]:

u(x) = −1− x
2

log2(1− x)− 1 + x
2

log2(1 + x). (A19)

One can easily evaluate the von Neumann entropy of the reduced density operators: S(ρA) =

1 + u(r), S(ρB) = 1 + u(s). According to Equation (A12), the quantum mutual information has
the expression:

I(ρAB) = 2 + u(r) + u(s) +
4

∑
j=1

λj log2 λj. (A20)

Let us consider the following functions [34]:

f1 = −1 + r + s + c3

4
log2

1 + r + s + c3

2(1 + s)
− 1− r + s− c3

4
log2

1− r + s− c3

2(1 + s)

−1 + r− s− c3

4
log2

1 + r− s− c3

2(1− s)
− 1− r− s + c3

4
log2

1− r− s + c3

2(1− s)
,

f2 = 1 + u
(√

r2 + c2
1

)
, f3 = 1 + u

(√
r2 + c2

2

)
.

Li et al. have proved that the classical correlation has the expression [34]:

C(ρAB) = S(ρA)−min{ f1, f2, f3}. (A21)

Therefore, the quantum discord can be evaluated by using Equation (A17).
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Appendix C. Comparison between Concurrence and Quantum Discord of the Werner State
Subjected to Constant Magnetic Fields

Let us now investigate the case of constant applied fields, which means that both ωA and ωB are
time-independent. According to Equation (12), one obtains that also Ω± are constant. In addition, we
consider γ11 = γ22 = c and γ12 = γ21. By using Equation (12), one obtains the expression of Γ−, i.e.,
Γ− = 2 c. Therefore, we get:

a±(t) = e∓iγ33t/h̄
[

cos(τ±)− i
Ω±
ν±

sin(τ±)
]

,

b± = −ie∓iγ33t/h̄ Γ±
ν±

sin(τ±),

where we have denoted ν± ≡
√

Ω2
± + |Γ±|2, τ− = ν−t/h̄. With the notation Ω− = β c, one obtains:

Ω−
ν−

=
β√

β2 + 4
,

Γ−
ν−

=
2√

β2 + 4
.

According to Equation (24), the expression of the concurrence in the case of constant
fields becomes:

C = max

{
0, α

√
1− 16β2

(β2 + 4)2 sin4(τ−)
− 1− α

2

}
. (A22)

Concurrence and quantum discord for the time-independent case are reported in Figures A1
and A2. We remark that both the parameter α and the parameter β influence the time behavior of both
the concurrence and the discord. In particular, we see that the parameter α sets the range of variation
of the curves; precisely, when α→ 1 both the two quantities are closer to higher values, as it can be
appreciated also from Figures 6 and 7. The parameter β, instead, qualitatively determines the shape of
these curves and it is responsible for the presence of possible plateaux of the concurrence, as Figure A2
clearly shows.
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Figure A1. Concurrence (black, solid) and quantum discord (red, dashed) when the initial state is the
Werner state (17) in the case of constant fields, when β = 1, for: (a) α = 0.55, (b) α = 0.75, (c) α = 0.9.
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Figure A2. Concurrence (black, solid) and quantum discord (red, dashed) when the initial state is the
Werner state (17) in the case of constant fields, when β = 2, for: (a) α = 0.55, (b) α = 0.75, (c) α = 0.9.
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Appendix D. Fidelity between the Werner State and the Generalized Werner State

In the following we are interested in computing the fidelity between the Werner state and the
evolved state ρ(t). We have proved in Section 4 A that the state ρ(t) is a particular state of η

(α)
µ,ν of

Equation (26), obtained for the particular case µ = c01(t) and ν = c10(t).
The fidelity between two mixed states ρ1 and ρ2 is defined by [96]:

F (ρ1, ρ2) :=
[

Tr
√

ρ1/2
1 ρ2 ρ1/2

1

]2
. (A23)

Further we evaluate the fidelity between the Werner state ρW and the state η
(α)
µ,ν . Let us denote by

P, Q, R the following parameters:

P =
1
8
(1− α2) +

1
8

α (1− α) |µ + ν|2 + 1
8

α (1 + 3 α) |µ− ν|2,

Q =
1

256
(1− α)3(1 + 3 α) +

1
128

α (1 + 3α)(1− α)2
(
|µ + ν|2 + |µ− ν|2

)
.

The eigenvalues of ρ1/2
W η

(α)
µ,ν ρ1/2

W are:

ζ1 = ζ2 =
(1− α)2

16
;

ζ3 =
1
2

(
P +

√
P2 − 4 Q

)
;

ζ4 =
1
2

(
P−

√
P2 − 4 Q

)
.

Therefore, the fidelity has the expression

F (ρW , η
(α)
µ,ν ) =

(
1− α

2
+
√

ζ3 +
√

ζ4

)2
. (A24)
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