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Nothing in life is to be feared, it is only to be understood. Now is the time to
understand more, so that we may fear less.

-Marie Curie-
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CHAPTER 1

Introduction

OR is a relatively new mathematical field, that has its roots in quantitative analysis
of real-world phenomena with the aim of supporting military operations, business
tactics and strategy, social policy interventions, as well as many other applications.
In 1978, the Operational Research Society of the UK, sought to provide a wide-
spread definition of Operations Research (OR) as the application of the methods

of science to the complex problems arising in the direction and management of

large systems of men, machines, materials and money in industry, business, gov-

ernment and defence. The distinctive approach is to develop a scientific model

of the system, incorporating measurements of factors such as chance and risk,

with which to predict and compare outcomes of alternative decisions, strategies

or controls. The purpose is to help management determine its policy and actions

scientifically ([20]).
ORs official appearance in the scientific world can be traced back to the Second
World War, when it was used to solve strategic and tactical problems in military
operations. For the first time there was a convergence of scientists from different
disciplines all with the aim of determining the most efficient use of the limited re-
sources using quantitative techniques. Following the Second World War OR grew
as scientists realised the potential of further applications outside of military oper-
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4 Chapter 1. Introduction

ations, more specifically to solve issues within the civilian sector. Many scientists
efficiently implemented the approach to solve short and long term problems such
as scheduling, inventory control and strategic planning, resource allocation. In
recent times the OR applications are those that intertwine with social sciences. In
[39], the authors highlight how OR can help social scientists to make their find-
ings suitable for general purpose into practice, and how social science can assist
operational researchers to achieve improvements in their applications and from
this upgrade their models.
The application of OR is a relatively new concept within humanitarian problems
such as the development of complex supply chains networks in the case of critical
needs ([76]) such as food ([78]) or the novel application to competitive pharma-
ceutical supply chains and quality issues (see [71]); to blood supply chains (see
[70]) or in the social phenomenon, as defined in [57], of cybersecurity (see [14]);
to disaster relief (see [34]); and to migration of which some examples are pro-
posed in this thesis.
The main focus of this dissertation is on the timely topic of the migration phe-
nomenon. In particular, here it is advanced the modelling, analysis, and solution
of human migration problems by developing network models that differ substan-
tially in the perspectives proposed for the inspection of the phenomenon of migra-
tion. Furthermore the results presented add to the literature on operations research
for societal impact, inspired by the real world.

The International Organization for Migration (IOM) defines a migrant as any
person who is moving or has moved across an international border or within a
state regardless of legal status, whether the movement is voluntary or involuntary,
what the causes for the movement are, and what the length of the stay is ([61]).
The reasons for recent migrations include: persecution, conflict, violence, human
rights violations or events seriously disturbing public order, poverty and economic
inequality but also climate change, natural disasters, and with the latter driving hu-
mans to seek better lives for their families and themselves.
The highest level of worldwide forcibly displacement has been registered at 79.5
million people in 2020 according to the United Nations High Commissioner for
Refugees (UNHCR) ([82]), as shown in Figure 1.1.
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Figure 1.1: Global displacement data. Source: UNHCR, 18 June 2020.

The International Migrant Stock 2019, a dataset released by the Population Divi-
sion of the UN Department of Economic and Social Affairs (DESA), is reporting
that the number of international migrants was an estimated 272 million in 2019,
an increase of 51 million since 2010 ([28]). The number of refugees and asylum
seekers has increased by almost 50% since the new millennium.

The increasing role of migration in the social, economic and demographic de-
velopment of countries, regions and the whole of the world, is becoming more and
more evident. Especially in the Mediterranean Basin, which has become the the-
atre of a humanitarian crisis that has challenged the collective leadership around
the sea. The Mediterranean sea received 66,890 arrivals in 2020 and the data in-
cludes sea arrivals in Italy, Cyprus and Malta and both sea and land arrivals in
Greece and Spain, with most migrants from the north of Africa ([81]), as shown
in Figure 1.2.
According to Jones ([40]), Italy has now become the main route into Europe for
economic migrants and asylum seekers, with hundreds of thousands risking their
lives in their journeys from North Africa each year and thousands dying at sea.
Kitsantonis in [46], states that the number of asylum seekers making the short
but often treacherous journey from Turkey across the Aegean Sea to Greece has
seen a rise again, with Greek officials looking toward replacing overcrowded mi-
grant camps with centres and hoping to restrict the migrants’ movements. Recent
data are showing that Cyprus is now hosting the most refugees per capita in the



6 Chapter 1. Introduction

Figure 1.2: Mediterranean situation. Source: UNHCR, 19 October 2020.

European Union ([93]). As emphasized in Nagurney and Daniele in [68], closer
attention must be paid to human migration problems in economic, political, soci-
ological, and even environmental dimensions.

The vulnerability of millions of international migrants may be exacerbated
in crisis situations, such as the current COVID-19 (COrona VIrus Disease 2019)
pandemic (see [85], [96]). The infectious respiratory disease emerged in Wuhan,
China, and rapidly spread around the world, posing enormous health, economic,
environmental, and social challenges to the entire human population (see [12],
[31]). More specifically, the COVID-19 pandemic has also affected global mobil-
ity in the form of blockages, restrictions, and travel disruptions, as risk mitigation
measures are being implemented by numerous countries (see [9]).
The United Nations, Department of Economic and Social Affairs, emphasizes
that economic and social factors are the main reasons why people migrate. On
the other hand, if supported by appropriate policies, migration can contribute to
inclusive and sustainable economic growth and development in both origin and
destination locations ([95]). The Organization for Economic Co-operation and
Development (OECD) countries in response to the COVID-19 pandemic worked
on the development of short-term policy responses and longer-term challenges to
migration management (see [29]).

How to effectively manage human migration flows has become one of the ma-
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jor challenges of the new millennium. The governments of many nations, hence,
are now faced with identifying suitable policies and regulations to address a vari-
ety of human migration flows. In managing international migration flows, govern-
ments usually focus on distinct classes of migrants such as highly skilled work-
ers, dependents of migrant workers, irregular migrants, and refugees and asylum
seekers ([42]). In 2017, the United Nations Department of Economic and Social
Affairs, Population Division ([95]) has compiled a list of high-level policies of
various countries regarding international migration. For example, policies asso-
ciated with “irregular migration” include fines, detention, or deportation of mi-
grants in an irregular situation, as well as penalizing employers of such migrants.
The International Organization of Migration ([59]) defines irregular migration as
the movement of persons that takes place outside the laws, regulations, or inter-
national agreements governing the entry into or exit from the origin, transit or
destination location; see also Karagiannis ([42]). The United Nations in [94], em-
phasize that migration policies in both origin and destination countries play an
important role in determining the migratory flows. In this respect, migration in-
teractions in all aspects of economic and social development will be the key to
achieving the 2030 Sustainable Development Goals (SDGs) adopted by the mem-
ber states of the United Nations. In the 2030 SDGs, proving the importance of im-
proving migration with over 50% of the targets focused on migration or mobility
(see [60]). Moreover, the Organization for Economic Co-operation and Develop-
ment (OECD) countries in response to the COVID-19 pandemic, worked on the
development of short-term policy responses and longer-term challenges to migra-
tion management (see [29]).

This thesis explores the theme of human migrations, contributing to research on
human migration network systems. In this work we propose different model-based
human migration problems. For each of them we formulate the associated non-
linear constrained problems which allows us to solve the decision problems with
different optimization tools.
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1.1 Overview on the migration network

This section offers an overview of the relevant literature on human migration
models, with a focus on networks. It is important to mention that the network
models proposed, to-date, have primarily been from the perspective of individ-
ual migrants making their decisions, which can be characterized as being that of
“user-optimization” and leading to an equilibrium that includes the utilities asso-
ciated with migration.
In [37], Rahmati and Tularam provide a critical review of a variety of theoretical
frameworks for human migration models, which also reference foundational net-
work equilibrium models. These authors highlight various mathematical theories
of migration, focusing on macro-level, micro-level, and meso-level approaches.
The classical network equilibrium model of human migration is that of Nagur-
ney ([64]), in which a new theoretical model for the analysis of human migration
within an equilibrium framework is introduced. It is a multiclass model, and is
isomorphic to a traffic network equilibrium with special structure (see also [65]).
In that model, migrants of each class distribute themselves among the locations
according to maximal utilities associated with the locations. The population of
each class is assumed to be fixed and the utility functions are assumed to be con-
cave and a function of the populations at the locations. Subsequently, Nagurney
([63]) generalized that model to include migration costs that depend on the flows
along with the governing equilibrium conditions.

Nagurney, Pan, and Zhao (see [73]), continuing in the user-optimization vein
of human migration modelling, constructed a multiclass human migration model,
which they later extended, in [74], to include class transformations. Pan and
Nagurney (see [79]) developed a multi-stage, Markov chain model and identi-
fied the connection between a sequence of variational inequalities and a non-
homogeneous Markov chain. In all of the above papers, the specific governing
equilibrium conditions were formulated as finite dimensional variational inequal-
ity problems. In [72], Pan and Nagurney were the first to apply evolutionary varia-
tional inequalities to model the underlying dynamics of human migration and also
to discuss associated algorithms (see also [21]).

A conjectural variations equilibrium (CVE) for human migration was promul-
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gated by Kalashnikov et al. (see [41]). The authors reported results of numerical
experiments based on population data in locations in Mexico. In [13], Cojocaru
formulates the human migration problem in terms of a transportation network and
applies the double-layer dynamics theory. It is also worth mentioning that some
network equilibrium models of human migration have even been applied to the
migration of animals in ecology (see [62] and [55]). Davis et al. (see [26]), in
turn, utilize a complex network approach for human migration and utilize an in-
ternational dataset for their quantitative analysis. Cui and Bai (see [15]) present a
mathematical model in which the population density varies when the spatial move-
ment of individuals is a function of the departure and arrival locations. In [97],
the authors make a comparison between human migration and wealth distribution.
They present a model with equations for the population density and for the wealth
distribution. It is based on perturbation methods and on the spectral properties of
the linearised operators. The authors prove that, in the absence of cross diffusion
terms, the dynamics of solutions can be described by travelling wave solutions of
the corresponding reaction diffusion systems of equations. They also show the
persistence of such solutions for sufficiently small cross diffusion coefficients.
As noted in Nagurney and Daniele ([69]), Causa, Jadamba, and Raciti ([11]) ex-
tended the Nagurney ([63]) model to include uncertainty in the utility functions,
the migration cost functions, and the populations. However, none of the above-
cited models of human migration included regulations and/or policies. Further-
more, they are all essentially user-optimized models.
As mentioned earlier, there has been very limited modelling work done on in-
cluding policies and/or regulations in human migration networks. To date, the
only papers that we are aware of are those by Nagurney and Daniele ([68]) and
Nagurney et al. ([75]). These models incorporated explicit constraints that could
be imposed by governmental authorities to put capacities on the flows of different
classes of migrants from certain origins to specific destinations. In these models
it was found that the utility of those that were restricted decreased, whereas those
that were allowed to migrate increased. The latter paper also allowed for routes of
migration consisting of links that capture congestion and associated costs and can
handle even migration through different nations. These models were inherently
user-optimized ones.
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CHAPTER 2

Background

Mathematical modelling is a useful tool both to formalize, objectively analyse and
solve real life problems and to understand how to manage them optimally. Math-
ematical modelling can be regarded as an iterative process commonly divided up
into five major phases, as shown in Figure 2.1 below.

Validation of the modelNumerical solutionAnalyzing the modelBuilding the modelExploring the problem

Figure 2.1: Modellistic approach steps

The first phase is about examining the structure of the problem in order to
identify objectives, logical-functional links and to collect data.
In the second phase, also called formulation, the model is defined formally. Once
the main characteristics of the problem are captured, they can be selected and
combined into abstract representations and mathematically described.
The third step provides to analytically deduce:

• existence and uniqueness of the optimal solution;

• optimality conditions, that are an analytical characterization of the optimal
solution;

11



12 Chapter 2. Background

• stability of the solutions, when the data or any parameters change.

The subsequent numerical solution phase takes place by means of suitable algo-
rithms implemented to calculate the optimal solution. This is the area on which a
huge amount of research and development in O.R. has been focused, and there is
a plethora of methods for analysing a wide range of models.
Once the solution has been obtained there is one final step, the validation of the
model, which needs to be passed. The expected accuracy of the model and the
domain of validity are the points to be considered in the validation phase. If the
used model used is still not accurate or does not capture some major issue, it
will be reformulated until the results are sensible and come from a valid system
representation.

2.1 Optimization Problems

Decisions or predictions in a variety of different context are devised by maximiz-
ing or minimizing a determined function, taking into account possible constraints
of the problem. Optimization, or Mathematical Programming, entails the theory,
use and computational solution of mathematical models to assist in making deci-
sions, typically about the optimal use of resources.
Given a real-valued function of n real variables, f : Rn→ R, whose variables are
bound to belong to a predetermined subset of Rn, K ⊆ Rn, Optimization problem

or mathematical programming problem consists in determining an n-dimensional
vector x = (x1,x2, . . . ,xn), if it exists, among the points of the set K, that mini-
mizes the function f .
Formally, the optimization problem can be written as follows:

min f (x)

subject to x ∈ K. (2.1)

The function f , the set K and the points x ∈ K are called objective function, feasi-

ble set and feasible solutions, respectively.
Indifferently we consider a minimum or maximum problem as the equality min f (x)=
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−max(− f (x)) holds.
Let’s briefly introduce some definitions.

Problem (2.1) is said infeasible if the feasible set is empty, K = /0.

A point x∗ ∈ K is said optimal solution or global minimum for the (2.1) prob-
lem if f (x∗) ≤ f (x) ,∀x ∈ K. The corresponding value f (x∗) is called optimal

value.

The feasible set K is usually expressed by a finite number of equality and/or
inequality relations called constraints, formally

K = {x ∈ Rn|gi(x)≥ 0 ∀i = 1, . . . , p and/or h j = 0 ∀ j = 1, . . . ,q} (2.2)

where gi : R→ R, ∀i = 1 . . . , p and h j : R→ R, ∀ j = 1, . . . ,q, are real-valued
functions of n real variables.
Optimization problems are classically classified according to:

• the properties of the feasible set K. In particular (2.1) problem is called

- Continuous Optimization Problem, if the variables x can take values in
Rn (continuous values). We can further distinguish in unconstrained
problems if K = R or constrained problem if K ⊂ R.

- Discrete Optimization Problem, if the variables x can take values only
on a discrete set. We can further distinguish in integer programming
problem if K ⊆ Zn or boolean optimization problem if K = {0,1}n .

- Mixed Optimization problem, if some of the variables are continuous
and some are discrete.

• the structure of the objective and constraint functions. In particular (2.1)
problem is called

- Linear Programming (LP) problem, if the objective and constraint
functions are linear.
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- Nonlinear Programming (NLP) problem, if at least one among the ob-
jective and constraint functions, is not linear.

• the randomness of the variables as data. In this case, (2.1) problem is called
Stochastic Programming (SP) problem.

Within these categories of programming problem there are special cases such
as the assignment, transportation, network flow, travelling salesman problems,
among an outsize number of real problems.
In this thesis we present different multiclass human migration models under user-
optimizing and system-optimizing behaviour, in which, therefore, the migration
phenomenon is analysed from different perspective. For each of them we formu-
late the associated non linear constrained problem which allows us to solve the
decision-making problems related to the specific applications.
The models here introduced are formulated, studied with different suitable ap-
proaches such as network problem, game theory problem and equilibrium prob-
lem approach. For all of them an equivalent formulation and analysis are also
conducted using variational inequality theory.

2.1.1 Convex Optimization Problem

An important subclass of optimization problems are the convex optimization prob-
lems, that represent the largest class of tractable optimization problems ([87]).
Consider the generic optimization problem (2.1), in which the objective function
f is convex and continuously differentiable on K, that is assumed to be closed and
convex. Such a problem is termed convex optimization problem.
We recall that

- K ⊂ Rn is said a convex set if λx+(1−λ )y ∈ K, ∀x,y ∈ K, λ ∈ [0,1].
That means that for any two points of K, the segment joining them belongs
to K.

- f : K→R, where K ⊂Rn is a convex set, is said a convex function if λ f (x+

(1−λ )y)≤ λ f (x)+(1−λ ) f (y) ∀x,y ∈ K, λ ∈ [0,1]. When the inequality
is strict, f is said strictly convex function.
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The importance of the convex optimization can be attributed not only to their
multiple applications present in literature, but also to the powerful analytical and
algorithmic tools available for their study (see [4],[7]).

2.2 Optimality conditions

Consider the (2.1) optimization problem in which the feasible set K = Rn, and
assume that the function f is at least continuously differentiable. It is useful to
outline which are the conditions that may give insight to understand whether a
feasible point is an optimal solution and, in general, about the problem. This kind
of conditions, called optimality conditions, constitute the foundations for the the-
oretical study of the optimization problem and its numerical solution.

The basic necessary condition for unconstrained optimality of x∗ is formalized
by the following theorem.

Theorem 2.2.1. Given (2.1) problem, if x∗ ∈ Rn is a local minimum problem and

f is continuously differentiable in a neighbourhood of x∗, then ∇ f (x∗) = 0

Such a point x∗, satisfying the ∇ f (x∗) = 0 condition, is called stationary point.
Consider the programming problem (2.1) with K ⊂ Rn as in (2.2).
The following theorem provides the necessary optimality conditions in the case in
which the feasible set is defined by inequalities and equalities. Such conditions
are more commonly known as Karush-Kuhn-Tucker (KKT) conditions (see [43]
and [51]).

Theorem 2.2.2. Given an optimization problem as in (2.1), where the feasible

set is defined as in (2.2) and x̄ ∈ K is a local minimum point. Suppose that the

functions f , gi, h j,∀i = 1, . . . , p and ∀ j = 1, . . . ,q are continuously differentiable

in x̄ and that ∇g1(x∗),∇g2(x∗), . . . ,∇gp(x∗),∇h1(x),∇h2(x∗), . . . ,∇hq(x∗) are lin-

early independent vectors.

Than, there exist λ ∗ = (λ ∗1 ,λ
∗
2 , . . . ,λ

∗
p) and µ∗ = (µ∗1 ,µ

∗
2 , . . . ,µ

∗
q ) vectors, such
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that

f (x∗)+
p

∑
i=1

λ
∗
i gi(x∗)+

q

∑
j=1

µ
∗
j h j(x∗) = 0 (2.3)

gi(x∗)≤ 0 ∀i = 1,2, . . . , p (2.4)

h j(x∗) = 0 ∀ j = 1,2, . . . ,q (2.5)

λ
∗
i gi(x∗) = 0 ∀i = 1,2, . . . , p (2.6)

λ
∗
i ≥ 0 ∀i = 1,2, . . . , p (2.7)

where λ ∗ = (λ ∗1 ,λ
∗
2 , . . . ,λ

∗
p) and µ∗ = (µ∗1 ,µ

∗
2 , . . . ,µ

∗
q ) are called Lagrange mul-

tipliers vectors.

The (2.3) condition is that of the cancellation of the gradient of the Lagrangian
function1 associated with the problem. It ensures that there is no feasible direction
that could potentially improve the objective function. The (2.4) and (2.5) condi-
tions are a statement that the constraints must not be violated by x∗, while the (2.6)
condition, called complementarity condition, enforces a zero Lagrange multiplier
if associated with an inactive constraint. Finally, the (2.7) is the non-negativity
condition of the multiplier associated with the inequality constraints.

2.2.1 Optimality conditions for a convex optimization problem

The fundamental optimality conditions for convex optimization problems are called
the minimum principle, formally given in (2.8).
Consider the convex optimization problem. A feasible point x∗ ∈ K is an optimal
solution if and only if

∇ f (x∗)T (x− x∗)≥ 0 ∀x ∈ K. (2.8)

1Given the optimization problem (2.1) with feasible set K as defined in (2.2), the Lagrange
function is given by:

L (x,λ ,µ) = f (x)+
p

∑
i=1

λigi(x)+
q

∑
j=1

µ jh j(x) ∀x ∈ K

where λ = (λ1, . . . ,λp) and λ = (µ1, . . . ,µq) are the Lagrange multipliers
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It turns out that convexity makes the necessary conditions introduced, both for
constrained and unconstrained problems, also sufficient for optimality.
Indeed, in the case in which K = Rn, the minimum principle (2.8) reduces to
the necessary condition given in theorem 2.2.1 (and sufficient for convex f ) for
unconstrained optimality of x∗: ∇ f (x∗) = 0.
The case in which the feasible set K ⊂Rn is defined by inequalities and equalities
it can be shown that, under some additional conditions, the minimum principle
is equivalent to the necessary KKT optimality conditions given in theorem 2.2.2,
where the convexity of the objective function f makes them also sufficient (see
[4], [7]).

2.3 Brief recall of Variational Inequality theory

Variational inequality theory was introduced by Hartman and Stampacchia in 1966
([36]) as a tool for the study of partial differential equations with applications
principally drawn from mechanics. Such variational inequalities were infinite-
dimensional.
An important piece in the finite-dimensional theory literature found his place
in 1980 when Dafermos recognized that the traffic network equilibrium condi-
tions, as stated by Smith one year before (see [90]), had a structure of a vari-
ational inequality. As a result of this breakthrough problems management sci-
ence/operations research, and also in economics and engineering, with a focus on
transportation, have been studied and solved by means of variational inequality
theory.
At the end of the nineties, researchers started to investigate optimization prob-
lems, through a variational approach, by considering also time dependence. In
[24] and [25] (see also [32]), for the first time, Daniele, Maugeri and Oettli pre-
sented a traffic network equilibrium problem with path flows capacity constraints
dependent from time and traffic demands.
The concept of equilibrium is central in numerous disciplines including economics,
operations research, engineering. Variational inequality theory is also a powerful
tool for:
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Figure 2.2: Geometrical interpretation of variational inequality definition

• formulating a variety of equilibrium problems;

• qualitative analysis of equilibria in terms of existence and uniqueness of
solutions, stability and sensitivity analysis;

• providing us with algorithms accompanying convergence analysis for com-
putational purposes.

To-date problems which have been formulated and studied as variational inequal-
ity problems include traffic network equilibrium problems (see e.g. [33], [23]),
spatial price equilibrium problems (see e.g. [22], [86]), migration equilibrium
problems, as well as (example of which are treated in this thesis).
We now introduce the definition of variational inequality (VI) problem.

Definition 2.3.1. The finite-dimensional variational inequality problem, V I(F,K),
is to determine a vector x∗ ∈ K ⊆ Rn, such that

< F(x∗),x− x∗ >≥ 0, ∀x ∈ K, (2.9)

where F : K→ R is a given function, K is a given closed convex set, and < •, •>

denotes the inner product in n-dimensional Euclidean space.
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From a geometric point of view the variational inequality (2.9) states that
F(x∗)T is “orthogonal” to the feasible set K at the point x∗.
Furthermore, according to the definition of variational inequality (2.9), if a feasi-
ble point x∗ is a solution of the V I(K,F) than F(x∗) and x− x∗, ∀x ∈ K, form an
nonobtuse angle2.
It is interesting to outline the relationships between variational inequalities and
optimization problems. Indeed, a variational inequality is related to an optimiza-
tion problem when F involved in the first one can be expressed as the gradient of
the objective function of the second one. In this case, as stated in the following
proposition, the optimization problems can be formulated as VIPs.

Proposition 2.3.1. Let x∗ be a solution to the optimization problem:

min f (x)

s.t.x ∈ K, (2.10)

where f is continuously differentiable and K is closed and convex. Then x∗ is a

solution to the variational inequality problem:

< ∇ f (x∗)T ,x− x∗ >≥ 0, ∀x ∈ K. (2.11)

It is clear that in the case in which the F = ∇ f , for some suitable function
f that is convex in K, the variational inequality problem (2.9) coincides with the
problem of finding a point satisfying the minimum principle (2.8) and therefore
with the problem of finding an optimal solution of the convex optimization prob-
lem. This result, formalized in the following proposition, implies that the vicev-
ersa of proposition (2.3.1) holds.

Proposition 2.3.2. If f (x) is a convex function and x∗ is a solution to V I(∇ f ,K),

then x∗ is a solution to the optimization problem (1.3).

In the following results, conditions for existence and uniqueness of solutions

2We recall that the inner product between two vectors v,w ∈ Rn can be geometrically charac-
terized by the < vT ,w >= ||v|| ||w||cosθ equation, where θ measures the angle between the two
vectors. That means < vT ,w > scalar is grater or equal to 0 when the angle θ falls in the range
0−90.
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to V I(F,K) are provided.
Continuity of the function F entering the variational inequality and compactness
of the feasible set K ensure the existence of a solution to a variational inequality
problem. Indeed, we have the following:

Theorem 2.3.1. If K is a compact set and F(x) is continuous on K, then the

variational inequality problem (2.9) admits at least one solution x∗.

Qualitative properties of existence and uniqueness follows from certain mono-
tonicity conditions on the function F . We briefly recall some definitions. A func-
tion F : K⊆ Rn→ R is

- monotone on K if [F(x1)−F(x2)]T (x1− x2)≥ 0 ∀x1,x2 ∈K;

- strictly monotone on K if [F(x1)−F(x2)]T (x1−x2)> 0 ∀x1,x2 ∈K,x1 6=
x2;

Theorem 2.3.2. Assume that F(X) is continuous and strictly monotone on K, that

is a nonempty, convex and compact subset of Rn. Then there exists precisely one

solution x∗ to VI(F,K).

Moreover, using the strong monotonicity and coerciveness properties, we intro-
duce the following theorem on the existence and uniqueness of the solutions of
the V I(F,K), without requiring the compactness of the feasible set K.

Theorem 2.3.3. Given K⊆Rn, closed convex and nonempty. Assume that F(X) :
K→ R is

• strongly monotone on K, that means that for some α ≥ 0 [F(x1)−F(x2)]T (x1−
x2)≥ α||x1− x2||2 ∀x1,x2 ∈K

• and coercive on K, which means if ∃M > α such that ||F(x1)−F(x2)|| ≤
M||x1− x2|| ∀x1,x2 ∈K

then there exists only one solution x∗ to VI(F,K).
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2.3.1 Variational inequality and game theory problems

Game theory deals with the analysis and resolution of conflicts among interact-
ing decision makers (called players) which are assumed to be rational and which
have different interests, quantified in general through an objective function. The
decision (called strategy) of each player can produce different results depending
on the strategies chosen by the other players.
Noncooperative game theory is a branch of game theory in which each player be-
haves selfishly to optimize their own well being.
Assume there are M players each controlling the variables xi, that we group into
the vector x = (x1,x2, . . . ,xM). Given by Mi the set of ith player strategies, the aim
of player i, provided the other players’ strategies x−i = (x1, . . . ,xi−1,xi+1, . . . ,xM),
is to choose an xi ∈ Mi that minimizes his payoff function that we mean by
f (xi,xi−1)

3: M1×M2× ·· · ×MM → R. In other words the aim of each player
i consists in solving the optimization problem

min f (xi,xi−1)

s.t.xi ∈Mi. (2.12)

We introduce now the definition of Nash Equilibrium problem (NEP). A vector

x∗ ∈M, where M =
M
∏
i=1

M, is called a Nash equilibrium (or simply a solution) of

the NEP if
f (x∗i ,x

∗
−i)≤ f (xi,x∗−i), ∀xi ∈Mi. (2.13)

or equivalently, x∗ is NEP if and only if it solves the minimization problem (2.12),
∀ i = 1,2, . . . ,M.
In other words, x∗ is a Nash equilibrium if no single player can obtain higher pay-
off by deviating unilaterally to any other feasible point.

The next result establishes, under appropriate conditions, the equivalence be-
tween an NEP and a suitably defined VI.
Let G =< M, f > the game defined by the (2.12) problems, where f = fi(x)M

i=1.

3(xi,xi−1) = (x1, . . . ,xi1 ,xi,xi+1, . . . ,xM) for the notation used.
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Proposition 2.3.3. Suppose that for each player i the strategy set M is a closed

and convex subset of M ⊆ Rni and the payoff function fi(xi,x−i) is continuously

differentiable. Than the game G =< M, f > is equivalent to the V I(M,F), where

F(x) = (∇xi fi(x))M
i=1.

2.3.2 Network equilibrium problems and Variational inequal-
ity

The purpose of (static) network equilibrium models is to predict traffic flows in a
congested network, with minimal cost of users travel paths from origin to destina-
tion node of the network. Their first appearance occurs in 1920 when Pigou (see
[80]) studied two-node, two-link (or path) transportation network, further devel-
oped in the 1924 by Knight (see [47]).
In the 1952 Wardrop (see [98]) stated two principles that formalize the traffic
equilibrium conditions:

1. First principle: “the journey times of all routes actually used are equal,
and less than those which would be experienced by a single vehicle on any
unused route”;

2. Second principle: “the average journey time is minimal”.

These conditions were first rigorously mathematically formulated in [3] by Beck-
mann, McGuire, and Winsten, in which the authors established the equivalence
between the network equilibrium problem and a convex optimization problem
with a single objective function.

In the context of transportation, user-optimization (U-O) and system optimiza-
tion (S-O) are seminal concepts and constructs. These are so named by Dafermos
and Sparrow in the 1969 (see [19]) and correspond, respectively, to the afore-
mentioned Wardrop’s two principles. In the case of system-optimization a central
controller routes the traffic between origin/destination pairs of nodes, so that the
total cost to society is minimized. In the case of U-S, travellers act in a unilat-
eral way, seeking their individual cost-minimal routes of travel between an ori-
gin/destination pair of nodes.
In the human migration network context, in contrast, as we will see in details in
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Section 5 and 6, we are concerned with total utility maximization in the case of
S-O and individual utility maximization in the case of U-O behaviour and the se-
lection of locations.
We now formally formulate the Wardrop’s traffic model.
Let N = {P1,P2, . . . ,Pp} the nodes set and A = {ai, i = 1,2, . . . ,n} ⊂N ×N

the unidirectional links set. Assume that there are l Origin/Destination (O/D)
pairs, with a typical O/D pair denoted by w j. W ⊆N ×N denotes O/D pairs
set.
A Traffic Network is identified by the triple (N ,A ,W ).
Given an O/D pair w j = (Ph,Pk) we introduce both the set R j of the paths that join

Ph with Pk and the set of all the paths of the network with R =
l⋃

j=1
R j = {Rr, r =

1,2, . . . ,m}.
It is reasonable to assume that:

• R j 6= /0 ∀ j = 1,2, . . . , l;

• the paths outnumber the O/D pairs (m > l), so that the user can choose the
most convenient path.

For each link ai and for each path Rr of the network, we respectively associate
a nonnegative number fi ≥ 0, called link flow, and a nonnegative number Fr ≥ 0
called path flow. We group the link flows into a vector f = ( f1, . . . , fn) ∈ Rn

+ and
the path flows into a vector F = (F1, . . . ,Fm) ∈ Rm

+.
We must have the flow on a link is equal to the sum of the flows on all paths that
contain that link, namely

fi =
m

∑
r=1

δirFr ∀i = 1,2, . . . ,n. (2.14)

where δir are the link-path incidence matrix components, ∆, defined as

δir =

1 if ai ∈ Rr,

0 otherwise.
(2.15)

Thus (2.14) in matrix form is f = ∆F .
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For each link of the network is introduced the link cost ci( f ) ≥ 0, that depends
upon the flows on every link in the network. We group the link costs into a vector
c( f ) = (c1( f ), . . . ,cn( f )) ∈ Rn

+. Similarly, with each path we associate the path
cost Cr(F)≥ 0 that we group into the path cost vector C(F)= (C1(F), . . . ,Cm(F))∈
Rm
+.

We must have that the cost on a path is equal to the sum of the link costs of links
comprising that path and using that mode. It is formally expressed as follows

Cr(F) =
n

∑
i=1

δirci( f ), ∀r = 1,2, . . . ,m. (2.16)

or equivalently C(F) = ∆T c( f ), in matrix form.

We introduce the ρ j demand of potential users travelling between O/D pair w j. For
each j = 1,2, . . . , l we group ρ j into the demand vector ρ = (ρ1,ρ2, . . . ,ρl) ∈Rl

+.
The flow conservation constraint states that each demand must be equal to the
sum of the flows on the paths joining the O/D pair, that is,

∑
Rr∈R j

Fr = ρ j, ∀ j = 1,2, . . . , l. (2.17)

Introducing the O/D pairs-path incidence matrix, Φ whose elements are defined
as follows

φ jr =

1 if Rr ∈R j,

0 otherwise;
(2.18)

we write (2.17) in matrix form as ΦF = ρ .
Therefore, the path flows feasible set is given by K= {F ∈ Rm

+ : ΦF = ρ}.

Definition 2.3.2. (Equilibrium, Wardrop (1952))
H ∈K is an equilibrium configuration if ∀w j ∈W and ∀Rq, Rs ∈R j we have that

Cq(H)<Cs(H), than Hs = 0.

The following result (see [90] and [16]) allows to characterize an equilibrium
configuration according to Wardrop’s definition as a solution to a suitable varia-
tional inequality.
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Theorem 2.3.4. H ∈K is an equilibrium distribution according to the 2.3.2 def-

inition if and only if H is a solution to the variational inequality “Finding H ∈
K such that <C(H),F−H >≥ 0 ∀F ∈K”
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CHAPTER 3

A variational formulation for a human migration

problem

In this chapter a human migration network based model is provided. In the model
here considered, the aim of each migration class is to maximize the attractiveness
of the origin country, which is given by the sum of its utility and its expected in-
crement of utility value, with respect to the destination one.
This work has focused on the modelling of migration flows assuming user-optimizing
(U-O) behaviour, inspired by the one originating with the work of Nagurney in
1989 (see [64]). In other words, here it has been assumed that the migrants act
selfishly and independently; see also [63], [73], [74], [79], [72], [38], [41], [11],
[68], [69], for a spectrum of U-O migration models from a period ranging from
1990 to 2019.
The human migration optimization problem, unlike other works in the literature,
is analysed and studied in terms of Nash equilibrium problem. The solution of the
model proposed is defined as a Nash Equilibrium and it is established the equiv-
alence between the Nesh Equilibrium problem and an appropriate variational in-
equality.
Finally, some illustrative numerical results applied to the human migration from

27
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Africa to Europe are presented and analysed.

3.1 The mathematical model

We present a network consisting of n nodes, that are countries or, more generally,
locations, and H classes of the population. As depicted in Figure 3.1, the n loca-
tions are both origin nodes (where migrants are initially located) and destination
nodes (where the migrants may be interested in migrating to).
We assume that at each location i; i = 1, . . . ,n, there is an initial fixed population
of the general class k, denoted by p̄k

i .
We denote the nonnegative population of migrant class k at node i by pk

i and by
f k
i j we denote the nonnegative migration flow out of the node i, and into the node

j of the network, with i 6= j. It means that if a volume of population of a typical
class decides to migrate, then the destination node differs from the origin one;
otherwise, it remains in the same origin node.
The population of class k at location i is determined by the initial population of
class k at location i plus the migration flow, f k

ji, into i of that population, minus
the migration flow, f k

i j, out of i. Indeed, the flow conservation constraints, given
for each class k and each location i, are given as follows:

pk
i = p̄k

i −
n

∑
j=1
j 6=i

f k
i j +

n

∑
j=1
j 6=i

f k
ji ∀i = 1, ...,n, ∀k = 1, . . . ,J. (3.1)

We group the populations k in each location i into the vector pk and the migration
flows of population k from each origin node i to each destination node j into the
vector f k. Each location i is characterized by

• a destination utility function, vk
i , that is indicative of the attractiveness of

that location intended as an idealization of the opportunities that this node
can offer, as perceived by the migration class k;

• an origin utility function, uk
i , that is indicative of the attractiveness of that

location intended as the awareness of the opportunities that this node can
offer, as perceived by the migration class k.
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Both groups of functions, uk
i and vk

i , depend on the population pk.
Let us introduce wk+

i j ≥ 0, which denotes the influence coefficient taken into ac-
count by an individual of the migration class k moving from node i to j. It is the
expected variation of the population at node j after a migratory flow, as perceived
by the migration class k. Similarly, we introduce wk−

i j ≥ 0, that is the expected rate
of change of the total population at node i, as perceived by the migration class k.
After the potential movement of migrants from location i to location j, each per-
son of class k expects a variation of the utility function value at j:

f k
i jw

k+
i j (pk, f k)

∂vk
j(pk)

∂ pk
j

,

and a variation of the utility function value at i:

− f k
i jw

k−
i j (pk, f k)

∂uk
i (pk)

∂ pk
i

,

where the negative sign denotes the loss for the migration class k, when choosing
to abandon the origin node.
Both groups of such variations are assumed concave.
In addition, we denote by ck

i j the movement cost function from i to j for the pop-
ulation class k that depends on the entire migration flows vector of population k,
namely

ck
i j = ck

i j( f k), ∀i, j = 1, . . . ,n, j 6= i, ∀k = 1, . . . ,J.

Such costs are assumed to be convex and continuously differentiable.
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Locations

→Migration flow
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Figure 3.1: Multiclass migration network

Symbol Definition
p̄k

i Initial population of class k in location i
pk

i Population at location i of class k
f k
i j Migration flow from i to j of class k, with i 6= j

vk
i (pk)

Destination utility function of any location i as
perceived by the class k

uk
i (pk)

Origin utility function of any location i as per-
ceived by the class k

ck
i j( f k) Movement cost from i to j for the class k

wk+
i j (pk, f k), wk−

i j (pk, f k) Influence coefficient

Table 3.1: Functions, parameters and variables of the model

In order to reduce the migration phenomenon and to encourage people to re-
main in their own country the attractiveness of location i (which is given by the
sum of the utility of location i and its expected increment of utility value conse-
quently to the class k migratory movement in the network) must exceed the sum
between the attractiveness of location j (which is given by the sum of the utility
of location j and its expected increment of utility value consequently to the class
k migratory movement in the network) and the transportation costs from location
i to location j. Hence, in our model, the aim of each migration class k, k = 1, ...,J,
in each departing node i, i = 1, ...,n is to maximize its net utility, namely the
following difference:
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max
(pk, f k)∈Kk

Uk(pk, f k) = max
(pk, f k)∈Kk

n

∑
i=1

n

∑
j=1
j 6=i

(
uk

i (pk)− f k
i jw

k−
i j (pk, f k)

∂uk
i (pk)

∂ pk
i

−ck
i j( f k)− vk

j(pk)− f k
i jw

k+
i j (pk, f k)

∂vk
j(pk)

∂ pk
j

)
(3.2)

where

Kk =

{
(pk, f k) ∈ Rn+n(n−1) : pk

i = p̄k
i −

n

∑
j=1
j 6=i

f k
i j−

n

∑
j=1
j 6=i

f k
ji, ∀i = 1, . . . ,n;

pk
i ≥ 0, f k

i j ≥ 0, ∀i, j = 1, . . . ,n, j 6= i;
n

∑
j=1
j 6=i

f k
i j ≤ p̄k

i , ∀i = 1, ...,n
}
. (3.3)

We also assume that the migration classes compete in a noncooperative manner,
so that each maximizes its utility, given the actions of the other classes.
Under the imposed assumptions, the objective function in (3.2) is concave and
continuously differentiable. We also define the feasible set

K =

{
(p, f ) ∈ RJn+Jn(n−1) : pk

i = p̄k
i −

n

∑
j=1
j 6=i

f k
i j−

n

∑
j=1
j 6=i

f k
ji, ∀i = 1, . . . ,n, ∀k = 1, . . . ,J

pk
i ≥ 0, f k

i j ≥ 0, ∀i, j = 1, . . . ,n, j 6= i, ∀k = 1, . . . ,J;
n

∑
j=1
j 6=i

f k
i j ≤ p̄k

i , ∀i = 1, ...,n, ∀k = 1, . . . ,J
}
=

J

∏
k=1

Kk (3.4)

and the total utility as:

U(p, f ) =
J

∑
k=1

Uk(pk, f k) ∀(p, f ) ∈K.

Hence, the above game theory model, in which the migration classes compete
noncooperatively, is a Nash equilibrium problem. Therefore, we can state the
following definition.



32 Chapter 3. A variational formulation for a human migration
problem

Definition 3.1.1. A population and migration flow pattern (p∗, f ∗) ∈K is said to
be a Nash equilibrium if for each migration class k

U(pk∗, f k∗, p̂k∗, f̂ k∗)≥U(pk, f k, p̂k∗, f̂ k∗) ∀(pk, f k) ∈Kk,

where

p̂k∗=(p1∗, . . . , pk−1∗, pk+1∗, . . . , pJ∗) and f̂ k∗=( f 1∗, . . . , f k−1∗, f k+1∗, . . . , f J∗).

Hence, according to the above definition, a Nash equilibrium in established
if no migration class can unilaterally improve its expected utility by choosing an
alternative vector of population and migration flow.
The optimality conditions (3.2) for all migration classes k,k = 1, . . . ,J simultane-
ously can be expressed by means of a variational inequality as follows.

Theorem 3.1.1 (Variational formulation). Under the above assumptions, (p∗, f ∗)∈
K is an equilibrium according to Definition 3.1.1 if and only if it satisfies the fol-

lowing variational inequality:

Find (p∗, f ∗) ∈K such that:
n

∑
l=1

n

∑
i=1

n

∑
j=1
j 6=i

J

∑
k=1

(
∂vk

j(pk∗)

∂ pk
l

+ f k
i j

∂wk+
i j (pk∗, f k∗)

∂ pk
l

∂vk
j(pk∗)

∂ pk
j

+ f k
i jw

k+
i j (pk∗, f k∗)

∂ 2vk
j(pk∗)

∂ pk
j∂ pk

l

−
∂uk

i (pk∗)

∂ pk
l

+ f k
i j

∂wk−
i j (pk∗, f k∗)

∂ pk
l

∂uk
i (pk∗)

∂ pk
i

+ f k
i jw

k−
i j (pk∗, f k∗)

∂ 2uk
i

∂ pk
i ∂ pk

l

)
(pk

l − pk∗
l )

+
n

∑
i=1

n

∑
j=1
j 6=i

J

∑
k=1

(
wk+

i j (pk∗, f k∗)
∂vk

j(p∗)

∂ pk
j

+ f k∗
i j

∂wk+
i j (pk∗, f k∗)

∂ f k
i j

∂vk
j(pk∗)

∂ pk
j

+
∂ck

i j( f k∗)

∂ f k
i j

+wk−
i j (pk∗, f k∗)

∂uk
i (p∗)

∂ pk
i

+ f k
i j

∂wk−
i j (pk∗, f k∗)

∂ f k
i j

∂uk
i (pk∗)

∂ pk
i

)
( f k

i j− f k∗
i j )≥ 0,

∀(p, f ) ∈K. (3.5)
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3.2 Numerical Examples

In order to perform numerical experiments, we consider the flow of migrants from
Africa through the Mediterranean sea to Italy during 2018. The network, as we
can see in Figure 3.2, is composed by six nodes: the first three ones are the ori-
gin nodes (Tunisia, Eritrea and Sudan, with a percentage of 23,8%, 15.0%, and
7.3% of departures, respectively), the fourth node is Italy, which is the destination
chosen by most of the migrants (see [82]), the last two nodes are Germany and
France, with a percentage of 31% and 15%, respectively, of arrivals, and represent
the countries where most migrants have been relocated from Italy ([58]).
We collected the necessary data, referred to 2018, about population, average move-
ment, measures of the quality of life, transportation costs for each node of the
network. We assume that the migration class is only one (k = 1), and it represents
the African population that moves from its continent to Europe.
We assume also that the migration class in question is interested in evaluating the
displacement between the nodes 1−4; 2−4; 3−4; 4−5; 4−6; and this
is because, starting from real data, the other displacements never occur due to
political or economic issues, as we can see in Fig. 2.

Locations

→Migration flow

k Migration classk = 1
3.Sudan

2.Eritrea

1.Tunisia

4.Italy

5.Germany

6.France

Figure 3.2: Multiclass migration network for the first numerical example
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Let us consider the data in Table 3.2.

Origin utility function u1 =−0.8(p1
1)

2 +2p1
1

u2 =−0.7(p1
2)

2 +3p1
2

u3 =−0.85(p1
3)

2 +2.5p1
3

u4 =−0.5p1
4

Destination utility function v4 =−0.5p1
4

v5 = 0.3(p1
5)

2−6p1
5

v6 = 0.35(p1
6)

2−7p1
6

Movement cost c14 = 3 f 1
14

c24 = 4 f 1
24

c34 = 5 f 1
34

c45 = 0.25 f 1
45

c46 = 0.25 f 1
46.

Inizial population p̄1 = 55
p̄1

2 = 45
p̄1

3 = 40
p̄1

4 = 35
p̄1

5 = 50
p̄1

6 = 52

Table 3.2: Data for the numerical example.
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Then, optimality problem (3.2) becomes:

max
(p1, f 1)∈K1

U1(p1, f 1) =

= max
(p1, f 1)∈K1

{
u1(p1)− f 1

14w−14(p1, f 1)
∂u1(p1)

∂ p1
1
− c14( f 1)− v4(p1)− f 1

14w+
14(p1, f 1)

∂v4(p1)

∂ p1
4

+

+u2(p1)− f 1
24w−24(p1, f 1)

∂u2(p1)

∂ p1
2
− c24( f 1)− v4(p1)− f 1

24w+
24(p1, f 1)

∂v4(p1)

∂ p1
4

+

+u3(p1)− f 1
34w−34(p1, f 1)

∂u3(p1)

∂ p1
3
− c34( f )− v4(p1)− f 1

34w+
34(p1, f 1)

∂v4(p1)

∂ p1
4

+

+u4(p1)− f 1
45w−45(p1, f 1)

∂u4(p1)

∂ p1
4
− c45( f 1)− v5(p1)− f 1

45w+
45(p1, f 1)

∂v5(p1)

∂ p1
5

+

+u4(p1)− f 1
46w−46(p1, f 1)

∂v4(p1)

∂ p1
4
− c46( f 1)−u6(p1)− f 1

46w+
46(p1, f 1)

∂u6(p1)

∂ p1
6

}
where

K1 =K =

{
(p1

1, p1
2, p1

3, p1
4, p1

5, p1
6, f 1

14, f 1
24, f 1

34, f 1
45, f 1

46) ∈ R11;

p1
1, p1

2, p1
3, p1

4, p1
5, p1

6, f 1
14, f 1

24, f 1
34, f 1

45, f 1
46 ≥ 0

p1
1 = 55− f 1

14; p1
2 = 45− f 1

24; p1
3 = 40− f 1

34;

p1
4 = 35+ f 1

14 + f 1
24 + f 1

34− f 1
45− f 1

46; p1
5 = 50+ f 1

45;

p1
6 = 52+ f 1

46 f 1
14 ≤ 55; f 1

34 ≤ 40; f 1
45 + f 1

46 ≤ 35
}

(3.6)
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and the associated variational inequality (3.5) becomes:

Find (p∗, f ∗) ∈K such that:

(1.6p1
1−2−1.6 f 1

14w−14)× (p1
1− p∗11 )+(1.4p1

2−3−1.4 f 1
24w−24)× (p1

2− p∗12 )

+(1.7p1
3−2.5−1.7 f 1

34w−34)× (p1
3− p∗13 )−0.5× (p4− p∗4)

+(0.6p1
5−6+0.6 f 1

45w+
45)× (p1

5− p∗15 )+(0.7p1
6−7+0.7 f 1

46w+
46)× (p1

6− p∗16 )

+(w−14(−1.6p1
1 +2)+3−0.5w+

14)× ( f 1
14− f ∗114 )

+(w−24(−1.4p1
2 +3)+4−0.5w+

24)× ( f 1
24− f ∗124 )

+(w−34(−1.7p1
3 +2.5)+5−0.5w+

34)× ( f 1
34− f ∗134 )

+(−0.5w−45 +0.25+w+
45(0.6p1

5−6))× ( f 1
45− f ∗145 )

+(−0.5w+
46 +0.25+w+

46(0.7p1
6−7))× ( f 1

46− f ∗146 )≥ 0

∀(p1, p2, p3, p4, p5, p6, f14, f24, f34, f45, f46) ∈K.

(3.7)

It was solved using the modified projection method (see [92]), implemented in
Matlab. The computational time to obtain the optimal flows according to the terms
w±i j was 9.01 seconds. The machine used for the simulation is a 4 GB RAM Asus
Intel (R) Core (TM) i5-3317U CPU@1.10 GHz.

The optimal flows as solution of the VI (3.7) obtained considering different
values of w±i j i = 1,2,3,4; j = 4,5,6 are shown in Table 3.2. We observed that
the optimal flows, from the poorest countries to the richest are high comparing
with the initial population, even thought the indices w±i j let the migration class to
conjecture an improvement of utility in the countries of departure and a worsening
of the utility of the richer countries due to the migration.
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w+
i j w−i j Optimal flows

w+
14 = 0 w−14 = 0 f 1

14 = 52,18706322 .
w+

14 = 0 w−14 = 0 f 1
24 = 14,64240764

w+
34 = 0 w−34 = 0 f 1

34 = 35,8821929
w+

45 = 0 w−45 = 0 f 1
45 = 0

w+
46 = 0 w−46 = 0 f 1

46 = 0
w+

14 = 1 w−14 = 1 f 1
14 = 35,41646178 .

w+
14 = 1 w−14 = 1 f 1

24 = 19,2855584
w+

34 = 1 w−34 = 1 f 1
34 = 24,90181913

w+
45 = 1 w−45 = 1 f 1

45 = 0
w+

46 = 1 w−46 = 1 f 1
46 = 0

w+
14 = 0.5 w−14 = 1 f 1

14 = 35,36437875.
w+

14 = 0.5 w−14 = 1 f 1
24 = 19,22603507

w+
34 = 0.5 w−34 = 1 f 1

34 = 24,8527998
w+

45 = 0.2 w−45 = 0.2 f 1
45 = 0

w+
46 = 0.2 w−46 = 0.2 f 1

46 = 0
w+

14 = 0.1 w−14 = 0.8 f 1
14 = 53,04662606.

w+
14 = 0.1 w−14 = 0.8 f 1

24 = 18,12476595
w+

34 = 0.1 w−34 = 0.8 f 1
34 = 27,64697497

w+
45 = 0.2 w−45 = 0 f 1

45 = 0
w+

46 = 0.2 w−46 = 0 f 1
46 = 0

w+
14 = 0.2 w−14 = 1 f 1

14 = 35,33312893.
w+

14 = 0.2 w−14 = 1 f 1
24 = 19,19032108

w+
34 = 0.2 w−34 = 1 f 1

34 = 24,8233882
w+

45 = 0.1 w−45 = 0.3 f 1
45 = 0

w+
46 = 0.1 w−46 = 0.3 f 1

46 = 0
w+

14 = 0 w−14 = 1 f 1
14 = 35,31234671.

w+
14 = 0 w−14 = 1 f 1

24 = 20,53554511
w+

34 = 0 w−34 = 1 f 1
34 = 24,80381573

w+
45 = 0 w−45 = 1 f 1

45 = 0
w+

46 = 0 w−46 = 1 f 1
46 = 0

w+
14 = 0.25 w−14 = 1 f 1

14 = 35,33833724.
w+

14 = 0.25 w−14 = 1 f 1
24 = 19,19627341

w+
34 = 0.25 w−34 = 1 f 1

34 = 24,82829013
w+

45 = 0.5 w−45 = 1 f 1
45 = 0

w+
46 = 0.5 w−46 = 1 f 1

46 = 0
w+

14 = 0.5 w−14 = 1 f 1
14 = 35,36437875.

w+
14 = 0.5 w−14 = 1 f 1

24 = 19,22603507
w+

34 = 0.5 w−34 = 1 f 1
34 = 24,8527998

w+
45 = 0.25 w−45 = 1 f 1

45 = 0
w+

46 = 0.25 w−46 = 1 f 1
46 = 0

w+
14 = 0 w−14 = 0.5 f 1

14 = 39,53106448.
w+

14 = 0 w−14 = 0.5 f 1
24 = 18,03548139

w+
34 = 0 w−34 = 0.5 f 1

34 = 27,57344578
w+

45 = 0 w−45 = 0.2 f 1
45 = 0

w+
46 = 0 w−46 = 0.2 f 1

46 = 0

Table 3.3: Optimal flows obtained from VI (3.7) for different values of w±i j
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3.3 Summary and Conclusion

In this chapter, we introduce a new multiclass network model of human migration
that assumes user-optimizing behaviour. Here differing from the classic user-
optimized models, the human migration optimization problem is analysed and
studied in terms of Nash equilibrium problem.
We provide, for completeness, the variational inequality formulations of the Nash
equilibrium problem. The optimal distribution patterns across multiple locations
in the network, as shown in Numerical Examples section, are calculated using the
modified projection method, implemented in Matlab.



CHAPTER 4

Human Migration Networks and Policy

Interventions: Bringing Population Distributions in

Line with System-Optimization

In this chapter, we first propose a system-optimized multiclass network model of
human migration. The model assumes no births and no deaths and there is a fixed
population of each class of migrant. There are no costs associated with migration,
since we are interested in the long term. There is a utility function associated
with each class of migrant and each location in the network economy. Each such
utility is a function of the populations of the classes at that location and at other
locations, in general. The objective in the network economy is to optimize the
system and the societal welfare by maximizing the total utility, subject to the flow
conservation constraints. The total utility is equal to the sum for all classes and all
locations of the product of the individual utility at the location and class times are
the population of that class at the location.We assume that the total utility function
is concave and continuously differentiable and show that the system-optimized so-
lution satisfies a VI problem. We then recall the user-optimized analogue of this
human migration network, which was introduced in 1989 by Nagurney (see [64]).
Therein, the governing equilibrium conditions state that migrants of a class will

39
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keep on moving from location to location until the individual utility of each class
at each location that is populated by that class is maximal and equalized. Hence,
at the equilibrium, none has any incentive to change his location. We also, for
completeness, provide the VI formulation of the user-optimized (equilibrium) so-
lution. We propose a ratio for assessing the societal welfare loss if migrants select
their locations based on U-O rather than S-O behavior. The price of anarchy, intro-
duced by Koutsoupias and Papadimitriou ([50]), is an inspiration for the societal
welfare loss ratio. The price of anarchy was originally constructed to measure the
total cost evaluated at the U-O solution and divided by the total cost evaluated
at the S-O solution (see also [84]). Here, in contrast, we focus on total utility
maximization in the network economy. In this chapter, we provide a procedure
for computing subsidies that a government (or governments) can impose to guar-
antee that the system-optimized multiclass population distribution in the network
economy is also user-optimized. These policies, when imposed, guarantee that
individuals will choose their locations in a manner so that the societal welfare is
maximized.

The chapter is organized as follows. In Section 4.1, the multiclass system-optimized
model of human migration and its user-optimized analogue is presented. The op-
timal solutions to both satisfy an appropriate VI problem. The societal welfare
loss ratio is proposed and an illustrative example is presented in order to reinforce
the basic concepts. In Section 4.2, we outline the procedure for determining the
subsidies for the different migrant classes and locations, so that, when applied,
the S-O multiclass population distribution in the network economy is, at the same
time, U-O. We also discuss how the framework can be used post a disaster. An
algorithm is proposed in Section 4.3 and convergence results are provided. The
algorithm is then applied in Section 4.4 to compute the solutions to a series of
numerical examples, with changes in the demands, and in the utility functions, in
order to also address the possible impacts of a pandemic, followed by a natural
disaster. We summarize our results and present our conclusions in Section 4.5.
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4.1 The System-Optimization Migration Network
Model

In the network economy there are n locations at which the different classes in
the population can locate. We assume freedom of movement between locations
at zero cost, since here we are focusing on the long-term equilibrium population
distributions at the various locations. We consider H classes of migrants with a
typical class denoted by k. The network representation is given in Figure 4.1. Note
that we associate locations with links (rather than nodes). Each link i; i = 1, . . . ,n,
has an associated utility for each class denoted by Uk

i . The utility functions capture
how attractive location i, ∀i, is for an individual of class k, ∀k. The relevant
notation is given in Table 4.1. All vectors here are assumed to be column vectors.

n

n

1

0

R 	U

1 2 · · · n

U1
1 , . . . ,U

J
1 U1

n , . . . ,U
J
n

Figure 4.1: Network Structure of the Human Migration Model

Table 4.1: Notation for the Human Migration Models

Notation Definition
pk

i the population of class k at location i. The {pk
i } elements are grouped into

the vector pk ∈ Rn
+. We then further group the pk vectors; k = 1, . . . ,J, into

the vector p ∈ RJn
+ .

Pk the population of class k in the network economy; k = 1, . . . ,J.
Uk

i (p) the utility perceived by individuals of class k at location i; i = 1, . . . ,n. We
group the utility functions for each k into the vector Uk ∈ Rn and then group
all such vectors for all k into the vector U ∈ RJn.

Ûk
i (p) the total utility perceived by class k at location i; i = 1, . . . ,n. The total utility

Ûk
i (p) =Uk

i (p)× pk
i ; k = 1, . . . ,J; i = 1, . . . ,n.
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The flow conservation constraint for each class k; k = 1, . . . ,J, is:

n

∑
i=1

pk
i = Pk. (4.1)

Hence, the population distribution of each class among the various locations must
sum up to the population of that class in the network economy.

Moreover, the populations must be nonnegative, that is,

pk
i ≥ 0, ∀i;∀k. (4.2)

Note that, according to Table 4.1, the total utility associated with a location and
class, may, in general, depend upon the distribution of not only that particular
class but also on that of the other classes. This is very reasonable: migrants may
wish to locate where there is a certain concentration of those similar to themselves
at the same location and, in proximity. At the same time, because of cultural and
even economic factors they may wish to distance themselves from other classes.

We define the feasible set K1 ≡ {p| (4.1)and(4.2)hold.}.

4.1.1 The System-Optimization (S-O) Problem

In the system-optimization (S-O) problem, the goal is to maximize the total util-
ity in the network economy. This is achieved when the following optimization
problem is solved:

Maximize
H

∑
k=1

n

∑
i=1

Ûk
i (p) =

H

∑
k=1

n

∑
i=1

Uk
i (p)× pk

i (4.3)

subject to the flow conservation constraints (4.1) for all k and the nonnegativity
ones (4.2).

Observe that the objective function (4.3) captures the total utility of the so-
ciety/economy under study. Locations i can correspond to different countries; to
different regions in different countries, or to regions within a country, if the focus
is on within country movements/migrations.

Under the assumption that the total utility functions for all the classes at all
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the locations are concave, and are continuously differentiable, we know that the
optimal solution, denoted by p′, satisfies the following variational inequality (VI):
determine p′ ∈ K1, such that

−
H

∑
k=1

n

∑
i=1

[
H

∑
l=1

n

∑
j=1

∂Û l
j(p′)

∂ pk
i

]
× (pk

i − pk′
i )≥ 0, ∀p ∈ K1. (4.4)

Furthermore, if all the utility functions are strictly concave, it follows that the
optimal population distribution p′ is unique.

It is interesting to remark that, since Ûk
i (p) = Uk

i (p)× pk
i , then VI (4.4) is

equivalent to

−
H

∑
k=1

n

∑
i=1

H

∑
l=1

n

∑
j=1

∂U l
j(p′)

∂ pk
i
× (pk

i − pk′
i )−

H

∑
k=1

n

∑
i=1

Uk
i (p′)× (pk

i − pk′
i )≥ 0, ∀p ∈ K1

and the second term coincides with (4.6).

4.1.2 The User-Optimization (U-O) Problem

As mentioned in the Introduction, it may be challenging, if nearly impossible,
to reallocate the various class populations so that the system-optimal solution is
achieved (unless one is living in a totalitarian state). This is especially the case,
since migrants may not individually care about such a solution but may act self-
ishly in order to achieve an optimal solution for themselves “individually." In the
case of user-optimization (U-O), it is assumed that the migrants are rational and
that migration will continue until no individual of any class has any incentive
to move since a unilateral decision will no longer yield an increase in the utility.
The governing solution will satisfy the following migration equilibrium conditions
proposed by Nagurney in [64] (see also [65]). Mathematically, a multiclass popu-
lation vector p∗ ∈ K1 is said to be in equilibrium if for each class k; k = 1, . . .,H;
i = 1, . . . ,n:

Uk
i (p∗)

= λ k if pk
i
∗
> 0

≤ λ k if pk
i
∗
= 0

(4.5)

Equilibrium conditions (4.5) state that, for a given class k, only those locations
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i with maximal utility equal to an indicator λ k will have a positive population of
the class. Furthermore, the utilities for a given class at populated locations by that
class are equalized, that is, equilibrated across the locations. We note that λ k is,
in actuality, the Lagrange multiplier associated with constraint (4.1) for k. Indeed,
from the duality theory (see [2] and [14]), we have that the multipliers λ and
µ associated with constraints (4.1) and (4.2), respectively, satisfy the following
conditions:

Uk
i (p∗) =−λ

k
+µ

k
i , i = 1, . . . ,n, k = 1, . . . ,J; µ

k
i pk∗

i = 0, µ
k
i ≥ 0

and, hence, we obtain 4.5.

As shown in the above noted references, the equilibrium p∗ satisfies the vari-
ational inequality problem: determine p∗ ∈ K1 such that

−
H

∑
k=1

n

∑
i=1

Uk
i (p∗)× (pk

i − pk∗
i 〉 ≥ 0, ∀p ∈ K1. (4.6)

Clearly, the solution p∗ to VI (4.6) can be expected to be distinct from the
solution p′ to VI (4.4).

4.1.3 A Simple Example

In order to reinforce the above concepts we present an example for which both
the system-optimized and the user-optimized solutions are provided. We consider
a network economy consisting of two locations and a single class; hence, we
suppress the superscript notation. The total population is: P = 100 and the utility
functions at the two locations are:

U1(p) =−p1 +200, U2(p) =−p2 +220.

The user-optimized solution is:

p∗1 = 40, p∗2 = 60,
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yielding λ = 160, since

U1(p∗) =U2(p∗) = 160.

Observe that VI (6) is satisfied by this p∗. Note that, at this population distribution,
the total utility: Û1 +Û2 = 16,000.

On the other hand, the system-optimized solution is:

p′1 = 45, p′2 = 55,

and VI (4) is satisfied since

−∂Û1(p′)
∂ p1

=−∂Û2(p′)
∂ p2

=−110.

The corresponding total utility is: 16,050. Clearly, 16,050 > 16,000. Further-
more, at the system-optimized solution, we have that:

U1(p′) = 155, U2(p′) = 165

and, clearly, the S-O solution is not U-O. Hence, without appropriate policy inter-
ventions, and, if humans are “free" to move/migrate, the S-O solution would be
difficult to sustain. Indeed, one can expect that some of those at location 1 will
migrate to location 2 until the U-O solution is achieved since the utility in loca-
tion 2 is higher than in location 1 and people will move; so the initial S-O solution
(45,55) would become (40,60).

4.1.4 The Societal Welfare Loss Ratio

We now construct the societal welfare loss ratio. Note that the classical price of an-
archy focused on total cost minimization in the congested transportation/telecommunications
network context. Here, in contrast, we are concerned with total utility maximiza-
tion in a network economy and the associated societal welfare loss under U-O as
opposed to S-O behaviour.
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Our societal welfare loss ratio π is defined as follows:

π =
TU(p∗)
TU(p′)

, (4.7)

where TU denotes the total utility such that

TU =
H

∑
k=1

n

∑
i=1

Ûk
i ; (4.8)

and recall that p∗ is the population distribution pattern under the U-O solution
for a given migration network problem and p′ is that for the S-O solution for the
problem. The ratio quantifies the societal welfare loss if migrants select their U-O
destinations rather than being allocated to locations under S-O. Note that here we
consider multiple classes of migrants in our ratio.

For the above numerical example, we have that:

π = 16,000/16,050 = .997.

The value of π in(4.7) can never exceed 1, since the highest societal total utility
TU is achieved at p′, the S-O solution. The smaller the value of the societal
welfare loss ratio π , the greater the welfare loss to society under the U-O solution.

4.2 Policy Intervention in the Form of Subsidies

We now proceed to ask the following question. Is there a migration policy that,
when applied, can make the system-optimized solution also a user-optimized one?
If so, an application of such a policy would result in no users having any incentive
to switch their locations, and the population distribution would be one that is also
optimal for the society (system-optimized).

The answer is: Yes! The derivation and construction of such a migration policy
is as follows. We first solve for the system-optimized solution p′. For each class k,
we denote those locations with a positive population by k1, . . . ,knk , where nk is the
number of locations in the network economy with a positive population of class k.
We also introduce notation for subsidies associated with the different locations for
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each class denoted by class k by: (subsidy)k1 , (subsidy)k2 , ..., (subsidy)knk
. We

can then list those location as:

Uk
k1
(p′)+ subsidyk

k1
= µk,

Uk
k2
(p′)+ subsidyk

k2
= µk,

and so on until (4.9)

Uk
knk

(p′)+ subsidyk
knk

= µk,

where µk is the incurred utility for class k after the subsidies are distributed for the
class at the locations with positive populations of that class. Also, we can number
those locations for that class with zero populations of that class (if there are any)
as follows:

Uk
knk+1

(p′)+ subsidyk
knk+1
≤ µk,

and so on until (4.10)

Uk
kn
(p′)+ subsidyk

kn
≤ µk.

According to (4.9) and (4.10), the cognizant government authority selects the µk

for each class k, and then the subsidy for each location for that class is easily
determined via subtraction.

The question now arises as to what value is reasonable for µk? We propose
that µk be set as: maxkl ;l=1,...,nk Uk

kl
(p′). This procedure guarantees that all the

subsidies will be nonnegative and that all enjoy the maximal utility for each class
at all the populated locations. Also, for the subsidies associated with locations
with no populations of a class k (see (4.10)), those subsidies are set to zero.

Returning to the above simple example and, again suppressing superscripts
since there is a single class, the above subsidy formulae simplify to:

U1(p′)+ subsidy1 = µ,

U2(p′)+ subsidy2 = µ,
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or
155+ subsidy1 = 165,

165+ subsidy2 = 165.

Location 2 has a subsidy of zero, whereas those at location 1 receive a subsidy
of 10. It is always the case that, with the above procedure, the location(s) with
the highest utility at the system-optimized solution are not subsidized, since it is
wasteful to do so. Of course, according to (4.9) the government is “free" to set µk

as high as it is willing to and the budget allows.

In terms of practical implementation, we note that congestion pricing in the
form of tolls has achieved success around the world with notable examples in-
cluding the cities of Gothenburg and Stockholm in Sweden, London in the United
Kingdom, as well as Singapore, with tolls even on the horizon in New York City
(see [89], [91]).

We view the provision of the above subsidies as investments by government(s)
that might help to alleviate various migrant and refugee crises around the globe.
As for the budgets, if an individual government falls short, provision should be
provided by a supra authority such as the World Bank, the United Nations, or if in
Europe, the European Union.

4.2.1 Applying the Framework Post a Disaster

Disasters, as mentioned in the introduction of this chapter, may lead to migrations
of humans. Of course, it is important to emphasize that there are both slow-onset
disasters (certain wars, droughts, famine, pestilence, etc.), as well as sudden-onset
disasters (earthquakes, hurricanes, tsunamis, floods, etc.). For an edited volume
on dynamics of disasters, see [49].

In the case of a disaster, one would expect to encounter changes in the util-
ity functions associated with locations that the disaster has impacted and such
changes may affect certain classes more or less. In particular, one would expect
that, in general, the location(s) would become less attractive because of compro-
mised infrastructure, loss of resources and amenities, and even perhaps dangerous
conditions. The above S-O model can then be adapted to incorporate the modified
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utility functions and appropriate subsidies provided.

Similarly, once a disaster strikes, there may be major loss of life and that
would then affect the population in the network economy of one or more classes of
migrants. The S-O model can then be rerun to identify the new optimal multiclass
population distribution and assign the subsidies accordingly.

The above S-O model and policy intervention are relevant to a network econ-
omy even prior to a disaster since individuals may wish to seek better lives for
themselves by changing their locations within a country or across countries and
governments may wish to intervene to enhance the societal welfare in terms of the
population distribution and associated total utility.

4.3 Computation of the S-O Multiclass Population
Distribution Pattern

In order to determine the subsidies to make the S-O behavior, after imposition,
also U-O, we first must compute the system-optimizing flow pattern.

For purposes of standardizing the mechanism, we put VI (4.4) into standard
form (see [65]): determine X∗∗ ∈K ⊂ RN such that:

〈F(X∗∗),X−X∗∗〉 ≥ 0, ∀X ∈K , (4.11)

where 〈·, ·〉 denotes the inner product in N-dimensional Euclidean space. F(X)

is a given continuous function such that F(X) : X →K ⊂ RN . K is a closed,
bounded, and convex set.

We define the vector X ≡ p and the vector F(X) with elements:

Fk,i(p)≡∑
H
l=1 ∑

n
j=1−

∂Û l
j(p)

∂ pk
i

; k = 1, . . . ,H; i = 1, . . . ,n. The feasible set K ≡ K1

and N = Jn. Then, clearly, VI (4.4) can be put into the standard form (4.11) with
X∗∗ = p′. Similarly, VI (4.6) can also be put into standard form with X and K

as above and with the components of its F(X) given by −Uk
i (p); ∀k, ∀i, and with

X∗∗ = p∗.

We emphasize that there exists a solution to both VI (4.4) and VI (4.6) since
the underlying feasible set is compact and the corresponding function that enters
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the variational inequality, F(X) is continuous under our imposed assumptions (cf.
[45]).

We apply the Euler method to compute the solutions to the numerical examples
in the next section. The Euler method is induced by the general iterative scheme
presented in [27] by Dupuis and Nagurney. Specifically, iteration τ of the Euler
method ([77]) is given by:

Xτ+1 = PK (Xτ −aτF(Xτ)), (4.12)

where PK is the projection on the feasible set K and F is the function that enters
the VI problem (4.11).

As discussed in [77], the Euler method is, in fact, a discrete-time approxi-
mation to the continuous-time trajectories associated with a projected dynamical
system, whose set of stationary points coincides with the set of solutions to the
corresponding VI problem. In the multiclass human migration network context
here, this means that there is an associated projected dynamical system to both
VI (4.4) and to VI (4.6). Projected dynamical systems, as noted by Dupuis and
Nagurney in [27], are nonclassical in that the right-hand side is discontinuous, but
capture the underlying feasible set corresponding to the constraints of the given
problem.

In addiction, in [27], Dupuis and Nagurney proved that, for convergence of
the general iterative scheme, which induces the Euler method, the sequence {aτ}
must satisfy: ∑

∞
τ=0 aτ = ∞, aτ > 0, aτ → 0, as τ → ∞. Specific conditions for

convergence of the Euler method within many network-based models can be found
in [77] and in [67] and the references therein.

We now provide the convergence result.

Theorem 4.3.1. Convergence. In the S-O model of human migration constructed

above let F(X) be strictly monotone at any equilibrium pattern. Also, assume that

F is uniformly Lipschitz continuous. Then there exists a unique S-O population

distribution pattern p′ ∈ K and any sequence generated by the Euler method

as given by (4.12), with {aτ} satisfies ∑
∞
τ=0 aτ = ∞, aτ > 0, aτ → 0, as τ → ∞

converges to p′, satisfying VI (4.4).

Proof. The proof follows from Theorem 5.8 in [77].
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The analogue of the above Theorem for VI (4.6) easily follows.

In view of the special network structure underlying our multiclass model (cf.
Figure 4.1), it makes sense to use an algorithm for the solution of the encountered
separable quadratic programming problems at each iteration of the above Euler
method. Note that (4.12), because of the network structure of the feasible set
K , consists of H separable quadratic programming problems, one for each class
k, and subject to the flow conservation constraints (4.1) and the nonnegativity
constraints (4.2) for each class k. Specifically, for these network subproblems of
special structure, we propose the use of the exact equilibration algorithm (cf. [19]
and [65]). This algorithm yields the exact solution at each iteration and guarantees
that the conservation of equations (4.1) and (4.2) are satisfied.

4.4 Numerical Examples

We now present several numerical examples, which are solved using the Euler
method outlined in the preceding section. The algorithm was implemented in
FORTRAN and the system used was a Unix system at the University of Mas-
sachusetts Amherst. The series {aτ} in the algorithm was set to: .1(1, 1

2 ,
1
2 ,

1
3 ,

1
3 ,

1
3 , . . ..

the convergence tolerance ε was 10−5, that is, the algorithm was deemed to have
converged when the absolute value of each of the computed population values at
two successive iterations was less than or equal to .00001.

There are two classes of migrants and five locations in all the numerical exam-
ples. We report the computed U-O and the S-O solutions, as well as the subsidies,
for each of them.

Numerical Example 1

This example serves as the baseline for all the other examples in this section.
The fixed populations in the network economy of the two classes are, respectively:

P1 = 1000.00 P2 = 2000.00.
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The utility functions and the total utility functions for class 1 are:

U1
1 (p) =−2p1

1− .2p2
1 +2000, Û1

1 (p) =−2(p1
1)

2− .2p2
1 p1

1 +2000p1
1

U1
1 (p) =−2p1

1− .2p2
1 +2000, Û1

1 (p) =−2(p1
1)

2− .2p2
1 p1

1 +2000p1
1,

U1
2 (p) =−3p1

2− .1p2
2 +1500, Û1

2 (p) =−3(p1
2)

2− .1p2
2 p1

2 +1,500p1
2,

U1
3 (p) =−p1

3− .3p2
3 +3000, Û1

3 (p) =−(p1
3)

2− .3p2
3 p1

3 +3000p1
3,

U1
4 (p) =−p1

4− .2p2
4 +2500, Û1

4 (p) =−(p1
4)

2− .2p2
4 p1

4 +2500p1
4,

U1
5 (p) =−2p1

5− .3p2
5 +4000, Û1

5 (p) =−2(p1
5)

2− .3p2
5 p1

5 +4000p1
5.

The utility functions and the total utility functions for class 2 are:

U2
1 (p) =−p2

1− .4p1
1 +4000, Û2

1 (p) =−(p2
1)

2− .4p1
1 p2

1 +4000p2
1,

U2
2 (p) =−2p2

2− .6p1
2 +3000, Û2

2 (p) =−2(p2
2)

2− .6p1
2 p2

2 +3000p2
2,

U2
3 (p) =−p2

3− .2p1
3 +5000, Û2

3 (p) =−(p2
3)

2− .2p1
3 p2

3 +5000p2
3,

U2
4 (p) =−2p2

4− .3p1
4 +4000, Û2

4 (p) =−2(p2
4)

2− .3p1
4 p2

4 +4000p2
4,

U2
5 (p) =−p2

5− .4p1
5 +3000, Û2

5 (p) =−(p2
5)

2− .4p1
5 p2

5 +3000p2
5.

We first computed the U-O solution since it is interesting to compare it with the
S-O solution. If the migrants are free to move between locations (and no subsidies
are provided), the U-O solution satisfying VI (4.6) is:

Class 1 U-O population distribution

p1∗
1 = 0.00, p1∗

2 = 0.00, p1∗
3 = 167.31, p1∗

4 = 41.68, p1∗
5 = 791.01.

Class 2 U-O population distribution

p2∗
1 = 415.89, p2∗

2 = 0.00, p2∗
3 = 1382.41, p2∗

4 = 201.69, p2∗
5 = 0.00.

For class 1, the incurred utility at equilibrium at the populated locations 3, 4, and 5
is 2417.98 and it is lower at locations 1 and 2 - 1916.82 and 1500.00, respectively.
For class 2, the incurred utility at equilibrium at the populated locations 1, 3, and
4 is 3584.11. At location 2, the utility of class 2 is 3000.00 and at location 5 it is
2683.60.
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Neither class, under U-O behaviour, elects to migrate to and locate at location
2. Class 1 migrants only locate at locations 3 through 5. Only those of class 2
locate at location 1, in equilibrium, whereas only those of class 1 locate at location
5.

Now we present the S-O solution for this problem, which satisfies VI (4.4).

Class 1 S-O population distribution

p1′
1 = 0.00, p1′

2 = 0.00, p1′
3 = 120.43, p1′

4 = 314.39, p1′
5 = 565.19.

Class 2 S-O population distribution

p2′
1 = 606.48, p2′

2 = 53.23, p2′
3 = 1,076.35, p2′

4 = 263.94, p2′
5 = 0.00.

We see that in the S-O solution, location 2 is now populated by class 2. Lo-
cations 1 and 2 remain unpopulated under S-O for class 1 as does location 5 for
class 2.

Using the procedure outlined in Section 4.2 (cf. (4.9) and (4.10)), we set
µ1 = 2869.63 since the highest utility under the S-O flow pattern for class 1 is that
at location 5 and it is equal to the above value. Also, we set µ2 = 3899.56 since
the highest utility for class 2 under the S-O flow pattern is achieved at location 3
and it is equal to 3899.56.

We then, via subtraction of the particular location and class utility evaluated
at the S-O population pattern, obtain the following subsidies:

Class 1 subsidies

subsidy1
1 = 0.00, subsidy1

2 = 0.00, subsidy1
3 = 312.96, subsidy1

4 = 736.80, subsidy1
5 = 0.00,

Class 2 subsidies

subsidy2
1 = 506.04, subsidy2

2 = 1006.03, subsidy2
3 = 0.00, subsidy2

4 = 521.75, subsidy2
5 = 0.00.

In order to verify the above theory we modified the original utility functions
by adding the above subsidies and solved for the U-O pattern, and the answer, as
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expected, was identical to the above reported S-O pattern. Hence, the policy of
subsidies accomplishes what it was designed for.

Numerical Example 2
Numerical Example 2 has the same data as Numerical Example 1, except that the
demands are now switched so that:

P1 = 2,000.00 P2 = 1,000.00.

The U-O solution is now:

Class 1 U-O population distribution

p1∗
1 = 0.00, p1∗

2 = 0.00, p1∗
3 = 631.39, p1∗

4 = 412.41, p1∗
5 = 956.21.

Class 2 U-O population distribution

p2∗
1 = 63.16, p2∗

2 = 0.00, p2∗
3 = 936.84, p2∗

4 = 0.00, p2∗
5 = 0.00.

For class 1, the incurred utility at equilibrium at the populated locations 3,
4, and 5 is 2087.59 and it is lower at locations 1 and 2 - 1987.37 and 1500.00,
respectively. For class 2, the incurred utility at equilibrium at the populated loca-
tions 1 and 3 is 3936.89. At location 2, the utility of class 2 is 3000.00, at location
4 it is 3876.28, and at location 5 it is 2617.52.

The computed S-O solution, which is also utilized to determine the subsidies
is:

Class 1 S-O population distribution

p1′
1 = 205.08, p1′

2 = 75.92, p1′
3 = 265.89, p1′

4 = 714.23, p1′
5 = 738.89.

Class 2 S-O population distribution

p2′
1 = 225.39, p2′

2 = 0.00, p2′
3 = 720.43, p2′

4 = 54.18, p2′
5 = 0.00.

Again, we see in this example that the S-O population pattern is quite different
from the U-O one. In fact, at the U-O solution, class 1 only located at three
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locations: 3 – 5, whereas, at the S-O solution, there was a positive population
of this class at the S-O solution at all locations. Hence, both quantitatively and
qualitatively, we can expect the U-O and the S-O solutions to differ, demonstrating
the need for appropriate migration policies.

We now report the subsidies, noting that in this example, we set µ1 = 2522.23
since the highest utility under the S-O flow pattern for class 1 is that at location
5 and it is equal to the above value. Also, we set µ2 = 4226.39 since the highest
utility for class 2 under the S-O flow pattern is achieved, again, at location 3.

The subsidies are now:
Class 1 subsidies

subsidy1
1 = 977.46, subsidy1

2 = 1250.00, subsidy1
3 = 4.25, subsidy1

4 = 747.29, subsidy1
5 = 0.00,

Class 2 subsidies

subsidy2
1 = 533.81, subsidy2

2 = 0.00, subsidy2
3 = 0.00, subsidy2

4 = 549.01, subsidy2
5 = 1521.94.

Numerical Example 3

In this example, we consider a healthcare disaster hitting the network economy
in the form of a pandemic. This example is inspired, in part, by the coronavirus
outbreak emanating from Wuhan, China ([88]). The data in this example was as
in Numerical Example 1, except that now we assumed that 50% of the population
of each class has perished, so that:

P1 = 500.00 P2 = 1,000.00.

Note that in this example the utility functions remain unchanged since the
disaster does not affect infrastructure, per se, and involves “only” loss of life.

Next, we report the complete results for this example, as we have done for the
others in this section. The U-O population distribution is now

Class 1 U-O population distribution

p1∗
1 = 0.00, p1∗

2 = 0.00, p1∗
3 = 0.00, p1∗

4 = 0.00, p1∗
5 = 500.00.
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Class 2 U-O population distribution

p2∗
1 = 0.00, p2∗

2 = 0.00, p2∗
3 = 1,000.00, p2∗

4 = 0.00, p2∗
5 = 0.00.

This solution is quite interesting. Note that all migrants of class 1 choose
to locate exclusively at location 5 whereas those of class 2 all migrate, post the
disaster, to location 3. There is a complete separation of these two classes under
U-O behaviour in the network economy.

Those of class 1 have a utility of 3000.00 at location 5, whereas those of class
1 have a utility of 4000.00 at location 3.

The computed S-O solution is

Class 1 S-O population distribution

p1′
1 = 0.00, p1′

2 = 0.00, p1′
3 = 47.98, p1′

4 = 43.17, p1′
5 = 408.85.

Class 2 S-O population distribution

p2′
1 = 206.96, p2′

2 = 0.00, p2′
3 = 694.96, p2′

4 = 98.08, p2′
5 = 0.00.

In the S-O solution, there is more “spreading out" of the classes among the
locations than in the U-O solution.

For this example, we set µ1 = 3182.31 since the highest utility under the S-O
flow pattern for class 1 is that at location 5 and it is equal to the above value. Also,
we set µ2 = 4295.44 since the highest utility for class 2 under the S-O flow pattern
is achieved, again, at location 3.

The subsidies (see, again, (4.9) and (4.10)) are:

Class 1 subsidies

subsidy1
1 = 0.00, subsidy1

2 = 0.00, subsidy1
3 = 438.78, subsidy1

4 = 745.10, subsidy1
5 = 0.00,

Class 2 subsidies

subsidy2
1 = 502.40, subsidy2

2 = 0.00, subsidy2
3 = 0.00, subsidy2

4 = 504.56, subsidy2
5 = 0.00.
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Numerical Example 4

Numerical Example 4 had the same data as that in Numerical Example 3 except
that we now consider the impact of a natural disaster following the healthcare
disaster. We assume that locations 3 and 5 are impacted so that the utility functions
of both classes of migrants associated with these locations are modified as follows.
The fixed term in each of the noted utility functions in Examples 1 through 3 is
reduced by 50% yielding new associated utility functions for the classes at those
locations of

U1
3 (p) =−p1

3− .3p2
3 +1500, U1

5 (p) =−2p1
5− .3p2

5 +2000,

U2
3 (p) =−p2

3− .2p1
3 +2500, U2

5 (p) =−p2
5− .4p1

5 +1500.

The computed U-O solution is

Class 1 U-O population distribution

p1∗
1 = 0.00, p1∗

2 = 0.00, p1∗
3 = 0.00, p1∗

4 = 480.97, p1∗
5 = 19.03.

Class 2 U-O population distribution

p2∗
1 = 714.75, p2∗

2 = 0.00, p2∗
3 = 0.00, p2∗

4 = 285.25, p2∗
5 = 0.00.

With the negatively impacted by the disaster locations 3 and 5, the majority of
class 1 migrates from location 5 to location 4; whereas those of class 2 completely
leave location 3 (as do those of class 1). Those of class 2 leave location 3 for
locations 1 and 4.

The computed S-O solution is:

Class 1 S-O population distribution

p1′
1 = 6.85, p1′

2 = 0.00, p1′
3 = 0.00, p1′

4 = 389.05, p1′
5 = 104.10.

Class 2 S-O population distribution

p2′
1 = 648.28, p2′

2 = 75.17, p2′
3 = 0.00, p2′

4 = 276.54, p2′
5 = 0.00.
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The S-O population distribution is also affected by the disaster with neither
class locating at location 3. No-one of class 2 remains at location 5, whereas
those of class 1 have a higher population at location 5 under the S-O solution,
than under the U-O one.

In Numerical Example 4, µ1 = 2055.64 and µ2 = 3348.98.

The subsidies are now:
Class 1 subsidies

subsidy1
1 = 199.00, subsidy1

2 = 0.00, subsidy1
3 = 0.00, subsidy1

4 = 0.00, subsidy1
5 = 263.83,

Class 2 subsidies

subsidy2
1 = 0.00, subsidy2

2 = 499.33, subsidy2
3 = 848.98, subsidy2

4 = 18.78, subsidy2
5 = 1,890.62.

4.5 Summary and Conclusions

Mathematical models of human migration networks have advanced over the past
three decades to include, among others, multiple classes of migrants, costs as-
sociated with migration between locations, the incorporation of dynamics, etc.
However, essentially all of the rigorous operations research based migration mod-
elling work has focused on selfish, that is, user-optimizing, behaviour. Such a
perspective is rich in theory and scope but such behaviour may lead to migratory
flows and the resulting population distributions among regions and countries that
are far from optimal from a societal perspective.

In this chapter, we introduce a new multiclass network model of human migra-
tion that assumes system-optimizing behaviour. The model fills a research gap in
the literature. We then, using its classical user-optimizing analogue, demonstrate
how governments can provide subsidies in order to make the system-optimizing
population distribution pattern across multiple locations, also user-optimizing.
Hence, once the subsidies are provided, migrants will independently locate them-
selves where it is also best from a societal perspective.

We provide, for completeness, the variational inequality formulations of both
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models and draw analogues to traffic network models and policies of tolls that alter
travellers’ behaviour to make drivers selects routes of transport that are system-
optimizing. We also propose a societal welfare loss ratio, inspired by the price of
anarchy.

An algorithm is proposed that is a time-discretization of the underlying dy-
namics until the optimal population distribution is achieved/computed. The al-
gorithm is then applied to compute solutions to a series of multiclass numerical
examples and the population distributions reported under user-optimization, un-
der system-optimization, along with the subsidies for the different classes at the
different locations.
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CHAPTER 5

Capacitated Human Migration Networks and

Subsidization

In this chapter, we develop user-optimized (U-O) and system-optimized (S-O)
multiclass models of human migration under capacities associated with the mi-
grant classes and locations. The work here presented takes up that of the previous
chapter, but with the generalization of the inclusion of capacities. Such a gener-
alization is especially timely, as noted above. Moreover, to-date, the majority of
research on human migration networks, from an operations research and mathe-
matical modelling perspective, has focused on the modelling of migration flows
assuming user-optimizing behaviour, originating with the work of Nagurney (see
[64]).

System-optimization in multiclass human migration networks is also impor-
tant since governments may wish to maximize societal welfare and hope that mi-
grants locate accordingly. However, the latter may be extremely challenging un-
less proper policies/incentives are put into place. Indeed, in [1], the authors have
argued for an effective cost-efficient mechanism for the distribution of refugees
in the European Union, for example. Clearly, that would require some form of
central control and cooperation/coordination.

61
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In this chapter, we provide a quantitative mechanism, in the form of subsi-
dies, that, when applied, guarantees that the system-optimized solution of our
multiclass capacitated human migration network problem is also user-optimized.
This is very important, since it enables governments, and policy-making bodies,
to achieve optimal societal welfare in terms of the location of the migrants in
the network economy, while the migrants locate independently in a U-O manner!
It is also provided an alternative variational inequality formulations of both the
new U-O and S-O models, which include Lagrange multipliers associated with
the location capacity constraints as explicit variables. Their values at the equi-
librium/optimal solutions provide valuable economic information for decision-
makers.

This chapter is organized as follows. In Section 5.1, the capacitated multi-
class human migration network models, under S-O and under U-O behaviours is
presented. Associated with each location as perceived by a class, is an individual
utility function, that, when multiplied by the population of that class at that loca-
tion, yields the total utility function for that location and class. As in the previous
chapter, the utility associated with a location and class can, in general, depend
upon the vector of populations of all the classes at all the locations in the network
economy. We assume a fixed population of each class in the network economy
and are interested in determining the distributions of the populations among the
locations under S-O and U-O behaviours. For each model, we provide alternative
variational inequality formulations. It is also highlighted the role that is played by
the Lagrange multipliers associated with the class capacities on the locations in
the network economy.

In Section 5.2, it is outlined the procedure for the calculation of the multi-
class subsidies in order to guarantee, even in the capacitated case, that the system-
optimized solution is, simultaneously, also user-optimized. Hence, once the sub-
sidies are applied, the migrants will locate themselves individually in the network
economy in a manner that is optimal from a societal perspective. As argued in
the preceding chapter there are analogues of our subsidies to tolls in transporta-
tion science. In the case of congested transportation networks, the imposition
of tolls (see [19], [17], [18], [54]), results in system-optimized flows also be-
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ing user-optimized. In other words, once the tolls are imposed, travellers, acting
independently, select routes of travel which result in a system optimum, that mini-
mizes the total cost to the society. In this chapter, we construct policies for human
migration networks that maximize societal welfare but in the case of capacities.

In Section 5.3, it is outlined the computational algorithm, which then is applied
to compute solutions to numerical examples in Section 5.3.2, that illustrate the
theoretical results in this chapter in a practical format. We summarize the results
and present the conclusions in Section 5.4.

5.1 The Capacitated Multiclass Human Migration
Network Models

In this section, we construct the capacitated multiclass network models of hu-
man migration. We first present the system-optimized model and then the user-
optimized one. The notation follows that in the previous chapter, where, no ca-
pacities on the populations at the locations were imposed.

We assume that the human migrants have no movement costs associated with
migrating from location to location since we are concerned with the long-term
population distribution behaviours under both principles of system-optimization
and user-optimization. The network representation of the models is given in Fig-
ure 5.1.

There are H classes of migrants, with a typical class denoted by k, and n

locations corresponding to locations that the multiclass populations can migrate
to, with a typical location denoted by i.

In the network representation, locations are associated with links. A link can
correspond to a country or a region within a country and the network economy
can capture multiple countries. If a government is interested in within country
migration, exclusively, then the network economy (network) would correspond to
that country.

Table 5.1 contains the notation for the models. All vectors here are assumed
to be column vectors.
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Figure 5.1: The Network Structure of the Multiclass Human Migration Models

Notation Definition
pk

i the population of class k at location i. We group the {pk
i } elements into the

vector pk ∈ Rn
+. We then further group the pk vectors; k = 1, . . . ,H, into the

vector p ∈ RHn
+ .

capk
i the nonnegative capacity at location i for class k; k = 1, . . . ,H; i = 1, . . . ,n.

β k
i the Lagrange multiplier associated with capacity constraint for k at i; k =

1, . . . ,J; i = 1, . . . ,n. We group all these Lagrange multipliers into the vector
β ∈ RHn

+ .
Pk the fixed population of class k in the network economy; k = 1, . . . ,J.

Uk
i (p) the utility of individuals of class k at location i; i = 1, . . . ,n. We group the

utility functions for each k into the vector Uk ∈ Rn and then group all such
vectors for all k into the vector U ∈ RHn.

Ûk
i (p) the total utility of class k at location i; i = 1, . . . ,n. The total utility Ûk

i (p) =
Uk

i (p)× pk
i ; k = 1, . . . ,J; i = 1, . . . ,n.

Table 5.1: Notation for the Multiclass Human Migration Models

According to Table 5.1, there is a utility function Uk
i associated with each class

k; k = 1, . . . ,H, and location i; i = 1, . . . ,n, which captures how attractive location
i is for that class k. Observe that (see Table 5.1), the utility, and, hence, the total
utility, Ûk

i , associated with location i and class k, may, in general, depend upon
the population distribution of all the classes at all the locations. The Organization
for Economic Co-operation and Development (OECD) ([30]), for example, rec-
ognizes that different locations may be more or less attractive to distinct classes
of migrants.

We now present the constraints. In this model, in order to ensure that no
changes in the population occur, it is assumed a conservation of population in the
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network economy. The population distribution of each class among the various
locations must sum up to the population of that class in the network economy, that
is, for each class k; k = 1, . . . ,H:

n

∑
i=1

pk
i = Pk. (5.1)

Furthermore, the population of each class at each location must be nonnega-
tive, that is,

pk
i ≥ 0, ∀i;∀k, (5.2)

and not exceed the capacity:

pk
i ≤ capk

i , ∀i;∀k. (5.3)

The feasible set K1 ≡ {p| (5.1), (5.2), (5.3)hold.}.
We assume here that

n

∑
i=1

capk
i ≥ Pk, (5.4)

for all classes k. In other words, we assume that the network economy has suffi-
cient capacity to accommodate the population of each class. Hence, the feasible
set K1 is nonempty. Moreover, it is compact.

5.1.1 The Capacitated System-Optimization (S-O) Problem

The government (or governments), in the case of system optimization, wishes
to maximize the total utility in the network economy, which reflects the societal
welfare, subject to the constraints. The capacitated system-optimization (S-O)
problem is:

Maximize
H

∑
k=1

n

∑
i=1

Ûk
i (p) =

H

∑
k=1

n

∑
i=1

Uk
i (p)× pk

i , (5.5)

subject to constraints (5.1) through (5.3).

We assume that the total utility functions for all the classes at all the locations
are concave and continuously differentiable. Then, from classical results (cf. [45]
and [65]), we know that the optimal solution, denoted by p′, satisfies the varia-
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tional inequality (VI) problem: determine p′ ∈ K1, such that

−
H

∑
k=1

n

∑
i=1

[
H

∑
l=1

n

∑
j=1

∂Û l
j(p′)

∂ pk
i

]
× (pk

i − pk′
i )≥ 0, ∀p ∈ K1. (5.6)

A solution p′ to VI (5.6) is guaranteed to exist under our imposed assumptions
since the feasible set K1 is compact and the total utility functions are continuously
differentiable. Uniqueness of the solution p′ then follows under the assumption
that all the utility functions are strictly concave.

We now present an alternative variational inequality to the one in (5.6), which
we utilize to compute the S-O solution in numerical examples. Furthermore, the
solution of the alternative VI allows us to determine the optimal Lagrange mul-
tipliers associated with the location class capacities in the S-O context. The La-
grange multipliers at the optimal solution provide valuable economic information.
We define the feasible set K2 ≡ {(p,β )|(5.1), (5.2)hold andβ ∈ RHn

+ }.

Alternative Variational Inequality Formulation of the Capacitated S-O Prob-
lem
A solution to the S-O problem also satisfies the VI: determine (p′,β ′) ∈ K2 such
that

−
H

∑
k=1

n

∑
i=1

[
H

∑
l=1

n

∑
j=1

∂Û l
j(p′)

∂ pk
i
−β

k′
i

]
× (pk

i − pk′
i )+

H

∑
k=1

n

∑
i=1

[
capk

i − pk′
i

]
× (β k

i −β
k′
i )≥ 0,

∀(p,β ) ∈ K2 (5.7)

The above result follows from the work of Bertsekas and Tsitsiklis, [5] (page
287). Capacities have also been applied to links in various supply chain system-
optimization problems and variational inequality formulations constructed ([66]
and [76]).

5.1.2 The Capacitated User-Optimization (U-O) Problem

We now introduce the capacitated user-optimized version of the above S-O model.
The new model extends the classical one introduced in [64] to include capacities.
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The Capacitated Equilibrium Conditions

Mathematically, a multiclass population vector p∗ ∈ K1 is said to be U-O or,
equivalently, a capacitated equilibrium, if for each class k; k = 1, . . .,J; and all
locations i; i = 1, . . . ,n:

Uk
i (p∗)


≥ λ k, if pk

i
∗
= capk

i ,

= λ k, if 0 < pk
i
∗
< capk

i ,

≤ λ k, if pk
i
∗
= 0.

(5.8)

From (5.8) one can see that locations with no population of a class are those
with the lowest utilities; those locations with a positive population of a class, with
the population not at the capacity for the location and class will have equalized
utility for that class and higher than the unpopulated locations of that class. More-
over, the equalized utility will be equal to an indicator λ k. The indicator λ k is,
actually, the Lagrange multiplier associated with constraint (5.1) for k with the
value at the equilibrium. Those locations with a class k at its capacity have a
utility greater than or equal to λ k.

A capacitated U-O solution p∗ satisfies the VI: determine p∗ ∈ K1 such that

H

∑
k=1

n

∑
i=1
−Uk

i (p∗)× (pk
i − pk∗

i )≥ 0, ∀p ∈ K1. (5.9)

We now prove the equivalence of the solution to the Capacitated Equilibrium
Conditions (5.8) and the VI (5.9).

Indeed, it is easy to see that, according to (5.8), for a fixed k and i, the equilib-
rium conditions imply that[

λ
k−Uk

i (p∗)
]
×
[

pk
i − pk∗

i

]
≥ 0, ∀pk

i : 0≤ pk
i ≤ capk

i . (5.10)

Observe that, if pk∗
i = 0, (5.10) holds true; if pk∗

i = capk
i , then (5.10) also holds,

and (5.10) also holds if 0 < pk∗
i < capk

i .
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Summing now (5.10) over all k and all i, yields:

J

∑
k=1

n

∑
i=1

[
λ

k−Uk
i (p∗)

]
×
[

pk
i − pk∗

i

]
≥ 0, ∀p ∈ K1. (5.11)

But, because of (5.1), (5.11) simplifies to precisely (5.9).

Furthermore, we now show that if p∗ satisfies VI (5.9), then the p∗ also satis-
fies the Capacitated Equilibrium Conditions (5.8).

In (5.9), we set pl
i = pl∗

i for all l 6= k, which yields:

n

∑
i=1
−Uk

i (p∗)× (pk
i − pk∗

i )≥ 0, ∀pk
i : 0≤ pk

i ≤ capk
i ;

n

∑
i=1

pk
i = Pk. (5.12)

If there are two locations, say, r and s with positive populations not at their
capacities, set for a sufficiently small ε > 0:

pk
r = pk∗

s − ε; pk
s = pk∗

r + ε

and all other pk
i s equal to pk∗

i . Clearly, such a population distribution is also
feasible. Substitution into (5.12) yields, after algebraic simplification:

(−Uk
r (p∗)+Uk

s (p∗))× (pk∗
s − pk∗

r − ε)≥ 0. (5.13)

Similarly, by constructing another feasible population pattern:

pk
r = pk∗

s + ε, pk
s = pk∗

r − ε,

with all other pk
i = pk∗

i , and substitution into (5.12) yields

(Uk
r (p∗)−Uk

s (p∗))× (pk∗
s − pk∗

r − ε)≥ 0. (5.14)

(5.13) and (5.14) can only hold true if

Uk
r (p∗) =Uk

s (p∗)

which we call λ k. Hence, the second condition in (5.8) has been established.
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On the other hand, suppose that pk∗
i ≥ 0 for all i, but pk∗

r > 0 and pk∗
s = 0.

For a sufficiently small ε > 0, construct pk
r = pk∗

r − ε and pk
s = pk∗

s + ε , with all
other pk

i s equal to pk∗
i and substitute these values into (5.12). After, algebraic

simplification, we obtain:

(Uk
r (p∗)−Uk

s (p∗))ε ≥ 0,

hence,
Uk

r (p∗)≥Uk
s (p∗)

and the third condition in (5.8) is verified.
Now, in order to verify that a solution to VI (5.9) also satisfies the top con-

dition in (5.8), if for some location r: pk∗
r = capk

r , then we construct a feasible
distribution pattern such that:

pk
r = pk∗

r − ε, pk
s = pk∗

s + ε,

with ε > 0 sufficiently small and all other pk
i = pk∗

i . Substitution into (5.12), after
algebraic simplification yields:

Uk
r (p∗)≥Uk

s (p∗)

and the conclusion follows. With the above arguments, we have shown that a
capacitated equilibrium p∗ is equivalent to the solution of the VI (5.9).

We now provide an alternative VI formulation of the capacitated equilibrium
conditions. This result is immediate by making note of [64], demonstrating that
the U-O human migration model (without capacities) is isomorphic to a traffic net-
work equilibrium problem (cf. [19] and [16]) and, hence, in the case of capacities,
also isomorphic to a traffic network equilibrium problem with side constraints (see
[53]) and with special structure.
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Alternative Variational Inequality Formulation of the U-O Problem
The U-O solution satisfies the variational inequality problem: determine (p∗,β ∗)∈
K2 such that

H

∑
k=1

n

∑
i=1

[
−Uk

i (p∗)+β
k∗
i

]
× (pk

i − pk∗
i 〉+

H

∑
k=1

n

∑
i=1

[
capk

i − pk∗
i

]
× (β k

i −β
k∗
i )≥ 0,

(p,β ) ∈ K2. (5.15)

5.1.3 Illustrative Examples

We first present an uncapacitated example for which we provide U-O and S-O
solutions. We then add capacities to the locations and report the new U-O and
S-O solutions. There is a single class in the network economy and three locations.
The total population is: P1 = 120 and the utility functions at the three locations
are:

U1
1 (p) =−p1

1 +190, U1
2 (p) =−p1

2 +200, U1
3 (p) =−p1

3 +210.

The user-optimized solution is:

p1∗
1 = 30.00, p1∗

2 = 40.00, p1∗
3 = 50.00,

yielding λ 1 = 160, since

U1
1 (p∗) =U1

2 (p∗) =U1
3 (p∗) = 160.00.

The S-O solution, on the other hand, is:

p1′
1 = 35.00, p1′

2 = 40.00, p1′
3 = 45.00.

We now impose capacities as follows:

cap1
1 = 60.00, cap1

2 = 60.00, cap1
3 = 30.00,
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and solve for the U-O and S-O solutions.
The new U-O solution, satisfying VI (5.15), is:

p1∗
1 = 40.00, p1∗

2 = 50.00, p1∗
3 = 30.00,

with Lagrange multipliers associated with the capacities of:

β
1∗
1 = 0.00, β

1∗
2 = 0.00, β

1∗
3 = 30.00.

The new S-O solution, satisfying VI (5.7), is:

p1′
1 = 42.50, p1′

2 = 47.50, p1′
3 = 30.00,

with Lagrange multipliers associated with the capacities of:

β
1′
1 = 0.00, β

1′
2 = 0.00, β

1′
3 = 45.00.

Observe that the S-O solution is distinct from the U-O solution in both the
uncapacitated and the capacitated versions.

Remark
We now show how the optimal Lagrange multipliers can be utilized. For example,
if one modifies the utility functions by reducing each of them by the value of
the optimal Lagrange multiplier associated with the location and the class then
the same user-optimizing solution is obtained as the one for the problem with
the corresponding capacities. Indeed, proceeding as above, we modify the utility
functions as:

Ũ1
1 (p) =−p1

1 +190−0 =−p1
1 +190,

Ũ1
2 (p) =−p1

2 +200−0 =−p1
2 +200,

Ũ1
3 (p) =−p1

3 +210−30 =−p1
3 +180,

and observe that the capacitated U-O solution: p1∗
1 = 40.00, p1∗

2 = 50.00, p1∗
3 =

30.00 remains optimal.
Similarly, one can modify the utility functions in the same manner, but by

using the optimal Lagrange multipliers for the S-O problem, to obtain the same
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S-O solution as for the problem with the capacities.

Hence, government decision-makers, in order to limit the population of certain
(or all) classes at certain (or all) locations can accomplish this through regulations
corresponding to the capacities or by modifying the utility functions accordingly
to yield the same result.

Now, we describe how subsidies (which may be viewed as a positive inter-
vention) can, once imposed, make the capacitated S-O solution also a capacitated
U-O one.

5.2 Subsidies to Guarantee the Capacitated S-O So-
lution is Also a Capacitated U-O Solution

In the previous chapter a procedure is introduced for the calculation of subsidies
that, once applied to the locations with a positive population of a class under S-
O, guaranteed that migrants operating under the U-O behavioural principle would
select locations that were also optimal from a societal standpoint; that is, they
were system-optimized.

Here we show that the same general construct is also applicable to capacitated
problems of human migration.

The procedure is as follows. We first solve for the capacitated system-optimized
solution p′ satisfying VI (5.7), or, equivalently, VI (5.6). For each class k, we
denote those locations with a positive population by k1, . . . ,knk , where nk is the
number of locations in the network economy with a positive population of class k.
We also introduce notation for subsidies associated with the different locations for
each class denoted by class k by: (subsidy)k1 , (subsidy)k2 , ..., (subsidy)knk

. We
then enumerate those locations in a list as follows:

Uk
k1
(p′)+ subsidyk

k1
= µ

k,

Uk
k2
(p′)+ subsidyk

k2
= µ

k,
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and so on until

Uk
knk

(p′)+ subsidyk
knk

= µ
k. (5.16)

Note that µk is the incurred utility for class k after the subsidies are distributed
for the class at the locations with positive populations of that class. Also, we can
number those locations for that class with zero populations of that class (if there
are any) as follows:

Uk
knk+1

(p′)+ subsidyk
knk+1
≤ µ

k,

and so on until
Uk

kn
(p′)+ subsidyk

kn
≤ µ

k. (5.17)

Expressions (5.16) and (5.17) reveal that the appropriate governmental author-
ity chooses the µk for each class k, and then the subsidy for each location for that
class is determined by straightforward subtraction.

In order to select an appropriate µk, as already noted in the previous chapter
for the uncapacitated case, the µks can be set as: maxkl ;l=1,...,nk Uk

kl
(p′). All thus

calculated are nonnegative and, furthermore, all migrants enjoy the maximal util-
ity for each class at all the populated locations. Also, for the subsidies associated
with locations with no populations of a class k (see (5.17)), we set those subsidies
zero.

Returning to the above simple example, we note that µ1 = 180.00, and the
above subsidy formulae simplify to:

U1
1 (p′)+ subsidy1

1 = µ
1,

U1
2 (p′)+ subsidy1

2 = µ
1,

U1
3 (p′)+ subsidy1

3 = µ
1,

or
147.50+ subsidy1

1 = 180.00,

152.50+ subsidy1
2 = 180.00,

180.00+ subsidy1
3 = 180.00,
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which yields:

subsidy1
1 = 32.50, subsidy1

2 = 27.50, subsidy1
3 = 0.00.

Observe that an application of the above subsidies modifies the utility func-
tions as follows:

Ũ1
1 (p) =−p1

1 +190+32.50, Ũ1
2 (p) =−p1

2 +200+27.50, Ũ1
3 (p) =−p1

3 +210+0.

Clearly, the S-O solution

p1′
1 = 42.50, p1′

2 = 47.50, p1′
3 = 30.00,

is at the same time U-O, since the utilities are equalized (and maximal) under this
S-O pattern and, hence, migrants will select locations, although acting selfishly
and individually, accordingly, because of the subsidies.

The above subsidies are investments by government(s) that might help to al-
leviate various migrant and refugee crises around the globe. As for the budgets,
if an individual government experiences a budgetary shortfall, additional financ-
ing may be provided by a supra authority such as the World Bank, the United
Nations, or if in Europe, the European Union. In [1], the authors have argued for
closer cooperation among countries regarding migration crises and also advocated
for an economic approach as to distribution of the migrants. Here, we provide a
quantitative approach with explicit formulae for implementation.

As noted earlier, climate change as well as disasters may act as drivers of
human migrations. In [83], Robinson, Dilkina, and Moreno-Cruz, for example,
provide a machine learning approach to migration in the United States under sea
level rise but emphasize that their approach is not yet ready for policy making.
They, as Bier, Zhou, and Du in [6], consider sea level rise due to climate change,
and migration within a country - the United States. The latter authors observe
that offering a subsidy (e.g., a partial buyout) can be effective if the government
has a significantly lower discount rate than residents. However, they assume ho-
mogeneous residents, whereas we consider multiclass ones and we also allow for
multiple countries and not just regions within a country. For edited volumes on
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dynamics of disasters, see [49] and [48]. Once a disaster or disasters strike, one
would modify the fixed populations of the various classes in the economy, as need
be, along with the utility functions and rerun the model(s), along with the subsi-
dies. In the case of disasters, we can expect that populations will decrease and
so would utility functions associated with locations that have been negatively im-
pacted.

5.3 The Algorithm and Numerical Examples

We apply the Euler method of Dupuis and Nagurney ([27]) for the solution of
the capacitated network models of human migration. As discussed therein (see
also [77]), the Euler method is induced by a general iterative scheme, and was
inspired by the theory of projected dynamical systems, whose set of stationary
points coincides with the set of solutions to an appropriate variational inequality
problem. The Euler method, in fact, can be viewed as a time-discretization of the
underlying continuous time trajectories of the projected dynamical system until a
solution is achieved. It has been applied to numerous network problems, including
supply chain ones (see [67]).

5.3.1 The Algorithm

For the purposes of standardizing the mechanism, we utilize similar notation to
that in previous chapter and put variational inequality (5.7) into standard form
(see [65]): determine X∗∗ ∈K ⊂ RN such that:

〈F(X∗∗),X−X∗∗〉 ≥ 0, ∀X ∈K , (5.18)

where 〈·, ·〉 denotes the inner product in N-dimensional Euclidean space. F(X) is
a given continuous function such that F(X) : X →K ⊂ RN . K is a closed and
convex set.

We define the vector X ≡ (p,β ) and the vector F(X) with elements: F1
k,i(p,β )

≡ ∑
H
l=1 ∑

n
j=1−

∂Û l
j(p)

∂ pk
i

and F2
k,i(p,β )≡capk

i − pk
i ; k = 1, . . . ,H; i = 1, . . . ,n. We
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define the feasible set K ≡ K2 and N = 2Hn. Thus, VI (5.7) can be put into the
standard form (5.18) with X∗∗ = (p′,β ′). Similarly, VI (5.15) can also be put into
standard form with X and K as above and with the components of its F(X) given
by −Uk

i (p,β ), capk
i −β k

i ; ∀k, ∀i, and with X∗∗ = (p∗,β ∗).

At iteration τ , the statement of the Euler method is:

Xτ+1 = PK (Xτ −aτF(Xτ)), (5.19)

where PK is the projection on the feasible set K and F is the function that enters
the variational inequality problem (5.18).

Dupuis and Nagurney in [27], proved that, for convergence of the general
iterative scheme, which induces the Euler method, the sequence {aτ}must satisfy:

∑
∞
τ=0 aτ = ∞, aτ > 0, aτ → 0, as τ → ∞. Specific conditions for convergence of

the Euler method within many network-based models can be found in [77] and in
[67] and the references therein.

The Euler method nicely exploits the special network structure of the models
as depicted in Figure 5.1 and allows for closed form expressions at each itera-
tion for the computation of the Lagrange multipliers associated with the capacity
constraints. We solve the network subproblems of special structure, which are
separable quadratic programming problems, using the exact equilibration algo-
rithm (cf. [19] and [65]). This algorithm yields the exact solution at each iteration
for the populations.

5.3.2 Numerical Examples

The algorithm was implemented in FORTRAN and a Unix system at the Univer-
sity of Massachusetts Amherst used for the computations. The series {aτ} in the
algorithm was set to: 1, 1

2 ,
1
2 ,

1
3 ,

1
3 ,

1
3 , . . . with the convergence tolerance ε equal to

10−5. In other words, the algorithm was considered to have converged when the
absolute value of each of the computed population values for each class at two
successive iterations was less than or equal to .00001.

For continuity, and cross comparison purposes, we recall the data for the un-
capacitated examples taken from the previous chapter and to these we added ca-
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pacities. For completeness, we report both the uncapacitated and the capacitated
versions, reported for the first time here.

In the following numerical examples, the network economy consists of two
classes of migrants and five locations.

Utility Function and Fixed Population Data
We recall the data introduced in the Numerical Examples section 4.4, in the pre-
vious chapter.
The fixed populations in the network economy of the two classes are, respectively:

P1 = 1,000.00 P2 = 2,000.00.

The utility functions and the total utility functions for class 1 are:

U1
1 (p) =−2p1

1− .2p2
1 +2,000, Û1

1 (p) =−2(p1
1)

2− .2p2
1 p1

1 +2,000p1
1,

U1
2 (p) =−3p1

2− .1p2
2 +1,500, Û1

2 (p) =−3(p1
2)

2− .1p2
2 p1

2 +1,500p1
2,

U1
3 (p) =−p1

3− .3p2
3 +3,000, Û1

3 (p) =−(p1
3)

2− .3p2
3 p1

3 +3,000p1
3,

U1
4 (p) =−p1

4− .2p2
4 +2,500, Û1

4 (p) =−(p1
4)

2− .2p2
4 p1

4 +2,500p1
4,

U1
5 (p) =−2p1

5− .3p2
5 +4,000, Û1

5 (p) =−2(p1
5)

2− .3p2
5 p1

5 +4,000p1
5.

The utility functions and the total utility functions for class 2 are:

U2
1 (p) =−p2

1− .4p1
1 +4,000, Û2

1 (p) =−(p2
1)

2− .4p1
1 p2

1 +4,000p2
1,

U2
2 (p) =−2p2

2− .6p1
2 +3,000, Û2

2 (p) =−2(p2
2)

2− .6p1
2 p2

2 +3,000p2
2,

U2
3 (p) =−p2

3− .2p1
3 +5,000, Û2

3 (p) =−(p2
3)

2− .2p1
3 p2

3 +5,000p2
3,

U2
4 (p) =−2p2

4− .3p1
4 +4,000, Û2

4 (p) =−2(p2
4)

2− .3p1
4 p2

4 +4,000p2
4,

U2
5 (p) =−p2

5− .4p1
5 +3,000, Û2

5 (p) =−(p2
5)

2− .4p1
5 p2

5 +3,000p2
5.

We first recall the uncapacitated U-O and S-O solutions obtained in the previ-
ous chapter, as said before, and then report the capacitated solutions based on the
new models constructed here. We also report the calculated subsidies in the more
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general capacitated case introduced in this chapter. We provide two numerical
examples.

Numerical Example 1

The uncapacitated U-O solution for the numerical example with the above data is:

Class 1 Uncapacitated U-O Population Distribution

p1∗
1 = 0.00, p1∗

2 = 0.00, p1∗
3 = 167.31, p1∗

4 = 41.68, p1∗
5 = 791.01.

Class 2 Uncapacitated U-O Population Distribution

p2∗
1 = 415.89, p2∗

2 = 0.00, p2∗
3 = 1,382.41, p2∗

4 = 201.69, p2∗
5 = 0.00.

The uncapacitated S-O solution is:

Class 1 Uncapacitated S-O Population Distribution

p1′
1 = 0.00, p1′

2 = 0.00, p1′
3 = 120.43, p1′

4 = 314.39, p1′
5 = 565.19.

Class 2 Uncapacitated S-O Population Distribution

p2′
1 = 606.48, p2′

2 = 53.23, p2′
3 = 1,076.35, p2′

4 = 263.94, p2′
5 = 0.00.

We now impose the following capacities on the locations for the classes in the
above problem.

cap1
1 = 500.00, cap1

2 = 500.00, cap1
3 = 500.00, cap1

4 = 500.00, cap1
5 = 200.00,

cap1
1 = 500.00, cap1

2 = 500.00, cap1
3 = 400.00, cap1

4 = 500.00, cap1
5 = 500.00.

The capacitated U-O solution is:

Class 1 Capacitated U-O Population Distribution

p1∗
1 = 0.00, p1∗

2 = 0.00, p1∗
3 = 500.00, p1∗

4 = 300.00, p1∗
5 = 200.00.
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Class 2 Capacitated U-O Population Distribution

p2∗
1 = 500.00, p2∗

2 = 226.67, p2∗
3 = 400.00, p2∗

4 = 500.00, p2∗
5 = 373.33.

The optimal Lagrange multipliers are:

Class 1 Capacitated U-O Lagrange Multipliers

β
1∗
1 = 0.00, β

1∗
2 = 0.00, β

1∗
3 = 280.00, β

1∗
4 = 0.00, β

1∗
5 = 1,388.01.

Class 2 Capacitated U-O Lagrange Multipliers

β
2∗
1 = 953.33, β

2∗
2 = 0.00, β

2∗
3 = 1,953.33, β

2∗
4 = 363.33, β

2∗
5 = 0.00.

One can see, from this example, that at all the locations with populations of a
class at the capacity, there is an associated positive Lagrange multiplier. Also, it
is clear that the capacitated U-O solution is quite distinct from the uncapacitated
one. For example, all the locations have a positive population of class 2 under the
capacitated solution. Moreover, in the uncapacitated case, location 5 is most at-
tractive for class 1, whereas location 3 is most attractive for class 2. In contrast, in
the capacitated case, location 3 is now most popular for class 1, whereas locations
1 and 4 are most popular (and at the capacities) for class 2.

The capacitated S-O solution is:

Class 1 Capacitated S-O Population Distribution

p1′
1 = 88.82, p1′

2 = 0.00, p1′
3 = 242.55, p1′

4 = 468.63, p1′
5 = 200.00.

Class 2 Capacitated S-O Population Distribution

p2′
1 = 500.00, p2′

2 = 244.65, p2′
3 = 400.00, p2′

4 = 436.07, p2′
5 = 419.29.

The optimal Lagrange multipliers are:

Class 1 Capacitated S-O Lagrange Multipliers

β
1′
1 = 0.00, β

1′
2 = 0.00, β

1′
3 = 0.00, β

1′
4 = 0.00, β

1′
5 = 1,561.77.
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Class 2 Capacitated S-O Lagrange Multipliers

β
2′
1 = 925.30, β

2′
2 = 0.00, β

2′
3 = 2,057.33, β

2′
4 = 0.00, β

2′
5 = 0.00.

Under the uncapacitated S-O, location 5 is most attractive for class 1 and loca-
tion 3 is for class 2. However, in the capacitated case, location 4 is best for class
1 and location 1 for class 2, with locations 3 through 5 also quite competitive.

We now report the calculated subsidies, which are obtained using the described
procedure in Section 5.2. We note that µ1 = 3,474.21 and µ2 = 4,551.50 - these
values represent the highest utility of each class at a location evaluated at the S-O
solution, which are obtained for class 1 at location 5 and for class 2 at location 3.
The calculated subsidies are:

Class 1 Subsidies
subsidy1

1 = 1751.85, subsidy1
2 = 1998.67, subsidy1

3 = 836.76, subsidy1
4 = 1530.05,

subsidy1
5 = 0.00.

Class 2 Subsidies
subsidy2

1 = 1087.03, subsidy2
2 = 2040.79, subsidy2

3 = 0.00, subsidy2
4 = 1564.22,

subsidy2
5 = 2,050.79.

Numerical Example 2

Numerical example 2 takes up the scenario proposed in numerical example 3 of
Section 4.4 in which a disaster does not affect infrastructure, but involves loss of
life, and now studied in the case of capacitated network. As argued in the previous
section, this scenario could occur in the form of a “pandemic", that is, a healthcare
disaster hitting the network economy. We note that the novel coronavirus outbreak
that originated in Wuhan, China ([88]), was officially declared a pandemic by the
World Health Organization on March 11, 2020 (cf. [8]). This coronavirus causes
the disease known as Covid-19. In this numerical example data were as in the
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first one except now we consider a sizeable decrease in the populations of each of
the two classes due to a disaster. More specifically, the utility functions remain
unchanged and we assume that 50% of the population of each class has perished,
that is,

P1 = 500.00 P2 = 1,000.00.

The uncapacitated U-O solution for the numerical example with the above data
is:

Class 1 Uncapacitated U-O Population Distribution

p1∗
1 = 0.00, p1∗

2 = 0.00, p1∗
3 = 0.00, p1∗

4 = 0.00, p1∗
5 = 500.00.

Class 2 Uncapacitated U-O Population Distribution

p2∗
1 = 0.00, p2∗

2 = 0.00, p2∗
3 = 1,000.00, p2∗

4 = 0.00, p2∗
5 = 0.00.

The uncapacitated computed S-O solution is:

Class 1 S-O Uncapacitated Population Distribution

p1′
1 = 0.00, p1′

2 = 0.00, p1′
3 = 47.98, p1′

4 = 43.17, p1′
5 = 408.85.

Class 2 S-O Uncapacitated Population Distribution

p2′
1 = 206.96, p2′

2 = 0.00, p2′
3 = 694.96, p2′

4 = 98.08, p2′
5 = 0.00.

As noted in the previous chapter, in the S-O solution one sees a greater “spread-
ing out" of the classes among the locations than in the U-O solution.

We kept the same capacities as in the first numerical example. The Euler
Method now yielded the following solution:

The capacitated U-O solution for the numerical example with the above data
is:

Class 1 Capacitated U-O Population Distribution

p1∗
1 = 0.00, p1∗

2 = 0.00, p1∗
3 = 300.00, p1∗

4 = 0.00, p1∗
5 = 200.00.
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Class 2 Capacitated U-O Population Distribution

p2∗
1 = 0.00, p2∗

2 = 400.00, p2∗
3 = 0.00, p2∗

4 = 400.00, p2∗
5 = 200.00.

The optimal Lagrange multipliers are:
Class 1 Capacitated U-O Lagrange Multipliers

β
1∗
1 = 0.00, β

1∗
2 = 0.00, β

1∗
3 = 0.00, β

1∗
4 = 0.00, β

1∗
5 = 1,020.00.

Class 2 Capacitated U-O Lagrange Multipliers

β
2∗
1 = 0.00, β

2∗
2 = 0.00, β

2∗
3 = 940.00, β

2∗
4 = 0.00, β

2∗
5 = 0.00.

The capacitated computed S-O solution is:
Class 1 S-O Capacitated Population Distribution

p1′
1 = 0.00, p1′

2 = 0.00, p1′
3 = 124.08, p1′

4 = 175.91, p1′
5 = 200.00.

Class 2 S-O Capacitated Population Distribution

p2′
1 = 414.66, p2′

2 = 0.00, p2′
3 = 400.00, p2′

4 = 185.34, p2′
5 = 0.00.

The optimal Lagrange multipliers are:
Class 1 Capacitated S-O Lagrange Multipliers

β
1′
1 = 0.00, β

1′
2 = 0.00, β

1′
3 = 0.00, β

1′
4 = 0.00, β

1′
5 = 1,144.49.

Class 2 Capacitated S-O Lagrange Multipliers

β
2′
1 = 0.00, β

2′
2 = 0.00, β

2′
3 = 967.27, β

2′
4 = 0.00, β

2′
5 = 0.00.

We now report the subsidies that, when imposed, guarantee that the capaci-
tated S-O solution obtained above for the second numerical example is also U-O.
Here we had that µ1 = 3,599.99 and µ2 = 4,575.18.
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Class 1 Subsidies
subsidy1

1 = 1682.92, subsidy1
2 = 2099.99, subsidy1

3 = 844.07, subsidy1
4 = 1312.97,

subsidy1
5 = 0.00.

Class 2 Subsidies
subsidy2

1 = 989.84, subsidy2
2 = 1575.18, subsidy2

3 = 0.00, subsidy2
4 = 998.63,

subsidy2
5 = 1655.18.

5.4 Summary and Conclusions

Problems of human migration are issues of global concern and are presenting
immense challenges to governments around the world. Many are dealing with
different classes of migratory flows and the ensuing difficulties when faced with
capacities at locations under their jurisdictions. Rigorous, appropriate policies
may help to better reallocate migrants across suitable locations.

Historically, many of the mathematical models of human migration have uti-
lized a network formalism and have assumed user-optimizing behavior, that is,
that migrants select locations, which are best for themselves, as revealed through
utility functions that depend on the population distributions among the locations
of the different classes of migrants. However, such behavior may lead to costs to
society and even reduced societal welfare.

Hence, in this chapter, we build upon the work in the previous chapter, in
which we proposed both system-optimized and user-optimized multiclass migra-
tion network models, and in which we demonstrated how incentives, in the form
of subsidies, when applied, guarantee that the system-optimized solution, which
maximizes the total utility in the network economy, becomes, at the same time,
user-optimizing. Migrants, thus, under such subsidies, and acting selfishly and
independently, would select locations to migrate to and locate at that are optimal
from the system perspective.
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In this chapter, we propose a novel extension of that work, in the form of ca-
pacities at different locations associated with the classes of migrants. This brings
a greater realism in capturing challenges faced by various governments who are
dealing with refugees, asylum seekers, etc. For each U-O and S-O model we
provide alternative variational inequality formulations of the governing equilib-
rium/optimality conditions. We then utilize the variational inequality formulations
with Lagrange multipliers associated with the multiclass capacity constraints to
gain deeper insights into appropriate policies. We show that the Lagrange multi-
pliers can be utilized to modify the utility functions so that the capacities are made
implicit. Moreover, we show how, through the use of appropriately constructed
formulae for subsidies, once applied, the system-optimized solution becomes, at
the same time, user-optimized. This provides a more positive approach to the
redistribution of human migrants and enhances societal welfare.

In addition, in this chapter, we provide an effective computational procedure,
which exploits the underlying special network structure of our models. The algo-
rithm is implemented, and the solutions to a series of numerical examples com-
puted. We report the user-optimized and the system-optimized solutions, both un-
capacitated and capacitated, along with the subsidies for the latter. Our theoretical
framework can be applied in practice under different scenarios, along with sensi-
tivity analysis, as, for example, in the case of disasters, when there are population
changes and/or modifications to utility functions because of impacted infrastruc-
ture.



CHAPTER 6

A System-Optimization Model for Multiclass

Human Migration with Migration Costs and

Regulations inspired by the Covid-19 Pandemic

In this chapter, the system-optimized models of human migration noted in the
overview chapter are extended to include novel utility functions, migration costs,
and more general regulations. Specifically, in the objective function it is taken into
account the changes in the utility functions of the multiple classes caused by the
migratory flows and policies adopted by governments. Further, in determining the
optimal flows, the government policies are considered a priori, thanks to a suitable
coefficient influence vector w. Finally, the capacities and the regulations of the
flows are included in a single formulation. The aim of this work is to find a system-
optimized solution, which is a social optimum, in that an organization, such as the
United Nations, maximizes the attractiveness of the origin countries, which for
an individual origin is given by the sum of its utility and its expected increment
of utility value, with respect to the destination one, for each migration class and
each pair of countries (or locations). An equivalent formulation of the variational
inequality by means of Lagrange theory are provided. Several numerical examples
are presented and analysed.

85
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6.1 Presentation of the Model

We consider, as introduced in the previous chapters models, a network consisting
of n nodes, that are countries or, more generally, locations, and H classes of the
population, depicted in Figure 6.1.

Locations

Migration class

→Migration flow

n ...

...

i ...

...

1 ...

n...

...

j...

1...

...

Figure 6.1: Network structure of the multiclass human migration model

In Table 6.1 we summarize the notation adopted for the model, briefly recalling
some of the symbols already introduced in Chapter 3.

Notation Definition
pk

i the population of class k at location i. We group the populations for all the mi-
gration classes k, in each location i, into the vector population p= (pk

i ) i=1,...,n
k=1,...,H

.

p̄k
i the fixed population of class k in the network economy; k = 1, . . . ,J.

f k
i j migration flow out of the node i, and into the node j of the network, with i 6= j.

We group the migration flows of each migration class k, from each origin node
i to each destination node j into the vector flow f = ( f k

i j) i, j=1,...,n, i 6= j
k=1,...,H

.

vk
j(p) Destination utility function of location j as perceived by an individual of class

k
uk

i (p) Origin utility function of location i as perceived by an individual of class k
Uk

i j Total net utility function for class k with respect to the route from i to j
ck

i j( f ) Unit migration cost from i to j for an individual of class k
Ck

i j( f ) Total migration cost from i to j for class k
wk±

i j ∈ [−1,1] Policy influence coefficients

Table 6.1: Functions, parameters, and decision variables of the model.
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It is clear that if a volume of population of a typical class decides to migrate,
then the destination node differs from the origin one; otherwise, it remains in
the same origin node. Hence, the volume of population of each class k at each
node i, after the migration takes place, is given by the following flow conservation
constraints:

pk
i = p̄k

i −
n

∑
j=1
j 6=i

f k
i j +

n

∑
j=1
j 6=i

f k
ji, i = 1, ...,n; k = 1, . . . ,H. (6.1)

We consider that the sum of the flows out of each node in the network, must not
exceed the initial population in that node; in other words:

n

∑
j=1
j 6=i

f k
i j ≤ p̄k

i , i = 1, . . . ,n; k = 1, . . . ,H. (6.2)

We assume that both the vector population and vector flow components are posi-
tive, namely

p = (pk
i ) i = 1, . . . ,n; k = 1, . . . ,H ∈ RnH

+ ,

f = ( f k
i j) i, j = 1, . . . ,n, i 6= j; k = 1, . . . ,H ∈ Rn(n−1)H

+ (6.3)

Furthermore, as in the Chapter 5, we introduce the population capacity con-
straint for each node in the network. Here, unlike in the aforementioned chapter,
we consider that the total population at each node i must not exceed the capacity,
as follows:

H

∑
k=1

pk
i ≤ capi, i = 1, . . . ,n, (6.4)

where capi, for all nodes i, is the population capacity. The constraints (6.4) ensure
that all the nodes are not overpopulated.

We assume that the sum of the capacities is greater than the total population
of the network of all the classes of migrants.

We now introduce the origin and destination utility functions; specifically, uk
i

and vk
j, which capture the attractiveness from an economic and/or political and/or

social point of view of the origin node i and of the destination node j, respec-
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tively, as perceived by a single individual of the migration class k. In other words,
such functions reflect the liveability of each node of the network as perceived by
an individual of the migration class k; hence, these functions are expressed in a
different way depending on whether the node is analysed as an origin or as a des-
tination one. We assume that the uk

i and vk
j are functions of the entire population

vector: uk
i = uk

i (p) and vk
j = vk

j(p), i, j = 1, . . . ,n; k = 1, . . . ,H. Such functions
are assumed to be continuously differentiable and concave.

To interpret the concavity condition on the utility functions in terms of appli-
cations, we assume that, without loss of generality, there is a population thresh-
old at which utility functions stop growing. The excess of population leads to a
decrease in the economic growth of the node (see [44]) due to an increase in pol-
lution, competition for jobs, housing, etc. (see [52]). For each individual of class
k, we introduce the net utility function, which is given by the difference between
the individual origin and destination utility functions. Hence, the total net utility
functions for the class k, for all k = 1, . . . ,H, with respect to the route from i to j

are defined as:

Uk
i j(p, f ) = (uk

i (p)− vk
j(p))× f k

i j, i, j = 1, . . . ,n;k = 1, . . . ,H, (6.5)

and are assumed to be continuously differentiable and concave.

Let ck
i j( f ) and Ck

i j( f ) denote the unit migration cost function and the total
migration cost function between locations i and j, respectively. We have:

Ck
i j( f ) = ck

i j( f )× f k
i j, i, j = 1, . . . ,n; k = 1, . . . ,H. (6.6)

Such costs are assumed to be convex and continuously differentiable. This as-
sumption is justified by the concept of diminishing marginal utility without re-
quiring utility functions, according to which, roughly speaking, averages are bet-
ter than the extremes.

In our model we assume that there is a government or an organization of gov-
ernments, such as the United Nations, whose interest is to guarantee the respect of
the right to choose migration and at the same time a high level of welfare for each
individual living in each location node, in order to improve the quality of life.
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Each node in the network differs in terms of migration policies and ideologies,
how it is experienced by a class, and how ready it is to integrate immigrants (see
[35]).

It is reasonable to suppose that the migration policies that are adopted in the
various nodes of the network by governments influence the migration routes. Such
policies can be, for example, inclusive or not, and depend more generally on
choices based on the economic, social, and/or political features of the network
nodes.

Hence, we introduce for each possible migration route from node i to node j,
the influence coefficients wk−

i j and wk+
i j , which allow us to take into account the

migration policies implemented in nodes i and j as a consequence of the utility
changes when individuals of the class k choose to migrate from node i towards
node j, respectively. We assume that such influence coefficients range in the in-
terval [−1,1]. When the influence coefficient value is close to the upper bound
1, it is indicative of a more inclusive policy. In other words, these coefficients in
the objective function will be related to the changes of the utility caused by the
migration flows.

Therefore, considering any origin node i and any other node j in the network,
the possible variations of the utility functions uk

i and vk
j and the subsequent policies

undertaken by the governments in the aforementioned nodes will be considered in
determining the optimal flows, respectively, through the following terms:

δ
−
i (p, f ) =

H

∑
k=1

 n

∑
j=1
j 6=i

wk−
i j f k

i j

× ∂uk
i (p)

∂ pk
i ,

, i = 1, . . . ,n, (6.7)

and

δ
+
j (p, f ) =

H

∑
k=1

 n

∑
i=1
i 6= j

wk+
i j f k

i j

× ∂vk
j(p)

∂ pk
j,

, j = 1, . . . ,n. (6.8)

Remark 6.1.1. Governments hope to minimize or maximize the terms (6.7) and

(6.8) since they represent, respectively, a deficit or a surplus to the starting utility

functions depending on both the sign of the derivatives of the utility functions

(which we assume to be concave) and the sign of the influence coefficients, that

are the variation in attractiveness in terms of welfare, quality of life, and so on of
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a node with respect to the population and the adopted migration policies.

Let K denote the feasible set such that:

K =
{
(p, f ) ∈ Rn2H |(6.1), (6.2), (6.3), (6.4) hold

}
. (6.9)

6.1.1 Regulations

As mentioned in the introduction, a global emergency situation, such as the COVID-
19 pandemic, highlights the importance of assessing and analyzing the manage-
ment of human migration, in the event that flow regulations are applied. For this
reason, in our model we introduce, as in [68], the flow regulations in terms of
constraints.

Suppose that the typical destination node j applies a restriction R j on the flows
of some classes k coming from some nodes i of the network, which we will group
together in the set C j of pairs (i,k) to which restrictions are imposed by j, as
follows:

∑
(i,k)∈C j

f k
i j ≤ R j. (6.10)

As noted in [68], the (6.10) restrictions, for each node j represent the most general
case of flow regulations which, depending on the adopted policies, may be more
specific, such as:

• restrictions for a single class k̄ and coming from a single node in the network
ī:

f k̄
ī j ≤ R j, (6.11)

• restrictions for a single class k̄

∑
(i,k̄)∈C j

f k̄
i j ≤ R j, ∀ j, (6.12)

• restrictions for every class coming from origin node ī

∑
(ī,k)∈C j

f k
ī j ≤ R j, ∀ j. (6.13)
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We denote by K1 the feasible with the above regulations as follows:

K1 =
{
(p, f ) ∈ Rn2H | (6.10) holds

}
. (6.14)

6.1.2 The Multiclass Human Migration Network
System-Optimization Problem and its Variational For-
mulation

The multiclass human migration network system-optimization problem can be
expressed as follows. The cognizant organization seeks to determine the optimal
flows, as well as the optimal populations at each node in the network, subject to
the convenience to remain, given by the difference between the total net utility
function and the migration costs and also trying to take into account the choices
of policies by the governments/organization and the potential variations of the
utility function as closely as possible. As a consequence, we are dealing with a
system-optimized model. Therefore, the optimization problem is constructed as
follows:

Maximize
H

∑
k=1

n

∑
i=1

n

∑
j=1
j 6=i

[
Uk

i j(p, f )−Ck
i j( f )+δ

−
i (p, f )+δ

+
j (p, f )

]
(6.15)

subject to: constraints (6.1), (6.2), (6.3), (6.4), and (6.10). We introduce the feasi-
ble set for the optimization problem under regulations

K2 =
{
(p, f ) ∈ Rn2H |(6.1), (6.2), (6.3), (6.4)and (6.10) hold

}
. (6.16)

Under the above assumptions, the objective function in (6.15) is concave and
continuously differentiable and so, using the classical variational theory (see [45]
and [65]), it is easy to prove that an optimal solution for the optimization prob-
lem, denoted by (p∗, f ∗) ∈K2, satisfies the following variational inequality: find
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(p∗, f ∗) ∈K2, such that

−
H

∑
q=1

n

∑
l=1

( H

∑
k=1

n

∑
i=1

n

∑
j=1
j 6=i

∂Uk
i j(p∗, f ∗)

∂ pq
l

+
∂δ

k+
i (p∗, f ∗)

∂ pq
l

+
∂δ

k−
i (p∗, f ∗)

∂ pq
l

)
× (pq

l − pq∗
l )

−
H

∑
q=1

n

∑
l=1

n

∑
s=1
s6=l

( H

∑
k=1

n

∑
i=1

n

∑
j=1
j 6=i

∂Uk
i j(p∗, f ∗)

∂ f q
ls

−
∂Ck

i j( f ∗)

∂ f q
ls

+
∂δ

k+
i (p∗, f ∗)

∂ f q
ls

+
∂δ

k−
i (p∗, f ∗)

∂ f q
ls

)
× ( f q

ls− f q∗
ls )≥ 0, ∀(p, f ) ∈K2. (6.17)

Applying the well-known results about variational inequalities in finite dimen-
sion (see [45] and [10], [14] and [68]), we can find an equivalent formulation of
the variational inequality using the Lagrange multipliers associated with the con-
straints defining the feasible set K2 and proving the strong duality.

Indeed, variational inequality (6.17) can be rewritten as a minimization prob-
lem, since, if we denote by V (p, f ) the left-hand side of (6.17), then we have:

V (p, f )≥ 0 in K2 and min
K2

V (p, f ) =V (p∗, f ∗) = 0.

Now, denoting by λ 1 ∈ RnH
+ , λ 2 ∈ Rn(n−1)H

+ , ε ∈ RnH , ν ∈ RnH
+ , and µ, γ ∈

Rn
+, the Lagrange multiplier vectors associated with the nonnegativity constraints

(6.3), and constraints (6.1), (6.2), (6.4), and (6.10), respectively, we can consider
the following Lagrange function:

L (p, f ,λ 1,λ 2,ε,ν ,µ,γ) =V (p, f )+
n

∑
i=1

H

∑
k=1

λ
k1
i (−pk

i )

+
n

∑
i=1

n

∑
j=1
j 6=i

H

∑
k=1

λ
k2
i j (− f k

i j)+
n

∑
i=1

H

∑
k=1

εik

pk
i − p̄k

i +
n

∑
j=1
j 6=i

f k
i j−

n

∑
j=1
j 6=i

f k
ji

 (6.18)

+
n

∑
i=1

H

∑
k=1

νik

 n

∑
j=1
j 6=i

f k
i j− p̄k

i

+
n

∑
i=1

µi

(
H

∑
k=1

pk
i − capi

)
+

n

∑
j=1

γ j

 ∑
(i, j)∈C j

f k
i j−R j

 .

Making use of the Lagrange theory, if (p∗, f ∗) is a solution to variational inequal-
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ity (6.17), we are able to prove that the following KKT conditions (6.19)-(6.20)
hold and vice versa. Moreover, we show that strong duality (6.23) holds.

Theorem 6.1.1. The Lagrange multipliers in (6.18) do exist and, for all i, j =

1, . . . ,n, and k = 1, . . . ,H, the following conditions hold true:

λ
k1
i (−pk∗

i ) = 0, λ
k2
i j (− f k∗

i j ) = 0, ν ik

 n

∑
j=1
j 6=i

f k∗
i j − p̄k

i

= 0, (6.19)

µ i

(
H

∑
k=1

pk∗
i − capi

)
= 0, γ j

 ∑
(i, j)∈C j

f k∗
i j −R j

= 0, (6.20)

∂Uk
i j(p∗, f ∗)

∂ pk
i

+
∂δ

k+
i (p∗, f ∗)

∂ pk
i

+
∂δ

k−
i (p∗, f ∗)

∂ pk
i

−λ
k1
i + ε ik +µ i = 0, (6.21)

∂Uk
i j(p∗, f ∗)

∂ f k
i j

−
∂Ck

i j( f ∗)

∂ f k
i j

+
∂δ

k+
i (p∗, f ∗)

∂ f k
i j

+
∂δ

k−
i (p∗, f ∗)

∂ f k
i j

−λ
k2
i j + ε ik + γ j = 0,

(6.22)
where λ

1
, λ

2
, ε, ν , µ, γ are the optimal Lagrange multiplier vectors. Moreover,

the strong duality also holds true; namely:

V (p∗, f ∗) = min
K2

V (p, f ) (6.23)

= max
λ1∈RnH

+ ,λ2∈R2nH
+

ε∈RnH ,ν∈RnH ,µ,γ∈Rn
+

min
(p, f )∈RnH+2nH

L (p, f ,λ 1,λ 2,ν ,µ,γ).

Proof. See Theorem 3.1 in [10].

The existence of at least one solution to variational inequality (3.5) is guaran-
teed from the classical theory of variational analysis (see Th.3.1. in [45]), since
the feasible set is compact and the function that enters the variational inequality is
continuous (see [56] for additional existence results).
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6.2 Numerical Examples

In this section we present two illustrative examples for the optimization problem
(6.15), without and with regulations, respectively. Specifically, for the regulation
model three different situations are analysed.

For each example we consider two migration classes and two locations in the
network, as depicted in Figure 6.2.

Locations

Migration class

→Migration flow2

1

2

1

Figure 6.2: Network structure of 2-class human migration model.

Let us consider the data as in Table 6.2, that are the common data for the two
examples.

We also introduce the population node capacities cap1 = 150, cap2 = 180 and,
consequently, the capacity constraints as follows:

p1
1 + p2

1 ≤ 150 (6.24)

p1
2 + p2

2 ≤ 180. (6.25)

In the case without regulations, the feasible set K (6.16), is given by:

K =
{
(p, f ) ∈ R8

+ : p1
1 = 40− f 1

12 + f 1
21; p1

2 = 30− f 1
21 + f 1

12,

p2
1 = 25− f 2

21 + f 2
12, p2

2 = 15− f 2
21 + f 2

12 f 1
12 ≤ 40, f 1

21 ≤ 30,

f 2
12 ≤ 25, f 2

21 ≤ 15; p1
1 + p2

1 ≤ 150, p1
2 + p2

2 ≤ 180
}
. (6.26)

The solution to variational inequality (6.17) is:

(p1
1
∗
, p1

2
∗
, p2

1
∗
, p2

2
∗
, f 1

12
∗
, f 1

21
∗
, f 2

12
∗
, f 2

21
∗
)= (45.92, 24.07, 33.27, 6.72, 0, 5.92, 0, 8.27).

As we can see from the solution, for both migrant classes, there is no flow from
node 2 to node 1.
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Origin utility functions u1
1 =−0.54p1

1−0.11p1
2−0.17p2

1
u1

2 = 0.49p1
2−0.39p2

2
u2

1 = 0.26p2
2−1.77p2

1−0.47p1
1

u2
2 = p1

2 +0.08p2
1 +0.64p2

2
Destination utility functions v1

1 = 0.02p1
1

v1
2 = 0.02p2

2−0.51p1
2

v2
1 = p1

2
v2

2 = 0.15p1
2 + p2

2
Migration costs c1

12 = 5.54 f 1
12

c1
21 = 5.08 f 1

21
c2

12 = 1.72 f 2
12

c2
21 = 5.00 f 2

21
Initial populations p̄1

1 = 40
p̄1

2 = 30
p̄2

1 = 25
p̄2

2 = 15
Influence coefficients w1−

12 = 0.3
w1−

21 =−0.002
w1+

12 = 0.26
w1+

21 = 0.9
w2−

12 =−0.9
w2−

21 = 0.15
w2+

12 = 0.4
w2+

21 = 0.2

Table 6.2: Data for the two numerical examples
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We now introduce the regulation constraints (6.10), for every class coming
from the origin node 2, as follows:

f 1
21 + f 2

21 ≤ R1, (6.27)

where R1 is the typical restriction applied by the destination node 1. We give three
different values to R1 and, then, make a comparison with the solution obtained in
the case without regulations. In the case with regulations, the feasible set K1

(6.14) is:

K =
{
(p, f ) ∈ R8

+ : p1
1 = 40− f 1

12 + f 1
21; p1

2 = 30− f 1
21 + f 1

12,

p2
1 = 25− f 2

21 + f 2
12, p2

2 = 15− f 2
21 + f 2

12 f 1
12 ≤ 40, f 1

21 ≤ 30, f 2
12 ≤ 25,

f 2
21 ≤ 15; p1

1 + p2
1 ≤ 150, p1

2 + p2
2 ≤ 180; f 1

21 + f 2
21 ≤ R1

}
. (6.28)

We consider three cases:

- case 1, R1 = 5: The solution to variational inequality (6.17) is:

(p1
1
∗
, p1

2
∗
, p2

1
∗
, p2

2
∗
, f 1

12
∗
, f 1

21
∗
, f 2

12
∗
, f 2

21
∗
)

= (41.21, 28.78, 28.78, 11.21, 0, 1.21, 0, 3.78).

- Case 2, R1 = 10: The solution to variational inequality (6.17) is:

(p1
1
∗
, p1

2
∗
, p2

1
∗
, p2

2
∗
, f 1

12
∗
, f 1

21
∗
, f 2

12
∗
, f 2

21
∗
)

= (43.77, 26.22, 31.22, 8.77, 0, 3.77, 0, 6.22).

- Case 3, R1 = 37: The solution to variational inequality (6.17) is:

(p1
1
∗
, p1

2
∗
, p2

1
∗
, p2

2
∗
, f 1

12
∗
, f 1

21
∗
, f 2

12
∗
, f 2

21
∗
)

= (45.91, 24.08, 33.27, 6.72, 0, 5.91, 0, 8.27).

As we can see from the solution, also in these three cases, for both classes of pop-
ulation, there is no flow from node 2 to node 1. We obtain a reduction of the flows



6.3. Conclusions and Further Research 97

from node 2 to 1 for every migration class in each cases in which restrictions are
introduced. Note that, when R1 increases, which means the movement possibility
in the network increases, then also the optimal flows for both classes from node 2
to node 1 increase till the values without regulations.

The variational inequalities of the optimization problems both without and
with regulations were solved using the Projection-Contraction method (see [92]).
The algorithm was coded using Matlab and was run on a PC with 8 GB RAM,
Asus Intel (R) Core (TM) i5-10210U CPU@1.60 GHz.

6.3 Conclusions and Further Research

The Covid-19 pandemic, a global healthcare disaster, has dramatically influenced
the movement of humans over space and time in 2020. It has, also, impacted
international migration as governments institute regulations banning travel. The
world has seen immense migratory flows over the past decades with migrants
seeking more amenable locations for themselves and their families. The topic of
human migration has assumed further attention during the pandemic.

Migration can have positive as well as negative effects on the lives of the
migrants. Positive aspects include: potentially the reduction of unemployment,
a better quality of life, learning about a new culture, customs, and languages,
and/or economic growth of the region. On the other hand, negative effects can
include: increasing competition for jobs; possibly, growth in poverty, criminality,
and exploitation, as well as pollution.

In this chapter, we introduced a network-based model for multiclass human
migration with the objective of improving the system, that is, the society. Unlike
previous system-optimization models for human migration, the new model in-
cludes migration costs as well as novel utility functions. We, nevertheless, retain
regulations introduced earlier by the authors on the migratory flows. The model
is studied qualitatively and numerical examples also provided.
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Conclusion

Humans throughout history have sought to migrate to locations where they could
enjoy a greater quality of life with enhanced safety, security, prosperity, and access
to resources. With climate change, the increasing number of natural disasters, and
their major impact, as well as wars, violence, and persecution in many countries
around the globe, the world is witnessing some of the largest human migrations.
The aim of this thesis is to analyse human migration and applications to real situ-
ation by using models based on networks.
Different perspectives were considered to investigate the phenomenon of migra-
tion as well as different optimization tools used to solve the proposed problems.

In Chapter 3, the migration is analysed as a noncooperative game. Each mi-
gration classes compete in a noncooperative manner so that each maximizes its
utility function, given the actions of the other classes. We introduce the definition
of population and migration flow pattern as Nash equilibrium and we provide the
equivalent formulation of the Nash equilibrium as a solution to a variational in-
equality problem.

Migration is a continuous process that has been the subject of political debate
worldwide: its increasing role in the social, economic and demographic devel-
opment is becoming more and more evident. Governments, are feeling increas-
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ing pressure and stress to respond to the challenges of migratory flows through
appropriate policies and regulations. In Chapter 4, indeed, we introduce a new
multiclass network model of human migration in which we demonstrate how gov-
ernments can provide subsidies in order to make the system-optimizing population
distribution pattern across multiple locations, also user optimizing. In Chapter 5,
we extend the model presented in Chapter 4, introducing capacities at different lo-
cations associated with the classes of migrants. Also in this case we provide alter-
native variational inequality formulations of the governing equilibrium/optimality
conditions for each U-O and S-O model. Moreover, we show how, through the
use of appropriately constructed formulae for subsidies, once applied, the system-
optimized solution becomes, at the same time, user optimized. This provides a
more positive approach to the redistribution of human migrants and enhances so-
cietal welfare.

A current phenomenon that is conditioning the migration movement in the
world is the Covid-19 pandemic. It has, also, impacted international migration as
governments institute regulations banning travel. In Chapter 6, indeed, we intro-
duced a network-based model for multiclass human migration with the objective
of improving the system, that is, the society. The proposed model includes migra-
tion costs as well as novel utility functions and regulations on the migratory flows.

The formulation is conducted using variational inequality theory. Due to the
high complexity of this problem, in order to efficiently solve realistic instances a
heuristic method is proposed. The presented algorithms are tested and compared
over a number of randomly generated instances.
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