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Abstract

We investigate the motion of spatially periodic surface waves. An infinite
layer of incompressible viscous Newtonian fluid is bounded below by a plane
and at the top by a free surface. Hydrodynamical forces are acting on the
fluid, whose motion is supposed to be spatially periodic. On the bottom
surface we impose Dirichlet boundary condition with no incoming or outgoing
flux, while the motion of the free surface, where capillarity is assumed, is
driven by classical dynamic and kinematic condition.

We obtain three results:

• A linearization principle stating that, if linearizing the problem near
a stationary solution gives a stable linear system, then the nonlinear
problem is stable (and thus well posed and globally solvable) for initial
data which are sufficiently near the stationary solution.

• The rest state is linearly stable, and thus sufficiently small initial data
give global, unique, regular and exponentially decaying solutions for the
nonlinear problem.

• Whatever the size of the initial data, a unique and regular solution to
the nonlinear problem exists for a sufficiently small time.



Acknowledgements

I would like to thank professor Giuseppe Mulone and professor Giuseppe
di Fazio, who always supported me and made in many ways this work possible.
Thanks to professor Michele Frasca and professor Alfonso Villani, who trusted
in me without assurance. And thanks to professor Biagio Ricceri and Francesca
Faraci, with whom I had many stimulating discussions over these years.
Finally, I would like to exprees my deep gratitude to professor Seva Solonnikov.
For his patience, modesty, and warm-heartedness, but also for the great honor
it has been for me to work with a legendary mathematician. Oh, and for his
wonderful soups.



Contents

1 Introduction 1

2 Preliminaries 12
2.1 Isotropic Sobolev–Slobodetskii spaces . . . . . . . . . . . . . . 13
2.2 Anisotropic Sobolev–Slobodetskii spaces . . . . . . . . . . . . 21
2.3 Sobolev–Slobodetskii spaces for small T . . . . . . . . . . . . . 25
2.4 The Laplace transform and applications . . . . . . . . . . . . 31

3 The linearized problem 34
3.1 The Hanzawa transformation . . . . . . . . . . . . . . . . . . 35
3.2 The linearization . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 The linear problem 44
4.1 Model problems in the half-space . . . . . . . . . . . . . . . . 46
4.2 Parameter dependent linear problem . . . . . . . . . . . . . . 63
4.3 Time dependent linear problem . . . . . . . . . . . . . . . . . 81

5 The nonlinear problem 92
5.1 Estimate of the nonlinear terms . . . . . . . . . . . . . . . . . 93
5.2 The abstract linearization principle . . . . . . . . . . . . . . . 106
5.3 Exponential stability of the rest state . . . . . . . . . . . . . . 111
5.4 Local solvability in time . . . . . . . . . . . . . . . . . . . . . 114



Chapter 1

Introduction

This thesis deals with a free boundary problem for fluid dynamics. These
kind of problems go back as far as the analysis of Newton on the shape of
a rotating fluid, and have been considered by many great physicists and
mathematicians.

The problem in its general form deals with a fluid contained in a time-
varying domain Ωt, whose boundary has a “free” part Γt ⊆ ∂Ωt, which is
moving according to some dynamic and kinematic conditions driven by the
fluid itself and/or external factors. The fluid can be subjected to hydrodynam-
ical forces, or more generally by electromagnetic or thermal effects, bringing
respectively to MHD and NSF models. The instances in nature of this kind
of situation are endless: from water waves, models for earthquakes and lava
motion in geophysics, to galaxy’s shape and helioseismology in astrophysics.

We will consider a somewhat simplified situation, where temperature and
electromagnetic fields play no rôle, and the fluid is viscous and incompressible.
For more elaborate models, we refer to [44] for bibliographics references.
Looking at normal dynamical balance on the free surface, we see that

Tn = Fn,

where n is the exterior normal to Γt, T is the stress tensor of the fluid and
F is the tensor of the external forces on the free boundary. For a viscous
incompressible fluid, with velocity field v, pressure p and viscosity coefficient
ν, classical continuum mechanics asserts that the stress tensor is given by

T = −pI + νD,

where I is the identity matrix δij and D is the doubled symmetric rate of
strain tensor, which, for Newtonian fluids, is given by

D = D(v) = ∇v + (∇v)T =

(
∂vi

∂xj
+
∂vj

∂xi

)
i,j=1,2,3

,
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i.e., the doubled symmetric part of the derivative of the velocity field.
The external stress F can be caused by a variety of phenomena. There

can be, for example, another fluid with possibly different viscosity on the
other side of Γt, in which case we speak of “two phase problems”, which are
considered in [1], [8], [9], [10], [17], [37], [38]. Another frequent situation
(which may holds also for two phase problems) is that the free surface itself
produces a normal force to counter its deformation, through the phenomenon
of capillarity. Given a surface tension coefficient σ > 0, the capillarity force
acts in a direction normal to the free surface, and is given by

F = −σHtδij,

where Ht is the doubled mean curvature of the surface Γt. The sign is given
according to standard differential geometry, where a convex body has positive
mean curvature at any point of its boundary; therefore, the capillarity force
tries to “flatten” the free surface. Finally, an external pressure pext defined in
the whole space give rise to an external stress on the surface of the form

F = −pextδij.

All these external stresses contributes in confining the fluid, which is an
important factor for the well posedness of the problem e.g., in rotating fluids.
In absence of any external stress on the surface, one may also consider self–
gravitational force as a confinement factor, as is done in [27], [29], [14], [30],
[31].

While dynamic conditions may vary from problem to problem, kinematic
conditions on the boundary are in most cases the same. If Vn denotes the
normal velocity of the free boundary, it must hold

v · n = Vn, (1.1)

on Γt, which expresses the fact that the free surface consists for all t > 0 of
the same fluid particles, which do not leave it and are not incident on it from
inside Ωt. On the rest of the boundary (if there is any) one can assume for
example Dirichlet boundary conditions, with or without incoming flow. This
is the case, for example, of flows through an inclined plane, or rotating fluids
in a bucket. Neumann–type boundary conditions can also be assumed, as
well as mixed ones. When there is no fixed boundary, we speak of an isolated
liquid mass. This problem has been treated in [23], [25], [14] when no surface
tension is present, and in [13], [24], [29], [20], [26], [27] for capillary fluids.

Our specific problem deals with periodic surface waves. We consider a
layer of fluid, bounded at its bottom by a fixed surface, and at the top by
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a free boundary. Understanding the properties of this kind of motion has
many applications, e.g. in seismology, where seismic waves are the result of
earthquakes or explosion, or water waves in the ocean. Without periodicity
assumption the problem has been treated in [3], [36], [42], [40] for a heavy fluid
without capillarity. When surface tension is present, it has been treated in
[4], [5], [40], [39], [41] without periodicity assumption, and in [16] for periodic
motions.

– The problem.

We now describe the problem more precisely. A viscous, incompressible
fluid, with associated velocity field v and pressure p, fills at any time t ≥ 0
a domain Ωt, where it satisfies the incompressible Navier–Stokes equations
with external force f and viscosity ν. The density of the fluid is supposed to
be 1. We suppose that this domain can be described as Ωt := {(x1, x2, x3) :
0 ≤ x3 ≤ φ(x′, t)}, where x′ = (x1, x2) and φ is a sufficiently regular function
whose graph in R3 is the free boundary of the fluid, Γt, with exterior normal
n. We suppose that the velocity field, the pressure and the free boundary
function φ are periodic for every t ≥ 0, with periodic cell Σ being a fixed
rectangle in R2.

On the bottom part of the boundary we impose Dirichlet boundary
conditions v((x′, 0), t) = α(x′, t), for some sufficiently smooth, Σ-periodic
α = (α1, α2, 0), with zero normal component (i.e., no incoming or outgoing
flux is assumed). We suppose that on the free boundary capillarity is acting,
and thus we impose the stress balance condition T(v, p)n = −σHtn, where
σ > 0 is the surface tension coefficient. Finally, the kinematic condition
(1.1) is assumed. Given a suitable Σ-periodic initial velocity field v0 at time
t = 0, defined in a Σ-periodic domain Ω0, whose boundary Γ0 is the graph of
φ0 = φ(·, 0), one is thus lead to the following evolution problem:

v,t + (v · ∇)v −∇ · T(v, p) = f on Ωt,

∇ · v = 0 in Ωt,
T(v, p)n = −σHtn on Γt,
Vn = v · n on Γt,
v(x, 0) = v0(x) in Ω0

v((x′, 0), t) = α(x′, t) on Σ, for t ≥ 0,

(1.2)

where the underscript comma in v,t denotes the partial derivative w.r.t. t (we
will always assume such a notation).

Denoting by Π0 the orthogonal projection on the tangent space to Γ0, this
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system is coupled with the natural compatibility conditions
∇ · v0 = 0 in Ω0,

v0(x′, 0) = α(x′, 0) on Σ,

Π0D(v0)n0 = 0 on Γ0,

where n0 is the exterior normal to Γ0.
We obtain a linearization principle for this problem. When f and α

are independent of time, we consider a stationary solution (vb, pb), in some
domain Ωb := {(x′, x3) : 0 ≤ x3 ≤ φb(x

′)}, of

(vb · ∇)vb −∇ · T (vb, pb) = f in Ωb,

∇ · vb = 0 in Ωb,
T (vb, pb)nb = −σHbnb on G,
vb · nb = 0 on G,
vb(x

′, 0, t) = α(x′) on Σ, for t ≥ 0,

(1.3)

where G is the surface defined by x3 = φb(x
′), nb its exterior normal and Hb its

doubled mean curvature. We then linearize system (1.2) near this stationary
solution, and prove that if the linearized system is exponentially stable (in a
suitable sense), then for any initial data v0, Ω0 which is sufficiently near to
the stationary solution, there exists a unique global in time solution to (1.2),
which exponentially converges to the stationary solution of (1.3). We apply
this principle to prove the exponential stability of the rest state for periodic
motion, and finally prove a local (in time) solvability theorem for problem
(1.2), with arbitrarily large initial data.

– The setting.
Looking back at (1.2) the first feature of this system is that the domain

in which the velocity field and the pressure are defined is varying with time.
This is of course typical of free boundary problems for hydrodynamics, and
the first step to address the latters is to transform the corresponding system
in a fixed domain. There are mainly two methods to do this. The first one is
to consider the Lagrangian formulation, given by the change of variables

x = ξ +

∫ t

0

u(ξ, s)ds =: X(ξ, t), ξ ∈ Ω0

where u is the velocity field expressed in Lagrangian coordinates: u(ξ, t) =
v(X(ξ, t)), where v is the velocity field in the usual Eulerian coordinates.
This reduces, at each time t ≥ 0, the differential equation in Ωt to one defined
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in Ω0. Most of the works cited above use this approach, with minor additional
arguments.

In [4], [3] however, a second method is applied, where all the Ωt are
considered as perturbations of the domain Ωb corresponding to the rest state.
Thus, a time depending diffeomorphism Φt is chosen in such a way that all
the Ωt (Ω0 included) are given as Ωt = Φt(Ωb), where Ωb 6= Ω0 in general.
This diffeomorphism transforms the system in a more complicated one, but it
has the advantage that studying the existence for large times can be settled
once and for all in Ωb. This kind of approach is called nowadays Hanzawa
transformation, although this technique was frequently used well before the
work of Hanzawa [11] on the Stefan problem. At some point, a form of it is
used in all the results we know of concerning stability and existence of global
solutions for free boundary problems in fluid dynamics.

It is worth noting that, for surface waves, this choice of coordinates seems
more natural, due to the simple topological restrictions these problems pose.
Even more, the presence of capillarity suggests that the free boundary will
be more regular than what a “pure” Lagrangian approach suggests, as will
be apparent in the following discussion on regularity. We will thus adopt
this approach, and henceforth any norm we consider will be computed in Ωb,
through a suitable Hanzawa transformation, the particular from of which will
be defined in chapter 3.

Let us now discuss briefly the regularity framework we choose. Existence
and regularity for free boundary problems for the Navier–Stokes equations
are usually set in three different kind of spaces: Hölder spaces ([23], [13]),
anisotropic Sobolev–Slobodetskii spaces W 2,1

p with high summability p > 3

([25], [14], [1]), or L2 anisotropic Sobolev–Slobodetskii spaces W r, r
2

2 with
noninteger order of differentiability r > 2 (see [3], [4], [24] to cite only the
first works).

Our choice is the latter, for a variety of reason. Working in Hölder spaces
involves as usual a great deal technical difficulties, while the W 2,1

p setting
suits well into the no–capillarity case, but, in principle, requires additional
analysis to deal with the boundary condition T(v, p)n = −σHn when σ > 0:
this indeed gives rise to an elliptic equation for the free boundary, which, at
least in Lagrangian coordinates, is not well defined due to the low a-priori
regularity of the velocity field. Moreover, the L2 setting for the spaces W r, r

2
2

makes them highly compatible with Fourier and Laplace transform methods
in dealing with the corresponding linearized problem, and the Hilbert space
structure is handy in giving spectral conditions to ensure stability of the
stationary solution.
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– The result.
Using Hanzawa transformation, the linearization of (1.2) around the

stationary solution is a lower order perturbation of

v,t − ν∆v +∇p = f in Ωb

∇ · v = h in Ωb

T(v, p)− σ∆Gρnb = d on G
ρ,t + vb · ∇ρ− γnb · v = g on G,
vbΣ= 0, vbt=0= v0, ρbt=0= ρ0,

(1.4)

with suitable compatibility conditions, where ρ = φ− φb is the perturbation
of the free boundary from the stationary boundary φb, ∆G is the Laplace–
Beltrami operator on G and γ =

√
1 + |∇φb|2 is the surface area factor.

Indeed, the initial problem (1.2) gives, through Hanzawa transformation, a
lower order perturbation of the previous system, with nonlinear right hand
sides depending on v, p and ρ. For the purpose of this informal discussion we
will omit the complete form of the system, which will be computed in chapter
3.

We now look for relationships between the regularity of the variables v
and ρ, neglecting the pressure and the nonhomogeneous terms. Suppose the
velocity belongs to W r, r

2
2 (ΩT ), where ΩT = Ωb × [0, T ) and

W
r, r

2
2 (ΩT ) = L2(0, T ;W r

2 (Ωb)) ∩W
r
2

2 (0, T ;L2(Ωb)).

Looking at the third equation in (1.4), it involves D(v), (or else, ∇v) on the
free boundary, and a second order elliptic operator for ρ arising from the
curvature term. If GT = G × [0, T ), by trace theorems one has

D(v)bG ∈ W
r− 3

2
, r
2
− 3

4
2 (GT ),

and the elliptic operator ∆G suggests that ρ will gain two derivatives with
respect to D(v). More precisely, we will at least have

ρ ∈ L2(0, T ;W
r+ 1

2
2 (G)). (1.5)

Now, while v ∈ W r, r
2

2 (ΩT ) gives a uniform estimate on ‖v(·, t)‖W r−1
2 (Ωb)

in
time, (1.5) alone is not enough to have such an estimate for ‖ρ(·, t)‖

W
r− 1

2
2 (G)

,

since we lack informations on the time derivative of ρ. However, looking at
the fourth equation in (1.4) and using trace theorems, one actually gets

ρ,t ∈ L2(0, T ;W
r− 1

2
2 (G)), (1.6)
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which, using (1.5) and interpolation, is enough to ensure an even stronger
uniform estimate in time, namely

sup
t<T
‖ρ(·, t)‖W r

2 (G) < +∞.

Notice that capillarity is essential to gain spatial regularity of the free surface.
Otherwise, the only information one has from the fourth equation arise from

sup
t<T
‖ρ‖

W
r− 1

2
2 (G)

≤ ‖ρ0‖
W
r− 1

2
2 (G)

+
√
T

(∫ T

0

‖ρ,t‖2

W
r− 1

2
2 (G)

dt

) 1
2

,

which can be bounded assuming W r− 1
2

2 regularity of the initial perturbation
and the natural regularity condition (1.6). Therefore, if one wants to look for
solution of (1.2) with v ∈ W r, r

2
2 (ΩT ), the natural regularity conditions on the

initial data seem to be

v0 ∈ W r−1
2 (Ωb) and ρ0 ∈ W r

2 (G).

Notice that these initial conditions are optimal for the linear system in the
sense of extension theorems, (see theorem theorem 2.2.1 and (4.87) in this
regard). It is worth noting that in [4], [5], [40], [39], [41], a different regularity
is required.

A simplified statement of our main theorem is the following. See theorem
5.2.1 for the full result.

Theorem 1.0.1 Let r ∈ (5
2
, 3). Suppose that any Σ-periodic solution v, q,

ρ of the homogeneous linearized system corresponding to (1.2) around the
stationary solution vb, pb φb is exponentially stable, i.e., there exists γ > 0
and c such that

‖v(·, t)−vb‖W r−1
2 (Ωb)

+ ‖ρ(·, t)‖W r
2 (Σ) ≤ ce−γt(‖v0−vb‖W r−1

2 (Ωb)
+ ‖ρ0‖W r

2 (Σ)).

Then there exists δ > 0, γ′ > 0 and c′ such that if

‖v0 − vb‖W r−1
2 (Ωb)

+ ‖ρ0‖W r
2 (Σ) < δ,

the nonlinear problem (1.2) has a unique Σ-periodic solution with optimal
regularity, which exponentially converges to the stationary solution, i.e.:

‖v(·, t)−vb‖W r−1
2 (Ωb)

+‖ρ(·, t)‖W r
2 (Σ) < c′e−γ

′t(‖v0−vb‖W r−1
2 (Ωb)

+‖ρ0‖W r
2 (Σ)).
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We will use the linearization principle above to prove exponential stability
of the rest state Ωb = {0 ≤ x3 ≤ h}, vb = 0, pb = patm + g(h − x3),
f = (0, 0,−g), where patm is the atmospheric pressure, g is the acceleration
of gravity, and h is the height of the fluid. We analyse the spectrum of the
associated linearized problem, proving that indeed it is exponentially stable
in the sense of the previous theorem. Thus we obtain the following

Theorem 1.0.2 Let r ∈ (5
2
, 3). There exists δ > 0, γ′ > 0 and c′ such that if

‖v0‖W r−1
2 (Ωb)

+ ‖φ0 − h‖W r
2 (Σ) < δ,

the nonlinear problem (1.2) for f = α = 0 has a unique Σ-periodic solution
with optimal regularity, which exponentially converges to the rest state, i.e.

‖v(·, t)‖W r−1
2 (Ωb)

+ ‖φ(·, t)− h‖W r
2 (Σ) < c′e−γ

′tδ.

Exponential stability results for the rest state (without periodicity assump-
tions) are addressed in [4] for 3 < r < 7/2 and in [39] for 5/2 < r < 3 and
φ0− h ∈ W

r+ 1
2

2 (Σ). In [18] exponential stability is proved for r = 1 regardless
of the size of the initial data, provided a global in time and smooth solution
exists. In [16] the periodic case is studied, and exponential stability of the
rest state is proved for r = 3. Both these two works employ energy methods.

Although in most of the literature some kind of linearization around
the rest state is used, a general linearization principle is, to the best of
our knowledge, still unproved. Consequently, exponential stability has been
obtained only in special cases (r = 1, 2, near the rest state) where an energy
inequality can be used.

– Future developements.
Some natural questions regarding the stated results are left open. One

may wonder, for example, what is the rôle that the change of variables has on
the stability of the stationary solution. At lest formally, different choices of
the Hanzawa transformation lead to different linearization, which in principle
can have different spectral properties. The physics of the problem, however,
suggests that if one choice gives rise to a stable linearization, then the same
must hold for every other choice. One is thus lead to the following general
question:

How does the particular choice of coordinate transformation to write down
the linearized system affects the stability of the stationary solution we are
linearizing at?
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Clearly one may also ask what is the relationship between the stability of
a linearization using a Hanzawa transformation and the one obtained using
some form of a Lagrangian formulation. Of course one can try to reduce the
problem of the stability of a stationary solution to the positivity of some
energy functional’s second variation, which conceivably is independent of the
coordinates chosen. In this direction, see the works of Solonnikov on rotating
fluids [33], [34].

On a more refined level, the rate of convergence to the stationary solution
(whenever stability occurs) of a global solution on the nonlinear problem
depends on the spectrum of the linearization. This, again, seems to depend
on the particular choice of variables used to solve the nonlinear problem.
Another natural question can thus be the following

How does the particular choice of coordinate transformation to write down
the linearized system affects the spectrum of the latter?

Another kind of problem arises considering the situation where there is
no surface tension. In this case the Hanzawa approach seems to fail due to a
too strong nonlinearity in the equation arising from the kinematic condition.
Moreover, one expects to observe an asymptotic decay which is polynomial
in time, instead of the claimed exponential decay in the capillary case; in this
regard, see [5]. Therefore we have the following question

What is the asymptotic behaviour of the solutions of the nonlinear problem
with no capillarity, near a stable stationary solution?

Moreover, it is worth noting that the terms “linearization principle” as
we used it is not entirely accurate. A linearization principle in its full
strength would give information also in the unstable case, stating that if the
linearization has positive eigenvalues, then the nonlinear problem is unstable.
Thus one can ask

Does a full linearization principle hold for periodic surface waves?

Finally, the study of the stability of time periodic surface waves seems
particularly important in applications. One expects that the spectrum of
the monodromy operator will enclose all the relevant informations on the
stability of a time periodic solution of the free boundary problem, but concrete
examples are at the moment missing. Therefore another problem is

Does a linearization principle in the time periodic case hold?

We expect that, for the last two questions, the methods developed in [12],
[34] can be successfully applied.
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– Contents.

In chapter 2 we provide background material on anisotropic Sobolev–
Slobodetskii space and Laplace transform. Most of the theorems are classical
and well known, except maybe the ones in section 3, which deals with
anisotropic Sobolev–Slobodetskii spaces for small time. These are introduced
in order to have a scale invariant norm with respect to time, and will we proof
the less known properties of these spaces.

In chapter 3 we describe our choice of Hanzawa transformation, which
differs from the usual one, and is taken to simplify the subsequent work. The
regularity properties of this transformation are not optimal, but this won’t
affect the study of the nonlinear problem.
Then, changing coordinates to reduce system (1.2) to one defined in the fixed
domain Ωb, we derive an explicit form for the linear part of the system near a
stationary solution, and compute the higher order, nonlinear terms.

In chapter 4 we deal with the linearized problem. We first prove existence
and optimal regularity estimates for the complex parameter model problems
in the half–space obtained localising the Laplace transformed time dependent
linear problem. These can be explicitly solved via Fourier transform methods,
and Parceval identity provides optimal parameter dependant estimates.
In section 2 we construct the solution of the complex parameter linear problem
via a Shauder localisation method, and prove its uniqueness through a coercive
inequality.
In the last section we reduce the original time dependent problem to one with
homogenous initial data, and obtain a solution via the previous results and
Laplace transform.

In chapter 5 we prove the abstract linearization principle, the exponential
stability of the rest state, and a local (in time) existence theorem. We
first estimate the nonlinear terms in the suitable spaces, using the explicit
expression computed in chapter 3.
To prove the linearization principle, we construct the solution as a sum of two
addends: the first one solves a linear problem with a relatively large initial
data, and the second a nonlinear one with a relatively small one. The stability
hypothesis guarantees that the “linear” part is decaying exponentially, and
the now quadratic behaviour of the a-priori estimate for the nonlinear part
implies its decay as well. Thus the solution of the full nonlinear problem can
be constructed for any fixed (and large) T , with decaying norm and we can
iteratively repeat the construction to obtain a global solution.
In section 3, the nonlinear stability of the rest state is deduced from the
analysis of the spectrum of the corresponding linearized problem, which is
easily done due to the simple form of the linearization.
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The final section of this chapter is devoted to the local existence theorem for
arbitrarily large initial data. The result is substantially known (although not
in the periodic case), since other techniques works as well in this case. The
purpose of this section is to show that, even if our Hanzawa transformation
is far from optimal, we nonetheless obtain sufficiently sharp estimates for the
nonlinear terms to obtain the result.

Notation.
We won’t use a different notation for spaces of scalar or vector valued

functions, since all the properties we will use of these spaces are unaffected
by the number of components of their elements.
Whenever this causes no confusion, we will use Einstein’s convention on
summation over repeated indexes, and use the comma notation for partial
differentiation, where

∂f

∂t
= f,t,

∂kf

∂xα1
1 . . . ∂xαNN

= f,xα1
1 ...x

αN
N
,

for any multiindex (α1, . . . , αN ) ∈ NN with length k = α1 + · · ·+αN . Differen-
tial operators will be denoted as ∇, D or with the standard partial differential
notation, and ∆ will denote the Laplace operator in RN . Vectors will usually
be written in bolded fonts, while their components will be written with the
same unbolded symbol, with the relative coordinate as an upper index, i.e.
v = (v1, v2, v3) for a vector v ∈ R3.
A dot will indicate for the standard scalar product between vectors, while
multiplication of a vector and a tensor will be denoted by simple juxtaposition;
for example, if M = (Mij) and N = (N i)

MN =
(
MijN

j
)
i
, NM =

(
N iMij

)
j
.

Whenever more factors are present (especially when differential operators are
involved), for ease of reading we won’t specify the order of multiplication,
since it is usually readily recovered from the context.
In chain of inequalities, a constant c will keep the same symbol, even if it
changes its value from line to line, when it does so in a way independent of
the quantities involved in the inequality. Whenever a specific dependance
on the data is relevant, we will write it between brackets, e.g. c(T ) denotes
a constant which depends on T , but not on the quantities involved in the
inequality it appears in. The remaining notation is standard, or will be
specified when introduced.



Chapter 2

Preliminaries

In this chapter we develop some of the basic tools we will need to deal with
problem (1.2). All our results are settled in anisotropic Sobolev–Slobodetskii
spaces, whose theory has been developed thoughtfully by the Russian school
in the fifties. These spaces have had an enormous impact in the study of
PDE’s, and in particular the anisotropic case has been found especially fruitful
in the study of parabolic problems. For a general survey of this vast subject
see the book by Besov, Il’in and Nikol’skii [6], or the work of Triebel [43].

In the first section we recall the definition and basic properties of isotropic
Sobolev–Slobodetskii spaces W l

2(Ω), where l stands for the order of (weak)
differentiability. These where introduced by Sobolev in [22] for integer l and
generalised by Slobodetskii in [21] for not necessarily integer values of l.

In the second section we introduce the theory of anisotropic Sobolev–
Slobodetskii spaces as constructed by Slobodetskii in [21] and developed
my many other Russian mathematicians in the following years (see [15] for
example). For our purpose, i.e. dealing with second order parabolic systems,
we require spaces whose function have spacial derivatives of twice the order
of time derivative. Most of the results presented have natural analogues for
summability exponents p 6= 2.

In the third section we describe a modified norm for anisotropic Sobolev–
Slobodetskii space, introduced by Solonnikov in [19]. This modified norm has
many nice scaling properties in time, and are especially useful when dealing
with parabolic problems for small time.

One of the many powerful application of anisotropic Sobolev–Slobodetskii
space, is described in the last section. Agranovich and Vishik in [2] introduced
a general strategy to deal with parabolic systems through Laplace transform.
Since this is the approach we will employ in the study of the linear problem,
we briefly describe the main tools constructed in [2].

Most of the results stated in this chapter are classical and can be found in
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the above mentioned works. Sometimes we will need refinements or variations
of classical theorems, and whenever a handy reference is not available we will
provide a sketch of the proof.

2.1 Isotropic Sobolev–Slobodetskii spaces

If l is a nonnegative integer the isotropic Sobolev–Slobodetskii space on a
bounded domain Ω ⊂ RN coincides with the usual Sobolev space, i.e. the set
of functions u : Ω→ R with finite norm

‖u‖2
W l

2(Ω) =
∑
|j|≤l

∫
Ω

|Dju(x)|2dx,

where Dju is the j-th distributional derivative. Here j is a multiindex
j = (j1, . . . , jN) and |j| its length j1 + · · · + jN . When l = [l] + {l}, where
{l} ∈ (0, 1) is the fractional part of l, the norm is

‖u‖2
W l

2(Ω) := ‖u‖2

W
[l]
2 (Ω)

+
∑
|j|=[l]

∫
Ω

∫
Ω

|Dju(x)−Dju(y)|2

|x− y|N+2{l} dxdy. (2.1)

We will denote by ‖ ‖W̊ l
2(Ω) the principal part of the previous norms, i.e.

‖u‖2
W̊ l

2(Ω) =


‖Dlu‖2

L2(Ω) if l is an integer,∑
|j|=[l]

∫
Ω

∫
Ω

|Dju(x)−Dju(y)|2

|x− y|N+2{l} dxdy otherwise. (2.2)

This norm is derived from a natural inner product defined as

(u, v)W l
2(Ω) :=

∑
|j|≤[l]

(Dju,Djv)L2(Ω)

+
∑
|j|=[l]

∫
Ω

∫
Ω

(
Dju(x)−Dju(y)

)(
Djv(x)−Djv(y)

)
|x− y|N+2{l} dxdy,

with which W l
2(Ω) is a Hilbert space. Its dual will be denoted by W−l

2 (Ω),
thus giving a meaning to the symbol W l

2(Ω) for all real l.
If the boundary of Ω is smooth enough (of class C1 suffices) any u ∈ W l

2(Ω)
can be extended to the whole RN with preservation of class and controlled
norm. More precisely, there exists a continuation operator C : W l

2(Ω) →
W l

2(RN) with the following properties:
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1. C(u)bΩ= u;

2. C(u) has compact support in RN ;

3. ‖C(u)‖W l
2(RN ) ≤ c‖u‖W l

2(Ω).

Using this continuation property, equivalent norms (which for simplicity
we’ll still denote with ‖u‖W l

2(Ω)) can be defined using the finite difference
operator ∆zu(x) = u(x+ z)− u(x). Two examples are the followings

‖u‖2
W l

2(Ω) ' ‖u‖
2

W
[l]
2 (Ω)

+
∑
|j|=[l]

∫
{|z|≤1}

‖∆zD
jC(u)(x)‖2

L2(Ω)

dz

|z|N+2λ
,

‖u‖2
W l

2(Ω) ' ‖u‖
2
L2(Ω) +

∑
|j|=[l]

∫
{|z|≤1}

‖∆k
zC(u)(x)‖2

L2(Ω)

dz

|z|N+2l
, (2.3)

for any integer k > l, where ∆k
zv is the k-times iterated finite difference

operator, whose explicit expression is

∆k
zv(x) = ∆z∆

k−1
z v(x) =

k∑
j=1

(−1)k−j
(
k

j

)
v(x+ jz).

We recall some embedding properties of Sobolev–Slobodetskii spaces.

Theorem 2.1.1 Let Ω ⊂ RN be a bounded domain with smooth boundary,
and u ∈ W l

2(Ω). Then

‖u‖
L

2N
N−2l

(Ω) ≤ c‖u‖W l
2(Ω), if l <

N

2
, (2.4)

‖u‖L∞(Ω) ≤ c‖u‖W l
2(Ω), if l >

N

2
. (2.5)

There are much more refined results of this type (especially in the l ≥ N/2
case, and we refer to [43] for them. All the constant in the embedding theorem
above, as well as in the equivalence inequalities of the various previous norms
depend on Ω, mainly because the continuation operator, which allows to reduce
the inequalities involving W l

2(Ω) to similar inequalities involving W l
2(RN),

depends on the geometry of Ω. It will be important to have scale invariant
inequalities in time, and thus we will consider more closely the continuation
operator in the one dimensional case. For our purposes it suffice to analyse
only the case l ∈ (0, 1), and we have the following result.
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Theorem 2.1.2 Let l ∈ (0, 1) and u ∈ W l
2([0, T ]), equipped with the standard

norm (2.1). There is an extension CT (u) of u to [0,+∞) such that∫ +∞

0

∫ +∞

0

|CT (u)(x)− CT (u)(y)|2

|x− y|1+2l
dxdy

≤ cl

(∫ T

0

∫ T

0

|u(x)− u(y)|2

|x− y|1+2l
dxdy +

1

T 2l

∫ T

0

|u(x)|2dx
) (2.6)

for a constant cl depending only on l and not on u or T .

Proof. The inequality follows from a scaling argument. If cl is the constant
for which (2.6) holds for T = 1 and for a fixed extension operator C1, then
given any function u ∈ W l

2([0, T ]) we define

uT (x) = u(Tx) ∈ W l
2([0, 1]), CT (u) = C1(uT )(

x

T
).

A change of variables thus gives (2.6). �

It will be useful to study the structure of W l
2(Ω) as an algebra of function.

To this end we will prove the following theorem (see [33] for a a refined
statement using Besov spaces).

Proposition 2.1.3 For arbitrary functions u, v given in a smooth domain
Ω ⊂ RN it holds

1.
‖uv‖L2(Ω) ≤ c‖u‖W l

2(Ω)‖v‖
W

N
2 −l

2 (Ω)
,

for any 0 ≤ l ≤ N/2.

2.

‖uv‖W l
2(Ω) ≤ c‖u‖W l

2(Ω)(‖v‖
W

N
2

2 (Ω)
+ ‖v‖L∞(Ω))

≤ c‖u‖W l
2(Ω)‖v‖W s

2 (Ω),
(2.7)

for any 0 ≤ l ≤ N/2 < s.

3.

‖uv‖W l
2(Ω) ≤ c

(
‖u‖W l

2(Ω)‖v‖W s
2 (Ω) + ‖v‖W l

2(Ω)‖u‖W s
2 (Ω)

)
≤ c‖u‖W l

2(Ω)‖v‖W l
2(Ω).

(2.8)

for any l > s > N/2.
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Proof. The proof of the first statement is just an application of Hölder
inequality with exponents N/(N − 2l) and N/l and the embedding theorem
2.4. To prove the other two estimates we can suppose, using the continuation
operator above, that u and v are defined in the whole of RN . It is easy to
prove by induction that

∆k
z(uv)(x) =

k∑
j=0

(
k

j

)
∆j
zu(x)∆k−j

z v(x+ jz). (2.9)

If one then choose k > 2l in the norm (2.3), each of the resulting term in the
above formula has a factor in which the finite difference operator is applied
at least k/2 > l times. To prove (2.8) it suffice to notice that

‖∆j
zu(x)∆k−j

z v(x+ jz)‖L2(RN ) ≤

{
ck‖u‖L∞(RN )‖∆k−j

z v‖L2(RN ) if j ≤ k
2
,

ck‖v‖L∞(RN )‖∆j
zu‖L2(RN ) if j > k

2
),

which, plugged into (2.3), gives for any l ≥ 0

‖uv‖W l
2(RN ) ≤ ck(‖u‖L∞(RN )‖v‖W l

2(RN ) + ‖v‖L∞(RN )‖u‖W l
2(RN )); (2.10)

The embedding inequality (2.5) thus concludes the proof of (2.8), since
l > N/2. Suppose now that l < N/2 to prove the inequality at point 2.
We treat as above the terms in (2.9) corresponding to j > k/2: due to the
embedding inequality (2.5), for those terms an estimate of the form∫

{|z|<1}
‖∆j

zu(x)∆k−j
z v(x+ jz)‖2

L2(RN )

dz

|z|N+2l
≤ c‖v‖W s

2 (RN )‖u‖W l
2(RN ),

holds true.
For j ≤ k/2 we use Hölder inequality instead:

‖∆j
zu(x)∆k−j

z v(x+ jz)‖L2(RN ) ≤ ck‖u‖
L

2N
N−2l (RN )

‖∆k−j
z v‖

L
N
l (RN )

.

Using the embedding (2.4) we get∫
{|z|<1}

‖∆j
zu(x)∆k−j

z v(x+ jz)‖2
L2(RN )

dz

|z|N+2l

≤ ck‖u‖2
W l

2(RN )

∫
|z|<1

‖∆k−j
z v‖2

L
N
l (RN )

dz

|z|N+2l
,

(2.11)

and for s > N/2 we have
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∫
{|z|<1}

‖∆k−j
z v‖2

L
N
l (RN )

dz

|z|N+2l
=

∫
|z|<1

‖∆k−j
z v‖2

L
N
l (RN )

|z| 2lN (N+2s)

dz

|z|N− 2l
N

2s

≤ cl,s

[∫
|z|<1

‖∆k−j
z v‖

N
l

L
N
l (RN )

dz

|z|N+2s

] 2l
N

≤ cl,s‖v‖
2(1− 2l

N
)

L∞(RN )
‖v‖2 2l

N

W s
2 (RN )

where on the second line we applied Hölder inequality with exponent p = N/2l
on the first factor. Using this estimate in (2.11), applying Young inequality
and the embedding inequality (2.5) gives∫

{|z|<1}
‖∆j

zu(x)∆k−j
z v(x+ jz)‖2

L2(RN )

dz

|z|N+2l
≤ c‖u‖2

W l
2(RN )‖v‖

2
W s

2 (RN ),

and the conclusion. �

In the particular case where u and v depend on two disjoint sets of variables
one can prove a refined version of the previous theorem. With RN

+ we denote
the half-space defined by the condition x1 > 0.

Lemma 2.1.4 Let N ≥ 2 and l not an integer. If u(x) = u(x1) and v(x) =
v(x2, . . . , xN) then

‖uv‖W l
2(RN+ ) ≤ c(‖u‖L2(R+)‖v‖W l

2(RN−1) + ‖v‖L2(RN−1)‖u‖W l
2(R+)).

Proof. The claim follows from the fact that the W l
2(RN

+ ) norm is equivalent,
for l not an integer, to

‖f‖2
Bl2,2(RN+ ) = ‖f‖2

L2(RN+ ) +
N∑
i=1

∫ +∞

0

‖∆k
hei
f‖2

L2(RN+ )

dh

h1+2l
,

where ei is the vector whose j-th component is δij , and k is any integer greater
than l. Indeed it suffice to notice that for i < 1

‖∆k
hei
uv‖2

L2(RN+ ) =

{
‖v‖2

L2(RN−1)‖∆k
he1
v‖2

L2(R+) for i = 1,

‖u‖2
L2(R+)‖∆k

hei
v‖2

L2(RN−1) for i > 1,

and this, together with ‖uv‖L2(RN+ ) = ‖u‖L2(R+)‖v‖L2(RN−1), gives the desired
inequality. �
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Another equivalent norm in the case Ω = RN is the following:

‖v‖Hl(RN ) :=

(∫
RN

(1 + |ξ|2)l|ũ(ξ)|2dξ
) 1

2

, (2.12)

where ũ is the Fourier transform of u:

ũ(ξ) =

∫
RN
e−iξ·xu(x)dx.

This norm can be used to define fractional order Sobolev–Slobodetskii spaces
in an arbitrary smooth domain or submanifold. For smooth domains Ω, it
suffices define H l

2(Ω) as the set of restrictions of functions u ∈ H l
2(RN) to

Ω. One can then prove that this set coincides with W l
2(Ω), and that fixing

a continuation operator C the ‖u‖W l
2(Ω) norm is equivalent to ‖C(u)‖Hl

2(RN ).
For smooth bounded d-dimensional submanifolds M of RN , one needs to fix
a partition of unity {φj}j∈J subordinated to a finite open covering {Uj}j∈J of
M on which smooth local charts {Φj : Uj ∩M → Rd}j∈J are defined. Then
one defines

‖u‖Hl
2(M) =

[∑
j

‖(φj · u) ◦ Φ−1‖2
Hl

2(Rd)

] 1
2

.

This norm turns again out to be equivalent to many others, but the procedure
described here to construct Sobolev–Slobodetskii spaces on submanifolds
is especially useful when considering the relationships between W l

2(Ω) and
W s

2 (∂Ω). Indeed, let RN
+ := {(x1, . . . , xN) : xn > 0}. Using partitions of

unity and local charts, one is able to reduce such a problem to the study of
the relationships between W l

2(RN) and W s
2 (RN

+ ). To this end we recall the
following well known restriction and extension theorems:

Theorem 2.1.5 For each l > 1
2
, there exists:

1. A continuous restriction operator R : W l
2(RN

+ )→ W
l− 1

2
2 (RN−1), which

agrees with the usual restriction on smooth functions.

2. A continuous extension operator E : W
l− 1

2
2 (RN−1)→ W l

2(RN
+ ) such that

R ◦ E = E ◦R = I on smooth functions.

Using this theorem and the procedure described above, one then obtains
extension and restriction operators between W l

2(Ω) and W l− 1
2

2 (∂Ω). Notice
that smoothness of ∂Ω is essential here, and Ω being locally near ∂Ω the
epigraph of a Lipschitz function suffices. For higher values of l one can
construct a more general extension operator, prescribing also the normal
derivatives on the boundary.
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Theorem 2.1.6 For l − k > 1
2
, there exists a continuous extension operator

E : Πk
j=0W

l−j− 1
2

2 (∂Ω)→ W l
2(Ω),

such that
∂j

∂nj
E(φ1, . . . , φk) = φj on ∂Ω.

Clearly also this theorem can be stated for general smooth bounded submani-
folds with boundary of RN .

Another application of the norm (2.12) is an easy proof of the so-called
interpolation inequality: If η > 0, k ≥ 0, then Young inequality with exponents
k+η
η

and k+η
k

gives for any s > 0

s
η
k+η (1 + |ξ|2)

k
k+η ≤ c

(
s+ (1 + |ξ|2)

)
,

and thus
sη(1 + |ξ|2)k ≤ c

(
sk+η + (1 + |ξ|2)k+η

)
, (2.13)

which, used into (2.12) gives

sη‖u‖2
Wk

2 (U) ≤ c(‖u‖2

Wk+η
2 (U)

+ sk+η‖u‖2
L2(U)), (2.14)

for U = RN . Again, the inequality holds true for arbitrary smooth bounded
Ω = U , or for U being a bounded smooth submanifold of RN . Reading this
inequality for large s and dividing by sη gives a precise quantitative version of
the statement that, if h > k, the W k

2 can be controlled by a small part of the
W h

2 norm plus a large part of the L2 norm, i.e. the interpolation inequality

‖u‖2
Wk

2 (U) ≤ ε‖u‖2
Wh

2 (U) + c(ε)‖u‖2
L2(U),

valid for ε > 0, h > k.
Another useful interpolation inequality is used to deal with the necessary

condition l > 1
2
in theorem 2.1.5. Indeed the continuity estimate for the

restriction operator fails to be true in the limit case l = 1
2
, i.e. there exists

no constant c such that the inequality ‖u‖L2(RN−1) ≤ c‖u‖
W

1/2
2 (RN+ )

holds true.

For example, let u(x, y, z) = φ(r)r−1/2 where φ : R → R is smooth and
φ(r) = 1 for r ≤ 1 and φ(r) = 0 for r ≥ 2. Clearly u ∈ W 1

2 (R3), and
thus by the restriction theorem u(x, y, 0) ∈ W 1/2

2 (R2). However u(x, 0, 0) =
φ(|x|)|x|−1/2 /∈ L2(R). On the other hand it is clear that the L2(RN−1) norm
of ubRN−1 is controlled by its W η

2 (RN−1)-norm for any η > 0, and thus by
‖u‖

W
η+ 1

2
2 (RN )

. A quantitative version of this control is given by the following
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interpolation inequality, which again can be stated for an arbitrary smooth
bounded Ω ⊂ RN : for any s > 0 it holds

sη‖u‖2
L2(∂Ω) ≤ c(‖u‖2

W
η+ 1

2
2 (Ω)

+ sη+ 1
2‖u‖2

L2(Ω)). (2.15)

To prove this inequality, we denote by û the Fourier transform w.r.t. the first
N − 1 variables, and ξ′ = (ξ1, . . . , ξN−1). By the inversion formula for the
Fourier transform

û(ξ′, xN) =
1

2π

∫ +∞

−∞
eiξNxN ũ(ξ′, ξN)dξN (2.16)

and thus

|û(ξ′, 0)|2 ≤ 1

2π

[∫ +∞

−∞
|ũ(ξ′, ξN)|dξN

]2

≤ 1

4π2

∫ +∞

−∞
(1 + s+ |ξN |2)η+ 1

2 |ũ(ξ′, ξN)|2dξN
∫ +∞

−∞

dξN

(1 + s+ |ξN |2)η+ 1
2

≤ c

(1 + s)η

∫ +∞

−∞
(1 + s+ |ξN |2)η+ 1

2 |ũ(ξ)|2dξN .

Integrating in ξ′ and multiplying by sη gives, through Parceval identity,

sη‖u‖2
L2(RN−1) ≤ c

∫
RN

(1+s+|ξ|2)η+ 1
2 |ũ|2dξ ≤ c(‖u‖2

W
η+ 1

2
2 (RN )

+sη+ 1
2‖u‖2

L2(RN )).

We finally recall the definition of the Sobolev–Slobodetskii spaces of
functions u(x′) defined on R2, periodic in x′ ∈ Σ, with finite W l

2(Σ) norm.
To simplify notations we will suppose Σ = (0, 2π)2. The space W l

2(Σ) is the
(in general, proper) subspace of W l

2(Σ) formed by the restrictions to Σ of
Σ-periodic functions. Its norm is given by

‖u‖W l
2(Σ) :=

∑
ξ′∈Z2

(1 + |ξ′|2)l|uξ′ |2, (2.17)

with uξ′ being the ξ′-th Fourier coefficient of u:

uξ′ :=

∫
Σ

u(x′)e−iξ
′·x′dx′. (2.18)

Notice that for l < 0 the norm above is still equivalent to the norm of the dual
of W l

2(Σ). Given 0 < h ≤ +∞, the Sobolev–Slobodetskii space of periodic
(in x′ ∈ Σ) functions u = u(x′, x3) with (x′, x3) ∈ R2 × [0, h), is defined as

W l
2(Σ× [0, h)) := L2(0, L;W l

2(Σ)) ∩W l
2(0, h;L2(Σ)),
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with norm

‖u‖2
W l

2(Σ×[0,h)) :=

∫ h

0

‖u(·, x3)‖2
W l

2(Σ)dx3 +

∫
Σ

‖u(x′, ·)‖2
W l

2(0,h)dx
′.

These norms are equivalent to the usual W l
2(Σ) and W l

2(Σ× [0, h)) norms
on the subspace of the restrictions to Σ of Σ-periodic function, and thus
the subscript # will often be omitted. Moreover, will will use the notation
Σ∞ = Σ× [0,+∞).

For all these spaces classical trace, extension, interpolation and embedding
theorems hold true, see [43] for a comprehensive treatment of the subject.

2.2 Anisotropic Sobolev–Slobodetskii spaces
The anisotropic Sobolev–Slobodetskii space is defined as the set of func-

tions u = u(x, t), defined in QT := Ω× [0, T ), 0 < T ≤ +∞ such that

u ∈ W l, l
2

2 (QT ) := L2(0, T ;W l
2(Ω)) ∩W

l
2

2 (0, T ;L2(Ω)),

with norm

‖u‖2

W
l, l2
2 (QT )

:=

∫ T

0

‖u(·, t)‖2
W l

2(Ω)dt+

∫ T

0

∑
0≤j≤[ l2 ]

‖Dj
tu(·, t)‖L2(Ω)dt

+

∫ T

0

dh

h1+2{ l2}

∫ T

h

‖∆−hD
[ l2 ]
t u(·, t)‖2

L2(Ω)dx.

An equivalent norm, which will still be denoted with the same symbol, is

‖u‖2

W
l, l2
2 (QT )

:=

∫ T

0

‖u(·, t)‖2
W l

2(Ω)dt+

∫
Ω

‖u(x, ·)‖2

W
l
2

2 (0,T )
dx. (2.19)

Applying (2.1.3) in each variables, gives that for any smooth function v,

‖uv‖
W
l, l2
2 (QT )

≤ cv‖u‖
W
l, l2
2 (QT )

, ∀u ∈ W l, l
2

2 (QT ), (2.20)

where cv can, for example, be taken as

sup
0≤t≤T

‖v(·, t)‖W θ
2 (Ω) + sup

Ω
‖v(x, ·)‖W θ′

2 (0,T ),

with θ = max{N
2

+ ε, l}, θ′ = max{1
2

+ ε, l}, ε > 0 arbitrary.
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For smooth bounded Ω, a continuous continuation operator exists, with
analogue properties to the one related to the isotropic spaces. Moreover,
when QT = RN+1 one can use the norm

‖u‖
Hl, l2 (RN+1)

=

∫
RN+1

(1 + |s|+ |ξ|2)l|ũ(ξ, s)|2dξds, (2.21)

instead, and can proceed as in the isotropic case, defining an equivalent norm
on W l, l

2
2 (QT ) using the H l, l

2 (RN+1) norm via the continuation operator. All
these spaces can be defined (through local maps and partitions of unity)
for a smooth submanifold G of RN in which case we will use the notation
GT = G × [0, T ). Standard theory ensures that these are Hilbert space with
respect to the natural inner product, whose dual will still be denoted by
W
−l,− l

2
2 .
Deriving with respect to spatial variables or time variables has a different

effect on the space one falls in, since it is easy to prove that

‖Dk
xD

h
t u‖

W
l−k−2h, l−k−2h

2
2 (QT )

≤ c‖u‖
W
l, l2
2 (QT )

. (2.22)

Regarding the extension and restriction operator analogues, in the anisotropic
case one has to distinguish between considering the spatial restriction on
∂Ω × [0, T ) and the time restriction on Ω × {0}, as the following theorem
shows.

Theorem 2.2.1 Let u ∈ W l, l
2

2 (QT ), 0 < T ≤ +∞, with Ω being a bounded
smooth domain.

1. If l > 1
2
, there exist a continuous space restriction operator

Rx : W
l, l

2
2 (QT )→ W

l− 1
2
, l
2
− 1

4
2 (∂Ω× [0, T )).

2. If l > 1 there exists a continuous time restriction operator

Rt : W
l, l

2
2 (QT )→ W l−1

2 (Ω× {0}).

3. If l − k > 1
2
, there exists a continuous space extension operator

Ex : Πk
j=0W

l−j− 1
2
, l
2
− j

2
− 1

4
2 (∂Ω× [0, T ))→ W

l, l
2

2 (QT ),

such that
∂j

∂nj
Ex(φ1, . . . , φk) = φj on ∂Ω.
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4. If l − k > 1, there exists a continuous time extension operator

Et : Πk
j=0W

l−2j−1
2 (Ω)→ W

l, l
2

2 (QT ),

such that
∂j

∂tj
Et(ψ1, . . . , ψk) = ψj on Ω× {0}.

All the constant in this theorem depend on Ω, and, more importantly,
on T ; the next section will give a somewhat deeper discussion on this latter
dependance.

It will be useful to define the following auxiliary spaces

W l,0
2 (QT ) := L2(0, T ;W l

2(Ω)), W
0, l

2
2 (QT ) := W

l
2

2 (0, T ;L2(Ω)),

with the natural norms corresponding to the two addends in (2.19). Clearly
an equivalent norm can be defined when QT = RN × R as

‖u‖Hl,0(RN ) =

∫ +∞

−∞

∫
RN

(1 + |ξ|2)l|ũ(ξ, s)|2dξds,

‖u‖
H0, l2 (RN )

=

∫
RN

∫ +∞

−∞
(1 + |s|)l|ũ(ξ, s)|2dsdξ.

We will need the following proposition.

Lemma 2.2.2 Let l > 1
2
and ρ = ρ(x, t) be a function such that ρ ∈

W
l+ 1

2
, η
2

+ 1
4

2 (RN+1), ρ,t ∈ W
l− 1

2
, l
2

+ 1
4

2 (RN+1). Then

‖ρ(·, 0)‖W l
2(RN ) ≤

1

2π
(‖ρ‖

W
l+ 1

2 ,0

2 (RN+1)
+ ‖ρ,t‖

W
l− 1

2 ,0

2 (RN )
),

for a constant independent of ρ.

Proof. Consider the spatial Fourier transform ρ̂. By the inversion formula
(2.16), we have

|ρ̂(ξ, 0)|2 ≤ 1

4π2

[∫ +∞

−∞
|ρ̃(ξ, s)|ds

]2

≤ 1

4π2

∫ +∞

−∞
(1 + s2 + |ξ|2)|ρ̃(ξ, s)|2ds

∫ +∞

−∞

ds

1 + s2 + |ξ|2

≤ 1

4π2

∫ +∞

−∞

1 + s2 + |ξ|2

(1 + |ξ|2)
1
2

|ρ̃(ξ, s)|2ds
∫ +∞

−∞

dr

1 + r2
.
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Therefore, multiplying by (1 + |ξ|2)l and integrating in ξ ∈ RN we get

‖ρ‖2
W l

2(RN ) ≤ c

∫
RN+1

(1 + |ξ|2)l+
1
2 |ρ̃(ξ, s)|2 + (1 + |ξ|2)l−

1
2 |sρ̃(ξ, s)|2dξds,

and thus, being ρ̃,t(s) = isρ̃(s), the claim. �
Again one can state analogous theorems for arbitrary smooth domains Ω,

or for bounded smooth submanifold with or without boundary in RN . For
future reference we state the following proposition.

Theorem 2.2.3 Let G be a smooth bounded submanifold of RN , and T > 0.
For any l > 1

2
it holds the estimate

sup
0≤t<T

‖ρ(·, t)‖W l
2(G) ≤ c(T )(‖ρ‖

W
l+ 1

2 ,0

2 (G×[0,T ))
+ ‖ρ,t‖

W
l− 1

2
2 (G×[0,T ))

),

for a constant c(T ) independent of ρ : G × [0, T )→ R, with C(+∞) < +∞.

It is worth noting that the constant c(T ) blows up as T → 0, as well as
the continuity constant of the restriction operator R,t in theorem 2.2.1 (which
also depend on T ). This is one of the difficulties one has to deal with in using
these theorems to study existence of nonlinear equations for small time.

We will also make use of weighted anisotropic Sobolev–Slobodetskii spaces:
given a function (or vector field) f defined in Q∞ we denote by f ∗ its extension
to zero for t < 0, and set

W
l, l

2
2,γ (Q∞) := {f : e−γtf ∗ ∈ W l, l

2
2 (Ω× R)}, (2.23)

normed with
‖f‖

W
l, l2
2,γ (Q∞)

= ‖e−γtf ∗‖
W
l, l2
2 (Ω×R)

,

and similarly for functions defined on G∞ = G × [0,+∞) where G is a regular
submanifold of R3. Given f ∈ W

l, l
2

2 (Q∞), in the case { l
2
} 6= 1

2
there is a

simple criterion to check if f ∈ W l, l
2

2,γ (Q∞).

Theorem 2.2.4 Suppose that l is not an integer. A function f ∈ W l, l
2

2 (Q∞)

belongs to W l, l
2

2,γ (Q∞) if and only if

1. e−γtf ∈ W l, l
2

2 (Q∞).

2. ∂kf
∂tk
bt=0= 0 for almost all x ∈ Ω and every integer k with 0 ≤ k < l

2
− 1

2
.

If both conditions are satisfied, then

c1‖f‖
W
l, l2
2,γ (Q∞)

≤ ‖e−γtf‖
W
l, l2
2 (Q∞)

≤ ‖f‖
W
l, l2
2,γ (Q∞)

.

for c1 independent of f .
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2.3 Sobolev–Slobodetskii spaces for small T
Neglecting the role of the exponential weight, one can seek for analogous

results in W l, l
2

2 (QT ) of theorem 2.2.4. Finding the exact scaling with respect
to T is particularly important when studying existence for small time of
solutions to nonlinear parabolic equations. The following theorem suggests
that in some cases a modification of the standard norm of W l, l

2
2 is needed.

Theorem 2.3.1 Suppose that l is not an integer, f ∈ W
l, l

2
2 (QT ), and let

Q−∞,T := Ω × (−∞, T ), T ≤ +∞. Then, f ∗ ∈ W l, l
2

2 (Q−∞,T ) if and only if
∂kf
∂tk
bt=0= 0 for almost all x ∈ Ω and every integer k with 0 ≤ k < l

2
− 1

2
.

Moreover, there are constants c1 and c2 which do not depend on f or T such
that if 1 > { l

2
} > 1

2
, then

c1‖f ∗‖
W
l, l2
2 (Q−∞,T )

≤ ‖f‖
W
l, l2
2 (QT )

≤ c2‖f ∗‖
W
l, l2
2 (Q−∞,T )

, (2.24)

while in the case { l
2
} < 1

2
, it holds

c1‖f ∗‖
W
l, l2
2 (Q−∞,T )

≤
[
‖f‖2

W
l, l2
2 (QT )

+
1

T 2{ l
2
}

∫ T

0

‖D[ l2 ]
t f(x, ·)‖2

L2(Ω)dt

] 1
2

≤ c2‖f ∗‖
W
l, l2
2 (Q−∞,T )

.

(2.25)

Proof. We restrict the proof to the case l
2
∈ (0, 1) \ {1

2
}, since the general

case easily follows. Moreover it is clearly sufficient to prove the statement
in the spaces W

l
2

2 (0, T ), since the mixed norm analogous can be obtained
integrating the corresponding inequalities over Ω. An easy calculation shows
that

‖f ∗‖2

W
l
2

2 ((−∞,T ])
= 2‖f‖2

W
l
2

2 ([0,T ])
+ 2

∫ T

0

|f(t)|2

tl
dt,

which is finite iff the second integral on the right is finite. This implies
f(0) = 0 in the case l > 1, and we will show the opposite implication, by
proving the inequalities (2.24) for l > 1 and f(0) = 0, and (2.25) for l < 1.
From the formula above, it suffice to prove only the first inequality in (2.24),
(2.25). We will be done as soon as we prove the following inequalities for any
function f : ∫ T

0

|f(t)− f(0)|2

tl
dt ≤ c

∫ T

0

∫ T

0

|f(t)− f(s)|2

|t− s|1+l
dtds, (2.26)
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valid for l > 1, and∫ T

0

|f(t)|2

tl
dt ≤ c

∫ T

0

∫ T

0

|f(t)− f(s)|2

|t− s|1+l
dtds+

1

T l

∫ T

0

|f(t)|2dt, (2.27)

valid for 0 < l < 1 To prove (2.26) in the case l > 1, write

f(t)− f(0) = −
∫ t

0

(
f(t)− f(s)

)
ds+−

∫ t

0

(
f(s)− f(0)

)
ds.

Multiplying by |t−s| 1+l
2 inside the first integral and applying Hölder inequality

with exponents 2 on both, we obtain

|f(t)− f(0)|2 ≤ −
∫ t

0

|f(t)− f(s)|2

|t− s|1+l
ds−
∫ t

0

|t− s|1+lds+−
∫ t

0

|f(s)− f(0)|2ds

≤ tl

2 + l

∫ T

0

|f(t)− f(s)|2

|t− s|1+l
ds+

1

t

∫ t

0

|f(s)− f(0)|2ds.

Multiplying by t−l and integrating in t gives∫ T

0

|f(t)− f(0)|2

tl
dt

≤ 1

2 + l

∫ T

0

∫ T

0

|f(t)− f(s)|2

|t− s|1+l
dtds+

∫ T

0

|f(s)− f(0)|2ds
∫ T

s

dt

t1+l

≤ 1

2 + l

∫ T

0

∫ T

0

|f(t)− f(s)|2

|t− s|1+l
dtds+

1

l

∫ T

0

|f(s)− f(0)|2ds
sl

and thus, if l > 1, we can bring the last term to the left, obtaining∫ T

0

|f(t)− f(0)|2

tl
dt ≤ l

(2 + l)(l − 1)

∫ T

0

∫ T

0

|f(t)− f(s)|2

|t− s|1+l
dtds.

Let us consider (2.27). We first prove it in the case T = +∞, i.e. without
the additional term. To this end we proceed as above, but this time we use

f(t) = −
∫ at

0

(
f(t)− f(s)

)
ds+−

∫ at

0

f(s)ds,

for a positive parameter a to be determined later on. This gives, as before

|f(t)|2 ≤ cat
l

∫ +∞

0

|f(t)− f(s)|2

|t− s|1+l
ds+

1

at

∫ at

0

|f(s)|2ds,
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and∫ +∞

0

|f(t)|2

tl
dt

≤ ca

∫ +∞

0

∫ +∞

0

|f(t)− f(s)|2

|t− s|1+l
dtds+

1

a

∫ +∞

0

|f(s)|2ds
∫ +∞

s
a

dt

t1+l

≤ ca

∫ +∞

0

∫ +∞

0

|f(t)− f(s)|2

|t− s|1+l
dtds+

1

la1−l

∫ +∞

0

|f(s)|2

sl
ds.

Since l < 1, we can choose a large enough so that la1−l > 1, and thus bring
the last term to the left, obtaining, for T = +∞∫ +∞

0

|f(t)|2

tl
dt ≤ c

∫ +∞

0

∫ +∞

0

|f(t)− f(s)|2

|t− s|1+l
dtds. (2.28)

Inequality (2.27) for T < +∞ is obtained through theorem 2.1.2, applying
the inequality for T = +∞ to the extension C(f) of f . The estimates (2.6)
and (2.28) then give (2.27). �

Inequalities such as (2.26) and (2.27) are commonly referred to as “frac-
tional Hardy inequalities”, from the classical Hardy inequality∫ T

0

|f(t)|2

t2
dt ≤ 4

∫ T

0

|f ′(t)|2dt,

valid for smooth f ’s vanishing at t = 0.
Some remarks will be useful

Remark 2.3.2

1. The additional term

1

T 2{ l
2
}

∫ T

0

‖D[ l2 ]
t f(x, ·)‖2

L2(Ω)dt

in (2.25) is a necessary one in the case { l
2
} < 1

2
and T small. Indeed, for

example in the l < 1 case, one cannot hope in a bound of the form∫ T

0

|f(t)|2

tl
dt ≤ c

∫ T

0

∫ T

0

|f(t)− f(s)|2

|t− s|1+l
dtds+

∫ T

0

|f(t)|2dt,

with c independent of T , since f ≡ 1 would give

T l+1

l + 1
≤ cT,

which fails for T → 0.
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2. This feature is caused by the non completely local nature of the Sobolev–
Slobodetskii norm. Consider for example the equality

‖f‖Wk
2 (Ω) = ‖f‖Wk

2 (Ω′),

valid for all the functions f having support contained in Ω′ ⊂ Ω. This is
clearly true for k integer, since we have a completely local way of defining
the norm. However for fractional l with {l} < 1

2
and supp f ⊂ Ω′ ⊂ Ω it

holds only
‖f‖W l

2(Ω′) ≤ ‖f‖W l
2(Ω) ≤ c(Ω)‖f‖W l

2(Ω′),

with a constant c(Ω) that, generally speaking, can blow up when Ω shrinks
to zero in some direction. This feature must be taken into account, e.g.,
when localising functions via partitions of unity.

3. Another drawback of this behaviour is that when looking at anisotropic
Sobolev–Slobodetskii space for small times, it is useful to use a modified
norm, which scales well in the case l is not an integer, namely

‖f‖2

Ŵ
l, l2
2 (QT )

=


‖f‖2

W
l, l2
2 (QT )

if { l
2
} > 1

2
,

‖f‖2

W
l, l2
2 (QT )

+
1

T 2{ l
2
}

∫ T

0

‖D[ l2 ]
t f(x, ·)‖2

L2(Ω)dt if { l
2
} < 1

2
.

The space H l, l
2

2 (QT ), l not an integer, is defined as the set W l, l
2

2 (QT )
equipped with the norm

‖f‖2

H
l, l2
2 (QT )

= ‖f‖2

Ŵ
l, l2
2 (QT )

+
∑

0≤2k<l−1

sup
0≤t≤T

‖Dk
t f(·, t)‖2

W l−1−2k
2 (Ω).

For fixed T , this norm is clearly equivalent to the standard one, by (2.22)
and theorem 2.2.1. It will be useful to define the auxiliary norms

‖f‖2

Hl,0
2 (QT )

:= ‖f‖2

W l,0
2 (QT )

+
∑

0≤2k<l−1

sup
0≤t≤T

‖Dk
t f(·, t)‖2

W l−1−2k
2 (Ω),

‖f‖2

Ŵ
0, l2
2 (QT )

=


‖f‖2

W
0, l2
2 (QT )

if { l
2
} > 1

2
,

‖f‖2

W
0, l2
2 (QT )

+ 1

T 2{ l2 }
‖D[ l2 ]

t f‖2
L2(QT ) if { l

2
} < 1

2
,

so that
‖f‖2

H
l, l2
2 (QT )

= ‖f‖2

Hl,0
2 (QT )

+ ‖f‖2

Ŵ
0, l2
2 (QT )

.

The main feature of this modified norm is that, while the continuity constants
in theorem 2.2.1 depend on T , analogous theorems holds with respect to the
norm H

l, l
2

2 with constant independent of T .
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Theorem 2.3.3 Let T ≤ 1, l not an integer and Ω a bounded smooth domain
or submanifold of RN .

1. For l > 1, the restriction operator satisfies

‖f(·, 0)‖W l−2j−1
2 (Ω) ≤ c‖f‖

H
l, l2
2 (QT )

, 0 ≤ 2j < l − 1.

with constant independent of T .

2. For any φj ∈ W l−2j−1
2 (Ω), there exists f ∈ H l, l

2
2 (QT ) such that Dk

,tfbt=0=
φj for all j such that 0 ≤ 2j < l − 1 and

‖f‖
H
l, l2
2 (QT )

≤ c
∑

0≤2j<l−1

‖φj‖W l−2j−1
2 (Ω),

with constant independent of T .

3. There exists a continuation operator C : H
l, l

2
2 (QT ) → W

l, l
2

2 (Q∞) such
that

c1‖C(f)‖
W
l, l2
2 (Q∞)

≤ ‖f‖
H
l, l2
2 (QT )

≤ c2‖C(f)‖
W
l, l2
2 (Q∞)

,

with constants independent of T .

Proof. The first claim is obvious from the definition of H l, l
2

2 . We now prove
the following claim: if f ∈ W l, l

2
2 (Q∞), then

‖f‖
H
l, l2
2 (QT )

≤ c‖f‖
W
l, l2
2 (Q∞)

, (2.29)

with constant independent of T . The inequality∑
0≤2k<l−1

sup
0≤t≤T

‖Dk
t f(·, t)‖W l−1−2k

2 (Ω) ≤ c‖f‖
W
l, l2
2 (Q∞)

,

follows from standard restriction estimates for unbounded intervals. Since
‖f‖

W
l, l2
2 (QT )

≤ ‖f‖
W
l, l2
2 (Q∞)

, it suffice to consider the case { l
2
} < 1

2
. Inequality

(2.28) gives in this case, for T ≤ 1,

1

T 2{ l
2
}

∫ T

0

‖D[ l2 ]
t f‖2

L2(Ω) ≤
∫

Ω

∫ +∞

0

|D[ l2 ]
t f |2

t2{
l
2
}
dtdx

≤ c

∫
Ω

‖f‖2

W̊
l
2

2 (0,+∞)
dx ≤ c‖f‖2

W
l, l2
2 (Q∞)

,
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with constant independent of T , which concludes the proof of (2.29). Now
point 2 follows from standard extension theorems for unbounded intervals,
and it remains to prove point 3. To this end, let

φj(x) = Dj
,tf(x, t)bt=T∈ W l−2j−1

2 (Ω), 0 ≤ 2j < l − 1.

By theorem 2.2.1, there exists F ∈ W l, l
2

2 (QT,∞) (where QT,∞ := Ω× [T,+∞))
such that Dj

,tF bt=T= φj and

‖F‖
W
l, l2
2 (QT,∞)

≤ c
∑

0≤2j<l−1

‖φj‖W l−2j−1
2 (Ω) ≤ c‖f‖

H
l, l2
2 (QT )

,

with constant independent of T . We claim that the function C(f) = f for
t ≤ T and C(f) = F for t > T satisfies

‖C(f)‖
W
l, l2
2 (Q∞)

≤ c‖f‖
H
l, l2
2 (QT )

. (2.30)

This, together with (2.29), will prove point 3. To prove (2.30), notice that
clearly

‖C(f)‖2

W l,0
2 (Q∞)

+
∑

0≤j≤[ l
2

]

∫
Ω

‖C(f)‖2
W j

2 (R+) ≤ c(‖f‖2

W
l, l2
2 (QT )

+ ‖F‖2

W
l, l2
2 (QT,∞)

)

≤ c‖f‖2

H
l, l2
2 (QT )

,

by the local nature of the norms involved and Dj
,tF bt=T= Djfbt=T for all

0 ≤ 2j ≤ l − 1. Letting k =
[
l
2

]
, it remains to estimate∫

Ω

∫ +∞

0

∫ +∞

0

|Dk
tC(f)(x, t)−Dk

tC(f)(x, s)|2

|t− s|1+2{ l
2
}

dtdsdx.

We can omit the dependance on x ∈ Ω and integrate at the end. It holds∫ +∞

0

∫ +∞

0

|Dk
tC(f)(t)−Dk

tC(f)(s)|2

|t− s|1+2{ l
2
}

dtds =

∫ T

0

∫ T

0

|Dk
t f(t)−Dk

t f(s)|2

|t− s|1+2{ l
2
}

dtds

+

∫ +∞

T

∫ +∞

T

|Dk
t F (t)−Dk

t F (s)|2

|t− s|1+2{ l
2
}

dtds+ 2

∫ +∞

T

∫ T

0

|Dk
t f(t)−Dk

t F (s)|2

|t− s|1+2{ l
2
}

dsdt

and we just have to estimate the last integral, since the first two are bounded
by ‖f‖2

H
l, l2
2 (QT )

. In the case { l
2
} > 1

2
we add and subtract φk and bound it
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with ∫ +∞

T

ds

∫ T

0

|Dk
t f(t)− φk|2

|t− s|1+2{ l
2
}
dt+

∫ T

0

dt

∫ +∞

T

|Dk
t F (s)− φk|2

|t− s|1+2{ l
2
}
ds

≤ c

∫ T

0

|Dk
t f(t)− φk|2

|t− T |2{ l2}
dt+

∫ +∞

T

|Dk
t F (s)− φk|2

|T − s|2{ l2}
ds

and applying (2.26), (2.28) we conclude. In the { l
2
} > 1

2
case we proceed

in a similar way, splitting |Dk
t f(t) − Dk

t F (s)| as |Dk
t f(t)| + |Dk

t F (s)| and
employing (2.27) instead. Integrating these inequalities in x ∈ Ω gives (2.30),
and concludes the proof.

�

Point 3 of the previous theorem is a useful instrument to obtain restriction
and interpolation inequalities in the H l, l

2
2 setting with constants independent

of T when T � 1. We omit a complete discussion, and will prove the relevant
inequalities when needed.

2.4 The Laplace transform and applications
Given a function f : [0,+∞)→ C, its Laplace transform is defined as

Lf(z) =

∫ +∞

0

e−ztf(t)dt.

It is easy to see that if for some γ ≥ 0, e−γtf is integrable, then Lf(z) is well
defined an holomorphic in the semiplane Re z > γ. Moreover the Laplace
transform is intimately connected with the Fourier transform, since

Lf(σ + iτ) =

∫
R
e−iτt(e−σtf(t))dt = F(e−σtf(t))(τ),

where F denotes the Fourier transform.
Given γ ≥ 0, the space El, l

2
γ is the set of functions u : Ω×{Reλ ≥ γ} → C,

such that

1. For all z with Re z > γ and almost all z with Re z = γ, u(·, z) ∈ W l
2(Ω).

2. For almost all x ∈ Ω, u(x, ·) is holomorphic in {Re z > γ} and

‖u(x, ·)‖2

E
l
2
γ

:= sup
σ>γ

∫ σ+i∞

σ−i∞
|u(x, z)|2|z|ldz < +∞,

and ‖Dk
xu(x, ·)‖E0

γ
< +∞ for all integer k such that 0 ≤ k ≤ [l].
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As a norm, we take

‖u‖2

E
l, l2
γ

= sup
σ>γ

∫ σ+i∞

σ−i∞
‖u(·, z)‖2

W l
2(Ω) + |z|l‖u(·, z)‖2

L2(Ω)dz,

which makes El, l
2

γ a Banach space. Here the integral in the norm is to be
meant as the limit for N → +∞ of the integral between −N and N .

The main result of this section states that the Laplace transform is a
bicontinuous mapping between W l, l

2
2,γ (Q∞) and El, l

2
γ .

Theorem 2.4.1 Let γ ≥ 0. The Laplace transform with respect to time is
a bicontinuous mapping between W

l, l
2

2,γ (Q∞) and El, l
2

γ . It has the following
properties:

1. For any integer k = k1 + · · ·+ kN and almost any x ∈ Ω,

L

(
∂kf

∂xk1
1 . . . ∂xkNN

)
(x, z) =

∂kL(f)

∂xk1
1 . . . ∂xkNN

(x, z),

L

(
∂kf

∂tk

)
(x, z) = zkL(f)(x, z).

2. If fT (x, t) := f(x, t+ T ), then

LfT (x, z) = eTzLfT (x, z).

3. For almost any x ∈ Ω and σ ≥ γ

‖e−σtf(x, t)‖L2(R+) =
1

2π

∫ σ+i∞

σ−i∞
|L(f)(x, z)|2dz.

4. The inverse of the Laplace transform on El, l
2

γ is

M(u)(x, t) =
1

2πi

∫ σ+i∞

σ−i∞
u(x, z)eztdz,

for σ > γ.

We will now briefly describe how the Laplace transform fits into the general
strategy to solve linear parabolic problems settled down by Agranovich and
Vishik in [2].
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Consider the evolution system
∂U

∂t
−AU = F ,

where U and F are suitable vectors of functions, and A is differential (w.r.t.
spatial variables) operator with at most second order derivatives. This system
is usually coupled with a series of boundary conditions, which we will write
in the form BU = G for some differential operator B, and we suppose
homogeneous initial data U(0) = 0. One seek for solution of this system
such that each component U i of U belongs to the proper anisotropic Sobolev–

Slobodetskii space W li,
li
2

2 . Of course this is not always reasonable due to
the structure of A, and even if formally this seems to be possible, a number
of compatibility conditions (depending, in general, also on the regularity
required) the at the initial time must be imposed. We won’t go into the
details of the various well posedness criteria for parabolic systems, and refer
to [2] for a precise characterisation of the parabolicity of the system

∂U
∂t
−AU = F t > 0,

BU = G t > 0,

U(0) = 0

(2.31)

Since U(0) = 0, we can think of a solution as having components in

suitable W li,
li
2

2,γ spaces, i.e. considering it as extended as 0 for t < 0 preserving
regularity and with proper growth conditions at +∞. Applying the Laplace
transform to (2.31) gives the complex parameter dependent problem{

zu−Au = f ,

Bu = g

where
u = LU , f = LF , g = LG.

As soon as one can prove that for sufficiently large γ, this complex parameter
dependent problem has a unique solution in the corresponding product of El, l

2
γ

spaces (depending on the component), one can invert the Laplace transform
to obtain a solution of (2.31). Consider the z dependent norms

‖u‖λ =
∑
i

‖ui‖
W
li,
li
2

2

+ |z|li‖ui‖L2 ,

and similarly for f and g. To obtain meaningful parabolic estimates one
usually seeks for λ independent two-sided inequalities of the form

c1‖u‖z ≤ ‖f‖z + ‖g‖z ≤ c2‖u‖z.
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holding for any Reλ ≥ γ since the latters, integrated over Re z = γ, translate

by theorem 2.4.1 into a two-sided estimate in terms of the W li,
li
2

2,γ norms of U ,
F and G.



Chapter 3

The linearized problem

In this chapter we introduce a change of variables in order to reduce
problem (1.2) to a problem in a fixed domain. There are mainly two ways to
do this that has been proved fruitful in the literature. One is employing a
Lagrangian description, given by using coordinates

x = ξ +

∫ t

0

u(ξ, s)ds =: X(ξ, t), ξ ∈ Ω0,

where u is the velocity field in Lagrangian coordinates, linked to the velocity
field v in Eulerian coordinates by the relation

u(ξ, t) = v(X(ξ, t), t).

Thus, for example, the free surface is defined as

Γ,t := {ξ +

∫ t

0

u(ξ, s)ds : ξ ∈ Γ0}.

Using this coordinate system makes it difficult to recover the regularising effect
that the equations can have on the free surface. As we will see, in the case
σ > 0 one expects a regularising effect on Γ,t due to the presence of an elliptic
operator arising from the curvature term. Thus it seems that the Lagrangian
description fits more to the case where an a-priori regularising effect is not
apparent, i.e. in the case σ = 0. This approach has been successfully applied
by Solonnikov, etc etc in ...

Another approach is to use the so called Hanzawa transformation, which
goes back to [11]. This consists in fixing an arbitrary smooth domain Ωb,
sufficiently near (or, eventually, coincident) to Ω0 in such a way that for
0 ≤ t ≤ T , all the Ω,t can be considered normal perturbations of Ωb. Thus
the new variable y is defined by

x = y +Nϕ(y, t), y ∈ Ωb,
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for a suitable choice of ϕ(y, t), where N is the exterior normal to Ωb. This
transformation has obviously a wide variety of choices for ϕ, and it allows a
more precise study of the regularity of the free surface. It has been applied
to free-boundary problems for the Navier–Stokes equation by many authors,
see ...

Since we work with capillary fluids we will employ the latter transformation,
and the particular choice we make will be described in the first section. We
then proceed in section 2 in studying the linearization of problem (1.2)
(with respect to this choice of variables) near a stationary solution. Explicit
calculations of the various linear and nonlinear terms will also be done.

3.1 The Hanzawa transformation
We recall that the domain where the fluid is constrained is denoted by

Ωt = {x′ ∈ Σ, 0 ≤ x3 ≤ φ(x′, t)}, with Σ being a rectangle in R2, x′ = (x1, x2)
and φ is a sufficiently regular function whose graph in R3 is the free boundary
of the fluid, Γ,t, with normal n. We suppose that the velocity field v and the
pressure p are periodic for every t ≥ 0, with periodic cell Σ. Furthermore we
prescribe the velocity at the bottom of the layer, letting v(x′, 0, t) = α(x′, t)
for every t ≥ 0. With these notations we obtain system (1.2).

We now fix a sufficiently smooth domain Ωb, defined, for some Σ-periodic
smooth φb, as {(x′, x3) : x′ ∈ Σ, 0 < x3 < φb(x)}. Moreover G will be
the graph of φb over Σ, N = (−∇′φb, 1)/

√
1 + |∇′φb|2 its normal, Πb(V ) =

V − (N · V )N the projection of V on the tangent space of G, and Π(V ) =
V − (n · V )n the projection on the tangent space to the graph of φ. Letting
ρ = φ − φb, we rewrite problem (1.2) in terms of the new variable y ∈ Ωb

defined as
x = eρ(y) = y + θ(y)ρ(y′, t)e3, (3.1)

where y′ = (y1, y2) ∈ Σ and θ is a C∞ cutoff function with suitable regularity.
Although inessential, we will assume, to simplify some calculations, that
θ = θ(y3) and θ(s) = 0 for s < h and θ = 1 for s > 2h, with

inf
Σ
φb > 3h > 0.

We suppose that, for some l ≥ 1
2
,

sup
t<T
‖ρ(·, t)‖

W
l+ 3

2
2 (Σ)

� 1,

so that the transformation (3.1) is at least C1,α and is it invertible due to the
smallness of supΣ |ρ|. Moreover, we will henceforth write ρ∗(y, t) = θ(y)ρ(y′, t).
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This change of variable transforms Ωb to Ωt, and we will denote by L = L(y, ρ)
the Jacoby matrix of this transformation:

L(y) =

(
∂xi
∂yj

)
ij

=

 1 0 0
0 1 0

θρ,y1 θρ,y2 1 + θ′ρ

 . (3.2)

Furthermore, we will set L = detL, L̂ = LL−1 so that L̂ = cof(L)T . One has

L = 1 + θ′ρ, L−T =

1 0
−θρ,y1
1+θ′ρ

0 1
−θρ,y2
1+θ′ρ

0 0 1
1+θ′ρ

 , I − L−T =
1

L
∇ρ∗ ⊗ e3 (3.3)

Moreover, the transformation eρ converts the operator ∇x to ∇̃ = L−T∇y,
since L−Tij =

∂yj
∂xi

and by the chain rule ∂
∂xi

= ∂
∂yj

∂yj
∂xi

. To shorten the notation
we will henceforth write ∇ for ∇y. We now rewrite system (1.2) in the new
variables (y, t). For the term v,t we have

v,t(x(y), t) = ∇xv
∂y

∂t
+ v,t = ρ∗,t(L−1e3 · ∇)v + v,t.

The nonlinear term (v · ∇x)v con be rewritten as (L−1v · ∇)v and all the
other differential operators are substituted with the rule ∇x → ∇̃. Regarding
the divergence it is important to notice that

∇̃ · v =
1

L
(L̂T∇) · v = 0 ⇔ (L̂T∇) · v = 0,

and
(L̂T∇) · v = ∇ · (L̂v),

since, as is well known, the cofactor matrix has divergence free rows. The
equation for the divergence can thus be written as

∇ · v =
(
(I − L̂T )∇

)
· v = ∇ · (I − L̂)v.

We now consider the curvature term. Recall that given a surface with normal
n, smoothly extended in a neighbourhood of the surface, the doubled mean
curvature H is defined as ∇ ·n. We then define Hs = ∇x ·ns where ns is the
(upward) normal to the surface with cartesian equation y3 = φb(y

′) + sρ(y′).
Letting gs = 1 + |∇(φb + sρ)|2 and gb = g0 we have

H1 = H0 +
d

ds
Hsbs=0+

∫ 1

0

(1− s) d
2

ds2
Hsds.
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We will use summation convention on repeated indexes, and for any multiindex
k = (k1, k2), k1 + k2 = k, and any function f = f(x1, x2), we will set

f,k =
∂kf

∂xk1
1 ∂x

k2
2

. (3.4)

Since

ns =
(−∇′(φb + sρ), 1)

√
gs

,

we have, with summation on the indexes α, β = 1, 2

d

ds
Hsbs=0 = ∇ · 1

√
gb

(
(−∇′ρ, 0)− ∇

′φb · ∇′ρ
gb

(−∇′φb, 1)
)

= − 1

gb
∂α
(
δαβ
√
gb −

φb,αφb,β√
gb

)
ρ,β

− 1

g
5
2
b

∇′φb · ∇′|∇′φb|2∇φb · ∇′ρ+
∇′|∇′φb|2 · ∇′ρ

g
3
2
b

= − 1
√
gb

∆Gρ+ b · ∇′ρ := Lρ.

(3.5)

Here ∆G is the Laplace-Beltrami operator on the surface G, and b is a smooth
field depending on φb. A lengthy but straightforward calculation shows that

d2

ds2
Hs = ρ,αρ,β

3∑
m=1

pαβm

g
m+ 1

2
s

+ ρ,αρ,βγ

3∑
m=1

qαβγm

g
m+ 1

2
s

, (3.6)

where pαβm and qαβγm are suitable polynomials in the variables s, ∇′ρ, ∇′φb,
∇2φb (and hence not depending on second or higher derivatives in ρ).

Letting then H0 = Hb the system (1.2) becomes, in the new variables:

v,t − ν∆v +∇p = l1(v, p, ρ) + l0(v, ρ) in Ωb,

∇ · v = l2(v, ρ) in Ωb,

νΠGD(v)N = l3(v, ρ) on G,
−p+ νN · D(v)N + σLρ = l4(v, ρ)− σHb(y) on G,
ρ,t +∇′φb · v(y′, φb(y

′))− v3(y′, φb(y
′)) +∇′ρ · v(y′, φb(y

′)) = 0 on Σ,

v(y, 0) = ṽ0(y), in Ωb, ρ(y, 0) = ρ0(y), on G,
v(y′, t) = α(y′) for t ≥ 0, y′ ∈ Σ,

(3.7)
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where ṽ0 = v0 ◦ eρ0 , L is a second order elliptic operator with lower order
terms, whose principal part is −∆G , Hb is the doubled mean curvature of the
graph of φb and the li are the following nonlinear operators

l0(v, ρ) = −(L−1v · ∇)v,

l1(v, p, ρ) = ν(∆̃−∆)v + (∇− ∇̃)p+ ρ∗,t(L−1e3 · ∇)v,

l2(v, ρ) =
(
(I − L̂T )∇

)
· v = ∇ ·G(v, ρ), G = (I − L̂)v,

l3(v, ρ) = νΠG
(
ΠGD(v)N (y)− ΠD̃(v)n(eρ(y))

)
,

l4(v, ρ) = ν(N · D(v)N − n · D̃(v)n)− σ
∫ 1

0

(1− s)d
2Hs

ds2
ds.

(3.8)

By D̃ we mean the doubled transformed rate of strain tensor: D̃(u) =

(∇̃u)+(∇̃u)T . The equation for ρ,t can be equivalently written with variables
in G instead of Σ, simply letting ρ(y′, φb(y

′)) = ρ(y′), and we will do so in the
following.

From (3.5) we have an explicit expression for L. We will keep the full
linear operator instead of its principal part in all that follows. The reason for
this is apparent from the following lemma, which would not hold otherwise.

Lemma 3.1.1 For sufficiently large real s, (depending on φb and vb), the
bilinear form

Bs(ρ) =

∫
Σ

Lρ(sρ+∇′ρ · vb)dx′,

is positive definite.

Proof. A straightforward calculation shows that, summing for α, β = 1, 2,

Lρ = − 1

gb
∂α

[(
δαβ
√
gb −

φb,αφb,β√
gb

)
ρ,β

]
−
(
δαβ
√
gb −

φb,αφb,β√
gb

)
ρ,β∂α

1

g b
.

We integrate by parts one derivative in the Laplace–Beltrami operator: by
periodicity there is no boundary term and by the previous formula the terms
in ∂α(1/gb) cancel out, giving∫

Σ

Lρ · sρdx′ = s

∫
Σ

1

gb

(
δαβ
√
gb −

φb,αφb,β√
gb

)
ρ,βρ,αdx

′.

From Swartz inequality one immediately obtains

1

gb

(
δαβ
√
gb −

φb,αφb,β√
gb

)
ρ,βρ,α =

|∇′ρ|2(1 + |∇′φb|2)− (∇′ρ · ∇′φb)2

g
3
2
b

≥ |∇
′ρ|2

g
3
2
b

,
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and thus ∫
Σ

Lρ · sρdx′ ≥ s

∫
Σ

|∇′ρ|2

g
3
2
b

dx′ ≥ cs

∫
Σ

|∇′ρ|2dx′.

Let us look at the remaining term: again integrating by parts one derivative
in the Laplace–Beltrami operator, we get∫

Σ

Lρ∇′ρ · vdx′ =
∫

Σ

1

gb

(
δαβ
√
g − φb,αφb,β√

gb

)
ρ,β
(
ρ,αγv

γ
b + ρ,γv

γ
b,α

)
dx′.

Clearly
1

gb

(
δαβ
√
gb −

φb,αφb,β√
gb

)
ρ,βρ,γv

γ
b,α ≥ −c

′|∇′ρ|2,

with a constant depending on φb and vb. It remains to estimate∫
Σ

1

gb

(
δαβ
√
gb −

φb,αφb,β√
gb

)
ρ,βρ,αγv

γ
b dx

′,

but since this expression is symmetric in α and β, integrating by parts on
the term ρ,αγ with respect to xγ gives

2

∫
Σ

(
δαβ
√
gb −

φb,αφb,β√
gb

)
ρ,βρ,αγv

γ
b

gb
dx′ =

= −
∫

Σ

ρ,αρ,β∂γ

[(
δαβ
√
gb −

φb,αφb,β√
gb

)
vγb
gb

]
dx′ ≥ −c′

∫
Σ

|∇′ρ|2.

The claim now easily follows, since gathering together the previous estimates
gives

Bs(ρ) ≥ (cs− c′)
∫

Σ

|∇′ρ|2dx′. (3.9)

�

3.2 The linearization

Let us now look at some stationary, sufficiently smooth solution (vb, pb, φb)
of (1.3), supposing that in the Hanzawa transformation Ωb is given by φb. Since
we are concerned with stability properties, we suppose that φ is sufficiently
near (in a sense to be made precise later) to φb, and thus ρ = φ − φb is
small. In order to linearize the problem near (vb, pb, 0), we notice that all
the nonlinear terms except l0 are actually linear in the variables v and p;
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therefore, letting, u = v − vb, q = p− pb and subtracting the corresponding
system for (ub, pb, 0), we get a system of the form

u,t − ν∆u+∇q −Φ1(u, ρ) = l̃0(u, ρ) + l̃1(u, ρ, q) in Ωb,

∇ · u− Φ2(ρ) = l̃2(u, ρ) = ∇ ·G(u, ρ) in Ωb,

νΠbD(u)N −Φ3(ρ) = l̃3(u, ρ) on G,
−q + νN · D(u)N + σLρ− Φ4(ρ) = l̃4(u, ρ) on G,
ρ,t +∇′φb · u− u3 +∇′ρ · vb = l̃5(u, ρ) on G,
u(y, 0) = u0(y) in Ωb, ρ(y′, 0) = ρ0(y′) on Σ,

u(y′, t) = 0 ∀y′ ∈ Σ, t ≥ 0,

(3.10)

where the Φi’s are the first variation of the system w.r.t. perturbations of
the form (vb + su, pb + sq, sρ), and thus, in general, depend on vb, pb and φb.
We will calculate explicitly the Φi and l̃i in the following.

Problem (3.10) is obviously subjected to a set of compatibility conditions,
which generally speaking depends on the required smoothness of the solution.
We will consider the following ones:

∇ · u0 − Φ2(ρ0) = l̃2(u0, ρ0),

νΠbD(u0)N −Φ3(ρ0) = l̃3(u0, ρ0),∫
Σ
ρ0dy

′ = 0.

(3.11)

The first two conditions are the simplest compatibility conditions at the initial
time, while the third is the preservation of mass for the perturbation, and a
straightforward calculation shows that this in turns implies∫

Σ

ρ(y′, t)dy′ ≡ 0,

∫
Ωb

l̃2(u, ρ∗)dy +

∫
Σ

l̃5(u(y′, φb(y
′), ρ(y′, t))dy′ ≡ 0,

identically for t ≥ 0, for any solution of (3.10).
We now proceed to explicitly calculate the linear and nonlinear terms of

this system.
First note that the exact equation for ρ,t is

ρ,t +∇′ρ · vb +∇′φb · u− u3 = ∇′ρ · u, (3.12)

and therefore
l̃5(u, ρ) = ∇′ρ · u. (3.13)

From the explicit matrix given in (3.3), we have

δL−T =

0 0 −θρ,y1

0 0 −θρ,y2

0 0 −θ′ρ

 := −∇ρ∗ ⊗ e3, δL−1 = −e3 ⊗∇ρ∗, (3.14)
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and
L−T − I − δL−T = ∇ρ∗ θ′ρ

1 + θ′ρ
⊗ e3. (3.15)

For the first equation, notice that l1 is linear in the arguments v and p. Thus
it suffice to compute the linearization of l1(vb, pb, ρ) with respect to ρ. Calling
δl1(vb, pb, ρ) this linearization we have

δl1(vb, pb, ρ) = νδL−T∇·∇vb + ν∇· δL−T∇vb−∇ρ∗
∂pb
∂y3

+ δρ∗,t(L−1e3 ·∇)vb.

For the last term, we have that

ρ∗,t(L−1e3 · ∇)vb =
ρ∗,t

1 + θ′ρ

∂vb
∂y3

= ρ∗,t
∂vb
∂y3

−
θ′ρρ∗,t

1 + θ′ρ

∂vb
∂y3

.

Therefore the linear part is

νδL−T∇ · ∇vb + ν∇ · δL−T∇vb −∇ρ∗
∂pb
∂y3

− ρ∗,t
∂vb
∂y3

, (3.16)

and the nonlinear one is

l̃1(u, q, ρ) = l1(u, q, ρ) + ν
(
L−T − I − δL−T

)
∇ · ∇vb

+ ν∇ ·
(
L−T − I − δL−T

)
∇vb +

(
L−T − I − δL−T

)
∇pb

−
θ′ρρ∗,t

1 + θ′ρ

∂vb
∂y3

.

(3.17)

For l̃0 we have

l0(v, ρ)− l0(vb, 0) = (δL−1vb · ∇)vb + (u · ∇)vb + (vb · ∇)u+ l̃0(u, ρ),

which adds a further linear term to (3.16), giving

Φ1(u, ρ) =νδL−T∇ · ∇vb + ν∇ · δL−T∇vb −∇ρ∗
∂pb
∂y3

− θρ,t
∂vb
∂y3

+

+ δL−1vb · ∇vb + u · ∇vb + vb · ∇u.
(3.18)

The nonlinear term is

l̃0(u, ρ) = (L−1 − I − δL−1)vb · ∇u+ (L−1 − I − δL−1)u · ∇vb+
+ (L−1 − I − δL−1)vb · ∇vb + (L−1 − I − δL−1)u · ∇u+ u · ∇u.

(3.19)

Regarding the divergence, notice that

L̂ =

1 + θ′ρ 0 0
0 1 + θ′ρ 0

−θρy1 −θρy2 1

 = I(1 + θ′ρ)− e3 ⊗∇ρ∗, (3.20)
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and thus I − L̂T is linear in ρ; therefore

∇ · u = ∇ρ∗ · ∂vb
∂y3

− θ′ρ∇ · vb +∇ρ∗ · ∂u
∂y3

− θ′ρ∇ · u,

giving

Φ2(ρ) = ∇ρ∗ · ∂vb
∂y3

− θ′ρ∇ · vb = ∇ · (I − L̂)vb, (3.21)

l̃2(u, ρ) = ∇ρ∗ · ∂u
∂y3

− θ′ρ∇ · u, G(u, ρ) = (∇ρ∗ · u)e3 − θ′ρu. (3.22)

Notice that
(I − L̂)vb = G(u, ρ) = 0, (3.23)

in a neighbourhood of Σ, since θ identically vanishes for sufficiently small x3.
We now look at the equation for T (u, p) on the boundary. For the tangential
part, we first observe that ifN ·n 6= 0 (which is certainly true by assumption),

ΠD̃(v)n = 0 ⇔ ΠbΠD̃(v)n = 0.

Therefore, taking into account the linearity w.r.t. v, the tangential part of
the equation can be written as

ΠbD(u)N = Πb

(
ΠbD(u)N − ΠD̃(u)n− ΠD̃(vb)n

)
,

The linearized part is given by

Φ3(ρ) = νΠbδ
(
ΠD̃(vb)n

)
= νΠb

(
δD(vb)N + D(vb)δN − (ND(vb)N)δN

)
,

(3.24)
since δN ·N = 0 and

0 = δN · 1

ν
(pb + σHb)N = δN · D(vb)N = ND(vb)δN , (3.25)

by the symmetry of D(vb). The nonlinear term is then the sum of two terms

l̃3(u, ρ) =νΠb

(
ΠbD(u)N − ΠD̃(u)n

)
+

+ νΠb

(
ΠD̃(vb)n− ΠbD(vb)N − δ(ΠD̃(vb)n)

)
.

(3.26)

One can compute δN and δD explicitly:

δN = Πb
(−∇′ρ, 0)√
1 + |∇′φb|2

, δD(vb) = −∇ρ∗ ⊗∇vb3 −∇vb3 ⊗∇ρ∗. (3.27)
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For the computation of Φ4 we have that the first variation w.r.t. sρ of the
equation for T(vb, pb) is given by

−qN + pbδN + νδD(vb)N + νD(u)N + νD(vb)δN = σδHN + σHbδN .

Since the first variation of the curvature term has already been calculated in
(3.5), using (3.25) we get that the projection on N produces the linear term

Φ4(ρ) = −νNδD(vb)N , (3.28)

while (3.5) gives

Lρ = − 1
√
g

∆Gρ+ b · ∇ρ.

The nonlinear one is given computing the difference of the equations for p
and pb, as

l̃4(u, ρ) =ν
(
nD̃(u)n−ND(u)N + nD̃(vb)n−ND(vb)N −NδD(vb)N

)
− σ

∫ 1

0

(1− s) d
2

ds2
Hsds.

(3.29)



Chapter 4

The linear problem

In this chapter we will study the optimal regularity properties of the
linearized problem

u,t − ν∆u+∇q −Φ1(u, ρ) = f in Ωb,

∇ · u− Φ2(ρ) = h = ∇ · F in Ωb,

T(u, q)N + σLρN − Φ̃(ρ) = d on G,
ρ,t +∇′φb · u− u3 +∇′ρ · vb = g on G,
u = 0 on Σ, for all t ≥ 0,

u(x, 0) = u0(x), ρ(x′, 0) = ρ0(x′), for x ∈ Ωb, x′ ∈ Σ,

(4.1)

with suitable regularity conditions on the right hand terms and compatibility
conditions on u0, ρ0. Here Φ̃ is defined as

ΠbΦ̃(ρ) = Φ3(ρ), Φ̃(ρ) ·N = Φ4(ρ),

and the Φi are given in (3.18),(3.21), (3.24) and (3.28), while L is given in
(3.5). The plan is to perform the Laplace transform technique outlined in
section 2.3, and thus to consider the associated complex parameter dependent

λu− ν∆u+∇q − Φ̂1(u, ρ) = f in Ωb,

∇ · u− Φ2(ρ) = h = ∇ · F in Ωb,

T(u, q)N + σLρN − Φ̃(ρ) = d on G,
λρ+∇′φb · u− u3 +∇′ρ · vb = g on G,
u = 0 on Σ,

where Φ̂1 is given as in (3.18) substituting the term ρ∗,t with λρ∗. Clearly Φ̂1,
Φ2 and Φ̃ are lower order perturbations, and thus, via interpolation arguments,
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we will be done as soon as we prove existence and optimal regularity of the
unperturbed linear complex parameter dependant problem

λu− ν∆u+∇q = f in Ω,

∇ · u = h = ∇ · F in Ω,

T(u, p)N + σLρN = d on G,
λρ(x′) +∇′φ(x′) · u− u3 + vb · ∇′ρ(x′) = g on G,
u(y′, 0) = 0.

(4.2)

In the first section we prove solvability and coercive estimates (in weighted
isotropic Sobolev–Slobodevskii spaces) for the model problems in the half-
space associated to (4.2). In particular, we deal with the model problems
obtained by localisation near the boundaries G and Σ respectively. These two
problems are explicitly solvable through partial Fourier transform, and the
corresponding coercive estimates are obtained.

In the second section we prove existence and uniqueness of the solution,
constructing an “almost solution” of (4.2). This is done via a Shauder approach,
gluing together the known solution in the half-space to obtain a solution of
(4.2) with perturbed right hand sides. If one writes problem (4.2) as

AλU = F0, (4.3)

this procedure defines two linear mappings R(F), B(F) for any right hand
side F , such that

AλR(F) = (I +B)(F).

Using the coercive estimates for the model problems and interpolation, we
will show that for any sufficiently large Reλ, B is a contraction operator in
the suitable space of right hand sides, and thus (I + B) is invertible. The
solution of (4.3) will then be given by U = R(I + B)−1(F0). Uniqueness
of the solution is given through the coercivity of a bilinear form naturally
associated to the homogeneous case of problem (4.2). This coercivity result
is the reason we employ the full linear operator L given in (3.5) instead of its
principal part −g−

1
2

b ∆G.
In the final section recover the solution of the perturbed complex-parameter

dependant problem via a standard iteration scheme, and perform (inverse)
Laplace transform to obtain a solution of (4.1). We then prove two different
types of optimal regularity estimate for the solution, one for large times T
and one for small times using the norms H l, l

2
2 .



4.1. MODEL PROBLEMS IN THE HALF-SPACE 47

4.1 Model problems in the half-space
In this section we study the model problems in the half space arising from

looking at problem (4.2) near the boundary G and Σ respectively. Therefore,
we will be concerned with two such model problems, both of which will be
proved to be uniquely solvable with optimal parameter–dependent regularity
estimates.

The first one has been treated in [35] and is defined as

λu− ν∆u+∇q = f in R3
+,

∇ · u = h := ∇ · F + h′ in R3
+,

ν
(
u3
xj

+ ujx3

)
= dj, j = 1, 2 in R2,

−q + 2νu3
x3
− σ∆′ρ = d3 in R2,

λρ+ V · ∇′ρ+ u3 = g in R2,

(4.4)

where R2 ⊂ R3
+ as {x3 = 0} and primed variables and differential operators

are to be meant in R2.
We set Σ∞ = Σ× [0,+∞), and consider first an auxiliary problem.

Theorem 4.1.1 Let l ≥ 0, and V ′ = (V1, V2) a constant vector. For suffi-
ciently large Reλ (depending also on |V |), there exists a unique Σ-periodic
solution (u, q, ρ) of

λu+ (V ′ · ∇′)u− ν∆u+∇q = 0 in R3
+,

∇ · u = 0 in R3
+,

ν
(
u3
xj

+ ujx3

)
= dj, j = 1, 2 in R2,

−q + 2νu3
x3
− σ∆′ρ = d3, in R2,

λρ+ V ′ · ∇′ρ+ u3 = g, in R2,

(4.5)

such that u→ 0 and q → c for x3 → +∞. It satisfies the estimates

‖u‖2
W l+2

2 (Σ∞) + |λ|l+2‖u‖2
L2(Σ∞) + ‖∇q‖2

W l
2(Σ∞) + |λ|l‖∇q‖2

L2(Σ∞) + ‖q(0)‖2

W
l+ 1

2
2 (Σ)

+ |λ|l+
1
2‖q(0)‖2

L2(Σ) + ‖ρ‖2

W
l+ 5

2
2 (Σ)

+ ‖λρ‖2

W
l+ 3

2
2 (Σ)

+ |λ|l+
1
2‖λρ‖2

W 1
2 (Σ)

≤ c
(
‖d‖2

W
l+ 1

2
2 (Σ)

|λ|l+
1
2‖d‖2

L2(Σ) + ‖g‖2

W
l+ 3

2
2 (Σ)

+ |λ|l+
1
2‖g‖2

W 1
2 (Σ)

)
.∫

{x3=s}
qdS = −

∫
Σ

d3dS = d, ∀s ≥ 0 (4.6)

‖q − d‖2
L2(Σ∞) ≤ c(‖d‖2

W
− 1

2
2 (Σ)

+ ‖g‖2

W
1
2

2 (Σ)
). (4.7)
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Proof. The proof of the first estimate is identical to the one in [35], using
Fourier series instead of Fourier transforms. We recall it briefly: for any
ξ ∈ Z2, let uξ, pξ, ρξ be the ξ-th Fourier coefficient with respect to (x1, x2) of
u, p and ρ respectively, as in (2.18). System (4.5) is then reduced to

ν

(
r2

1 −
d2

dx2
3

)
ujξ + iξjqξ′ = 0, for j = 1, 2, x3 > 0

ν

(
r2

1 −
d2

dx2
3

)
u3
ξ +

dqξ
dx3

= 0 for x3 > 0,

iξ1u
1
ξ + iξ2uξ +

du3
ξ

dx3

= 0 for x3 > 0,

ν

(
duj

dx3

+ iξju
3
ξ

)
= djξ for j = 1, 2, x3 = 0,

−qξ + 2ν
du3

ξ

dx3

+ σ|ξ|2ρξ = d3
ξ for x3 = 0,

λ1ρξ + u3
ξ = gξ for x3 = 0,

uξ → 0, qξ → c for x3 → +∞,

where r1 = r1(λ, ξ) =
√
λ1ν−1 + |ξ|2, −π ≤ Arg(r1) < π, λ1 = λ + iV ′ · ξ.

This system of ODE with parameter ξ and λ can be explicitly solved for
Reλ > 0 as

uiξ =− 1− δi3
νr1

e0(x3)diξ +
e0(x3)

ν2r1(r1 + |ξ|)P1

3∑
j=1

Uijd
j
ξ +

e1(x3)

ν2(r1 + |ξ|)P1

3∑
j=1

Vijd
j
ξ

− σ|ξ|2(e0(x3)Ui3 + r1e1(x3)Vi3)

ν2λ1r1(r1 + |ξ|)P1

gξ, i = 1, 2, 3,

qξ =
r1λ1

νP1

[(
2ν +

σ|ξ|2

r1λ1

)
(iξ1d

1
ξ + iξ2d

2
ξ)− ν

(
r1 +

|ξ|2

r1

)
(d3
ξ −

σ

λ1

gξ)

]
e−|ξ|x3 ,

ρξ = (gξ − u3
ξ)/λ1,

where

e0(x3) = e−r1x3 , e1(x3) =
e−r1x3 − e−|ξ|x3

r1 − |ξ|
,

P = (r2
1 +|ξ|2)2−4r1|ξ|2+

σ

ν2
|ξ|3 =

λ1

ν

(
λ1

ν
+ 4|ξ|2

(
1− |ξ|

r1 + |ξ|

)
+
σ|ξ|3

νλ1

)
,

and Uij, Vij are the elements of the matrices ξ2
1((3r1 − |ξ|)λ1 + σ

ν
|ξ|2) ξ1ξ2((3r1 − |ξ|)λ1 + σ

ν
|ξ|2) iξ1r1λ1(r1 − |ξ|)

ξ1ξ2((3r1 − |ξ|)λ1 + σ
ν
|ξ|2) ξ2

2((3r1 − |ξ|)λ1 + σ
ν
|ξ|2) iξ2r1λ1(r1 − |ξ|)

−iξ1r1λ1(r1 − |ξ|) −iξ2r1λ1(r1 − |ξ|) −|ξ|r1λ1(r1 − |ξ|)

 ,
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and −ξ2
1(2r1λ1 + σ

ν
|ξ|2) −ξ1ξ2(2r1λ1 + σ

ν
|ξ|2) −iξ1λ1(r2

1 + |ξ|2)
−ξ1ξ2(2r1λ1 + σ

ν
|ξ|2) −ξ2

2(2r1λ1 + σ
ν
|ξ|2) −iξ2λ1(r2

1 + |ξ|2)
−iξ1|ξ|(2r1λ1 + σ

ν
|ξ|2) −iξ2|ξ|(2r1λ1 + σ

ν
|ξ|2) |ξ|λ1(r2

1 + |ξ|2)

 ,

respectively. Notice that for the constant mode ξ = (0, 0) this reduces to

ui0(x3) = − di0

ν
√
λ
e−
√
λx3 , i = 1, 2, u3

0 ≡ 0, q0 ≡ −d3
0, ρ0 =

g0

λ
,

and thus in the claim of the theorem p→ −b3
0 for x3 → +∞. If γ > |V ′|2/ν

and Reλ ≥ γ, it holds

1

c
|r1| ≤

1

2
(
√
|λ|+ |ξ|) ≤

√
|λ|+ |ξ|2 ≤

√
|λ|+ |ξ| ≤ c|r1|, (4.8)

and the same estimate with λ1. Moreover

|r1 + |ξ|| ≥ |r1|, |r1 + |ξ|| ≥ |ξ|, (4.9)

and

|P | ≥ c(γ)

(
γ2

ν2
+ |λ1||ξ|2 + |λ1|2 + σ|ξ|3

)
,

from which
|P |2 ≥ (|ξ|6 + |ξ|4|λ1|2 + |ξ|2|λ1|3 + |λ1|4). (4.10)

The principal parts of the norms of ei (see (2.2)) on [0,+∞) are estimated as

‖e0‖2
W̊ η

2 ([0,+∞)) ≤ c|r1|2η−1,

‖e1‖2
W̊ η

2 ([0,+∞)) ≤ c
|r1|2η−1 + |ξ|2η−1

|r1|2
,

(4.11)

for any η ≥ 0. Finally it is easy to show that for ξ ∈ Z2 and Reλ ≥ γ, it
holds

|Uij|2 + |Vij|2 ≤ c(|ξ|2|λ1|4 + |ξ|4|λ1|3 + |ξ|6|λ1|2 + |ξ|8),

|Ui3|2 + |U3i|2 + |Vi3|2 ≤ c(|ξ|2|λ1|4 + |ξ|6|λ1|2).
(4.12)

Let us estimate ‖u‖2
L2(R+). From (4.9)-(4.12) it is easy to see that

|Uij|2

|r1|2|r1 + |ξ||2|P |2
‖e0‖2

L2(R+) ≤ c
|Uij|2

|r1|3|ξ|2|P |2
≤ c

|r1|3
,
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|Vij|2

|r1 + |ξ||2|P |2
‖e1‖2

L2(R+) ≤ c
|Vij|2

|r1|2

(
1

|r1||ξ|2|P |2
+

1

|ξ||r1||ξ||P |2

)
≤ c

|r1|3
,

and similarly

|ξ|4|Uij|2

|λ1|2|r1|2|r1 + |ξ||2|P |2
‖e0‖2

L2(R+) ≤ c
|ξ|2

|r1|3
,

|ξ|4|Vij|2

|λ1|2|r1 + |ξ||2|P |2
‖e1‖2

L2(R+) ≤ c
|ξ|2

|r1|3
,

which gives

|r1|2(l+2)‖uξ‖2
L2(R+) ≤ c|r1|2l+1(|bξ|2 + |ξ|2|gξ|2). (4.13)

One proceed in the same way estimating the W̊ l+2
2 (R+) norm, using the fact

that |ξ|2l+3 ≤ |r1|2l+3 in (4.11), to obtain

‖uξ‖2
W̊ l+2

2 (R+) ≤ c|r1|2l+1(|bξ|2 + |ξ|2|gξ|2). (4.14)

To estimate the pressure, notice first that, for any ξ 6= 0, ‖e−|ξ|x3‖2
L2(R+) =

1/2|ξ|, and thus

|r1|2l|ξ|2‖qξ‖2
L2(R+) ≤ c|r1|2l+1

[(
|ξ|5|r1|3

|P |2
+
|ξ|9

|r1||P |2

)
|gξ|2+(

|r1||λ1|2|ξ|3

|P |2
+
|ξ|7

|r1||P |2
+
|r1|3|λ1|2|ξ|
|P |2

+
|ξ|5|λ1|2

|r1||P |2

)
|dξ|2

]
≤ c|r1|2l+1

[(
|ξ|5|r1|3

|P |2
+ |ξ|2

)
|gξ|2+(

1 +
|r1||λ1|2|ξ|3

|P |2
+
|r1|3|λ1|2|ξ|
|P |2

)
|dξ|2

]
,

where we used the fact that |r1| ≥ |ξ| and (4.10) on the terms containing
|r1| at the denominator. On the remaining terms we distinguish the cases
in which |λ1| ≤ |ξ|2, which implies |r1| ≤ c|ξ|, and |λ1| > |ξ|2, which implies
|r1| ≤ c

√
|λ1|. In the first case, by (4.10),

|r1||λ1|2|ξ|3

|P |2
+
|r1|3|λ1|2|ξ|
|P |2

≤ c
|λ1|2|ξ|4

P 2
≤ c,

|ξ|5|r1|3

|P |2
≤ c
|ξ|8

|P |2
≤ c|ξ|2;

in the second one, similarly

|r1||λ1|2|ξ|3

|P |2
+
|r1|3|λ1|2|ξ|
|P |2

≤ c
|λ1|4

P 2
≤ c,

|ξ|5|r1|3

|P |2
≤ c
|λ1|4

|P |2
≤ c.
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All in all we have, (the case ξ = 0 is trivial)

|r1|2l|ξ|2‖qξ‖2
L2(R+) ≤ c|r1|2l+1(|dξ|2 + |ξ|2|gξ|2). (4.15)

Similarly one can estimate the principal part of the W l
2(R+)-norm of dqξ

dx3
,

obtaining, through
‖e−|ξ|x3‖W̊ l

2(R+) ≤ c|ξ|2l−1,

the inequality

‖ dqξ
dx3

‖2
W̊ l

2(R+) ≤ c|ξ|2|ξ|2l‖qξ‖2
L2(R+) ≤ c|r1|2l|ξ|2‖qξ‖2

L2(R+), (4.16)

and the last term is bounded as before. Summing in ξ ∈ Z2 the inequalities
(4.13), (4.14), (4.15), (4.16), and using (4.8), we get through Parceval identity

‖u‖2
W l+2

2 (Σ∞) + |λ|l+2‖u‖2
L2(Σ∞) + ‖∇q‖2

W l
2(Σ∞) + |λ|l‖∇q‖2

L2(Σ∞)

≤ c(γ)(‖d‖2

W
l+ 1

2
2 (Σ)

+ |λ|l+
1
2‖d‖2

L2(Σ) + ‖g‖2

W
l+ 3

2
2 (Σ)

+ |λ|l+
1
2‖g‖2

W 1
2 (Σ))

To estimate q at x3 = 0, one has, with the same method

|r1|2l+1|qξ(0)|2 ≤ c|r1|2l+1(|dξ|2 + (1 + |ξ|2)|gξ|2),

which gives

‖q(0)‖2

W
l+ 1

2
2 (Σ)

+ |λ|l+
1
2‖q(0)‖2

L2(Σ)

≤ c(γ)(‖d‖2

W
l+ 1

2
2 (Σ)

+ |λ|l+
1
2‖d‖2

L2(Σ) + ‖g‖2

W
l+ 3

2
2 (Σ)

+ |λ|l+
1
2‖g‖2

W 1
2 (Σ))

To estimate q − d3
0 on Σ∞, for any ξ 6= 0 we have

‖qξ‖2
L2(R+) =

1

2|ξ|
|qξ|2 ≤

c

|ξ|
(|dξ|2 + (1 + |ξ|2)|gξ|2),

which gives (4.7), summing over ξ ∈ Z \ {0} and recalling that q0 = −d3
0.

We finally estimate ρξ, using the relations

λ1ρξ = gξ − u3
ξ(0),

σ|ξ|2ρξ = d3
ξ + p(0)− 2ν

du3
ξ(0)

dx3

= d3
ξ + qξ(0) + 2ν(iξ1u

1
ξ + iξ2u

2
ξ).

From the explicit formula for uξ and the bounds (4.9), (4.10), (4.12), we
obtain

|λ1|2|ρξ|2 ≤ c(
|dξ|2

|r1|2
+ |gξ|2)

|ξ|4|ρξ|2 ≤ c(|dξ|2 + (1 + |ξ|2)|gξ|2).

(4.17)
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Since |λ1| ≥ c|λ| ≥ cγ, and |r1| ≥ c|ξ|, we get from the first one

|λ|l+
1
2 |λρξ|2 ≤ |λ|l+

1
2 (|dξ|2 + |gξ|2),

|λ|l+
1
2 |ξ|2|λρξ|2 ≤ |λ|l+

1
2 (|dξ|2 + |ξ|2|gξ|2)

which, summed on ξ ∈ Z2, gives

|λ|l+
1
2‖λρ‖2

W 1
2 (Σ) ≤ c|λ|l+

1
2 (‖d‖2

L2(Σ) + ‖g‖2
W 1

2 (Σ)).

Moreover, also by the first inequality in (4.17) and |r1| ≥ c|ξ|, we get

|ξ|2l+3|λρξ|2 ≤ c(|ξ|2l+1|dξ|2 + |ξ|2l+3|gξ|2),

which gives, together with |ρξ|2 ≤ c(|dξ|2 + |gξ|2),

‖λρ‖2

W
l+ 3

2
2 (Σ)

≤ c(‖d‖2

W
l+ 1

2
2 (Σ)

+ ‖g‖2

W
l+ 3

2
2 (Σ)

).

The second inequality in (4.17), on the other hand gives

|ξ|2l+5|ρξ|2 ≤ c(|ξ|2l+1|dξ|2 + |ξ|2l+3|gξ|2),

which gives, as before

‖ρ‖2

W
l+ 5

2
2 (Σ)

≤ c(‖d‖2

W
l+ 1

2
2 (Σ)

+ ‖g‖2

W
l+ 3

2
2 (Σ)

).

�

We now consider the full model problem (4.4).

Theorem 4.1.2 Let l ≥ 0 and V ′ = (V1, V2) a constant vector. Suppose h
decays for x3 → +∞ sufficiently rapidly, and h′ is compactly supported in x3.
Moreover let all the right hand terms in (4.4) be Σ-periodic. For sufficiently
large Reλ, there is a unique periodic solution u, q, ρ, with u→ 0 and q → c
for x3 → +∞ to (4.4), which satisfies the estimate

‖u‖2
W l+2

2 (Σ∞) + |λ|l+2‖u‖2
L2(Σ∞) + ‖∇q‖2

W l
2(Σ∞) + |λ|l‖∇q‖2

L2(Σ∞) + ‖q(0)‖2

W
l+ 1

2
2 (Σ)

+ |λ|l+
1
2‖q(0)‖2

L2(Σ) + ‖ρ‖2

W
l+ 5

2
2 (Σ)

+ ‖λρ‖2

W
l+ 3

2
2 (Σ)

+ |λ|l+
1
2‖λρ‖2

W 1
2 (Σ)

≤ c
(
‖f‖2

W l
2(Σ∞) + |λ|l‖f‖2

L2(Σ∞) + |λ|l+2‖F ‖2
L2(Σ∞) + |λ|l+2‖h′‖2

L2(Σ∞)

+ ‖h‖2
W l+1

2 (Σ∞) + ‖d‖2

W
l+ 1

2
2 (Σ)

+ |λ|l+
1
2‖d‖2

L2(Σ) + ‖g‖2

W
l+ 3

2
2 (Σ)

+ |λ|l+
1
2‖g‖2

W 1
2 (Σ)

)
.

(4.18)



4.1. MODEL PROBLEMS IN THE HALF-SPACE 53

Proof. Let us callX(u, q, ρ) the left hand side of (4.19) and Y (f ,d, g, h,F , h′)
the right hand side.

First of all we solve the corresponding problem with solenoidal velocity,
i.e. we consider the case h = 0. To this end, consider the problem

λu+ (V ′ · ∇′)u− ν∆u+∇q = f in R3
+,

∇ · u = 0 in R3
+,

ν
(
u3
,xj

+ uj,x3

)
= dj, j = 1, 2 in R2,

−q + 2νu3
,x3
− σ∆′ρ = d3, in R2,

λρ+ V ′ · ∇′ρ+ u3 = g, in R2.

(4.19)

We claim that it has a unique solution satisfying the estimate of the theorem.
To prove this, we can suppose that ∇ · f = 0 since otherwise we can subtract
a pressure component p satisfying{

∆p = ∇ · f in Σ∞,

p = 0 if x3 = 0.

The weak formulation∫
Σ∞
∇p∇ηdx =

∫
Σ∞
f∇ηdx ≤ c‖f‖W η(Σ∞)‖∇η‖W−η2 (Σ∞),

gives by duality ‖∇p‖W η
2 (Σ∞) ≤ c‖f‖W η

2 (Σ∞) for any η ≥ 0; thus it holds

‖∇p‖2
W l

2(Σ∞) + |λ|l‖∇p‖2
L2(Σ∞) ≤ c(‖f‖2

W l
2(Σ∞) + |λ|l‖f‖2

L2(Σ∞)).

Since p = 0 for x3 = 0 by definition, the boundary conditions are unaltered
for the triple (u, (q − p), ρ), and the previous estimate shows that a bound
on q − p implies one for q. If f is solenoidal, one can consider a solution of

λv − ν∆v + (V ′ · ∇′)v = f , ∇ · v = 0

obtained as following. We can extend f with preservation of class and
solenoidality, and thus suppose f is defined and solenoidal in the whole R3.
If f̃(x1, x2, s) is the Fourier transform with respect to the x3 variable , we
define u by

ṽξ =
f̃ ξ

λ1 + ν|ξ|2
,

where as usual the index ξ indicates the ξ-th Fourier coefficient with respect
to (x1, x2), and λ1 = λ+ iV ′ · ξ. It is easy to see that for Reλ > |V ′|2/ν it
holds

|λ1 + |ξ|2|2 ≥ c((1 + |ξ|2)2 + |λ|2),
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and thus through Parceval identity

‖v‖2
W l+2

2 (Σ×R) + |λ|l+2‖v‖2
L2(Σ×R) ≤ c(‖f‖2

W l
2(Σ∞) + |λ|l‖f‖2

L2(Σ∞)).

Now the solution of (4.19) is obtained as (v +w, p, ρ) where (w, p, ρ) solves
(4.5) with right hand sides respectively d− νS(v)e3 and g − v3. Indeed one
readily has

‖S(v)e3‖2

W
l+ 1

2
2 (Σ)

+ ‖v3‖2

W
l+ 3

2
2 (Σ)

≤ c‖v‖2
W l+2

2 (Σ∞) ≤ c‖f‖2
W l+2

2 (Σ∞), (4.20)

by the properties of the restriction operator and

|λ|l+
1
2 (‖v3‖2

W 1
2 (Σ) + ‖S(v)‖L2(Σ)) ≤ c|λ|l+

1
2‖v‖2

W 1
2 (Σ) ≤ c|λ|l+

1
2‖v‖2

W
3
2

2 (Σ∞)

≤ c(‖v‖W l+2
2 (Σ∞) + |λ|l+2‖v‖2

L2(Σ∞))

≤ c(‖f‖2
W l

2(Σ∞) + |λ|l‖f‖2
L2(Σ∞)),

(4.21)

by interpolation inequality (2.14), and these two estimates give (4.18) for the
solution of (4.19).

We now can get rid of the term (V ′ · ∇′)u in the equation for the velocity
by a standard iteration argument, defining (u1, q1, ρ1) as the solution to
(4.19), and (un+1, qn+1, ρn+1) as the solution of (4.19) with right hand side
on the velocity equation f + (V ′ · ∇′)un. If (wn, pn, µn) := (un − un−1, qn −
qn−1, ρn − ρn−1), notice that (wn+1, pn+1, µn+1) satisfies (4.19) with right
hand side (V ′ · ∇′)wn on the velocity equation and zero elsewhere. From the
interpolation inequality

‖(V ′ · ∇′)wn‖2
W l

2(Σ∞) + |λ|l‖(V ′ · ∇′)wn‖2
L2(Σ∞)

≤ c

|λ|
(‖wn‖2

W l+2
2 (Σ∞) + |λ|l+2‖wn‖2

L2(Σ∞)),

and the estimate (4.18) for problem (4.19) we get that

X(wn+1, pn+1, µn+1) ≤ c

|λ|
X(wn, pn, µn),

which in turn gives, for c/|λ| < 1, strong convergence of the sequence
(un, qn, ρn) to a solution of

λu− ν∆u+∇q = f in R3
+,

∇ · u = 0 in R3
+,

ν
(
u3
,xj

+ uj,x3

)
= dj, j = 1, 2 in R2,

−q + 2νu3
,x3
− σ∆′ρ = d3, in R2,

λρ+ V ′ · ∇′ρ+ u3 = g, in R2.

(4.22)
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and the estimate X(u, q, ρ) ≤ cY (f ,d, g, 0, 0, 0).
We finally take care of the divergence term, defining w = ∇ψ, where ψ is

the stable periodic solution of{
∆ψ = h = ∇ · F + h′ in R3

+,

ψ = 0 on R2.

From the energy inequality for this problem and standard coercive estimate,
one has

‖w‖2
W l+2

2 (Σ∞) + |λ|l+2‖w‖2
L2(Σ∞)

≤ c
(
‖h‖2

W l+1
2 (Σ∞) + |λ|l+2(‖F ‖2

L2(Σ∞) + ‖h′‖L2(Σ∞))
)
.

(4.23)

The solution will then be defined as (w+u, q, ρ), where (u, q, ρ) solves (4.22)
with right hand sides

f 1 = f − λw + ν∆w, d1 = d− νS(w)e3, g1 = g − w3.

Proceeding as in (4.20), (4.21) and using (4.23) we obtain (4.18). �

The second model problem arises from the need of a correction in solenoidal-
ity, together with Dirichlet boundary conditions on the bottom surface.

Theorem 4.1.3 Let l ≥ 0. Suppose f ∈ W l
2(Σ∞), a = (a1, a2, 0) ∈

W
l+ 3

2
2 (Σ), h ∈ W l+1(Σ∞) and F , h′ ∈ L2(Σ∞) are Σ-periodic, h′(x) = 0

whenever x3 ≥ L, F 3 = 0 for x3 = 0 and
∫

Σ∞
h′dx = 0. For any Reλ ≥ γ > 0

there is a unique Σ-periodic solution to
λu− ν∆u+∇q = f , in R3

+

∇ · u = h = ∇ · F + h′, in R3
+

u = a, in R2;

(4.24)

it satisfies the estimate

‖u‖2
W l+2

2 (Σ∞) + |λ|l+2‖u‖2
L2(Σ∞) + ‖∇p‖2

W l
2(Σ∞) + |λ|l‖∇p‖2

L2(Σ∞)

≤ c
(
‖f‖2

W l
2(Σ∞) + |λ|l‖f‖2

L2(Σ∞) + ‖a‖2

W
l+ 3

2
2 (Σ)

+ |λ|l+
3
2‖a‖2

L2(Σ)

+ ‖h‖2
W l+1

2 (Σ∞) + |λ|l+2(‖F ‖2
L2(Σ∞) + ‖h′‖2

L2(Σ∞))
)
.

(4.25)

Proof. We start by looking for solutions of
λu− ν∆u+∇q = 0, in R3

+

∇ · u = 0, in R3
+

u = a, in R2, a3 = 0.

(4.26)
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with a ∈ W l+ 3
2

2 (Σ). By considering for each x3 the Fourier series expansion
we get, for each ξ ∈ Z2, the system of ODE in x3 ≥ 0

ν
(
r2 − d2

dx2
3

)
ujξ(x3) + iξ′jpξ = 0, j = 1, 2,

ν
(
r2 − d2

dx2
3

)
u3
ξ(x3) +

dpξ(x3)

dx3

= 0,

iξ1u
1
ξ(x3) + iξ′2u

2
ξ +

du3
ξ(x3)

dx3

= 0,

uξ(0) = aξ.

where a3
ξ = 0, r = r(λ, ξ) =

√
λ
ν

+ |ξ|2, −π < Arg r < π. This can be solved
explicitly, and the only stable solution for ξ 6= 0 is given by

uξ(x3) = aξe0(x3) + P (ξ,aξ)
(
i
ξ

|ξ|
,−1

)
e1(x3),

pξ(x3) = νP (ξ,aξ)
(
1 +

r

|ξ|
)
e−|ξ|x3 ,

(4.27)

where
P (ξ,aξ) = −iξ · a′ξ, a′ξ = (a1

ξ , a
2
ξ),

e0(x3) = e−rx3 , e1(x3) =
e−rx3 − e−|ξ|x3

r − |ξ|
.

For the constant mode ξ = 0 the solution is

uj0(x3) = aj0e
−
√

λ
ν
x3 , j = 1, 2; u3

0 ≡ p0 ≡ 0.

Using (4.11) and proceeding as in the proof of theorem 4.1.1 one can see that
for any mode ξ it holds

‖uξ‖2
W̊ l+2

2 (R+) + |r|2(l+2)‖uξ‖2
L2(R+) + ‖dpξ

dx3

‖2
W̊ l

2(R+) + |r|2l|ξ|2‖pξ‖2
L2(R+)

≤ c
(
|r|2l+3 + |ξ||r|2l+2 + |ξ|2|r|2l+1 + |ξ|3|r|2l + |ξ|2l+1|r|2 + |ξ|2l+3

)
|aξ|2.

Since |r| ≤
√
|λ|+ |ξ|, repeated applications of Young inequality gives

|r|2l+3 + |ξ||r|2l+2 + |ξ|2|r|2l+1 + |ξ|3|r|2l + |ξ|2l+1|r|2 + |ξ|2l+3 ≤ |ξ|2l+3 + |λ|l+
3
2 ,

and thus, summing in ξ ∈ Z2 the previous inequality and using Parceval
identity, we obtain

‖u‖2
W l+2

2 (Σ∞) + |λ|l+2‖u‖2
L2(Σ∞) + ‖∇p‖2

W l
2(Σ∞) + |λ|l‖∇p‖2

L2(Σ∞)

≤ c
(
‖a′‖2

W
l+ 3

2
2 (Σ)

+ |λ|l+
3
2‖a′‖2

L2(Σ)

)
.

(4.28)
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We now solve the inhomogeneous problem
λu− ν∆u+∇q = f , in R3

+

∇ · u = h := ∇ · F + h′, in R3
+

u = 0, in R2.

(4.29)

with f , F and h′ Σ-periodic, h′ with compact support w.r.t x3, and the
compatibility conditions

F 3 = 0 on Σ,

∫
Σ∞

h′dx = 0.

To correct the divergence, we consider the equation for v := u−w, where
w = ∇ψ, with ψ is a stable periodic solution of{

∆ψ = h = ∇ · F + h′ in R3
+,

ψ,x3 = 0 on R2.

From the energy inequality for this problem and the standard coercive estimate,
one has

‖∇ψ‖2
W l+2

2 (Σ∞) + |λ|l+2‖∇ψ‖2
L2(Σ∞)

≤ c
(
‖h‖2

W l+1
2 (Σ∞) + |λ|l+2(‖F ‖2

L2(Σ∞) + ‖h′‖L2(Σ∞))
)
.

(4.30)

The new forcing term for the complex parameter Stokes equation for v is

f 1 = f − λw + ν∆w,

which we reduce it in its solenoidal part by considering a stable periodic
solution φ in R3

+ of {
∆φ = ∇ · f 1 in R3

+,

φx3 = f 3
1 on R2.

The compatibility conditions for this problem are clearly satisfied and we
have the inequality

‖∇φ‖2
W l

2(Σ∞) + |λ|l‖∇φ‖2
L2(Σ∞) ≤ c(‖f 1‖

2
W l

2(Σ∞) + |λ|l‖f 1‖
2
L2(Σ∞)). (4.31)

The couple v = u−w, p = q − φ satisfies
λv − ν∆v +∇p = f 2 in R3

+,

∇ · v = 0 in R3
+,

v = −w in R2.
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where f 2 = f 1 − ∇φ is solenoidal and f 3
2 = 0 for x3 = 0; moreover from

(4.30), (4.31) and the interpolation inequality, f 2 satisfies

‖f 2‖
2
W l

2(Σ∞) + |λ|l‖f 2‖
2
L2(Σ∞) ≤ c

(
‖f‖2

W l
2(Σ∞) + |λ|l‖f‖2

L2(Σ∞) + ‖h‖2
W l+1

2 (Σ∞)

+ |λ|l+2(‖F ‖2
L2(Σ∞) + ‖h′‖2

L2(Σ∞))
)
.

By the condition f 3
2 = 0 on x3 = 0, we can construct an extension f̂ 2 to the

whole R3, Σ-periodic, with preservation of solenoidality and regularity and
with f̂ 3

2 odd. Letting v̂ be the solution in R3{
λv̂ − ν∆v̂ +∇p̂ = f̂ 2,

∇ · v̂ = 0,

uniqueness (for Reλ � 1) of the solution and regularity estimates ensure
that v̂3 = 0 for x3 = 0 and the inequality

‖v̂‖2
W l+2

2 (Σ×R) + |λ|l+2‖v̂‖2
L2(Σ×R) ≤ c

(
‖f̂ 2‖

2
W l

2(Σ∞) + |λ|l‖f̂ 2‖
2
L2(Σ∞)

)
. (4.32)

Therefore the couple û = v − v̂, p (the pressure p̂ vanishes) is the unique
solution to problem (4.26), with a = −w − v̂ and thus a3 = 0. Estimates
(4.30) and (4.32), together with the interpolation inequality (2.15), give

‖a′‖2

W
l+ 3

2
2 (Σ)

+ |λ|l+
3
2‖a′‖2

L2(Σ) ≤ c
(
‖f‖2

W l
2(Σ∞) + |λ|l‖f‖2

L2() + ‖h‖2
W l+1

2 (Σ∞)

+ |λ|l+2(‖F ‖2
L2(Σ∞) + ‖h′‖2

L2(Σ∞))
)
.

Thus applying estimate (4.28), (4.30), (4.31) and (4.32), we finally get

‖u‖2
W l+2

2 (Σ∞) + |λ|l+2‖u‖2
L2(Σ∞) + ‖∇p‖2

W l
2(Σ∞) + |λ|l‖∇p‖2

L2(Σ∞)

≤c
(
‖f‖2

W l
2(Σ∞) + |λ|l‖f‖2

L2(Σ∞) + ‖h‖2
W l+1

2 (Σ∞)

+ |λ|l+2(‖F ‖2
L2(Σ∞) + ‖h′‖2

L2(Σ∞))
)
.

(4.33)

Summing the solutions of (4.26) and (4.29), together with the estimates
(4.28), (4.33) gives the claim. �

As an application we give and existence theorem for the periodic Stokes
problem on the half-space. For T ≤ +∞ we set Σ∞T = Σ∞ × [0, T ).

Theorem 4.1.4 Let l ∈ [0, 1). Given Σ-periodic f ∈ W
l, l

2
2 (Σ∞T ), a ∈

W l+ 3
2
, l
2

+ 3
4 (ΣT ) with a3 ≡ 0 for all t ≥ 0 and v0 ∈ W l+1

2 (Σ∞) such that

∇ · v0 = 0, v3
0bΣ= 0,
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there exists a unique Σ-periodic solution v ∈ W l+2, l
2

+1

2 (Σ∞T ), ∇p ∈ W l, l
2

2 (Σ∞T )
of 

v,t − ν∆v +∇p = f in Σ∞T ,

∇ · v = 0 in Σ∞T ,

v = a on Σ, ∀t ≥ 0,

v(0) = v0, v → 0 for x3 → +∞,

(4.34)

and the following estimates holds:

‖v‖2

W
l+2, l2 +1

2 (Σ∞T )
+ ‖∇p‖2

W
l, l2
2 (Σ∞T )

≤

≤ c(T )(‖f‖2

W
l, l2
2 (Σ∞T )

+ ‖v0‖2
W l+1

2 (Σ∞) + ‖a‖2

W
l+ 3

2 ,
l
2 + 3

4
2 (ΣT )

);
(4.35)

if T ≥ 1,

‖v‖2

W
l+2, l2 +1

2 (Σ∞T )
+ ‖∇p‖2

W
l, l2
2 (Σ∞T )

≤

≤ c(‖f‖2

W
l, l2
2 (Σ∞T )

+ ‖v0‖2
W l+1

2 (Σ∞) + ‖a‖2

W
l+ 3

2 ,
l
2 + 3

4
2 (ΣT )

+ ‖v‖L2(Σ∞T )),
(4.36)

with constant independent of T ; if T ≤ 1

‖v‖2

H
l+2, l2 +1

2 (Σ∞T )
+ ‖∇p‖2

H
l, l2
2 (Σ∞T )

≤

≤ c(‖f‖2

H
l, l2
2 (Σ∞T )

+ ‖v0‖2
W l+1

2 (Σ∞) + ‖a‖2

H
l+ 3

2 ,
l
2 + 3

4
2 (ΣT )

),
(4.37)

with constant c independent of T .

Proof. We follow the plan of section 1.3 and reduce (4.34) to a similar
problem with homogeneous initial condition. We fix a large T0 � T + 1, and
extend f and a with controlled norm for all t ≥ 0 in such a way that both
vanish for t ≥ T0, keeping the notation unchanged. This can be done by
standard continuation theorems, and it holds

‖f‖
W
l, l2
2 (Q∞)

+ ‖a‖
W
l+ 3

2 ,
l
2 + 3

4
2 (Q∞)

≤ c(T )(‖f‖
W
l, l2
2 (QT )

+ ‖a‖
W
l+ 3

2 ,
l
2 + 3

4
2 (QT )

),

(4.38)
with constant c(T ) bounded for T ≥ 1. For small T we use theorem 2.3.3,
point 3, to obtain

‖f‖
W
l, l2
2 (Q∞)

+ ‖a‖
W
l+ 3

2 ,
l
2 + 3

4
2 (Q∞)

≤ c(‖f‖
H
l, l2
2 (QT )

+ ‖a‖
H
l+ 3

2 ,
l
2 + 3

4
2 (QT )

), (4.39)

with a constant independent of T if T ≤ 1. In the following we will then
suppose T = +∞ and thus Σ∞∞ = Σ∞ × [0,+∞).
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By standard extension theorems for anisotropic Sobolev–Slobodetskii
spaces, we find an extension v1 ∈ W

l+2, l
2

+1

2 (Σ∞∞) of v0 such that, v1 = 0 for
t ≥ T0,

‖v1‖
W
l+2, l2 +1

2 (Σ∞∞)
≤ c‖v0‖W l+1

2 (Σ∞).

and v3
1 ≡ 0 on Σ. We then pick v2(x, t) = ∇ψ(x, t), where, for each t, ψ is

the periodic solution of
∆ψ = ∇ · v1 in Σ∞,

ψ,x3 = 0 in Σ,

ψ → 0 for x3 → +∞,
(4.40)

noticing that from ∇ · v0 = 0 we get v2(0) = 0, and v2 = 0 for t ≥ T0. By
standard elliptic estimates, the vector v2 satisfies

‖v2‖W l+2,0
2 (Σ∞∞) ≤ c‖v1‖W l+1,0

2 (Σ∞∞) ≤ c‖v0‖W l+1
2 (Σ∞).

Moreover taking the derivative w.r.t. t in the weak formulation of (4.40) we
get ∫

Σ∞
v2,t · ∇ηdx =

∫
Σ∞
v1,t · ∇ηdx

for all t ≥ 0 and η ∈ W 1
2 (Σ∞). Reasoning in this way also for the discrete

time differences, we get

‖v2‖
W

0, l2 +1

2 (Σ∞∞)
≤ c‖v1‖

W
0, l2 +1

2 (Σ∞∞)
≤ c‖v0‖W l+1

2 (Σ∞),

giving with the previous estimate

‖v2‖
W
l+2, l2 +1

2 (Σ∞∞)
≤ c‖v1‖

W
l+2, l2 +1

2 (Σ∞∞)
≤ c‖v0‖W l+1

2 (Σ∞). (4.41)

Setting

u = v − v1 − v2, f̂ = f − (v1 + v2),t + ν∆(v1 + v2), â = a− v1 − v2,

problem (4.34) is reduced to the homogeneous problem
u,t − ν∆u+∇q = f̂ in Σ∞∞,

∇ · u = 0 in Σ∞∞,

u = â on Σ, ∀t ≥ 0,

u(0) = 0, u→ 0 for x3 → +∞.

(4.42)
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Here â3 = 0 by construction, and from v2(0) = 0 and a(0) = v0 = v1(0) we
get â(0) = 0. By theorem 2.2.4, both f̂ and â can be extended to zero in
(−∞, 0] preserving regularity, and we can use the Laplace transform in time
L to reduce the above problem to

λu′ − ν∆u′ +∇q′ = Lf̂ in Σ∞,

∇ · u′ = 0 in Σ∞,

u′ = Lâ on Σ.

This problem is uniquely solvable for Reλ > γ′ > 0 using problems (4.26) and
(4.29). Thus taking inverse Laplace transform and setting u′ = Lu, p′ = Lp,
we get a solution to (4.42) and thus to (4.34).

We now prove the estimates, letting

Σ∞R = {(x, t) ∈ Σ∞ × R} and ΣR = {(x, t) ∈ Σ× R}.

From (4.28), (4.33) for the transformed problem and using the properties of
the Laplace transform stated in section 2.4, for γ > γ′ we obtain the weighted
estimate

‖u‖2

W
l+2, l2 +1

2,γ (Σ∞R )
+ ‖∇q‖2

W
l, l2
2,γ (Σ∞R )

≤ c(γ)(‖f̂‖2

W
l, l2
2,γ (Σ∞R )

+ ‖â‖2

W
l+ 3

2 ,
l
2 + 3

4
2,γ (ΣR)

).

Notice that by theorem 2.3.1,

‖f̂‖2

W
l, l2
2,γ (Σ∞R )

+ ‖â‖2

W
l+ 3

2 ,
l
2 + 3

4
2,γ (ΣR)

≤ ‖f̂‖2

W
l, l2
2,γ (Σ∞∞)

+ ‖â‖2

W
l+ 3

2 ,
l
2 + 3

4
2,γ (Σ∞)

≤ c(γ, 2T0)(‖f̂‖2

W
l, l2
2 (Σ∞2T0

)
+ ‖â‖2

W
l+ 3

2 ,
l
2 + 3

4
2 (Σ2T0

)
),

since f̂ and â vanish for t ≥ T0 ≥ T + 1. Moreover, from (4.41) we have

‖f̂‖2

W
l, l2
2 (Σ∞2T0

)
+ ‖â‖2

W
l+ 3

2 ,
l
2 + 3

4
2 (Σ2T0

)

≤ c(‖f‖2

W
l, l2
2 (Σ∞∞)

+ ‖a‖2

W
l+ 3

2 ,
l
2 + 3

4
2 (Σ∞)

+ ‖v0‖2
W l+1

2 (Σ∞)).

Now (4.38) gives

‖u‖2

W
l+2, l2 +1

2,γ (Σ∞T )
+ ‖∇q‖2

W
l, l2
2,γ (Σ∞T )

≤ c(γ, T )(‖u‖2

W
l+2, l2 +1

2,γ (Σ∞R )
+ ‖∇q‖2

W
l, l2
2,γ (Σ∞R )

)

≤ c(γ, T )(‖f‖2

W
l, l2
2 (Σ∞T )

+ ‖a‖2

W
l+ 3

2 ,
l
2 + 3

4
2 (Σ∞T )

+ ‖v0‖2
W l+1

2 (Σ∞)),
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and summing back v1 and v2 and using again (4.41) proves (4.35). For small
T , notice that u and ∇p vanish for t < 0; applying (2.29) and (4.39) gives

‖u‖2

H
l+2, l2 +1

2 (Σ∞T )
+ ‖∇q‖2

H
l, l2
2 (Σ∞T )

≤ ce2γT (‖u‖2

W
l+2, l2 +1

2,γ (Σ∞R )
+ ‖∇q‖2

W
l, l2
2,γ (Σ∞R )

)

≤ c(γ, T0)e2γT (‖f‖2

H
l, l2
2 (Σ∞T )

+ ‖a‖2

H
l+ 3

2 ,
l
2 + 3

4
2 (Σ∞T )

+ ‖v0‖2
W l+1

2 (Σ∞)).

Since by (2.29) and (4.41), it holds

‖v1 + v2‖
H
l+2, l2 +1

2 (Σ∞T )
≤ c‖v1 + v2‖

W
l+2, l2 +1

2 (Σ∞∞)
≤ c‖v0‖W l+1

2 (Σ∞),

we can add back v1 + v2 to u and obtain (4.37).
Let us prove uniqueness in [0, T ). To this end it suffice to show that the

only solution (v,∇p) ∈ W
l+2, l

2
+1

2 (QT ) ×W l, l
2

2 (QT ) to (4.34) in [0, T ) with
f = a = v0 = 0 is the vanishing one. Let (v,∇p) be such a solution: we
extend it for t ≥ T with ∇ · v = 0 and vbΣ= 0, supposing (v, p) = 0 for
t ≥ T + 1, and since l

2
< 1

2
, we can extend it to t < 0 as zero. The extension

(still denoted by (v,∇p)) belongs to W l+2, l
2

+1

2,γ (Ω× R)×W l, l
2

2,γ (Ω× R), and if

f = v,t−ν∆v+∇p, clearly f ∈ W l, l
2

2,γ (Ω×R). We define fT (x, t) := f(x, t+T ),

which also belongs toW l, l
2

2,γ (Ω×R) since f(x, t) = 0 for t ≤ T , and let (v,t,∇pT )
be the solution constructed above in the infinite time interval for right hand
side fT , and vanishing initial data and Dirichlet boundary condition. Taking
Laplace transform and using property 2 of theorem 2.4.1 together with the
uniqueness of the solution to the resulting problem of the type (4.42), we get
that

L(v,t,∇pT )(x, z) = eTzL(v,∇p),
which implies

(v,t(x, t),∇pT (x, t)) = (v(x, t+ T ),∇p(x, t+ T )).

Since by construction v,t = ∇pT = 0 for t < 0, this gives v = ∇p = 0 for
t < T and the claimed uniqueness in [0, T ).

To obtain (4.36), assume (4.35) for any solution, with a constant c(T )
bounded for 1 ≤ T ≤ 2. For T ≥ 1 arbitrary, we consider a partition of unity
ϕk = ϕ(t− 3

4
k) with ϕ = 1 for |t| ≤ 1

4
, ϕ = 0 iff |t| ≥ 1

2
. We define

Tk = max{0, 3

4
k − 1

2
}, k = 0, . . .M :=

[
4

3
(T +

1

2
)

]
+ 1.

Finally we modify ϕM in such a way that ϕM = 1 for t ≥ TM + 1
4
. The

supports of the ϕk in [0, T ] have diameter in [1, 2], and at most two supports
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intersect at a time. Moreover, Tk is the starting point of the support of ϕk.
The couple (uk, qk) := ϕk(v, p) solves (4.34) in Ik := [Tk,min{Tk+1, T}] with
right hand side ϕkf + ϕk,tv and starting value at t = Tk equal zero for k ≥ 1,
v0 for k = 0. Applying (4.35) to these solutions, and (2.20), we have

‖v‖2

W
l+2, l2 +1

2 (Σ∞T )
+ ‖∇p‖

W
l, l2
2 (Σ∞T )

= ‖
M∑
k=0

uk‖2

W
l+2, l2 +1

2 (Σ∞T )
+ ‖

M∑
k=0

∇qk‖
W
l, l2
2 (Σ∞T )

≤
M∑
k=0

‖uk‖2

W
l+2, l2 +1

2 (Σ∞×Ik)
+ ‖∇qk‖

W
l, l2
2 (Σ∞×Ik)

≤ c

M∑
k=0

‖ϕkf‖2

W
l, l2
2 (Σ∞×Ik)

+ ‖ϕka‖
W
l+ 3

2 ,
l
2 + 3

4
2 (Σ∞×Ik)

+ ‖ϕk,tv‖2

W
l, l2
2 (Σ∞×Ik)

≤ c
M∑
k=0

‖f‖2

W
l, l2
2 (Σ∞×Ik)

+ ‖a‖
W
l+ 3

2 ,
l
2 + 3

4
2 (Σ∞×Ik)

+ ‖v‖2

W
l, l2
2 (Σ∞×Ik)

≤ 2c(‖f‖2

W
l, l2
2 (Σ∞T )

+ ‖a‖
W
l+ 3

2 ,
l
2 + 3

4
2 (Σ∞T )

+ ‖v‖2

W
l, l2
2 (Σ∞T )

),

where c is a constant which depends only on ϕk and sup1≤s≤2 c(s) from (4.35),
and thus is independent of T . Now the interpolation inequality

‖v‖
W
l, l2
2 (Σ∞T )

≤ ε‖v‖
W
l+2, l2 +1

2 (Σ∞T )
+ c(ε)‖v‖L2(Σ∞T ),

gives (4.36) (notice again that c(ε) is independent of T for T bounded away
from 0). �

The estimate (4.36) is performed only to illustrate the method, and it
can be improved through a spectral analysis for problem (4.24). Indeed the
fact that theorem 4.1.3 holds for any λ ≥ 0 implies that the spectrum of
the linear problem lies in the complex left semiplane. Once one can show
that the linear operator is compact (and thus the real part of its spectrum
is bounded by γ < 0), standard methods allows to get rid of the ‖v‖L2(Σ∞T
term in (4.36). However, the compactness properties of the linear problem is
not a-priori clear, due to the unboundedness of the domain involved, and a
detailed discussion is omitted.
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4.2 Parameter dependent linear problem
In this section we prove the solvability and the coercive estimates, for

sufficiently large Reλ, of the problem

λu− ν∆u+∇q = f in Ω,

∇ · u = h = ∇ · F in Ω,

T(u, q) + σLρN = d, on G,
λρ+∇′φb · u− u3 +∇′ρ · vb = g, on G,
u = a, on Σ,

(4.43)

where a3 = F 3 = 0 on Σ and, recalling (3.5),

Lρ = − 1
√
gb

∆Gρ+ b · ∇ρ

= − 1
√
gb

∆Gρ−
1

g
5
2
b

∇′φb · ∇′|∇′φb|2∇φb · ∇′ρ+
∇′|∇′φb|2 · ∇′ρ

g
3
2
b

.

We start with a lemma which allows to extend the equation h = ∇ · F
from Ω to R3

+ controlling the norms.

Lemma 4.2.1 Let h, h′ ∈ W l+1
2 (Ω), F ∈ W l+2

2 (Ω) be Σ-periodic and such
that

h = ∇ · F + h′,

holds in Ω. There exist a Σ-periodic extensions h of h to R3
+ and F ∈

W l+2
2 (Σ∞) such that

h = ∇ · F ,
in R3

+, h = F = 0 for sufficiently large x3, F · n = F · n on Σ and

‖h‖W l+1
2 (Σ∞) ≤ c‖h‖W l+1

2 (Ω),

‖F ‖L2(Σ∞) ≤ c(‖F ‖L2(Ω) + ‖h′‖L2(Ω)).
(4.44)

Proof. Let ψ be the periodic solution of
∆ψ = h = ∇ · F + h′ in Ω,

ψ = 0 on G,
∂ψ
∂n

= F · n on Σ.

(4.45)

Standard elliptic estimates guarantee that

‖ψ‖W̊ l+3
2 (Ω) ≤ c‖h‖W l+1

2 (Ω)
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and the weak formulation of (4.45) reads∫
Ω

∇ψ · ∇ηdx =

∫
Ω

F · ∇η − h′ηdx

for all η ∈ C∞(Ω) such that ηbG= 0, which gives

‖∇ψ‖2
L2(Ω) ≤ ‖F ‖L2(Ω)‖∇ψ‖L2(Ω) + ‖h′‖L2(Ω)‖ψ‖L2(Ω). (4.46)

Since ψ = 0 on G, a form of Poincaré inequality gives

‖ψ‖L2(Ω) ≤ c‖∇ψ‖L2(Ω),

and thus (4.46) becomes

‖∇ψ‖L2(Ω) ≤ c(‖F ‖L2(Ω) + ‖h‖L2(Ω)). (4.47)

We now extend ∇ψ to as a vector field F defined in the whole R3
+, with

controlled norms and supposing that it vanishes for sufficiently large x3.
Setting then h := ∇ · F gives the claim, since

‖h‖W l+1
2 (Σ∞) ≤ ‖F ‖W l+2

2 (Σ∞) ≤ c‖∇ψ‖W l+2
2 (Ω) ≤ c‖h‖W l+1

2 (Ω),

while the inequality for F follows from (4.47). �

We will use the following proposition

Proposition 4.2.2 Let l ≥ 0. For any sufficiently large Reλ, there is a
unique periodic solution to the problem

λu− ν∆u+∇q = f in Ω,

∇ · u = 0 in Ω,

T(u, q)N = 0 on G,
u = 0 on Σ,

(4.48)

for any f ∈ W l
2(Ω), and it satisfies the inequality

‖u‖2
W l+2

2 (Ω) + |λ|l+2‖u‖2
L2(Ω) + ‖∇q‖2

W l
2(Ω) + |λ|l‖∇q‖2

L2(Ω)+

+ ‖q‖2

W
l+ 1

2
2 (G)

+ |λ|l+
1
2‖q‖2

L2(G) ≤ c(‖f‖2
W l

2(Ω) + |λ|l‖f‖2
L2(Ω)).

(4.49)
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Proof. The existence of a weak solution u ∈ J := {v ∈ W 1
2 (Ω) : ∇ · v =

0, vbΣ= 0} can be proved through Lax-Milgram theorem, since the weak
formulation of (4.48) is

λ

∫
Ω

u · φ+
ν

2

∫
Ω

D(u) : D(φ)dx =

∫
Ω

f · φ, ∀φ ∈ W 1
2 (Ω), φbΣ= 0.

Indeed, Korn inequality gives coerciveness of the bilinear form defined from
the left hand side, and Sobolev inequality the continuity of the right hand side,
for f ∈ L2(Ω). The pressure can be recovered through standard methods, see
e.g. [32]. The estimate (4.49) follows, for example, from Shauder localisation
method and the analogous estimates for the related problems in the half-space.
�

The following lemma will be useful to estimate perturbed linear differential
operator. It has easy generalisation for arbitrary dimensions, but we will
prove it only for dimension 2 and 3.

Lemma 4.2.3 Let η, ψ be smooth functions such that supp η ∈ B(0, δ) ⊂ Ω,
for some smooth bounded Ω ⊂ RN , N = 2, 3. If

sup
B(0,δ)

|η|+ δ||∇η|+ δ2|∇2η|+ |ψ|
δ

+ |∇ψ|+ |∇2ψ| ≤ k, (4.50)

for k independent of δ, then for any f ∈ W l
2(Ω),

‖ηψf‖2
W l

2(Ω) ≤ c1δ‖f‖2
W l

2(Ω) + c2(δ)‖f‖2
L2(Ω),

where c2(δ) depends on δ, η, ψ, l and k and c1 only on k.

Proof. We consider an extension f ∗ of f to the whole RN , with controlled
norm. Let us consider the case N = 3 first. From (4.50) we get

‖ηψ‖2
W 2

2 (R3) ≤ ck4δ.

If l ≤ 3
2
we use (2.7) to obtain

‖ηψf‖2
W l

2(Ω) ≤ c‖ηψf ∗‖2
W l

2(R3) ≤ ‖ηψ‖
2
W 2

2 (R3)‖f
∗‖W l

2(R3) ≤ ck4δ‖f‖W l
2(Ω),

otherwise we use (2.8) with min{2, l} > s > 3
2
, to obtain

‖ηψf‖2
W l

2(Ω) ≤ ‖ηψ‖
2
W s

2 (R3)‖f
∗‖2
W l

2(R3) + ‖ηψ‖2
W l

2(R3)‖f
∗‖2
W s

2 (R3)

≤ δ‖f ∗‖2
W l

2(R3) + c(δ)‖f ∗‖2
L2(R3),
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where we used the interpolation inequality

‖f ∗‖2
W s

2 (R3) ≤ δ‖f ∗‖2
W l

2(R3) + c(δ)‖f ∗‖2
L2(R3).

In the case N = 2 we proceed in a similar way, this time using the norm
‖ηψ‖

W
3
2

2 (R2)
instead of the W 2

2 norm in the estimates. It holds

‖ηψ‖2

W
3
2

2 (R2)
≤ ckδ,

which follows from

‖ηψ‖2
W 2

2 (R2) ≤ ck4, ‖ηψ‖2
L2(R2) ≤ ck4δ4,

and the interpolation inequality

‖ηψ‖2

W
3
2

2 (R2)
≤ c(δ‖ηψ‖2

W 2
2 (R2) +

1

δ3
‖ηψ‖2

L2(R2)) ≤ ck4δ.

The rest of the proof is entirely analogous. �

We can now prove the existence theorem.

Theorem 4.2.4 Let l ≥ 0. For any sufficiently large Reλ, there exists a
unique periodic solution of (4.43), for any choice of periodic f ∈ W l

2(Ω),
d ∈ W l+ 1

2
2 (G), g ∈ W l+ 3

2
2 (Ω), h ∈ W l+1

2 (Ω) and F ∈ W 1
2 (Ω) with F 3bΣ= 0

and this solution satisfies the estimate:

‖u‖2
W l+2

2 (Ω) + |λ|l+2‖u‖2
L2(Ω) + ‖∇q‖2

W l
2(Ω) + |λ|l‖∇q‖2

L2(Ω) + ‖q‖2

W
l+ 1

2
2 (G)

+ |λ|l+
1
2‖q‖2

L2(G) + ‖ρ‖2

W
l+ 5

2
2 (G)

+ ‖λρ‖2

W
l+ 3

2
2 (G)

+ |λ|l+
1
2‖λρ‖2

W 1
2 (G) ≤

c
(
‖f‖2

W l
2(Ω) + |λ|l‖f‖2

L2(Ω) + ‖h‖2
W l+1

2 (Ω) + |λ|l+2‖F ‖2
L2(Ω) + ‖d‖2

W
l+ 1

2
2 (G)

+

|λ|l+
1
2‖d‖2

L2(G) + ‖g‖2

W
l+ 3

2
2 (G)

+ |λ|l+
1
2‖g‖2

W 1
2 (G) + ‖a‖2

W
l+ 3

2
2 (Σ)

+ |λ|l+
3
2‖a‖L2(Σ)

)
,

(4.51)

and the inequality

‖u‖2
W l+2

2 (Ω) + |λ|l+2‖u‖2
L2(Ω) + ‖∇q‖2

W l
2(Ω) + |λ|l‖∇q‖2

L2(Ω) + ‖q‖2

W
l+ 1

2
2 (G)

+ |λ|l+
1
2‖q‖2

L2(G) + ‖ρ‖2

W
l+ 5

2
2 (G)

+ ‖λρ‖2

W
l+ 3

2
2 (G)

+ |λ|l+
3
2‖λρ‖2

L2(G) ≤

c
(
‖f‖2

W l
2(Ω) + |λ|l‖f‖2

L2(Ω) + ‖h‖2
W l+1

2 (Ω) + |λ|l+2‖F ‖2
L2(Ω) + ‖d‖2

W
l+ 1

2
2 (G)

+ |λ|l+
1
2‖d‖2

L2(G) + ‖g‖2

W
l+ 3

2
2 (G)

+ |λ|l+
3
2‖g‖2

L2(G) + ‖a‖2

W
l+ 3

2
2 (Σ)

+ |λ|l+
3
2‖a‖L2(Σ)

)
,

(4.52)
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Proof. We first show that it suffice to prove the existence of a solution of

λu− ν∆u+∇q = 0 in Ω,

∇ · u = 0 in Ω,

T(u, q)N + σLρN = d on G,
λρ+∇′φ · u− u3 + vb · ∇′ρ = g on G,
u = 0 on Σ.

(4.53)

Indeed one can extend f with preservation of class and controlled norms, as
well as apply lemma 4.2.1 to F and h. We consider a solution v1, p1 of (4.24)
with those right hand sides, then a solution v2, p2 of (4.48) with right hand
side ∇p1. Given a solution v3, q3, ρ of (4.53) with right hand sides

d̃ := d− νS(v1), g̃ := g −∇′φb · (v1 + v2) + v3
1 + v3

2,

the triple
v1 + v2 + v3, p2 + p3, ρ,

satisfies (4.43). From the estimates (4.25) and (4.49) for problems (4.24) and
(4.48) respectively, we readily get

‖d̃‖2

W
l+ 1

2
2 (G)

+ |λ|l+
1
2‖d̃‖2

L2(G) + ‖g̃‖2

W
l+ 3

2
2 (G)

+ |λ|l+
1
2‖g̃‖2

W 1
2 (G)

≤ c
(
‖d‖2

W
l+ 1

2
2 (G)

+ |λ|l+
1
2‖d‖2

L2(G) + ‖g‖2

W
l+ 3

2
2 (G)

+ |λ|l+
1
2‖g‖2

W 1
2 (G)

+ ‖v1‖2
W l+2

2 (Σ∞) + |λ|l+2‖v1‖2
L2(Σ∞) + ‖v2‖2

W l+2
2 (Σ∞) + |λ|l+2‖v2‖2

L2(Σ∞)

)
≤ c
(
‖f‖2

W l
2(Σ∞) + |λ|l‖f‖2

L2(Σ∞) + ‖h‖2
W l+1

2 (Σ∞) + |λ|l+2‖F ‖2
L2(Σ∞)

+ ‖d‖2

W
l+ 1

2
2 (G)

+ |λ|l+
1
2‖d‖2

L2(G) + ‖g‖2

W
l+ 3

2
2 (G)

+ |λ|l+
1
2‖g‖2

W 1
2 (G)

+ ‖a‖2

W
l+ 3

2
2 (Σ)

+ |λ|l+
3
2‖a‖L2(Σ)

)
,

Also by the same estimates, it is clear that a bound of the form

‖u‖2
W l+2

2 (Ω) + |λ|l+2‖u‖2
L2(Ω) + ‖∇q‖2

W l
2(Ω) + |λ|l‖∇q‖2

L2(Ω) + ‖q‖2

W
l+ 1

2
2 (G)

+ |λ|l+
1
2‖q‖2

L2(G) + ‖ρ‖2

W
l+ 5

2
2 (G)

+ ‖λρ‖2

W
l+ 3

2
2 (G)

+ |λ|l+
1
2‖λρ‖2

W 1
2 (G)

≤ c
(
‖d‖2

W
l+ 1

2
2 (G)

+ |λ|l+
1
2‖d‖2

L2(G) + ‖g‖2

W
l+ 3

2
2 (G)

+ |λ|l+
1
2‖g‖2

W 1
2 (G)

)
,

for the solution of (4.53), implies (4.51) for the solution just constructed.
We now proof the existence of a solution to (4.53). For any fixed δ > 0, we

consider a finite covering of G with balls B(xi, δ), xi ∈ G, and this can be done
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in such a way that the number of balls containing any point of Ωb is bounded
independently of δ. We now choose a periodic partition of unity ϕi, with
each ϕi having support in B(xi, 2δ),

∑
i ϕi = 1 on V := Ωb ∩ ∪iB(xi, δ) ⊂

Ωb ∩ ∪iB(xi, 2δ) =: U . For each ϕi we choose ηi, with support in B(xi, 3δ)
such that ϕi = ηiϕi. Any norm of the ϕi, ηi is bounded by a suitable constant
depending only on δ, and in particular we can suppose

|∇ϕi|+ |∇ηi| ≤
c

δ
, |∇2ϕi|+ |∇2ηi| ≤

c

δ

2

. (4.54)

Moreover, N i will be the normal to G at xi, V i = vb(xi), Πi the projection
on the tangent space to G at xi, Ci an isometry bringing N i to −e3 and we
will write N ′i = CiN , V ′i = CiV i, G ′ = CG. For each i we will set, as in (3.1)

yi = Cix, yi = eφi(zi)

where φi is defined through Ci(x′, φb(x′)) = (z′i,−φi(z′i)) and eφi is the trans-
formation defined in (3.1). Here we suppose that φ∗i = θi(zi3)φi(z

′
i) with

θi = 1 on the support of ϕi(x(zi)). Recall that for any isometry C, it holds

∇x = CT∇y = C−1∇y, ∆x = CijCkj
∂2

∂yi∂yk
= ∆y, (4.55)

and thus these formulas hold for each of the Ci with respect to the coordinates
yi. Moreover, as has been calculated in section 4.1, ∇yi = L−Ti ∇zi , where Li
is the Jacoby matrix of the transformation eφi .

Since we supposed φb smooth, it holds, for z′ ∈ Σ ∩B(0, 2δ)

|φi(z′)| ≤ c|z′|2, |∇′φi(z′)| ≤ c|z′|. (4.56)

Notice that by this estimate and (4.54), (4.50) holds for η = ηi and ψ = ∂φi
∂zj

.
Therefore, by the previous lemma and proposition 2.1.3, for any function h
and m = m(z, φi,∇φi) it holds

‖ηi
∂φi
∂zj

mh‖2
Wµ

2 (Σ) ≤ c‖ηi
∂φi
∂zj

h‖2
Wµ

2 (Σ) ≤ cδ‖h‖2
Wµ

2 (Σ) + c(δ)‖h‖2
L2(Σ), (4.57)

and the same inequality for the norms on Σ∞, with constants depending also
on m. In the following we will shorten somewhat the notation. We may for
example simply write z(x) = e−1

φi
(Ci(x)) (and similar expressions) whenever

the dependance on i will be clear.
We define a linear operator R(d, g) = (û, q̂, ρ̂), where we will construct û,

q̂ and ρ̂ linearly in d and g in the following. We let

v =
∑
i

ηiC
−1
i vi(zi(x)), p =

∑
i

ηipi(zi(x)) ρ =
∑
i

ηiρi(zi(x))
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where vi = vi(z), pi = pi(z), ρi are periodic and solve a problem of the type
(4.5), namely

λvi − ν∆zvi + (V ′i · ∇z)vi +∇zpi = 0, in R3
+

∇z · vi = 0, in R3
+

ν
(∂v3

i

∂zj
+

∂vji
∂z3

)
= ηi(Cid)j(x(z)), j = 1, 2 in R2

−pi + 2ν
∂v3
i

∂z3
− σ∆′ρi = ϕi(Cid)3(x(z)), in R2

λρi + V ′i · ∇′ρi + v3
i = ϕig(x(z)), in R2,

(4.58)

We then set
λv − ν∆xv +∇xp =: f̂ ,

∇x · v =: ĥ,

T(p,v)N + σLρN =: d+A(d, g),

λρ+∇′φb · v − v3 + vb · ∇′ρ =: g + A(d, g).

noting that both v and p vanish in a neighbourhood of Σ. We can write the
divergence h as

ĥ = ∇ · F̂ + ĥ′,

for sufficiently regular F̂ and ĥ′ that will be specified later. We can apply
lemma 4.2.1 on ĥ, F̂ and ĥ′ and suppose that ĥ′ = 0 and ĥ, F̂ are defined
in the whole Σ∞ with controlled norms. We also extend f̂ to Σ∞ with
preservation of class and controlled norm. We keep the notation unchanged
for the extensions of ĥ and f̂ , and call F the vector arising from lemma 4.2.1.
We define v1, p1 as the periodic solution to

λv1 − ν∆v1 +∇p1 = f̂ in R3
+,

∇ · v1 = −ĥ = −∇ · F in R3
+,

v1 = 0 on Σ,

(notice that F 3bΣ= 0, since all the ηi vanish in a neighbourhood of Σ), for
which it holds the estimate (4.33), which, together with (4.44), implies

‖v1‖2
W l+2

2 (Ω) + |λ|l+2‖v1‖2
L2(Ω) + ‖∇p1‖

2
W l

2(Ω) + |λ|l‖∇p1‖
2
L2(Ω)

≤ c
(
‖f̂‖2

W l
2(Ω) + |λ|l‖f̂‖2

L2(Ω) + ‖ĥ‖2
W l+1

2 (Ω) + |λ|l+2(‖F̂ ‖2
L2(Ω) + ‖ĥ′‖2

L2(Ω))
)
.

(4.59)

Finally we let v2, p2 be the solution of (4.48) with right hand side ∇p1. We
let

R(d, g) = (û, q̂, ρ̂) := (v + v1 + v2, p+ p2, ρ). (4.60)
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This triple solves

λû− ν∆û+∇q̂ = 0 in Ω,

∇ · û = 0 in Ω,

T(û, q̂)N + σLρ̂N = d+ Â(d, g) on G,
λρ̂+∇′φb · û(eρ)− û3(eρ) + vb · ∇′ρ̂ = g + Â(d, g) on G,
u = 0 on Σ.

where

Â(d, g) = A(d, g)+νD(v1)N , Â(d, g) = A(d, g)+∇′φb·(v1+v2)−v3
1−v3

2.

We will prove that (Â, Â) is a contraction operator from W
l+ 1

2
2 (G)×W l+ 3

2
2 (G)

to itself, therefore establishing the invertibility of I + (Â, Â), and obtaining
the solution R(I + (Â, Â))−1(d, g). Instead of using the usual norm, we will
perform the estimates w.r.t. the equivalent norm

[d]2λ =
∑
i

‖ϕid‖2

W
l+ 1

2
2 (G)

+ |λ|l+
1
2‖ϕid‖2

L2(G),

[g]2λ =
∑
i

‖ϕig‖2

W
l+ 3

2
2 (G)

+ |λ|l+
1
2‖ϕig‖2

W 1
2 (G).

These norms are equivalent to the usual weighted norm, with constant inde-
pendent of δ and λ: this follows from well known properties of partitions of
unity, and more precisely

Dk
∑
i

ϕig =
∑
i

ϕiD
kg,

for any derivative of order k Dkg, which certainly holds in a neighbourhood
of G. Thus in particular, it holds

([d]2λ + [g]2λ)
1
2 ≤ c(‖d‖2

W
l+ 1

2
2 (G)

+ ‖g‖2

W
l+ 3

2
2 (G)

+ |λ|l+
1
2 (‖d‖2

L2(G) + ‖g‖2
W 1

2 (G)))
1
2 ,

(4.61)

with constant independent of δ and λ, and we will denote by ‖(d, g)‖λ the
right hand side in the previous inequality.

We will split the estimates in several steps, always supposing δ < 1 < |λ|
in the following.
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1. Estimate of f̂ .
Transforming coordinates near each point xi and using (4.55) and(4.58) we
get the explicit expression

f̂ =
∑
i

ηiC
−1
i [−ν(∆y −∆z)vi + (∇y −∇x)pi]

−
∑
i

C−1
i ν(2∇xηi∇xvi + vi∆xηi +

ηi
ν

(V ′i · ∇z)vi)

+
∑
i

pi∇xηi.

The terms in f̂ are of three kind: those of higher order (in the first line),
those of lower order in vi (on the second line) and the term

∑
i pi∇xηi. We

start estimating the lower order terms, writing them in the z coordinates.
Recall that ∇x = C−1

i L−Ti ∇z near xi, and clearly for any r ≥ 0 and any i,

‖L−Ti ‖W r
2 (Σ∞) ≤ c‖φb‖W r+1

2 (Σ),

by the explicit form (3.3). This allows to perform all the estimates equivalently
in the z coordinates, and we have, by interpolation inequality

‖
∑
i

C−1
i ν(2∇xηi∇xvi + vi∆xηi +

ηi
ν

(V ′i · ∇z)vi)‖2
W l

2(Ω)

+|λ|l‖
∑
i

C−1
i ν(2∇xηi∇xvi + vi∆xηi +

ηi
ν

(V ′i · ∇z)vi)‖2
L2(Ω)

≤ c(δ)
∑
i

‖vi‖2
W l+1

2 (Σ∞) + |λ|l‖vi‖2
W 1

2 (Σ∞)

≤ c(δ)

|λ|
∑
i

‖vi‖2
W l+2

2 (Σ∞) + |λ|l+2‖vi‖2
L2(Σ∞)

≤ c(δ)

|λ|
([d]2λ + [g]2λ),

where we used the estimates of theorem 4.1.1 for the solution of (4.58). For
the higher order terms, i.e.∑

i

ηiC
−1
i (ν(∆y −∆z)vi + (∇y −∇z)pi),

we recall that the operators ∆y−∆z and ∇y−∇z have already been explicitly
calculated in section 4.1. Recalling that ∇y = L−Ti ∇z we have indeed

∇y −∇z = (L−Ti − I)∇z,
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∆y −∆z = (L−Ti − I)(L−Ti + I) : D2
z + L−Ti DzL−Ti ∇z.

The last term in the previous formula is still a lower order term which can
be estimated as before, while by (3.3), the terms involving L−Ti − I have
coefficients of the form ∂φ∗i

∂zk
mk with smooth mk’s depending on z, φ∗i and ∇φ∗i .

Therefore we have to estimate terms of the form

ηi
∂φ∗i
∂zk

mi
kj

∂pi
∂zj

, and ηi
∂φ∗i
∂zk

mi
kjl

∂2vi
∂zj∂zl

,

in theW l
2 and L2 norm. The L2 norm is readily estimated using (4.56), giving

|λ|l
∑
i,k,j,l

‖ηi
∂φ∗i
∂zk

mi
kj

∂pi
∂zj
‖2
L2(Σ∞) + ‖ηi

∂φ∗i
∂zk

mi
kjl

∂2vi
∂zj∂zl

‖2
L2(Σ∞)

≤ cδ2
∑
i

|λ|l(‖∇pi‖2
L2(Σ∞) + ‖vi‖2

W 2
2 (Σ∞))

≤ cδ2
∑
i

‖vi‖2
W l+2

2 (Σ∞) + |λ|l+2‖vi‖2
L2(Σ∞) + |λ|l‖∇zpi‖2

L2(Σ∞)

≤ cδ2([d]2λ + [g]2λ).

by the a-priori estimate for problem (4.58). For the W l
2 norm, suppose first

that l > 0. We use (4.57), obtaining:∑
i,k,j,l

‖ηi
∂φ∗i
∂zk

mi
kj

∂pi
∂zj
‖2
W l

2(Σ∞) + ‖ηi
∂φ∗i
∂zk

mi
kjl

∂2vi
∂zj∂zl

‖2
W l

2(Σ∞)

≤ c
∑
i

δ‖vi‖2
W l+2

2 (Σ∞) + c(δ)‖vi‖2
W 2

2 (Σ∞) + δ‖∇zpi‖2
W l

2(Σ∞) + c(δ)‖∇zpi‖2
L2(Σ∞)

≤ c
∑
i

δ(‖vi‖2
W l+2

2 (Σ∞) + ‖∇zpi‖2
W l

2(Σ∞)) + c(δ)(‖vi‖2
L2(Σ∞) + ‖∇zpi‖2

L2(Σ∞))

≤ c(δ +
c(δ)

|λ|l
)([d]2λ + [g]2λ),

by the interpolation inequality

c(δ)‖vi‖2
W 2

2 (Σ∞) ≤ δ‖vi‖2
W l+2

2 (Σ∞) + c′(δ)‖vi‖2
L2(Σ),

and the coercive estimates for problem (4.58). For l = 0, (4.56) directly gives∑
i,k,j,l

‖ηi
∂φ∗i
∂zk

mi
kj

∂pi
∂zj
‖2
L2(Σ∞) + ‖ηi

∂φ∗i
∂zk

mi
kjl

∂2vi
∂zj∂zl

‖2
L2(Σ∞)

≤ cδ2
∑
i

(‖vi‖2
W 2

2 (Σ∞) + ‖∇zpi‖2
L2(Σ∞)) ≤ cδ2([d]2λ + [g]2λ)
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To estimate the term
∑

i pi∇ηi, we let

di = −
∫

Σ

ϕi(Cid)3(x(z))dS

and use (4.6) and (4.7) to obtain

‖
∑
i

pi∇xηi‖2
L2(Ω) ≤ c(δ)

∑
i

‖pi‖2
L2(Σ∞)

≤ c(δ)
∑
i

‖pi − di‖2
L2(Σ∞) + ‖ϕid‖2

L2(G)

≤ c(δ)
∑
i

‖ϕid‖2
L2(G) + ‖ϕig‖2

W 1
2 (G),

(4.62)

and thus
|λ|l‖

∑
i

pi∇xηi‖2
L2(Ω) ≤

c(δ)√
|λ|

([d]2λ + [g]2λ).

Moreover, by interpolation and the coercive estimates for problem (4.58)

‖
∑
i

pi∇xηi‖2
W l

2(Ω) ≤ c(δ)
∑
i

‖pi‖2
W l

2(Σ∞)

≤ δ
∑
i

‖∇zpi‖2
W l

2(Σ∞) + c(δ)
∑
i

‖pi‖2
L2(Σ∞)

≤ (δ +
c(δ)√
|λ|

)([d]2λ + [g]2λ),

where we used (4.62). All in all we have obtained

‖f̂‖2
W l

2(Ω) + |λ|l‖f̂‖2
L2(Ω) ≤

(
δ +

c(δ)

|λ|θ
)
([d]2λ + [g]2λ), (4.63)

where θ > 0 (equal to l if 0 < l < 1
2
, and 1

2
otherwise).

2. Construction of F̂ and h′.
We now prove that ĥ can be written as the sum ĥ = ∇x ·F̂+ĥ′ in a satisfactory
way. More precisely we claim that for some tensors M i

r, r = 0, . . . , 3 and
functions mi, smooth and depending only on φb and {ηi}

F̂ =
∑
i

M i
0vi +

1

λ

∑
i

(M i
1∇yvi −M i

2pi) (4.64)

ĥ′ =
∑
i

1

λ
(M i

3∇yvi −mipi) (4.65)
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where, in the z coordinates,

|M i
0| ≤ c|∇φi|, (4.66)

for some constant depending only on φb. To prove this representation, first
notice that from (4.55) we get

∇x · CT
i w = CT

i ∇y · CT
i w = ∇yw, (4.67)

for any vector w, being C an isometry. Therefore

∇x · (ηiC−1
i vi) = ∇y · (ηivi),

Thus, by the solenoidality (in the z coordinates) of vi, it holds

ĥ = ∇x · (ηiCTvi) = ∇yηi · vi + ηi(∇y −∇z) · vi. (4.68)

Recall that LTi ∇y = ∇z, and call lijk the entries of Li. Using convention (3.4),
and summation convention on repeated indexes except i, we can write

∆zv
m
i = likjl

i
sj,kv

m
i,s + likjl

i
sjv

m
i,sk, ∇zpi = (limkpi,k),

and since vi = (∆zvi −∇zpi)/λ, we have

∇yηi · vi = ηi,m(likjl
i
sj,kv

m
i,s + likjlsjv

m
i,sk − limkpi,k)

=
1

λ

(
ηi,m(likjl

i
sjv

m
i,s − limkpi)

)
,k

+
1

λ

[
−(ηi,ml

i
kjlsj),kv

m
i,s + (ηi,ml

i
mk),kpi + ηi,ml

i
kjlsj,kv

m
i,s

]
One can proceed in a similar way for the term ηi(∇y − ∇z) · vi. From
∇z = LTi ∇y, we define the matrices ai whose entries are aihk = (I − LTi )hk.
Notice that, using (3.2)

|aihk| ≤ c(|∇′φi|+ |φi|). (4.69)

Proceeding as before, in the y coordinates we have

ηi(∇y −∇z) · vi = ηia
i
mtv

m
i,t = (ηia

i
mtv

m
i ),t − ηiaimt,tvm

= (ηia
i
mkv

m
i ),k −

ηia
i
mt,t

λ
(likjl

i
sj,kv

m
i,s + likjlsjv

m
i,sk − limkpi,k)

=
(
ηia

i
mkv

m
i −

1

λ
ηia

i
mt,t(l

i
kjl

i
sjv

m
i,s − limkpi)

)
,k

+
1

λ

[
(ηia

i
mt,tl

i
kjlsj),kv

m
i,s − (ηia

i
mt,tl

i
mk),kpi − ηiaimt,tlikjlsj,kvmi,s

]
.
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If the hk-entry of Ci is denoted by Chk
i , we now define the tensors M i

r,
r = 0, . . . , 3 as follows

(M i
0)hm = Ckh

i ηia
i
mk;

(M i
1)hsm = Ckh

i (ηi,m − ηiaimt,t)likjlisj;
(M i

2)h = Ckh
i (ηi,m − ηiaimt,t)limk;

(M i
3)sm = (ηi,m − ηiaimt,t)likjlisj,k − ((ηi,m − ηiaimt,t)likjlisj),k;

and the functions
mi =

(
(ηi,m − ηiaimt,t)limk

)
,k
.

Here the contraction symbols in the tensors M i
1 and M i

3 are the bottom one,
i.e., for example, M i

1 · ∇vi is the vector whose h-th component is

(M i
1)hsmv

m
i,s = Ckh

i (ηi,m − ηiaimt,t)likjlisjvmi,s.

Applying (4.67) for the terms in the divergence and gathering the previous
equalities, we obtain

∇x · v = ∇x ·

[∑
i

M i
0vi +

M i
1∇vi −M i

2pi
λ

]
+
∑
i

M i
3∇vi −mipi

λ
,

which gives (4.64) and (4.65), while (4.69) and (4.56) give (4.66) for small δ.
3. Estimate for ĥ, F̂ and ĥ′.

For ĥ, using formula (4.68), we can split the estimate in local coordinates:

‖ĥ‖2
W l+1

2 (Ω) ≤ c(δ)
∑
i

‖vi‖2
W l+1

2 (Σ∞) + c
∑
i

‖ηi(∇y −∇z)vi‖2
W l+1

2 (Σ∞).

The first sum has only lower order terms which can be estimated through
interpolation inequality, while by (3.3) the second one has addends of the
form

ηi
∂φ∗i
∂zk

mi
kj

∂vi
∂zj

, (4.70)

for some smooth functions mi
jk depending only on φb. As before, its W l+1

2

square norm is estimated through (4.57) and interpolation, giving∑
i

‖ηi(∇y −∇z)vi‖2
W l+1

2 (Σ∞) ≤ c
∑
i

δ‖∇zvi‖W l+1
2 (Σ∞) + c(δ)‖vi‖W 1

2 (Σ∞),

≤ c
∑
i

δ‖vi‖W l+2
2 (Σ∞) + c(δ)‖vi‖L2(Σ∞) ≤ c(δ +

c(δ)

|λ|l+2
)([d]2λ + [g]2λ).
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All in all, we get

‖ĥ‖2
W l+1

2 (Ω) ≤ c(δ +
c(δ)

|λ|
)([d]2λ + [g]2λ).

To estimate F̂ , using the expression (4.64), (4.66) and (4.56), we have

‖F̂ ‖2
L2(Ω) ≤ c

∑
i

1

|λ|2
(
‖vi‖2

W 1
2 (Σ∞) + ‖pi‖2

L2(Σ∞)

)
+ δ2‖vi‖L2(Σ∞)

and proceeding as in (4.62) for the pressure term, one obtains

|λ|l+2‖F̂ ‖2
L2(Ω) ≤ c(δ2 +

c(δ)√
|λ|

)([d]2λ + [g]2λ).

The estimate for ĥ′, due to the form (4.65), is even simpler, and is omitted.
The full estimate then reads

‖ĥ‖2
W l+1

2 (Ω) + |λ|l+2(‖F̂ ‖2
L2(Ω) + ‖ĥ′‖2

L2(Ω)) ≤ c(δ+
c(δ)√
|λ|

)([d]2λ + [g]2λ). (4.71)

4. Estimate of Â
The term Dx(v1)N is readily estimated through (4.59), the continuity of the
restriction operator and interpolation inequality, giving

‖Dx(v1)N‖2

W
l+ 1

2
2 (G)

+ |λ|l+
1
2‖Dx(v1)N‖2

L2(G) ≤ c(‖v1‖2
W l+2

2 (Ω) + |λ|l+2‖v1‖2
L2(Ω))

≤ c
(
‖f̂‖2

W l
2(Ω) + |λ|l‖f̂‖2

L2(Ω) + ‖ĥ‖2
W l+1

2 (Ω) + |λ|l+2(‖F̂ ‖2
L2(Ω) + ‖ĥ′‖2

L2(Ω))
)
.

From the previous estimates for f̂ , ĥ, F̂ and ĥ′ one thus obtains

‖Dx(v1)N‖2

W
l+ 1

2
2 (G)

+ |λ|l+
1
2‖Dx(v1)N‖2

L2(G) ≤ c(δ +
c(δ)

|λ|θ
)([d]2λ + [g]2λ).

Regarding A we have, using d =
∑

i ϕiηid,

Tx(p,v)N + σLρN − d =
∑
i

ηi
(
− piN + C−1

i Dx(vi)N + σLρiN − ϕid
)

+
∑
i

C−1
i ∇xϕi ⊗ vi ·N + σ(L(ηiρi)− ηiLρi)N ,

in the x coordinates. The second sum is a lower order term, and thus it
can be estimated via interpolation with c(δ)

|λ| ([d]2λ + [g]2λ). We transform the
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first sum in the z coordinates and use the boundary conditions for (4.58),
obtaining a sum whose addends are

ηi
(
− pi(N ′ − e3) + (Dy − Dz)(vi)N

′ + Dz(vi)(N
′ − e3)

+ σLρi(N
′ − e3) + σ(Lρi + ∆′ρi)e3

)
.

Notice that ηi(Dy −Dz)(vi) and ηiDzvi(N
′ − e3) can be computed explicitly

using (3.3) and both are linear combination of terms of the form (4.70).
Similarly

pi(N
′ − e3) = pi

∂φi
∂zj
mi

j, Lρi(N
′ − e3) =

∂φi
∂zj
mi

jkl

∂2ρi
∂zk∂zl

+
∂φi
∂zj
mi

jk

∂ρi
∂zk

,

for some smooth vectors mj , mi
jk and mi

jkl depending only on φb. Moreover,
letting gi = 1 + |∇′φi|2, we have

Lρ+ ∆′ρ =
|∇′φi|2

(1 +
√
g)
√
g

∆′ρi +
φiαφiβ

g
5
2

ραβ +mi
αβφiαρiβ,

which has the same structure of Lρi(N ′−e3). These terms are thus estimated
using (4.57) and interpolation inequalities as follows: for the pressure term∑

i

‖ηipi(N ′ − e3)‖2

W
l+ 1

2
2 (Σ)

+ |λ|l+
1
2‖ηipi(N ′ − e3)‖2

L2(Σ)

≤ c
∑
i

δ(‖pi‖2

W
l+ 1

2
2 (Σ)

+ |λ|l+
1
2‖pi‖2

L2(Σ)) + c(δ)‖pi‖2
L2(Σ)

≤ c(δ +
c(δ)

|λ|l+ 1
2

)([d]2λ + [g]2λ),

while∑
i

‖ηi(Dy − Dz)(vi)N
′‖2

W
l+ 1

2
2 (Σ)

+ |λ|l+
1
2‖ηi(Dy − Dz)(vi)N

′‖2
L2(Σ)+

+ ‖ηiDz(vi)(N
′ − e3)‖2

W
l+ 1

2
2 (Σ)

+ |λ|l+
1
2‖ηiDz(vi)(N

′ − e3)‖2
L2(Σ)

≤ c
∑
i

δ(‖∇zvi‖2

W
l+ 1

2
2 (Σ)

+ |λ|l+
1
2‖∇zvi‖2

L2(Σ)) + c(δ)‖∇zvi‖2
L2(Σ)

≤ c
∑
i

δ(‖vi‖2
W l+2

2 (Σ∞) + |λ|l+2‖vi‖2
L2(Σ∞)) + c(δ)‖vi‖2

L2(Σ∞)

≤ c(δ +
c(δ)

|λ|l+2
)([d]2λ + [g]2λ),
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and finally∑
i

‖ηiLρi(N ′ − e3)‖2

W
l+ 1

2
2 (Σ)

+ |λ|l+
1
2‖ηiLρi(N ′ − e3)‖2

L2(Σ)+∑
i

‖ηi(Lρi + ∆′ρi)e3‖2

W
l+ 1

2
2 (Σ)

+ |λ|l+
1
2‖ηi(Lρi + ∆′ρi)e3‖2

L2(Σ)

≤ c
∑
i

δ(‖ρi‖2

W
l+ 5

2
2 (Σ)

+ |λ|l+
1
2‖ρi‖2

W 2
2 (Σ)) + c(δ)(‖ρi‖2

W 2
2 (Σ) + ‖ρi‖2

W
l+ 3

2
2 (Σ)

)

≤ c
∑
i

δ(‖ρi‖2

W
l+ 5

2
2 (Σ)

+ |λ|l+
5
2‖ρi‖2

L2(Σ)) + c(δ)‖ρi‖2
L2(Σ)

≤ c(δ +
c(δ)

|λ|l+ 5
2

)([d]2λ + [g]2λ).

All in all we have

‖Â(d, g)‖2

W
l+ 1

2
2 (G)

+ |λ|l+
1
2‖Â(d, g)‖2

L2(G) ≤ c(δ +
c(δ)

|λ|l+ 1
2

)([d]2λ + [g]2λ).

5. Estimate of Â
The estimate for ∇′xφb ·(v1 +v2)−v3

1−v3
2 follows from (4.59) for v1 and (4.49)

for v2. The argument is very similar to those given above, and is omitted.
For the estimate of A we localize in the z coordinates, obtaining, via

(∇′xφb,−1)C−1
i vi = (−∇′zφi, 1)vi, vb · ∇′xρi = Civb · ∇′zρi,

the explicit representation

λρ+∇′xφb · v − v3 + vb · ∇xρ− g

=
∑
i

ηi(λρi + (∇′xφb,−1) · C−1
i vi + vb · ∇′xρi − ϕig) +

∑
i

ρivb · ∇xηi

=
∑
i

ηi [Ci(vb − vb(xi))∇′zρi −∇′zφi · vi] +
∑
i

Ciρivb · ∇zηi.

The second summand is a lower order term, which can be estimated through
interpolation inequality as

‖
∑
i

ρiCivb∇zηi‖2

W
l+ 3

2
2 (Σ)

+ |λ|l+
1
2‖
∑
i

ρiCivb∇zηi‖2
W 1

2 (Σ)

≤ c(δ)
∑
i

‖ρi‖2

W
l+ 3

2
2 (Σ)

+ |λ|l+
1
2‖ρi‖2

W 1
2 (Σ)

≤ c(δ)

|λ|
∑
i

‖ρi‖2

W
l+ 5

2
2 (Σ)

+ |λ|l+
3
2‖ρi‖2

W 1
2 (Σ) ≤

c(δ)

|λ|
([d]2λ + [g]2λ)
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For the higher order terms let us look at ηi∇′φi · vi: it is readily estimated
through (4.57) as

‖
∑
i

ηi∇′φi · vi‖2

W
l+ 3

2
2 (Σ)

+ |λ|l+
1
2‖
∑
i

ηi∇′φi · vi‖2
W 1

2 (Σ)

≤
∑
i

δ(‖vi‖2

W
l+ 3

2
2 (Σ)

+ |λ|l+
1
2‖vi‖2

W 1
2 (Σ)) + c(δ)|λ|l+

1
2‖vi‖2

L2(Σ)

≤
∑
i

δ(‖vi‖2
W l+2

2 (Σ∞) + |λ|l+
3
2‖vi‖2

L2(Σ)) + c(δ)|λ|l+
1
2‖vi‖2

L2(Σ)

by standard restriction theorem and interpolation inequality (2.14). We now
apply interpolation inequality (2.15) to the L2 terms, to obtain

‖
∑
i

ηi∇′φi · vi‖2

W
l+ 3

2
2 (Σ)

+ |λ|l+
1
2‖
∑
i

ηi∇′φi · vi‖2
W 1

2 (Σ) ≤

(δ +
c(δ)

|λ|
)
∑
i

(‖vi‖2
W l+2

2 (Σ∞) + |λ|l+2‖vi‖2
L2(Σ∞)) ≤ c(δ +

c(δ)

|λ|
)([d]2λ + [g]2λ).

For the remaining terms of the form ηi(vb − vb(xi))∇′zρi, by the smoothness
of vb we can assume that |vkb − vkb (xi)| ≤ δ on the support of ηi and thus
apply lemma 4.2.3 with ψ = vb − vb(xi) to obtain

‖
∑
i

ηiCi(vb − vb(xi))∇′zρi‖
2

W
l+ 3

2
2 (Σ)

+ |λ|l+
1
2‖
∑
i

ηiCi(vb − vb(xi))∇′zρi‖
2
W 1

2 (Σ)

≤
∑
i

δ
(
‖∇ρ‖2

W
l+ 3

2
2 (Σ)

+ |λ|l+
1
2‖∇ρ‖2

W 1
2 (Σ)

)
+ c(δ)|λ|l+

1
2‖∇ρ‖2

L2(Σ)

≤
∑
i

δ
(
‖ρ‖2

W
l+ 5

2
2 (Σ)

+ |λ|l+
5
2‖ρ‖2

L2(Σ)

)
+
c(δ)

|λ|2
|λ|l+

1
2‖λρ‖2

W 1
2 (Σ)

≤ c(δ +
c(δ)

|λ|2
)([d]2λ + [g]2λ),

which completes the proof of the inequality

‖Â(d, g)‖2

W
l+ 3

2
2 (G)

+ |λ|l+
1
2‖Â(d, g)‖2

W 1
2 (G) ≤ c(δ +

c(δ)

|λ|
)([d]2λ + [g]2λ). (4.72)

6. Existence and estimates for the solution
The estimates (4.2) and (4.72), together with (4.61) give that

‖(Â(d, g), Â(d, g))‖λ ≤ c(δ +
c(δ)

|λ|θ
)‖(d, g)‖λ.
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Therefore, choosing δ sufficiently small, and then |λ| sufficiently large, we get
that (Â, Â) is a contraction on W l+ 1

2
2 (G)×W l+ 3

2
2 (G) normed with ‖ ‖λ, as in

(4.61). The existence thus follows, and we will suppose henceforth that δ is
fixed. a

We now prove the estimate (4.51). To this end, it suffice to prove the
continuity of the operator R defined in (4.60) with respect to the norm
‖(u, p, ρ)‖λ defined as

‖(u, p, ρ)‖2
λ := ‖u‖2

W l+2
2 (Ω) + |λ|l+2‖u‖2

L2(Ω) + ‖∇q‖2
W l

2(Ω) + |λ|l‖∇q‖2
L2(Ω)+

‖q‖2

W
l+ 1

2
2 (G)

+ |λ|l+
1
2‖q‖2

L2(G) + ‖ρ‖2

W
l+ 5

2
2 (G)

+ ‖λρ‖2

W
l+ 3

2
2 (G)

+ |λ|l+
1
2‖λρ‖2

W 1
2 (G).

Now from (4.59) and (4.49) we have that

‖v1 + v2‖2
W l+2

2 (Ω) + |λ|l+2‖v1 + v2‖2
L2(Ω) + ‖∇p2‖2

W l
2(Ω) + |λ|l‖∇p2‖2

L2(Ω)+

‖p2‖2

W
l+ 1

2
2 (G)

+ |λ|l+
1
2‖p2‖2

L2(G) ≤

c
(
‖f̂‖2

W l
2(Ω) + |λ|l‖f̂‖2

L2(Ω) + ‖ĥ‖2
W l+1

2 (Ω) + |λ|l+2(‖F̂ ‖2
L2(Ω) + ‖ĥ′‖2

L2(Ω))
)
,

and the right hand side is bounded by ‖(d, g)‖λ by (4.63), (4.71). Looking at
the definition of (v, p, ρ) we have, applying proposition 2.1.3 and the estimates
for problem (4.58)

‖(v, p, ρ)‖λ ≤ c(δ)‖(d, g)‖λ,

which completes the proof of

‖R(d, g)‖λ ≤ c‖(d, g)‖,

since δ is fixed. To prove (4.52) we notice that, by the equation for ρ:

λρ = g −∇′φ · u+ u3 − vb · ∇′ρ,

and, by interpolation inequality (2.15),

|λ|l+
3
2‖λρ‖2

L2(G)

≤ |λ|l+
3
2‖g‖2

L2(G) + c(‖u‖2
W l+2

2 (Ω) + |λ|l+2‖u‖2
L2(Ω) + |λ|l+

3
2‖∇′ρ‖2

L2(G))

≤ |λ|l+
3
2‖g‖2

L2(G) + c(‖u‖2
W l+2

2 (Ω) + |λ|l+2‖u‖2
L2(Ω) +

c

|λ|
|λ|l+

1
2‖λρ‖2

W 1
2 (G)).

Noting that

|λ|l+
1
2‖g‖2

W 1
2 (G) ≤ c(‖g‖2

W
l+ 3

2
2 (G)

+ |λ|l+
3
2‖g‖2

L2(G)),
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we obtain the claim from (4.51).
7. Uniqueness

By taking the difference of two solutions, it suffice to show that problem
(4.43) with vanishing right hand sides has only the trivial solution. Suppose
then that (u, p, ρ) is such a solution. Taking the scalar product with u in
the first equation and integrating by parts gives, by the second and third
equation

λ

∫
Ω

|u|2dx+
ν

2

∫
Ω

|D(u)|2dx = −σ
∫
G
LρN · udS, (4.73)

(the boundary terms on Σ vanish due to ubΣ= 0). The right hand side can
be rewritten using the equation for ρ and

N = (−∇′φb, 1)/
√
gb, gb = 1 + |∇φb|2, dS =

√
gbdx

′,

giving∫
G
LρN · udS =

∫
Σ

Lρ(−∇′ρ · u+ u3)dx′ =

∫
Σ

Lρ(λρ+ vb · ∇′ρ)dx′.

If λ = s+ it, taking the real part in (4.73) thus gives

s

∫
Ω

|u|2dx+
ν

2

∫
Ω

|D(u)|2dx = −σBs(ρ) < 0,

by lemma 3.1.1, for s sufficiently large. Therefore, for s = Reλ sufficiently
large we get u = 0, and ∇ρ = 0 from Bs(ρ) = 0 and (3.9). From the equation
for ρ we thus get ρ = 0 and from the boundary condition on the stress tensor,
p = 0 on G. Since the velocity equation now reads ∇p = 0, we conclude that
p vanishes in the whole Ω, and thus (u, p, ρ) = 0. �

4.3 Time dependent linear problem
In this section we prove the solvability of the time-dependent linear

problem (4.1).
We first need to consider the perturbed version of problem (4.43), i.e.

λu− ν∆u+∇q − Φ̂1(u, ρ) = f in Ωb,

∇ · u− Φ2(ρ) = h = ∇ · F in Ωb,

T(u, q)N + σLρN − Φ̃(ρ) = d on G,
λρ+∇′φb · u− u3 +∇′ρ · vb = g on G,
u = a on Σ,

(4.74)
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where Φ̂1 is given as in (3.18) substituting the term ρ∗,t with λρ∗, and, as
usual, a3 = F 3 = 0 on Σ.

Theorem 4.3.1 Let l ≥ 0. For any sufficiently large Reλ, there exists a
unique periodic solution of (4.74), for any choice of periodic f ∈ W l

2(Ωb),
d ∈ W l+ 1

2
2 (G), g ∈ W l+ 3

2
2 (G), h ∈ W l+1

2 (Ωb) and F ∈ W 1
2 (Ωb) with F 3bΣ= 0

and this solution satisfies (4.51) and(4.52).

Proof. We start estimating the λ-weighted norm of the various Φi. For Φ̂1,
we see from the definition (3.18) that all its terms are of the form

∇ρ∗ ·M 1
k, D2ρ∗ ·m1

k, λρ∗m2
k, u ·M 2

k, or m3
k · ∇u,

for some smooth vectors and matrices mh
k and Mh

k depending on vb and pb.
Each of these terms can be estimated in theW l

2(Ωb) norm through proposition
2.1.3. One considers separately the terms containing the spatial derivatives
of ρ and those containing the derivatives of θ to obtain, for Reλ� 1,

‖Φ̂1‖W l
2(Ωb)

≤ c(‖∇ρ‖W l+1
2 (G) + |λ|‖ρ‖W l

2(G) + ‖u‖W l+1
2 (Ωb)

)

where c is a constant depending on the higher order norms of vb, pb and θ.
Applying interpolation inequality one then obtains, again for Reλ >> 1,

‖Φ̂1‖2
W l

2(Ωb)
≤ c√

|λ|
(‖ρ‖2

W
l+ 5

2
2 (G)

+ |λ|l+
1
2‖λρ‖2

W 1
2 (G) + ‖λρ‖2

W
l+ 1

2
2 (G)

+ |λ|l+
1
2‖λρ‖2

L2(G) + ‖u‖2
W l+2

2 (Ωb)
+ |λ|l+2‖u‖2

L2(Ωb)
).

For the L2 norm one has

‖Φ̂1‖L2(Ωb)
≤ c(‖∇ρ‖W 1

2 (G) + ‖λρ‖L2(G) + ‖u‖W 1
2 (Ωb)

),

and thus, bounding ‖ρ‖L2(G) with ‖ρ‖W 1
2 (G) and using interpolation inequalities

|λ|l‖Φ̂1‖2
L2(Ωb)

≤ c√
|λ|

(‖ρ‖2

W
l+ 5

2
2 (G)

+ |λ|l+
3
2‖ρ‖2

W 1
2 (G)

+ |λ|l+
1
2‖λρ‖2

W 1
2 (G) + ‖u‖2

W l+2
2 (Ωb)

+ |λ|l+2‖u‖2
L2(Ωb)

).

Therefore, for Reλ > 1, we have

‖Φ̂1‖2
W l

2(Ωb)
+ |λ|l‖Φ̂1‖2

L2(Ωb)
≤ c√

λ
(‖ρ‖2

W
l+ 5

2
2 (G)

+ ‖λρ‖2

W
l+ 3

2
2 (G)

+ |λ|l+
1
2‖λρ‖2

W 1
2 (G)

+ ‖u‖2
W l+2

2 (Ωb)
+ |λ|l+2‖u‖2

L2(Ωb)
).

(4.75)
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For Φ2, recall by (3.21), that it is a linear combination of terms of the form
∇ρ∗ ·m1 and ρ ·m2, and therefore

‖Φ2(ρ)‖W l+1
2 (Ωb)

≤ c(‖∇ρ‖W l+1
2 (G) + ‖ρ‖W l+1

2 (G)),

giving

‖Φ2(ρ)‖2
W l+1

2 (Ωb)
≤ c√

|λ|
(‖ρ‖2

W
l+ 5

2
2 (G)

+ |λ|l+
3
2‖ρ‖2

W 1
2 (G) +‖λρ‖2

W
l+ 3

2
2 (G)

). (4.76)

Moreover, recalling that Φ2(ρ) = ∇ · (I − L̂)vb, we have for (I − L̂)vb,

|λ|l+2‖(I − L̂)vb‖2
L2(Ωb)

≤ c|λ|l+2‖ρ‖2
W 1

2 (G) ≤
c√
|λ|
|λ|l+

1
2‖λρ‖2

W 1
2 (G). (4.77)

Finally both Φ3 and Φ4 are linear combinations of terms of the form ∇′ρ ·M
with M depending on vb and φb, therefore, for Reλ > 1,

‖Φ̃‖2

W
l+ 1

2
2 (G)

+ |λ|l+
1
2‖Φ̃‖2

L2(G) ≤ c(‖∇′ρ‖2

W
l+ 1

2
2 (G)

+ |λ|l+
1
2‖∇′ρ‖2

L2(G))

≤ c√
|λ|

(‖ρ‖2

W
l+ 5

2
2 (G)

+ |λ|l+
1
2‖λρ‖2

W 1
2 (G)).

(4.78)

This concludes the preliminary estimates for the linear perturbations.
To construct a solution, we recursively define the sequence (vn, pn, ρn) ∈

X := W l+2
2 (Ω) × W l+1

2 (Ω) × W
l+ 5

2
2 (G), equipped with the weighted norm

whose square is

[(v, p, ρ)]2l,λ := ‖u‖2
W l+2

2 (Ω) + |λ|l+2‖u‖2
L2(Ω) + ‖∇q‖2

W l
2(Ω) + |λ|l‖∇q‖2

L2(Ω)

+ ‖q‖2

W
l+ 1

2
2 (G)

+ |λ|l+
1
2‖q‖2

L2(G) + ‖ρ‖2

W
l+ 5

2
2 (G)

+ ‖λρ‖2

W
l+ 3

2
2 (G)

+ |λ|l+
1
2‖λρ‖2

W 1
2 (G).

We set (v0, p0, ρ0) = (0, 0, 0), while (vn+1, pn+1, ρn+1) solves (4.43) with right
hand sides, respectively

fn = f + Φ̂1(vn, ρn), hn = h+ Φ2(ρn), dn = d+ Φ̃(ρn), gn = g.

Notice that hn = ∇ · F n with

F n = F + (I − L̂n)vb,

and thus, by the condition F 3 = 0 on Σ and (3.23), it holds F 3
n = 0 on Σ. We

claim that if Reλ is sufficiently large, {(vn, pn, ρn)} is a Cauchy sequence in X.
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Indeed the difference (wn+1, qn+1, σn+1) := (vn+1 − vn, pn+1 − pn, ρn+1 − ρn)
satisfies (4.43) with right hand side, respectively

Φ1(wn, σn), Φ2(σn), Φ̃(σn), 0,

and thus (4.51), together with the previously proved estimates (4.75)–(4.78),
shows that

[(wn+1, qn+1, σn+1)]2l,λ ≤
c√
|λ|

[(wn, qn, σn)]2l,λ,

and thus the claim for c√
|λ|
≤ 1

2
. Therefore (vn, pn, ρn)→ (v, p, ρ) ∈ X and

the latter clearly solves problem (4.74). The a priori estimate (4.51) follows
from

[(v, p, ρ)]2l,λ ≤
c√
|λ|

[(v, p, ρ)]2l,λ + c
(
‖f‖2

W l
2(Ω) + |λ|l‖f‖2

L2(Ω) + ‖h‖2
W l+1

2 (Ω)+

|λ|l+2‖F ‖2
L2(Ω) + ‖d‖2

W
l+ 1

2
2 (G)

+ |λ|l+
1
2‖d‖2

L2(G) + ‖g‖2

W
l+ 3

2
2 (G)

+ |λ|l+
1
2‖g‖2

W 1
2 (G)

)
,

again for c√
|λ|
≤ 1

2
, and this also gives uniqueness. One can proceed as in the

proof of theorem 4.2.4 to obtain also estimate (4.52) for the solution.
�

To shorten somehow the notation we define

‖(u, p, ρ)‖W,l,T =‖u‖
W
l+2, l2 +1

2 (QT )
+ ‖∇p‖

W
l, l2
2 (QT )

+ ‖p‖
W
l+ 1

2 ,
l
2 + 1

4
2 (GT )

+ ‖ρ‖
W
l+ 5

2 ,
l
2 + 5

4
2 (GT )

+ ‖ρ,t‖
W
l+ 3

2 ,
l
2 + 3

4
2 (GT )

.
(4.79)

‖(u, p, ρ)‖H,l,T =‖u‖
H
l+2, l2 +1

2 (QT )
+ ‖∇p‖

H
l, l2
2 (QT )

+ ‖p‖
H
l+ 1

2 ,
l
2 + 1

4
2 (GT )

+ ‖ρ‖
H
l+ 5

2 ,
l
2 + 5

4
2 (GT )

+ ‖ρ,t‖
H
l+ 3

2 ,
l
2 + 3

4
2 (GT )

.
(4.80)

Theorem 4.3.2 Let l ∈ (1
2
, 1) and T < +∞. For any Σ-periodic choice

of f ∈ W
l, l

2
2 (QT ), h ∈ W l+1,0

2 (QT ), F ∈ W
0, l

2
+1

2 (QT ) with F 3bΣ= 0, d ∈
W

l+ 1
2
, l
2

+ 1
4

2 (GT ), g ∈ W
l+ 3

2
, l
2

+ 3
4

2 (GT ), a ∈ W
l+ 3

2
, l
2

+ 3
4

2 (Σ) with a3 ≡ 0, ρ0 ∈
W l+2

2 (G) and u0 ∈ W l+1
2 (Ω) such that

∇ · u0(x) = Φ2(ρ0)(x) +∇ · F (x, 0) for x ∈ Ωb,

νΠbD(u0)(x)N (x) = Φ3(ρ0)(x) + Πbd(x, 0) for x ∈ G,
u0(x) = a(x, 0) for x ∈ Σ,

(4.81)
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there exists a unique solution to (4.1), and it holds the estimate

‖(u, q,ρ)‖W,l,T ≤ c(T )(‖f‖
W
l, l2
2 (QT )

+ ‖h‖W l+1,0
2 (QT )

+ ‖F ‖
W

0, l2 +1

2 (QT )
+ ‖d‖

W
l+ 1

2 ,
l
2 + 1

4
2 (GT )

+ ‖g‖
W
l+ 3

2 ,
l
2 + 3

4
2 (GT )

+ ‖a‖
W
l+ 3

2 ,
l
2 + 3

4
2 (ΣT )

+ ‖v0‖W l+1
2 (Ωb)

+ ‖ρ0‖W l+2
2 (G)).

(4.82)

Moreover, if T ≥ 1, it holds

‖(u, q,ρ)‖W,l,T ≤ c(‖f‖
W
l, l2
2 (QT )

+ ‖h‖W l+1,0
2 (QT ) + ‖F ‖

W
0, l2 +1

2 (QT )

+ ‖d‖
W
l+ 1

2 ,
l
2 + 1

4
2 (GT )

+ ‖g‖
W
l+ 3

2 ,
l
2 + 3

4
2 (GT )

+ ‖a‖
W
l+ 3

2 ,
l
2 + 3

4
2 (ΣT )

+ ‖v0‖W l+1
2 (Ωb)

+ ‖ρ0‖W l+2
2 (G) + ‖u‖L2(QT ) + ‖ρ‖L2(GT )).

(4.83)

with constant independent of T and, if T ≤ 1,

‖(u, q,ρ)‖H,l,T ≤ c
(
‖f‖

H
l, l2
2 (QT )

+ ‖h‖Hl+1,0
2 (QT )

+ ‖F ‖
Ŵ

0, l2 +1

2 (QT )
+ ‖d‖

H
l+ 1

2 ,
l
2 + 1

4
2 (GT )

+ ‖a‖
H
l+ 3

2 ,
l
2 + 3

4
2 (ΣT )

+ ‖g‖
H
l+ 3

2 ,
l
2 + 3

4
2 (GT )

+ ‖v0‖W l+1
2 (Ωb)

+ ‖ρ0‖W l+2
2 (G)

) (4.84)

also with constant independent of T .

Proof. We follow the plan described in section 2.4, and reduce problem
(4.1) to a similar one with homogeneous initial data in order to apply Laplace
transform and use theorem 4.3.1 to get the solution. First of all we fix
T0 ≥ T + 1 and extend all the right hand terms except h and F (keeping
the notation unchanged) to Q∞ and G∞ with controlled norm, supposing
furthermore that all the terms vanish for t > T0. For T ≥ 1, this can be done
with constants independent of T , i.e.

‖f‖
W
l, l2
2 (Q∞)

+ ‖d‖
W
l+ 1

2 ,
l
2 + 1

4
2 (G∞)

+ ‖g‖
W
l+ 3

2 ,
l
2 + 3

4
2 (G∞)

+ ‖a‖
W
l+ 3

2 ,
l
2 + 3

4
2 (Σ∞)

≤ c(‖f‖
W
l, l2
2 (QT )

+ ‖d‖
W
l+ 1

2 ,
l
2 + 1

4
2 (GT )

+ ‖g‖
W
l+ 3

2 ,
l
2 + 3

4
2 (GT )

+ ‖a‖
W
l+ 3

2 ,
l
2 + 3

4
2 (ΣT )

).

For T ≤ 1 we can use theorem 2.3.3 to obtain the same estimate with, on
the left side, the Hη, η

2
2 norms instead of the W η, η

2
2 ones. To construct the

extensions of h and F , we define, for all t ≤ T , w0 = ∇ψ, where ψ is the
solution of 

∆ψ = h = ∇ · F in Ωb,

ψ = 0 on G,
∂ψ
∂n

= F · n = 0 on Σ.

(4.85)
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From standard elliptic estimates we have, for each t ≤ T ,

‖w0‖W l+2,0
2 (QT ) ≤ c‖h‖W l+1,0

2 (QT ),

and
sup
t≤T
‖w0‖W l+1

2 (Ωb)
≤ c sup

t≤T
‖h‖W l

2(Ω).

Differentiating in t the weak formulation of (4.85), one gets∫
Ωb

w0,t · ∇ηdx =

∫
Ωb

F ,t · ∇ηdx, ∀η ∈ C∞, ηbG= 0,

and a similar identity for the finite differences in time of w0,t, which implies

‖w0‖
W

0, l2 +1

2 (QT )
≤ c‖F ‖

W
0, l2 +1

2 (QT )
,

1

T l

∫ T

0

‖w0,t‖2
L2(Ω)dt ≤

1

T l

∫ T

0

‖F ,t‖2
L2(Ω)dt.

Therefore it holds

‖w0‖
W
l+2, l2 +1

2 (QT )
≤ c(‖h‖W l+1,0

2 (QT ) + ‖F ‖
W

0, l2 +1

2 (QT )
),

‖w0‖
H
l+2, l2 +1

2 (QT )
≤ c(‖h‖Hl+1,0

2 (QT ) + ‖F ‖
Ŵ

0, l2 +1

2 (QT )
),

We extend w0 in such a way that w0 = 0 for t ≥ T0, w3
0 ≡ 0, and with

W
l+2, l

2
+1

2 (Q∞) norm controlled by the W l+2, l
2

+1

2 (QT )-norm of w0 if T ≥ 1,
and, using theorem 2.3.3, by its H l+2, l

2
+1

2 (QT )-norm if T ≤ 1. Both controls
are made with a constant independent of T . We then define, for all t ≥ 0,

F 0 = w0, h = ∇ ·w0,

and f 0 = w0,t − ν∆w0. It is clear that problem (4.1) is equivalent to the
same problem with F 0 instead of F . It holds

‖h‖W l+1,0
2 (Q∞)+‖F 0‖

W
0, l2 +1

2 (Q∞)
≤

c(‖h‖W l+1,0
2 (QT ) + ‖F ‖

W
0, l2 +1

2 (QT )
) if T ≥ 1,

c(‖h‖Hl+1,0
2 (QT ) + ‖F ‖

Ŵ
0, l2 +1

2 (QT )
) if T ≤ 1,

with constants independent of T , and

‖f 0‖
W
l+2, l2 +1

2 (Q∞)
≤ ‖w0‖

W
l+2, l2 +1

2 (Q∞)

≤ c(‖h‖W l+1,0
2 (Q∞) + ‖F 0‖

W
0, l2 +1

2 (Q∞)
).

(4.86)
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We now let

σ0 = g(0)− vb · ∇′ρ0 −∇′φb · u0 + u3
0,

and we construct ρ1 in such a way that

ρ1bt=0= ρ0, ρ1,tbt=0= σ0,

‖ρ1‖
W
l+ 5

2 ,
l
2 + 5

4
2 (G∞)

+ ‖ρ1,t‖
W
l+ 3

2 ,
l
2 + 3

4
2 (G∞)

≤ c(‖ρ0‖W l+2
2 (G) + ‖σ0‖

W
l+ 1

2
2 (G)

)

≤ c
(
‖g‖

W
l+ 3

2 ,
l
2 + 3

4
2 (G∞)

+ ‖ρ0‖W l+2
2 (G) + ‖u0‖W l+1

2 (Ωb)

)
(4.87)

To construct such ρ1 we first find, through theorem 2.1.6, r1 ∈ W
l+ 5

2
2 (G∞)

such that r1bt=0= ρ0, r1,tbt=0= 0 and

‖r1‖
W
l+ 5

2
2 (G∞)

≤ c‖ρ0‖W l+2
2 (G).

Then we construct, through theorem 2.2.1, point 4, r2 ∈ W
l+ 7

2
, l
2

+ 7
4

2 (G∞) such
that r2bt=0= 0, r2,tbt=0= σ0 and

‖r2‖
W
l+ 7

2 ,
l
2 + 7

4
2 (G∞)

≤ ‖σ0‖
W
l+ 1

2
2 (G)

≤ c
(
‖g(0)‖

W
l+ 1

2
2 (G)

+ ‖ρ0‖
W
l+ 3

2
2 (G)

+ ‖u0‖
W
l+ 1

2
2 (G)

)
≤ c
(
‖g‖

W
l+ 3

2 ,
l
2 + 3

4
2 (G∞)

+ ‖ρ0‖W l+2
2 (G) + ‖u0‖W l+1

2 (Ωb)

)
,

for a constant c depending only on vb and φb. The sum ρ1 = r1 + r2 clearly
satisfies the initial boundary conditions and

‖ρ1‖
W
l+ 5

2 ,0

2 (G∞)
+ ‖ρ1,t‖

W
l+ 3

2 ,
l
2 + 3

4
2 (G∞)

≤ c(‖ρ0‖W l+2
2 (G) + ‖σ0‖

W
l+ 1

2
2 (G)

).

Finally, from the inequality

(1 + |ξ0|+ |ξ|2)l+
5
2 ≤ cl

(
(1 + |ξ|2)l+

5
2 + (1 + |ξ0|+ |ξ|2)l+

1
2 |ξ0|2

)
,

we get, through local coordinates, Fourier transform and Parceval identity

‖ρ1‖
W
l+ 5

2 ,
l
2 + 5

4
2 (G∞)

≤ c(‖ρ1‖
W
l+ 5

2 ,0

2 (G∞)
+ ‖ρ1,t‖

W
l+ 1

2 ,
l
2 + 1

4
2 (G∞)

),

and thus (4.87). clearly we can modify ρ1 so as to obtain ρ1 = 0 for t ≥ T0,
without affecting the latter inequality. Then we take out a part of the
divergence, considering w1 = ∇ψ where ψ is the periodic solution of

∆ψ = Φ2(ρ1) = ∇ · F 1 in Ωb,

ψ = 0 on G,
∂ψ
∂n

= F 1 · n = 0 on Σ,
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where F 1 = (I−L̂(ρ1))vb, which vanishes in a neighbourhood of Σ. Notice that
since ρ1 vanishes for t ≥ T0 this is also true for w1. We set f 1 = w1,t−ν∆w1.
With the same argument as for problem (4.85), we get

‖f 1‖
W
l, l2
2 (Q∞)

≤ c‖w1‖
W
l+2, l2 +1

2 (Q∞)
≤ c(‖Φ2(ρ1)‖W l+1

2 (Q∞) + ‖F 1‖
W

0, l2 +1

2 (Q∞)
),

and looking at the explicit form (3.21), (3.20) of Φ2 and F 1 we get

‖w1‖
W
l+2, l2 +1

2 (Q∞)
≤ c(‖ρ1‖W l+2,0

2 (Q∞) + ‖∇ρ1‖
W

0, l2 +1

2 (Q∞)
+ ‖ρ1‖

W
0, l2 +1

2 (Q∞)
)

≤ c(‖ρ1‖
W
l+ 5

2 ,
l
2 + 5

4
2 (Q∞)

+ ‖∇ρ1,t‖
W

0, l2
2 (Q∞)

)

≤ c(‖ρ1‖
W
l+ 5

2 ,
l
2 + 5

4
2 (Q∞)

+ ‖ρ1,t‖
W
l+ 3

2 ,
l
2 + 3

4
2 (Q∞)

)

which gives, by (4.87),

‖f 1‖
W
l, l2
2 (Q∞)

≤ c‖w1‖
W
l+2, l2 +1

2 (Q∞)

≤ c(‖g‖
W
l+ 3

2 ,
l
2 + 3

4
2 (G∞)

+ ‖ρ0‖W l+2
2 (G) + ‖u0‖W l+1

2 (Ωb)
).

(4.88)

We then choose w2 ∈ W
l+2, l

2
+1

2 (Q∞) in such a way that

∇ ·w2 = 0, ∀t ≥ 0, w2(·, 0) = u0(·)−w0(·)−w1(·, 0),

with w2 = 0 for t > T0, and optimal regularity estimates. To do this, notice
that w3

1 = w3
0 = 0 on Σ, and ∇ · (u0(x)−w0(x, 0)−w1(x, 0)) = 0 in Ωb by

the first condition in (4.81). By a result of Bogowskii [7], u0(x)−w0(x, 0)−
w1(x, 0) can be extended with preservation of class and solenoidality for all
x ∈ R3, as a vector w∗2. We can set

w2(x, t) = φ(t)

∫
R3

Γ(x− y, t)w∗2(y)dy,

where φ(t) is a smooth function equal to one for small t and vanishing for
t ≥ T0, and

Γ(x, t) =
1

(4πt)
3
2

e−
|x|2
4t ,

is the fundamental solution of the heat equation. Well known estimates of
the heat potential give

‖w2‖
W
l+2, l2 +1

2 (QT )
≤ c‖w∗2‖W l+1

2 (R3) ≤ c‖u0 −w1‖W l+1
2 (Ωb)

.
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Letting f 2 = w2,t − ν∆w2, we get

‖f 2‖
W
l, l2
2 (Q∞)

≤ c‖w2‖
W
l+2, l2 +1

2 (Q∞)

≤ c(‖u0‖W l+1
2 (Ωb)

+ ‖w0‖
W
l+2, l2 +1

2 (Q∞)
+ ‖w1‖

W
l+2, l2 +1

2 (Q∞)
)

(4.89)

Finally we set f 3 = −Φ1(w0 +w1 +w2, ρ1). From the explicit structure
of Φ1 given in (3.18) and applying (2.20), one sees that

‖f 3‖
W
l, l2
2 (Q∞)

≤c
( 3∑
i=0

‖wi‖
W
l+1, l2 + 1

2
2 (Q∞)

+ ‖ρ1‖
W
l+2, l2 +1

2 (G∞)
+ ‖ρ1,t‖

W
l, l2
2 (G∞)

)
,

which gives, a fortiori,

‖f 3‖
W
l, l2
2 (Q∞)

≤c
( 3∑
i=0

‖wi‖
W
l+2, l2 +1

2 (Q∞)

+ ‖ρ1‖
W
l+ 5

2 ,
l
2 + 5

4
2 (G∞)

+ ‖ρ1,t‖
W
l+ 3

2 ,
l
2 + 3

2
2 (G∞)

) (4.90)

Letting
σ2 = νN · D(u0)N + σLρ0 − d(0) ·N − Φ4(ρ0),

we have σ2 ∈ W
l− 1

2
2 (G) (the four terms have regularity, respectively, l, l, l− 1

2

and l + 1) and thus we can extend it to the whole Ωb as σ̂2 ∈ W l
2(Ωb) with

controlled norm, and subsequently define p1 ∈ W l+1, l
2

+ 1
2 (Q∞) as an extension

of σ̂2 to Q∞, also with controlled norm. Therefore p1 satisfies

p1(0)bG= νN · D(u0)N + σLρ0 − d(0) ·N − Φ4(ρ0),

‖p1‖
W
l+1, l2 + 1

2
2 (Q∞)

≤ c(‖v0‖W l+1
2 (Ωb)

+‖ρ0‖W l+2
2 (G) +‖d‖

W
l+ 1

2 ,
l
2 + 1

4
2 (G∞)

), (4.91)

where we also used the fact that Φ4(ρ0), given in (3.28), is of the type ∇ρ0 ·M
for regular M ’s depending on vb and φb.

We finally define w = w0 +w1 +w2 and

(û, q̂, ρ̂) = (u−w, q − p1, ρ− ρ1)

f̂ = f −∇p1 −
3∑
i=0

f i,

d̂ = d− νD(w)N − σLρ1N + p1N + Φ̃(ρ1),

ĝ = g − ρ1,t −∇′φb ·w + w3 − vb · ∇′ρ1,

â = a−w.
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Problem (4.1) is then reduced to

û,t − ν∆û+∇q̂ −Φ1(û, ρ̂) = f̂ in Ωb,

∇ · û− Φ2(ρ̂) = 0 in Ωb,

T(û, q̂)N + σLρ̂N − Φ̃(ρ̂) = d̂ on G,
ρ̂t +∇′φb · û− û3 +∇′ρ̂ · vb = ĝ on G,
û = â on Σ, for all t ≥ 0,

û(x, 0) = 0, x ∈ Ωb, ρ̂(x′, 0) = 0, x ∈ Σ,

(4.92)

where ĝ(0) = 0 by the definition of ρ1, â(0) = 0 by the third condition in
(4.81) and the definition of w2, and d̂(0) = 0 by the second condition in (4.81)
and the definition of p1(0). By theorem 2.2.4 and the condition l < 1, f̂ , d̂, ĝ
and â can be extended as 0 for t < 0 preserving regularity, therefore we can
apply the Laplace transform to convert problem (4.92) to a problem of the
form (4.74). The latter is solvable for Reλ ≥ γ > 0 for γ sufficiently large by
theorem 4.3.1. Taking inverse Laplace transform gives a solution in weighted
anisotropic Sobolev-Slobodetskii space W η, η

2

2,γ′ (see (2.23)) for γ′ > γ, defined
for all t and vanishing for t < 0.

The rest of the proof is analogous as the one of theorem 4.1.4. We obtain
a weighted estimated, which can be localised in [0, T ) on the left hand side
with the suitable norms (W µ,µ

2
2 if T ≥ 1, Hµ,µ

2
2 otherwise). For the right hand

side, we can control it through a non weighted estimate since all the terms
vanish for t ≥ T0. If T is large, this procedure of eliminating the weights
gives rise to a constant C(T ) in the bounds, which does not appear if T ≤ 1.
Moreover one can easily check, from (4.86)–(4.91), that it holds the inequality

‖f̂‖
W
l, l2
2 (Q∞)

+ ‖d̂‖
W
l+ 1

2 ,
l
2 + 1

4
2 (G∞)

+ ‖ĝ‖
W
l+ 3

2 ,
l
2 + 3

4
2 (G∞)

+ ‖â‖
W
l+ 3

2 ,
l
2 + 3

4
2 (Σ∞)

≤ c
(
‖f‖

W
l, l2
2 (Q∞)

+ ‖h‖W l+1,0
2 (Q∞) + ‖F 0‖

W
0, l2 +1

2 (Q∞)
+ ‖d‖

W
l+ 1

2 ,
l
2 + 1

4
2 (G∞)

+ ‖g‖
W
l+ 3

2 ,
l
2 + 3

4
2 (G∞)

+ ‖a‖
W
l+ 3

2 ,
l
2 + 3

4
2 (Σ∞)

+ ‖u0‖W l+1
2 (Ωb)

+ ‖ρ0‖W l+2
2 (G)

)
,

and the right hand side is bounded by

c
(
‖f‖

W
l, l2
2 (QT )

+ ‖h‖W l+1,0
2 (QT ) + ‖F 0‖

W
0, l2 +1

2 (QT )
+ ‖d‖

W
l+ 1

2 ,
l
2 + 1

4
2 (GT )

+ ‖g‖
W
l+ 3

2 ,
l
2 + 3

4
2 (GT )

+ ‖a‖
W
l+ 3

2 ,
l
2 + 3

4
2 (ΣT )

+ ‖u0‖W l+1
2 (Ωb)

+ ‖ρ0‖W l+2
2 (G)

)
,

if T ≥ 1, or by

c
(
‖f‖

H
l, l2
2 (QT )

+ ‖h‖Hl+1,0
2 (QT ) + ‖F 0‖

Ŵ
0, l2 +1

2 (QT )
+ ‖d‖

H
l+ 1

2 ,
l
2 + 1

4
2 (GT )

+ ‖g‖
H
l+ 3

2 ,
l
2 + 3

4
2 (GT )

+ ‖a‖
H
l+ 3

2 ,
l
2 + 3

4
2 (ΣT )

+ ‖u0‖W l+1
2 (Ωb)

+ ‖ρ0‖W l+2
2 (G)

)
,
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if T ≤ 1, both with constant independent of T . The same inequalities also
hold for ‖(w, p1, ρ1)‖W,l,T and ‖(w, p1, ρ1)‖H,l,T in the two cases, and thus
summing back those term to (û, q̂, ρ̂) doesn’t affect the estimates.

Finally, uniqueness and the proof of (4.83) are obtained in exactly the
same way described in the proof of theorem 4.1.4. �



Chapter 5

The nonlinear problem

In this chapter we study the original nonlinear problem (1.2), proving
two types of result. The first one is an abstract linearization principle,
which roughly speaking states that if the linearized problem is stable, then
the nonlinear problem has a global smooth solution if the initial data are
sufficiently small. The second one is a local in time existence and uniqueness
result for the nonlinear problem, with arbitrary initial data.

In the first section we will prove (at least) quadratic estimates for the
nonlinear terms appearing after the Hanzawa transformation. This is done
with a different method than the one used, for example, in [30], where a
modification of the time-related part of norm is performed.

In the second section the abstract linearization principle is proved, con-
structing the global solution in a sufficiently large interval and then repeating
the construction step by step on multiples of the initial interval. It is worth
noting that the presence of a nonlinearity in the equation for the divergence
requires a splitting method for the construction of the solution, used for
example in [30].

In the third section we apply the linearization principle to obtain ex-
ponential stability of the rest state. While the hypothesis required in the
linearization principle seem rather abstract, in this case an explicit estimate
on the spectrum is possible.

In the last section we give a rather sketchy description of the proof the
local existence of the solution. The methods developed in [19] certainly
apply to this case, once one has coercive estimates for the linear problem.
However, we chose to safeguard consistency and prove that a sub-optimal (in
the regularity sense) choice of Hanzawa transformation can still give the same
result.
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5.1 Estimate of the nonlinear terms
Our aim is to obtain estimates of the form

‖li(u, q, ρ)‖ ≤ C
(
‖u‖

W
l+2, l2 +1

2 (QT )
+ ‖∇p‖

W
l, l2
2 (QT )

+ ‖p‖
W
l+ 1

2 ,
l
2 + 1

4
2 (GT )

+ ‖ρ‖
W
l+ 5

2 ,
l
2 + 5

4
2 (GT )

+ ‖ρ,t‖
W
l+ 3

2 ,
l
2 + 3

4
2 (GT )

)2
,

where for each term i = 0, . . . 5 we will give such bounds for a suitable
norm ‖li‖, depending on l. Our main assumption will be that the hanzawa
transformation (3.1) is well defined, and thus we require that supρ � µ(θ).
This ensures that all the nonlinear terms are polynomials in the derivatives
of u, p and ρ multiplied by a nonlinear term which is of the form f(x, ρ,∇ρ),
with a supposedly smooth f . Indeed the only singularity in the nonlinear
terms appears in the Jacobian of the Hanzawa transformation, where

detL−1 =
1

1 + θ′ρ
.

Notice that, as long as T is bounded away from zero, say T ≥ 1, it holds, for
any r > 1

sup
Σ
|ρ| ≤ c‖ρ‖W r

2 (Σ) ≤ c‖ρ‖W r
2 (G),

with a constant independent of T . In the following, we will call µ any positive
number such that

µ� 1

supΣ |θ′|
. (5.1)

so that for example the condition

‖ρ‖W l+2
2 (G) ≤ µ

will ensure |ρθ′| < 1
2
and the smoothness of the nonlinear terms.

More precisely we will prove the following theorem.

Theorem 5.1.1 Let l ∈ (1
2
, 1). Suppose that ‖(u, p, ρ)‖W,l,T ≤ µ such that

(5.1) holds. There exists c(µ), bounded for bounded µ such that

‖̃l0(u, ρ)‖
W
l, l2
2 (QT )

+ ‖̃l1(u, p, ρ)‖
W
l, l2
2 (QT )

+ ‖l̃2(u, ρ)‖W l+1,0
2 (QT )

+ ‖G(u, ρ)‖
W

0, l2 +1

2 (QT )
+ ‖̃l3(u, ρ)‖

W
l+ 1

2 ,
l
2 + 1

4
2 (GT )

+ ‖l̃4(u, ρ)‖
W
l+ 1

2 ,
l
2 + 1

4
2 (GT )

+ ‖l̃5(u, ρ)‖
W
l+ 3

2 ,
l
2 + 3

4
2 (GT )

≤ c(µ)‖(u, p, ρ)‖2
W,l,T .

The constant c(µ) also depends on vb, pb, φb and T .
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In the rest of this section we will thus always suppose l ∈ (1
2
, 1), ‖(u, p, ρ)‖l ≤

µ. Moreover, for any given function g : X × Y → R, and positive η, η′ we
will we use the following notation

‖g‖W η
2 (X) = ‖g(·, y)‖W η

2 (X), ‖g‖
W η′

2 (Y )
= ‖g(x, ·)‖

W η′
2 (Y )

,

the right hand sides being functions of y and x respectively.
Since ρ∗ = θρ and θ is C∞, any norm of ρ∗ in Ωb or QT is bounded by the

same norm of ρ in G or GT . Notice then that, letting from now on

‖ρ‖l = ‖ρ‖
W
l+ 5

2 ,
l
2 + 5

4
2 (GT )

+ ‖ρ,t‖
W
l+ 3

2 ,
l
2 + 3

4
2 (GT )

,

theorem 2.2.3 gives

sup
t<T
‖ρ‖W l+2

2 (G) ≤ c
(
‖ρ‖

W
l+ 5

2 ,0

2 (GT )
+ ‖ρ,t‖

W
l+ 3

2 ,0

2 (GT )

)
≤ c‖ρ‖l. (5.2)

From (2.5), it follows

sup
QT

|ρ∗|+ |∇ρ∗| ≤ c(sup
GT

|ρ|+ |∇′ρ|) ≤ c‖ρ‖l. (5.3)

We will also frequently use the following bounds:

sup
G
‖ρ‖

W
l
2 + 5

4
2 (0,T )

+ ‖∇ρ‖
W

l
2 + 3

4
2 (0,T )

≤ c
(

sup
GT

(|ρ|+ |∇ρ|) + sup
G
‖ρ,t‖

W
l
2 + 1

4
2 (0,T )

+ ‖∇ρ,t‖
W

l
2−

1
4

2 (0,T )

)
≤ c
(
‖ρ‖l + ‖ρ,t‖

W
l+ 3

2 ,
l
2 + 3

4
2 (GT )

+ ‖∇ρ,t‖
W
l+ 1

2 ,
l
2 + 1

4
2 (GT )

)
≤ c‖ρ‖l,

(5.4)

sup
Ωb

‖u‖
W

l
2 + 1

4
2 (0,T )

≤ c‖u‖
W
l+2, l2 +1

2 (QT )
, (5.5)

Indeed (5.4) and (5.5) follow from repeated application (twice for ρ and thrice
for u) of the standard estimate for the restriction operator in the anisotropic
Sobolev–Slobodetskii spaces. The constant in these inequalities depends on T ,
G and Ωb, and remain bounded as long as T is bounded away from 0, which
will always be the case in the following.

From now on we will suppose that ‖ρ‖l ≤ µ for µ satisfying (5.1).

Lemma 5.1.2 Let l ∈ (1
2
, 1), and suppose ‖ρ‖l ≤ µ. Given a smooth function

f : G × R × R2 → R, there exists a constant cf(µ), bounded for bounded µ,
such that for any function g = g(x, t) and any η ≤ 1 + l, η′ ≤ l

2
+ 3

4
, it holds

‖f(x, ρ,∇ρ)g‖W η,0
2 (GT ) ≤ cf (µ)‖g‖W η,0

2 (GT ), (5.6)

‖f(x, ρ,∇ρ)g‖
W 0,η′

2 (GT )
≤ cf (µ)‖g‖

W 0,η′
2 (GT )

. (5.7)

The constant cf (µ) also depends on G and T .
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Proof. We claim that

sup
t<T
‖f(x, ρ,∇ρ)‖W 1+l

2 (G) ≤ cf (µ). (5.8)

To prove this, first notice that by (5.3) and the smoothness of f ,

f(x, ρ,∇ρ), fx(x, ρ,∇ρ), and fs(x, ρ,∇ρ)∇ρ,
are bounded by a constant cf (µ) independent of t, and thus the same holds
true for their L2(G) norm. Denoting by W̊ 1+l

2 (G) the principal part of the
norm W 1+l

2 (G), its square is bounded by

‖fx(x, ρ,∇ρ)‖2
W l

2(G) + ‖fs(x, ρ,∇ρ)∇ρ‖2
W l

2(G) + ‖fp(x, ρ,∇ρ)D2ρ‖2
W l

2(G), (5.9)

and we have to estimate these three terms. The first one is readily bounded
as
‖fx(x, ρ,∇ρ)‖2

W l
2(G) ≤‖fx(x, ρ,∇ρ)‖2

L2(G) + ‖fxx(x, ρ,∇ρ)‖2
L2(G)+

+ ‖fxs(x, ρ,∇ρ)∇ρ‖2
L2(G) + ‖fxp(x, ρ,∇ρ)D2ρ‖2

L2(G),

since the first three addends are bounded, and the fourth is estimated through
(5.2). For the second term in (5.9) we apply proposition 2.1.3

‖fs(x, ρ,∇ρ)∇ρ‖W l
2(G) ≤ c‖fs(x, ρ,∇ρ)‖W l

2(G)‖∇ρ‖W 1+l
2 (G),

and the first factor can be estimated as fx(x, ρ,∇ρ) above, while the second
is less than µ by (5.2). Let us now estimate the third term in (5.9): applying
the mean value theorem we have

‖fp(x, ρ,∇ρ)D2ρ‖2
W l

2(G) ≤ cf (µ) + c

∫
|z|≤1

‖fp(x, ρ,∇ρ)∆−zD
2ρ‖2

L2(G)

dz

|z|2+2l

+ c

∫
|z|≤1

‖D2ρDfp(ξz)(z,∆−zρ,∆−z∇ρ)‖2
L2(G)

dz

|z|2+2l
,

for some uniformly bounded function ξz. Since fp(x, ρ,∇ρ) is bounded,∫
|z|≤1

‖fp(x, ρ,∇ρ)∆−zD
2ρ‖2

L2(G)

dz

|z|2+2l
≤ cf (µ)‖ρ‖W l+2

2 (G).

Moreover, by proposition 2.1.3, point 1∫
|z|≤1

‖D2ρDfp(ξz)(z,∆−zρ,∆−z∇ρ)‖2
L2(G)

dz

|z|2+2l

≤ cf (µ)

∫
|z|≤1

‖D2ρ(|z|+ ∆−zρ+ ∆−z∇ρ)‖2
L2(G)

dz

|z|2+2l
≤

cf (µ)
(
‖D2ρ‖2

L2(G)+ ‖D
2ρ‖2

W l
2(G)

∫
|z|≤1

‖∆−zρ‖2
W 1−l

2 (G)+ ‖∆−z∇ρ‖
2
W 1−l

2 (G)

dz

|z|2+2l

)
≤ cf (µ)µ2

(
1 +

∫
|z|≤1

‖∆−zρ‖2
L2(G) + ‖∆−z∇ρ‖2

L2(G) + ‖∆−zD2ρ‖2
L2(G)

dz

|z|2+2l

)
,



5.1. ESTIMATE OF THE NONLINEAR TERMS 97

where we bounded the W 1−l
2 with the W 1

2 one. The last integral is bounded
by ‖ρ‖2

W l+2
2 (G), and using (5.2), we obtain a bound depending only on f and

µ. Taking the supremum in t < T in all these bounds gives (5.8).
For the time derivative, we claim

sup
G
‖f(x, ρ,∇ρ)‖

W
l
2 + 3

4
2 (0,T )

≤ cf (µ). (5.10)

Indeed the L2(0, T ) norm is bounded again by (5.3), while with the same
argument as before we get, for any x ∈ G

‖fs(x, ρ,∇ρ)ρ,t‖2

W
l
2−

1
4

2 (0,T )
≤ cf

[
‖ρ,t(x, ·)‖2

W
l
2−

1
4

2 (0,T )

+

∫ T

0

dh

h
1+l
2

‖∆−hf(x, ρ,∇ρ)ρ,t‖2
L2(0,T )

]
≤ cf

[
‖ρ,t(x, ·)‖

W l+1, l2 +1(GT )

+ ‖ρ,t(x, ·)‖2

W
l
2−

1
4

2 (0,T )

∫ T

0

(
‖∆−hρ‖2

W
3
4−

l
2

2 (0,T )
+ ‖∆−h∇ρ‖2

W
3
4−

l
2

2 (0,T )
+ h2

) dh
h

1+l
2

]
≤ cfµ

2
[
1 +

∫ T

0

(
‖∆−hρ‖2

L2(0,T ) + ‖∆−h∇ρ‖2
L2(0,T ) + ‖∆−hρ,t‖2

L2(0,T )

+ ‖∆−h∇ρ,t‖2
L2(0,T )

) dh
h

1+l
2

]
≤ cfµ

2
(
1 + ‖ρ(x, ·)‖2

W
l
2−

1
4

2 (0,T )
+ ‖∇ρ(x, ·)‖2

W
l
2−

1
4

2 (0,T )

+ ‖ρ,t(x, ·)‖2

W
l
2−

1
4

2 (0,T )
+ ‖∇ρ,t(x, ·)‖2

W
l
2−

1
4

2 (0,T )

)
≤ cfµ

2
(
1 + ‖ρ‖2

W
l+ 3

2 ,
l
2 + 3

4
2 (GT )

+ ‖ρ,t‖2

W
l+ 3

2 ,
l
2 + 3

4
2 (GT )

)
= cf (µ)

and with exactly the same procedure

sup
G
‖fp(x, ρ,∇ρ)∇ρ,t‖

W
l
2−

1
4

2 (0,T )
≤ cf (µ).

Now we can apply proposition 2.1.3, noting that

‖fg‖2
W η,0

2 (GT ) =

∫ T

0

‖fg‖2
W η

2 (G)dt ≤ sup
t<T
‖f‖2

W 1+l
2 (G)

∫ T

0

‖g‖2
W η

2 (G)dt, (5.11)

‖fg‖2

W 0,η′
2 (GT )

=

∫
G
‖fg‖2

W η′
2 (0,T )

dx ≤ sup
G
‖f‖2

W
l
2 + 3

4
2 (0,T )

∫
G
‖g‖2

W η′
2 (0,T )

dt,

(5.12)
and thus (5.8) and (5.10) for f = f(x, ρ,∇ρ) give the claim of the lemma. �

Remark 5.1.3 In the following, we will have to estimate also functions of
the form f(x, ρ∗(x),∇ρ∗(x)) for x ∈ Ωb. The proof of (5.10) and (5.8) carries
over in this case, using the fact that any norm of ρ∗ on Ωb is bounded by the
same norm of ρ on G. For the final step, we recall that 1 + l > 3

2
and thus

proposition 2.1.3 still applies.
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Remark 5.1.4 In the proof of theorem 5.1.1 we will actually need values of
η′ in the range η′ ∈ [0, l

2
+ 1

4
]. Since l

2
+ 1

4
< 1, one can prove instead of

(5.10) the estimate

sup
G
‖f(x, ρ,∇ρ)‖W 1

2 (0,T ) ≤ cf (µ),

which actually allows to prove the lemma for η′ ≤ 1. This is simpler to prove
since the L2 norm is bounded and

‖fs(x, ρ,∇ρ)ρ,t‖L2(0,T ) + ‖fp(x, ρ,∇ρ)∇ρ,t‖L2(0,T )

≤ cf (µ)(sup
G
‖ρ‖W 1

2 (0,T ) + ‖∇ρ‖W 1
2 (0,T )),

which allows to conclude by (5.4) since l
2

+ 3
4
> 1.

From now on c will denote a constant depending on µ, the base state of
the system (Ωb,vb, pb) and a finite set of functions f = f(x, s, p), which can
change from line to line but will be anyway denoted by c.

Estimate of ‖l0‖
W
l, l2
2 (QT )

.

For the norm ‖l0‖W l,0
2 (QT ), recalling the explicit formula (3.19) and (3.15), we

notice that the various addends (except u · ∇u) of l̃0 are linear combinations
of terms of the type

ρ∗,xiρ
∗g(x, ρ∗,∇ρ∗)vjwk,xl ,

with v andw equal to vb or u and all possible ways. These terms are estimated
in the W l, l

2
2 (Ωb) norm through Lemma 5.1.2 and a repeated application of

(5.11), (5.12). We have, for any η ≤ 1 + l and η′ ≤ l
2

+ 1
4
:

‖ρ∗,xiρ
∗g(x, ρ∗,∇ρ∗)vjwk,xl‖W η,0

2 (QT )

≤ c sup
t<T
‖∇ρ‖W 1+l

2 (G) sup
t<T
‖ρ‖W 1+l

2 (G) sup
t<T
‖v‖W 1+l

2 (Ωb)
‖∇w‖W η,0

2 (QT ),
(5.13)

‖ρ∗xiρ
∗g(x, ρ∗,∇ρ∗)vjwkxl‖W 0,η′

2 (QT )

≤ c sup
G
‖∇ρ‖W 1

2 (0,T ) sup
G
‖ρ‖W 1

2 (0,T ) sup
Ωb

‖v‖
W

l
2 + 1

4
2 (0,T )

‖∇w‖
W 0,η′

2 (QT )
.

(5.14)

Now letting η = l and η′ = l
2
, we apply (5.2)–(5.5) to obtain at least quadratic

estimates in ‖ρ‖l and ‖u‖
W
l+2, l2 +1

2 (QT )
for these terms. For the term u · ∇u

one proceeds in a similar way, obtaining the same estimate without the norms
involving ρ.
For l̃0 one thus have the estimate

‖̃l0‖
W
l, l2
2 (QT )

≤ c
(
‖ρ‖2

l + ‖ρ‖l‖u‖
W
l+2, l2 +1

2 (QT )
+ ‖u‖2

W
l+2, l2 +1

2 (QT )

)
.
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Estimate of ‖̃l1‖
W
l, l2
2 (QT )

.

We start from l1(u, q, ρ), as given in (3.8) : recall that ∇̃ = LT∇ and

I − L−T =
∇ρ∗

1 + θ′ρ
⊗ e3, (5.15)

therefore (∇− ∇̃)q is a linear combination of terms ρ,xif(x, ρ∗,∇ρ∗)q,xj and
can be estimated as in (5.13), (5.14) with ρ∗g(x, ρ∗,∇ρ∗)vj = f(x, ρ∗,∇ρ∗)
and wk = q

‖ρ,xif(x, ρ∗,∇ρ∗)q,xj‖W l,0
2 (QT ) ≤ c sup

t<T
‖∇ρ‖W 1+l

2 (G)‖∇q‖W l,0
2 (QT ),

‖ρ,xif(x, ρ∗,∇ρ∗)q,xj‖
W

0, l2
2 (QT )

≤ c sup
G
‖∇ρ‖W 1

2 (0,T )‖∇q‖
W

0, l2
2 (QT )

.

Regarding the term (∇2 − ∇̃2)u, we can use (5.15) to split it in several
addends, of the type f(x, ρ∗,∇ρ∗) times

ρ∗,xju,xm , ρ∗,xixju,xk , or ρ∗,xku,xixj . (5.16)

The terms of the first type are estimated as in (5.13),(5.14), setting

ρ∗g(x, ρ∗,∇ρ∗)vj = f(x, ρ∗,∇ρ∗).

We estimate the W l,0
2 (QT ) norm of the other two terms through proposition

2.1.3 and lemma 5.1.2:

‖ρ∗,xixjf(x, ρ∗,∇ρ∗)u,xm‖W l,0
2 (QT ) ≤ c sup

t<T
‖D2ρ‖W l

2(G)‖∇u‖W l+1,0
2 (QT ),

‖ρ∗,xmf(x, ρ∗,∇ρ∗)u,xixj‖W l,0
2 (QT ) ≤ c sup

t<T
‖∇ρ‖W l+1

2 (G)‖D
2u‖W l,0

2 (QT ),

and we conclude using (5.2). Regarding the time derivative, the third term
in (5.16) is estimated through (5.4):

‖ρ∗,xmf(x, ρ∗,∇ρ∗)u,xixj‖
W

0, l2
2 (QT )

≤ c sup
G
‖∇ρ‖W 1

2 ([0,T ])‖D
2u‖

W
0, l2
2 (QT )

.

For the time derivative of the second term in (5.16) it suffice, by lemma 5.1.2,
to estimate ‖ρ∗,xixju,xm‖W 0, l2

2 (QT )
. Since

‖ρ∗,xixju,xm‖
2

W
0, l2
2 (QT )

=

∫ T

0

dh

h1+l

∫ T

h

‖∆−h(ρ∗,xixju,xm)‖2
L2(Ωb)

dt

≤ c

∫ T

0

dh

h1+l

∫ T

h

‖u,xm∆−hρ
∗
,xixj
‖2
L2(Ωb)

+ ‖ρ∗,xixj∆−hu,xm‖
2
L2(Ωb)

dt
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we split the estimate into two parts. We have, by Proposition 2.1.3∫ T

0

dh

h1+l

∫ T

h

‖ρ∗,xixj∆−hu,xm‖
2
L2(Ωb)

dt

≤
∫ T

0

dh

h1+l

∫ T

h

‖ρ,xixj‖
2
W l

2(G)‖∆−hu,xm‖
2

W
3
2−l

2 (Ωb)
dt

≤ sup
t<T
‖ρ‖2

W 2+l
2 (G)

∫ T

0

dh

h1+l

∫ T

h

‖∆−hu,xm‖
2
L2(Ωb)

+ ‖∆−h∇u,xm‖
2
L2(Ωb)

dt

≤ sup
t<T
‖ρ‖2

W 2+l
2 (G)‖u‖

2

W
l+2, l2 +1

2 (QT )
,

since 3
2
− l < 1, while, by Hölder inequality∫ T

0

dh

h1+l

∫ T

h

‖u,xm∆−hρ
∗
,xixj
‖2
L2(Ωb)

dt ≤

≤
∫ T

0

dh

h1+l

∫ T

h

sup
Ωb

|∇u(·, t)|2‖
∫ h

0

D2ρ·,t(t− ξ)dξ‖2
L2(G)dt

≤ c

∫ T

0

dh

hl

∫ T

h

‖u(·, t)‖2
W l+2

2 (Ωb)

∫ h

0

‖D2ρ,t(·, t− ξ)‖2
L2(G)dξdt

≤ c

∫ T

0

‖D2ρ,t(·, s)‖2
L2(G)ds

∫ T

0

‖u(·, t)‖2
W l+2(Ωb)

dt

∫ T

0

dh

hl

≤ cT 1−l‖u‖2

W l+2,0
2 (QT )

‖ρ,t‖2
W 2,0

2 (GT ).

The addend ρ∗,t(L−1e3 · ∇)u in l1 is a linear combination of terms of the form
ρ∗,tf(x, ρ∗,∇ρ∗)uj,xi , which are estimated as

‖ρ∗,tf(x, ρ∗,∇ρ∗)uj,xi‖W l,0
2 (QT ) ≤ c sup

t<T
‖ρ,t‖W l

2(G)‖∇u‖W l+1,0
2 (QT )

≤ c‖u‖
W
l+2, l2 +1

2 (QT )
‖ρ,t‖

W
l+1, l2 + 1

2
2 (GT )

,

and, by (5.4) and noting that l
2

+ 1
4
> 1

2
,

‖ρ∗,tf(x, ρ∗,∇ρ∗)uj,xi‖W 0, l2
2 (QT )

≤ c sup
G
‖ρ,t‖

W
l
2 + 1

4
2 ([0,T ])

‖∇u‖
W

0, l2
2 (QT )

≤ c‖ρ‖l‖u‖
W
l+1, l2 + 1

2
2 (QT )

.

We now estimate the remaining terms in (3.17). Recall by (3.15), that
L−T − I − δL−T has entries of the form ρ∗ρ∗,xkf

k(x, ρ∗). Looking at the
explicit form (3.17) of l̃1, we have to estimate terms of the form f(x, ρ,∇ρ)
times

ρ∗ρ∗,xixj , ρ∗,xiρ
∗
,xj
, ρ∗ρ∗,t, ρ∗ρ∗,xi .
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We estimate all these terms using (5.2) and (5.4): for the first type of terms

‖ρ∗D2ρ∗‖W l,0
2 (QT ) ≤ c sup

t<T
‖ρ‖W l+1

2 (G)‖D
2ρ‖W l

2(G) ≤ c‖ρ‖l‖ρ‖W l+2,0
2 (GT ),

‖ρ∗D2ρ∗‖
W

0, l2
2 (QT )

≤ c sup
G
‖ρ‖W 1

2 (G)‖D
2ρ‖

W
0, l2
2 (GT )

≤ c‖ρ‖l‖ρ‖
W
l+2, l2 +1

2 (GT )
,

and both are bounded by c‖ρ‖2
l . Similarly for the second type of terms

‖ρ∗,xiρ
∗
,xj
‖W l,0

2 (QT ) ≤ c sup
t<T
‖ρ‖W l+2

2 (G)‖∇ρ‖W l
2(GT ) ≤ c‖ρ‖2

l ,

‖ρ∗,xiρ
∗
,xj
‖
W

0, l2
2 (QT )

≤ c sup
G
‖∇ρ‖W 1

2 (0,T )‖ρ‖
W
l+1, l2 + 1

2
2 (GT )

≤ c‖ρ‖2
l ,

while for the third type it holds

‖ρ∗ρ∗,t‖W l,0
2 (QT ) ≤ c sup

t<T
‖ρ‖W l+1

2 (G)‖ρ,t‖W l
2(G) ≤ c‖ρ‖2

l ,

‖ρ∗ρ∗,t‖
W

0, l2
2 (QT )

≤ sup
G
‖ρ‖W 1

2 (G)‖ρ,t‖
W

0, l2
2 (GT )

≤ c‖ρ‖2
l .

The fourth one is lower order and is estimated as before. Collecting these
estimates we get

‖̃l1(u, q, ρ)‖
W
l, l2
2 (QT )

≤ c‖ρ‖l(‖∇q‖
W
l, l2
2 (QT )

+ ‖u‖
W
l+2, l2 +1

2 (QT )
+ ‖ρ‖l).

Estimates of ‖l̃2(u, ρ)‖W l+1,0
2 (QT ) and ‖G(u, ρ)‖

W
0, l2 +1

2 (QT )
.

We have that l̃2, as given in (3.22), is a linear combination of terms of the form
ρ∗,xiu

k
,x3

and ρ∗uk,xi and thus its W l+1,0
2 (QT ) norm is estimated as in (5.13).

For the time derivative of G, also given in (3.22), notice that its W 0, l
2

2 (QT )
has been already estimated in (5.14). Therefore it suffice to estimate the
W

0, l
2

2 (QT ) of its time derivative, i.e.

(∇ρ∗,t · u)e3 + (∇ρ · u,t)e3 − θ′(ρ,tu+ ρu,t).

To this end notice that, applying (5.5), one gets

‖∇ρ∗,t · u‖
W

0, l2
2 (QT )

≤ c sup
Ωb

‖u‖
W

l
2 + 1

4
2 ([0,T ])

‖∇ρ,t‖
W

0, l2
2 (GT )

≤ c‖u‖
W
l+2, l2 +1

2 (QT )
‖ρ,t‖

W
l+1, l2 + 1

2
2 (GT )

≤ c‖u‖
W
l+2, l2 +1

2 (QT )
‖ρ‖l,
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since l
2

+ 1
4
> 1

2
. Furthermore, by (5.4),

‖∇ρ∗u,t‖
W

0, l2
2 (QT )

≤ c sup
G

(
‖ρ‖W 1

2 ([0,T ]) + ‖∇ρ‖W 1
2 ([0,T ])

)
‖u,t‖

W
0, l2
2 (QT )

≤ c‖ρ‖l‖u‖
W

0, l2 +1

2 (QT )
.

The same estimates holds for the terms in ρ,tu and ρu,t, and thus we have
obtained

‖l̃2(u, ρ)‖W l+1,0
2 (QT ) + ‖G(u, ρ)‖

W
0, l2 +1

2 (QT )
≤ c‖ρ‖l‖u‖

W
l+2, l2 +1

2 (QT )
.

Estimate of ‖̃l3‖
W
l+ 1

2 ,
l
2 + 1

4
2 (GT )

.

We look at ‖Πbb‖
W
l+ 1

2 ,
l
2 + 1

4
2 (GT )

for b given in (3.26). First notice that

‖Πbb‖
W
η,
η
2

2 (GT )
≤ c‖b‖

W
η,
η
2

2 (GT )
;

indeed, Πbb = b−NbNN and since N is smooth and independent of t, the
claim follows from

‖NbNN‖W η,0
2 (GT ) ≤ ‖N‖Wmax{1+ε,η}

2 (G)
‖d‖W η,0

2 (GT ).

The first addend in (3.26) is ΠbD(u)N − ΠD̃(u)n which amounts to

D(u)N − D̃(u)n−ND(u)NN + nD̃(u)nn =

=
(
D(u)− D̃(u)

)
N − D̃(u)(n−N ) +N

(
D(u)− D̃(u)

)
NN+

+ (N − n)D̃(u)NN + nD̃(u)(N − n)N + nD̃(u)n(N − n).

Each addend is a linear combination of terms of the form ρ,xif(x, ρ,∇ρ)uk,xj ,
which are estimated as

‖ρ,xif(x, ρ,∇ρ)uk,xj‖W l+ 1
2 ,0

2 (GT )
≤ c sup

t<T
‖∇ρ‖

W
l+ 1

2
2 (G)

‖∇u‖
W
l+ 1

2 ,0

2 (GT )

≤ c sup
t<T
‖ρ‖

W
l+ 3

2
2 (G)

‖u‖
W
l+2, l2 +1

2 (QT )
,

since l + 1
2
> 1, and, using now 1 > l

2
+ 1

4
> 1

2
, we have by (5.4)

‖ρ,xif(x, ρ,∇ρ)uk,xj‖W 0, l2 + 1
4

2 (GT )
≤ c sup

G
‖∇ρ‖W 1

2 (0,T )‖∇u‖
W

0, l2 + 1
4

2 (GT )

≤ c sup
G
‖∇ρ‖W 1

2 (0,T )‖u‖
W
l+2, l2 +1

2 (QT )
,
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Regarding the second addend, it can be decomposed as a sum of several
second order terms: calling D(vb) = bDb and D̃(vb) = D̃b, it is(
D̃b − Db

)
(n−N ) +

(
D̃b − Db − δDb

)
N + Db(n−N − δN )+

n
(
D̃b − Db − δDb

)
nn+ (n−N − δN )Dbnn+NδDb(n−N )n+

NDb(n−N − δN )n+NDbN (n−N − δN ) +NDbδN (n−N )+

δNDb(n−N )n+ (n−N )δDbnn+ δNDbN (n−N ) +NδDbN (n−N ).

Each factor of the type (n − N), δN or δDb is a linear combination of
ρ,xig(x, ρ,∇ρ), as can be checked in (3.27), and these terms are always paired

up in the decomposition above. For these addends, the W l+ 1
2
, l
2

+ 1
4

2 (GT )-norm
can be estimated as

‖ρ,xiρ,xjf(ρ,∇ρ)‖
W
l+ 1

2 ,0

2 (GT )
≤ c sup

t<T
‖∇ρ‖

W
l+ 1

2
2 (G)

‖ρ‖
W
l+ 3

2 ,0

2 (GT )
,

‖ρ,xiρ,xjf(ρ,∇ρ)‖
W

0, l2 + 1
4

2 (GT )
≤ c sup

G
‖∇ρ‖W 1

2 ([0,T ])‖∇ρ‖
W

0, l2 + 1
4

2 (GT )

≤ c‖ρ‖l‖ρ‖
W
l+ 3

2 ,
l
2 + 3

4
2 (GT )

.

Regarding the terms involving n−N − δN , we see that

n−N−δN =

∫ 1

0

(1−s) d
2

ds2

(
−∇(φb + sρ

)
, 1)√

1 + |∇(φb + sρ)|2
ds = ρ,xiρ,xj

∫ 1

0

Aij(s,∇ρ)ds,

for some smooth functions Aij, and thus one can proceed in the same way.
The terms involving S̃b − Sb − δSb are of the form ρ,xiρf(ρ), which are of
lower order, and thus can again be bounded with c‖ρ‖2

l . All in all we get

‖̃l3‖
W
l+ 1

2 ,
l
2 + 1

4
2 (GT )

≤ c‖ρ‖l(‖ρ‖+ ‖u‖
W
l+2, l2 +1

2 (QT )
).

Estimate of ‖l̃4‖
W
l+ 1

2 ,
l
2 + 1

4
2 (GT )

.

We observe that, using NDbδN = δNDbN = 0, l̃4 can be written as

(n−N )D̃(u)n+N D̃(u)(n−N ) + (n−N )(D̃b − Db)n

+N (D̃b − Db)(n−N ) + (n−N )Db(n−N ) +NDb(n−N − δN )

+ (n−N − δN )DbN +N (D̃b − Db − δDb)N − σ
∫ 1

0

(1− s) d
2

ds2
Hsds.

Each term except the last one is of a form treated above, either

ρ,xiρ,xjf(x, ρ,∇ρ), ρ,xif(x, ρ,∇ρ)uk,xj or ρρ,xif(x, ρ,∇ρ).
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For the last term we have, recalling (3.6),∫ 1

0

(1−s) d
2

ds2
Hsds = ρxiρ,xj

∫ 1

0

f ij(s, x,∇ρ)ds+ρ,xkρ,xixj

∫ 1

0

gijk(s, x,∇ρ)ds.

The first type of addend is treated as above, while for the second one we
proceed as follows: for the spatial derivative

‖ρ,xkρ,xixjh(x,∇ρ)‖
W
l+ 1

2 ,0

2 (GT )
≤ c sup

t<T
‖∇ρ‖

W
l+ 1

2
2 (G)

‖ρ‖
W
l+ 5

2 ,0

2 (GT )
,

since l + 1
2
> 1, and thus a bound of the form c‖ρ‖2

l for this term is obtained
via (5.2). For the time derivative, using (5.4) and l

2
+ 1

4
< 1 < l

2
+ 3

4

‖ρ,xkρ,xixjh(x,∇ρ)‖
W

0, l2 + 1
4

2 (GT )
≤ c sup

G
‖∇ρ‖W 1

2 (0,T )‖ρ,xixj‖
W

0, l2 + 1
4

2 (GT )

≤ c‖ρ‖l‖ρ‖
W
l+ 5

2 ,
l
2 + 5

4
2 (GT )

.

Estimate of ‖l̃5‖
W
l+ 3

2 ,
l
2 + 3

4
2 (GT )

.

The explicit formula for l̃5 is given in (3.13). To estimate the spatial derivative
we use (2.8):

‖∇ρ · u‖
W
l+ 3

2
2 (G)

≤ c
(
‖∇ρ‖

W
l+ 1

2
2 (G)

‖u‖
W
l+ 3

2
2 (G)

+ ‖∇ρ‖
W
l+ 3

2
2 (G)

‖u‖
W
l+ 1

2
2 (G)

)
,

since l+ 1
2
> 1. Now (5.2) and the standard restriction estimates for anisotropic

Sobolev–Slobodetskii spaces give

‖∇ρ · u‖
W
l+ 3

2 ,0

2 (GT )
≤ c
(

sup
t<T
‖ρ‖

W
l+ 3

2
2 (G)

‖u‖
W
l+ 3

2 ,0

2 (GT )
+

+ sup
t<T
‖u‖

W
l+ 1

2
2 (G)

‖ρ‖
W
l+ 5

2 ,0

2 (G)

)
≤ c‖ρ‖

W
l+ 5

2 ,
l
2 + 5

4
2 (GT )

‖u‖
W
l+2, l2 +1

2 (QT )
.

(5.17)

For the time derivative we use (5.4), obtaining

‖∇ρ · u‖
W

0, l2 + 3
4

2 (GT )
≤ c sup

G
‖∇ρ‖

W
l
2 + 3

4
2 (0,T )

‖u‖
W

0, l2 + 3
4

2 (GT )

≤ c‖ρ‖l‖u‖
W
l+2, l2 +1

2 (QT )
,

which is the last estimate needed for the proof of 5.1.1.
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Remark 5.1.5 As noted in the introduction, if a solution of the nonlin-
ear problem (1.2) has free boundary function ρ ∈ W

l+ 5
2
, l
2

+ 5
4

2 (GT ) and u ∈
W

l+2, l
2

+1

2 (QT ), then supt<T‖ρ‖W l+2
2 (G) is bounded. Indeed formula (3.12)

shows that ρ,t ∈ W
l+ 3

2
,0

2 (GT ) since the nonlinear term is estimated as in
(5.17), and the lower order terms are in W l+ 3

2
,0

2 (GT ) for sufficiently smooth
vb and φb (vb ∈ W l+2

2 (Ωb) and φb ∈ W
l+ 5

2
2 (G) suffice). Now (5.2) proves the

claim.

Finally we prove a continuity estimate for the nonlinear terms.

Theorem 5.1.6 Let l ∈ (1
2
, 1), and ‖ρ‖l, ‖ρ′‖l ≤ µ such that (5.1) holds.

There exists c(µ), bounded for bounded µ, such that

‖̃l0(u, ρ)− l̃0(u′, ρ′)‖
W
l, l2
2 (QT )

+ ‖̃l1(u, p, ρ)− l̃1(u′, p′, ρ′)‖
W
l, l2
2 (QT )

+ ‖l̃2(u, ρ)− l̃2(u′, ρ′)‖W l+1,0
2 (QT ) + ‖G(u, ρ)−G(u′, ρ′)‖

W
0, l2 +1

2 (QT )

+ ‖̃l3(u, ρ)− l̃3(u′, ρ′)‖
W
l+ 1

2 ,
l
2 + 1

4
2 (GT )

+ ‖l̃4(u, ρ)− l̃4(u′, ρ′)‖
W
l+ 1

2 ,
l
2 + 1

4
2 (GT )

+ ‖l̃5(u, ρ)− l̃5(u′, ρ′)‖
W
l+ 3

2 ,
l
2 + 3

4
2 (GT )

≤

c(T, µ)(‖(u, p, ρ)‖W,l,T + ‖(u′, p′, ρ′)‖W,l,T )‖(u− u′, p− p′, ρ− ρ′)‖W,l,T .

Proof. This is a consequence of the structure of the nonlinear terms: as
noted in the previous estimates, each nonlinear term is a linear combinations
of products of the form

f(x, ρ,∇ρ)π(u,∇u, ρ, ρ,t,∇ρ,∇2ρ, p,∇p)

where π stands for a monomial of total degree at least 1 in a certain subset
of the arguments. Therefore, except for the term f(x, ρ,∇ρ), each of these
terms is separately linear in its arguments, and can be estimated as above,
provided one can prove an estimate of the form

‖(f(x, ρ,∇ρ)− f(x, ρ′,∇ρ′))g‖W η,0
2 (GT ) ≤ cf (µ)‖ρ− ρ′‖l‖g‖W η,0

2 (GT ),

‖(f(x, ρ,∇ρ)− f(x, ρ′,∇ρ′))g‖
W 0,η′

2 (GT )
≤ cf (µ)‖ρ− ρ′‖l‖g‖W 0,η′

2 (GT )
,

(5.18)

(and analogous ones for ρ∗ on QT ), with η ≤ 1 + l and η′ ≤ 1 (see remark
5.1.4 with regard to η′). Indeed it suffice to split the difference of the products
following the algebraic formula

ΠN
i=1xi − ΠN

i=1yi =
N∑
i=1

y1 . . . · yi−1(xi − yi)xi+1 . . . xN , (5.19)
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and use estimates (5.18) for the terms containing the differences of the
nonlinear terms f ’s. The particular structure of the various products π (for
example being of degree at most one in u and ∇u) ensures that the estimates
of the previous proof carry over in this case. To prove (5.18) we notice that,
as in the proof of lemma 5.1.2, it suffice to show that

sup
t<T
‖f(x, ρ,∇ρ)− f(x, ρ′,∇ρ′)‖W 1+l

2 (G) ≤ cf (µ)‖ρ− ρ′‖l, (5.20)

sup
G
‖f(x, ρ,∇ρ)− f(x, ρ′,∇ρ′)‖W 1

2 (0,T ) ≤ cf (µ)‖ρ− ρ′‖l. (5.21)

(this also implies estimates of the form (5.18) involving ρ∗ on QT , see remark
5.1.3 in this regard). We sketch the proof of these two estimate, supposing for
simplicity that f = f(∇ρ), which is the higher order term. The smoothness of
f together with (5.3) gives the Lipschitzianity w.r.t. the norm ‖ρ‖l of f(∇ρ)
in C0 and thus in L2, i.e.

sup
GT

|f(∇ρ)− f(∇ρ′)| ≤ cf (µ)‖ρ− ρ′‖l. (5.22)

Thus it remains to estimate
‖fp(∇ρ)D2ρ−fp(∇ρ′)D2ρ′‖W l

2(G)

≤ ‖(fp(∇ρ)− fp(∇ρ′))D2ρ‖W l
2(G) + ‖fp(∇ρ′)D2(ρ′ − ρ)‖W l

2(G).

The second addend is treated through lemma 5.1.2 and (5.2), while for the
first one, applying proposition 2.1.3, point 2, we get

‖(fp(∇ρ)−fp(∇ρ′))D2ρ‖W l
2(G)

≤ cµ(‖fp(∇ρ)− fp(∇ρ′)‖W 1
2 (G) + sup

G
|fp(∇ρ)− fp(∇ρ′)|).

Property (5.22) takes care of the second addend, and the L2 part of the first
one’s norm. Therefore it remains to estimate fp(∇ρ)D2ρ− fp(∇ρ′)D2ρ in L2,
which can be splitted as before, and thus

‖fp(∇ρ)D2ρ−fp(∇ρ′)D2ρ‖L2(G)

≤ cf (µ)‖ρ− ρ′‖W 2
2 (G) + sup

G
|fp(∇ρ)− fp(∇ρ′)|‖ρ‖W 2

2 (G).

Applying once again (5.22) proves (5.20). To prove of (5.21) it suffice again
to estimate fp(∇ρ)∇ρ,t − fp(∇ρ′)∇ρ′,t in L2, which can be done as before:

‖fp(∇ρ)∇ρ,t − fp(∇ρ′)∇ρ′,t‖L2(0,T )

≤ ‖(fp(∇ρ)− fp(∇ρ′))∇ρ,t‖L2(0,T ) + ‖fp(∇ρ′)∇(ρ,t − ρ′,t)‖L2(0,T )

≤ cf (µ)(‖ρ− ρ′‖l‖∇ρ‖W 1
2 (0,T ) + ‖∇(ρ− ρ′)‖W 1

2 (0,T )) ≤ cf (µ)‖ρ− ρ′‖l.

�
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5.2 The abstract linearization principle

In this section we will prove a conditional stability result for some smooth,
stationary solution (vb, pb, φb) of problem (1.2). Our main hypothesis is that
the solutions of the homogeneous linearized system

u,t − ν∆u+∇q −Φ1(u, ρ) = 0 in Ωb,

∇ · u− Φ2(ρ) = 0 in Ωb,

T(u, q)N + σLρN − Φ̃(ρ) = 0 on G,
ρt +∇′φb · u− u3 +∇′ρ · vb = 0 on G,
u = 0 on Σ, for all t ≥ 0,

u(x, 0) = u0(x), ρ(x′, 0) = ρ0(x′), for x ∈ Ωb, x′ ∈ Σ,

(5.23)

subjected to the compatibility conditions{
∇ · u0 − Φ2(ρ0) = 0,

νΠbD(u0)N −Φ3(ρ0) = 0,
(5.24)

decay exponentially in time, i.e. there exists γ < 0 such that

‖e−γt(u, p, ρ)‖W,l,∞ ≤ c(‖u0‖W l+1
2 (Ωb)

+ ‖ρ0‖W l+2(G)), (5.25)

with c independent of T . Under this condition we will prove the existence,
uniqueness and exponential decay of a global in time solution of (3.10) if the
initial data are sufficiently small, and thus of (1.2) if the initial data differs
little from the stable stationary solution.

Theorem 5.2.1 Let l ∈ (1
2
, 1), and suppose that for the periodic stationary

solution (vb, pb, ρb) of (1.2), the corresponding linearized system is exponen-
tially stable, i.e. there exists γ < 0 such that (5.25) holds for any solution of
(5.23) with periodic initial data satisfying (5.24). Then, for any sufficiently
small periodic initial data u0, ρ0 (in the W l+1

2 (Ωb) and W l+2
2 (G) norms re-

spectively) satisfying the compatibility conditions (3.11), there exists a unique
periodic solution (u, p, ρ) of (3.10), defined for all t ≥ 0 and such that (5.25)
holds for some γ′ < 0.

Proof. We will construct the solution as a sum (u, p, ρ) = (u1 + u2, p1 +
p2, ρ1 + ρ2), where (u1, p1, ρ1) is a solution of (5.23) for some initial data
u1bt=0:= u0

1, ρ1bt=0= ρ0, and (u2, p2, ρ2) solves a nonlinear problem with
initial data u2bt=0= u0 − u0

1, ρ2bt=0= 0. We split the proof into three steps.
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Step 1: construction of (u1, p1, ρ1).
We start by constructing w0 solving

∇ ·w0 = l̃2(u0, ρ0) in Ωb,

νΠbD(w0)N = l̃3(u0, ρ0) on G,
v0 = 0 on Σ,

(5.26)

with the estimate

‖w0‖W l+1
2 (Ωb)

≤ c(‖l̃2(u0, ρ0)‖W l
2(Ωb)

+ ‖̃l3(u0, ρ0)‖
W
l− 1

2
2 (G)

).

This can be done setting w0 = w +∇× V , for a periodic w such that{
∇ ·w = l̃2(u0, ρ0) in Ωb,

w = 0 on Σ,

and a vector V such that
V = ∂V

∂N
= 0 on G,

∂2V
∂N2 = (̃l3(u0, ρ0)− νΠbD(w)N )×N on G,
∇× V = 0 on Σ,

with w and V satisfying optimal regularity estimates. The vector w can be
constructed, for example, through theorem 4.1.3, and the vector V applying
theorem 2.1.6 on G and cutting off the resulting vector near Σ. To obtain
an estimate of w0 in terms of u0 and ρ0, we recall that l̃2(u, ρ) is a linear
combination of terms of the form ρ∗xiu

k
x3

and ρ∗ukxi , and thus proposition 2.1.3,
point 2 gives

‖l̃2(u0, ρ0)‖W l
2(Ωb)

≤ c‖ρ0‖W l+2
2 (G)‖u0‖W l+1

2 (Ωb)
.

For the term involving l̃3, as found in section 4, one has to consider addends
of the following kind:

ρ,xif(x, ρ,∇ρ)uk,xj , ρxiρ,xjf(ρ,∇ρ), or ρρ,xjf(ρ,∇ρ).

As in the proof of lemma 5.1.2 for ρ ≡ ρ0, one gets

‖̃l3(u0, ρ0)‖
W
l− 1

2
2 (G)

≤ c(‖ρ0‖
W
l+ 3

2
2 (G)

‖u0‖W l+1
2 (Ωb)

+ ‖ρ0‖2

W
l+ 3

2
2 (G)

).

All in all we get

‖w0‖W l+1
2 (Ωb)

≤ c(‖ρ0‖W l+2
2 (G) + ‖u0‖W l+1

2 (Ωb)
)2, (5.27)
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and define
U0 := ‖ρ0‖W l+2

2 (G) + ‖u0‖W l+1
2 (Ωb)

,

supposing it is sufficiently small, in a sense to be specified later. Now, since
(u0, ρ0) satisfies (3.11), it is clear that defining u0

1 := u0 − w0, the couple
(u0

1, ρ0) satisfies the compatibility conditions (5.24) for the homogeneous linear
problem (5.23). We will then let (u1, p1, ρ1) be the solution of (5.23) with
such initial data. Recalling the notation (4.79), the stability hypothesis gives,
for γ < 0 and T ≥ 1

‖(u1, p1, ρ1)‖W,l,∞ ≤ ‖e−γt(u1, p1, ρ1)‖W,l,∞
≤ c(‖u0

1‖W l+1
2

+ ‖ρ0‖W l+2
2 (G)) ≤ c1U0,

(5.28)

and by standard restriction estimates for unbounded intervals

e−γT
(
‖u1(·, T )‖W l+1

2 (Ωb)
+ ‖ρ1(·, T )‖W l+2

2 (G)

)
≤ ‖e−γt(u1, p1, ρ1)‖W,l,∞ ≤ c1U0,

(5.29)

with a constant c1 ≥ 1 independent of T ≥ 1.
Step 2: construction of (u2, p2, ρ2).

We seek for a solution of the nonlinear problem

u2,t − ν∆u2 +∇q2 −Φ1(u2, ρ2) = (̃l0 + l̃1)(u1 + u2, q1 + q2, ρ1 + ρ2) in Ωb,

∇ · u2 − Φ2(ρ2) = l̃2(u1 + u2, ρ1 + ρ2) = ∇ ·G(u1 + u2, ρ1 + ρ2) in Ωb,

νΠbD(u2)N −Φ3(ρ2) = l̃3(u1 + u2, ρ1 + ρ2) on G,
−q + νN · D(u2)N + σLρ2 − Φ4(ρ2) = l̃4(u1 + u2, ρ1 + ρ2) on G,
ρ2,t +∇′φb · u2 − u3

2 +∇′ρ2 · vb = l̃5(u1 + u2, ρ1 + ρ2) on G,
u2 = 0 on Σ, for all t ≥ 0,

u2(x, 0) = w0(x), for x ∈ Ωb, ρ2(x′, 0) = 0 for x′ ∈ Σ.

(5.30)
To find the solution we apply the standard iteration scheme, defining a
sequence of solutions of linear problems. We consider an extension v0 for
t ≥ 0 of w0 such that

‖v0‖
W
l+2, l2 +1

2 (Q∞)
≤ c‖w0‖W l+1

2 (Ωb)
≤ c3U

2
0 .

and start with the triple (v0, 0, 0), supposing c3U
2
0 ≤ 1. Then we iteratively

define (vn+1, pn+1, ρn+1) as the solution to problem (4.1) with right hand side,
respectively

fn := (̃l0 + l̃1)(u1 + vn, q1 + qn, ρ1 + ρn), hn := l̃2(u1 + un, ρ1 + ρn),
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dn := l̃3(u1+un, ρ1+ρn)+N l̃4(u1+un, ρ1+ρn), gn := l5(u1+un, ρ1+ρn).

and initial data vn+1(0) = w0 and ρn+1(0) = 0. The compatibility conditions
(4.81) for this problem are satisfied at each stage by (5.26). The coercive
estimate (4.82), together with theorem 5.1.1, (5.27) and (5.28), gives

‖(vn+1, qn+1,ρn+1)‖W,l,T
≤ c(µ, T )(‖(vn, qn, ρn)‖2

W,l,T + ‖(u1, p1, ρ1)‖2
W,l,T + cU2

0 )

≤ c2(µ, T )(‖(vn, qn, ρn)‖2
W,l,T + U2

0 ),

if
max{‖(vn, qn, ρn)‖W,l,T , ‖(u1, p1, ρ1)‖W,l,T} ≤ µ, (5.31)

for µ satisfying (5.1). We can thus fix µ = µ(θ) < 1 so that (5.1) holds, set
c2(µ, T ) = c2(T ) and we can suppose c2(T ) ≥ max{µ−1, c1, c3}. Then we
choose U0 so small that

U0 ≤
1

8c1c2(T )
=: ε(T ) ≤ 1

8c2(T )
. (5.32)

With this choice of U0 one can prove by induction that (5.31) holds (it holds
for (v0, 0, 0) by construction). More precisely,

‖(vn, qn, ρn)‖W,l,T ≤
2c2(T )U2

0

1 +
√

1− 4c2(T )2U2
0

≤ 2c2(T )U2
0 ≤

U0

4
≤ µ. (5.33)

It remains to prove that (vn, qn, ρn) strongly converges to a solution of (5.30).
To this end, consider (v̂n, p̂n, ρ̂n) := (vn+1 − vn, pn+1 − pn, ρn+1 − ρn). They
satisfy a linear system of the type (4.1) with right hand sides

fn := (̃l0 + l̃1)(u1 + vn, q1 + qn, ρ1 + ρn)

− (̃l0 + l̃1)(u1 + vn−1, q1 + qn−1, ρ1 + ρn−1),

hn := l̃2(u1 + un, ρ1 + ρn)− l̃2(u1 + un−1, ρ1 + ρn−1)

= ∇ ·G(u1 + un, ρ1 + ρn),

dn := l̃3(u1 + un, ρ1 + ρn)− l̃3(u1 + un−1, ρ1 + ρn−1)+

+N (l̃4(u1 + un, ρ1 + ρn)− l̃4(u1 + un−1, ρ1 + ρn−1)),

gn := l̃5(u1 + un, ρ1 + ρn)− l̃5(u1 + un−1, ρ1 + ρn−1),

and zero initial data. Since we can safely suppose that the constant c(1, T ) in
theorem 5.1.6 is equal to c2(T ), from (4.82), (5.28), (5.33) and theorem 5.1.6,
we get

‖(v̂n+1, p̂n+1,ρ̂n+1)‖W,l,T ≤ c2(T )
(
‖(vn+1, pn+1, ρn+1)‖W,l,T + ‖(vn, pn, ρn)‖W,l,T

+ 2‖(u1, p1, ρ1)‖W,l,T
)
‖(v̂n, p̂n, ρ̂n)‖W,l,T ≤

1

2
‖(v̂n, p̂n, ρ̂n)‖W,l,T ,
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by (5.32) and (5.28). This in turn gives strong convergence of the sequence
(v̂n, p̂n, ρ̂n). Finally the continuity estimate of theorem 5.1.6 ensures that the
nonlinear terms converge too, and thus the limit solves (5.30). Clearly (5.33)
holds for the solution.

Step 3: construction of the global solution
We chose T0 so large that c1e

γT0 < 1
4
in (5.28), then choose ε0 := ε(T0) as in

(5.32). If U0 ≤ ε0 we have a global solution in [0, T0] of (3.10) defined as the
sum (u, p, ρ) := (u1 +u2, p1 + p2, ρ1 + ρ2). From (5.29) and (5.33) we obtain
that

‖u(T0)‖W l+1
2 (Ωb)

+ ‖ρ(T0)‖W l+2
2 (G)

≤ ‖u1(T0)‖W l+1
2 (Ωb)

+ ‖ρ1(T )‖W l+2
2 (G) + ‖u2(T0)‖W l+1

2 (Ωb)
+ ‖ρ2(T0)‖W l+2

2 (G)

≤ U0

4
+ c1‖(u2, p2, ρ2)‖W,l,T ≤

U0

4
+ 2c1c2(T0)U2

0 ≤
U0

2
≤ ε0

2
.

Setting U1 = ‖u(T0)‖W l+1
2 (Ωb)

+ ‖ρ(T0)‖W l+2
2 (G), (5.32) thus holds for U1 with

ε1 = ε0/2, and we can solve system (3.10) in [T0, 2T0] with the same procedure
as above, and initial data u(T0), ρ(T0). Proceeding in this way we obtain a
global solution (u, p, ρ), which satisfies

Uk := ‖u(kT0)‖W l+1
2 (Ωb)

+ ‖ρ(kT0)‖W l+2
2 (G) ≤

U0

2k
,

If between kT0 and (k + 1)T0 we denote the solution of the linear system as
(u

(k)
1 , p

(k)
1 , ρ

(k)
1 ) and the solution of the nonlinear one as (u

(k)
2 , p

(k)
2 , ρ

(k)
2 ), then

(5.29) and (5.33) hold with Uk at each step. With obvious meaning, we then
have

‖(u(k)
1 , p

(k)
1 , ρ

(k)
1 )‖W,l,[kT0,(k+1)T0] + ‖(u(k)

2 , p
(k)
2 , ρ

(k)
2 )‖W,l,[kT0,(k+1)T0]

≤ c1Uk +
Uk
4
≤ c

U0

2k
.

Since T0 is bounded away from zero we can safely split the norms over [0,+∞)
as a sum of the norms over [kT0, (k + 1)T0), and from the previous inequality
and

‖e−γ′t(u, p, ρ)‖W,l,[kT0,(k+1)T0] ≤ ce−γ
′(k+1)T0‖(u, p, ρ)‖W,l,[kT0,(k+1)T0],

we get (5.25) for 0 < −γ′ < log 2/T0. The uniqueness statement follows from
uniqueness for small times, which will be proved in theorem 5.4.6.

�
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5.3 Exponential stability of the rest state
We apply this linearization principle to obtain nonlinear stability of the

rest state
vb = 0, pb = patm + g(h− x3), φb = h,

corresponding to a layer of fluid subjected to the gravitational force f =
−ge3 = ∇pb. Bringing the force into the pressure term, this corresponds to
the stability of zero state (for both vb and pb) in the layer {0 ≤ x3 ≤ h ≡ φb}.
The corresponding linearized problem is

u,t − ν∆u+∇q = 0 in Ωb,

∇ · u = 0 in Ωb,

T(u, q)N + σ∆′ρN = 0 on G,
ρ,t − u3 = 0 on G,
u = 0 on Σ, for all t ≥ 0,

u(x, 0) = u0(x), ρ(x′, 0) = ρ0(x′), for x ∈ Ωb, x′ ∈ Σ,

(5.34)

with the compatibility conditions

∇ · u0 = 0, ΠbD(u0) = 0,

∫
Σ

ρdx′ = 0.

We now want to study the exponential stability of this problem.
Let J be the set of Σ-periodic, square summable solenoidal vector fields

with third component vanishing on Σ. More precisely, letting L2(Ωb#) be the
the set of Σ-periodic vector fields on the Σ periodic extension Ωb# of Ωb, we
have

J := {v ∈ L2
loc(Ωb#) :

∫
Ωb

v · ∇ηdx = 0, ∀η ∈ W 1
2 (Ωb#) s.t. ηbG= 0}.

We denote by P the orthogonal projection on this space. Given a periodic
vector field w, it can be splitted as w = Pw + (I − P )w, where (I − P )w =
∇ϕw and ϕw is the periodic weak solution to

∆ϕw = ∇ ·w in Ωb,

ϕw = 0 on G,
∂ϕw

∂x3
= w3 on Σ.

(5.35)

As has been proved before, the operator P is continuous in W η
2 (Ωb), η ≥ 0.

Projecting the first equation of (5.34) onto J gives

u,t − νP∆u+∇χ = 0,
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where, using (5.35), χ is a Σ-periodic function such that
∆χ = 0 in Ωb,

χ = νN · D(u)N + σ∆′ρ on G,
∂χ
∂x3

= 0 on Σ.

It can be splitted as χ = χu+χρ where χu and χρ are two Σ-periodic harmonic
functions with vanishing normal derivative on Σ and

χubG= N · D(u)N , χρbG= σ∆′ρ.

We then define a linear operator A on the Hilbert space

X := J × {ρ ∈ L2(Σ) :

∫
Σ

ρdx′ = 0},

equipped with the norm

‖(u, ρ)‖X =
(
‖u‖2

L2(Ωb)
+ ‖ρ‖2

L2(Σ)

) 1
2
,

and corresponding standard inner product. We let A = (Aij)i,j=1,2, where

A11(u) = νP∆u−∇χu, A12(ρ) = ∇χρ, A21 = u3, A22 = 0.

The linear operator A will have domain Y =: D(A) defined as

Y := {u ∈ W 2
2 (Ωb)∩J : ubΣ= ΠbD(u)bG= 0}×{ρ ∈ W

5
2

2 (Σ) :

∫
Σ

ρdx′ = 0},

with norm

‖(u, ρ)‖Y =

(
‖u‖2

W 2
2 (Ωb)

+ ‖ρ‖2

W
5
2

2 (Σ)

) 1
2

.

A resolvent estimate for A when Reλ is sufficiently large has been proved
in theorem 4.2.4 (for l = 0), and this gives that λ − A is coercive (and
thus closed) for Reλ sufficiently large. Thus A is closed and since D(A) is
compactly embedded in X, its spectrum consists of a countable number of
eigenvalues with the only accumulation point at infinity.

We can look at problem (5.34) as the evolutionary problem

U ,t −AU = 0, U(0) = U 0 = (u0, ρ0),
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whose exponential stability follows from classical results once one can show
positivity of the real part of the spectrum of A. To this end suppose (u, ρ) ∈
D(A) is a solution of the complex eigenvalue problem

λu− νP∆u+∇χ = 0 in Ωb,

∇ · u = 0 in Ωb,

T(u, q)N + σ∆′ρN = 0 on G,
λρ− u3 = 0 on G,
u = 0 on Σ,

for some λ ∈ C. Taking the scalar product with u in the first equation and
integrating by parts gives

0 =

∫
Ωb

λ|u|2 +
ν

2
|D(u)|2dx+

∫
G
D(u)N · udS −

∫
G
χu ·NdS

=

∫
Ωb

λ|u|2 +
ν

2
|D(u)|2dx+

∫
G
D(u)N · u−N · D(u)Nu ·NdS

− σ
∫

Σ

∆′ρλρdS = λ

(∫
Ωb

|u|2dx+ σ

∫
Σ

|∇′ρ|2dx
)

+
ν

2

∫
Ωb

|D(u)|2dx,

where we used the fact that u ·N = λρ and ΠbD(u)N = 0 to cancel out the
boundary terms containing D(u). This clearly implies that the spectrum is
real and λ < 0 for any eigenvalue of A and thus exponential stability of the
associated linear problem. More precisely, by standard classical results (see
[12] for example), it holds

‖U(t)‖X ≤ c(γ)eγt‖U 0‖X ,∫ T

0

e−2γt‖U (t)‖2
Xdt ≤ c(γ)‖U 0‖2

X , (5.36)

for 0 > γ > sup{λ : λ ∈ σ(A)}, with c(γ) independent of T . Now, suppose
(u, p, ρ) solves (5.23), and consider the equation satisfied by e−γt(u, p, ρ) =:
(uγ, pγ, ργ): the system is the same except for a forcing term −γuγ in the
equation for uγ,t and −γργ in the one for ργ,t. Applying (4.83) to (uγ, pγ, ργ)
we get

‖e−γt(u, p, ρ)‖W,l,∞ ≤ c(‖uγ‖
W
l, l2
2 (Q∞)

+ ‖ργ‖
W
l+ 3

2 ,
l
2 + 3

4
2 (G∞)

+ ‖u0‖W l+1
2 (Ωb)

+ ‖ρ0‖W l+2
2 (G) + ‖uγ‖L2(Q∞) + ‖ργ‖L2(G∞)).

The interpolation inequalities

‖ργ‖
W
l+ 3

2 ,
l
2 + 3

4
2 (G∞)

≤ ε‖ργ‖
W
l+ 5

2 ,
l
2 + 5

4
2 (G∞)

+ c(ε)‖ργ‖L2(G∞),
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‖uγ‖
W
l, l2
2 (Q∞)

≤ ε‖uγ‖
W
l+2, l2 +1

2 (Q∞)
+ c(ε)‖uγ‖L2(Q∞),

hold. Using these inequalities and (5.36), we finally get

‖(uγ, pγ, ργ)‖l ≤ c(‖u0‖W l+1
2 (Ωb)

+ ‖ρ0‖W l+2
2 (G)),

which is (5.25). Applying theorem 5.2.1 thus concludes the proof of the
nonlinear exponential stability of the rest state.

5.4 Local solvability in time
In this section we consider the solvability for small times of problem (1.2).

We adopt a semi-linearization argument, following [19].
We consider problem (1.2) and choose a smooth φb sufficiently near (in a

sense to be specified) to φ0. We set ρ = φ−φb and use Hanzawa transformation
to reduce problem (1.2) to problem (3.7) in Ωb, as in section 3. We then
modify the resulting problem, fixing vb sufficiently near (in a sense to be
specified) to v0 and writing the equation for ρ,t

ρ,t +∇′φb · v − v3 = −∇′ρ · v

as
ρ,t +∇′φb · v − v3 +∇′ρ · vb = ∇′ρ · (vb − v) =: l5(v, ρ). (5.37)

We are then reduced to the following problem

v,t − ν∆v +∇p = l1(v, p, ρ) + l0(v, ρ) in Ωb,

∇ · v = l2(v, ρ) = ∇ ·G in Ωb,

νΠGS(v)N = l3(v, ρ) on G,
−p+ νN · S(v)N + σLρ = l4(v, ρ)− σHb(y) on G,
ρ,t +∇′φb · v − v3 +∇′ρ · vb = l5(v, ρ) on G,
v(x, 0) = ṽ0(x), in Ωb, ρ(x, 0) = ρ0(x), on G,
v(x′, t) = α(x′, t) for t ≥ 0, x′ ∈ Σ,

(5.38)

where li with i = 0, . . . 4 are given in (3.8) and l5 in (5.37), with compatibility
conditions 

∇ · ṽ0 = l2(ṽ0, ρ0),

νΠGS(ṽ0)N = l3(ṽ0, ρ0),

ṽ0bΣ= α(·, 0).

(5.39)

The linear part of (5.38) is not exactly of the type (4.1) since we are not
truly linearizing around (vb, φb), however adding the term ∇′ρ · vb on one
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hand doesn’t affect the coercive estimates, while the nonlinear term l5 is
much smaller than the original one, and thus, more comfortably estimated.
Regarding the linear problem, it is easy to check that the proof of theorem 4.3.2
still holds, and is in fact easier in this case. Indeed the Laplace transform of the
homogeneous linear problem associated to (5.38) directly gives a problem of
the type (4.43), for which theorem 4.2.4 holds. The reduction to homogenous
initial data is simpler in this case: we won’t fill in the details, since it suffices
to follow the proof of theorem 4.1 assuming all the Φi being zero.

We thus can assume that the following theorem holds true.

Theorem 5.4.1 Let l ∈ (1
2
, 1) and T ≤ 1. For any Σ-periodic choice of

f ∈ W
l, l

2
2 (QT ), h ∈ W l+1,0

2 (QT ), F ∈ W
0, l

2
+1

2 (QT ) with F 3bΣ= 0, d ∈
W

l+ 1
2
, l
2

+ 1
4

2 (GT ), g ∈ W
l+ 3

2
, l
2

+ 3
4

2 (GT ), a ∈ W
l+ 3

2
, l
2

+ 3
4

2 (Σ) with a3 ≡ 0, ρ0 ∈
W l+2

2 (G) and v0 ∈ W l+1
2 (Ω) such that

∇ · v0(x) = ∇ · F (x, 0) for x ∈ Ωb,

νΠbS(v0)(x)N (x) = Πbd(x, 0) for x ∈ G,
v0bΣ= a(·, 0),

(5.40)

there exists a unique solution to

v,t − ν∆v +∇p = f in Ωb,

∇ · v = h = ∇ · F in Ωb,

T (p,v)N + σLρN = d on G,
ρ,t +∇′φb · v − v3 +∇′ρ · vb = g on G,
v(x, 0) = v0(x), in Ωb, ρ(x, 0) = ρ0(x), on G,
v(x′, t) = α(x′, t) for t ≥ 0, x′ ∈ Σ,

(5.41)

and it holds

‖(v, p, ρ)‖H,l,T ≤ c
(
‖f‖

H
l, l2
2 (QT )

+ ‖h‖Hl+1,0
2 (QT ) + ‖F ‖

Ŵ
0, l2 +1

2 (QT )

+ ‖d‖
H
l+ 1

2 ,
l
2 + 1

4
2 (GT )

+ ‖a‖
H
l+ 3

2 ,
l
2 + 3

4
2 (ΣT )

+ ‖g‖
H
l+ 3

2 ,
l
2 + 3

4
2 (GT )

+ ‖v0‖W l+1
2 (Ωb)

+ ‖ρ0‖W l+2
2 (G)

) (5.42)

with constant independent of T ≤ 1.

Notice that the particular form of the Hanzawa transformation we used
(and thus, the choice of θ in the definition of the transformation (3.1)) only
affects the nonlinearities, and not the linear part of the system.
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We modify the norms used in the following, defining

‖ρ‖2
l,T := ‖ρ‖2

W
l+ 5

2 ,0

2 (GT )
+ ‖ρ‖2

Ŵ
0, l2 + 5

4
2 (GT )

+ sup
t<T
‖ρ‖2

W l+2
2 (G) + sup

t<T
‖ρ,t‖

W
l+ 1

2
2 (G)

.

Clearly

‖ρ‖H,l,T = ‖ρ‖
H
l+ 5

2 ,
l
2 + 5

4
2 (GT )

+ ‖ρ,t‖
H
l+ 3

2 ,
l
2 + 3

4
2 (GT )

≤ c‖ρ‖l,T ,

with a constant independent of T . We now show that an inequality of the
opposite type holds, thus proving the equivalence of the two norms. We
construct an extension C(ρ) of ρ to t ≥ 0 such that

‖C(ρ)‖
W
l+ 5

2 ,
l
2 + 5

4
2 (G∞)

+ ‖C(ρ),t‖
W
l+ 3

2 ,
l
2 + 3

4
2 (G∞)

≤ ‖ρ‖H,l,T . (5.43)

This can be done as in the proof of theorem 4.3.2, namely as in(4.87): there
exists ρ1 : G × [T,+∞)→ R such that

ρ1bt=T= ρbt=T , ρ1,tbt=T= ρ,tbt=T

and

‖ρ1‖
W
l+ 5

2 ,
l
2 + 5

4
2 (GT,+∞)

+ ‖ρ1,t‖
W
l+ 3

2 ,
l
2 + 3

4
2 (GT,+∞)

≤ c(‖ρ(·, T )‖W l+2
2 (G) + ‖ρ,t(·, T )‖

W
l+ 1

2
2 (G)

).

Performing again the calculations done in theorem 2.3.3 to prove (2.30), we
obtain (5.43). This gives the claim, since theorem 2.2.3 now applies for the
unbounded interval [0,+∞), and thus with constant independent of T . Thus
(5.42) holds with ‖ρ‖l,T instead of ‖ρ‖H,l,T in the left hand side.

We now look at the analogue of (5.4). Using the norm ‖ρ‖l,T allows to
obtain a similar chain of inequalities with constant independent of T ≤ 1. We
employ theorem 2.3.3 to construct an extension C(ρ,t) of ρ,t to R+ such that
‖C(ρ,t)‖

W
l+ 3

2 ,
l
2 + 3

4
2 (G∞)

≤ c‖ρ‖l,T .

sup
G
‖ρ‖

W
l
2 + 5

4
2 (0,T )

≤
√
T sup

GT

|ρ|+ sup
G
‖ρ,t‖

W
l
2 + 1

4
2 (0,T )

≤ c
√
T sup

t<T
‖ρ‖

W
l+ 1

2
2 (G)

+ sup
G
‖C(ρ,t)‖

W
l
2 + 1

4
2 (R+)

≤ c
√
T‖ρ‖

H
l+ 3

2 ,
l
2 + 3

4
2 (GT )

+ ‖C(ρ,t)‖
W
l+ 3

2 ,
l
2 + 3

4
2 (G∞)

≤ c‖ρ‖l,T

(5.44)
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Similarly one has

sup
G
‖∇′ρ,t‖

W
l
2−

1
4

2 (0,T )
+ sup

G
‖∇′ρ‖

W
l
2 + 3

4
2 (0,T )

≤ c‖ρ‖l,T , (5.45)

and thus (5.4) follows, with constants independent of T . Notice that a similar
chain of inequalities does not a priori hold on Ω, due to the fact that the
term ∇ρ∗ contains a factor ρ∇θ which blows up for ε→ 0. Another useful
and immediate estimate is

sup
QT

|ρ∗ε,t| = sup
GT

|ρ,t| ≤ c sup
t<T
‖ρ,t‖

W
l+ 1

2
2 (G)

≤ c‖ρ‖l,T . (5.46)

Let us discuss our main hypotheses. Since ρ(x, t) = φ(x, t)− φb(x), where
φ is the free boundary function of the original problem (1.2), we assume that,
if ρ0 = ρ(·, 0),

‖ρ0‖
W
l+ 3

2
2 (G)

≤ δ � 1. (5.47)

Notice that this in turn gives, for ρ : GT → R and any t ≤ T ,

‖ρ(·, t)‖
W
l+ 3

2
2 (G)

≤ ‖ρ0‖
W
l+ 3

2
2 (G)

+

∫ t

0

‖ρ,t(·, t)‖
W
l+ 3

2
2 (G)

dt ≤ δ+
√
T‖ρ,t‖

W
l+ 3

2 ,0

2 (GT )
.

Therefore, as soon as the quantity ‖ρ‖l,T is bounded, for sufficiently small T
depending only on δ it holds

sup
GT

|ρ|+ |∇′ρ| ≤ c sup
t<T
‖ρ(·, t)‖

W
l+ 3

2
2 (G)

≤ cδ(1 + ‖ρ‖l,T ). (5.48)

Since our extension of ρ from G (or, equivalently, Σ) to Ωb is not optimal,
we will need the following result.

Lemma 5.4.2 For any ε > 0 there exists a smooth θ : Ωb → R such that
θ = 1 in a neighbourhood of G, θ = 0 in a neighbourhood of Σ and for any
function ρ : G → R and η ≥ 0 it holds

‖θρ‖W η
2 (Ωb)

≤ cε‖ρ‖W η
2 (G) + cη(ε)‖ρ‖L2(GT ).

Proof. We consider a smooth diffeomorphism Ψ : Ω→ Σ× [0, 1], bringing
G to Σ1 := Σ × {1} and Σ to Σ0 := Σ × {0}. We then define a smooth
θ̃ : Σ × [0, 1] → R such that θ̃ ≤ 1, θ̃ = 1 for x3 > 1 − 2ε and θ̃ = 0 for
x3 ≤ 1− ε. By lemma 2.1.4, for any ρ : Σ1 → R it holds

‖θ̃ρ‖W η
2 (Σ×[0,1]) ≤ cε‖ρ‖W η

2 (Σ1) + cη(ε)‖ρ‖L2(Σ1).
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It is easy to check that

‖f‖W η
2 (Ωb)

≤ c‖f ◦Ψ−1‖W η
2 (Σ×[0,1]),

and a similar estimate for the norm ‖f‖W η
2 (Σ1), with a constant depending on

‖Ψ‖
W η′

2 (Ωb)
, for η′ > 5

2
, η′ ≥ η. Therefore, for θ := θ̃ ◦Ψ it holds

‖θρ‖W η
2 (Ωb)

≤ cε‖ρ‖W η
2 (G) + cη(ε)‖ρ‖L2(G).

�

It is easy to see that there is a bound of the form

sup
Ω
|Dkθ| ≤ c

εk
, c(ε) ≤ cε−γ,

in the previous lemma, where, in the case η < 3, one can take γ = 5
2
. For any

ε > 0 we can define the extension ρ∗ε := θρ using the function θ given above.
Any norm of ρ∗ε can be bounded by the same norm of ρ, with a suitable
constant which depends on ε (and usually blows up as ε → 0). Assuming
(5.47) however, allows in some cases to keep the constant bounded with
suitable choices of the parameter δ and T . For example, it holds

sup
t<T
‖ρ∗ε‖W l+2

2 (Ωb)
≤ cε‖ρ‖l,T + c(ε) sup

t<T
‖ρ‖L2(G)

≤ cε‖ρ‖l,T + c(ε) sup
t<T
‖ρ‖

W
l+ 3

2
2 (G)

≤ c(ε+ c(ε)δ)(1 + ‖ρ‖l,T ),

(5.49)

for any sufficiently small T depending only on δ. We will suppose that δ is such
that ε+ δc(ε) is arbitrarily small. Notice that in the Hanzawa transformation
(3.1), in order to obtain a well defined diffeomorphism, we also require that

sup
Ω
|θ,x3ρ| ≤ c

δ

ε
� 1,

for δ sufficiently small compared to ε. To fix ideas, we may think that ε ' δ
2
7 ,

which allows all the previous assumptions to hold. Clearly from (5.49) it
follows

sup
Ωb

|ρ∗ε|+ |∇ρ∗ε| ≤ c(ε+ c(ε)δ)(1 + ‖ρ‖l,T ), (5.50)

by standard embedding theorems on Ωb.

We will only give the details of the estimates for l0, l1 and l2 which are
the only ones affected by the choice of the extension, since the other terms
are estimated as in [19].
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For l0 and l1, we will need a tool to get rid of the “spurious” factor in
the estimate of nonlinear terms of the form f(∇ρ∗)m, similar to lemma 5.1.2
(there is no such type of factor in l2 and G). For the spatial derivatives,
notice that (5.6) holds with a constant independent of T , δ and ε, if they
are all sufficiently small. Indeed, it is enough to look at (5.8): its proof was
based on (5.2), whose analogue (5.49) holds true with constant independent
of T . Moreover, the constant cf(µ) depends only on the Ck norm of f in a
set bounded by supQT |ρ

∗
ε|+ |∇ρ∗ε|, which, by (5.50), is bounded by ‖ρ‖l,T if

δc(ε) � 1, as we are assuming. Thus, for any ρ such that ‖ρ‖l,T ≤ µ and
η ≤ l + 1 it holds

‖f(x, ρ∗ε,∇ρ∗ε)g‖Hη,0
2 (QT ) ≤ cf (µ)‖g‖Hη,0

2 (QT ).

Regarding the estimates of the time derivative, we will need the following
variant of lemma 5.1.2.

Lemma 5.4.3 Let T ≤ 1, l ≤ 1 and ‖ρ‖l,T ≤ µ. It holds the inequality

‖f(∇ρ∗)g‖
Ŵ

0, l2
2 (QT )

≤ cf (µ)(1 +

√
T

ε
)‖ρ‖l,T‖g‖

Ŵ
0, l2
2 (QT )

.

Proof. As already noted, f(∇ρ∗) is bounded by a constant depending only
on f and µ, and this takes care of the L2 term. One can check that in the
proof of 2.1.3, given η > 1

2
, the inequality

‖uv‖
W

l
2

2 (0,T )
≤ c(sup

[0,T ]

|u|+ ‖u‖W η
2 (0,T ))‖v‖

W
l
2

2 (0,T )
,

holds, with a constant independent of T ≤ 1. Then it suffice to prove the
inequality

sup
Ω
‖f(∇ρ∗)‖W̊ 1

2 (0,T ) ≤ cf (µ)(1 +

√
T

ε
)‖ρ‖l,T .

To this end, for any fixed x = (x′, x3) in Ω we have, using the fact that θ does
not depend on t, |θ| ≤ 1 and |∇θ| ≤ c/ε,

‖f ′(∇ρ∗(x, ·))∇ρ∗,t(x, ·)‖L2(0,T ) ≤ cf (µ)
(
‖∇′ρ,t(x′, ·)‖L2(0,T ) +

1

ε
‖ρ,t(x′, ·)‖L2(0,T )

)
≤ cf (µ)

(
sup
G
‖∇′ρ,t‖

W
l
2−

1
4

2 (0,T )
+

√
T

ε
sup
GT

|ρ,t|
)
,

which gives the claim by (5.45) and (5.46). �

We now sketch the proof of the estimates of the nonlinear terms which
are different from the ones contained in [19].
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For l1 and l0 the troublesome terms are

∇ρ∗∇p, D2ρ∗∇v, ∇ρ∗D2v, ρ∗,t∇v.
Notice that we didn’t consider factors of the form f(∇ρ∗) for smooth f ’s
due to the previous discussion, and only considered the higher order terms.
The first two type of terms are estimated in the H l, l

2
2 (QT ) norm through

the following procedure, where m ∈ H l, l
2

2 (QT ) is to be understood as ∇p or
D2v. According to (5.49) and (5.50) we can set (for sufficiently small T ),
δ1 = (ε+ δc(ε))� 1 and obtain

‖∇ρ∗m‖W l,0
2 (QT ) ≤ c sup

t<T
‖∇ρ∗‖W l+1

2 (Ωb)
‖m‖W l,0

2 (QT )

≤ cδ1(1 + ‖ρ‖l,T )‖m‖W l,0
2 (QT ),

1

T
l
2

‖∇ρ∗m‖L2(QT )) ≤ c sup
QT

|∇ρ∗|‖m‖
Ŵ

l
2

2 (QT )
≤ cδ1(1 + ‖ρ‖l,T )‖m‖

Ŵ
l
2

2 (QT )
;

for the W̊ 0,l
2 (QT ) norm, we use

∆−h(∇ρ∗,tm) = ∇ρ∗−h∆−hm+m∆−h∇ρ∗, (5.51)

where f−h(t) := f(t − h). Splitting the estimate according to this formula,
we have∫ T

0

dh

h1+l

∫ T

h

‖∇ρ∗−h∆−hm‖
2
L2(Ωb)

dt ≤ sup
QT

|∇ρ∗|2
∫ T

0

dh

h1+l

∫ T

h

‖∆−hm‖2
L2(Ωb)

dt

≤ cδ2
1(1 + ‖ρ‖l,T )2‖m‖2

Ŵ
0, l2
2 (QT )

(5.52)

and, using proposition 2.1.3, point 1 and lemma 5.4.2,∫ T

0

dh

h1+l

∫ T

h

‖m∆−h∇ρ∗‖2
L2(Ωb)

dt

≤
∫ T

0

dh

h1+l

∫ T

h

‖m(·, t)‖2
W l

2(Ωb)
‖∆−h∇ρ∗(·, t)‖2

W
3
2−l

2 (Ωb)
dt

≤
∫ T

0

dh

h1+l

∫ T

h

‖m(·, t)‖2
W l

2(Ωb)
‖
∫ h

0

∇ρ∗,t(·, t− ξ)dξ‖
2

W
3
2−l

2 (Ωb)
dt

≤
∫ T

0

dh

hl

∫ T

h

‖m(·, t)‖2
W l

2(Ωb)

∫ h

0

‖∇ρ∗,t(·, t− ξ)‖
2

W
3
2−l

2 (Ωb)
dξdt

≤
∫ T

0

‖ρ∗,t(·, ξ)‖
2

W
5
2−l

2 (Ωb)
dξ

∫ T

0

‖m(·, t)‖2
W l

2(Ωb)
dt

∫ T

0

dh

hl

≤ cT 1−l‖ρ∗,t‖
2

W
l+ 3

2 ,0

2 (QT )
‖m‖2

W l,0
2 (QT )

≤ cT 1−lc(ε)‖ρ,t‖2

W
l+ 3

2
2 (GT )

‖m‖2

W l,0
2 (QT )

.

(5.53)
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For the terms of the form D2ρ∗∇v we have

‖D2ρ∗∇v‖W l,0
2 (QT ) ≤ sup

t<T
‖D2ρ∗‖W l

2(Ωb)
‖∇v‖W l+1

2 (QT )

≤ cδ1(1 + ‖ρ‖l,T )‖v‖W l+2,0
2 (QT ),

and using ‖D2ρ∗∇v‖L2(Ωb)
≤ c‖D2ρ∗‖W l

2(Ωb)
‖∇v‖

W
3
2−l

2 (Ωb)
,

1

T
l
2

‖D2ρ∗∇v‖L2(QT ) ≤ c sup
t<T
‖D2ρ∗‖W l

2(Ωb)
‖∇v‖

Ŵ
l
2 (0,T ;W

3
2−l

2 (Ωb)

≤ cδ1(1 + ‖ρ‖l,T )‖∇v‖
H

3
2 ,

3
4

2 (QT )

≤ cδ1(1 + ‖ρ‖l,T )‖v‖
H
l+2, l2 +1

2 (QT )

Finally, splitting the estimate for W̊ 0,l
2 (QT ) according to (5.51),

∫ T

0

dh

h1+l

∫ T

h

‖D2ρ∗−h∆−h∇v‖
2
L2(Ωb)

dt

≤ c sup
t<T
‖D2ρ∗‖2

W l
2(Ωb)
‖∇v‖2

Ŵ
l
2

2 (0,T ;W
3
2−l

2 (Ωb))

≤ cδ1(1 + ‖ρ‖l,T )‖v‖2

H
l+2, l2 +1

2 (QT )
,

and, proceeding as in (5.53),

∫ T

0

dh

h1+l

∫ T

h

‖∇v∆−hD
2ρ∗‖2

L2(Ωb)
dt

≤ c

∫ T

0

dh

h1+l

∫ T

h

‖∇v(·, t)‖2
W 2−l

2 (Ωb)
‖∆−hD2ρ∗(·, t)‖2

W
l− 1

2
2 (Ωb)

dt

≤ c(ε)

∫ T

0

dh

h1+l

∫ T

h

‖v(·, t)‖2
W l+2

2 (Ωb)
‖ρ(·, t)‖2

W
l+ 3

2
2 (G)

dt

≤ c(ε)

∫ T

0

dh

hl

∫ T

h

‖v(·, t)‖2
W l+2

2 (Ωb)

∫ h

0

‖ρ,t(·, t− ξ)‖2

W
l+ 3

2
2 (G)

dξdt

≤ c(ε)T 1−l‖ρ,t‖2

W
l+ 3

2 ,0

2 (GT )
‖v‖2

W l+2,0
2 (QT )

.

We now estimate the term ρ∗,t∇v. Again from proposition 2.1.3 and lemma
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5.4.2

‖ρ∗,t∇v‖W l,0
2 (QT ) ≤ c sup

t<T
‖∇v‖W l

2(Ωb)
‖ρ∗,t‖W l+1,0

2 (Ωb)

≤ c‖v‖
H
l, l2
2 (QT )

(
ε‖ρ,t‖W l+1,0

2 (GT ) + c(ε)‖ρ,t‖L2(GT )

)
≤ c‖v‖

H
l, l2
2 (QT )

(
ε‖ρ,t‖

W
l+ 3

2 ,0

2 (GT )
+ c(ε)

√
T sup

t<T
‖ρ,t‖

W
l+ 1

2
2 (G)

)
≤ c(ε+ c(ε)

√
T )‖v‖

H
l, l2
2 (QT )

‖ρ‖l,T .

Moreover

1

T
l
2

‖ρ∗,t∇v‖L2(QT ) ≤ cT
1
2
− l

2 sup
t<T
‖ρ∗,t‖

W
3
2−l

2 (Ωb)
sup
t<T
‖∇v‖W l

2(Ωb)

≤ cT
1
2
− l

2 sup
t<T
‖ρ∗,t‖

W
l+ 1

2
2 (Ωb)

sup
t<T
‖v‖W l+1

2 (Ωb)

≤ cT
1
2
− l

2 c(ε) sup
t<T
‖ρ,t‖

W
l+ 1

2
2 (G)

sup
t<T
‖v‖W l+1

2 (Ωb)

≤ cT
1
2
− l

2 c(ε)‖ρ‖l,T‖v‖
H
l, l2
2 (QT )

.

Finally, for the norm W̊ l
2(QT ), we split the estimate according to formula

(5.51). For the term ρ∗−h,t∆−h∇v notice that for any t ≤ T ,

sup
Ωb

|ρ∗,t(·, t)| ≤ sup
G
|ρ,t(·, t)| ≤ c‖ρ,t(·, t)‖

W
l+ 1

2
2 (G)

≤ c‖ρ,t‖
H
l+ 3

2 ,
l
2 + 3

4
2 (GT )

,

with a constant independent of ε, since θ does not depend on t and is not
greater than 1. Hence

∫ T

0

dh

h1+l

∫ T

h

‖ρ∗−h,t∆−h∇v‖
2
L2(Ωb)

dt ≤ sup
QT

|ρ∗,t|2
∫ T

0

dh

h1+l

∫ T

h

‖∆−h∇v‖2
L2(Ωb)

dt

≤ cT‖ρ‖2
l,T

∫ T

0

dh

h1+2( l
2

+ 1
2

)

∫ T

h

‖∆−h∇v‖2
L2(Ωb)

dt

≤ cT‖ρ‖2
l,T‖∇v‖

2

W
0, l2 + 1

2
2 (QT )

≤ cT‖ρ‖2
l,T‖v‖

2

H
l+2, l2 +1

2 (QT )
.
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Finally, proceeding as in (5.53),∫ T

0

dh

h1+l

∫ T

h

‖∇v∆−hρ
∗
,t‖

2
L2(Ωb)

dt

≤ c

∫ T

0

dh

h1+l

∫ T

h

‖∇v‖2
W 2−l

2 (Ωb)
‖∆−hρ∗,t‖

2

W l− 1
2 (Ωb)

dt

≤ c

∫ T

0

dh

hl

∫ T

h

‖∇v(·, t)‖2
W 1+l

2 (Ωb)
dt

∫ h

0

‖ρ∗,tt(·, t− ξ)‖
2

W l− 1
2 (Ωb)

dξ

≤ cT 1−lc(ε)‖ρ,tt‖2

W
l− 1

2 ,0

2 (GT )
‖∇v‖2

W l+1,0
2 (QT )

≤ cT 1−lc(ε)‖ρ,t‖2

W
l+ 3

2 ,
l
2 + 3

4
2 (GT )

‖v‖2

W l+2,0
2 (QT )

.

We finally estimate the terms in l2 and G, since the others are unaffected
by our choice of extension. As calculated in (3.22), l2 only have “pure” terms
of the form ∇ρ∗∇v, whose W l+1,0(QT ) norm is estimated using (5.49)

‖∇ρ∗∇v‖W l+1,0
2 (QT ) ≤ c sup

t<T
‖∇ρ∗‖W l+1

2 (Ωb)
‖∇v‖W l+1,0

2 (QT )

≤ cδ1(1 + ‖ρ‖l,T )‖v‖
H
l+2, l2 +1

2 (QT )
,

and similarly

sup
t<T
‖∇ρ∗∇v‖W l

2(Ωb)
≤ cδ1(1 + ‖ρ‖l,T )‖v‖

H
l+2, l2 +1

2 (QT )
.

The time derivative of G, also given in (3.22), can be estimated as

‖G,t‖L2(QT ) ≤
√
T sup

t<T
‖∇ρ∗,t‖L2(Ωb)

sup
QT

|v|+ sup
QT

|∇ρ∗|‖v,t‖L2(QT )

≤ c
√
T sup

t<T
‖ρ∗,t‖W l+ 1

2 (Ωb)
sup
t<T
‖v‖W l+1

2 (Ωb)
+ δ1(1 + ‖ρ‖l,T )‖v,t‖L2(QT ),

and thus

1

T
l
2

‖G,t‖L2(QT ) ≤ c(δ1 + T
1
2
− l

2 c(ε))(1 + ‖ρ‖l,T )‖v‖
H
l+2, l2 +1

2 (Q(T )
.

Finally, for the W 0, l
2

2 norm of G,t, which is of the type v,t∇ρ∗ + v∇ρ∗,t, the
term v,t∇ρ∗ is of the form ∇ρ∗m with m ∈ W l, l

2
2 (QT ), and can be estimated

as in (5.52), (5.53). For the term v∇ρ,t, we split the W̊ 0, l
2

2 (QT ) according to
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(5.51) and obtain∫ T

0

dh

h1+l

∫ T

h

‖v∆−h∇ρ∗,t‖
2
L2(Ωb)

dt ≤
√
T sup

QT

|v|2
∫ T

0

dh

h
3
2

+l

∫ T

h

‖∆−h∇ρ∗,t‖
2
L2(Ωb)

dt

≤ c
√
T‖v‖2

H
l+2, l2 +1

2 (QT )
‖∇ρ∗,t‖

2

W
0, l2 + 1

4
2 (QT )

≤ c
√
Tc(ε)‖v‖2

H
l+2, l2 +1

2 (QT )
‖∇ρ,t‖2

W
0, l2 + 1

4
2 (GT )

≤ c
√
Tc(ε)‖v‖2

H
l+2, l2 +1

2 (QT )
‖ρ‖2

l,T ,

while for the other term, proceeding as in (5.53), we have∫ T

0

dh

h1+l

∫ T

h

‖∇ρ∗,t∆−hv‖
2
L2(Ωb)

dt

≤ c

∫ T

0

dh

h1+l

∫ T

h

‖∇ρ∗,t‖
2

W
3
2−l

2 (Ωb)
‖∆−hv‖2

W l
2(Ωb)

dt

≤ c

∫ T

0

dh

hl

∫ T

h

‖∇ρ∗,t(·, t)‖
2

W
1
2 +l

2 (Ωb)

∫ h

0

‖v,t(·, t− ξ)‖2
W l

2(Ωb)
dξdt

≤ cT 1−l‖∇ρ∗,t‖
2

W
1
2 +l,0

2 (QT )
‖v,t‖2

W l,0
2 (QT )

≤ c(ε)T 1−l‖ρ‖2
l,T‖v‖

2

H
l+2, l2 +1

2 (QT )
.

All in all we have obtained the following estimate:

‖l0 + l1‖
W
l, l2
2 (QT )

+ ‖l2‖W l+1
2 (QT ) + sup

t<T
‖l2‖W l

2(Ωb)
+ ‖G‖

Ŵ
0, l2 +1

2 (QT )

≤ c(δ1 + c(ε)T
1
2
− l

2 )(1 + ‖ρ‖l,T )(‖v‖
H
l+2, l2 +1

2 (QT )
+ ‖∇p‖

H
l, l2
2 (QT )

),

and it is clear that the coefficient δ1 + c(ε)T
l
2
− 1

2 can be made arbitrarily small
for suitably small ε, δ and T . The same type of estimate holds true for the
other nonlinear terms, and thus we have the following result.

Proposition 5.4.4 Let l ∈ (1
2
, 1),

‖ρ0‖
W
l+ 3

2
2 (G)

+ ‖ṽ0 − vb‖
W
l+ 1

2
2 (Ωb)

≤ δ, (5.54)

and ρ∗ε be the extension ρ∗ε = θρ defined in lemma 5.4.2. For any δ2 > 0, the
inequality

‖l0 + l1‖
W
l, l2
2 (QT )

+ ‖l2‖Hl+1,0
2 (QT ) + ‖G‖

Ŵ
0, l2 +1

2 (QT )
+ ‖l3 + l4N‖

H
l+ 1

2 ,
l
2 + 1

4
2 (GT )

+ ‖l5‖
H
l+ 3

2 ,
l
2 + 3

4
2 (GT )

≤ δ2

3∑
k=1

‖(v, p, ρ)‖kH,l,T ,

(5.55)
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holds for any sufficiently small ε, δ(ε) and T (δ, ε).

We will also need a continuity estimate for the nonlinear terms, analogue
to the one obtained in theorem 5.1.6.

Theorem 5.4.5 Let l ∈ (1
2
, 1), and ρ1 and ρ2 satisfy

‖ρ1‖l,T + ‖ρ2‖l,T ≤ µ, ρ(·, 0) = ρ′(·, 0) = ρ0,

‖ρ0‖
W
l+ 3

2
2 (G)

≤ δ � 1.

There exists c(µ), bounded for bounded µ, such that

‖̃l0(u1, ρ1)− l̃0(u1, ρ2)‖
H
l, l2
2 (QT )

+ ‖̃l1(u1, p1, ρ1)− l̃1(u2, p2, ρ2)‖
H
l, l2
2 (QT )

+ ‖l̃2(u1, ρ1)− l̃2(u2, ρ2)‖Hl+1,0
2 (QT ) + ‖G(u1, ρ1)−G(u2, ρ2)‖

Ŵ
0, l2 +1

2 (QT )

+ ‖̃l3(u1, ρ1)− l̃3(u2, ρ2)‖
H
l+ 1

2 ,
l
2 + 1

4
2 (GT )

+ ‖l̃4(u1, ρ1)− l̃4(u2, ρ2)‖
H
l+ 1

2 ,
l
2 + 1

4
2 (GT )

+ ‖l̃5(u1, ρ1)− l̃5(u2, ρ2)‖
H
l+ 3

2 ,
l
2 + 3

4
2 (GT )

≤

cδ1(‖(u1, p1, ρ1)‖H,l,T + ‖(u2, p2, ρ2)‖H,l,T )‖(u1 − u2, p1 − p2, ρ1 − ρ2)‖H,l,T ,

for a constant δ1 which is arbitrary small depending on ε, δ(ε) and T (ε, δ).

Proof. We only sketch the proof for the terms l0, l1, and l2 = ∇ ·G, since
the other terms are treated as in [19]. Following the argument of theorem
5.1.6, it is enough to prove an estimate of the form

‖(f(∇ρ∗1)− f(∇ρ∗2))g‖Hl,0
2 (QT ) ≤ c(µ)δ1‖ρ1 − ρ2‖l,T‖g‖Hl,0

2 (QT )

‖(f(∇ρ∗1)− f(∇ρ∗2))g‖
Ŵ

0, l2
2 (QT )

≤ c(µ)δ1‖ρ1 − ρ2‖l,T‖g‖
H
l, l2
2 (QT )

,
(5.56)

with constants independent of T (notice that in l2 and G there are no such
nonlinear factors as f(∇ρ∗)). Notice first that from ρ1(·, 0) = ρ2(·, 0) we get

sup
t<T
‖ρ1 − ρ2‖

W
l+ 3

2
2 (G)

≤
∫ T

0

‖ρ1,t − ρ2,t‖
W
l+ 3

2
2 (G)

dt ≤
√
T‖ρ1 − ρ2‖l,T ,

which implies by lemma 5.4.2

sup
t<T
‖ρ∗1 − ρ∗2‖W l+2

2 (G) ≤ c(ε+ c(ε)
√
T )‖ρ1 − ρ2‖l,T . (5.57)
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Setting δ1 = c(ε + c(ε)
√
T ) (which is arbitrarily small depending on ε and

T ), we thus have

sup
QT

|f(∇ρ∗1)− f(∇ρ∗2)| ≤ cf (µ) sup
QT

|∇(ρ∗1 − ρ∗2)| ≤ cf (µ) sup
t<T
‖ρ∗1 − ρ∗2‖W l+2

2 (Ωb)

≤ cf (µ)δ1‖ρ1 − ρ2‖l,T .
(5.58)

To prove the first inequality in (5.56), we use proposition 2.1.3 and prove

sup
t<T
‖f(∇ρ∗1)− f(∇ρ∗2)‖W l+1

2 (Ωb)
≤ cf (µ)δ1‖ρ1 − ρ2‖l,T . (5.59)

For any t ≤ T , inequality (5.57) takes care of the L2(Ωb) term in the W l+1
2

norm. From

‖f ′(∇ρ∗1)D2ρ∗1 − f ′(∇ρ∗2)D2ρ∗2‖Hl
2(Ωb)

≤ ‖f ′(∇ρ∗1)D2(ρ∗1 − ρ∗2)‖W l
2(Ωb)

+ ‖(f ′(∇ρ∗2)− f ′(∇ρ∗1))D2ρ∗2‖Hl
2(Ωb)

,

we proceed splitting the estimate on the two terms. For the first one, as
already noted, ‖f ′(∇ρ∗)‖W l+1(Ωb)

is bounded by c(µ), and thus proposition
2.1.3 and (5.57) gives the desired inequality. In the same way we can estimate
the L2 part of the norm of the second term, and thus it only remains its
W̊W
l 2(Ωb) norm. Splitting the ∆z operator as in (5.51) and using (5.58) allows

to estimate just one term:∫
|z|≤1

‖D2ρ∗2∆z(f
′(∇ρ∗2)− f ′(∇ρ∗1))‖2

L2(Ωb)

dz

|z|3+2l

≤ ‖D2ρ∗2‖
2
W l

2(Ωb)

∫
|z|≤1

‖∆z(f
′(∇ρ∗2)− f ′(∇ρ∗1))‖2

W
3
2−l

2 (Ωb)

dz

|z|3+2l

≤ cf (µ)

∫
|z|≤1

‖∆z(∇ρ∗1 −∇ρ∗2)‖2
W 1

2 (Ωb)

dz

|z|3+2l

≤ cf (µ)(‖∇(ρ∗1 − ρ∗2)‖2
W l

2(Ωb)
+ ‖D2(ρ∗1 − ρ∗2)‖2

W l
2(Ωb)

)

≤ cf (µ)δ2
1‖ρ1 − ρ2‖2

l,T ,

by (5.57), which concludes the proof of (5.59) and thus of first inequality in
(5.56). For the second one, the L2 term is again estimated through (5.58),
and for the W̊

l
2

2 norm we split the finite difference operator as in (5.51) and
proceed as in (5.52):∫ T

0

dh

h1+l

∫ T

h

‖f(∇ρ∗1)− f(∇ρ∗2)∆−hg‖2
L2(Ωb)

dt ≤ cδ2
1‖ρ1 − ρ2‖2

l,T‖g‖
2

Ŵ
0, l2
2 (QT )

,
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by (5.58). Moreover, as in (5.53),∫ T

0

dh

h1+l

∫ T

h

‖g∆−hf(∇ρ∗1)− f(∇ρ∗2)‖2
L2(Ωb)

dt

≤ cT 1−l‖f ′(∇ρ∗1)∇ρ∗1,t − f ′(∇ρ∗2)∇ρ∗2,t‖
2

W
3
2−l,0

2 (QT )
‖g‖2

W l,0
2 (QT )

,

and, using 3
2
− l < 1 < l + 1

2
and (5.59),

‖f ′(∇ρ∗1)∇ρ∗1,t − f ′(∇ρ∗2)∇ρ∗2,t‖
W

3
2−l,0

2 (QT )

≤ ‖(f ′(∇ρ∗1)− f ′(∇ρ∗2))∇ρ∗1,t‖
W
l+ 1

2 ,0

2 (QT )
+ ‖f ′(∇ρ∗2)(∇ρ∗1,t −∇ρ∗2,t)‖W 1,0

2 (QT )

≤ cf (µ)δ1‖ρ1 − ρ2‖l,T‖∇ρ∗1,t‖
W
l+ 1

2 ,0

2 (QT )
+ cf (µ)‖∇ρ∗1,t −∇ρ∗2,t‖

W
l+ 1

2 ,0

2 (QT )

≤ cf (µ)c(ε)‖ρ1 − ρ2‖l,T .

All in all we obtained

‖(f(∇ρ∗1)−f(∇ρ∗2))g‖
Ŵ

0, l2
2 (QT )

≤ cf (µ)(δ1‖g‖
Ŵ

0, l2
2 (QT )

+ c(ε)T
1−l
2 ‖g‖W l,0

2 (QT ))‖ρ1 − ρ2‖l,T ,

which gives the claim for sufficiently small T .
�

We can now prove the main result on the existence for small time of
solutions to (1.2).

Theorem 5.4.6 Let l ∈ (1
2
, 1). For any φ0 ∈ W l+2

2 (Σ) and v0 ∈ W l+1
2 (Ω0)

such that ∇ · v0 = 0 in Ω0 , there exists a smooth φb, defining Ωb = {(x′, x3) :
x′ ∈ Σ, 0 < x3 < φb(x3)} and G = {(x′, x3) : x′ ∈ Σ, x3 = φb(x

′)}, such that
for sufficiently small T , there exists a unique Σ-periodic solution in [0, T ) of
problem (1.2), and it satisfies the inequality

‖(v, p, φ− φb)‖H,l,T ≤ c(‖φ0 − φb‖W l+2
2 (G) + ‖v0‖W l+1

2 (Ω0)).

Proof. For any δ � 1 and ε� 1 to be chosen later, we choose a smooth φb
in such a way that (5.54) holds, and perform the Hanzawa transformation
in Ωb so that the extension ρ∗ is defined through lemma 5.4.2. For any δ2

we chose δ, ε and T so that (5.55) holds for any δ < δ, ε < ε and T ≤ T0.
We set ṽ0(x) = v0(eρ0(x)) as in (3.1), and choose vb in such a way that (5.54)
holds. It is easy to check that the compatibility conditions (5.39) are satisfied
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for ρ0 = φ0 − φb and ṽ0.and define v(0), ρ(0) as the extension of ṽ0 and ρ0 to
t ≥ 0 such that, recalling (2.29)

‖(v(0), 0, ρ(0))‖H,l,T ≤ c
(
‖v(0)‖

W
l+2, l2 +1

2 (Q∞)
+ ‖ρ(0)‖

W
l+ 5

2 ,
l
2 + 5

4
2 (G∞)

+ ‖ρ,t‖
W
l+ 3

2 ,
l
2 + 3

4
2 (G∞)

)
≤ c(‖ṽ0‖W l+1

2 (Ωb)
+ ‖ρ0‖W l+2

2 (G)).

This can be done in a standard way for v(0) and as in (4.87) for ρ(0). Notice
that by lemma 5.4.2,

‖eρ0‖W l+2
2 (Ωb)

≤ cε‖ρ0‖W l+2
2 (G)+c(ε)‖ρ0‖L2(G) ≤ c(ε+c(ε)δ)‖ρ0‖W l+2

2 (G) ≤ ‖ρ0‖W l+2
2 (G),

for sufficiently small ε and δ(ε). Thus we can suppose

‖ṽ0‖W l+1
2 (Ωb)

≤ c‖v0‖W l+1
2 (Ω0),

independently of δ and ε, if those are sufficiently small. Then we iteratively
define (v(n+1), p(n+1), ρ(n+1)) as the solution of (5.41) with right hand sides

fn = (l1 + l0)(v(n), p(n), ρ(n)), hn = l2(v(n), ρ(n)),

dn = (l3 + l4N )(v(n), ρ(n)), gn = l5(v(n), ρ(n)),

and initial data ṽ0, ρ0. Theorem 5.4.1 applied to the corresponding linear
system, together with (5.55) give

‖(v(n+1), p(n+1),ρ(n+1))‖H,l,T ≤ cδ2

3∑
k=1

‖(v(n), p(n), ρ(n))‖kH,l,T

+ c
(
‖v0‖W l+1

2 (Ω0) + ‖ρ0‖W l+2
2 (G) + σ‖Hb‖

W
l+ 1

2 ,
l
2 + 1

4
2 (GT )

)
.

We let

c
(
‖v0‖W l+1

2 (Ω0) + ‖ρ0‖W l+2
2 (G) + σ‖Hb‖

W
l+ 1

2 ,
l
2 + 1

4
2 (GT )

)
≤ c
(
‖v0‖W l+1

2 (Ω0) + ‖ρ0‖W l+2
2 (Σ) +

√
T‖φb‖

W
l+ 5

2
2 (Σ)

+ ‖φb‖
W
l+ 3

2
2 (Σ)

)
=: NT ,

and choose δ2 so small that

cδ2

3∑
k=1

(2NT )k ≤ NT ,

and consequently small ε, δ and T such that (5.55) holds. Now

‖(v(0), 0, ρ(0))‖H,l,T ≤ 2NT ,
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by construction, and by induction ‖(v(n), p(n), ρ(n))‖H,l,T ≤ 2NT for all n ≥ 1.
To prove convergence, we proceeding as in the proof of theorem 5.2.1, defining

(v̂n, p̂n, ρ̂n) := (v(n+1) − v(n), p(n+1) − p(n), ρ(n+1) − ρ(n)).

By theorem 5.4.5, for sufficiently small ε, T and δ, it holds

‖(v̂n, p̂n, ρ̂n)‖H,l,T ≤
1

2
‖(v̂n−1, p̂n−1, ρ̂n−1)‖H,l,T ,

and thus strong convergence of (v(n), p(n), ρ(n)) to a solution (v, p, ρ) of (5.38),
for which it holds the estimate

‖(v, p, ρ)‖H,l,T ≤ 2NT .

It is clear that, eventually decreasing T , φb can be chosen in such a way that
√
T‖φb‖

W
l+ 5

2
2 (Σ)

+ ‖φb‖
W
l+ 3

2
2 (Σ)

≤ c‖ρ0‖W l+2
2 (Σ),

and this gives the claimed estimate.
We now prove that the global solution so obtained is unique. If (v′, p′, ρ′)

is another solution, then (v̂, p̂, ρ̂) := (v − v′, p− p′, ρ− ρ′) satisfies the linear
problem (4.1) with right hand sides

f̂ := (l1 + l0)(v, p, ρ)− (l1 + l0)(v′, p′, ρ′),

ĥ := l2(v, ρ)− l2(v′, ρ′),

d̂ := l3(v, ρ)− l3(v′, ρ′) +
(
l4(v, ρ)− l4(v′, ρ′)

)
N ,

ĝ := l5(v, ρ)− l5(v′, ρ′),

and zero initial data. By the coercive estimate for the associated linear
problem and theorem 5.4.5, for sufficiently small ε, δ and T it holds

‖(v̂, p̂, ρ̂)‖H,l,T ≤
1

2
‖(v̂, p̂, ρ̂)‖H,l,T ,

and thus the claimed uniqueness for sufficiently small time. �
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