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Abstract

We investigate the motion of spatially periodic surface waves. An infinite
layer of incompressible viscous Newtonian fluid is bounded below by a plane
and at the top by a free surface. Hydrodynamical forces are acting on the
fluid, whose motion is supposed to be spatially periodic. On the bottom
surface we impose Dirichlet boundary condition with no incoming or outgoing
flux, while the motion of the free surface, where capillarity is assumed, is
driven by classical dynamic and kinematic condition.

We obtain three results:

e A linearization principle stating that, if linearizing the problem near
a stationary solution gives a stable linear system, then the nonlinear
problem is stable (and thus well posed and globally solvable) for initial
data which are sufficiently near the stationary solution.

e The rest state is linearly stable, and thus sufficiently small initial data
give global, unique, regular and exponentially decaying solutions for the
nonlinear problem.

e Whatever the size of the initial data, a unique and regular solution to
the nonlinear problem exists for a sufficiently small time.
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Chapter 1

Introduction

This thesis deals with a free boundary problem for fluid dynamics. These
kind of problems go back as far as the analysis of Newton on the shape of
a rotating fluid, and have been considered by many great physicists and
mathematicians.

The problem in its general form deals with a fluid contained in a time-
varying domain {2;, whose boundary has a “free” part I'y C 9€);, which is
moving according to some dynamic and kinematic conditions driven by the
fluid itself and /or external factors. The fluid can be subjected to hydrodynam-
ical forces, or more generally by electromagnetic or thermal effects, bringing
respectively to MHD and NSF models. The instances in nature of this kind
of situation are endless: from water waves, models for earthquakes and lava
motion in geophysics, to galaxy’s shape and helioseismology in astrophysics.

We will consider a somewhat simplified situation, where temperature and
electromagnetic fields play no role, and the fluid is viscous and incompressible.
For more elaborate models, we refer to [44] for bibliographics references.
Looking at normal dynamical balance on the free surface, we see that

Tn = Fn,

where n is the exterior normal to I';, T is the stress tensor of the fluid and
I is the tensor of the external forces on the free boundary. For a viscous
incompressible fluid, with velocity field v, pressure p and viscosity coefficient
v, classical continuum mechanics asserts that the stress tensor is given by

T = —pl +vD,

where I is the identity matrix d;; and D is the doubled symmetric rate of
strain tensor, which, for Newtonian fluids, is given by

i j
D:D(v):Ver(Vv)T:(av +8U) ,
Or; O, i,j=1,2,3
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i.e., the doubled symmetric part of the derivative of the velocity field.

The external stress F can be caused by a variety of phenomena. There
can be, for example, another fluid with possibly different viscosity on the
other side of I';, in which case we speak of “two phase problems”, which are
considered in [1], [8], [9], [10], [17], [37], [38]. Another frequent situation
(which may holds also for two phase problems) is that the free surface itself
produces a normal force to counter its deformation, through the phenomenon
of capillarity. Given a surface tension coefficient o > 0, the capillarity force
acts in a direction normal to the free surface, and is given by

F = —UHt(sij,

where H, is the doubled mean curvature of the surface I';. The sign is given
according to standard differential geometry, where a convex body has positive
mean curvature at any point of its boundary; therefore, the capillarity force
tries to “flatten” the free surface. Finally, an external pressure pe. defined in
the whole space give rise to an external stress on the surface of the form

F= —Pext 5ij .

All these external stresses contributes in confining the fluid, which is an
important factor for the well posedness of the problem e.g., in rotating fluids.
In absence of any external stress on the surface, one may also consider self—
gravitational force as a confinement factor, as is done in [27], [29], [14], [30],
[31].

While dynamic conditions may vary from problem to problem, kinematic
conditions on the boundary are in most cases the same. If V,, denotes the
normal velocity of the free boundary, it must hold

v-n=V,, (1.1)

on I'y, which expresses the fact that the free surface consists for all ¢ > 0 of
the same fluid particles, which do not leave it and are not incident on it from
inside €2;. On the rest of the boundary (if there is any) one can assume for
example Dirichlet boundary conditions, with or without incoming flow. This
is the case, for example, of flows through an inclined plane, or rotating fluids
in a bucket. Neumann—type boundary conditions can also be assumed, as
well as mixed ones. When there is no fixed boundary, we speak of an isolated
liquid mass. This problem has been treated in 23], [25], [14] when no surface
tension is present, and in [13], [24], [29], [20], [26], [27] for capillary fluids.
Our specific problem deals with periodic surface waves. We consider a
layer of fluid, bounded at its bottom by a fixed surface, and at the top by



a free boundary. Understanding the properties of this kind of motion has
many applications, e.g. in seismology, where seismic waves are the result of
earthquakes or explosion, or water waves in the ocean. Without periodicity
assumption the problem has been treated in [3], [36], [42], [40] for a heavy fluid
without capillarity. When surface tension is present, it has been treated in
[4], [5], [40], [39], [41] without periodicity assumption, and in [16] for periodic
motions.

— The problem.

We now describe the problem more precisely. A viscous, incompressible
fluid, with associated velocity field v and pressure p, fills at any time ¢t > 0
a domain €);, where it satisfies the incompressible Navier—Stokes equations
with external force f and viscosity v. The density of the fluid is supposed to
be 1. We suppose that this domain can be described as € := {(x1, x2, x3) :
0 <az3 < ¢(a,t)}, where 2’ = (21, 22) and ¢ is a sufficiently regular function
whose graph in R? is the free boundary of the fluid, I';, with exterior normal
n. We suppose that the velocity field, the pressure and the free boundary
function ¢ are periodic for every t > 0, with periodic cell ¥ being a fixed
rectangle in R2.

On the bottom part of the boundary we impose Dirichlet boundary
conditions v((2,0),t) = a(a’,t), for some sufficiently smooth, 3-periodic
a = (a',a?,0), with zero normal component (i.e., no incoming or outgoing
flux is assumed). We suppose that on the free boundary capillarity is acting,
and thus we impose the stress balance condition T(v, p)n = —o H;n, where
o > 0 is the surface tension coefficient. Finally, the kinematic condition
(1.1) is assumed. Given a suitable X-periodic initial velocity field vy at time
t = 0, defined in a ¥-periodic domain {2y, whose boundary I'j is the graph of
®o = ¢(+,0), one is thus lead to the following evolution problem:

(vi+ (v-V)v—V-T(v,p)=f on

V.-v=0 in €2,

T(v,p)n =—cHmn on I'y, (12)
Veo=v'mn on I,

v(z,0) = vo(x in Q
(v((2,0),t) = a(a', t) on X, for t > 0,

where the underscript comma in v ; denotes the partial derivative w.r.t. ¢ (we
will always assume such a notation).
Denoting by Il the orthogonal projection on the tangent space to I'y, this
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system is coupled with the natural compatibility conditions

V- Vg = 0 in Qo,
vo(2',0) = a(2’,0) on X,
oD (vo)rg =0 on Iy,

where ng is the exterior normal to I'y.

We obtain a linearization principle for this problem. When f and «
are independent of time, we consider a stationary solution (v, py), in some
domain Qy, := {(2/,23) : 0 < z3 < ¢p(2')}, of

(v - Vo, =V -T(vy,p) = f  in
V-v,=0 in €y,

T (vy, pp)ny = —0 Hyny, on G, (1.3)
v, -n, =0 on G,

L vp(2,0,t) = a(a) on X, for t > 0,

where G is the surface defined by x3 = ¢(2'), n, its exterior normal and H, its
doubled mean curvature. We then linearize system (1.2) near this stationary
solution, and prove that if the linearized system is exponentially stable (in a
suitable sense), then for any initial data v, €29 which is sufficiently near to
the stationary solution, there exists a unique global in time solution to (1.2),
which exponentially converges to the stationary solution of (1.3). We apply
this principle to prove the exponential stability of the rest state for periodic
motion, and finally prove a local (in time) solvability theorem for problem
(1.2), with arbitrarily large initial data.

— The setting.

Looking back at (1.2) the first feature of this system is that the domain
in which the velocity field and the pressure are defined is varying with time.
This is of course typical of free boundary problems for hydrodynamics, and
the first step to address the latters is to transform the corresponding system
in a fixed domain. There are mainly two methods to do this. The first one is
to consider the Lagrangian formulation, given by the change of variables

xzﬁ—l—/() u(, s)ds =: X (&, 1), £ e

where u is the velocity field expressed in Lagrangian coordinates: w(&,t) =
v(X (1)), where v is the velocity field in the usual Eulerian coordinates.
This reduces, at each time ¢t > 0, the differential equation in €2; to one defined



in €29. Most of the works cited above use this approach, with minor additional
arguments.

In [4], [3] however, a second method is applied, where all the ,; are
considered as perturbations of the domain €2, corresponding to the rest state.
Thus, a time depending diffeomorphism ®, is chosen in such a way that all
the Q; (Qp included) are given as €, = ®,(£2), where Q, # Qg in general.
This diffeomorphism transforms the system in a more complicated one, but it
has the advantage that studying the existence for large times can be settled
once and for all in €2,. This kind of approach is called nowadays Hanzawa
transformation, although this technique was frequently used well before the
work of Hanzawa [11] on the Stefan problem. At some point, a form of it is
used in all the results we know of concerning stability and existence of global
solutions for free boundary problems in fluid dynamics.

It is worth noting that, for surface waves, this choice of coordinates seems
more natural, due to the simple topological restrictions these problems pose.
Even more, the presence of capillarity suggests that the free boundary will
be more regular than what a “pure” Lagrangian approach suggests, as will
be apparent in the following discussion on regularity. We will thus adopt
this approach, and henceforth any norm we consider will be computed in €y,
through a suitable Hanzawa transformation, the particular from of which will
be defined in chapter 3.

Let us now discuss briefly the regularity framework we choose. Existence
and regularity for free boundary problems for the Navier—Stokes equations
are usually set in three different kind of spaces: Hoélder spaces (|23], [13]),
anisotropic Sobolev—Slobodetskii spaces I/VpQ’1 with high summability p > 3

(|25], [14], [1]), or L? anisotropic Sobolev—Slobodetskii spaces W;’% with
noninteger order of differentiability r» > 2 (see [3], [4], [24] to cite only the
first works).

Our choice is the latter, for a variety of reason. Working in Holder spaces
involves as usual a great deal technical difficulties, while the ngl setting
suits well into the no—capillarity case, but, in principle, requires additional
analysis to deal with the boundary condition T(v,p)n = —c Hn when o > 0:
this indeed gives rise to an elliptic equation for the free boundary, which, at
least in Lagrangian coordinates, is not well defined due to the low a-prior:

regularity of the velocity field. Moreover, the L? setting for the spaces W, 2
makes them highly compatible with Fourier and Laplace transform methods
in dealing with the corresponding linearized problem, and the Hilbert space
structure is handy in giving spectral conditions to ensure stability of the
stationary solution.
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— The result.

Using Hanzawa transformation, the linearization of (1.2) around the
stationary solution is a lower order perturbation of

('vvt—yAv—l—Vp:f in €

V-v=h in

T(v,p) — cAgpn, = d on G (1.4)
pitt+vp-Vp—qmy,-v=yg on G,
(v[==0, V| 1—0= Vo, pli=0= po,

with suitable compatibility conditions, where p = ¢ — ¢, is the perturbation
of the free boundary from the stationary boundary ¢,, Ag is the Laplace—
Beltrami operator on G and v = /1 + |V¢|? is the surface area factor.
Indeed, the initial problem (1.2) gives, through Hanzawa transformation, a
lower order perturbation of the previous system, with nonlinear right hand
sides depending on v, p and p. For the purpose of this informal discussion we
will omit the complete form of the system, which will be computed in chapter
3.

We now look for relationships between the regularity of the variables v
and p, neglecting the pressure and the nonhomogeneous terms. Suppose the

velocity belongs to Wg’%(QT), where Qp =, x [0,7) and
Wy * (Qr) = L2(0,T; W5 () N W5 (0, T; L* ().

Looking at the third equation in (1.4), it involves D(v), (or else, Vv) on the
free boundary, and a second order elliptic operator for p arising from the
curvature term. If Gr = G x [0,T), by trace theorems one has

and the elliptic operator Ag suggests that p will gain two derivatives with
respect to D(v). More precisely, we will at least have

pe L20,T; Wit (G)). (1.5)

Now, while v € W, ?(Qy) gives a uniform estimate on |jv(-, Ollwr—1(0,) n
time, (1.5) alone is not enough to have such an estimate for ||p(-, )||Wr by

2
since we lack informations on the time derivative of p. However, looking at
the fourth equation in (1.4) and using trace theorems, one actually gets

pe € L0, T; Wi 3 (G)), (1.6)



which, using (1.5) and interpolation, is enough to ensure an even stronger
uniform estimate in time, namely

su ot roy < F00.
t<¥||ﬂ( )||W2(g)

Notice that capillarity is essential to gain spatial regularity of the free surface.
Otherwise, the only information one has from the fourth equation arise from

1

T 2

su 1 < 1 +VT / 2 dt) )
SUplPl 1 gy < oollyrs g (0 1oelly 36,

which can be bounded assuming W; 2 regularity of the initial perturbation
and the natural regularity condition (1.6). Therefore, if one wants to look for

solution of (1.2) with v € W, ? (), the natural regularity conditions on the
initial data seem to be

vo € W5 1) and py € WS (G).

Notice that these initial conditions are optimal for the linear system in the
sense of extension theorems, (see theorem theorem 2.2.1 and (4.87) in this
regard). It is worth noting that in [4], [5], [40], [39], [41], a different regularity
is required.

A simplified statement of our main theorem is the following. See theorem
5.2.1 for the full result.

Theorem 1.0.1 Let r € (3,3). Suppose that any S-periodic solution v, q,
p of the homogeneous linearized system corresponding to (1.2) around the
stationary solution vy, py ¢y is exponentially stable, i.e., there exists v > 0
and ¢ such that

Jv(-,1) — 'Ub||W2’“—1(Qb) + (-, t)”wg(z) < ce”(|lvg - ’Ub||W2"—1(Qb) + ||P0||Wg(z)>‘
Then there exists 6 > 0, v > 0 and ¢ such that if
|vo — vb”wg*l(szb) + ||p0||W2T(Z) <9,

the nonlinear problem (1.2) has a unique 3-periodic solution with optimal
reqularity, which exponentially converges to the stationary solution, i.e.:

lo () =vbllwy=1(0,) + o Dllwy ) < de” (lvo—vbllwy—1q,) +llrollwys))-
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We will use the linearization principle above to prove exponential stability
of the rest state 0, = {0 < 23 < h}, v, = 0, pp = Patm + g(h — 3),
f =1(0,0,—g), where pu, is the atmospheric pressure, g is the acceleration
of gravity, and h is the height of the fluid. We analyse the spectrum of the
associated linearized problem, proving that indeed it is exponentially stable
in the sense of the previous theorem. Thus we obtain the following

Theorem 1.0.2 Letr € (2,3). There exists § >0, v > 0 and ¢ such that if

HUOHW;—l(Qb) + [lo — h||wg(z) <0,

the nonlinear problem (1.2) for f = o = 0 has a unique X-periodic solution
with optimal reqularity, which exponentially converges to the rest state, i.e.

1o Ollwg-10y) + 190 8) = Pllyy(s) < e

Exponential stability results for the rest state (without periodicity assump-
tions) are addressed in [4] for 3 < r < 7/2 and in [39] for 5/2 < r < 3 and
po—h e W, +%(E). In [18] exponential stability is proved for r = 1 regardless
of the size of the initial data, provided a global in time and smooth solution
exists. In [16] the periodic case is studied, and exponential stability of the
rest state is proved for » = 3. Both these two works employ energy methods.

Although in most of the literature some kind of linearization around
the rest state is used, a general linearization principle is, to the best of
our knowledge, still unproved. Consequently, exponential stability has been
obtained only in special cases (r = 1,2, near the rest state) where an energy
inequality can be used.

— Future developements.

Some natural questions regarding the stated results are left open. One
may wonder, for example, what is the role that the change of variables has on
the stability of the stationary solution. At lest formally, different choices of
the Hanzawa transformation lead to different linearization, which in principle
can have different spectral properties. The physics of the problem, however,
suggests that if one choice gives rise to a stable linearization, then the same
must hold for every other choice. One is thus lead to the following general
question:

How does the particular choice of coordinate transformation to write down
the linearized system affects the stability of the stationary solution we are
linearizing at?



Clearly one may also ask what is the relationship between the stability of
a linearization using a Hanzawa transformation and the one obtained using
some form of a Lagrangian formulation. Of course one can try to reduce the
problem of the stability of a stationary solution to the positivity of some
energy functional’s second variation, which conceivably is independent of the
coordinates chosen. In this direction, see the works of Solonnikov on rotating
fluids [33], [34].

On a more refined level, the rate of convergence to the stationary solution
(whenever stability occurs) of a global solution on the nonlinear problem
depends on the spectrum of the linearization. This, again, seems to depend
on the particular choice of variables used to solve the nonlinear problem.
Another natural question can thus be the following

How does the particular choice of coordinate transformation to write down
the linearized system affects the spectrum of the latter?

Another kind of problem arises considering the situation where there is
no surface tension. In this case the Hanzawa approach seems to fail due to a
too strong nonlinearity in the equation arising from the kinematic condition.
Moreover, one expects to observe an asymptotic decay which is polynomial
in time, instead of the claimed exponential decay in the capillary case; in this
regard, see [5|. Therefore we have the following question

What is the asymptotic behaviour of the solutions of the nonlinear problem
with no capillarity, near a stable stationary solution?

Moreover, it is worth noting that the terms “linearization principle” as
we used it is not entirely accurate. A linearization principle in its full
strength would give information also in the unstable case, stating that if the
linearization has positive eigenvalues, then the nonlinear problem is unstable.
Thus one can ask

Does a full linearization principle hold for periodic surface waves?

Finally, the study of the stability of time periodic surface waves seems
particularly important in applications. One expects that the spectrum of
the monodromy operator will enclose all the relevant informations on the
stability of a time periodic solution of the free boundary problem, but concrete
examples are at the moment missing. Therefore another problem is

Does a linearization principle in the time periodic case hold?

We expect that, for the last two questions, the methods developed in [12],
[34] can be successfully applied.
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— Contents.

In chapter 2 we provide background material on anisotropic Sobolev—
Slobodetskii space and Laplace transform. Most of the theorems are classical
and well known, except maybe the ones in section 3, which deals with
anisotropic Sobolev-Slobodetskii spaces for small time. These are introduced
in order to have a scale invariant norm with respect to time, and will we proof
the less known properties of these spaces.

In chapter 3 we describe our choice of Hanzawa transformation, which
differs from the usual one, and is taken to simplify the subsequent work. The
regularity properties of this transformation are not optimal, but this won’t
affect the study of the nonlinear problem.

Then, changing coordinates to reduce system (1.2) to one defined in the fixed
domain €2, we derive an explicit form for the linear part of the system near a
stationary solution, and compute the higher order, nonlinear terms.

In chapter 4 we deal with the linearized problem. We first prove existence
and optimal regularity estimates for the complex parameter model problems
in the half-space obtained localising the Laplace transformed time dependent
linear problem. These can be explicitly solved via Fourier transform methods,
and Parceval identity provides optimal parameter dependant estimates.

In section 2 we construct the solution of the complex parameter linear problem
via a Shauder localisation method, and prove its uniqueness through a coercive
inequality.

In the last section we reduce the original time dependent problem to one with
homogenous initial data, and obtain a solution via the previous results and
Laplace transform.

In chapter 5 we prove the abstract linearization principle, the exponential
stability of the rest state, and a local (in time) existence theorem. We
first estimate the nonlinear terms in the suitable spaces, using the explicit
expression computed in chapter 3.

To prove the linearization principle, we construct the solution as a sum of two
addends: the first one solves a linear problem with a relatively large initial
data, and the second a nonlinear one with a relatively small one. The stability
hypothesis guarantees that the “linear” part is decaying exponentially, and
the now quadratic behaviour of the a-priori estimate for the nonlinear part
implies its decay as well. Thus the solution of the full nonlinear problem can
be constructed for any fixed (and large) T', with decaying norm and we can
iteratively repeat the construction to obtain a global solution.

In section 3, the nonlinear stability of the rest state is deduced from the
analysis of the spectrum of the corresponding linearized problem, which is
easily done due to the simple form of the linearization.
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The final section of this chapter is devoted to the local existence theorem for
arbitrarily large initial data. The result is substantially known (although not
in the periodic case), since other techniques works as well in this case. The
purpose of this section is to show that, even if our Hanzawa transformation
is far from optimal, we nonetheless obtain sufficiently sharp estimates for the
nonlinear terms to obtain the result.

Notation.

We won’t use a different notation for spaces of scalar or vector valued
functions, since all the properties we will use of these spaces are unaffected
by the number of components of their elements.

Whenever this causes no confusion, we will use Einstein’s convention on
summation over repeated indexes, and use the comma notation for partial
differentiation, where

aof _
ot

ok f
fi m = f,z‘;l,,,vaN,

for any multiindex (o, ..., ay) € NY with length k = a; +- - - +ay. Differen-
tial operators will be denoted as V, D or with the standard partial differential
notation, and A will denote the Laplace operator in RY. Vectors will usually
be written in bolded fonts, while their components will be written with the
same unbolded symbol, with the relative coordinate as an upper index, i.e.
v = (v, v?,0?) for a vector v € R3.

A dot will indicate for the standard scalar product between vectors, while
multiplication of a vector and a tensor will be denoted by simple juxtaposition;

for example, if M = (M;;) and N = (N?)

i )
Whenever more factors are present (especially when differential operators are
involved), for ease of reading we won’t specify the order of multiplication,
since it is usually readily recovered from the context.

In chain of inequalities, a constant ¢ will keep the same symbol, even if it
changes its value from line to line, when it does so in a way independent of
the quantities involved in the inequality. Whenever a specific dependance
on the data is relevant, we will write it between brackets, e.g. ¢(T') denotes
a constant which depends on 7', but not on the quantities involved in the
inequality it appears in. The remaining notation is standard, or will be
specified when introduced.



Chapter 2

Preliminaries

In this chapter we develop some of the basic tools we will need to deal with
problem (1.2). All our results are settled in anisotropic Sobolev—Slobodetskii
spaces, whose theory has been developed thoughtfully by the Russian school
in the fifties. These spaces have had an enormous impact in the study of
PDE’s, and in particular the anisotropic case has been found especially fruitful
in the study of parabolic problems. For a general survey of this vast subject
see the book by Besov, II'in and Nikol’skii [6], or the work of Triebel [43].

In the first section we recall the definition and basic properties of isotropic
Sobolev-Slobodetskii spaces W(Q), where [ stands for the order of (weak)
differentiability. These where introduced by Sobolev in [22| for integer [ and
generalised by Slobodetskii in [21] for not necessarily integer values of [.

In the second section we introduce the theory of anisotropic Sobolev—
Slobodetskii spaces as constructed by Slobodetskii in [21] and developed
my many other Russian mathematicians in the following years (see [15] for
example). For our purpose, i.e. dealing with second order parabolic systems,
we require spaces whose function have spacial derivatives of twice the order
of time derivative. Most of the results presented have natural analogues for
summability exponents p # 2.

In the third section we describe a modified norm for anisotropic Sobolev—
Slobodetskii space, introduced by Solonnikov in [19]. This modified norm has
many nice scaling properties in time, and are especially useful when dealing
with parabolic problems for small time.

One of the many powerful application of anisotropic Sobolev—-Slobodetskii
space, is described in the last section. Agranovich and Vishik in [2]| introduced
a general strategy to deal with parabolic systems through Laplace transform.
Since this is the approach we will employ in the study of the linear problem,
we briefly describe the main tools constructed in [2].

Most of the results stated in this chapter are classical and can be found in
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the above mentioned works. Sometimes we will need refinements or variations
of classical theorems, and whenever a handy reference is not available we will
provide a sketch of the proof.

2.1 Isotropic Sobolev—Slobodetskii spaces

If [ is a nonnegative integer the isotropic Sobolev—Slobodetskii space on a
bounded domain @ C RY coincides with the usual Sobolev space, i.e. the set
of functions u : 2 — R with finite norm

gy = EZ/WDJ )P,

l7]<i

where D’u is the j-th distributional derivative. Here j is a multiindex
Jj = (J1,...,Jn) and |j| its length 71 + --- + jn. When [ = [I] + {{}, where
{l} € (0,1) is the fractional part of [, the norm is

2 | D7u(z) — DIu(y)|?
lullivsey ||u||W[z] + Z / ’x — dzdy. (2.1)
We will denote by || HW% () the principal part of the previous norms, i.e.
| D! uH%g @ if [ is an integer,

2 — Diy 2
”uHWé(Q) - Z / / | ’N+2{l§» v)l drdy otherwise. (22)
This norm is derived from a natural inner product defined as

(, )iy == D, (D7, D) 2(q)

171<[1]

+Z// (Diu(z Dju(y))(Djv(x)—Djv(y))dxdy’

o =y Y20

lj1=

with which W}(Q) is a Hilbert space. Its dual will be denoted by W, (),
thus giving a meaning to the symbol W(Q) for all real [.

If the boundary of €2 is smooth enough (of class C! suffices) any u € Wi(Q)
can be extended to the whole R with preservation of class and controlled
norm. More precisely, there exists a continuation operator C' : Wi(Q) —
WI(RY) with the following properties:
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1. C(u)|o=w;
2. C(u) has compact support in RY;
3. MCW) ey < cllullyq)-

Using this continuation property, equivalent norms (which for simplicity
we'll still denote with ||u||w21(9)) can be defined using the finite difference

operator A,u(z) = u(x + z) — u(z). Two examples are the followings

) dz
mmzwwu+2/ IA-DIC) @)} 0z

5= 7 HEIs 1

dz
Il = Wl + 32 [ I8SC0N o e @9

li|= {]z|<1}

for any integer k > [, where A*v is the k-times iterated finite difference
operator, whose explicit expression is

k
Aky(z) = ALAy(2) = Z(—l)k_j (k)v(x +j2).

J
We recall some embedding properties of Sobolev—Slobodetskii spaces.

Theorem 2.1.1 Let Q C RY be a bounded domain with smooth boundary,
and u € Wi(Q). Then

, N
N oo < CH“H%(Q)a if 1 < 5 (2.4)
, N
lull ooy < ellwllwyy, 1> 5 (2.5)

There are much more refined results of this type (especially in the [ > N/2
case, and we refer to [43| for them. All the constant in the embedding theorem
above, as well as in the equivalence inequalities of the various previous norms
depend on €2, mainly because the continuation operator, which allows to reduce
the inequalities involving W}(Q) to similar inequalities involving W(RYM),
depends on the geometry of 2. It will be important to have scale invariant
inequalities in time, and thus we will consider more closely the continuation
operator in the one dimensional case. For our purposes it suffice to analyse
only the case [ € (0,1), and we have the following result.
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Theorem 2.1.2 Letl € (0,1) and u € Wi([0,T)), equipped with the standard
norm (2.1). There is an extension Cp(u) of u to [0, +00) such that

/+oo /+°°|C |x_y|1+2(l u)(y )’2dxdy

T |u |2 1 T )
|x—y|1+2l — 2 dx d +CT_2Z |U(QZ)‘ dx

for a constant ¢; depending only on | and not on u or T.

(2.6)

Proof. The inequality follows from a scaling argument. If ¢; is the constant
for which (2.6) holds for 7" =1 and for a fixed extension operator C, then
given any function u € W([0,T]) we define

ur(z) = u(Tx) € WH(0,1]),  Cr(u) = Ci(ur)().

A change of variables thus gives (2.6). [

It will be useful to study the structure of W}(£2) as an algebra of function.
To this end we will prove the following theorem (see [33| for a a refined
statement using Besov spaces).

Proposition 2.1.3 For arbitrary functions u,v given in a smooth domain

Q c RY it holds

1.

[uvl|z2(o) < C||U||Wg(sz)||U||W2g4(m,

for any 0 <1< N/2.

<
ooy < iyl 3, + Wlimio)

< cllullwiellvliws @)

for any 0 <1< N/2 <s.

vl < el lolhws e + Tl el o)

(2.8)
< CHUHW5(9)||U||W21(Q)

foranyl > s> N/2.
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Proof. The proof of the first statement is just an application of Holder
inequality with exponents N/(N — 2[) and N/I and the embedding theorem
2.4. To prove the other two estimates we can suppose, using the continuation
operator above, that u and v are defined in the whole of RY. It is easy to
prove by induction that

Af () (z) = Z (I;) Alu(z) A Tv(z + 52). (2.9)

j=0

If one then choose k > 2[ in the norm (2.3), each of the resulting term in the
above formula has a factor in which the finite difference operator is applied
at least k/2 > [ times. To prove (2.8) it suffice to notice that

CkHuHLOO(RN)|’A’;_jv|lL2(RN) lfj < g,

||Aju(x)Ak_jv(x+jz)||L2 RNy = ; e
’ ’ = ck”v“LOO(RN)”AJzUHLQ(RN) if j > %),

which, plugged into (2.3), gives for any [ > 0

lwvllwyny < crlllull oo @y [0llwyny + [0l oo @y gy (2:10)

The embedding inequality (2.5) thus concludes the proof of (2.8), since
[ > N/2. Suppose now that | < N/2 to prove the inequality at point 2.
We treat as above the terms in (2.9) corresponding to j > k/2: due to the
embedding inequality (2.5), for those terms an estimate of the form

, . dz
_ N
/{| | l}HNzu(l’)A'E ]v(wﬂz)HLz(RN)W < ol @y 1wl @y,
z|<

holds true.
For j < k/2 we use Holder inequality instead:

1AZu(2) AT 0@ + j2) || p2geny < exllull o

k—j
N—2l (RN) ”Az UHL%(RN)‘

Using the embedding (2.4) we get

: . dz
_ . 2
| 1A A o 42 e
, dz )
< 2 Ak—g 2
< gy [ IAEI o

and for s > N/2 we have
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k—7j..112

/ AT} - / 1870l vy de
) =

Qel<y LT @Y | [NH2 sl N42s) | N2

SN dz
< Ak*] 1 -
> Cs |:/;|<1H z UHL%(RN) |Z|N+23

2(1-2) 2%
S CZ7SHUHL0<>(RNN)”UHV[;\Q;(RN)

ERL

=N

where on the second line we applied Holder inequality with exponent p = N/2[
on the first factor. Using this estimate in (2.11), applying Young inequality
and the embedding inequality (2.5) gives

' j dz
— . 2 9 5
/{ |<l}||Aiu(x)Alj To(z 4 52) |12 @ny B < cllullip@m [0l @y

and the conclusion. [

In the particular case where u and v depend on two disjoint sets of variables
one can prove a refined version of the previous theorem. With RY we denote
the half-space defined by the condition x; > 0.

Lemma 2.1.4 Let N > 2 and | not an integer. If u(x) = u(xy) and v(x) =
v(xa,...,xN) then

lwvllwyyy < elllll oy l[0llwygn-1) + 10l 2@l e,))-

Proof. The claim follows from the fact that the W}(RY) norm is equivalent,
for [ not an integer, to

N o0
2 2 " k 2 dh
HfHBéJ(R_,A_’) = HfHLQ(Rﬁ) + Z o HAheifHB(Rf)h_Hgla
i=1

where e; is the vector whose j-th component is d;;, and £ is any integer greater
than [. Indeed it suffice to notice that for i < 1

2 2 .
0] 2@y ||Aielv||L2 R4 for i =1,
( ) (R4)

HA’;Leiuvl‘zLQ(Rﬁ) = 2 k 9 )
Hu‘|L2(R+)||AheiUHL2(RN71) for ¢ > 1,

and this, together with ||UU||L2(JM) = [Jull 2,y IV 2 grv-1): gives the desired
inequality. [
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Another equivalent norm in the case 2 = R¥ is the following:

%
ol = ( [ 0+ ey iae)Rag) 212
where u is the Fourier transform of w:
u(é) = / e STy (x)de.
RN

This norm can be used to define fractional order Sobolev—Slobodetskii spaces
in an arbitrary smooth domain or submanifold. For smooth domains 2, it
suffices define HL(2) as the set of restrictions of functions u € HL(RY) to
Q. One can then prove that this set coincides with Wi(€2), and that fixing
a continuation operator C' the ||u||W2;(Q) norm is equivalent to ||C(U)HH§(RN)~

For smooth bounded d-dimensional submanifolds M of R one needs to fix
a partition of unity {¢;};cs subordinated to a finite open covering {U,};e; of
M on which smooth local charts {®; : U; " M — R?},c; are defined. Then
one defines

2

|u||Hl ZH u)o e 1||Hl (R2)

This norm turns again out to be equlvalent to many others, but the procedure
described here to construct Sobolev—Slobodetskii spaces on submanifolds
is especially useful when considering the relationships between Wi(£2) and
W5(0R2). Indeed, let RY := {(z1,...,2n) : @, > 0}. Using partitions of
unity and local charts, one is able to reduce such a problem to the study of
the relationships between W(RY) and W3 (RY). To this end we recall the
following well known restriction and extension theorems:

Theorem 2.1.5 For each | > %, there exists:

1
1. A continuous restriction operator R : Wi(RY) — W, 2 (RN-1), which
agrees with the usual restriction on smooth functions.

1
2. A continuous extension operator E : WZl 2(RNY) — WHRY) such that
RoFE = FEoR=1 on smooth functions.

Using this theorem and the procedure described above, one then obtains

extension and restriction operators between W}(Q) and Wé_%(aQ). Notice
that smoothness of 02 is essential here, and €2 being locally near 9€) the
epigraph of a Lipschitz function suffices. For higher values of [ one can
construct a more general extension operator, prescribing also the normal
derivatives on the boundary.
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Theorem 2.1.6 Forl—k > %, there exists a continuous extension operator

BT W7 (00) - WAQ),

such that o
—E(¢1,,¢k) :¢] on 0f).

on’
Clearly also this theorem can be stated for general smooth bounded submani-
folds with boundary of R¥.
Another application of the norm (2.12) is an easy proof of the so-called
interpolation inequality: If n > 0, k > 0, then Young inequality with exponents
knﬂ and k% gives for any s > 0

ST P < s+ (L IEP)).

and thus
sT(LA+ €27 < (s + (1 + [¢)F), (2.13)

which, used into (2.12) gives
2 2 2
Ml < lullgons) + 8 Mullage), (2.14)

for U = RY. Again, the inequality holds true for arbitrary smooth bounded
Q= U, or for U being a bounded smooth submanifold of R". Reading this
inequality for large s and dividing by s" gives a precise quantitative version of
the statement that, if h > k, the WX can be controlled by a small part of the
W} norm plus a large part of the L? norm, i.e. the interpolation inequality

2 2 2
lellwgw) < ellullwgw) + clelullzzw),

valid for e > 0, h > k.

Another useful interpolation inequality is used to deal with the necessary
condition [ > % in theorem 2.1.5. Indeed the continuity estimate for the
restriction operator fails to be true in the limit case [ = %, i.e. there exists

no constant c such that the inequality ||ul| 2@y-1) < C||u||W1/2(RN) holds true.
2 (RY

For example, let u(z,y,2) = ¢(r)r~'/2 where ¢ : R — R is smooth and
¢(r) = 1 for r < 1 and ¢(r) = 0 for r > 2. Clearly u € W3 (R?), and
thus by the restriction theorem u(z,y,0) € W;/Q(R2). However u(z,0,0) =
o(Jx|)|x|7Y/2 ¢ L3(R). On the other hand it is clear that the L?(RV~!) norm
of u|gn-1 is controlled by its W) (RY~!)-norm for any n > 0, and thus by

||u||W; 4 gy’ A quantitative version of this control is given by the following
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interpolation inequality, which again can be stated for an arbitrary smooth
bounded Q C R¥: for any s > 0 it holds

2 2 142
SMullze@ay < clllell ey o + 8" 2lullze@)- (2.15)

> (©)

To prove this inequality, we denote by u the Fourier transform w.r.t. the first
N — 1 variables, and & = (§1,...,{ny_1). By the inversion formula for the
Fourier transform

“+oo

A(E, 2v) = 5 / (e ) (2.16)

—0o0

and thus

+o00 2
e 0P < oo | [T ol

< e 1 2 7]+% ~ ! 2d oo di

A e B ey
c +o0 il )

< sl sy

Integrating in ¢ and multiplying by s” gives, through Parceval identity,

2 1~ 2 1 2
sl o @1y < C/RN(HSJFKF)"“\UP% < elllell iy oy +5" 2 Nullz2@))-
2

(RN)

We finally recall the definition of the Sobolev-Slobodetskii spaces of
functions u(z’) defined on R?, periodic in 2/ € 3, with finite W}(X) norm.
To simplify notations we will suppose ¥ = (0, 27)2. The space W(X) is the
(in general, proper) subspace of Wl(X) formed by the restrictions to 3 of
Y-periodic functions. Its norm is given by

lallysy == 3 (1 + €12 Juel?, (2.17)

£/€Z2

with ug being the ¢’-th Fourier coeflicient of u:

ugr ::/u(:x’)e_iﬁl'x/df. (2.18)
>

Notice that for [ < 0 the norm above is still equivalent to the norm of the dual
of WA(X). Given 0 < h < +00, the Sobolev—Slobodetskii space of periodic
(in 2’ € ¥) functions v = u(z’, x3) with (z/,z3) € R* x [0, h), is defined as

Wo(2 % [0,h)) := L*(0, Ly Wy(2)) N W5(0, h; L* (X)),
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with norm

s = [ I gyt + [ IoGa' Mg

These norms are equivalent to the usual Wi(3) and WX(X x [0, 2)) norms
on the subspace of the restrictions to X of »-periodic function, and thus
the subscript # will often be omitted. Moreover, will will use the notation
® =% x[0,4+00).

For all these spaces classical trace, extension, interpolation and embedding
theorems hold true, see [43] for a comprehensive treatment of the subject.

2.2 Anisotropic Sobolev—Slobodetskii spaces

The anisotropic Sobolev—Slobodetskii space is defined as the set of func-
tions v = u(z,t), defined in Qr :=Q x [0,7), 0 <T < +o0 such that

we Wi (Qr) == L2(0, T WHQ)) N Wi (0,T; L3(€),

with norm

Jul?, / e )t + / S DI 1) oot

o< ]

T dh T [4] 5
v [ty [ 18D e

An equivalent norm, which will still be denoted with the same symbol, is

||u|| / (1) s Q)dt+/||u de. (2.19)

W2(0T

Applying (2.1.3) in each variables, gives that for any smooth function v,

X
o]l < collullg g, V€W (@), (2.20)

1 <
2l 2(Qr) 2

where ¢, can, for example, be taken as

sup [0, lwgiey + 5P g 01

0<t<T

with 0 = max{% +e,l}, 0 = max{% +¢,1}, € > 0 arbitrary.



22 2. PRELIMINARIES

For smooth bounded (2, a continuous continuation operator exists, with
analogue properties to the one related to the isotropic spaces. Moreover,
when Q7 = RY*! one can use the norm

Il odveny = [+ IS+ EPVIE DPdeds, (221

instead, and can proceed as in the isotropic case, defining an equivalent norm
!

on Wzl’i(QT) using the H"2(RV*+1) norm via the continuation operator. All
these spaces can be defined (through local maps and partitions of unity)
for a smooth submanifold G of RY in which case we will use the notation
Gr =G x [0,T). Standard theory ensures that these are Hilbert space with

respect to the natural inner product, whose dual will still be denoted by
Sl

W, ",

Deriving with respect to spatial variables or time variables has a different

effect on the space one falls in, since it is easy to prove that

DEph o < . 2.22
” x tuHWQlfkﬂh,%(QT) _CHUHWQZ,%(QT) ( )

Regarding the extension and restriction operator analogues, in the anisotropic
case one has to distinguish between considering the spatial restriction on
0 x [0,T) and the time restriction on € x {0}, as the following theorem
shows.

I
Theorem 2.2.1 Let u € WQZ’Q(QT), 0 < T < +o0, with Q being a bounded
smooth domain.

1. Ifl > %, there exist a continuous space restriction operator

11

Ry Wr3(Qr) — W25 190 x [0, 7).
2. If l > 1 there exists a continuous time restriction operator
R WE2(Qr) — W x {0)).
3 Ifl—k > %, there exists a continuous space extension operator

_s_ 11 5 1 1
B, T Wi (90 5 [0,7)) = W (Qr).

such that 5
_Ex(¢la>¢k) = ¢j on 052

onJ
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4. Ifl — k > 1, there exists a continuous time extension operator
1—2j— 1L
Ly H§:0W2 Q) = Wy (Qr),

such that

P
@Et(lpla-”;wk) :QZJJ‘ on ) X {0}

All the constant in this theorem depend on 2, and, more importantly,
on T’; the next section will give a somewhat deeper discussion on this latter
dependance.

It will be useful to define the following auxiliary spaces

|~

WA Qr) = L0, T;WHQ),  We(Qr) = W (0,T; LA(Q),

with the natural norms corresponding to the two addends in (2.19). Clearly
an equivalent norm can be defined when Q7 = RV x R as

+o0
oy = [ [ 1PV 9P

+oo
_ I~ 2
ol oty = [, [ U+ IsD (e o)
We will need the following proposition.

Lemma 2.2.2 Let | > 5 and p = p(x,t) be a function such that p €

[+in41 l_l7L 1
W2+2 2+4(RN+1), pi € W2 2 2+4(RN+1). Then

! )
1.0 )

< 1
o OMhagceny < 5ol cop0 s, + 12l 30

Wy
for a constant independent of p.

Proof. Consider the spatial Fourier transform p. By the inversion formula
(2.16), we have

+o0 2
PEOP < U !ﬁ(f,s)|ds}

e AR 0 O T —
S ) PIS o TT 1P
| e e (e o dr
<o [ P e ap [T
w0 i) T
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Therefore, multiplying by (1 + |£|*)! and integrating in £ € RY we get

lolfgany <c [ (T IERHRE P + (1 -+ 6P Hspte, o) Paeds.

and thus, being p(s) = isp(s), the claim. O

Again one can state analogous theorems for arbitrary smooth domains €2,
or for bounded smooth submanifold with or without boundary in RY. For
future reference we state the following proposition.

Theorem 2.2.3 Let G be a smooth bounded submanifold of RN, and T > 0.
For any | > % it holds the estimate

ot <c(T
50 100 Dllwyie) < TNl et o+ 106 0 )

for a constant c¢(T) independent of p: G x [0,T) — R, with C’(+oo) < 400.

It is worth noting that the constant ¢(7") blows up as ' — 0, as well as
the continuity constant of the restriction operator R; in theorem 2.2.1 (which
also depend on T'). This is one of the difficulties one has to deal with in using
these theorems to study existence of nonlinear equations for small time.

We will also make use of weighted anisotropic Sobolev—Slobodetskii spaces:
given a function (or vector field) f defined in ), we denote by f* its extension
to zero for t < 0, and set

. !
WoZ(Qu) = {f : e f* € Wy (2 x R)}, (2.23)
normed with
_ —t £*
s 0 = 17 s sy
and similarly for functions defined on Go = G X [0,400) where G is a regular

submanifold of R®. Given f € VV2 (Qoo) in the case {1} # 1 there is a
simple criterion to check if f € I/V2 2 (Qoo).

Theorem 2. 2 4 Suppose that | is not an integer. A function f € VV2 (Qoo)
belongs to VVZ7 (Qoo) if and only if

1
Loef € Wy (Qu).
1

2. % li=0= 0 for almost all x € Q and every integer k with 0 < k < %— =.
If both conditions are satisfied, then

allfll < le” ”tfH S

WhE(Qw) it
for ¢y independent of f.

[\

WEE Qo)
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2.3 Sobolev—Slobodetskii spaces for small T°

Neglecting the role of the exponential weight, one can seek for analogous

1
results in VVQI’2 (Qr) of theorem 2.2.4. Finding the exact scaling with respect
to T is particularly important when studying existence for small time of
solutions to nonlinear parabolic equations. The following theorem suggests

that in some cases a modification of the standard norm of VV2 is needed.

1
Theorem 2.3.1 Suppose that | is not an integer, f € WQZ’Q(QT), and let

1
Q OOT:_Qx( 00, T), T < +oo. Then, f*er’Q(Q 1) if and only if

atk Lt —o= 0 for almost all x € Q and every integer k with 0 < k < 5 — %

Moreover, there are constants ¢y and co which do not depend on f or T such
that if 1 > {1} > 1, then

[ f* H (2.24)

< 1 <c L
<Myt gy S M b

2 Q oo,T)

while in the case {1} <1, it holds

[NIES

£l LFII7 Wi

el f* ||

ZQ(Q ooT

? Q =) T)
(2.25)

Proof. We restrict the proof to the case £ € (0,1) \ {1}, since the general
case easily follows. Moreover it is clearly sufﬁment to prove the statement
l

in the spaces W32 (0,7T), since the mixed norm analogous can be obtained
integrating the corresponding inequalities over €2. An easy calculation shows

that | ( )|2
2 f t
f* f + 2 dt
H ||W2%((_OO7 H H [OT) /o 7

#
which is finite iff the second mtegral on the right is finite. This implies
f(0) = 0 in the case [ > 1, and we will show the opposite implication, by
proving the inequalities (2.24) for [ > 1 and f(0) = 0, and (2.25) for [ < 1.
From the formula above, it suffice to prove only the first inequality in (2.24),
(2.25). We will be done as soon as we prove the following inequalities for any

function f:
|f(t ) f(t) = f(s)P?
/0 dt < / / = s|1+l ——————dtds, (2.26)
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valid for [ > 1, and

Tlf@)P T = f))? 1 [T
/OTdtgc/o/O e dtds+ﬁ/0 IF(O)%dt,  (2.27)

valid for 0 < 1 < 1 To prove (2.26) in the case | > 1, write

F(t) = £(0) = ]é (F() = f(s))ds + ]{ (f(s) — £(0))ds.

Multiplying by |t —s| 3" inside the first integral and applying Holder inequality
with exponents 2 on both, we obtain

0 - s < f LO=ACL ][\t otas + 176 - p0)as

0 IR0~ S 2
S2+l/ It — |1+l ds + — /|f f(0)[ds.

Multiplying by ¢! and integrating in ¢ gives

[L0-1o,,

T d

§2+l/ [ ’f’t_sw auas v [ 17~ ropas [
1f(t) — ds
<o [ [ RO i1 [ 15 - o

and thus, if [ > 1, we can bring the last term to the left, obtaining

/0 LUES (O . l_l / / |f|t_8|m .

Let us consider (2.27). We first prove it in the case T' = +o0, i.e. without
the additional term. To this end we proceed as above, but this time we use

£(t) = f (F() — F(s))ds + ][ £(s)ds

for a positive parameter a to be determined later on. This gives, as before

~+o00 . 2 1 at
LF(1)]? gcatl/o %dﬁﬂ/o |f(s)[*ds,
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and

[,
0 tl
+oo oo |f(t) _ f(8)|2 1 +o0 +00 dt
S Ca/o\ A WdtdS‘i‘ 5/0' |f(8)|2d8/2 m
) — ) L [P
S Ca/o /0 Wﬁltds + m/o Td

Since [ < 1, we can choose a large enough so that la'~' > 1, and thus bring
the last term to the left, obtaining, for T' = +o0

Nl L) — f(s)

Inequality (2.27) for T' < 400 is obtained through theorem 2.1.2, applying
the inequality for T'= +o0 to the extension C(f) of f. The estimates (2.6)
and (2.28) then give (2.27). O

Inequalities such as (2.26) and (2.27) are commonly referred to as “frac-
tional Hardy inequalities”, from the classical Hardy inequality

/0 B )|2dt < 4/0T|f’(t)|2dt,

valid for smooth f’s vanishing at ¢ = 0.
Some remarks will be useful

Remark 2.3.2

1. The additional term

[ 10E e g

in (2.25) is a necessary one in the case {5} < % and T' small. Indeed, for
example in the | < 1 case, one cannot hope in a bound of the form

T £(4)]2 T (T ¢4y — 2 T
/ |f(l>| dtﬁc/ / ‘f() fl(fl)| dtds—l—/ ’f(t)lzdt,
0 t o Jo |t — s 0
with ¢ independent of T, since f =1 would give

Tl+1
< T
l+1—C ’

which fails for T — 0.
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2. This feature is caused by the non completely local nature of the Sobolev—
Slobodetskii norm. Consider for example the equality

HfHWZk(Q) = ||fHW§(Q’)’

valid for all the functions f having support contained in €Y C Q. This is
clearly true for k integer, since we have a completely local way of defining
the norm. However for fractional | with {l} < % and supp f C Q' C Q it
holds only

1 iy < 1 llwaey < O i),
with a constant c(2) that, generally speaking, can blow up when ) shrinks

to zero in some direction. This feature must be taken into account, e.g.,
when localising functions via partitions of unity.

3. Another drawback of this behaviour is that when looking at anisotropic
Sobolev—Slobodetskii space for small times, it is useful to use a modified
norm, which scales well in the case | is not an integer, namely

2 .
2 . AOESS
19120, = e
: 1101+ gy [ IPF 0 Mt 718y <2

(Qr) T2{ }

L L
The space Hé’Q(QT), [ not an integer, is defined as the set WQI’Q(QT)
equipped with the norm

(K2l =||f||2Az, + > Sup ||Dk FC ) 12t g
Hy? (@Qr) Wy 0<2k<i—1" ’

For fixed T, this norm is clearly equivalent to the standard one, by (2.22)
and theorem 2.2.1. It will be useful to define the auxiliary norms

2 2
1 goiar = W ltoan + D2 sup IDEFCD)gsay

0<2k<i—1
||f|| if {3} > 3
110t g, = e 4 o0y <1
Vo ||fHW;,%(Q D iy {8 <3
so that
112t g, = W iy + 110t

The main feature of this modified norm is that, while the continuity constants
in theorem 2.2.1 depend on 7', analogous theorems holds with respect to the

i
norm H;’Q with constant independent of 7.
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Theorem 2.3.3 Let T < 1, [ not an integer and €2 a bounded smooth domain
or submanifold of RN .

1. Forl > 1, the restriction operator satisfies
Hf('ao)HWQZ’Zj’l(Q) < CHfHHé’%(QT)’ 0<2j<i-1
with constant independent of T

2. Forany ¢; € Wi 271(Q), there exists f € H (QT) such that D f | o=
¢; for all j such that 0 <2j <l —1 and

“fHH;'%(QT) <c Z ||¢j||w2l*2j*1(9)7

0<2j<l—1

with constant independent of T

Nl

(Qoo) such

1
3. There exists a continuation operator C' : Hé""(QT)
that

C < < a||lC
al (f)HWQz,%(QOO) = Hf”Hé’%(QT) < o (f)HWQl’%(Qoo)’

with constants independent of T'.

L
Proof. The first claim is obvious from the definition of Hé’g. We now prove
the following claim: if f € VV2 (Qoo) then

< 2.2
IIfIIH;,% C||f|| b0y’ (2.29)

with constant independent of 7". The inequality

>, sup ID; £ (-, ) llyi1-2 <CI|f|| 4

0<2k<l— 10<t (QOO)

follows from standard restriction estimates for unbounded intervals. Since

(Al <[fIl .4 o) it suffice to consider the case {} < 1. Inequality

oo

2
(2.28) gives in this case, for T' < 1,

400 ’D f|2
[0 < [ [P e

<c [y, do < elfI?,

(Qoo)
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with constant independent of T, which concludes the proof of (2.29). Now
point 2 follows from standard extension theorems for unbounded intervals,
and it remains to prove point 3. To this end, let

oi(x) = D% f(x,t) imre Wa27H(Q),  0<2j<l—1.

1
By theorem 2.2.1, there exists F' € ng’Q (Qr.00) (Where Qr oo := Q X [T, +00))
such that D} F'|,—r= ¢; and

IEN s <c Y lgsllprzg < clfl b

Wz (QT,oo) 0<2j<l-1 2(Q )

with constant independent of 7. We claim that the function C(f) = f for
t <T and C(f) = F for t > T satisfies

ICON g <elfll g, (2.30)

WQ?(QOO) o HQ’Q(QT)

This, together with (2.29), will prove point 3. To prove (2.30), notice that
clearly

IC 00, + S /nc Wiy <O sy +IFIZ g )

(QT oo)
0<j<[L]

<c 2 ,
- ”fHHi’%@T)

by the local nature of the norms involved and D]tF li=7= D7 f|;—r for all
0<25<[—1. Letting k = [%}, it remains to estimate

[ e xt) DECH @ e

|1+2{ }

We can omit the dependance on z € ) and integrate at the end. It holds

+oo  p+o0o k k T k k 2
/ / |DyC(f)(t) — DiC(f) dtd _/ / IDf ~Difs)F
‘t ’1+2{ } ’1+2{ }

+oo p+4o0 DkF DkF +o0 Dk DkF 2
/ / | ® geds +2/ / | G
S|1+2{ 1 3|1+2{ }

and we just have to estimate the last integral, since the first two are bounded
by [I£]7, . In the case {{} > 1 we add and subtract ¢;, and bound it
HQY QT
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with

+oo Dk 2 +o00 DkF 2
/ / |D; f(t) — dr gt Jr/ dt/ | ¢k|
5’14-2{ } S|1+2{ }

Dk 2 +oo DkF 2
_C/ f() oy [ m\ i
o |t— |2{ 1 T ]T—8|2{ }

and applying (2.26), (2.28) we conclude. In the {{} > 1 case we proceed
in a similar way, splitting |DFf(t) — DFF(s)| as |DFf(t)| + |DFF(s)| and
employing (2.27) instead. Integrating these inequalities in x € €2 gives (2.30),
and concludes the proof.

U

Point 3 of the previous theorem is a useful instrument to obtain restriction

1
and interpolation inequalities in the H;’Q setting with constants independent
of T"when T' < 1. We omit a complete discussion, and will prove the relevant
inequalities when needed.

2.4 The Laplace transform and applications

Given a function f : [0, +00) — C, its Laplace transform is defined as

Lf@>=14+we”fuxﬁ

It is easy to see that if for some v > 0, e f is integrable, then Lf(2) is well
defined an holomorphic in the semiplane Re z > ~. Moreover the Laplace
transform is intimately connected with the Fourier transform, since

Lﬂo+ﬁ%iéfm@”7@wﬁ:F®”7@Xﬂ,

where F denotes the Fourler transform
Given v > 0, the space E is the set of functions u : @ x {Re A > v} — C,
such that

1. For all z with Re z > v and almost all z with Rez = v, u(-, z) € W(Q).

2. For almost all z € , u(z,-) is holomorphic in {Rez > ~} and

o+100
lu(, ml>ww/’ fu(z, 2)2)2|ldx < +o0.

E5 0> Jo—ioco

and || D*u(x, )||E3 < +oo for all integer k such that 0 < k < [I].
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As a norm, we take

o+100
2 2
Jul?,, = sup / e, gy + 121, 212y

E, o> Jo—ioo

1
which makes E,ZY’Q a Banach space. Here the integral in the norm is to be
meant as the limit for N — 400 of the integral between —N and N.
The main result of this section states that the Laplace transform is a

L L
bicontinuous mapping between Wéj (Qe) and Ei .

Theorem 2.4.1 Let v > 0. The Laplace tmnsform with respect to time 1is

a bicontinuous mapping between WQW(QOO) and E 2. It has the following
properties:

1. For any integer k = ky + - - - + ky and almost any x € €,

L (aL) 00)= —2 O ;o)

kN k1 kn
..0xy Oxy'...0xy

oF f
L (54) o) = 1w
2. 1If fr(z,t) := f(z,t +T), then

Lfr(z,2) = e Lfr(x,2).

3. For almost any x € Q and 0 > v

o+100
le~ (2, 8) oy = o / L(f) (x, 2)d.

27 —1400

l

4. The inverse of the Laplace transform on E 29

M(u)(z,t) = L /J N u(z, z)e*dz,

2mi T—100

foro >n~.

We will now briefly describe how the Laplace transform fits into the general

strategy to solve linear parabolic problems settled down by Agranovich and
Vishik in [2].
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Consider the evolution system

L.
ot

where U and F' are suitable vectors of functions, and A is differential (w.r.t.
spatial variables) operator with at most second order derivatives. This system
is usually coupled with a series of boundary conditions, which we will write
in the form BU = G for some differential operator B, and we suppose
homogeneous initial data U(0) = 0. One seek for solution of this system
such that each component U’ of U belongs to the proper anisotropic Sobolev—

ll
Slobodetskii space VV2ZE Of course this is not always reasonable due to
the structure of A, and even if formally this seems to be possible, a number
of compatibility conditions (depending, in general, also on the regularity
required) the at the initial time must be imposed. We won'’t go into the
details of the various well posedness criteria for parabolic systems, and refer
to [2| for a precise characterisation of the parabolicity of the system

Y _AU=F t>0,
BU = G t>0, (2.31)
U0)=0

Since U(0) = 0, we can think of a solution as having components in

L
suitable Wé,ﬁ spaces, i.e. considering it as extended as 0 for ¢ < 0 preserving
regularity and with proper growth conditions at +o0o. Applying the Laplace
transform to (2.31) gives the complex parameter dependent problem

zu — Au = f,
Bu =g

where
u=LU, f=LF, g=LG.
As soon as one can prove that for sufficiently large v, this complex parameter

1
dependent problem has a unique solution in the corresponding product of Ei 2
spaces (depending on the component), one can invert the Laplace transform
to obtain a solution of (2.31). Consider the z dependent norms

[y = ZHU"HW?% + 1z
1

and similarly for f and g. To obtain meaningful parabolic estimates one
usually seeks for A independent two-sided inequalities of the form

cflull: <[IF1:+ligll: < collu]-.

l;

UiHL%
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holding for any Re A > v since the latters, integrated over Re z = +, translate

L
by theorem 2.4.1 into a two-sided estimate in terms of the Wéﬂf norms of U,

F and G.



Chapter 3

The linearized problem

In this chapter we introduce a change of variables in order to reduce
problem (1.2) to a problem in a fixed domain. There are mainly two ways to
do this that has been proved fruitful in the literature. One is employing a
Lagrangian description, given by using coordinates

x—f—l—/o u(, s)ds =: X(&,t), £ €y,

where u is the velocity field in Lagrangian coordinates, linked to the velocity
field v in Eulerian coordinates by the relation

u(€, 1) = v(X(&:1),1).

Thus, for example, the free surface is defined as

I'y:={¢ —i—/o u(§,s)ds : £ € o}

Using this coordinate system makes it difficult to recover the regularising effect
that the equations can have on the free surface. As we will see, in the case
o > 0 one expects a regularising effect on I' ; due to the presence of an elliptic
operator arising from the curvature term. Thus it seems that the Lagrangian
description fits more to the case where an a-priori regularising effect is not
apparent, i.e. in the case ¢ = 0. This approach has been successfully applied
by Solonnikov, etc etc in ...

Another approach is to use the so called Hanzawa transformation, which
goes back to [11]. This consists in fixing an arbitrary smooth domain €2,
sufficiently near (or, eventually, coincident) to €2y in such a way that for
0 <t<T,all the Q, can be considered normal perturbations of €2;,. Thus
the new variable y is defined by

x:y+N<p(y,t), yEQIN
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for a suitable choice of ¢(y,t), where N is the exterior normal to €2;,. This
transformation has obviously a wide variety of choices for ¢, and it allows a
more precise study of the regularity of the free surface. It has been applied
to free-boundary problems for the Navier—-Stokes equation by many authors,
see ...

Since we work with capillary fluids we will employ the latter transformation,
and the particular choice we make will be described in the first section. We
then proceed in section 2 in studying the linearization of problem (1.2)
(with respect to this choice of variables) near a stationary solution. Explicit
calculations of the various linear and nonlinear terms will also be done.

3.1 The Hanzawa transformation

We recall that the domain where the fluid is constrained is denoted by
O ={2 € 3,0 < w3 <¢(2,t)}, with 3 being a rectangle in R?, 2/ = (1, z2)
and ¢ is a sufficiently regular function whose graph in R? is the free boundary
of the fluid, I';, with normal n. We suppose that the velocity field v and the
pressure p are periodic for every ¢ > 0, with periodic cell >. Furthermore we
prescribe the velocity at the bottom of the layer, letting v(2’,0,t) = a(a/, 1)
for every t > 0. With these notations we obtain system (1.2).

We now fix a sufficiently smooth domain €2, defined, for some Y-periodic
smooth ¢y, as {(z/,x3) : 2/ € 3, 0 < x3 < ¢p(x)}. Moreover G will be
the graph of ¢, over ¥, N = (=V'¢y, 1)//1 + |V'¢y|? its normal, II,(V') =
V — (N - V)N the projection of V' on the tangent space of G, and II(V') =
V — (n - V)n the projection on the tangent space to the graph of ¢. Letting
p = ¢ — ¢p, we rewrite problem (1.2) in terms of the new variable y €
defined as

z=e,(y) =y+0(y)ply, t)es, (3.1)

where ¥ = (y1,y2) € ¥ and 0 is a C* cutoff function with suitable regularity.
Although inessential, we will assume, to simplify some calculations, that
0 =0(y3) and O(s) =0 for s < h and 6 = 1 for s > 2h, with

irzlf¢b > 3h > 0.

We suppose that, for some [ > %,

su 1 < 1,
t<IT)Hp( )||W21+%(Z)

so that the transformation (3.1) is at least C''* and is it invertible due to the
smallness of supy, |p|. Moreover, we will henceforth write p*(y,t) = 0(y)p(y/, t).
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This change of variable transforms €2, to €, and we will denote by £ = L(y, p)
the Jacoby matrix of this transformation:

O 1 0 0
L(y) = (a ) =| 0 1 0 : (3.2)
Yi/ i O0py, Opy 1+6p

Furthermore, we will set L = detL, £ = LL™" so that £ = cof(£). One has

=00,y
/ -T 1 0 —1—0"_6/p -T 1 *
L=1+6¢p, L7°=1]0 1 1+”6’?§ , I-L :ZVP ®es (3.3)
1
0 0 14+6'p

Moreover, the transformation e, converts the operator V, to V= £y,
since ﬁ[jT = % and by the chain rule ;2- = 6%_%
i @ 5 %

we will henceforth write V for V,,. We now rewrite system (1.2) in the new

variables (y,t). For the term v; we have

. To shorten the notation

0
vi(z(y),t) = vaa—zé +v,;= pj‘t(ﬁ_leg -V)v+ v,
The nonlinear term (v - V,)v con be rewritten as (L7 'v - V)v and all the
other differential operators are substituted with the rule V, — V. Regarding
the divergence it is important to notice that

1

%-UZZ(ETV)-UZO s (LTV)-v=0,

and R
(L7V) v =V-(Lv),

since, as is well known, the cofactor matrix has divergence free rows. The
equation for the divergence can thus be written as

Vov=(I-L"V) v=V-(I-L)v.

We now consider the curvature term. Recall that given a surface with normal
n, smoothly extended in a neighbourhood of the surface, the doubled mean
curvature H is defined as V - n. We then define H;, = V, - n, where n, is the
(upward) normal to the surface with cartesian equation y3 = ¢,(v') + sp(v/').
Letting g, = 1 + |[V(¢y + sp)|* and g, = go we have

d ! d?
H =Hy+—H,|,- 1—s)—H,ds.
1 0+ 75 I o—i-/o ( S)d82 s
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We will use summation convention on repeated indexes, and for any multiindex
k = (ki, ko), k1 + ko = k, and any function f = f(x, z5), we will set

oFf
= 0ok 3.4
f,k: 8:Elfla$l2€2 ( )
Since
n. — V(& +5p) 1)
s \/E ,
we have, with summation on the indexes «, f = 1,2
d 1 v/¢b . v/p
_H58= :v— —v/’O_—_v/ ,1
ds |_ 0 \/ﬁ<( P ) 7 ( ¢b ))
! Ona®,
= — =0 (0upv/a — 22) p
b \/% (3 5)
1 \vilivd 2 \VA )
— V', - V|V |’V - Vp+ | ¢b§| p
9 9y
1
=——Agp+b-V'p:=Lp.
Vi

Here Ag is the Laplace-Beltrami operator on the surface G, and b is a smooth
field depending on ¢;. A lengthy but straightforward calculation shows that

d? p ° g
Tt =paps D T paps D alT (3.6)
§ m=1 g;n 2 m=1 g;n 2

where pagm and gapym are suitable polynomials in the variables s, V'p, V¢,
V2¢, (and hence not depending on second or higher derivatives in p).
Letting then Hy = H, the system (1.2) becomes, in the new variables:

('v,t —vAv + Vp =1li(v,p, p) + lo(v, p) in Q,
Vv =ly(v,p) in ,
vIIgD(v)N = l3(v, p) on G,
—p+vN -DW)N +0Lp = ls(v,p) — 0 Hy(y) on G,

P+ Vo v oY) = (s () + Vip- vy, ¢u(y) =0 on X,
'l)(y, 0) - EO(?J)) in Qb? p<y’ 0) = pO(y)v on g7
vy, 1) = a(y) for t >0,y €%,

(3.7)
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where vy = vg o e,,, L is a second order elliptic operator with lower order
terms, whose principal part is —Ag, H, is the doubled mean curvature of the
graph of ¢, and the [; are the following nonlinear operators

lo(v,p) = —(L7v - V),

Li(v,p,p) = @ - A)v +(V=V)p+ (L es - V),
lr(v,p) = (( )WV)-v=V-G(v,p), G=(I-L)v,
la(v, p) = V11 (Hng>< )N (y) — ID(v)n(e, (1)),

(v, p) = (N - D(®)N — n - D(w)n) — a/o (1— L1

752 ds.

By D we mean the doubled transformed rate of strain tensor: ]ﬁ)(u) =
(V) + (V). The equation for p, can be equivalently written with variables
in G instead of X, simply letting p(v/, ¢4(v')) = p(v/), and we will do so in the
following.

From (3.5) we have an explicit expression for L. We will keep the full
linear operator instead of its principal part in all that follows. The reason for
this is apparent from the following lemma, which would not hold otherwise.

Lemma 3.1.1 For sufficiently large real s, (depending on ¢, and vy), the
bilinear form

B(p) = / Lp(sp+ V'p-vp)da,
>
is positive definite.

Proof. A straightforward calculation shows that, summing for o, 8 = 1, 2,
1 Ob,a Db, Ob,a Db, 1
Lp = __aoz |:< [ \/ - p, - 504 gy — E—— p, aa_ .
9o ’ vV 9b g g Vb g 9o

We integrate by parts one derivative in the Laplace—Beltrami operator: by
periodicity there is no boundary term and by the previous formula the terms
in 0,(1/gp) cancel out, giving

_ PbaPup ,
Lp - spdx’ = s/ < B8V b ——— | pap,dx.
/E = 9 ’ v/ 9b ’

From Swartz inequality one immediately obtains

¢b,a¢bﬁ) D apa = V'olP(L+ [V'&[*) = (Vo - V'én)* _ [V'pl?
Z 9% 9

1
— (5aﬁ\/ 9 —
b

Y
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and thus )
/Lp~spdx' > s v p| ——da' > cs/ |V p|?da’.
) b g
Let us look at the remaining term: again integrating by parts one derivative
in the Laplace—Beltrami operator, we get

/ LpV'p - vda' = / ( Sy — 2o ) p.6 (ParVi + Prvy,) do'.
p) x 9b \/_b

Clearly
— < 0ap/Gb — qbb\ji:ﬂ

with a constant depending on ¢, and v,. It remains to estimate

1 (bb oz¢b,8)
— | dap/ I — ——= | pap.ayvyde’,
/ng ( 0 \V 9b plhet

but since this expression is symmetric in « and 3, integrating by parts on
the term p o, with respect to z, gives

(bb a(bb 8\ P8P« UI;Y ’
2/ (5a /gb _ 3 ) ) ;Y dx —
by g \/ 9b 9

¢ba¢b6) :| / /12
— o 0 5a [q, — TP d >_ \V4
/Ep7 pr 'Y|:( B gb \/% gb c | p|

The claim now easily follows, since gathering together the previous estimates
gives

) P8PV, = —C |V DI,

Bs(p) > (es — ) /2 |V p|da’. (3.9)

3.2 The linearization

Let us now look at some stationary, sufficiently smooth solution (v, py, @)
of (1.3), supposing that in the Hanzawa transformation €, is given by ¢y,. Since
we are concerned with stability properties, we suppose that ¢ is sufficiently
near (in a sense to be made precise later) to ¢, and thus p = ¢ — ¢y is
small. In order to linearize the problem near (v, py, 0), we notice that all
the nonlinear terms except [y are actually linear in the variables v and p;
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therefore, letting, u = v — v, ¢ = p — pp and subtracting the corresponding
system for (wy, py, 0), we get a system of the form

uy — vAu + Vg — ®(u,p) :TO(%P) +71(u, s q) in {2,

V-u— Oy(p) = l(u, p) = V- G(u, p) in Qy,
VILD(u)N — ®5(p) = Is(u, p) on G,

—q+vN -D(u )N +olp— <I>4(p) l4(u ) on G, (3.10)
i+ V' u—ud+ Vv, =l5(u, p) on G,

w(y,0) = uoy) W  p(y,0) = poly) on %,

u(y',t) =0 Vy e, t>0,

where the ®;’s are the first variation of the system w.r.t. perturbations of
the form (v, + su, py + $q, sp), and thus, in general, depend on vy, p, and @,.
We will calculate explicitly the ®; and L in the following.

Problem (3.10) is obviously subjected to a set of compatibility conditions,
which generally speaking depends on the required smoothness of the solution.
We will consider the following ones:

V- ug — Py(po) = ZN2(U0, Qo);
VHbD(uO)N — q)g(po) = lg(’u,o,p()), (311)

Js pody’ = 0.

The first two conditions are the simplest compatibility conditions at the initial
time, while the third is the preservation of mass for the perturbation, and a
straightforward calculation shows that this in turns implies

/Zp(y’,t)dy’EO, Lé(u7p*)dy+/ s(u(y', ou(v'), p(v', 1)) dy" = 0,

identically for ¢ > 0, for any solution of (3.10).

We now proceed to explicitly calculate the linear and nonlinear terms of
this system.

First note that the exact equation for p, is

Pt + V’p - U + V’(ﬁb 7 u3 = v,p - u, (312)
and therefore _
Is(u,p) =V'p-u. (3.13)
From the explicit matrix given in (3.3), we have
00 _9p7y1
SLT=100 —0p,, | :=-Vp e, L= —e3@Vp*, (3.14)

00 —=6p
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and )

0'p
146
For the first equation, notice that l; is linear in the arguments v and p. Thus
it suffice to compute the linearization of Iy (v, py, p) with respect to p. Calling
3y (v, pp, p) this linearization we have

Lt —1-67T=vp ® es. (3.15)

51y (vy, py, p) = VOLIV - Vo, + vV - 0L TV, — Vp*g—];’ + (5p:kt(£_163 V).
3

For the last term, we have that

Py v, L 0v,  Oppy Ov,

“(Les- Vv, = — = - :
palLes - Vv 14 0'p Oys p’tays 14 6'p dys

Therefore the linear part is

8pb % 81)1,

VLIV - Vo, + vV - 6L Vv, — Vp* = — ply—,
Oys ys

(3.16)

and the nonlinear one is
Il(u, q,p) =li(u,q,p)+ V(E_T —I— 5£_T)V -V,
+uV - (LT =T —0L )V, + (LT —T—-6L7")Vp,y (
o 0w,
14+ 60'pdys

3.17)

For 70 we have
Lo(v, p) — Lo(vy,0) = (3L 0y - Vv + (6 - V), + (v, - V)u + lo(u, p),
which adds a further linear term to (3.16), giving

_ _ Ops ovy,
&, (u,p) =L IV -V, + vV - 5L TV, — Vp*=— — —
1(u, p) b b P Dys Pt Dys (3.18)
+ 5[:_1’01, -V, +u - Vo, + v, - V.
The nonlinear term is

Lo(u,p) = (L7 =1 — 6L Yo, - Vu+ (L' =1 — 0L u- Vo, +

-1 -1 -1 1 (319)
+ (LT —=1—=0L v, - Vo, + (L =1 —-0L)u-Vu+u- Vu.

Regarding the divergence, notice that

R 1+0'p 0 0
L= 0 14+60p 0| =1(1+6p)—es® Vp", (3.20)
—prl —pr2 1
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and thus I — £7 is linear in p; therefore

V'u:Vp*~%—Q’pv~vb+Vp*-a—u—«9’pV~u,
8y3 ayS
giving
% 8'0;, , -~
Do(p) =Vp" - — —0pV v, =V - (I — L)vy, (3.21)
dys
7 * ou / * /
lo(w, p) = Vp*- O 0'pV - u, G(u,p) = (Vp*-u)es — 0 pu. (3.22)
3
Notice that

in a neighbourhood of ¥, since # identically vanishes for sufficiently small x3.
We now look at the equation for 7'(u,p) on the boundary. For the tangential
part, we first observe that if N -n # 0 (which is certainly true by assumption),

D(v)n=0 < ILID(v)n =0.

Therefore, taking into account the linearity w.r.t. v, the tangential part of
the equation can be written as

,D(w) N =TT, (T,D(w) N — [ID(u)n — [D(v;)n),
The linearized part is given by

®;(p) = v (IID(vy)n) = vIT, (SD(v,) N + D(w,)dN — (Nm(vb)N)((sN) ,)
3.24
since 0N - N = 0 and

1
0=0N - ;(pb +0H,))N = 6N -D(v,)N = ND(v,)6NN, (3.25)

by the symmetry of D(v;). The nonlinear term is then the sum of two terms

Tg(u, p) =vIL, (IL,D(u)N — H@(u)n)—i—

N _ (3.26)
+ VHb (HD(’Ub)’I’L — Hb]D(’Ub>N — 6(HD(vb)n))

One can compute 0N and 0D explicitly:

(—V'p, O)

NaESZ

ON =11 5D(’Ub) = —Vp* ® Vs — Vs ® V,O*. (327)
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For the computation of &, we have that the first variation w.r.t. sp of the
equation for T(vy, pp) is given by

—qIN + ppd N + v0D(v,) N + vD(u)N + vD(vy)dN = 60 HN + c H,dN.

Since the first variation of the curvature term has already been calculated in
(3.5), using (3.25) we get that the projection on IN produces the linear term

Oy(p) = —vINOD(vy) N, (3.28)

while (3.5) gives
1
Lp=——Agp+b-Vp.
N

The nonlinear one is given computing the difference of the equations for p
and py, as

I4(u, p) =v(nD(u)n — ND(u)N + nD(vy)n — ND(v,) N — N6D(v,)N)

1 d2
— 0/0 (1-— s)@Hsds.
(3.29)



Chapter 4

The linear problem

In this chapter we will study the optimal regularity properties of the
linearized problem

(u; —vAu +Vq— & (u,p) = f in Q,
V-u—Py(p)=h=V-F in Q,

T(u,q)N + o LpN — ®(p) = d on G, (41)
pi+Vo,-u—uwP+Vp-v,=9g ong,

u=20 on X, for all t > 0,

(u(z,0) =up(z), p(a,0)=po(zf), foraxzell, ek,

with suitable regularity conditions on the right hand terms and compatibility
conditions on wg, py. Here ® is defined as

,®(p) = D3(p),  B(p)- N = 04(p),

and the ®; are given in (3.18),(3.21), (3.24) and (3.28), while L is given in
(3.5). The plan is to perform the Laplace transform technique outlined in
section 2.3, and thus to consider the associated complex parameter dependent

()\u—l/Au%—Vq—(le(u,p):f in Q,
Viu—dy(p)=h=V-F in €,
T(u,q)N + oLpN —®(p)=d on G,
M+Veo-u—u>+Vp-vy,=g ong,
(u=0 on X,

where @, is given as in (3.18) substituting the term p% with A\p*. Clearly P,
®, and @ are lower order perturbations, and thus, via interpolation arguments,
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we will be done as soon as we prove existence and optimal regularity of the
unperturbed linear complex parameter dependant problem

(A — vAu+Vg=f in Q,
V-u=h=V- F in €,

T(u,p)N +cLpN =d on G, (4.2)
M)+ Vo) u—ud+v,-Vpa')=g ong,

L u(y',0) =0.

In the first section we prove solvability and coercive estimates (in weighted
isotropic Sobolev—Slobodevskii spaces) for the model problems in the half-
space associated to (4.2). In particular, we deal with the model problems
obtained by localisation near the boundaries G and ¥ respectively. These two
problems are explicitly solvable through partial Fourier transform, and the
corresponding coercive estimates are obtained.

In the second section we prove existence and uniqueness of the solution,
constructing an “almost solution” of (4.2). This is done via a Shauder approach,
gluing together the known solution in the half-space to obtain a solution of
(4.2) with perturbed right hand sides. If one writes problem (4.2) as

AU = F, (4.3)

this procedure defines two linear mappings R(F), B(F) for any right hand
side F, such that

A\R(F) = (I + B)(F).

Using the coercive estimates for the model problems and interpolation, we
will show that for any sufficiently large Re A\, B is a contraction operator in
the suitable space of right hand sides, and thus (I + B) is invertible. The
solution of (4.3) will then be given by U = R(I + B) *(F). Uniqueness
of the solution is given through the coercivity of a bilinear form naturally
associated to the homogeneous case of problem (4.2). This coercivity result
is the reason we employ the full linear operator L given in (3.5) instead of its
principal part —g, %Ag.

In the final section recover the solution of the perturbed complex-parameter
dependant problem via a standard iteration scheme, and perform (inverse)
Laplace transform to obtain a solution of (4.1). We then prove two different
types of optimal regularity estimate for the solution, one for large times T’

: : Ly
and one for small times using the norms H,*.
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4.1 Model problems in the half-space

In this section we study the model problems in the half space arising from
looking at problem (4.2) near the boundary G and ¥ respectively. Therefore,
we will be concerned with two such model problems, both of which will be
proved to be uniquely solvable with optimal parameter—dependent regularity
estimates.

The first one has been treated in [35] and is defined as

M —vAu+Vqg=f in R?,
V-u=h:=V-F+hn in R3,
v(ud, +ul) =&, j=1,2 inR? (4.4)
—q+2vul, —oA'p=d° in R2,
M+ V- Vipt+ud=g in R?,

where R* C R? as {z3 = 0} and primed variables and differential operators
are to be meant in R?.
We set ¥ = ¥ x [0, +00), and consider first an auxiliary problem.

Theorem 4.1.1 Let | > 0, and V' = (Vi,V3) a constant vector. For suffi-
ciently large Re \ (depending also on |V'|), there ezists a unique X -periodic
solution (u,q, p) of

(M + (V' -Vu—vAu+Vg=0 inR3,
v(ul +ul)=d, j=1,2 in R?, (4.5)
—q+2vul, —oAp=d°, in R?,
AM+V - Vp+ud =g, in R?,

\

such that w — 0 and ¢ — ¢ for x3 — +o00o. It satisfies the estimates

2 2 2 2 2
el 2 500 + A2l sy + IVl ey + A IV () + !\q(0>\lwé+%(2)
1+1 2 2 2 I+3 2
+ A2 g (0) 172wy + IIpHWQHg(E) + HApHWQHg(E) + AT Aol

2 I+1 2 2 I+1 2
Sc(IIdHWﬁ(E)MI QIIdIILz(zﬁ!|g!|Wé+g(E)+|AI 19l ) -

/ qdS = — / BdS=d,  V¥s>0 (4.6)
{z3=s} b))

g = Aaqemy < cCldl? g+l ) (47)

1 1
2 Wi ()
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Proof. The proof of the first estimate is identical to the one in [35], using
Fourier series instead of Fourier transforms. We recall it briefly: for any
£ € 72, let ug, pe, pe be the &-th Fourier coefficient with respect to (1, x2) of
u, p and p respectively, as in (2.18). System (4.5) is then reduced to

( d2 . . )
1% (7“% — d—‘r%) U% + Zgqul = O’ fOI' j = 1, 2, T3 > 0
d2 dq§
v (r% — d_xg) u3 + — dzs =0 for x5 > 0,
ug
z£1u£ + 1boug + — . =0 for x3 > 0,
x3
du’ ,
(d +z§]u£> :dé for j =1,2, 23 =0,
2 dug 2 a1 0
—qc + Vd_x;5+0|£| Pe = g or I3 =U,
AMpe + ug = g for x3 = 0,
(ug = 0,qc = ¢ for z3 — 400,

where 1 = r1(\, &) = Vv + €%, —m < Arg(ry) <, A = A4V &L
This system of ODE with parameter ¢ and A can be explicitly solved for
ReA >0 as

i 1—di i iy j
'U/S = — v 60(x3)d£ y27"1 7"1 + ‘6’ Z Uz]d |€| Z ‘/;Jd

_ al€|* (eo(23)Uis + 7“161(96’3)‘/;3)9
v2Airi(r + [§]) P ¢

AL aléPN o a e ey P\ 5 O ~[éles
G = —— 2 {(2 + -y (Z§1d£+Z§2d5) virs+ " (d; )\196) e ;

1

i=1,2,3,

where €]
671"1333 — e~ x3
eo(z3) =e "™, ei(xs) = T
A ¢ al¢
P = (r{+|¢]?)? —4ar ¢ + —|§|3 ( -+ 4lgl ( o |+||§|> + V|>\|1 ) 7

and Ujj;, V;; are the elements of the matrices

E(Bri —1EDA + ZIEP)  &i&((Br — [E)A + 2E)7) i (r — [€])
§&((Bry — [EDAM + 2617 & (Bri — 1EDM + ZIEP7)  i&rd(r —[€]) |,
—i&riA(r1 — [€]) —i&oriA(r — |€]) —=[&lriAi(r = [€])



4.1. MODEL PROBLEMS IN THE HALF-SPACE 49

and

—E12r M+ ZIE7) —&&@2mM + ZIEPP) =& (T 4 [€)
=662+ Z[E7) =E2mM + ZIEP) =& +IE) |
—i&1|€](2mA 4 2IE17)  —i&lE[(2mA 4 21EPP) (€[] + [€]7)

respectively. Notice that for the constant mode £ = (0,0) this reduces to

90

dz‘
0 e_ﬁxga 1= 1727 3= 07 qo = _dgu Po = X:

UB(JIg) = —m Uy =

and thus in the claim of the theorem p — —b} for 3 — +oo. If v > |[V'|?/v
and Re A > 7, it holds

1 1
“nl < S(VIT+1E) < VINFIER < VI + el <clnal, (48)

and the same estimate with \;. Moreover
Ire+ 1€ > ral, e+ (€] > €], (4.9)

and )
P12 ) (L5 + el + If + el

from which

P12 > (1617 + 161 A + 167 A + [Aa])- (4.10)

The principal parts of the norms of e; (see (2.2)) on [0, +00) are estimated as

S C|T1|2n_17

ra !+ e (4.1

Y

2
leollvig (o,+00)

2
lexllvim o100y < e

for any n > 0. Finally it is easy to show that for £ € Z? and Re\ > v, it
holds

U2+ [Vig? < eleP Ml + €1 NP + 1% A + (&%),

2 2 2 21y |4 61y (2 (4.12)
|Uis|” + Usil” + [Vis|* < c([€]7[A]" + [P [M]7).

Let us estimate ||u||2Lz(R+). From (4.9)-(4.12) it is easy to see that

\Uij |? 9 Ui |2 c
e <c <
P+ @Rpp e < CpeRpE < P
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Rl < s (Fepme * EmTamE) < b
e PP e = \lepipe * iamleeE) = E

and similarly

114U 2 2 €2
< IS
PP+ [EPIPE ollewn < € B
Vi €

2
<
Pl +jeEee leen <

which gives
2
1P gl o,y < el (bel + 1€] g¢l?). (4.13)

One proceed in the same way estimating the W2l+2(R+) norm, using the fact
that |[£]2+3 < |ry|?*3 in (4.11), to obtain

2
e iz g,y < clra* ™ (1bel* + €11 g¢l*). (4.14)

To estimate the pressure, notice first that, for any & # 0, He"s‘xi”Hiz(R” =
1/2[¢|, and thus

55 r 3 59
’r1|2l’§|2”q§”iQ(R+) < C’T1|2l+1 |:<| | | ’ + | ’ |g§|2_|_

[P ml[P?
by 21¢13 7 3)\ 2 5)\ 2
(L LY T
557, 3
< C’r1‘2l+1 |:(| :;‘21’ + ‘5’2 ‘95‘2—1‘
P MPIEP TPl 2
(00 P e

where we used the fact that || > |¢] and (4.10) on the terms containing
|r1] at the denominator. On the remaining terms we distinguish the cases
in which |A| < |¢[?, which implies |ri] < ¢[¢], and |A;]| > |£]?, which implies
71| < ¢y/|A1]. In the first case, by (4.10),

2(¢13 31y (2 2| ¢4 50, |3 8
T T O D O AT <
Pl PP P PRSP
in the second one, similarly
rIMPIER | PP NE L EPInE

|PP2 PR =P = PR = PP



4.1. MODEL PROBLEMS IN THE HALF-SPACE 51

All in all we have, (the case £ = 0 is trivial)
11 el zeey ) <l (Idel® + 1€ P1gel?). (4.15)

Similarly one can estimate the principal part of the WE(IR,)-norm of & dm ,
obtaining, through
||6_|£|x3||ﬁ/21(11{+) < clef

the inequality

d% 2 2 2
1= e,y < cl€PIEP el o,y < clril® 1€ lael 2@,y (4.16)

and the last term is bounded as before. Summing in ¢ € Z? the inequalities
(4.13), (4.14), (4.15), (4.16), and using (4.8), we get through Parceval identity

2 2 2 2
||UHW2§+2(200) + |)‘|l+2||u”L2(zoo) + HVQHWZI(Eoo) + |/\|l||vq,|L2(z<x>)

2 1+1 2 2 I+1 2
c(v)(||d|lwé+%(2) + A2 d sy + IIgIIWé+g(E) + A2 gl )

To estimate g at x3 = 0, one has, with the same method

71" lge (0)* < elra (| del* + (1 + [817)1g¢l*).

which gives

2 1 2

la(O) 1% g g, + N2
2 1+1 2 2 +1 2

NI g ) + N2 ) + 9l 1oy )+ N2 gl )

To estimate ¢ — di on X, for any & # 0 we have

2 2 2 2
q q d T+ 1£17)]9¢l7),
el 72,y = 2|€|| e|? < |§|(I |+ (1 +1€17)]gel)

which gives (4.7), summing over ¢ € Z \ {0} and recalling that ¢y = —d3.
We finally estimate pg, using the relations

Aipe = ge — ug(0),

du(0) . .
¢ = dg + q¢(0) + 2y(@§1u% + zfgug).

Ol€[*pe = 2 + p(0) — 25

From the explicit formula for ue and the bounds (4.9), (4.10), (4.12), we
obtain

|de|?
M Plpel® < (=5 R + |g¢l*)

|
(€18 pel” < e(ldel” + (1 + [€]*)1gel*)-

(4.17)
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Since |\| > ¢|A| > ¢, and |r1] > ¢/£], we get from the first one
A2 Apel” < (A2 (ldel + [ge ),
1 1

N2 617 Ael* < A2 (|del” + [€]7]gel*)
which, summed on ¢ € Z2, gives

1 2 1 2 2

N2 N0l () < elMF2 (e gs) + gl s)-

Moreover, also by the first inequality in (4.17) and |r{| > ¢[¢|, we get

(€1 Ape|* < c(le]*Hdel* + 1€ gel*).

which gives, together with |p¢|? < e(|de]® + |g¢]?),

Ml s <e(||d)? 2
| p”WzH%(E) < HV{/ﬁ(z)jL ”g”wﬁ(z))

The second inequality in (4.17), on the other hand gives

(€152 pel* < c(l[* del* + |61 gel*),

which gives, as before

2 2 2
10118, < g+ 01205 )

(=) ()

0
We now consider the full model problem (4.4).

Theorem 4.1.2 Let | > 0 and V' = (V1,V,) a constant vector. Suppose h
decays for xs — +oo sufficiently rapidly, and h' is compactly supported in 3.
Moreover let all the right hand terms in (4.4) be 3-periodic. For sufficiently
large Re X, there is a unique periodic solution w, q, p, with w — 0 and ¢ — ¢
for x3 — 400 to (4.4), which satisfies the estimate

2 2 2 2 2
HUHW2’+2(Z<>°) + |>“Z+QHUHL2(ZOO) + HVQHWQI(EOO) + ’)‘|ZHVQHL2(E°°) + HQ(O)HWH%(E)
2

j+1 2 2 2 I+ 2
IO Zagsy + 100 e g+ I e o+ I E 0l )
2 2 2 2
< c([1F gy + A TF 2000y + A2 IE N 2500 + AR 250y
2 2 1+1 2 2 1+1 2
+ 1Al gy + IIdIIW5+%(Z) + AT s + ||g||W2l+g(Z) + M2 gl (sy) -
(4.18)
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Proof. Let uscall X(u,q, p) the left hand side of (4.19) and Y (f.,d, g, h, F, })
the right hand side.

First of all we solve the corresponding problem with solenoidal velocity,
i.e. we consider the case h = 0. To this end, consider the problem

( .

M+ (V' -Viu—vAu+Vg=f inR3,

V-u=0 in R?,

v(ud, +ul,)=d, j=1,2 in R?, (4.19)
—q+ 27/“?953 —oANp=d>, in R?,
A+ V- Vip+u® =g, in R?,

We claim that it has a unique solution satisfying the estimate of the theorem.
To prove this, we can suppose that V - f = 0 since otherwise we can subtract
a pressure component p satisfying

Ap=V-f in X%,

The weak formulation

| 90Vds = [ £Vnds < el o) 19902

N

gives by duality HVpqu@oo) < CHfHW277(E°°) for any n > 0; thus it holds

2 2 2 2
VPl + NIVl L) < elllFlwgme) + A F 172 m))-

Since p = 0 for 3 = 0 by definition, the boundary conditions are unaltered
for the triple (u, (¢ — p), p), and the previous estimate shows that a bound
on ¢ — p implies one for ¢. If f is solenoidal, one can consider a solution of

M —vAv+ (V- Vv = f, V-v=0

obtained as following. We can extend f with preservation of class and
solenoidality, and thus suppose f is defined and solenoidal in the whole R3.
If f(z1,x9,s) is the Fourier transform with respect to the x3 variable , we
define u by B

R I

TNtV €12
where as usual the index £ indicates the &-th Fourier coefficient with respect
to (z1,72), and A\; = A +iV'- £ Tt is easy to see that for Re A > |[V'|?/v it
holds
AL+ €17 = e((1+ [€])* + A1),
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and thus through Parceval identity
2 2 2 2
||'U||W21+2(2X1R) + |/\|l+2||v||L2(Z><R) < C(||f||w21(zoo) + |/\|l||f||L2(EOO))'

Now the solution of (4.19) is obtained as (v + w, p, p) where (w, p, p) solves
(4.5) with right hand sides respectively d — vS(v)ez and g — v>. Indeed one
readily has

2 2 2 2
HS(U)63HWZ+% + HUSHWH% < C”U”W2l+2(zoo) < CH.ﬂ|W2l+2(§;oo): (4'20)
2

() 2 2 ()
by the properties of the restriction operator and
1 2 1 2 1 2
N2 (10 g ) + 18(0) ]2y < cAF2 ]l ) < A2 1ol 3 ey
2

2
< clvllwra sy + I 210 ] 2 ())

< (I iy + I 20,
(4.21)

by interpolation inequality (2.14), and these two estimates give (4.18) for the
solution of (4.19).

We now can get rid of the term (V' - V')u in the equation for the velocity
by a standard iteration argument, defining (uq,q1,p1) as the solution to
(4.19), and (@11, @nt1, Pus1) as the solution of (4.19) with right hand side
on the velocity equation f + (V' -V u,. If (W, pn, pin) = (W, — U1,y —
Gn-1,Pn — Pn—1), notice that (w1, Pni1, pnr1) satisfies (4.19) with right
hand side (V' - V')w,, on the velocity equation and zero elsewhere. From the
interpolation inequality

1OV VYl + ALV 9 )0 [

c 2 2
< Sl gy + A0 2.

A
and the estimate (4.18) for problem (4.19) we get that

C
X(wn—l—lapn—I—h Nn+1) S NX(wmpn’ Mn),

which in turn gives, for ¢/|\| < 1, strong convergence of the sequence
(Wn, Gn, pn) to a solution of

( .
M —vAu+Vqg=f in R3,
v U = O Hl Ri,
v(ud, +ul,)=d, j=1,2 inR% (4.22)
—q+2wud, —oNp=d° in R?,
Ao+ V- Vip+u? =g, in R2
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and the estimate X (u,q,p) < cY(f,d,g,0,0,0).
We finally take care of the divergence term, defining w = V1), where 9 is
the stable periodic solution of

Ap=h=V-F+I R,
=0 on R2,

From the energy inequality for this problem and standard coercive estimate,
one has

2 2
[w]52 500y + A2 w72

(4.23)
< c(llhllyzer ooy + A2 UF o0y + 1 p2gsey))

The solution will then be defined as (w + u, g, p), where (u, g, p) solves (4.22)
with right hand sides

fi1=7F—\w+rvAw, dy =d—-vS(w)es, G =g —w.
Proceeding as in (4.20), (4.21) and using (4.23) we obtain (4.18). O

The second model problem arises from the need of a correction in solenoidal-
ity, together with Dirichlet boundary conditions on the bottom surface.

Theorem 4.1.3 Let | > 0. Suppose f € WiE®), a = (a*,a?0) €

3
W2l+2(2), h € WHL(E®) and F, N € L*(3X*®) are X-periodic, h'(x) = 0
whenever x5 > L, =0 for x3 = 0 and fzw Wdxr =0. For anyReA >~ >0
there is a unique X-periodic solution to

M —vAu+Vg=f, inR3
Viu=h=V-F+1N, inR} (4.24)

u=a, in R
it satisfies the estimate
lellfye2 ooy + A2 Nl T ey + VRT3 ey + ATV DI 2500y
< (1 gy + NS iy + ol g+ Nl (425
+ 7l ooy + NP F N Lo smey + 17172 05) -
Proof. We start by looking for solutions of

M —vAu+Vg=0, inR3
Vou=0, in R? (4.26)

u = a, in R?, a® = 0.
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3
with a € VV;Jr2 (3). By considering for each x5 the Fourier series expansion
we get, for each & € Z2, the system of ODE in 23 > 0

( d2 ) . -
V(T’2 — d—I%)U‘§<I‘3) + Zf;pg = 0, ] = 1, 2,
d’ dpe(x3)
2 3 E\"3
R =0
< V(T dl%)uﬁ(x:;) + dxg )
du(x3)
Zflug(xg) + Z§2U€ d—:L‘3 = O,
\uf(o) = Q.

where af = 0, 7 =7r()\,§) = \/ 2+ [€[2, = < Arg r < 7. This can be solved
explicitly, and the only stable solution for £ # 0 is given by

ue(x3) = ageg(xs) + P(€, ae) (zi, —1)61(1:3),
<l (4.27)
pe(x3) = vP(E, a) (1 + |§|) eIl
where
P<€7a’f) = _Zf'a’/fv I{ (a%7a’§)7
—res _ ,—|&|xs
60(%3) — efracg7 €1<LU3) %

For the constant mode & = 0 the solution is
ul)(xs) = ae \/_x?’ Jj=12; uy = po = 0.

Using (4.11) and proceeding as in the proof of theorem 4.1.1 one can see that
for any mode £ it holds

dp
2 13 2
[uellyiiee, ) + || 2+2) ||u§||L2 ®,) T H sz ®) T P12 1€ P pel 72w,

< c([rE 1P+ JP |€\ |7”|2[ P+ 1677 .
Since |r| < /|A| + [€], repeated applications of Young inequality gives
|T’|21+3+|£||T|2l+2+|§|2|7“|2l+1+|§|3|7”|21+|§|2l+1|7’|2+|§|2l+3 < |§|2l—&-3_’_|)\|l—i-%7

and thus, summing in ¢ € Z? the previous inequality and using Parceval
identity, we obtain

2 2 2 2
||u||wg+2(zoo) + |)‘|l+2HuHL2(zw) + ||VP||W5(E<>0) + |)‘|l||vP||L2(E°°)

s (4.28)
< c(la) gy, + N1y
2
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We now solve the inhomogeneous problem

A —vAu+ Vg = f, in R?
Viu=h:=V-F+h, inR (4.29)
u=0, in R2.

with f, F and h' ¥-periodic, ' with compact support w.r.t 3, and the
compatibility conditions

F3=0 onYx, / hdx = 0.

To correct the divergence, we consider the equation for v := u — w, where
w = V1, with ¢ is a stable periodic solution of

Apy=h=V-F+h inR3,
Y2y =0 on R2.

From the energy inequality for this problem and the standard coercive estimate,
one has

2 2
IVl ooy + I IV 2 ()

(4.30)
< (Pl oy + P2 UIF 200y + 17 1] 25me)))

The new forcing term for the complex parameter Stokes equation for v is
fi=7F—\w+rAw,

which we reduce it in its solenoidal part by considering a stable periodic
solution ¢ in R? of

Ap=V f, R,
Gy = [} on R%.

The compatibility conditions for this problem are clearly satisfied and we
have the inequality

2 2 2 2
HV¢HW5(EOO) + |>\‘ZHV¢”L2(200) < C<|’f1HW2l(Z°°) + |>“1Hf1”L2(E°°))' (4-31)
The couple v = u — w, p = q — ¢ satisfies

MW—vAv+Vp=f, inR3,
V-v=0 in R?,

v=—w in R2.
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where f, = f; — V¢ is solenoidal and f§ = 0 for 23 = 0; moreover from
(4.30), (4.31) and the interpolation inequality, f, satisfies

2 2 2 2 2
HfQHWQZ(EOO) + |)"l‘|f2HL2(zoo) < C(H-fHWQZ(EOO) + ’)‘|1HfHL2(E°°) + ”hHWQIH(zoo)
2 2
+ A2 UE N2y + I (T2 (ee))) -
By the condition f3 = 0 on x3 = 0, we can construct an extension }2 to the

WholeA]R?’, Y-periodic, with preservation of solenoidality and regularity and
with f3 odd. Letting @ be the solution in R3

Ao — vAD + VP = f,,
V.5 =0,

uniqueness (for Re A > 1) of the solution and regularity estimates ensure
that 7% = 0 for x3 = 0 and the inequality

~12 ~12 T2 T2
181525y + A0 2 emy < el ol + I I Fallzasmy) - (432)

Therefore the couple u = v — v, p (the pressure p vanishes) is the unique
solution to problem (4.26), with @ = —w — ¥ and thus ¢® = 0. Estimates
(4.30) and (4.32), together with the interpolation inequality (2.15), give

2 3 2 2 2 2
Ha,“w;*%@) + A2 l@ Loy < e(llF gy + AF 20 + 12y e
N2 F G2y + 1 2 (0)) -
Thus applying estimate (4.28), (4.30), (4.31) and (4.32), we finally get
2 2 2 2
HUHW2’+2(2°°) + ’)‘|Z+ZHUHL2(EOO) + HVPHWQI(EOO) + |)"lHVpHL2(E°°)

<e(I1F gy + AIF 2y + NI ) (4.33)
2 2
AL oy + 12 )

Summing the solutions of (4.26) and (4.29), together with the estimates
(4.28), (4.33) gives the claim. [

As an application we give and existence theorem for the periodic Stokes
problem on the half-space. For T' < +o00 we set ¥ = X x [0,T).

i
Theorem 4.1.4 Let | € [0,1). Given X-periodic f € Wé’Q(E%’), a €
W21 (Sg) with a® = 0 for all t > 0 and vy € WETH(S%°) such that

V.-vy =0, vg | 5= 0,
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1
there exists a unique X-periodic solution v € VVQI+2 +1( X)), Vpe WQlZ(Z%O)
of

v, —vAv+Vp=Ff inX¥,
V-v=0 in X5, (4.34)
v=a on X, Vt > 0, '
v(0) = vy, v — 0 for x5 — +00,
and the following estimates holds:
12 s g, + IR <
=F) 2 (=F) (4.35)
C( YLFIZ g +Hvo|| ey + lall? g ); '
> Wi () W5 (3°°) W2+§ t+3 15,
if T'>1,
v + [|Vp i <
12 s gy + 21 -
(||f|| o Hvo||wl+1 s T Ha||W21+g,g+g(ZT) vl (se)s
with constant independent of T'; if T' < 1
2
v 1 p i <
012 g1 g, + 192t .
2 2 :
<l o+ ol + 0l )

with constant ¢ independent of T'.

Proof. We follow the plan of section 1.3 and reduce (4.34) to a similar
problem with homogeneous initial condition. We fix a large Ty > T + 1, and
extend f and a with controlled norm for all ¢ > 0 in such a way that both
vanish for t > Tj, keeping the notation unchanged. This can be done by
standard continuation theorems, and it holds

171, Fllal, g seg o S DUy o Flell g, )

(4.38)

with constant ¢(7') bounded for 7" > 1. For small T" we use theorem 2.3.3,
point 3, to obtain

I£1

l

+lall g9

l 3
?(Qw) w, %

(||f|\l§ +||a||H;+g,g+g ), (4.39)

with a constant independent of T if T < 1. In the following we will then
suppose T' = +o00 and thus ¥ = ¥ x [0, 400).
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By standard extension theorems for anisotropic Sobolev—Slobodetskii

. 1+2,L4+1
spaces, we find an extension v; € W; Al (3%2) of vy such that, v; =0 for

tZT07

H'UIH é+2,%+1 < CHUOHWé“(Z‘X’)'

w. (=)

and v} = 0 on X. We then pick vy(x,t) = Vi(x,t), where, for each ¢, v is
the periodic solution of

Aw =V. v; In ZOO,
Yy =0 in 3, (4.40)
=0 for x3 — +o00,

noticing that from V - vy = 0 we get v2(0) = 0, and vy, = 0 for ¢t > Tj,. By
standard elliptic estimates, the vector v, satisfies

||’02”W2l+2,0(2£) < CH’Ul”WéH*O(Eg) < CH’UOHWQLH(EOO).

Moreover taking the derivative w.r.t. ¢ in the weak formulation of (4.40) we

get
/ vy - Vndx = / v - Vndx

for all t > 0 and n € W, (X*°). Reasoning in this way also for the discrete
time differences, we get

Hv?HWzo,éH < CHUl”WQO’%“(Eoo) < C||UO||W2”1(ZOO)7

oo

(E2)

giving with the previous estimate

S C”’UIHWZ+2,%+1 S C||?)0||W2l+1(200). (441)

||’02||Wé+2,%+1 ! (m0)

(=)

Setting

u=v—v;—v, f=f—(vi+vy),;+vAv+v2), a=a—v —vy

problem (4.34) is reduced to the homogeneous problem

~

u; —vAu+Vg=f in X,

V.ou=0 in X%,

u=a on X, Vt >0,

u(0) =0, u — 0 for x3 — +00.

(4.42)
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Here @* = 0 by construction, and from v5(0) = 0 and a(0) = vy = v;(0) we
get a(0) = 0. By theorem 2.2.4, both f and @ can be extended to zero in
(—o0, 0] preserving regularity, and we can use the Laplace transform in time
L to reduce the above problem to

M —vAu + Vg =Lf in X,
V-u =0 in X,

u' = La on X..

This problem is uniquely solvable for Re A > 4/ > 0 using problems (4.26) and
(4.29). Thus taking inverse Laplace transform and setting ' = Lu, p’ = Lp,
we get a solution to (4.42) and thus to (4.34).

We now prove the estimates, letting
g ={(z1)eX>* xR} and Xp={(z,t) €T xR}

From (4.28), (4.33) for the transformed problem and using the properties of
the Laplace transform stated in section 2.4, for v > +/ we obtain the weighted
estimate

2 2 T2 ~12
\Y < :
Il sy IV g S T g 18I gt )

Notice that by theorem 2.3.1,

oo
R

S}ZL —l—aQ
: | ||W21,3(00 lal

712 ~12
+[la)® .
P11 g+ 80 s g0 1A

22 ~112
< (0 20) I g o H G g g )
2

since f and @ vanish for ¢ > Ty > T + 1. Moreover, from (4.41) we have

T2 ~112
1712 08 g, + 12 g

2
< of ool omy)

2
ity 1l

Now (4.38) gives
2 2 2
\V4 < T
HUHWQZ?’%H(E?) + H qHWé:é(Z%") = C(% )<HUHW2l?;2’%+I(ED§°)

2 2
< el DI g o+ 101 g

+||Vq > L
| HWéiﬁ(zD%‘))

2
+ ”UOHWQZH(Zoo))»

(=F)
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and summing back v; and v, and using again (4.41) proves (4.35). For small
T, notice that w and Vp vanish for ¢t < 0; applying (2.29) and (4.39) gives

+ HVQH2 L4 < CGQFYT(”U’H2 1+2, 4 +1
Hy 2 (

> + Vq 2 l
o) Wb e IVallys )

2
HUHH;LZ%JH 2 (n0)

(EF)

29T 2 2 2
< TNy ol g+ ool o)

Since by (2.29) and (4.41), it holds

||’Ul + ’UQHH;H’%H < C||’01 + 'U2||W2l+2,%+1 < CHUOHWQZ“(EW)’

(EF) (=2)

oo}

we can add back v, + v, to w and obtain (4.37).

Let us prove uniqueness in [0,7"). To this end it suffice to show that the
142,441

1
only solution (v, Vp) € W, (Qr) X WQZQ(QT) to (4.34) in [0,T) with
f = a = vy = 0 is the vanishing one. Let (v, Vp) be such a solution: we
extend it for ¢ > T with V- v = 0 and v|[x= 0, supposing (v,p) = 0 for
t > T+ 1, and since % < %, we can extend it to ¢t < 0 as zero. The extension
i L
(still denoted by (v, Vp)) belongs to WQZ;Z’QH(Q x R) x W2l§ (@ x R), and if
1
f = v,—vAv+Vp, clearly f € Wy 2 (QxR). We define fr(z,t) := f(z, t+7T),
1
which also belongs to WQZE; (QxR) since f(x,t) = 0fort < T, andlet (v, Vpr)
be the solution constructed above in the infinite time interval for right hand
side f;, and vanishing initial data and Dirichlet boundary condition. Taking
Laplace transform and using property 2 of theorem 2.4.1 together with the
uniqueness of the solution to the resulting problem of the type (4.42), we get

that
L(vy, Vpr)(z, z) = ¢ *L(v, Vp),

which implies
(v.(@,1), Vpr(e, 1)) = (v(a,t +T), Vpla,t +T)).

Since by construction v; = Vpp = 0 for ¢ < 0, this gives v = Vp = 0 for
t < T and the claimed uniqueness in [0, 7).

To obtain (4.36), assume (4.35) for any solution, with a constant ¢(7")
bounded for 1 < T < 2. For T' > 1 arbitrary, we consider a partition of unity
or = @(t — 2k) with o =1 for [t| < I, ¢ =0 iff |t| > 1. We define

3 1 4 1
T, = 0,-k—= k=0,...M := |=(T+ = 1.
Finally we modify ¢, in such a way that ¢y, = 1 for t > Ty + 1—11. The
supports of the ¢y in [0, 7] have diameter in [1,2], and at most two supports
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intersect at a time. Moreover, T} is the starting point of the support of ¢y.
The couple (ug, qx) := pr(v, p) solves (4.34) in Iy, := [Ty, min{7T} + 1, T'}] with
right hand side ¢y f + @i v and starting value at ¢t = T}, equal zero for k > 1,
vy for k = 0. Applying (4.35) to these solutions, and (2.20), we have

||'U|| l+22+1(2%0) ” p” 200)_”]62% k” l+22+1 +||ZVQk||

M
Z kH z+22+1(200><[) “ QkH 3 (s x )
M

< Z .

35 D8 O X IS N oo T,
M

< Z :

=35 9 E TN L TRV o YT

2
<3 <||f||Wé,%@%o) ol oo g, * 10t o )

where c is a constant which depends only on ¢, and sup, ., c(s) from (4.35),
and thus is independent of T'. Now the interpolation inequality

R e e O] L VTE )

wy'? (E%‘) )

(=7)

gives (4.36) (notice again that c(e) is independent of T' for 7" bounded away
from 0). O

The estimate (4.36) is performed only to illustrate the method, and it
can be improved through a spectral analysis for problem (4.24). Indeed the
fact that theorem 4.1.3 holds for any A > 0 implies that the spectrum of
the linear problem lies in the complex left semiplane. Once one can show
that the linear operator is compact (and thus the real part of its spectrum
is bounded by v < 0), standard methods allows to get rid of the [|v[| 25z
term in (4.36). However, the compactness properties of the linear problem is
not a-priori clear, due to the unboundedness of the domain involved, and a
detailed discussion is omitted.
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4.2 Parameter dependent linear problem

In this section we prove the solvability and the coercive estimates, for
sufficiently large Re A, of the problem

(A —vAu+Vg=f in Q,
V-u=h=V- F in €,
T(w,q) + cLpN =d, on G, (4.43)
M+Viy-u—ud+Vp-v,=9g, ong,
(v =a, on X,

where a®> = F* = 0 on ¥ and, recalling (3.5),
1
V96

1 1 V'V |? - V'
———Agp— V' V'IV'$|*V - Vip+ | gbb;' P
Vo 95 95

We start with a lemma which allows to extend the equation h =V - F
from Q to R% controlling the norms.

Lp = Agp+b-Vp

Lemma 4.2.1 Let h,' € WS(Q), F € Wi(Q) be X-periodic and such
that
h=V-F+HW,

holds in Q. There exist a L-periodic extensions h of h to R? and F ¢
W2 (2°) such that B B
h=V-F,

in R3, h=F =0 for sufficiently large x5, F -n =F -n on ¥ and

ellgger sy < cllbllpses oy,

— . (4.44)
1F 2 gy < U F | 20y + 171l 120
Proof. Let 9 be the periodic solution of
Ap=h=V-F+h in(),
=0 on G, (4.45)
% =F-n on .

Standard elliptic estimates guarantee that

||¢||v°v21+3(9) < C||h||w21+1(9)
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and the weak formulation of (4.45) reads
/V@/}-Vndx:/F-Vn—h'ncm
Q Q
for all n € C*°(Q) such that n|g= 0, which gives
vaHiQ(Q) < 1PN 2@ IVYll 2y + I 2@ 191 p2q)- (4.46)
Since ¥ = 0 on G, a form of Poincaré inequality gives
H¢||L2(Q) < CHVW‘L?(Q)y
and thus (4.46) becomes
IVl 200 < cllF 2y + 1]l 12(a)- (4.47)
We now extend Vi to as a vector field F defined in the whole R?, with
controlled norms and supposing that it vanishes for sufficiently large ;.
Setting then h := V - F' gives the claim, since
HEHWQZ“(EOO) < HFHWéﬁ(zw) < C”VwHW2l+2(Q) < CHh”Wz’“(Q)a

while the inequality for F follows from (4.47). [J

We will use the following proposition

Proposition 4.2.2 Let | > 0. For any sufficiently large Re X\, there is a
unique periodic solution to the problem

M —vAu+Vg=f in,

u=0 n Q
Vou R (4.48)
T(uw,q)N =0 on G,
u=>0 on X,
for any f € WL(Q), and it satisfies the inequality
||’U'”€v21+2(9) + |/\|l+2”u||i2(sz) + ||VQ||124/21(Q) + |)\|l||VCI||i2(Q)+ (4.49)
4.49

2 L2 2 2
el g+ N2 llgll 726y < cllF g + NI I Z20)-



66 4. THE LINEAR PROBLEM

Proof. The existence of a weak solution u € J :={v € W} (Q): V- -v =
0, v|g= 0} can be proved through Lax-Milgram theorem, since the weak
formulation of (4.48) is

3 [wsrd [ DD = [ fo6 veew@), o

Indeed, Korn inequality gives coerciveness of the bilinear form defined from
the left hand side, and Sobolev inequality the continuity of the right hand side,
for f € L*(Q2). The pressure can be recovered through standard methods, see
e.g. [32]. The estimate (4.49) follows, for example, from Shauder localisation

method and the analogous estimates for the related problems in the half-space.
OJ

The following lemma will be useful to estimate perturbed linear differential
operator. It has easy generalisation for arbitrary dimensions, but we will
prove it only for dimension 2 and 3.

Lemma 4.2.3 Let 1,1 be smooth functions such that supp n € B(0,6) C €2,
for some smooth bounded Q C RN, N =2,3. If

sup | + 81Vl + 21920+ L 4 (vl 4 (vul <k (450)
B(0,5)

for k independent of §, then for any f € Wi(Q),
H77¢fH?4/2l(Q) < 015Hf”124/5(9) + 02<5)Hf”2L2(Q)7
where c3(0) depends on &, n, ¥, | and k and ¢, only on k.

Proof. We consider an extension f* of f to the whole R, with controlled
norm. Let us consider the case N = 3 first. From (4.50) we get

Il es) < k.
If 1 < 2 we use (2.7) to obtain
2 *12 2 "
||771/)f”w21(9) < cljmpf ||W2l(]R3) < H77¢||W22(R3)||f ||W2Z(R3) < Ck45||f||w§(ﬂ)v

otherwise we use (2.8) with min{2,1} > s > 3, to obtain

2 2 (|2 2 (|2
||771/1f||w2l(9) < ||7777Z}||W2S(R3)||f ||W21(R3) + ||7777Z)||W21(R3)“f ||W25(R3)
iy )2
<d|f ||W21(R3) +c(O)|If HL2(R3)a
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where we used the interpolation inequality

%12 *(12 x |2
||f ||W23(]R3) < 5||f ||W21(R3) "’C((S)Hf ||L2(R3)'

In the case N = 2 we proceed in a similar way, this time using the norm
H?WHW % a2 instead of the W7 norm in the estimates. It holds
2

2
<
||77¢HW§(R2) < ckd,
which follows from

ey < k', gy < o'
and the interpolation inequality
1
2 2 2
12,3y < OO s + 50 ) <
2
The rest of the proof is entirely analogous. [

We can now prove the existence theorem.

Theorem 4.2.4 Let [ > 0. For any sufficiently large Re A, there exists a
unique periodic solution of (4.43), for any choice of periodic f € WL(Q),
1 3
de W, 2(G), ge Wy 2(Q), h e Wi Q) and F € WL(Q) with F3|s= 0
and this solution satisfies the estimate:
2 2 2 2 2
lellyy1+2 0y + I ullzai0) + IVallyo) + M IVl 72 + a3 g,

+1 2 2 2 I+1 2
I all o) + ol g o + I g+ 2Dl ) <

(G
2 2 2 2 2
2
1 9 9 1 2 2 3
Nl + ol ., + g+l )+ 1Al
(4.51)

and the inequality
2 2 2 2 2
[[wllyre ) + A2 |2 ) + IValiwio) + MVl 72y + HQHWH%(Q)
2

4102 2 2 +3 2
Il + 0l o5 )+ MR g ) + A 20l gy <

(

2 2 2 2 2
c(1F vy + IMIFIZ20) + 1l @) + XTI F 20y + i3 g,
2

3
+ |/\|l+2||a’||L2(E))7
(4.52)

2

I+1 2 2
Ay + ol iy

3.2
o gl + lal
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Proof. We first show that it suffice to prove the existence of a solution of

(/\u—l/Au—l—Vq:O in €2,
V-u=0 in Q,
T(w,q)N + oLpN =d on G, (4.53)
M+Veo-u—ud+v,-Vp=g ong,
(u=20 on X.

Indeed one can extend f with preservation of class and controlled norms, as
well as apply lemma 4.2.1 to F' and h. We consider a solution vy, p; of (4.24)
with those right hand sides, then a solution wvs, py of (4.48) with right hand
side Vp;. Given a solution w3, g3, p of (4.53) with right hand sides

di=d—vS(vi), Gi=g—V'é (vi+vs)+v>+15,

the triple
v +vy+ U3, p2tp3, P

satisfies (4.43). From the estimates (4.25) and (4.49) for problems (4.24) and
(4.48) respectively, we readily get

~2 +1 17712 ~112 I+ 1=12
Il g, + A2l 2y + 1811 ey o) + M2 9Tz )
2 1+1 2 2 +1 2
SC(HdIIWﬁ(g)HAI *lldllzag) + 9l g o) + A2 9l

2 2 2 2
Hllvillarz ey + A2 011250y + 025250y + N2 0272 500y)
2 2 2 2
< c(IlF i) + IMF 2oy + 1R ey + N2 F | 72y
2 1+1 2 2
+ ||d||W21+l ot A2 ]ld]|72g) + “g”Wﬁ

*(

1 2
o Tl

2 +3
Hlall g+ A lal ).

Also by the same estimates, it is clear that a bound of the form

2 1+2 2 2 l 2 2
w2y + A Pl + 1Vallw @ + M1Vl 2q) + ”quwf%(g)
P 2 2 2 I+ 2
+ A2 gl 26y + HPHWQHg(g) + H)\/)H%Hg(g) + (A2 Al g
2 I+ 2 2 +1 2
< C(||d||W2z+%(g) + (A2 ]ld]|72g) + HQHW?g(g) + M2 N9l )

for the solution of (4.53), implies (4.51) for the solution just constructed.
We now proof the existence of a solution to (4.53). For any fixed § > 0, we
consider a finite covering of G with balls B(x;,¢), x; € G, and this can be done
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in such a way that the number of balls containing any point of €2, is bounded
independently of 9. We now choose a periodic partition of unity ¢;, with
each ¢; having support in B(z;,260), > .¢; =1on V = Q,NU;B(x;,0) C
Oy NU; B(z4,2) =: U. For each ¢; we choose n;, with support in B(z;,30)
such that ¢; = 1;;. Any norm of the ;, n; is bounded by a suitable constant
depending only on §, and in particular we can suppose

C c2
Vel + IVl <5, Vil + Vil < 5 (4.54)

Moreover, N; will be the normal to G at z;, V; = v,(x;), II; the projection
on the tangent space to G at x;, C; an isometry bringing IN; to —e3 and we
will write N = C;N, V. = C;V;, G’ = CG. For each i we will set, as in (3.1)

y; = Cix, Yi = eg,(2i)

where ¢; is defined through C;(2', ¢p(2")) = (2], —¢i(2])) and ey, is the trans-
formation defined in (3.1). Here we suppose that ¢f = 0;(2;3)¢;(2) with
0; = 1 on the support of ¢;(x(2;)). Recall that for any isometry C, it holds

82
O e

and thus these formulas hold for each of the C; with respect to the coordinates
y;. Moreover, as has been calculated in section 4.1, V,, = £~ V.., where L;
is the Jacoby matrix of the transformation ey,.

Since we supposed ¢, smooth, it holds, for 2’ € ¥ N B(0,20)

V.,=C"Vv,=0C"'v,, A,=Cj =A,, (4.55)

()] < el [Vig(2)] < ). (4.56)
Notice that by this estimate and (4.54), (4.50) holds for n = n; and ¢ = g%;.
Therefore, by the previous lemma and proposition 2.1.3, for any function h
and m = m(z, ¢;, V¢;) it holds

mhllwu <Cllm hku < 8 hlliyp sy + O NPl 72y, (457)

and the same inequality for the norms on ¥*°; with constants depending also
on m. In the following we will shorten somewhat the notation. We may for
example simply write z(x) = e;il(C’i(x)) (and similar expressions) whenever
the dependance on i will be clear.

We define a linear operator R(d, g) = (u, ¢, p), where we will construct u,
¢ and p linearly in d and ¢ in the following. We let

v = Z Uiciflvi@i(x))a p= Z nipi(zi(z)) p= me(zz(%))
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where v; = v;(2), p; = pi(2), p; are periodic and solve a problem of the type
(4.5), namely

(\v; —vA v+ (V- V,)v;+ V,p; =0, inR}
V. v; =0, in R
q (6; + 823) = ni(Cyd) (2(2)), j=1,2 inR? (4.58)
—pi —oA'p; = ¢i(Cid)*((2)),  inR?
(Aoi + Vi V’pz + v? = pig(2(2)), in R?,
We then set
M — vAw + Vop = f,
V, v = ﬁ,

T(p,v)N +0LpN =:d + A(d,g),
A+ Vi -v—v3+v,-Vp=:g+ A(d, g).

noting that both v and p vanish in a neighbourhood of ¥. We can write the
divergence h as N A

h=V-F+H,
for sufficiently regular F and 1’ that will be specified later. We can apply
lemma 4.2.1 on h F and I’ and suppose that h =0 and h F are defined
in the whole »*° with controlled norms. We also extend f to X with
preservation of class and controlled norm. We keep the notation unchanged
for the extensions of h and f, and call F' the vector arising from lemma 4.2.1.
We define vy, p; as the periodic solution to

Ao, — VAT, + VP, = f in R?,

V- ’Ul h:—V F inRi,
v, =0 on X,

(notice that 7 |x= 0, since all the 7; vanish in a neighbourhood of ¥), for
which it holds the estimate (4.33), which, together with (4.44), implies

— 2 — 2 — 12 — 2
11 [lyz+2() + I D12 + VP gy + N TVPL 20

112 712 N2 T2 T2
< c(IlF1vaay + M F 2 + 1A ) + INT2UIE 2 + 17 1172(0)))-
(4.59)

Finally we let D9, D, be the solution of (4.48) with right hand side Vp,. We
let
R(d.g) = (4,4, p) := (v + 01 +02,p + Py, p)- (4.60)
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This triple solves

(\G — vATG+VG=0 in Q,
V-u=0 in Q,
T(w,§)N + cLpN = d + A(d, g) on G,
Mo+ V', - Tile,) — 3(e,) +v,-V'p=g+A(d,g) ong,

(u = 0 on .

where

A(d,g) = A(d, g)+vD@)N,  A(d,g) = A(d, g)+V' by (D1 +Ts)—0>—T3.

3
We will prove that (A, A) is a contraction operator from I/V2 (g) X WQHQ (G)
to itself, therefore estabhshlng the invertibility of I + (A A) and obtaining

the solution R(I + (A, A)) 1(d, g). Instead of using the usual norm, we will
perform the estimates w.r.t. the equivalent norm

9 1 2
dff = ZH%dHWH%(g) + A2 idll )
i 2

2 1 2
913 = ZHSOZ'QHW;L%(Q) + A2 [l igllw )

These norms are equivalent to the usual weighted norm, with constant inde-
pendent of § and \: this follows from well known properties of partitions of
unity, and more precisely

D* Z ©ig = Z ¢ D"g,

for any derivative of order & D*g, which certainly holds in a neighbourhood
of G. Thus in particular, it holds

2 2,1 2 2 [+1 2 2 1
(R + (0202 < el ey o+ 0l g ) + A2y + alig o),
(4.61)

with constant independent of § and A, and we will denote by ||(d, g), the
right hand side in the previous inequality.

We will split the estimates in several steps, always supposing § < 1 < |}|
in the following.
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1. Estimate of }'

Transforming coordinates near each point z; and using (4.55) and(4.58) we
get the explicit expression

f Z niC, v(Ay = A)vi + (Vy — Vo)pi]
- Z O QVxnzv v; + v; sz z(V; : Vz)vz)

+ sz‘ -

The terms in ? are of three kind: those of higher order (in the first line),
those of lower order in v; (on the second line) and the term >, p;V,n,. We
start estimating the lower order terms, writing them in the z coordinates.
Recall that V, = C;*£;7V, near z;, and clearly for any r > 0 and any 4,

H‘Ci_THWQ’“(EW) < CH¢5HW§+1(E)’

by the explicit form (3.3). This allows to perform all the estimates equivalently
in the z coordinates, and we have, by interpolation inequality

T
“Z Cv(2Van Vv, + v, 8,10 + (V; : VZ)Ui)||12/I/21(Q)
+AL ZC V2V Vo0 + 0l + (V] V)0 [
(3) Sl 1 gy M 5

c(6) 2 2
< Dy ZH%HWW(W) + A2 vill 2 ooy

c(0) 2 2
< W([d},\ + g\,

where we used the estimates of theorem 4.1.1 for the solution of (4.58). For
the higher order terms, i.e.

an A - A ) (Vy - Vz)pi),

we recall that the operators A, — A, and V, — V have already been explicitly
calculated in section 4.1. Recalling that V,, = £; 7V, we have indeed

V,—-V.=(L;"-1)V.,,
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Ay = A= (L7 = DL+ 1) : D2+ LTTDLTTY

The last term in the previous formula is still a lower order term which can
be estimated as before, while by (3.3), the terms involving £;7 — I have

coefficients of the form Z(Z ¢ and V.
Therefore we have to estimate terms of the form
007 ; Opi og; , v

and

MMy i oMy
azk ki sz ’ 8zk kil 8zj8zl ’

in the W! and L2 norm. The L? norm is readily estimated using (4.56), giving

8¢* Opi 2 8¢* i v,
Al ZH?% kga ||L2 00) ‘|‘||7% k;jlazjaleL?(Eoo)
i,k,7,l

2 2
< ¢’ Z ’)‘|I(HVPZ'HL2(ZOO) + H'UiHWg(zoo))

2 2 2
< e’ ZH'UiHWg”(zoo) + |)‘|l+2’|vi||1:2(zoo) + |/\|l’|vzpi||L2(zoo)

< cd?([d] + [g]3).

by the a-priori estimate for problem (4.58). For the W/ norm, suppose first
that [ > 0. We use (4.57), obtaining:

’F apZ agb* 0? v;
Z (L k]a ||Wl (o) T ||7h kﬂaz 02 ||ng(2°°)
i,k,g,l

2 2 2 2
< Czanvinwéﬁ(zoo) + 6(5)||”i||w22(2°°) + §||vzpi||w21(zoo) + C(5)||vzpz‘||L2(2<>0)

2 2 2 2
< ey il sy + 1Vapilligme) + O villzasm) + 1VapillZ2(sm))

<o+ %)([dﬁ IR,

by the interpolation inequality
2 2 2
c(O)villwz ey < dllvillyiresee) + OVl L2,

and the coercive estimates for problem (4.58). For [ = 0, (4.56) directly gives

% apz 3¢* a2vi 2
Z 7=+ kja ||L2 o) T ||77@ mk]l@z]é? ||L2(E°°)
i,k,5,

< 0522(||Ui||124/22(2°°) +IVepillz2(mey) < c8°([d3 + [9]3)

i
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To estimate the term ), p;Vn;, we let

i~ - [ eCaPata)as
and use (4.6) and (4.7) to obtain
Hzpivxm\@%m < ¢(9) ZHPiHiZ(zw)
9) ZHPz‘ - C_iz'H%%zoo) + ||<Pid||i2(g) (4.62)
) ZH%dHiz(g) + lleigliw g

and thus )
M Vil < ——L([d)? + [g]2).
Al ng millz Q) = \/W([ Ix +[9]3)

Moreover, by interpolation and the coercive estimates for problem (4.58)

Hzpz meWl ZHPZHWZ $00)
2
< 5Z||Vzpi”w21(zoo) +¢(9) ZHPiHB(Zw)

c(9)
VIl

where we used (4.62). All in all we have obtained

~ ~ )
Hﬂ%@+MWNﬂm§®+%@wﬁ+Mﬂ (4.63)

)([d]3 + [913).

where 6 > 0 (equal to [ if 0 <! < 1, and  otherwise).

2. Construction ofF and .
We now prove that h can be written as the sum h = Ve F+h'ina satisfactory
way. More precisely we claim that for some tensors M!, r = 0,...,3 and
functions m;, smooth and depending only on ¢, and {n;}

~ ) 1 ) )

1 ,
=> S (M50 = mip;) (4.65)
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where, in the 2z coordinates,
|Mg| < |V, (4.66)

for some constant depending only on ¢,. To prove this representation, first
notice that from (4.55) we get

V. Clw=0C'VY, Clw=V,w, (4.67)
for any vector w, being C' an isometry. Therefore
Ve - (0:C; ;) = V- (niw;),

Thus, by the solenoidality (in the z coordinates) of v;, it holds

~

h = Vm . (UlCT’Ul) = Vym -v; + T]Z(Vy — Vz) *U;. (468)

Recall that £V, = V., and call I}; the entries of £;. Using convention (3.4),
and summation convention on repeated indexes except ¢, we can write

A" = Ll ol + Uglvias Vapi = (Lubik),

and since v; = (A,v; — V.p;)/ A, we have
Vi - 05 = i (Uil w017y + il 0ile — Lonbisk)
= < B0~ )
3 T Oligles) 407 ) s+ sl

One can proceed in a similar way for the term 7,(V, — V) - v;. From
V. = LI'V,, we define the matrices a’ whose entries are a};, = (I — LT ).
Notice that, using (3.2)

lahel < c(IV'éil + [i]). (4.69)
Proceeding as before, in the y coordinates we have

Ui(vy —V.) v = NiQyp Vi ¢ = (i vi") ¢ — Ni Qg 4V

; il i i ‘ ‘

_ P m _ L ge m 7 o7t )
= (N5, 07") IS (Ujlejuvi%s + Ueilsjoilse — UorDik)
i i i Vs )\nlamt,t kj sjv'i,s mkPi k

1 ) 7 m 7 7 7 7 m
+ Y [(niamt,tlkjlw),k“i,s - (niamt,tlmk),k’pi - niamt,tlklej,k’vi,s} .
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If the hk-entry of C; is denoted by CI*

"% we now define the tensors M
r=20,...,3 as follows

(Mé) Ckhnl mk;7
(M{)gm = Oz‘kh(ni,m nia mt t)lkgl;y
(Mzz)h = th(m,m — ia mtt)lvznka
(M§)sm = (Ui,m - Uiaint,t)lijlsj,k - ((m,m = iy t)l;ejl;]) ;
and the functions

m; = ((mm - Uiairlt,t>link),k

Here the contraction symbols in the tensors M} and M3 are the bottom one,
i.e., for example, M? - Vv, is the vector whose h-th component is
(Ml>sm Ui,s Ckh(nlm nia’int t)l;ﬂ]lz] Zﬂ”;

Applying (4.67) for the terms in the divergence and gathering the previous
equalities, we obtain

MVU ‘D MiVv; — m;p;
V. = Miv i i 2 v 3 i iPi
o= 9, [t AT Min] 5 M,
which gives (4.64) and (4.65), while (4.69) and (4.56) give (4.66) for small 4.

3. Estimate for h Fandh'.
For h using formula (4 68), we can split the estimate in local coordinates:

~9 2 2
1) < €(8) D _lvilliaer ey + € D _lIm(Vy = Vo)villiyies eey-

The first sum has only lower order terms which can be estimated through
interpolation inequality, while by (3.3) the second one has addends of the
form

8@5* i 8’UZ'

Ul D2 kja_zja (4.70)

for some smooth functions m;k depending only on ¢;. As before, its Wit!
square norm is estimated through (4.57) and interpolation, giving

2
Z\Im(vy = V)il gy < CZ O Vvill i gy + () [[0illwy )

c(d
< ¢ S alvilhgram, + Ol < 0+ ) (AR + )
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All in all, we get

sy < 6+ S 0R + 19

To estimate F', using the expression (4.64), (4.66) and (4.56), we have
=~ 1
2 2 2
[F 7200 < ¢ E :_wg (H”i"wg(zoo) + HpiHLQ(EOO)) + 52”vi”L2(Z°°)

and proceeding as in (4.62) for the pressure term, one obtains
c(9)

VIA

The estimate for A’ , due to the form (4.65), is even simpler, and is omitted.
The full estimate then reads

A2 < o8+ ) + o)

c(0)

~ 9 ~ ~ i
”h”WQZH(Q) + ‘)"l+2(”FHL2(Q) + ”h/HLz(Q)) S C((S + W

)([d]3 + [g13)- (4.71)

4. Estimate offi
The term D, (v;) NN is readily estimated through (4.59), the continuity of the
restriction operator and interpolation inequality, giving

— 2 1 — 2 — 112 — 12
D@ vy o+ A2 D@ N L2y < el gy + N2 01l1720)

2 ~(9)
N2 N2 NP 2 T2
< (I gy + M UF Nz @) + IRl gy + N2 20y + 1R 720)-

From the previous estimates for }, ﬁ, F and %’ one thus obtains

_ 1 _ c(o
IDLOUNIE 11y g+ MHIDLO)N Iy < 6 + T + b

Regarding A we have, using d = ), ¢;n:d,

To(p,v)N +0LpN —d =) ni(—piN + C;'Do(vi) N + 0 LpiN — id)

+) Cr'Vap; @v; - N + o(L(mipi) — miLpi) N,

in the x coordinates. The second sum is a lower order term, and thus it

can be estimated via interpolation with %([d]i + [9]3). We transform the
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first sum in the z coordinates and use the boundary conditions for (4.58),
obtaining a sum whose addends are

ni( = pi(N' = e3) + (D, = D.)(v))N' + D, (v;)(N' — e3)
+0Lpi(N' — e3) + o(Lp; + Ap;)es).

Notice that 7;(D, — D,)(v;) and n;D,v;(IN' — e3) can be computed explicitly
using (3.3) and both are linear combination of terms of the form (4.70).
Similarly

09 i agﬂz‘ 0o iaﬂi

004 —m m
0z K 9202 0z, *9z,.

pi(N' — e3) = Pig M Lpi(N' — e3) =
J

for some smooth vectors m?, m}; and m},; depending only on ¢;. Moreover,

letting g; = 1+ |V'¢;|?, we have
V'¢il?

(1+v9)v9g

which has the same structure of Lp;(IN' —e3). These terms are thus estimated
using (4.57) and interpolation inequalities as follows: for the pressure term

A,pi + ¢204 ¢2,8

Lp + A,p = Pas + maﬂ¢zapzﬁa

1 2
Sl N = el + W N = el

2

1 2 2
< 025 sz-||w2;+%(z) + A2 pillegsy) + @) pill s,

c(d) 2 2
< 0(5 + |)\|l+%)<[d]/\ + [g]/\)v
while
DD, = BI@INI, oy ) By = D)@IN e+

+ [[mD (vi) (N —eg)l\ivz%(z) + A2 D (0:) (N — €3) 725,
2

2 1 2 2
< YAV oy o+ PHIT 0l sy) + O IV -0l

2 2 2
< CZ O([lvillsy2 ey + N2 0illZ2ge) + (O |0ill 25

< -+ 1R + o)
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and finally

1
SoIEA (N = ex)l ey o + AL = el

2

2 1 2
ZHW Lpi + A/pi)e3|’W2l+%(E) + N2 0L + Apiesll s,
< 5l os |2
< CZZ: (e ”WQH

2 5 2 2
<cd 5(|ImHWz+g(E) + M2 0l 2y + @il 2w
; 2

c(9)
A

I+3 2 2 2
8y F I 000z) + @) o gy + 1005 )

< (o

)([d]3 + [913).

All in all we have

~ 1, c(6
IR 01 )+ N HIA Oy < 6+ 20 1 + )

5. Estimate of//l\

The estimate for V¢ - (01 +0s) — 05 — 03 follows from (4.59) for v, and (4.49)
for v5. The argument is very similar to those given above, and is omitted.
For the estimate of A we localize in the z coordinates, obtaining, via

(V5w —1)C; vy = (= Vi, vy, vy - Vipi = Cyvp - Vi,
the explicit representation
MA+Vigy-v—vP vy -Vep—yg
= Zﬁz Api+ (Vi —1) - C Moy + vy - — @ig +szvb V)

= Z ’r]Z ’Ub — ’Ub(fbl))v V, ¢z 'Uz + Z C iPiUp - Vznz

The second summand is a lower order term, which can be estimated through
interpolation inequality as

2 1 2
||Zpicivbvz77¢||wz+g(z) + ’)\|l+2 ||Z Pz’Cz'Uszme;(z)
i 2 i
2 1 2
®§Jmmﬁam+uwwa@m

143 2 c(9) 2 2
< |A| lesz Wi + [l 2||pi||W21(E)SW([d]A""[g]A)
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For the higher order terms let us look at 7;V’'¢; - v;: it is readily estimated
through (4.57) as

2 1 2
HZmV'@ . UiHW21+%(2) + A HZ miV'éi - vill s
2 1 2 1 2
< 25(||vi||w2z+g(z) FINFE 0l ) + O T2 il

2 3 2 1 2
< Z O(llvillyge ey + A2 Vil 72(s)) + (@) A2 [|vil 72,

by standard restriction theorem and interpolation inequality (2.14). We now
apply interpolation inequality (2.15) to the L? terms, to obtain

2 1 2
HZ n:V'b; - Ui“Wl+%(E) 1A HZ N i v"HWJ(E) <
- 2 i

6+ 5) S o + N0 m)) < (64 SR + o)

For the remaining terms of the form 7;(vy, — vy(x;)) V. p;, by the smoothness
of v, we can assume that |vf — vf(z;)| < & on the support of n; and thus
apply lemma 4.2.3 with ¢ = v, — vy(z;) to obtain

HZ% (vp — vy sz))V'sz‘Hin + A2 ||Z 1:Ci(vp — 0y(2:)) V2 pilli )
2

1 1 2
<Y 4( HVPHWHg(E) + |/\\l+2\|VPHW21<z)) +c(O) N2 Vol )
i 2
< 5 2 )\l+§ 2 ( ) )\l—&- )\
_Z (||p||W2z+g(E)+\ 2 olz2esy) + |)\|2| 2 Mol )

< 0 + SR + 9R)

which completes the proof of the inequality

c(0)

W)([dﬁ +1glh). (4.72)

" o
AP, o, + NHIA. )y < cl0 -+
2

6. Existence and estimates for the solution
The estimates (4.2) and (4.72), together with (4.61) give that

I(A(d. 9). A(d. )], < (H%)H(d,g)\h-
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Therefore, choosing § sufficiently small, and then || sufficiently large, we get

that (;1, A) is a contraction on WQH%(Q) X W2l+%(g) normed with || ||,, as in
(4.61). The existence thus follows, and we will suppose henceforth that ¢ is
fixed. a

We now prove the estimate (4.51). To this end, it suffice to prove the
continuity of the operator R defined in (4.60) with respect to the norm
[(w, p, p)l[ defined as

2 2 2 2 2
[(w, p, )l = HUHWQHQ(Q) + |/\|l+2Hu”L2(Q) + ||VQHW2Z(Q) + ’)‘|IHVQ||L2(Q)+
1 2
+ |>\|l+2||/\P||W21(g)'

+3

2 I+ 2 2 2
lal 103 g, + A lalEaig) + ol g o, + I,

2( 9

Now from (4.59) and (4.49) we have that
2 2 2 2
[©1 + Talyrz ) + Aoy + Vsl z200) + IVP2l (o) + |)‘|l||VI?2||L2(Q)+
2 o2
HpQHW(j*%(g) + N2 P2l <
B2 2 2 =02 2
c(IF vy + IAMF N2 + IRl o) + INF2UE I 2@ + 17 122)

and the right hand side is bounded by ||(d, ¢)||, by (4.63), (4.71). Looking at
the definition of (v, p, p) we have, applying proposition 2.1.3 and the estimates
for problem (4.58)

(v, p, Pl < c(0)Il(d, )l

which completes the proof of

1R(d, )l < cll(d, g)l,

since 0 is fixed. To prove (4.52) we notice that, by the equation for p:
M=g—V'é-u+u’—wv,-Vp,
and, by interpolation inequality (2.15),
3 2

A2 ||)\PHL2(g)

3.2 2 2 3 2
< N2 lgllzag) + elllwlipre g + A llullza@) + A2V ol g))
c

3 2 2 2 1 2
< IN*2]lgllzegg) + elllwllyyrre g + AT ulze ) + WW+2 A2l 6):

Noting that

L 9 3. 12
N2 lglfgie) < clllglfyrog g, + 1A oo,

(
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we obtain the claim from (4.51).

7. Uniqueness
By taking the difference of two solutions, it suffice to show that problem
(4.43) with vanishing right hand sides has only the trivial solution. Suppose
then that (u,p, p) is such a solution. Taking the scalar product with w in
the first equation and integrating by parts gives, by the second and third
equation

)\/ |u|2dx+5/ ID(u)|*dr = —a/LpN-udS, (4.73)
Q 2 Jo g

(the boundary terms on ¥ vanish due to u|x= 0). The right hand side can
be rewritten using the equation for p and

N = <_vl¢b7 1)/\/%7 gy = 1 + ’v¢b|27 dS = \/%dxlu

giving
/LpN cudS = / Lo(=V'p-u +u?)da’ = / Lp(Ap + vy, - V'p)da'.
g ) 2
If A = s+ it, taking the real part in (4.73) thus gives

s/ lu|?dr + K/ ID(w)*dz = —0B,(p) < 0,
0 2 Ja

by lemma 3.1.1, for s sufficiently large. Therefore, for s = Re A sufficiently
large we get u = 0, and Vp = 0 from B,(p) = 0 and (3.9). From the equation
for p we thus get p = 0 and from the boundary condition on the stress tensor,
p =0 on G. Since the velocity equation now reads Vp = 0, we conclude that
p vanishes in the whole Q, and thus (u,p,p) = 0. O

4.3 Time dependent linear problem

In this section we prove the solvability of the time-dependent linear
problem (4.1).
We first need to consider the perturbed version of problem (4.43), i.e.

()\u—uAu+Vq—‘/I\>1('u,,p):f in €,
V-u—®y(p)=h=V-F in €,
T(u,q)N + oLpN —®(p)=d on g, (4.74)
M+Ve,-u—u+Vp-v,=g ong,
(v =a on X,
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where ®; is given as in (3.18) substituting the term p% with Ap*, and, as
usual, a® = F3 =0 on X.

Theorem 4.3.1 Let | > 0. For any sufficiently large Re \, there exists a
unique periodic solution of (4.74), for any choice of periodic f € Wi(y),

1 3
deWi2(G), ge W,y 2(G), h € Wi () and F € W(Q) with F3|s=0
and this solution satisfies (4.51) and(4.52).

Proof. We start estimating the A-weighted norm of the various ®;. For '/1\1'1,
we see from the definition (3.18) that all its terms are of the form

Vp*-M;, D*p*-m;, Mp'mi, u-M;, or m- Vu,

for some smooth vectors and matrices m} and M Z depending on v, and py.
Each of these terms can be estimated in the W.(€;) norm through proposition
2.1.3. One considers separately the terms containing the spatial derivatives
of p and those containing the derivatives of 6 to obtain, for Re A > 1,

1@l < cllVollyirg + Alolwig + lullyiog,)

where ¢ is a constant depending on the higher order norms of vy, p, and 6.
Applying interpolation inequality one then obtains, again for Re A\ >> 1,

I+1 2 2
+[A[2 H)‘pHWQI(g) + ”)\pHWH%(g)

|2 <
| 1”W21(Qb > \/W(Hp” z+2()

1 2 2 2
+ A2 [Apll72 ) + HU’HWQH'Q(Qb) + ‘)\‘HQHUHH(Q@)-
For the L? norm one has

1@ 1l 120, < cUIVollwag) + 1Ml L2y + Ul o)

and thus, bounding ||p|[ ;2 (g, with || p|]W21 () and using interpolation inequalities

A @1ll72 0, < (lloll? it + A2 ol )

w ©

1 2 2 2
+ N2 ol + e, + M2l 7 ,)-

Therefore, for Re A > 1, we have
c

3 12 312
||(I)1||W2Z(Qb) + |/\|l||q)1||L2(Qb) I\

2 1 2
F IR g ARy
2

(HPH l+§(g @)

2
+ ullfyrez g, + AT el 720,)-
(4.75)



84 4. THE LINEAR PROBLEM

For ®,, recall by (3.21), that it is a linear combination of terms of the form
Vp* -m! and p - m?, and therefore

192(0) Iyt 0y < UV pllr16y + Il
giving
c

2 2 3 2 2
1260 igern < ol g g, Hloliigio +H IO ) (470

-~ -~

Moreover, recalling that ®3(p) = V - (I — L)v,, we have for (I — L)y,

> 2 2 C 1 2
IMNF2NT = L)ool 20 < AN T2 llpllvye) < —= A2 N0l (477)

~ VI

Finally both ®5 and ®, are linear combinations of terms of the form V'p- M
with M depending on v, and ¢y, therefore, for Re A > 1,

=12 1= 9 2 1 2
||<I>||W21+%(g) + A2 @] g < C(\|V’pHW21+%(g) + A2Vl 72 0))
c 2 1 2
< e gy + Ny )
2
(4.78)

This concludes the preliminary estimates for the linear perturbations.
To construct a solution, we recursively define the sequence (v, pn, prn) €
5
X = W2(Q) x WITHH(Q) x W2l+2(g), equipped with the weighted norm
whose square is

2 2 2 2
(0,9, p)]Ex = llullyyrez ) + T2 Nulze @) + IVallwyg) + A1Vl 2@

2 I+1p 2 2
+ HqHWé# , AT llalke) + H/)HW?g

2 ) +1 2
» o HII g+ o

(

We set (vo, po, po) = (0,0,0), while (41, Prt1, Pnt1) solves (4.43) with right
hand sides, respectively

fn:f‘i‘:f)l('vnapn)v hn:h+q)2<,0n>7 dn:d+q)(pn)7 gn = G-
Notice that h, = V - F,, with

F,=F+(I—-L,uvy,

and thus, by the condition F* = 0 on 3 and (3.23), it holds F> = 0 on . We
claim that if Re \ is sufficiently large, {(v,, pn, pn)} is a Cauchy sequence in X.
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Indeed the difference (W1, Gni1, Ons1) := (Va1 — Un, Pug1 — Pns Prst — Pn)
satisfies (4.43) with right hand side, respectively

@1<wn70-n)7 q)Q(O-’n)) (I)(Un)u 07

and thus (4.51), together with the previously proved estimates (4.75)—(4.78),
shows that

&
[(wn-I—la An+1, O-n—i-l)]i)\ < W[(wnv n; Un)]l%)\a

\/CITI < L. Therefore (v, pn, pn) — (v,p,p) € X and
the latter clearly solves problem (4.74). The a priori estimate (4.51) follows
from

C 2 2 2
[(v,p, p)]ix < W[(’Uapa Pix+ C(||f||w21(9) + |)‘|l||f||L2(Q) + (12l )+

)\l+2F2 d2 )\l-‘,—ldQ 2 )\l-{-l 2
A iy + 117 oy + Ny ol .+ Ny )

. . . . . .
again for NS and this also gives uniqueness. One can proceed as in the

proof of theorem 4.2.4 to obtain also estimate (4.52) for the solution.
0

To shorten somehow the notation we define

uy Y =lu + V +
el =l oo g+ WPt g F WPty
+ ||p||W21+%,é+%(G ) + Hp,tHWQH% %+%(GT)
— \Y
| (w,p, p)|| e, HUHH?—Q’%_H(QT) + pHH;’%(Q ) * HpHH?%’%%(GT) (4.80)
+ ”'OHH?%’%JF%(GT) + ||p’t||Hé+%’%+%(GT)'

Theorem 4.3.2 Let | € (%, 1) and T < +oo. For any X-periodic choice
i L
of f € Wy2(Qr), h € Wi(Qy), F e Wy 2™ (Qr) with F3|s= 0, d €
43 5+] +3.5+% +35+5 VR
W2 (GT); g € W2 (GT)7 a < WQ (Z) with a® = 0; Po €
WE2(G) and uy € WiTH(SY) such that

V- ug(x) = Pa(po)(x) + V- F(x,0) for x € Q,
VITD(wo)(z) N () = ®3(po)(x) + Ipd(z,0) forx € G, (4.81)
uo(7) = a(z,0) forx e,
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there exists a unique solution to (4.1), and it holds the estimate

I gp)llwaz < eMUF ey )+ IElwgoor)

+||F||W;,%+1(QT +lidll %Q%(G +llgll b, (482)
Hlall g 4o, + [oollwzosiay + lollzooe)
Moreover, if T > 1, it holds
(w0 b < eI, s g, + Wellagsssigmy + 1T ogin,
+Hd”w§*%’%+5(cﬂ ||9||W2z+%% Yo )+Ha”w§*%’%*%(zﬂ (4.83)
+ lvollwirr q,) + lloollwirzgy + lwll 2 g + 1ol 2 6r)-
with constant independent of T and, if T <1,
(e, @)l < e(ILF1] o T 1/l 10
+ HFHAO,%-H(QT) + “dHH;J!‘%y%-‘r%(GT) + |la |’H;+% +%(ET) (4.84)

i
+ Hg” l+2 2+4(G + H’UOHW2H1(Qb) + ||p0||W2l+2(Q )

)

also with constant independent of T'.

Proof. We follow the plan described in section 2.4, and reduce problem
(4.1) to a similar one with homogeneous initial data in order to apply Laplace
transform and use theorem 4.3.1 to get the solution. First of all we fix
To > T + 1 and extend all the right hand terms except h and F' (keeping
the notation unchanged) to Qo and G, with controlled norm, supposing
furthermore that all the terms vanish for ¢ > Ty. For T' > 1, this can be done
with constants independent of T', i.e.

118 g, 10 et

§C<||f||wz,7(QT) ||d||Wl+%,?g+;g
2 2

+ H9HW21+%,%+% + |la z+%,%+%(

(Goo) W,
gt g+l s

(Gr W,
For T < 1 we can use theorem 2.3.3 to obtain the same estimate with, on
the left side, the H "3 norms instead of the I/Vn’2 ones. To construct the
extensions of h and F', we define, for all t < T, wg = Vv, where ¢ is the
solution of

AYp=h=V-F in (),

=0 on G, (4.85)

g—;ﬁ:F-n:O on X.
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From standard elliptic estimates we have, for each ¢t < T,

HonW21+2,0(QT) < CHhHW2l+LO(QT)’

and
?gg”wonwzl“mb) < C?gthHW;(Q)

Differentiating in t the weak formulation of (4.85), one gets

wo, - Vnde = F, Vndx, Vne C”, nlg=0,
Qb Qb

and a similar identity for the finite differences in time of wy;, which implies

ol o g, < I ogong,
3o [ Mooyt < g [ 1Pl
Therefore it holds
lwollsen s, < Ulbllgrogn + 1PN g )
ol g g, < lgroggy, + IF ”Aw(@ﬂ)’

We extend wy in such a way that wy = 0 for t > Ty, wo = 0, and with
1
WQHQ’QH(QOO) norm controlled by the W21+2 H(QT)—norm of wy if T > 1,

and, using theorem 2.3.3, by its HH%H(QT)—norm if T'< 1. Both controls
are made with a constant independent of T". We then define, for all ¢ > 0,

Fy = w,, h =V - w,,

and f, = wo; — vAwy. It is clear that problem (4.1) is equivalent to the
same problem with F instead of F'. It holds

C(||h||w2l+1»0(QT) + ||F|| QO’LH(QT)) if T > 1,

h : +|| F L <
Phzziau F o) = i g + 1Pl o, ) HT <1,
W, T

with constants independent of T, and

Hfo”Wé“’%H(Qoo) < ”w HW2l+2 A

< clllhlhygrsou + IFoll okir )

(4.86)
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We now let
o0 = g(0) —wy - V'pg — V'ehy - uo + 1y,
and we construct p; in such a way that
p1le=0= po, P1,tLt=0= 00,
"pll‘w21+%7%+%(000) + “Pl,tHWQH%,%JF%

< C(HQHWH
2

< C(HPOHWQH_2(Q) + HUOHW2H% )

(Goo) 9)

nojo

$+3 gy T IPollwirag) + Tollwin o)
(4.87)

5
To construct such p; we first find, through theorem 2.1.6, r; € VVQZJr2 (Go)
such that 7 |;—0= po, 71.+|t=0= 0 and

HT1HW2Z+% < CH'OOHWQH‘Q(Q)'

(Geo)

T
Then we construct, through theorem 2.2.1, point 4, 5 € W2l+2’2+4 (Gs) such
that T2 |j:0: 0, a2t Lt:O: o1y and

< llooll 104
< e((0)

< C(HQHWL+%,%+%
2

[[72]| l+%,%+{f(G

W, 9)

o0)

3 G + HPOHWQH%

[ -+ ol

(4 (Q))

(Coo) + [lpollwi2igy + HU’OHWQH'I(Q},))’

for a constant ¢ depending only on v, and ¢,. The sum p; = ry + ry clearly
satisfies the initial boundary conditions and

ol o, Flonell pragseg o ) < cllloollwgeag +llooll ey o)

(Go) (Geo) (9)

Finally, from the inequality
(1+ €] + €122 < (14 €25 + (1+ |&] + €216,

we get, through local coordinates, Fourier transform and Parceval identity
HPIHWH%,%ﬁ}

) (Goo) )

and thus (4.87). clearly we can modify p; so as to obtain p; = 0 for ¢t > Tj,
without affecting the latter inequality. Then we take out a part of the
divergence, considering w; = V1 where ¢ is the periodic solution of

A’QD :(I)Q(pl) :VFl in Qb,

Y =0 on G,

g—:ﬁ:Fl-nzo on X,

< C(||,01||W21+g,o T ||/)1¢||W2:+%,%

(Goo g
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where F; = (I—L(py))vy, which vanishes in a neighbourhood of ¥. Notice that
since p; vanishes for ¢ > Tj this is also true for w,. We set f, = w,; — vAw;.
With the same argument as for problem (4.85), we get

),

IFllis g < cllwnllyuegan o < i@l gy + I o g

2 (Quo) y Q) — Q)

and looking at the explicit form (3.21), (3.20) of ®5 and F; we get

il s, < rslhygnguy + V01l oson gy +lonlloin, )
<clloal ot g, + 1910l ot )
= C(HMHWT%’%*%(QOO) " le’tuwﬁ’%*%(%))
which gives, by (4.87),
Hfl”w;%@m) < C||w1||W2l+2,%+1(QOO)
(4.88)
< C(”gHWZH%’%Jr%(GOO) + HPOHWQH'Q(Q) + HUOHWﬁl(Qb))-
1+2,L+41 )
We then choose ws € W, 72" (@) in such a way that

V'wg :0, VtzO, UJQ(',O) :uo(-)—wo(-)—wl(-,O),

with wy = 0 for t > T}, and optimal regularity estimates. To do this, notice
that w} = w3 =0 on X, and V - (ug(x) — wo(z,0) — w;i(x,0)) = 0 in 2, by
the first condition in (4.81). By a result of Bogowskii [7], wo(z) — wq(z,0) —
wi(z,0) can be extended with preservation of class and solenoidality for all
r € R3, as a vector wj. We can set

wa(, £) = (t) / D(x — . tywl(y)dy,

R3

where ¢(t) is a smooth function equal to one for small ¢ and vanishing for

t > Tp, and
I 2
[(x,t) = Se
(4mt)2
is the fundamental solution of the heat equation. Well known estimates of
the heat potential give

Y

Hw?HWHz%H < CH'w;HWQl“(]R% < cflug - wl”WQl“(Qb)'
2

Q1)
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Letting f, = wo; — vAws,, we get

<
HfQHWé,g(Qw) = CHwZHWQHQ’%H(QOO)
(4.89)
< C(HUOHWQZ“(Qb) + HwOHWQZH’%H(Qoo) + ||w1||W21+2,§+1(Q00))
Finally we set f; = —®(wo + wy + wy, p1). From the explicit structure

of ®; given in (3.18) and applying (2.20), one sees that

3
Il gy SO0 gt

):

+ le”WQlJrz,%H o

(Goo

el

which gives, a fortiori,

3
< .
”f3”W;%<Qm) _C(;I|wzllwé+2,;ﬂ@m)

+ ol

(4.90)

)

+53,4+% +lprell

: 3.4+3
W2 (GOO) W2 (Goo)

Letting
09 — vIN - D(’U,[))N + O'Lpo - d(O) -IN — (I)4<p[)),

we have oy € Wé_%(g ) (the four terms have regularity, respectively, [, [, [ — %
and [ + 1) and thus we can extend it to the whole Q;, as 5, € W.(€,) with
controlled norm, and subsequently define p; € WHL%J“%(QOO) as an extension
of 3 to Q, also with controlled norm. Therefore p; satisfies

p1(0)|[g=vN -D(ug)N + oLpyg — d(0) - N — Dy(po),

+%’%+%(G ), (4.91)

o0)

o0 S cllvollgr gy +lloollugea g+ Il

where we also used the fact that ®4(po), given in (3.28), is of the type Vpo- M
for regular M’s depending on v, and ¢y.
We finally define w = wy + w; + wy and

le“w21+1,g+% w!

(u,q,p) = (u—w,q—p1,p— p1)

3
F=Ff-vm-> f.
1=0

d — vD(w)N — cLpyN + piN + ®(p,),
g—p1s— Vi w+w —vy,- Vi,
a_

Q) Q) Q)
I

w.
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Problem (4.1) is then reduced to

~

(U, —vAU+ VG — ®(U,p) = f in Q,
V-u—d(p)=0 in Qy,

T(w, )N + cLpN — ®(p) = d on G, (4.92)
pi+Vo,-u—w+Vp-v, =7 on G,

u=a on Y, for all t > 0,

(U(z,0) =0, =€, p,0)=0 ze,

where g(0) = 0 by the definition of p;, a(0) = 0 by the third condition in
(4.81) and the definition of w,, and cAi(O) = 0 by the second condition in (4.81)
and the definition of p;(0). By theorem 2.2.4 and the condition | < 1, }, cAl, g
and a can be extended as 0 for ¢t < 0 preserving regularity, therefore we can
apply the Laplace transform to convert problem (4.92) to a problem of the
form (4.74). The latter is solvable for Re A >~ > 0 for 7 sufficiently large by

theorem 4.3.1. Taking inverse Laplace transform gives a solution in weighted

anisotropic Sobolev-Slobodetskii space W 2 (see (2.23)) for v/ > v, defined
for all t and vanishing for ¢ < 0.

The rest of the proof is analogous as the one of theorem 4.1.4. We obtain
a weighted estimated, which can be localised in [0,7) on the left hand side

with the suitable norms (W, RN > 1, Hy & otherwise). For the right hand
side, we can control it through a non weighted estimate since all the terms
vanish for ¢t > Ty. If T is large, this procedure of eliminating the weights
gives rise to a constant C'(7') in the bounds, which does not appear if 7" < 1.
Moreover one can easily check, from (4.86)—(4.91), that it holds the inequality

L Y e R R /WS NS DS o NS WA
< c(HfHW2 gy T Il + HFOHWS,QH(QOO) gl N S
Flolyges et oy TI0stet g ) ¥ Iolgnian + Iblhg)

and the right hand side is bounded by

C(Hwa;’%(QT) + |Allyyirro g + ||F0||W§,é+1(QT +lid] Wb d g
+ HgHwﬁ%’%ﬁ(GT) + HGHW&%%%(ET) llwollwgero,) + HpOHWé“(G))’

if T'>1, or by

C(”fHHé’%(QT) + HhHHé“’O(QT) + “FOHW;’%H(QT) + 4| 1+4.4+4

H2 (GT)

+ ||g||Hé+%’%+%(GT) + ||a||H;+%’%+%(ET) + HUOHWQZH(Qb) + “POHWé”(g)),
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if T' < 1, both with constant independent of T'. The same inequalities also
hold for |[(w,p1, p1)|lwyr and [[(w,p1, p1)||mr in the two cases, and thus
summing back those term to (u,q, p) doesn’t affect the estimates.

Finally, uniqueness and the proof of (4.83) are obtained in exactly the
same way described in the proof of theorem 4.1.4. [J



Chapter 5

The nonlinear problem

In this chapter we study the original nonlinear problem (1.2), proving
two types of result. The first one is an abstract linearization principle,
which roughly speaking states that if the linearized problem is stable, then
the nonlinear problem has a global smooth solution if the initial data are
sufficiently small. The second one is a local in time existence and uniqueness
result for the nonlinear problem, with arbitrary initial data.

In the first section we will prove (at least) quadratic estimates for the
nonlinear terms appearing after the Hanzawa transformation. This is done
with a different method than the one used, for example, in [30], where a
modification of the time-related part of norm is performed.

In the second section the abstract linearization principle is proved, con-
structing the global solution in a sufficiently large interval and then repeating
the construction step by step on multiples of the initial interval. It is worth
noting that the presence of a nonlinearity in the equation for the divergence
requires a splitting method for the construction of the solution, used for
example in [30].

In the third section we apply the linearization principle to obtain ex-
ponential stability of the rest state. While the hypothesis required in the
linearization principle seem rather abstract, in this case an explicit estimate
on the spectrum is possible.

In the last section we give a rather sketchy description of the proof the
local existence of the solution. The methods developed in [19] certainly
apply to this case, once one has coercive estimates for the linear problem.
However, we chose to safeguard consistency and prove that a sub-optimal (in
the regularity sense) choice of Hanzawa transformation can still give the same
result.
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5.1 Estimate of the nonlinear terms

Our aim is to obtain estimates of the form

1l:(w, g, p)|| < C(HUHWT,%H T IVp]|

) + HpHWQH%,%Jr%I
)2
)

where for each term ¢ = 0,...5 we will give such bounds for a suitable
norm ||/;||, depending on I. Our main assumption will be that the hanzawa
transformation (3.1) is well defined, and thus we require that sup, < u(0).
This ensures that all the nonlinear terms are polynomials in the derivatives
of u, p and p multiplied by a nonlinear term which is of the form f(x, p, Vp),
with a supposedly smooth f. Indeed the only singularity in the nonlinear
terms appears in the Jacobian of the Hanzawa transformation, where

1
-1 __
detL™ = 10,

l
@Qr Wy 2 (Qr

+ |‘pHW21+%,%+§

(Gr)

= + Hp,tHW21+%,%+%

(G (Gr)

Notice that, as long as T" is bounded away from zero, say T > 1, it holds, for
any 7 > 1

sup ol < cllpllwy sy < cllpllwg )

with a constant independent of T'. In the following, we will call © any positive

number such that .

<L ——.
H Supy, 19

(5.1)
so that for example the condition
e

will ensure |pf#'| < 5 and the smoothness of the nonlinear terms.
More precisely we will prove the following theorem.

Theorem 5.1.1 Let | € (3,1). Suppose that ||(w,p, p)|lwur < p such that
(5.1) holds. There exists c¢(u), bounded for bounded p such that

1, 1
|| O<u’p)”W2[’%(QT) + || 1(’Ll,,p7 p)”

+ HG<u:p)HW§,%+1

wirkign T 120 ) lwtio gy

T 123 (u, P)HWT%,%%(GT) + [|la(u, P)Hwé%,g%(GT)

< c()[I(ws p, p) [[iv1.1-

(Qr
+ [ll5(w, p)|

143,143
W2+7 §+Z(GT)

The constant c¢(p) also depends on vy, py, ¢p and T
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In the rest of this section we will thus always suppose [ € (3,1), ||(w,p, p)|l; <
i. Moreover, for any given function g : X x Y — R, and positive n, ’ we
will we use the following notation

the right hand sides being functions of y and x respectively.
Since p* = 0p and 6 is C*°, any norm of p* in €2, or Q7 is bounded by the
same norm of p in G or Gr. Notice then that, letting from now on

el = 1lell

ool s res
+5.5+71 + pyt +5,5+% r )

Wzl (GT)

theorem 2.2.3 gives

< : < . 9.2
supllpllgrag) < ellolyivso g, +1oel o, ) <ol (5:2)
From (2.5), it follows
sup [p"[ + [Vp*| < e(sup |p| + [V'p]) < cllp]i- (5.3)
Qr Gr
We will also frequently use the following bounds:
\Y
SgpllpHWé%(oj) + P||W2g+g(07T)
< \V4 \Y
< el + 1)+ suplpal g o+ V00310 G)
<c(lloll+ llp.l N P ||Vp,t|lwé+%,g+gf(GT)) < cllpll,
< 5.9
spful g € el g, (55)

Indeed (5.4) and (5.5) follow from repeated application (twice for p and thrice
for u) of the standard estimate for the restriction operator in the anisotropic
Sobolev-Slobodetskii spaces. The constant in these inequalities depends on T,
G and €2, and remain bounded as long as T is bounded away from 0, which
will always be the case in the following.

From now on we will suppose that ||p||; < p for u satisfying (5.1).

Lemma 5.1.2 Letl € (3,1), and suppose ||p||; < p. Given a smooth function
f:G xR xR? = R, there exists a constant c;(u), bounded for bounded p,
such that for any function g = g(z,t) and anyn < 1+1, n' < % + %, it holds

1z, p, VP)QHWQ’FO(GT) < Cf(l‘)”g“WQW’U(GT)a (5.6)

||f<1', P vP)gHWQO’"/(GT) < Cf(/“L) ”g“WQO’"/(GT)' (57>
The constant c;(1) also depends on G and T
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Proof. We claim that
jgg“f(x,p, Volllwi+igy < cr(p)- (5.8)

To prove this, first notice that by (5.3) and the smoothness of f,

f(@,0,Vp), fuolw,p,Vp), and fi(x,p,Vp)Vp,
are bounded by a constant ¢;(u) independent of ¢, and thus the same holds

true for their L?(G) norm. Denoting by WQHI(Q) the principal part of the
norm W, % (G), its square is bounded by

and we have to estimate these three terms. The first one is readily bounded
as

2 2 2
Hf:):(xvpa Vﬂ)”wg(g) Sfo(:U,p, VP)HLQ(Q) + Hfm?(xapa Vp)HLQ(g)+

2 2
+ | fas(2, 0, V) Vol 12g) + 1 fan(@, 0, V) Dl 12(g)

since the first three addends are bounded, and the fourth is estimated through
(5.2). For the second term in (5.9) we apply proposition 2.1.3

17+, , V)Vl < €ll ol 0, 90) g | Vol )

and the first factor can be estimated as f,(x, p, Vp) above, while the second
is less than p by (5.2). Let us now estimate the third term in (5.9): applying
the mean value theorem we have

dz
(@, 0,V p)D?plliysgy < cr(p) + C/ [ fo(, p, VP)A—zDQpHZﬁ(g)W

|z|<1

dz
e / D DHENC A AT

for some uniformly bounded function £,. Since f,(z, p, Vp) is bounded,

dz
2
[V 0A D ol < el

Moreover, by proposition 2.1.3, point 1

dz
/|z D DEE) Dt A o

dz
2
Sern) | DDl + A et AV0) g e <
) dz
2 2 2 2
Cf(ﬂ)(||D2p”L2(g)+ ||D2pHW2l(g)/|| ||A—zp||w21*l(g)+ ||A—zVP||W21*Z(g)|Z|2+Ql)
z|<1

dz
< cp(p)p?(1 +/ 1A pll72g) + 1A=V ol 72(g) + ||A—ZD2p||iz(g)W),

lz[<1
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where we bounded the W3 " with the W, one. The last integral is bounded
by ||p||$,[,é+2(g), and using (5.2), we obtain a bound depending only on f and

p. Taking the supremum in ¢ < 7" in all these bounds gives (5.8).
For the time derivative, we claim

upll £ (2.0, Vo)1 . < () (5.10)

Indeed the L?*(0,7) norm is bounded again by (5.3), while with the same
argument as before we get, for any x € G

1o, Vo)l 4oy < e llpala )

! _ 1
w2 1(0,7) W2 %(0,T)

T
dh
+ [ St Vopilion] < eI g,
0

2
+loal )2,

N~

T
A_npll? A v -
}L(O,T)/O (H thWﬁ*%(O + ” h p” 3 Z(O,T + ) —

W2
T
2 2 2
g R A (IS S FNA O I
0

dh
AVl taom) e ] < o (Lot )2 g+ IV 2 4y

2
. \Y
o)y o+ IRy )

W2 1(0,T)

2
<cpp(1+ |\PHWH%,%+§(GT HPtH 1434+
2

and with exactly the same procedure

Vp)V < )
Sléprp(%m P) P,t||W257;[(07T) < cp(p)

Now we can apply proposition 2.1.3, noting that

T T
2 2 2 2
falioicn = | Malivgigdt < supl Lo / ol gt (5.11)

gy = [ Mol < supll 1 e [ gyt

(5.12)
and thus (5.8) and (5.10) for f = f(z, p, Vp) give the claim of the lemma. [

Remark 5.1.3 In the following, we will have to estimate also functions of
the form f(z, p*(z), Vp*(z)) for x € Q. The proof of (5.10) and (5.8) carries
over in this case, using the fact that any norm of p* on )y, is bounded by the

same norm of p on G. For the final step, we recall that 1 + 1 > % and thus
proposition 2.1.3 still applies.
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Remark 5.1.4 In the proof of theorem 5.1.1 we will actually need values of
n' in the range n' € [0,% + 1. Since % + ;11 < 1, one can prove instead of

1
(5.10) the estimate

Sgp”f(xapa Vp)||W21(O,T) < Cf(u)7

which actually allows to prove the lemma for n' < 1. This is simpler to prove
since the L? norm is bounded and

1fs(@, 0,V 0)pill 20y + 1 fo(@, 0, VO)V el 120 1)
< Cf(u)(sngprg(o,T) + IVollwyom)

which allows to conclude by (5.4) since L+ 2 > 1.

From now on ¢ will denote a constant depending on u, the base state of
the system (€2, vy, pp) and a finite set of functions f = f(x, s, p), which can
change from line to line but will be anyway denoted by c.

Estimate of ||lo]| ¢
W, 2(Qr)
For the norm HlOHWQl’O(QT)’ recalling the explicit formula (3.19) and (3.15), we
notice that the various addends (except w - Vu) of 1, are linear combinations
of terms of the type ‘
P9, p*, Vp*)oluwl,
with v and w equal to v, or w and all possible ways. These terms are estimated

1
in the I/Vzl’2 (€%) norm through Lemma 5.1.2 and a repeated application of
(5.11), (5.12). We have, for any n <14l and y/ <L 4 1

P59, p*, Vo )0l llypo gy
< csup||Vp|lya+i gy sup|iplly 1+ gy supl|vllyya+ o) Vw0 g (5.13)
t<T 2 t<T 2 t<T 2 b 2 T

lo%p* g, ", Vo )Wl Nl ypor o,
< esupl Vol gy Pl gomy supliol gy VWl g, O
= 8PNV Plwiom) SEPWPIwg o) SEPIPN bk 7 Wi @r)’
Now letting n =l and i’ = £, we apply (5.2)~(5.5) to obtain at least quadratic
estimates in ||p||; and HUHW”Q’%“(Q : for these terms. For the term u - Vu
T

one proceeds in a similar way, obtaining the same estimate without the norms
involving p.
For 1y one thus have the estimate

loll et . = c(llplli + lollelieely v g ).

2
HUHWQIH‘%“

(Qr) (@r)
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Estimate of ||l i

W, (@r)
We start from 1, (u, g, p), as given in (3.8) : recall that V = £V and
Vp*
T _
I-£7 = e (5.15)

therefore (V — V)q is a linear combination of terms P f (2, p*,Vp*)q.,; and
can be estimated as in (5.13), (5.14) with p*g(x, p*, Vp*)v/ = f(z, p*, Vp*)
and w* = ¢

lpif (27 V), lwpoar) < 5V Pllwy o) [Vallwgocor,

o F (@, 0 V") < \Y v .
10 f (2, p p)q,JIIWQO,g(QT) csgpll Pllwioml QIIWQO,?g(QT)

Regarding the term (V? — %2)u, we can use (5.15) to split it in several
addends, of the type f(z, p*, Vp*) times

p:kxju7$m’ p:kxiiﬂjuymk7 or p:kzkuvl'zz] (516)
The terms of the first type are estimated as in (5.13),(5.14), setting
p (i, p", V)W = f(x, p*, V).

We estimate the W3°(Qr) norm of the other two terms through proposition
2.1.3 and lemma 5.1.2:

||pj<xlxjf(x7p*7 vp*)u7$m’|Wé’0(QT) < C§E$||D2IOHWQI(Q)HVUHWQHlO(QT)’

1%, f (2 2% V" )i |0 g < ciggﬂvf)HW;ﬂ(g)||D2u||W;»o(QT),

and we conclude using (5.2). Regarding the time derivative, the third term
in (5.16) is estimated through (5.4):

107 f (25 07 Vp*)u,xixjHW;; < CSSPHVPHW;([O,T])||D2UI|

0,4 .
Q) W, 2(Qr)

For the time derivative of the second term in (5.16) it suffice, by lemma 5.1.2,

to estimate |[p%,,, Wz, || w2 (ory Since

:k .xju Im”W % /(; h1+l / H pxlx]uﬁm)HLQ Qb)dt

<c / h1+l / HuImA hp ;T HL2 () + Hp :z:z:cj -nu meLQ(Q
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we split the estimate into two parts. We have, by Proposition 2.1.3

/ h1+l/ ||pxlxj h’u’$m||LQQ)
S R (L T N P

2
<swlblizigy [ e |1 it [+ 12 0Tt g

< supllpllyzeig vl oy
t<T 2 W, 727 (Qr)

since % — [ < 1, while, by Holder inequality

/ h1+l/ u, hpfrﬂj”iz(ﬁb)dtg
h
2 2 2
S/O W/h Sgbpwu(-,m ||/0 D7p.(t = £)dE | 72(gydt
Tap (T 2 " -
se ) g ) bl 1Pl = 8l g dedt
T ) 9 T 2 Tdh
c ; | D p7t<’73)||L2(g)d3 ; Hu('vt)HW”Q(Qb)dt 0 h

_ 2 2
< CTl l||u||w2l+270(QT) ||p,t||W22’O(G’T)'

The addend p% (£ es - V)u in Iy is a linear combination of terms of the form
i (x, p*, Vp*)ufmi, which are estimated as

1% f (z, p*, Vp*)u?,.

@) S Cfg;’”pvt”vvé@)”V“”Wé“*“(QT)

< CHu”Wl+2,%+1 HptH l+1 )
2

% (op)
and, by (5.4) and noting that £ +1 > 1,

|07 f (z, 0", V" )u?,, woh om = ngpHp,tHW2é+i([0’TDH UHWQO,%(QT)

< C”p”lHu||Wl+1,é+%
2

@)
We now estimate the remaining terms in (3.17). Recall by (3.15), that
L7 — T —6L7" has entries of the form p*p%, f*(x,p*). Looking at the

explicit form (3.17) of 1, we have to estimate terms of the form f(z,p,Vp)
times

* % * * * % * %
P p,xixj7 p,xip@j? p p,t? p p,xi'
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We estimate all these terms using (5.2) and (5.4): for the first type of terms

”P*DQP*HWQZ’O or) = CSUPHPHWHI(Q ”DQPHWZ < d[lpll “P”WH?O (Gr)’

* T2 % 2
|p*Dp “wg’%@ﬂ < csgpl\pHW,;(g)HD pHW;,%(GT) < chHzHpHWéH,%H(GT),

and both are bounded by c||p||?. Similarly for the second type of terms

19507 o g < C§EITJIIP|IW2L+2(9)||Vp||W;(GT) < dlpll7,

2

T4 j ¢ Wy (0, T I+1, —= )

105071 o < esup||Vpllyaon ol s < cllpll;
g W,

Wt (@Qr) EARJtem

while for the third type it holds

o pillwyo@r < esuplipllwggllpliwye) < cllpll?.

< su <ec
16"l gy < S0Pz @l o, < el

The fourth one is lower order and is estlmated as before. Collecting these
estimates we get

1 < v .
| 1(u,q,p)l|Wé,g(QT) < cllplli(ll Q||W21,§(QT) + ||U||W21+2,5+1(QT) + llpll:)

Estimates of ‘|l2(u,p)HW21+1,O(QT) and |G(u, )H 0b+

We have that I, as given in (3.22), is a linear combmatlon of terms of the form

ph,uf, and pru®and thus its Wit2(Qr) norm is estimated as in (5.13).
i

For the time derivative of G, also given in (3.22), notice that its W20 2(Qr)

has been already estimated in (5.14). Therefore it suffice to estimate the

1
VVQO’2 (Qr) of its time derivative, i.e.
(Vo -u)es+ (Vp-uy)es — 0'(pu+ puy).

To this end notice that, applying (5.5), one gets

Vo' -u 1 <csupllu|| 1.1
190wl g < sl g (99000
< c|lul| l+2,%+1( or) l+1g+g(G)

<C||u|| l+2§+1 T)”IOHl:
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since L 4+ 1 > 1. Furthermore, by (5.4),

Vp*u
Vol

2 (Qn)

< esup (el oy + 1Vl o) ldlliyot g,

< .
< cllellillell o.g g,

The same estimates holds for the terms in p,u and pu,, and thus we have
obtained

|2 (u, p)HWQZH,O(QT) + |G (u, p)|| 0,441

<
ok gy < cliolldul g

@r)

Estimate of ||Is) 41

Wl 2 %Jf?l{ (G )
2 T
We look at || IIb|| for b given in (3.26). First notice that

+3.4+

! 1
W, (Gr)

< .
bl g, < Bl

indeed, II;b = b — NbIN N and since IN is smooth and independent of ¢, the
claim follows from

INBNN g0,y < [N lygestisens gy [ dllgo

The first addend in (3.26) is II,D(u)N — IID(u)n which amounts to

D(u)N — D(u)n — ND(uw)NN + nD(u)nn =
= (D(u) — D(u)) N — D(u)(n — N) + N (D(u) — D(u)) NN+
+ (N —n)D(u)NN +nD(u)(N —n)N +nD(u)n(N — n).

Each addend is a linear combination of terms of the form p ., f(x, p, Vp)uf“l,j,
which are estimated as

k
Lozt @ p VoY N o, < eSUDIVAI ey IV g0

y |
2(9) (Gr)

<
= C?EEHPHWQH_%(Q)HUHWQH’%H(QT)’

since [ + % > 1, and, using now 1 > é%—i > %, we have by (5.4)

lp f (z, p, Vo)l || 614

WO < CSEP“VPHWQ(O,T)HVUH 0,45+1

(Gr) W, 2 1(Gr)

< cstépHVPvazl(o,T)HUHWQHQ’%“(QTY
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Regarding the second addend, it can be decomposed as a sum of several
second order terms: calling D(v,) = bDb and D(vy,) = Dy, it is

(Dy — D) (n — N) + (D — Dy — D) N + Dy(n — N — 6N)+

n(]ﬁ)b — Dy — 5Db)nn +(n—N —6N)Dynn + NéDy(n — N)n+

NDy(n — N —dN)n+ ND,N(n— N —dN)+ ND,0N(n — N)+
INDy(n — N)n+ (n— N)iDynn + 0ND,N(n — N)+ NéD,N(n— N).

Each factor of the type (n — N), 6N or 6D, is a linear combination of
pz.9(x, p, Vp), as can be checked in (3.27), and these terms are always paired

1141
up in the decomposition above. For these addends, the VVZHQ’QJr4 (Gr)-norm
can be estimated as

Pz f(p, V < csup||V ,
10202, (0, VO o, < eSWRIVOI g Pl o o

1pz:0.2; (P, VD) o, 541 q

< \V4 \VA
w4 (Gr) _CSlépH pHWQl([O,T})H p|| 0L+

1
w, 2 1@

)

< cllollllol, .41,
2

Regarding the terms involving n — N — )N, we see that

1 L
n—N—-)N = / - V(o + 5p). )d :p,xip,a;j/ A" (s,Vp)ds,
U ¢1+|v o )P :

for some smooth functions AY_ and thus one can proceed in the same way.
The terms involving S, — S, — 0.5, are of the form p,,pf(p), which are of
lower order, and thus can again be bounded with c||p||?. All in all we get

||l3|| +3.4+4

w! < cllpllullpll + IIUIIWQHZ,%H )-

(Gr) (Qr)

Bstimate of |4l oy 413,
We observe that, usmg NDy6N = 0ND,N =0, l4 can be written as
(n — N)D(u)n + ND(u)(n — N) + (n — N)(D, — Dy)n
+ Ny, —D))(n— N) + (n— N)Dy(n — N) + NDy(n — N — 6N)
+(n—N —6N)D,N + N(D, — D, — 6D,) N — 0/01(1 - s);;H ds.

Each term except the last one is of a form treated above, either

Pl [ (2,0,V0),  paf(x,p, Vo)l or  pp.flx,p,Vp).
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For the last term we have, recalling (3.6),

1 d2 1 - 1 B
/(1—8)@Hsds=pwip,xj/ f’”(s,x7Vp)ds+p,zkp,zizj/ 97" (s, 2, Vp)ds.
0 0 0

The first type of addend is treated as above, while for the second one we
proceed as follows: for the spatial derivative

T zwh ) 5 < 1 35 s
120w W@ VO iy = €SIV 1y NPl eego g,

since [ + 1 > 1, and thus a bound of the form c||p||? for this term is obtained
via (5.2). For the time derivative, using (5.4) and £ +1 <1< {+32

Hp,xkp,xﬂjh(xv Vp)H 0,%+%(GT) < ngpHvP”WQI(O,T)Hp,xi%‘HWQO,%+%

W, (Gr)

51,5
+5,5+7

< cllellel

W, te5)

Estimate of ||l5||W21+%,%+%(GT)'

The explicit formula for I5 is given in (3.13). To estimate the spatial derivative
we use (2.8):

9l g gy < eVl g Il o5 g + 100 g Il )

@) 2

since [+3 > 1. Now (5.2) and the standard restriction estimates for anisotropic
Sobolev—-Slobodetskii spaces give

190wl ptogyy = CpIPly o g ol o

_l’_
@) Wy = (Gr)

Fsupllull iy W0l o) (5.17)

9

< C||p||W2H%’7+%(GT) ||U||W21+27%+1(QT).

For the time derivative we use (5.4), obtaining

[l

< C||P||z||u||w21+z,%+1 :

IVp- u\|W§,3+%(GT) < CSngWH

1,3 1,3
+ 0,5+
w2 1(0,1) W, 2" 4(Gy)

(Qr)

which is the last estimate needed for the proof of 5.1.1.
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Remark 5.1.5 As noted in the introduction, if a solution of the nonlin-
ear problem (1.2) has free boundary function p € W that (GT) and u €
l+2’2+1(QT) then supt<THpHW2z+2(g) is bounded. Indeed formula (3.12)

shows that p; € WHQ’ (Gr) since the nonlinear term is estimated as in

3
(5.17), and the lower order terms are in W2l+2’O(GT) for sufficiently smooth

vy and ¢y (v, € WE2(Qy) and ¢y € WQHg(Q) suffice). Now (5.2) proves the
claim.

Finally we prove a continuity estimate for the nonlinear terms.

Theorem 5.1.6 Let | € (35,1), and ||p|;, |¢'lli < p such that (5.1) holds.

There exists c(u), bounded for bounded i, such that
“TO(U’J p) - TO(U’/J p/) HWZ,% + ||71 (U,p, p) _Tl(ulvplv pl) ||

22 (@Qr) Wi (Qr)
+ [[la(w, p) = Bo(at', )| yr10(g,) + |G u, p) — G o,
(s p) = b I o gy )+ Malep) =L@ DD g g
+ ”75('“7/)) _E(ulvl)l)||w2l+%,§+%(GT) <

(T, ) (|| (w, p, )l|wyr + (', ', ) w ) | (w — ', p— P p = P lwr

Proof. This is a consequence of the structure of the nonlinear terms: as
noted in the previous estimates, each nonlinear term is a linear combinations
of products of the form

f(xJ P, vp)ﬂ-(ua V'U/, P, p,ta VP> V2p7p7 Vp)

where 7 stands for a monomial of total degree at least 1 in a certain subset
of the arguments. Therefore, except for the term f(x, p, Vp), each of these
terms is separately linear in its arguments, and can be estimated as above,
provided one can prove an estimate of the form

1(f (2, 0,V p) = £, 0",V ) gllwrocpy < crwlle = pllillglwzo Gy

H(f(xapa vp) - f(x7plﬂ vpl>>gHW20JI'(GT) S Cf(:u)Hp - lengHng/(GT)a
(5.18)

(and analogous ones for p* on Qr), with n < 1+ and ’ <1 (see remark
5.1.4 with regard to 7). Indeed it suffice to split the difference of the products
following the algebraic formula

Yy — Ty, = Z?ﬂ Yio1 (T — Yi)Tiga - TN, (5.19)
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and use estimates (5.18) for the terms containing the differences of the
nonlinear terms f’s. The particular structure of the various products 7 (for
example being of degree at most one in w and Vu) ensures that the estimates
of the previous proof carry over in this case. To prove (5.18) we notice that,
as in the proof of lemma 5.1.2, it suffice to show that

fung(x? p.Vp) = f(@, 0, Vo) lwasig) < cr(llp = p'll, (5.20)
<

supllf(z,p, V) = f (. PN w0 < crllp =2l (5.21)

(this also implies estimates of the form (5.18) involving p* on Qr, see remark
5.1.3 in this regard). We sketch the proof of these two estimate, supposing for
simplicity that f = f(Vp), which is the higher order term. The smoothness of
f together with (5.3) gives the Lipschitzianity w.r.t. the norm ||p||; of f(Vp)
in C° and thus in L?, i.e.

sup 1f(Vp) = (VO < er()llp = o'l (5.22)

Thus it remains to estimate
(V) D?p=fo(V ') D0y 6
<N (£o(V0) = (V) D?plliwsigy + 1 Fo(VO)D* (0" = p)llw oy

The second addend is treated through lemma 5.1.2 and (5.2), while for the
first one, applying proposition 2.1.3, point 2, we get

1(fo (Vo) = Fo(V O ) D? Pl g
< eu([[f,(Vp) — fp(vP/>HW21(g) + Slép | fo(Vp) = [o(VP)]).
Property (5.22) takes care of the second addend, and the L? part of the first

one’s norm. Therefore it remains to estimate f,(Vp)D?*p — f,(Vp')D?p in L?,
which can be splitted as before, and thus

1£,(Vp)D?p—1f,(V0") D?pll 126
< cr(llp = P'llwa@) + Sup /o (Vo) = [o(V)llollwzg)-

Applying once again (5.22) proves (5.20). To prove of (5.21) it suffice again
to estimate f,(Vp)Vp, — f,(Vp')Vp/, in L?, which can be done as before:

1£(Vo)Vpu = (Vo )Vl L2 0.
< (Vo) = L(VONV il 120y + 1o (VE)V (0 = P 12 0.1
< (W)l = AV ol oy + IV (0 = Pl omy) < cr(w)lle — o'l



5.2. THE ABSTRACT LINEARIZATION PRINCIPLE 107

5.2 The abstract linearization principle

In this section we will prove a conditional stability result for some smooth,
stationary solution (wvy, py, ¢p) of problem (1.2). Our main hypothesis is that
the solutions of the homogeneous linearized system

(u, — vAu + Vg — & (u,p) =0 in €,
V-u—0y(p) =0 in €y,
T(w,q)N +0LpN — ®(p) =0 on G, (5.23)
pe+V'ioy-u—ut+Vp-v,=0 on g, .
u=>0 on X, for all t > 0,
(u(z,0) = up(z), p(a,0) =po(a’), forze, ' ek,
subjected to the compatibility conditions
V-uy—P =0
Uo — Pa(po) =0, (5.24)
VHbD(Uo)N — ¢3<p0) = 0,
decay exponentially in time, i.e. there exists v < 0 such that
lle™ (w, p, p) [0 < c(lluollyier g,y + llrollwivzg)) (5.25)

with ¢ independent of T'. Under this condition we will prove the existence,
uniqueness and exponential decay of a global in time solution of (3.10) if the
initial data are sufficiently small, and thus of (1.2) if the initial data differs
little from the stable stationary solution.

Theorem 5.2.1 Letl € (%, 1), and suppose that for the periodic stationary
solution (vy, py, p») of (1.2), the corresponding linearized system is exponen-
tially stable, i.e. there exists v < 0 such that (5.25) holds for any solution of
(5.23) with periodic initial data satisfying (5.24). Then, for any sufficiently
small periodic initial data ug, po (in the WiTH(Qy) and Wit%(G) norms re-
spectively) satisfying the compatibility conditions (3.11), there exists a unique
periodic solution (u,p, p) of (3.10), defined for all t > 0 and such that (5.25)
holds for some v < 0.

Proof. We will construct the solution as a sum (u,p, p) = (u; + us, p1 +
P2, p1 + p2), where (wy,p1, p1) is a solution of (5.23) for some initial data
| 1=0:= u?, p1li=0= po, and (ug, pa, p2) solves a nonlinear problem with
initial data us|—o= wo — u?, pa|s—o= 0. We split the proof into three steps.
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Step 1: construction of (wy,p1, p1)-
We start by constructing w solving

V-wy = E(uo, Po) in (2,
vID(wo)N = l3(ug, pp) on G, (5.26)
vy =0 on Y,

with the estimate

).

HwOHWQZH(Qb) < C(||l2(uoapo)’|wzl(9b) + ”l?)(anpO)HWQZ—%(g)

This can be done setting wy = w + V x V|, for a periodic w such that

Vow = 72(“0,/)0) in 2,
w =0 on I,

and a vector V such that

V=35=0 on G,
2V = (I3(uo. po) — VID(w)N) x N on G,
VxV=0 on ¥,

with w and V satisfying optimal regularity estimates. The vector w can be
constructed, for example, through theorem 4.1.3, and the vector V' applying
theorem 2.1.6 on G and cutting off the resulting vector near . To obtain
an estimate of wy in terms of uy and py, we recall that ly(u, p) is a linear
combination of terms of the form pf uf. and p*uf , and thus proposition 2.1.3,
point 2 gives

||l2(uoapo)||wg(9,,) < C||p0||w2l+2(g)||u0||W2l+1(Qb)'

For the term involving 73, as found in section 4, one has to consider addends
of the following kind:

paif (@, p, V)b papa f(0, V), ot ppafp, Vp).

As in the proof of lemma 5.1.2 for p = py, one gets

7 2
[Ea(u o0l -3 g, < elllooll v g Il + ool 5 )

All in all we get

||w0HW;+1(Q,,) < C(HpOHWQHQ(g) + Hu0|’W2l+l(Qb))27 (5.27)
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and define
Uy = HPOHWQHQ(Q) + ||u0||W21+1(Qb),

supposing it is sufficiently small, in a sense to be specified later. Now, since
(g, po) satisfies (3.11), it is clear that defining u := ug — wy, the couple
(u?, po) satisfies the compatibility conditions (5.24) for the homogeneous linear
problem (5.23). We will then let (wuq,p1,p1) be the solution of (5.23) with
such initial data. Recalling the notation (4.79), the stability hypothesis gives,
fory<Oand T > 1

(w1, p1, p1) |wico < Nl (wi, p1, p1) | Wioo

(5.28)

< c(llufllwie + loollwiezg) < eilo,

and by standard restriction estimates for unbounded intervals
e_vT(Hul(.’ T>HW21+1(Qb) + Hp1<.7 T)HWZH—Q(Q)) (529)

< ||€_7t(u17p17,01)”W,l,oo < Uy,

with a constant ¢; > 1 independent of T" > 1.
Step 2: construction of (ug, p2, pa).
We seek for a solution of the nonlinear problem

(

Uy — VAU + Vo — Py (ug, p2) = (70 +71)(U1 + Uz, 1 + @2, p1 + p2)  in Qy,

V-uy — Py(pe) = E(Ul +ug, p1 + p2) = V- G(ug + uz, p1 + p2) in €,
vILD(ua) N — ®@3(p2) :73(’&1 + Uz, p1 + p2) on G,
—q+vN -D(uy)N + 0Lps — Q>4(p3) = E(ul + us, p1 + p2) on G,
P2+ Vo - g — ui + V'py - vy = ls(uy + ug, p1 + p2) on G,

us =0 on X, for all t > 0,
| u2(z,0) = wo(z), for z €y, p2(2',0) =0 for 2’ € X.

(5.30)
To find the solution we apply the standard iteration scheme, defining a
sequence of solutions of linear problems. We consider an extension v for
t > 0 of wy such that

< cflwollyii g, < U

HUOHWQHQ’%H(QOO)

and start with the triple (v, 0,0), supposing c3UZ < 1. Then we iteratively
define (V,41, Pni1, Pua1) as the solution to problem (4.1) with right hand side,
respectively

fn = (lVO "‘71)(1111 +Vn, 1 + G, o1+ pn)7 hn ::/l;(ul T Un, 1+ p”>’
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dy = (U, p1+00) N (U1, p1+00), G = L5 (a2, p1+p0).

and initial data v, 411(0) = wo and p,4+1(0) = 0. The compatibility conditions
(4.81) for this problem are satisfied at each stage by (5.26). The coercive
estimate (4.82), together with theorem 5.1.1, (5.27) and (5.28), gives

[ (Vnt1, Gnttson1) lwr
< c(p, T)([|(Vn; Gn pn)”i%[/,l,T + || (w1, p1, pl)”%/V,l,T + cU)
< (i T (1 (Vns s o0) ova. + UG,
if
max{||(vn, @, pu) W, [[ (w1, p1, p1) lwar} < m, (5.31)

for p satisfying (5.1). We can thus fix p = p(6) < 1 so that (5.1) holds, set

co(11, T) = ¢c»(T) and we can suppose c»(T) > max{u~' c¢;,c3}. Then we
choose U, so small that

1 1

U <——=e(T) < ——.

° S Zoem D = som

With this choice of Uy one can prove by induction that (5.31) holds (it holds
for (vg,0,0) by construction). More precisely,

262 (T) Ug
1+ /1 —4co(T)202 ~
[t remains to prove that (v, ¢,, pn) strongly converges to a solution of (5.30).

To this end, consider (Vy, Pn, Pn) = (Vnt1 — Uny Pnt1 — Pny Prt1 — Pn)- LThey
satisfy a linear system of the type (4.1) with right hand sides

(5.32)

||(Um Qn, pn)HW,l,T S

0}
2o (TUZ < ZO <. (5.33)

Fo= Lo+ 1) (wy + v, g1 + Gus p1 + pn)
— (70 +71)(u1 + Vo1, 1 + Gn-1, P1 F Pr1),
hy, == lNz(ul + Un, p1 + pn) _ZN2<U1 +Un—1, P+ pu-1)
=V - G(uy + un, p1 + pn),

dyy = Us(wy + Un, p1 + pn) = Ls(Ws + U1, p1 + po1)+
+ N (la(u1 + wn,y pr + pn) = la(wr + Un—1, p1 + pu1)),
Gn = l5('U;1 + Unp, P1 + pn) — l5(U1 + Up_1, P1 + pnfl)’

and zero initial data. Since we can safely suppose that the constant ¢(1,7) in
theorem 5.1.6 is equal to cy(T), from (4.82), (5.28), (5.33) and theorem 5.1.6,

we get
| (Dns1, PrstoPrg1) lwar < CQ(T)(H(UH—Flapn—i-la Pt Wi + [1(Vn, Pus po) lwi,r

PO Lo~ o <
+ 2||(u17p17p1)||W,l,T)||(,vn>pn7pn)||W,l,T S §||<vn7pnapn)||mlvT7
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by (5.32) and (5.28). This in turn gives strong convergence of the sequence
(U, Dy Pn)- Finally the continuity estimate of theorem 5.1.6 ensures that the
nonlinear terms converge too, and thus the limit solves (5.30). Clearly (5.33)
holds for the solution.
Step 3: construction of the global solution

We chose Ty so large that ¢;e?® < 1 in (5.28), then choose gy := £(Tp) as in
(5.32). If Uy < g we have a global solution in [0, Tp] of (3.10) defined as the
sum (w,p, p) == (w; + w2, p1 + pa, p1 + p2). From (5.29) and (5.33) we obtain
that

Hu(T0>||WQZ+1(Qb) + HP(T())||W21+2(Q)

< s (Tl ) + 11T gy + aa(To) g gy + 2Tl
U Uy Up €
< =2+ el (w2, p2, p2) lwar < = + 2016(TH)US < = < =
4 4 2 2
Setting Ut = [[u(To)llyi+1q,) + 12(T0)lwi+2(g), (5-32) thus holds for Uy with
£1 = €9/2, and we can solve system (3.10) in [Tp, 275 with the same procedure
as above, and initial data u(7Ty), p(Tp). Proceeding in this way we obtain a
global solution (u, p, p), which satisfies

Uo
U := [[w(kTo) i1,y + lp(KT0) [[yyi+2(g) < ok

If between kT and (k + 1)1, we denote the solution of the linear system as
(ugk), pgk), pgk)) and the solution of the nonlinear one as (ué ), pék), 2 ) then
(5.29) and (5.33) hold with U}, at each step. With obvious meaning, we then
have

@, 21, )l sy + 112”27, o)l e sy

U Uo
< U+ 1 <c 2k

Since Tp is bounded away from zero we can safely split the norms over [0, +00)
as a sum of the norms over [kTy, (k + 1)T}), and from the previous inequality
and

< e EIT(u, p, p)

le= t(%p? )sz KT (k1) To] < HW,l,[kTo,(k—i—l)To]a

we get (5.25) for 0 < —' < log2/Ty. The uniqueness statement follows from
uniqueness for small times, which will be proved in theorem 5.4.6.
U
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5.3 Exponential stability of the rest state

We apply this linearization principle to obtain nonlinear stability of the
rest state
v, =0, Py = Patm + g(h — x3), o = h,
corresponding to a layer of fluid subjected to the gravitational force f =
—ges = Vp,. Bringing the force into the pressure term, this corresponds to
the stability of zero state (for both vy, and py) in the layer {0 < x3 < h = ¢ }.
The corresponding linearized problem is

(u; —vAu+Vg=0 in €y,

V-u=0 in €,

T (w, q)3N +0A'pN =0 on G, (5.34)
pe—u’ =0 on g,

u=>0 on X, for all t > 0,

(u(z,0) =uo(z), p(2',0) =po(z’), foraxeQy, 2’ €,

with the compatibility conditions
V- ug=0, I1,D(ug) = 0, / pdz’ = 0.
b

We now want to study the exponential stability of this problem.

Let J be the set of Y-periodic, square summable solenoidal vector fields
with third component vanishing on 3. More precisely, letting L?({4) be the
the set of X-periodic vector fields on the X periodic extension {24 of (2, we
have

J ={ve Lfoc(Qb#) : / v-Vndr =0, Vn € W;(Qb#) s.t. n|g= 0}.
Qp

We denote by P the orthogonal projection on this space. Given a periodic
vector field w, it can be splitted as w = Pw + (I — P)w, where (I — P)w =
Vipw and (p,, is the periodic weak solution to

Apyp =V -w in Q,

Py =0 on g, (5.35)
%ﬁ’;’ = w? on Y.

As has been proved before, the operator P is continuous in W3 (€2,), n > 0.
Projecting the first equation of (5.34) onto J gives

u; —vPAu+ Vyx =0,
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where, using (5.35), y is a X-periodic function such that

X =vN -D(u)N +cA’p on g,
% =0 on Y.

It can be splitted as x = x.+X, where x,, and x, are two Y-periodic harmonic
functions with vanishing normal derivative on ¥ and

Xulg= N -D(u)N, Xplo= oA'p.

We then define a linear operator A on the Hilbert space
X =T x{pecl*%): /pdm’ =0},
)

equipped with the norm

1
2 2 2
el = (1l + ol )
and corresponding standard inner product. We let A = (A;;); j—1,2, where
All(u) =vPAu — VXU, Alg(p) = VXp, A21 = ’LLS, A22 =0.

The linear operator A will have domain Y =: D(.A) defined as
5
Y= {u e W5()NJT : uls=ILD(u)|g= 0} x {p € Wy () / pda’ = 0},
s

with norm

2 2
s )l = (ligan + ol )

A resolvent estimate for A when Re A is sufficiently large has been proved
in theorem 4.2.4 (for [ = 0), and this gives that A — A is coercive (and
thus closed) for Re A sufficiently large. Thus A is closed and since D(A) is
compactly embedded in X, its spectrum consists of a countable number of
eigenvalues with the only accumulation point at infinity.

We can look at problem (5.34) as the evolutionary problem

U,t - AU = O, U(O) = UO = ('U'Oa pO)a
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whose exponential stability follows from classical results once one can show
positivity of the real part of the spectrum of A. To this end suppose (u, p) €
D(A) is a solution of the complex eigenvalue problem

M —vPAu+Vyx =0 in ),
V-u=0 in €y,
T(w,q)N + cA'’pN =0 on G,
Ap—u?=0 on G,
(u=0 on X,

for some A € C. Taking the scalar product with w in the first equation and
integrating by parts gives

0—/ /\|u|2+Z|D(u)\2dx+/]D>(u)N-udS—/X'u,-NdS
o 2 g g

:/ /\|u|2+g|1D)(u)|2dx—|—/]D(u)N-u—N-ID)(u)N'u,-NdS
Qp g

- 0/ A pApdS = A ( u|*dz + a/ |V’p|2d:c> +2 | D(u)Pde,
» Qp P 2 Qp

where we used the fact that w- N = A\p and I[,D(u)N = 0 to cancel out the
boundary terms containing D(w). This clearly implies that the spectrum is
real and A < 0 for any eigenvalue of A and thus exponential stability of the
associated linear problem. More precisely, by standard classical results (see
[12] for example), it holds

UMy < ()’ |Tol x

T
/ e PNU)]dt < o) | U2 (5.36)
0

for 0 > v > sup{A: A € 6(A)}, with ¢(v) independent of T'. Now, suppose
(u, p, p) solves (5.23), and consider the equation satisfied by e~ (u, p, p) =:
(W, Py, py): the system is the same except for a forcing term —yu, in the
equation for w.; and —yp, in the one for p, ;. Applying (4.83) to (u.,p-, py)
we get

—~t
e w2 P)llwao < cllwsll g ) (Go)

+ HP0HW21+2(g) w2y + 1oyl 2 6o))-

) + ||p’Y||W2l+%,%+% + ||u0||W2l+l(Qb)

The interpolation inequalities

<e|lpsl + @)yl 2y

001, <

143 1.3 145 1.5
W2 2°274 W2 2 Z(Goo)
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Hu’YHWé% < €||u’7||W2l+2,é+1 0

(Qoo

+ cle)||u ,
o RRCICA PR

hold. Using these inequalities and (5.36), we finally get

a2 )l < ol gy + lollwieagoy):

which is (5.25). Applying theorem 5.2.1 thus concludes the proof of the
nonlinear exponential stability of the rest state.

5.4 Local solvability in time

In this section we consider the solvability for small times of problem (1.2).
We adopt a semi-linearization argument, following [19].

We consider problem (1.2) and choose a smooth ¢, sufficiently near (in a
sense to be specified) to ¢g. We set p = ¢— ¢y, and use Hanzawa transformation
to reduce problem (1.2) to problem (3.7) in €2, as in section 3. We then
modify the resulting problem, fixing v, sufficiently near (in a sense to be
specified) to vy and writing the equation for p,

pi+ V- v—0"=-Vp-v

as
pi+ V- v—0"+Vp v, =Vp- (v, —v) = l5(v,p). (5.37)
We are then reduced to the following problem
(v, — vAY + Vp = Li(v,p, p) + Lo(v, p) in
V-v=1Ihvp =V-G in Qy,
VIIgS(v)N = l3(v, p) on G,
—p+vN-S()N +oLp = ly(v,p) — cHp(y) onG, (5.38)
pr+V'oy-v—1v>+Vp-v, =I5v,p) on G,
v(x,0) =vo(x), in O, p(x,0) = po(x), on G,
(v(2',t) = a(a',t) for t >0, 2" € %,

where [; with ¢ = 0,...4 are given in (3.8) and [ in (5.37), with compatibility
conditions
V- v = l5(vg, po),
Vg S(vo) N = L3(vo, po), (5.39)
volz= a(-,0).

The linear part of (5.38) is not exactly of the type (4.1) since we are not
truly linearizing around (v, ¢), however adding the term V’p - v, on one
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hand doesn’t affect the coercive estimates, while the nonlinear term [y is
much smaller than the original one, and thus, more comfortably estimated.
Regarding the linear problem, it is easy to check that the proof of theorem 4.3.2
still holds, and is in fact easier in this case. Indeed the Laplace transform of the
homogeneous linear problem associated to (5.38) directly gives a problem of
the type (4.43), for which theorem 4.2.4 holds. The reduction to homogenous
initial data is simpler in this case: we won’t fill in the details, since it suffices
to follow the proof of theorem 4.1 assuming all the ®; being zero.
We thus can assume that the following theorem holds true.

Theorem 5.4.1 Let | € (%, 1) and T < 1. For any X-periodic choice of
L L
f e We(Qr), h € WQp), F e Wy ' (Qr) with F3ls= 0, d €
+35+] +35+5 +35+5 13
W2 (GT)7 g € W2 (GT>7 a < W2 (E) with a® = 07 Po €
Wit3(G) and vy € Wit (Q) such that

V-wvo(z) =V - F(z,0) for x € Qy,
VI, S(vo)(x) N (x) = Id(z,0) forxz € G, (5.40)
vo|z= a(-,0),

there exists a unique solution to

(v, —vAV+Vp=Ff in Qy,
V-v=h=V-F wmn Cyp,
T(p,v)N +oLpN =d on G, (5.41)
pit+ V- v—1v*+Vp-vy,=g on G, '
v(x,0) =vo(x), n Dy, p(x,0) = po(x), ongG,

\v(2,t) = a(a/,t) fort >0, 2’ € X,

and it holds
(v, 2, p)lmar < C(H'fHH;‘%(QT) + ”h“Hé“vO(QT) + HFH/WQO’%H(QT)
+ Hd”H?’%’%+%(GT) + HaHH?%’%+%(ET) + ‘|9HH;+%,%+%(GT) (5.42)

+ [vollwi+i gy + leollwireg)

with constant independent of T' < 1.

Notice that the particular form of the Hanzawa transformation we used
(and thus, the choice of # in the definition of the transformation (3.1)) only
affects the nonlinearities, and not the linear part of the system.
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We modify the norms used in the following, defining

2 2 2 2
lolliz = 100 oo, 10120513, + SBllolgiag + suplloal ey

Clearly

Molr = loll g g ) Pl egsag ) < clipller

(Gt (Gr)

with a constant independent of T'. We now show that an inequality of the
opposite type holds, thus proving the equivalence of the two norms. We
construct an extension C'(p) of p to ¢ > 0 such that

OO 545, + 1CON, egtet o, < lollmgr (5:43)

2 (Goo)

This can be done as in the proof of theorem 4.3.2, namely as in(4.87): there
exists p; : G X [T, +00) — R such that

P1 Lt:T: th:T; P1,t Lt:T: Pt Lt:T

and

Hp1|‘W2l+%,%+%(GT,+oo) + le,t W2l+%’%+%(GT,+OO)

< elllp(. T lygeagy + loa(, T

Wi o)
Performing again the calculations done in theorem 2.3.3 to prove (2.30), we
obtain (5.43). This gives the claim, since theorem 2.2.3 now applies for the
unbounded interval [0, +00), and thus with constant independent of 7". Thus
(5.42) holds with ||p||;r instead of ||p|| g7 in the left hand side.

We now look at the analogue of (5.4). Using the norm ||p||;r allows to
obtain a similar chain of inequalities with constant independent of 7" < 1. We
employ theorem 2.3.3 to construct an extension C(p;) of p; to Ry such that

1C (o) < cllellir

1+3,1.3
w, 22" G

sup||p|| < VT'sup|p| + sup||p,|
g Gr g

l+5 l+1
w3 1(0,7) w2 1(0,T)

1

i
wiTt Ry (5.44)
< CﬁHpHH?%’%Jr%(GT) +C ()l 1+3,4+3

< eVTsu 1 +sup||C
< t<$||p||w2l+§(g) gpll (pa)

< cllpllir
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Similarly one has

A A% t < , 5.45
PV el gy + SNV g Selollr, (545)
and thus (5.4) follows, with constants independent of 7. Notice that a similar
chain of inequalities does not a priori hold on €2, due to the fact that the
term Vp* contains a factor pV6 which blows up for € — 0. Another useful
and immediate estimate is

< cllpllir- (5.46)

sup |pL | = Sup p| < CSup||m|| i
Qr (9)

Let us discuss our main hypotheses. Since p(z,t) = ¢(z,t) — ¢p(x), where
¢ is the free boundary function of the original problem (1.2), we assume that,
if po = p('? 0)7

leoll g g <0 < 1. (5.47)

Notice that this in turn gives, for p: Gy — R and any ¢t < T,

oD ) < Mool g /Ilpt i dt < 6+VTllpell rigo
(9) 2(9) W,

W, Gr)

Therefore, as soon as the quantity ||p||;r is bounded, for sufficiently small T
depending only on ¢ it holds

sup [p| + |V'p| < csupllp(, )| ivs < ed(1+ |lpllir). (5.48)
Gr t<T W2 (g)

Since our extension of p from G (or, equivalently, ¥) to €, is not optimal,
we will need the following result.

Lemma 5.4.2 For any € > 0 there exists a smooth 0 : (2 — R such that
6 = 1 in a neighbourhood of G, 8 = 0 in a neighbourhood of 3 and for any
function p: G — R and n > 0 it holds

1921l wy) < cellollwyg) + en(Elloll 26y

Proof. We consider a smooth diffeomorphism ¥ : Q — ¥ x [0, 1], bringing
G to X! := X x {1} and ¥ to ¥y := ¥ x {0}. We then define a smooth
f:%x1[0,1 — Rsuch that § < 1,6 =1 for z3 > 1 — 2¢ and 6 = 0 for
3 <1 —¢e. By lemma 2.1.4, for any p: X! — R it holds

Hep”WQ"(EX[O,l}) < 05”P||W2"(21) + (ol 2y
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It is easy to check that

Hf”wg(ﬂb) <c[[fo \I’_lHWQ(Zx[O,H)v

and a similar estimate for the norm || f ||W2n (s1y, With a constant depending on

”\D|’W2"/(Qb)’ for n/ > 3, 1 > n. Therefore, for 0 := 0 o U it holds

1902wy < cellllwyg) + en@lloll 2 g)-
U

It is easy to see that there is a bound of the form

sup [ DFO) < = efe) S e,
Q 13
in the previous lemma, where, in the case n < 3, one can take v = % For any
e > 0 we can define the extension p} := 0p using the function ¢ given above.
Any norm of p! can be bounded by the same norm of p, with a suitable
constant which depends on ¢ (and usually blows up as ¢ — 0). Assuming
(5.47) however, allows in some cases to keep the constant bounded with
suitable choices of the parameter ¢ and T'. For example, it holds

ig%F)HpEHWQM(Qb) < cellpllir + c(e) fEEHPHLZ’(g)

< cellpllr + (&) suplloll s (5.49)
t<T W,

(9)
<cle+c(€)d)(1+ |Ipllir),

for any sufficiently small 7" depending only on 6. We will suppose that § is such
that € + dc(e) is arbitrarily small. Notice that in the Hanzawa transformation
(3.1), in order to obtain a well defined diffeomorphism, we also require that

5
sup 02,9 < c= <1,
[¢) g

for 0 sufficiently small compared to €. To fix ideas, we may think that ¢ ~ ¢ %,
which allows all the previous assumptions to hold. Clearly from (5.49) it
follows
sup ] + V2| < el + c(€)8)(1+ ol (5.50)
b

by standard embedding theorems on 2.

We will only give the details of the estimates for Iy, I; and I, which are
the only ones affected by the choice of the extension, since the other terms
are estimated as in [19].
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For Iy and Iy, we will need a tool to get rid of the “spurious” factor in
the estimate of nonlinear terms of the form f(Vp*)m, similar to lemma 5.1.2
(there is no such type of factor in I, and G). For the spatial derivatives,
notice that (5.6) holds with a constant independent of T', ¢ and ¢, if they
are all sufficiently small. Indeed, it is enough to look at (5.8): its proof was
based on (5.2), whose analogue (5.49) holds true with constant independent
of T. Moreover, the constant c¢;(u) depends only on the C* norm of f in a
set bounded by supg,. [pX| + [VpZ|, which, by (5.50), is bounded by ||p[;r if
dc(e) < 1, as we are assuming. Thus, for any p such that ||p|;r < p and
n <!+ 1 it holds

1z, p2, Vo) gl gmoory < cr(llgll ooy

Regarding the estimates of the time derivative, we will need the following
variant of lemma 5.1.2.

Lemma 5.4.3 Let T < 1,1 <1 and ||p|ir < p. It holds the inequality

vT
1F Vo)l oy o < er(m)(1+ = )||p||z,T||g||W§,%(QT)

W, 2(Qr)
Proof. As already noted, f(Vp*) is bounded by a constant depending only
on f and pu, and this takes care of the L? term. One can check that in the
proof of 2.1.3, given n > %, the inequality

[[uo] < c(sup [ul + [lullyp o) 1]
[0,7]

1 1
W2 (0,T) w2 (0,1)’

holds, with a constant independent of 7" < 1. Then it suffice to prove the

inequality
VT
e

Sngf(Vp*)“WZl(O,T) < cr(w @+ —)llpllr-

To this end, for any fixed z = (2/, x3) in Q we have, using the fact that 6 does
not depend on ¢, |#] < 1 and |[V6]| < ¢/e,

* * 1
1f(Vp(z, -))Vp’t(x, ')||L2(O,T) < Cf(l‘)(”V/P,t(fE,a ')HL?(O,T) + g”p,t(wla ‘)HL?(O,T))
VT
< A —
< Cf(u)(sng Pl bty T o SIP [0.4]),

which gives the claim by (5.45) and (5.46). O

We now sketch the proof of the estimates of the nonlinear terms which
are different from the ones contained in [19].
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For I, and [, the troublesome terms are
Vp*Vp, D?p*Vv, Vp*D%v, Py V.

Notice that we didn’t consider factors of the form f(Vp*) for smooth f’s
due to the previous discussion, and only considered the higher order terms.

The first two type of terms are estlmated in the H (QT) norm through

the following procedure, where m € H (QT) is to be understood as Vp or
D?v. According to (5.49) and (5.50) we can set (for sufficiently small T'),
91 = (e + 0c(e)) < 1 and obtain

IV mllygoy) < eSIVH lygosiny Il or)
< 811+ ol 72l g0 gy

1
—1Vp'm < csup |Vp*||lm] _ < co1(1 + ml __ :
IVl < csup VAl lmiy < oL+ ol ml g

for the W (Qr) norm, we use
A (Vpim) =V, A ym +mA_, V', (5.51)

where f_;(t) := f(t — h). Splitting the estimate according to this formula,
we have

[ [ 15 amin < s lwo [CA s mi,

< (L + [lplir)m] .

W, 2(Qr)
(5.52)
and, using proposition 2.1.3, point 1 and lemma 5.4.2,
[ / A 90 e,
2
< [ [ im0 I3 490 >||W§4mb)dt
< [ / e g | Vit~ el 4t
< — Vpi(,t— 3 dédt
< [0 ity [ 190000 4
T
dh
* 2
< [ 1O g0 6 [ It Dyt [
0 0
— * 112 2
< It al,tHWH%’O(QT)Hm”Wé’O(QT) < ! ( )HptH l+2(G )HmHWé!O( )’

(5.53)
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For the terms of the form D?p*Vv we have

Hsz*VUHWlo ) < supHDQp i IVl op

< 051(1 + o) lvllyirzo g,y

and using ||D2P*V'U||L2(Qb) < C||D2:0*||W§(Qb)||VU||W%4(QI))’
2

1 2 % 2
D% V0l < esID g V0l y s

< cor1(1+|pllir) || Vol

3 3
HZ'*(Qr)

< e+ lpllr)oll e,

Finally, splitting the estimate for W' (Qr) according to (5.51),

[ [ 15 ol

< csupHsz*le Vol

0-7

W2 0T~ (@)

< 051( , )HUHHZ+2,%+1 )
2

Q1)

and, proceeding as in (5.53),

[ N

2 % 2
< / IV gt 150D (O, g

2
<o) [ 1 / [0 Ol (- >||Wl+g(g)dt

2
dgdt
<ole) [ 5 [ gy [ ot = O g de

1-1
< de)T “p’tnwzl*%’o(GT)HUHW%”’O(QT)'

We now estimate the term p%, Vv. Again from proposition 2.1.3 and lemma
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0.4.2

103V ollyiog,) < cggHVvHWzmb)!\pf‘tle+w(gb)

< c||'v||Hl ) (5 W0 Gy T C(E )Ilp,tIILz(GT>)

< cllv + cle \/Tsu 1
1905 g, (00080, + VT sl oy )
< c(e + c(e)VT)|v| . HPH!T

*@r

Moreover

1 11
—1|pi Vo < T2 2 sup||p” _ sup||Vv
T3 ”p’t ||L2(QT) o t<¥”p’t”W2% ‘() t<7£)|| szl(Qb)

Nl ~

1_
cl?

IN

*
§1<1$||p,t||w21+% ) §EIT3||v||W;+1(Qb)

11

< o bel@) supllpel g o DI
1_1

<dl2"z2¢

<rhde@lplhrlol g,

Finally, for the norm WQZ(QT), we split the estimate according to formula
(5.51). For the term p*, /A, Vv notice that for any ¢t < T,

Sup 055 )] < Sup p.:(-51)] < ch,t('7t)HW21+%(g) < C!Ip,tHHyg,M(GT)’

with a constant independent of ¢, since 6 does not depend on ¢ and is not
greater than 1. Hence

/0 hl—H/ [P~ ht hvaL2 dt<SUP‘Pt|2/O hl—i—l/ 1A hV'UHL2

T
< cTlpll? _— A, Vo|? dt
<lollr | —amn / IR

2 2 2 2
< cT||p||z,T||VvHW§,%+%(QT) < cT||p||l,T||v||Hé+2,%H

Q1)
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Finally, proceeding as in (5.53),

[ [ 1908 g

< C/O h1+l/ HV’U”Wz sz)HA hpt“Wz—f )dt

/0 / ||V’U ||W1+Z(Q dt/ Hptt le zf(Qb)d5

< It c(e )||P,tt”

(G HVU||W21+1,0(QT)

1
> 77 (Gr)

1-1 2
< I ( )”pt” 21 %%+%(GT)‘|U||W2Z+2,O(QT).

We finally estimate the terms in /5 and G, since the others are unaffected
by our choice of extension. As calculated in (3.22), Iy only have “pure” terms
of the form Vp*Vv, whose W0(Qr) norm is estimated using (5.49)

Vo™ Vo HWZHLO(QT) sc f‘gﬁ”vf ||Wg+1(9b) Vv ||W2l+1’0(QT)

< oy (1
< e+ eln)liol e g g, o

and similarly

sup|[ V" Vlliwy ) < (Lt lolha) ol s g,

The time derivative of G, also given in (3.22), can be estimated as
||G,t||L2(QT) = ﬁSUPHVPTtHL%Qb) chlp o] + Scl;p |VP*|||’U,t||L2(QT)
T T

< C\/_SUPHPtHWz+2 EEIEHUHWQZ‘”(QZ,) +01(1+ HPHZ,T)HU,th(QT):

and thus

1 11
EH(;,tHLQ(Q (81 4+ T2 2¢(e))(1 + lelz,:r)HvIIHéH,%H(Q(T)-

1
Finally, for the WQO’ norm of G ;, which is of the type v;Vp* +vVp}, the

term v ;Vp* is of the form Vp*m with m € VV2 (QT) and can be estimated
0.+
as in (5.52), (5.53). For the term vVp,, we split the W2’2 (Qr) according to
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(5.51) and obtain

T dh T i}
[ [ sl i< Vsl [ [ 18900,

A [ PPN 71 e
2

(@) W, 2+4(QT)
2
gcﬁc(g)nvnHm,%H 1V pull?
2

1,1
(Qr) 7 W20Y2+4(GT)

2 2
< cﬁc(5)||v||Hé+2,%+l(QT)||p||l,T7

while for the other term, proceeding as in (5.53), we have

[ [ 1 ol
<[ [,

%71 HA*hUH%Vl(Q dt

<e [ O Fiwecor, vy el
o hJy
1-1 * (12

<cr Hvﬂ’tHWZ%H’O(QT)H 7t||W2lvO(QT)

< cle)T Y pll 2 vl .

< AT ol 0l g
All in all we have obtained the following estimate:
lo-+0ll s o)+ Wallgosiar) + Suplilhugay + 1@l ogor

< (81 + c(e)T22)(

\Y
s )(||U||Hé+2’é+l(QT) + || p||Hé%(QT))7

and it is clear that the coefficient &; + ()72 2 can be made arbitrarily small
for suitably small €, 6 and T'. The same type of estimate holds true for the
other nonlinear terms, and thus we have the following result.

Proposition 5.4.4 Let | € (3,1),

3+ ||vg—v <4, 5.54
ool 508 g, + 80 = w0l sy (5.54)

and p? be the extension pX = 0p defined in lemma 5.4.2. For any 05 > 0, the
inequality

o+ Ll g )+ I2lgrrone + NG gin s 1N g g
3
k
Wl ) < 0 2 NP

(5.55)
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holds for any sufficiently small £, 6(g) and T(0,¢).

We will also need a continuity estimate for the nonlinear terms, analogue
to the one obtained in theorem 5.1.6.

Theorem 5.4.5 Let | € (%, 1), and py and po satisfy

ol + llp2llir < w p(-,0) = p'(-,0) = po,
. <5< 1.
\|poHWé+g(g) <K

There exists c(u), bounded for bounded p, such that

Hlo(u1 p1) — lo(uljﬂz)“ w4 or) + [ (wr, prs pr) = ll(uQ’pz’pQ)HH;’%(QT)

+ ||12(u1, p1) — 12(1'/27/32)HH1+1»0 Qr) + |G (w1, p1) — G(us, 'OQ)HWS’%“(QT)

+ s (wr, 1) — l3(u2ap2)||Hl+% Ak + a(ur, p1) — 14(U2,P2)||Hé+%,%+%(GT)

+ ||l5(u1ﬂp1) - ZS(UZHOZ)H z+% = <

(G
Cal(”(”laplapl)”HlT + H(U2,pzap2)|| >H(u1 — U2,P1 — P2, P1 — p2)HH,l,T7

L3
2tg

for a constant 6; which is arbitrary small depending on ¢, 6(¢) and T'(e,d).

Proof. We only sketch the proof for the terms ly, Iy, and [, =V - G, since
the other terms are treated as in [19]. Following the argument of theorem
5.1.6, it is enough to prove an estimate of the form

1F(V 1) = £Vl wsoon, < cmdillon = pallirllgll oo

Vo) — AV oL <c ) — L )
I8~ FTNl s, < il plhrlol s,

(5.56)

with constants independent of 7" (notice that in [y and G there are no such
nonlinear factors as f(Vp*)). Notice first that from p;(-,0) = p2(+,0) we get

sl = pll oz g < [ Ione = pal g 0 < VTl = pali
which implies by lemma 5.4.2

supllpf = p3llwgeag) < e+ c@VT)|lpr = pallr- (5.57)
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Setting 6, = c(e + ¢(¢)v/T) (which is arbitrarily small depending on ¢ and
T), we thus have

sup £ (V1) = F(Vp3)l < cp(p) sup [V (pf — p3)] < e (1) supllpf — p5llyireq,)
Qr or t<T
< cp(p)dillpr — pallir-
(5.58)

To prove the first inequality in (5.56), we use proposition 2.1.3 and prove

upll (V1) = F(V03) g0,y < el = pallr (5.59)

For any t < T, inequality (5.57) takes care of the L?(£),) term in the Wit!
norm. From
1/ (Vo)) D20t = F'(V03) D2 5| 1)

< ' (Vo) D*(07 = p3)llwiey + I1(F'(V03) = F (VD)) D203l 11 63,
we proceed splitting the estimate on the two terms. For the first one, as
already noted, ||f"(Vp")|lyyi+1(q,) 18 bounded by c(x), and thus proposition
2.1.3 and (5.57) gives the desired inequality. In the same way we can estimate
the L? part of the norm of the second term, and thus it only remains its

W¥2(,) norm. Splitting the A, operator as in (5.51) and using (5.58) allows
to estimate just one term:

* ! * * dz
/Z DA 5) = T o e

dz
2 %2 / * / * 2 _—
< 1D°p3llw ) /|Z|<1||Az(f (Vp3) —f(VP1>>‘|W2%—Z(Qb)|Z|3+2l
dz

* Y ][2 S
< cf(u)/| 1A (Vo] — Vp2)||W21(Qb)|Z|3+21
z|<1

* *\ |12 * *\ |2
< cr (V07 = )i, + 10707 = 03) )
< cr(w)dtllpr — pellir

by (5.57), which concludes the proof of (5.59) and thus of first inequality in
(5.56). For the second one, the L? term is again estimated through (5.58),

oL
and for the W, norm we split the finite difference operator as in (5.51) and
proceed as in (5.52):

T T
dh . X 2 2 2 2
| [ 00D = FToDA e < Bl = gl
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by (5.58). Moreover, as in (5.53),

[ [ oA s (9ai) = 1)

1-1 * / * * 12 2
< (Vo) Vpi — f (sz)Vpa,tH%g_z,o(QT)Ilgllwgo(QT),

and, using 2 — 1 <1 <!+ 1 and (5.59),

! * * ! * *
If (Vpl)VPl,t / (VP2)VP2¢||W2%4,0(QT)
< |[[(f'(Vp]) — f’(VpS))Vp’{,tIIWH%,O(QT) + I (Ves)(Vpi, — Vp’é,t)llw;o(QT)
2
< c(w)rllpy = p2llirlIVorell iego o er)lVor, — Vpgtll
2 (QT)

@)
< cr(p)e@)llpr — pallur.
All in all we obtained
VD= (ool s
< cp(p)(9 1Hg||Ao + ()T glwioge)lier = pallir,

*(Qr)

which gives the claim for sufficiently small T'.
O

We can now prove the main result on the existence for small time of
solutions to (1.2).

Theorem 5.4.6 Let | € (3,1). For any ¢y € W3t*(Z) and vy € Wi ()
such that V -vg =0 in Qq , there exists a smooth ¢y, defining Q, = {(2’, x3) :
e, 0< a3 < dp(xs)} and G = {(2',x3) : 2’ € X, x5 = dp(2')}, such that
for sufficiently small T, there ezists a unique X-periodic solution in [0,T) of
problem (1.2), and it satisfies the inequality

[(v,p, ¢ = &)l mrar < c([|do — ¢bHW21+2(g) + ||'UO||W2”1(QO)>-

Proof. For any 6 < 1 and € < 1 to be chosen later, we choose a smooth ¢,
in such a way that (5.54) holds, and perform the Hanzawa transformation
in , so that the extension p* is defined through lemma 5.4.2. For any 6
we chose §, € and T so that (5.55) holds for any § < 6, ¢ < £ and T < Ty.
We set vo(x) = vo(€p(z)) as in (3.1), and choose v, in such a way that (5.54)
holds. It is easy to check that the compatibility conditions (5.39) are satisfied
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for py = ¢y — ¢ and Vg.and define v(?, p(© as the extension of ¥y and py to
t > 0 such that, recalling (2.29)

100 ar < (0Ol s+ 10005 501

+ ||)0,t|| ) < C(HEOHWQZH(Q,)) + ||POHW2l+2(g)).

1 S’l 3
W, 227 (G

This can be done in a standard way for v(*) and as in (4.87) for p(®. Notice
that by lemma 5.4.2,

||epo||W2l+2(Qb) < C5||PO||W21+2(g)+C(5)||P0||L2(g) < C(5+C(5)5)||P0||W2l+2(g) < ||P0||W21+2(g)a

for sufficiently small € and §(g). Thus we can suppose

Bollwsri o) < ellvallyi oo

independently of ¢ and ¢, if those are sufficiently small. Then we iteratively
define (v™+D p+D p(+1)) a5 the solution of (5.41) with right hand sides

fn = (ll + lO)(Iv(n)vp(n)ap(n))? hn - ZZ(U(n)a p(n))a
d, = (I3 + LN) (™, o™, g, = I5(v™, p™),

and initial data vg, pg. Theorem 5.4.1 applied to the corresponding linear
system, together with (5.55) give

3
[, DY |y < by 3 (0, )
k=1

+ C(”'U()HW2Z+1(QO) + HPOHWQHQ(Q) + U||Hb||W21+1,é+i(GT))‘

We let

)

=N
+ H¢bHW2l+%(E)) T,

C(HUOHWé“(QO) + Hp0”W2l+2(9) + UHHbHW;r%,%}[(GT)
<

C(HUDHW;“(QO) + HpUHWQZ“(E) + ﬁH%HWQH%(E)

and choose 9, so small that

3

02 Z(QNT>k < Nrp,
=1

and consequently small €, § and 7" such that (5.55) holds. Now

H(U(O)aoap(o))”H,l,T < 2Ny,
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by construction, and by induction ||(v™, p™ . p™)| g, < 2Np for all n > 1.
To prove convergence, we proceeding as in the proof of theorem 5.2.1, defining

(B B, ) 1= (0D — ) pet ) _ ) pn41) _ )y

By theorem 5.4.5, for sufficiently small ¢, T" and ¢, it holds

o~~~ T, <
H(vnapnapn>HH,l,T S —H<Un—1,Pn—1,pn—l)HH,l,T,

and thus strong convergence of (v™, p(™ | p(™) to a solution (v, p, p) of (5.38),
for which it holds the estimate

||(’Uap7 p)HH,l,T S 2NT

It is clear that, eventually decreasing T', ¢, can be chosen in such a way that

VTl

sy 100l 15 ) < elpllugeacey

and this gives the claimed estimate.

We now prove that the global solution so obtained is unique. If (v, p’, p/)
is another solution, then (v,p, p) := (v —v',p — P/, p — p) satisfies the linear
problem (4.1) with right hand sides

(L + o) (v, p, p) = (I + Lo) (V' P, p'),

(v,p) = (v, ),

= U3(v,p) = 13(, p') + (la(v, p) = Lu(v', ) N,
= 1l5(v, p) — I5(v', ),

Q) Q) T )
Il
N

and zero initial data. By the coercive estimate for the associated linear
problem and theorem 5.4.5, for sufficiently small €, § and 7" it holds

PN 1
(@, 0, p)|| zar < §||(U,p7 P,

and thus the claimed uniqueness for sufficiently small time. [
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