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A B S T R A C T

Oscillations in epidemic models including human behaviour indicate that the human factor might play a key
role in the occurrence of periodically high levels of incidence and prevalence of the disease. Such phenomena
can be captured even with minimal models, i.e. basic SIR or SEIR models with a reduced mathematical
complexity. In such models, the effects of information-dependent changes in contact patterns are strongly
affected by the function used to describe the memory of the population. In particular, the endemic equilibrium
cannot be destabilized in case of exponentially fading memory but sustained oscillations are possible when the
memory of the population is described by certain unimodal functions. In this work, we introduce a behavioural
SIR-like model with information-dependent social distancing to investigate the interplay between individuals’
behaviour and overexposure to infection due to unconscious exposure to contagion. We use spectral analysis
to show that sustained oscillations may take place even with exponentially fading memory. We show that this
result holds both in case of prevalence-based and incidence-based social distancing. Furthermore, we show that
the individual’s behavioural response to information may stabilize the oscillations induced by overexposure.
1. Introduction

Mathematical models for the dynamics of infectious diseases have
proved to be useful in helping policy makers to plan surveillance
and community-based control of epidemics, even during the current
coronavirus pandemic [1–4]. Among the epidemic models, a major role
is played by the compartmental models, where the population affected by
an infectious disease is divided into mutually exclusive groups accord-
ing to their status with respect to the disease [5,6]. Epidemics may be
described by a single compartmental model [2,3,7] or compartmental
models may be part of network models [8–10]. The construction of
compartmental models is based on several specific assumptions that
must correctly represent the problem under examination. These include
two important issues: the first is how to choose the function that must
represent the force of infection (FoI), i.e. the per capita rate at which
susceptibles get infected. The second issue arises from the observation
that in many cases the individuals change their behaviours according
to the development of the epidemic; that is, the individuals adapt
their contacts at risk, make vaccine-related decisions, enter voluntary
quarantine, and so on, according to the current and the past status of
the disease in the community where they live. This, in turn, produces a
feedback on the course of the outbreak [11,12]. Therefore, the second
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issue is how the individuals’ response to the epidemic must be taken
into account when designing an epidemic model.

In 1978, both these issues where addressed by V. Capasso and G.
Serio in their well known study on the generalization of the Kermack-
McKendrick epidemic model [13]. They proposed that the FoI should
depend on the prevalence (i.e. the size of infectious in the popula-
tion) and should describe the following circumstance: when the per-
ceived risk of infection become very large, the individuals enhance
self-protection measures so that the risk of getting the disease reduces.
Therefore, it is required that the FoI saturates (i.e. grows monotonically
to a given finite value) or is a non-monotone function that increases
till a peak and then decreases to zero. Epidemic models including non-
linear FoI are also called behaviour-implicit models [14] and have been
extensively used in the Mathematical Epidemiology literature [6,15].

In the last few years, behaviour-implicit models have been gen-
eralized to behaviour-explicit models, where the FoI depends on the
current and past values of prevalence through the so-called information
index [11,12]. Such an index is a distributed delay containing a memory
kernel. When the memory kernel is a Dirac’s delta function (which
represents the case where the public gets instantaneous information
on the current prevalence), one finds the phenomenological model
proposed by Capasso and Serio (see [14] for more details).
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Models that explicitly includes information-induced behavioural
changes constitute nowadays a well established tool of Behavioural
Epidemiology of Infectious Diseases (see e.g. the recent papers [7,16–
8]). Such models often show new outcomes, when compared with
on-behavioural models [11,12]. Besides of the theoretical studies, the
ehaviour-explicit models have been applied to the case of COVID-
9 where an estimate of the information-related parameters has been
btained by employing official data released by the public health
ystem [7].

A case of special interest in behavioural modelling is when the
ndividuals adjust their social contacts according to the available infor-
ation and rumours about the status of the disease in the community
here they live [19]. This scenario, for instance, may be considered to

tudy the phenomenon of non compliance to mitigation measures like,
.g., the social distancing [16,20]. In 2009, d’Onofrio and co-workers
roposed to study this problem through a SIR model with demography
nd information-dependent contact rate [19]. They showed that when
he memory of the population is exponentially fading (i.e. the memory
ernel included in the information index is a weak Erlangian kernel)
he model outcome is similar to that of the classical SIR model: the
isease will disappear or approach an endemic steady state according
o if the basic reproduction number 𝑅0 is, respectively, below or above
he critical value 𝑅0 = 1. However, when the current information is
navailable and the information arrives to the public after a given
verage time delay (i.e. the memory kernel included in the information
ndex is an unimodal strong Erlangian kernel), then sustained oscilla-
ions are possible when 𝑅0 > 1. This interesting feature not only holds
hen the behavioural responses of individuals is linked to prevalence, as

onsidered in [19], but also when the behavioural responses are based
n the available information on the incidence (i.e. the new cases during
particular time period) [16].

We remark that detecting oscillations in epidemic models is very
mportant since oscillations lead to periodically high level of incidence
nd prevalence that can be dangerous for the population. Moreover,
scillations inherent in epidemic models may resonate with periodic
orcing (like seasonality) resulting in an anomalous prevalence rise. De-
ecting oscillations in behavioural models is particularly relevant, since
t indicates that the human behaviour might be a fundamental factor
hen oscillations in time-series of endemic diseases are observed [12].
herefore, the analysis of the effects of the interplay between hu-
an behaviour and other nonlinearities included in epidemic models

oes beyond the theoretical investigation and has interesting practical
spects.

A specific form of the FoI that has attracted the interest of many
uthors is given by the following convex functional [21]:

oI = 𝛽
(

𝐼 + 𝛼 𝐼2
)

, (1)

here 𝐼 denotes a measure of the prevalence, the positive constant 𝛽
enotes the transmission rate (which includes the contact rate) and 𝛼
s a positive constant (sometimes called overexposure coefficient [22]).
he convex formulation of the FoI is not typical in epidemic models
ith nonlinear FoI where, as mentioned above, the FoI is commonly
escribed by a saturating function or a non monotone function that
symptotically approaches zero. In (1) the term 𝛽𝐼 is usually described
s the force of infection produced by single contacts whereas 𝛽𝛼𝐼2

s an additional term due to two exposures over a short time pe-
iod [21]. Interestingly, the functional (1) has been used to represent
he overexposure produced by unconscious exposure to contagion to
hich a susceptible is subject in presence of asymptomatic infectious

ndividuals [23]. This idea has been applied to the case of COVID-19
isease [22].

It is worth mentioning that a similar modelling approach has been
sed also to represent the influence of peer-pressure [24] in the spread of

social diseases’ like health risky behaviours (smoking, heavy drinking
2

r drug abuse) [25,26].
Epidemic models where the FoI is described by (1) show special
ynamical features that are not usual in models with ‘classical’ FoI
ike Hopf and Bogdanov–Takens bifurcations [27], catastrophic col-
apse of the basin of attraction for the endemic state associated with
he existence of homoclinic orbits [28], hysteresis through backward
ranscritical bifurcations [21,22,28].

Motivated by the above considerations, in this paper we intro-
uce a minimal SIR-like behavioural model to investigate the interplay
etween individuals’ behavioural response and overexposure to infec-
ion. We will use spectral analysis to assess the effects produced by
nformation-dependent social distancing in both the case of prevalence-
ased and incidence-based social distancing.

The rest of the paper is organized as follows: In Section 2 we will
ecall basic topics of behavioural modelling and will introduce the SIR-
ike model with prevalence-based social distancing and overexposure.
n Section 3 we present some preliminary qualitative analysis, including
escaling, positive invariance and the existence of equilibria. In Sec-
ion 4 we discuss the stability of the equilibria through spectral analysis
nd provide numerical simulations. The case of incidence-based social
istancing is discussed in Section 5. Conclusions are given in Section 6.

. The prevalence-based SIM model with overexposure

We consider the following epidemic model with a convex FoI rep-
esenting the overexposure:
̇ = 𝜇 (1 − 𝑆) − 𝑓 (𝑀)𝑆𝐼 (1 + 𝛼𝐼)

�̇� = 𝑓 (𝑀)𝑆𝐼 (1 + 𝛼𝐼) − (𝜇 + 𝛾) 𝐼,
(2)

here 𝑆 and 𝐼 denote, respectively, the fractions of susceptible and
nfectious individuals within a given population. All the parameters
n (2) are positive constants: 𝜇 is the birth rate, which is assumed to
e identical to the natural death rate; 𝛾 is the recovery rate from the
isease and 𝛼 is the overexposure parameter.

When 𝛼 = 0, model (2) reduces to the behavioural SIR-M model
ntroduced in 2009 by d’Onofrio and Manfredi [19].

The population includes also recovered individuals, whose fraction
s denoted by 𝑅 and satisfies �̇� = 𝛾𝐼−𝜇𝑅. Therefore the total population
s constant and 𝑅 = 1 − 𝑆 − 𝐼 .

Model (2) is a behavioural epidemic model because it takes into
ccount the fact that the individuals may alter the contact rate among
hemselves (and, in turn, the transmission rate of the disease) by
dopting social distancing. The choice to adhere to social distancing
s assumed to be on voluntary basis and influenced by the circulating
nformation and rumours about the disease spread. From a mathemati-
al point of view, this input is represented by the quantity 𝑀(𝑡), called
nformation index [11,12]. Generally speaking, the information index is
iven by the following distributed delay:

(𝑡) = ∫

𝑡

−∞
𝑔(𝜏)𝐾(𝑡 − 𝜏)𝑑𝜏, (3)

here 𝐾 is the memory kernel and 𝑔 the message function. As we will
iscuss below, the message function must be chosen appropriately to
escribe the kind of information that the individuals consider to be
elevant in determining their final choice to adopt or not to adopt social
istancing.

Before giving the specific forms of 𝐾 and 𝑔, we discuss the function
(𝑀) in (2), which describes the effects of the information and rumours
n the transmission rate. We assume that higher levels of awareness
nduced by information and rumours leads to a lower transmission rate.
herefore 𝑓 (𝑀) is assumed to be a sufficiently regular function such
hat 𝑓 (0) = 𝛽 (the baseline transmission rate in absence of behavioural
esponse), 𝑓 (𝑀) > 0 and 𝑓 ′(𝑀) < 0, for every 𝑀 ≥ 0. A function
atisfying those requisites, already used for SIM models [19], is the
ollowing:

(𝑀) =
𝛽

, (4)

1 + 𝜁𝑀
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where the positive constant parameter 𝜁 is the reactivity factor of
voluntary change in contact patterns: for a given level of information
𝑀 , the greater this factor is, the lower is the contact rate. In other
terms, the parameter 𝜁 represents the influence of social distancing on
the transmission rate.

Going back to (3), we say that the social distancing is prevalence-
based when the message function 𝑔 depends only on the prevalence
𝐼 . The simplest type of dependence is linear, and 𝑔 is proportional to
𝐼 [12,19]:

𝑔𝑝𝑟𝑒𝑣(𝜏) = 𝑘 𝐼(𝜏). (5)

In Section 5, we will discuss the case of incidence-based social
distancing, when the message function 𝑔 depends on the incidence of
the disease. The simplest type of dependence is when 𝑔 is proportional
to the term 𝑓 (𝑀)𝑆𝐼(1 + 𝛼𝐼) in (2).

When (5) is adopted, the constant parameter 𝑘 is called information
coverage. It is assumed to be positive and 𝑘 ≤ 1 to mimic possible under-
reporting due to imperfect procedures, lack of media appeal or actions
aimed at avoiding extreme social alarm [29].

As for the memory kernel 𝐾, a good compromise between realism
and mathematical tractability is the Erlang distribution:

𝐾(𝑥) = 𝐸𝑟𝑛,𝜀(𝑥) =
𝜀𝑛

(𝑛 − 1)!
𝑥𝑛−1𝑒−𝜀𝑥;

here 𝑥 ∈ R+, 𝑛 ∈ N+ (shape parameter) and 𝜀 ∈ R+ (rate parameter).
An Erlangian kernel has the advantage of making the corresponding

ntegro-differential system reducible into ordinary differential equa-
ions through the so-called linear chain trick [30].

Since

𝑟′1,𝜀 = −𝜀𝐸𝑟1,𝜀, 𝐸𝑟′𝑛,𝜀 = 𝜀(𝐸𝑟𝑛−1,𝜀 − 𝐸𝑟𝑛,𝜀), 𝑛 > 1,

one obtains that, defining 𝑀𝑗 (𝑡) = ∫ 𝑡
−∞ 𝑔(𝜏)𝐸𝑟𝑗,𝜀(𝑡 − 𝜏)𝑑𝜏, the following

additional equations must be added to model (2):

�̇�1 = 𝜀
(

𝑔 −𝑀1
)

⋯

�̇�𝑛 = 𝜀
(

𝑀𝑛−1 −𝑀𝑛
)

.

(6)

Even if a large part of the results that we obtain holds for systems
with general Erlangian, here we consider only the case of a first order
Erlang memory kernel 𝐸𝑟𝑙1,𝜖(⋅) (also said weak Erlangian kernel), i.e. the
case of exponentially fading memory, where the memory is distributed
around the mean 𝑇 = 1∕𝜀. In this case the characteristic parameter
𝜀 may be interpreted as the inverse of the average time necessary to
collect the information about the disease prevalence.

We conclude this section by collecting together ((2), (3), (4), (5)).
The prevalence-based SIM model with overexposure can be written:

�̇� =𝜇 (1 − 𝑆) −
𝛽

1 + 𝜁𝑀
𝑆𝐼 (1 + 𝛼𝐼)

�̇� =
𝛽

1 + 𝜁𝑀
𝑆𝐼 (1 + 𝛼𝐼) − 𝜈 𝐼

�̇� =𝜀 (𝑘 𝐼 −𝑀) ,

(7)

where we have set 𝜈 = 𝜇 + 𝛾.
We remark again that when 𝛼 = 0 the model reduces to the SIM

odel considered by d’Onofrio and Manfredi [19]. In such a case,
hey proved that a first order Erlang memory kernel is unable to
roduce oscillations while sustained oscillations are possible when a
econd order Erlang memory kernel (also said strong Erlangian kernel)
s considered.

Finally, when 𝜁 = 0, i.e. when the behavioural response is not
aken into account, the model is similar to the SIS model considered
y van den Driessche and Watmough [21] as well as to the SIRS model
3

onsidered by Jin et al. [27]. r
3. Rescaling and equilibria

In order to reduce the number of independent parameters, we make
a linear change in the variables. By rescaling time with 𝜏 = 𝜀 𝑡, and
posing

𝑋 = 𝑆, 𝑌 = 𝜈
𝜇
𝐼, 𝑍 = 𝜈

𝑘𝜇
𝑀, 𝑎 =

𝜇
𝜈
𝛼,

𝑏 = 1
𝜈
𝛽, 𝑐 =

𝜇𝑘
𝜈
𝜁, 𝑚 = 1

𝜖
𝜇, 𝑛 = 1

𝜖
𝜈,

system (7) can be recast in the form

𝑋′ = 𝑚
(

1 −𝑋 − 𝑏 1 + 𝑎𝑌
1 + 𝑐𝑍

𝑋𝑌
)

𝑌 ′ = 𝑛
(

−𝑌 + 𝑏 1 + 𝑎𝑌
1 + 𝑐𝑍

𝑋𝑌
)

𝑍′ = 𝑌 −𝑍.

(8)

In these equations we used a prime to denote the derivative with
respect to 𝜏 (a dot denotes the derivative with respect to 𝑡). The
number of nondimensional parameters is hence reduced to five. The
parameters 𝑚, 𝑛 are directly connected to the exit rates (mortality and
recovery), 𝑎 is linked to overexposure and 𝑐 to the behavioural response
of individuals. As we will see later on, 𝑏 will be the basic reproduction
number. The solution of system (8) are positive and bounded (see
Appendix).

We now look for equilibria 𝐸 = (�̃�, 𝑌 , �̃�) of system (8). From the
third equation of (8) one gets �̃� = 𝑌 . Hence from the second equation
one has that either 𝑌 = 0, which gives the disease-free equilibrium
𝐷𝐹𝐸 = (1, 0, 0), or

�̃� = 1 + 𝑐𝑌
𝑏(1 + 𝑎𝑌 )

. (9)

Substituting this quantity in the first equation one obtains:

𝑎𝑏𝑌 2 + (𝑏 + 𝑐 − 𝑎𝑏)𝑌 + (1 − 𝑏) = 0. (10)

It follows that there can possibly be two endemic equilibria, 𝐸+ =
(𝑋+, 𝑌+, 𝑍+) and 𝐸− = (𝑋−, 𝑌−, 𝑍−), where

± = 𝑎𝑏 − 𝑏 − 𝑐
2𝑎𝑏

±

√

(𝑎𝑏 − 𝑏 − 𝑐
2𝑎𝑏

)2
+ 𝑏 − 1

𝑎𝑏
. (11)

We note that, at the equilibrium, 𝑋± = 1 − 𝑌±, and that if 𝑏 > 1
then 𝑌+ exists for any values of the parameters and belongs to ]0, 1[.
Hence, the parameter 𝑏 is the basic reproduction number and 𝑏 = 1 is
he critical threshold for the existence of the endemic equilibrium. We
lso note that if 𝑏 > 1, then 𝑌− becomes strictly negative and, therefore,
s not an epidemiologically feasible solution.

emark 1. There is a second type of substitutions that allow to
ompute all the equilibria. Being �̃� = 𝑌 , one can use the first equation

to deduce that

�̃� = 1 + 𝑐𝑌
𝑎𝑏𝑌 2 + (𝑏 + 𝑐)𝑌 + 1

. (12)

ubstituting this quantity in the second equation yields that the equi-
ibria must satisfy the third degree polynomial: 𝑌 (𝑎𝑏𝑌 2 +(𝑏+ 𝑐−𝑎𝑏)𝑌 +
1 − 𝑏)) = 0.

This way to obtain the equilibria is particularly useful since in the
ext section we want to apply the results obtained in [31] associated to
he existence of chains of equilibria. In fact, we will consider the curve

↦

(

1 + 𝑐𝑌
𝑎𝑏𝑌 2 + (𝑏 + 𝑐)𝑌 + 1

, 𝑌 , 𝑌
)

, (13)

and it will be useful that it includes the solution 𝑋 = 1 and 𝑌 = 𝑍 = 0
i.e., the DFE).

The conditions for the existence of the DFE and the endemic equilib-
ia are summarized in Table 1. It is worth to mention that when 𝑎 > 𝑐+1
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Table 1
Conditions for the existence of the disease-free equilibrium (DFE) and the endemic equilibria (𝐸−, 𝐸+). The quantities
𝑏𝑐 , 𝑌− and 𝑌+ are given in (11) and (14).
a transcritical backward bifurcation takes place at 𝑏 = 1, associated with
a saddle-node bifurcation at 𝑏 = 𝑏𝑐 , where

𝑏𝑐 =

(

√

𝑎(𝑐 + 1) +
√

𝑎 − 𝑐
)2

(𝑎 + 1)2
. (14)

Backward bifurcation is nowadays a well known feature of some
epidemic models [32]. It must be pointed out that it may play a relevant
role for disease control and eradication. Indeed, when a backward
bifurcation occurs, an endemic equilibria may also exist for values of
the basic reproduction number, say 𝑅0, below (but usually close to)
the classical threshold 𝑅0 = 1. Therefore, in this case it might not be
sufficient to reduce the basic reproduction number below the threshold
to eliminate the disease.

4. Spectral analysis and simulations

We shortly recall that in the analysis of spectra stability of equilibria
one can compute the spectrum of the Jacobian matrix of the vector
field at a given equilibrium 𝐸. The spectrum gives the spectral type
of the equilibrium, that can be classified whenever nondegenerate
(see [33]) by means of the symbols 𝑛3, 𝑛1𝑓 1, 𝑛21, 𝑛

1𝑓1, 𝑛1𝑓 1, 𝑛1𝑓1, 𝑛12, 𝑛3.
In this notation 𝑛 denotes a real eigenvalue (which is called node), 𝑓
indicates a couple of imaginary eigenvalues (which is called focus),
and the superscript (resp. subscript) indicates the number of positive
(resp. negative) real parts of the eigenvalues. A diagram representing
the possible type of bifurcations for 3D systems is shown in Fig. 1.

For model (8) the Jacobian matrix of the vector field is:

𝐽 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑚
(

−1 − 𝑏𝑌 1 + 𝑎𝑌
1 + 𝑐𝑍

)

−
𝑚𝑏𝑋 (1 + 2𝑎𝑌 )

1 + 𝑐𝑍
𝑚𝑐𝑏 (1 + 𝑎𝑌 )𝑋𝑌

(1 + 𝑐𝑍)2
𝑛𝑏𝑌 (1 + 𝑎𝑌 )

1 + 𝑐𝑍
𝑛
(

−1 +
𝑏𝑋 (1 + 2𝑎𝑌 )

1 + 𝑐𝑍

)

−
𝑛𝑐𝑏 (1 + 𝑎𝑌 )𝑋𝑌

(1 + 𝑐𝑍)2
0 1 −1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(15)

The spectrum of the disease-free equilibrium 𝐷𝐹𝐸 = (1, 0, 0) is given
by −𝑚, 𝑛(𝑏 − 1) and −1. It follows that if 𝑏 < 1, then the disease-free
equilibrium is stable with spectral type 𝑛3. If 𝑏 > 1, then it is unstable
with spectral type 𝑛12.

As for the endemic equilibria, as reported in Table 1, if 𝑎 < 𝑐+1 the
equilibrium 𝐸 is the only admissible one. It arises with spectral type
4

+

𝑛3 and we will show that it evolves first into 𝑛1𝑓1 and then into 𝑛1𝑓 1.
In other words, a linear Hopf-bifurcation occurs.

Now consider the curve (13). This curve is well defined and contin-
uous for 𝑌 > 0 and note that, taking into account of (12), it annihilates
the first and third component of the vector field. Therefore, the curve
(13) may contain some of the equilibria of the vector field in (8) and
such equilibria are necessarily ordered by the ‘‘parameter of the curve’’
𝑌 . In [31] it is proven that, along the curve, the determinant of the
Jacobian evaluated at each equilibrium of such chain of equilibria has
alternating sign. In our case, the second component of the vector field
in (8) computed along (13) is the function

𝜑(𝑌 ) = −
𝑌
(

𝑎𝑏𝑌 2 + (𝑏 + 𝑐 − 𝑎𝑏)𝑌 + 1 − 𝑏
)

𝑎𝑏𝑌 2 + (𝑏 + 𝑐)𝑌 + 1
, (16)

which annihilates in (and only in) the chain 𝑌 = 𝑌−, 𝑌 = 0, 𝑌 = 𝑌+, i.e
in the three 𝑌 -components of the equilibria 𝐸−, 𝐷𝐹𝐸 and 𝐸+ of (8).
When 𝑏 > 1 the determinant of the Jacobian evaluated at the DFE is
positive, and hence the one corresponding to 𝐸+ is negative and it can
be of type 𝑛3, 𝑛1𝑓1, which are stable, or 𝑛21, 𝑛1𝑓

1, which are unstable.
We will prove that in the parameter space there is a curve of parameters
near which a bifurcation from 𝑛1𝑓1 to 𝑛1𝑓 1 must take place, and we will
hence deduce that the system undergoes a linear Hopf bifurcation.

From (9), and 𝑌+ = 𝑍+, it follows that the Jacobian matrix of the
vector field in (8) at 𝐸+ can be written:

𝐽 (𝐸+) =
⎛

⎜

⎜

⎝

𝑚 0 0
0 𝑛 0
0 0 1

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

−𝑢 − 1 −𝑣 − 1 𝑤
𝑢 𝑣 −𝑤
0 1 −1

⎞

⎟

⎟

⎠

,

where

𝑢 = 𝑏𝑌+
1 + 𝑎𝑌+
1 + 𝑐𝑌+

, 𝑣 =
𝑎𝑌+

1 + 𝑎𝑌+
, 𝑤 =

𝑐𝑌+
1 + 𝑎𝑌+

.

The characteristic polynomial is

𝜒 = −𝜆3+𝜆2(−𝑢𝑚+𝑣𝑛−𝑚−1)−𝜆(𝑚𝑢(𝑛+1)−𝑛𝑣(𝑚+1)+𝑤𝑛+𝑚)−𝑚𝑛(𝑢−𝑣+𝑤).

(17)

Following [33] we recall that the spectral type of an equilibrium of
a parameter-dependent vector field is constant with respect to small
variations of the parameters. The parameter space is partitioned by
three submanifolds defined as zeroes of three algebraic functions that
can be obtained through algebraic operations from the characteristic
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Fig. 1. Diagram representing the type of bifurcations for 3D systems. Here 𝑛 represents a real eigenvalue, 𝑓 represents a couple of imaginary eigenvalues. The superscript (resp.
subscript) indicates the number of positive (resp. negative) real parts of the eigenvalues.
Fig. 2. Curve of linear Hopf bifurcation in the parameter space 𝑎, 𝑐 for the endemic equilibrium 𝐸+ of the prevalence-based model (8). Left panel: the case (𝑚, 𝑛, 𝑏) = (10, 20, 1.5).
Right panel: the case (𝑚, 𝑛, 𝑏) = (3∕34000, 1∕30, 1.5). When crossing the curve (which represents the manifold ) a couple of complex conjugate eigenvalues of the vector field
linearized at 𝐸+ cross the imaginary axis, and a stable focus becomes an unstable focus. In the shaded region the equilibrium 𝐸+ is unstable, and a limit cycle exists. The black
dot corresponds to a choice of parameters 𝑎, 𝑐 for which the equilibrium 𝐸+ is an unstable focus-stable node, the empty dot to a choice for which the equilibrium 𝐸+ is a stable
focus-node.
polynomial. The complement of those submanifolds is made by con-
nected open set. In each set the spectral type of the equilibrium is
constant. Change of the spectral type between two contiguous open
connected components is strictly linked to which of the three subman-
ifolds separates them. In particular, one of such submanifold separates
stable focus from unstable focus. That submanifold is the one that we
will investigate.

The spectrum of the equilibrium 𝐸+ will change its spectral type
when the parameters cross the submanifold  = {(𝑚, 𝑛, 𝑢, 𝑣, 𝑤) | 𝜌 =
0, 𝜎 ≥ 0}, where

𝜌 = 𝑚2(1+𝑢)(1+𝑢+𝑛𝑢−𝑛𝑣)+𝑛(𝑛𝑣−1)(𝑣−𝑤)+𝑚(𝑢+(𝑛𝑣−1)2+𝑛𝑢(𝑤−(2+𝑛)𝑣)),

𝜎 = 𝑚(1 + 𝑢 + 𝑛𝑢 − 𝑛𝑣) − 𝑛(𝑣 −𝑤).

The conditions 𝜌 = 0, 𝜎 ≥ 0 are equivalent to require that (17)
admits a couple of purely imaginary eigenvalues and can be obtained
by imposing ±𝑖𝜇, with 𝜇 ∈ 𝐑, as solution of (17) (the algebraic
manipulation to get 𝜌 and 𝜎 can be found in [33]).

Crossing the submanifold  will change the spectrum with a Hopf
bifurcation.

Note that, in principle, the equilibrium 𝐸+ could change its spectral
type also when the parameter values cross the submanifold  =
{(𝑚, 𝑛, 𝑢, 𝑣, 𝑤) |𝑍 = 0} where

𝑍 = 𝑢 − 𝑣 +𝑤.

since 𝑍 = 0 implies that the polynomial (17) has a null eigenvalue.
However, this can be excluded in our case since we know that the
determinant of the Jacobian corresponding to 𝐸 is always positive.
5

+

Recalling that our goal here is to assess the theoretical dynamics of
the behavioural model (8), we select some baseline parameter values
without referring to a specific disease or field case. We take 𝑘 = 0.8 and
𝜀 = 1∕3 𝑑−1, two values that were estimated for the first wave of COVID-
19 in Italy [7]. In particular, in [7] a weak Erlang memory kernel was
used, so that 𝜀 assumes the meaning of the inverse of the average time
delay of the collected information about the disease prevalence. We
also set 𝑏 = 1.5, a basic reproduction number above the threshold 𝑏 = 1,
to ensure that the endemic equilibrium 𝐸+ does exist. Furthermore,
we consider the two following cases: Set 1 (𝑚 = 10, 𝑛 = 20), Set 2
(𝑚 = 3∕34000, 𝑛 = 1∕30). Note that in Set 2 the value of 𝑚 correspond to
𝜇 = 1∕34000 𝑑−1 (i.e. 𝜇 = 10.7∕1, 000𝑦−1 as given by the Italian National
Institute of Statistics, see [7]).

In Fig. 2 we draw the marginal region  for the two sets introduced
above. It can be seen that in both the cases there is a region in (𝑎, 𝑐)-
plane (labelled with 𝑛1𝑓 1) in which the endemic equilibrium is an
unstable 2D focus together with an stable node and a region (labelled
with 𝑛1𝑓1) in which the endemic equilibrium is a stable 2D focus
together with a stable node.

It is this worth to emphasize that disregarding peer-pressure (𝑎 = 0)
or behavioural response to information (𝑐 = 0), may result in a stable
endemic equilibrium (Fig. 2, left panel). This phenomenon takes place
only for a restricted ranges of the parameter values of 𝑚 and 𝑛. Indeed,
when the values of 𝑚 and 𝑛 are very small, sustained oscillations can
occur even without behavioural response (Fig. 2, right panel) as it was
also observed by Jin et al. [27].
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Fig. 3. Numerical simulation of model (8) in the case 𝑚 = 10, 𝑛 = 20. The other values
are 𝑘 = 0.8, 𝜖 = 1∕3, 𝑏 = 1.5. The values of 𝑎 and 𝑐 correspond to the two points
indicated in Fig. 2 left. Panel A and C: temporal dynamics of the nondimensional
variable 𝑌 representing the infectious population. Panel B and D: orbits in the space
𝑋𝑌𝑍. Plots A and B refer to point 𝑃 in Fig. 2 left and show convergence to the endemic
equilibrium. Panels C and D refer to point 𝑄 in Fig. 2 left and show convergence to a
limit cycle.

Fig. 4. Numerical simulation of model (8) in the case 𝑚 = 3∕34000, 𝑛 = 1∕30. The other
values are 𝑘 = 0.8, 𝜖 = 1∕3, 𝑏 = 1.5. The values of 𝑎 and 𝑐 correspond to the two points
indicated in Fig. 2 right. Panel A and C: temporal dynamics of the nondimensional
variable 𝑌 representing the infectious population (panel C is a logplot, to make the
solution more visible). Panel B and D: orbits in the space 𝑋𝑌𝑍. Plots A and B refer
to point 𝑃 in Fig. 2 right and show convergence to the endemic equilibrium. Panels C
and D refer to point 𝑄 in Fig. 2 right and show convergence to a limit cycle.
6

In Fig. 3, right panel, we consider values of the parameters 𝑎 and 𝑐
in the stability region (the white dot in Fig. 2, left panel) and show the
convergence to an equilibrium state. In Fig. 3, left panel, we consider
the case of parameters 𝑎 and 𝑐 in the instability region (the black
dot in Fig. 2, left panel) and show the convergence towards sustained
oscillations. In Fig. 4 we get similar dynamics in the case of Set 2.
These plots are a strong indication that the Hopf bifurcation is indeed
supercritical.

5. The incidence-based SIM model with overexposure

In this Section we briefly discuss the case of incidence-based be-
havioural model, i.e. we replace the message function (5) with

𝑔𝑖𝑛𝑐 (𝜏) = ℎ
𝛽

1 + 𝜁𝑀(𝜏)
(1 + 𝛼𝐼(𝜏))𝑆(𝜏)𝐼(𝜏). (18)

Using the linear trick, the model reads

�̇� = 𝜇 (1 − 𝑆) − 𝛽 1 + 𝛼𝐼
1 + 𝜁𝑀

𝑆𝐼

�̇� = −𝜈 𝐼 + 𝛽 1 + 𝛼𝐼
1 + 𝜁𝑀

𝑆𝐼

�̇� = 𝜀
(

ℎ 𝛽 1 + 𝛼𝐼
1 + 𝜁𝑀

𝑆𝐼 −𝑀
)

.

(19)

The nondimensional form of the vector field can be obtained rescal-
ing time 𝜏 = 𝜀𝑡, changing the independent variables and remaining the
parameters according to

𝑋 = 𝑆, 𝑌 = 𝜈
𝜇
𝐼, 𝑍 = 1

ℎ𝜇
𝑀, 𝑎 =

𝜇
𝜈
𝛼,

𝑏 =
𝛽
𝜈
, 𝑐 = 𝜇ℎ𝜁, 𝑚 =

𝜇
𝜀
, 𝑛 = 𝜈

𝜀
.

We thus obtain the equations

𝑋′ = 𝑚
[

1 −𝑋 − 𝑏 1 + 𝑎𝑌
1 + 𝑐𝑍

𝑋𝑌
]

𝑌 ′ = 𝑛
[

−𝑌 + 𝑏 1 + 𝑎𝑌
1 + 𝑐𝑍

𝑋𝑌
]

𝑍′ = 𝑏 1 + 𝑎𝑌
1 + 𝑐𝑍

𝑋𝑌 −𝑍

To determine the equilibria we set the right hand sides of the
equations to zero. The third of such equations gives 𝑍 = 𝑏(1 + 𝑎𝑌 )∕(1+
𝑐𝑍)𝑋𝑌 . Substituting this in the second equation one gets 𝑍 = 𝑌 . This
equality makes the second and third equations dependent, and they can
be used to obtain 𝑋 = (1 + 𝑐𝑌 )∕(𝑏 + 𝑎𝑏𝑌 ). After substitution of this
quantity, the first equation is positively proportional to the polynomial
(10) found in the preceding analysis. Therefore, it follows that the
equilibria have the same bifurcation pattern of the equilibria of the
incidence-based model.

The disease-free equilibrium has spectrum −1,−𝑚, 𝑎𝑛𝑑(−1+𝑏)𝑛. It is
hence spectrally stable if 𝑏 < 1 and becomes unstable of type 𝑛12 when
𝑏 > 1. When 𝑏 > 1 the determinant of the Jacobian evaluated at the
DFE is positive, and hence the one corresponding to 𝐸+ is negative,
and it can be of type 𝑛3, 𝑛1𝑓1, which are stable, or 𝑛21, 𝑛1𝑓

1, which are
unstable. As in the previous case, we will prove that there is a curve of
parameters in the parameter space near which a bifurcation from 𝑛1𝑓1
to 𝑛1𝑓 1 must take place, and we will hence deduce that the system
undergoes a linear Hopf bifurcation.

The endemic equilibrium 𝐸+ of (19) has component

𝑌+ = 1
2
− 𝑏 + 𝑐

2𝑎𝑏
+

√

𝑎𝑏((𝑎 + 2)𝑏 − 2(𝑐 + 2)) + (𝑏 + 𝑐)2

2𝑎𝑏
.

The linearization of the vector field associated to the system at 𝐸+ has
matrix

𝐽 (𝐸+) =
⎛

⎜

⎜

𝑚 0 0
0 𝑛 0

⎞

⎟

⎟

⎛

⎜

⎜

−𝑢 − 1 −𝑣 − 1 𝑤
𝑢 𝑣 −𝑤

⎞

⎟

⎟

,

⎝0 0 1⎠ ⎝ 𝑢 𝑣 + 1 −𝑤 − 1⎠
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Fig. 5. The two figures show, for different choices of the parameters (𝑚, 𝑛, 𝑏) the curve of linear Hopf bifurcation in parameter space 𝑎, 𝑐 for the incidence-based model (19). Left
panel: (𝑚, 𝑛, 𝑏) = (10, 20, 1.5). Right panel: (𝑚, 𝑛, 𝑏) = (0.0001, 0.1, 6). In the shaded region the equilibrium 𝐸+ is unstable, and a limit cycle exists. Across the black curve a couple of
complex conjugate eigenvalues of the vector field linearized at 𝐸+ cross the imaginary axis, and a stable focus becomes an unstable focus.
where

𝑢 =
𝑏𝑌+(𝑎𝑌+ + 1)

𝑐𝑌+ + 1
, 𝑣 =

𝑎𝑌+
𝑎𝑌+ + 1

, 𝑤 =
𝑐𝑌+

𝑐𝑌+ + 1
.

The characteristic polynomial is

−𝜆3+𝜆2(−𝑚(𝑢+1)+𝑛𝑣−𝑤−1)+𝜆(𝑚𝑛(𝑣−𝑢)−𝑚(𝑢+𝑤−1)+𝑛(𝑣−𝑤))−𝑚𝑛(𝑢−𝑣+𝑤).

The discriminants/resultants can be easily computed, but we do not
detail them here (see [33]). A picture of the discriminant locus for this
case is similar to that of the prevalence-based model (see Fig. 5) so that
similar conclusions can be obtained.

6. Conclusions

In this work we provide a contribution to the analysis of mini-
mal SIR-like behaviour-explicit models, where the force of infection
depends on the current and past evolution of the epidemics through
the information index [12]. In particular, we focus on the interplay
between individuals’ behavioural response to the available information
and the phenomenon of overexposure that may result from unconscious
exposure to contagion. To this aim, we build a SIR-like behavioural
model including a contact rate depending on the information index (to
represent information-dependent social distancing) and a convex force
of infection.

While it is known that when overexposure is not present the human
behavioural changes in contact patterns may induce sustained oscilla-
tions only when the Erlangian kernel is at least of second order [16,
19], our results show that when overexposure is present, information-
dependent social distancing may induce sustained oscillations also in
the case of first order Erlangian kernel, i.e. when the memory of
the population is exponentially fading. Furthermore, we obtain that
when the oscillations are induced by overexposure, the individual’s
behavioural response to information may stabilize them. These results
hold in both the case of prevalence-based and incidence-based social
distancing.

Although providing new insights regarding the analysis of minimal
behavioural models, like in [19,29] and recently, in [14,16], our work
has some limitations. First, the model does not consider pharmaceuti-
cal interventions like vaccination. The mutual influence between the
decline in prevalence, due to the rise of vaccination coverage, and the
7

consequent decrease in the compliance to social distancing may induce
specific phenomena like a switch from a cyclic regime to damped
oscillations [20]. Second, considering extrinsic stochastic perturbations
could be better represent the evolution of small populations. Finally,
field-data are needed to confirm if for realistic sets of parameter values
it is possible to have oscillations induced by the simultaneous presence
of behavioural response to information and overexposure. However,
parametrization of behavioural models on real cases are, in principle,
possible [7]. These issues will be matter of future work.
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Appendix. Positive invariance and boundedness

We prove that the solution of system (8) are positive and bounded
by showing that a prism in the positive octant is invariant. Let us
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v
𝑖
a
h
o
p
e

consider the prism with the following edges: 𝑋 = 0, 𝑌 = 0, 𝑍 = 0,
𝑋 +𝑚∕𝑛𝑌 = 1 (a triangle in 𝑋, 𝑌 plane), and 𝑍 = 𝑛∕𝑚. Denote by 𝐟 the
ector field of (8) and by 𝐧𝑖, 𝑖 = 1,… , 5, the outgoing normal to the
th edge of the prism. On the first edge (𝑋 = 0) one has 𝐧1 = (−1, 0, 0)
nd ⟨𝐟 ,𝐧1⟩ = −𝑚 < 0, so that 𝑋 ≥ 0. On the second edge (𝑌 = 0) one
as 𝐧2 = (0,−1, 0) and ⟨𝐟 ,𝐧2⟩ = 0. However, when 𝑌 = 0 the solution
f (8) converges globally to 𝑋 = 1, 𝑍 = 0, for any initial data in the
lane 𝑌 = 0 which is, therefore, invariant and 𝑌 ≥ 0. On the third
dge (𝑍 = 0) one has 𝐧3 = (0, 0,−1) and ⟨𝐟 ,𝐧3⟩ = −𝑌 ≤ 0, so that
𝑍 ≥ 0. On the fourth edge (𝑋 + 𝑚∕𝑛𝑌 = 1) one has 𝐧4 = (1, 𝑚∕𝑛, 0)
and ⟨𝐟 ,𝐧4⟩ = (𝑚∕𝑛)(𝑚 − 𝑛)𝑌 < 0 being 𝑚 < 𝑛. Finally, on the fifth edge
(𝑍 = 𝑛∕𝑚) one has 𝐧5 = (0, 0, 1) and ⟨𝐟 ,𝐧5⟩ = 𝑌 − (𝑛∕𝑚) ≤ 0 being
𝑋 + 𝑚∕𝑛𝑌 ≤ 1.
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