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Introduction

Let A be an associative algebra over a field F of characteristic zero. If Z2 is the cyclic group of

order 2, a Z2-grading on A is a decomposition of A, as a vector space, into the direct sum of subspaces

A = A0 ⊕ A1 such that A0A0 + A1A1 ⊆ A0 and A0A1 + A1A0 ⊆ A1. The subspaces A0 and A1 are

the homogeneous components of A and their elements are called homogeneous of degree zero (even

elements) and of degree one (odd elements), respectively. The Z2-graded algebras are usually called

superalgebras.

A superinvolution ∗ on the superalgebra A = A0 ⊕ A1 is a graded linear map (a map preserving

the grading) ∗ : A → A such that (a∗)∗ = a, for all a ∈ A and (ab)∗ = (−1)|a||b|b∗a∗, for any

homogeneous elements a, b ∈ A0 ∪ A1, of degrees |a|, |b|, respectively. Since charF = 0, we can write

A = A+
0 ⊕ A−

0 ⊕ A+
1 ⊕ A−

1 , where for i = 0, 1, A+
i = {a ∈ Ai : a

∗ = a} and A−
i = {a ∈ Ai : a

∗ = −a}

denote the sets of homogeneous symmetric and skew elements of Ai, respectively. From now on, we

shall refer to a superalgebra with superinvolution simply as a ∗-algebra.

The superinvolutions play a prominent role in the setting of Lie and Jordan superalgebras. The

skew elements of a ∗-algebra have a structure of Lie superalgebra under the graded bracket: [a, b] =

ab− (−1)|a||b|ba. Similarly, the symmetric elements form a Jordan superalgebra under the supersym-

metrized product: a ◦ b = ab+ (−1)|a||b|ba. Many of the classical simple Lie and Jordan superalgebras

(see [31, 48]) arise in this way.

The purpose of this thesis is to present, in the setting of ∗-algebras, some of the most interesting

and challenging problems of combinatorial PI-theory (the theory of polynomial identities), which have

already been addressed in the field of associative algebras or of algebras with involution.

If A is an associative algebra over a field F of characteristic zero, an effective way of measuring the

polynomial identities satisfied by A is provided by its sequence of codimensions cn(A), n = 1, 2, . . ..

Such a sequence was introduced by Regev in [50] and, in characteristic zero, gives an actual quantitative

measure of the identities satisfied by a given algebra. The most important feature of the sequence of

codimensions, proved in [50], is that in case A is a PI-algebra, i.e., it satisfies a non-trivial polynomial

identity, then cn(A) is exponentially bounded. Later in [32, 33], Kemer showed that, given any PI-

algebra A, cn(A), n = 1, 2, . . . , cannot have intermediate growth, i.e., either it is polynomially bounded
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or it grows exponentially. Much effort has been put into the study of algebras with polynomial

codimensions growth ([16, 17, 18, 37, 38, 39]). In this setting a celebrated theorem of Kemer ([33])

characterizes them as follows. If G is the infinite dimensional Grassmann algebra over F and UT2

is the algebra of 2 × 2 upper triangular matrices over F , then cn(A), n = 1, 2, . . ., is polynomially

bounded if and only if G and UT2 do not satisfy all the identities of A.

One of the aims of this thesis is to prove a similar result in the setting of ∗-algebras.

Another aim is inspired from the famous theorem of Amitsur and Levitzki. Recall that the standard

polynomial of degree r in the non-commutative variables x1, . . . , xr is defined as Str(x1, . . . , xr) =∑

σ∈Sr

(sgnσ)xσ(1) · · ·xσ(r). The result of Amitsur and Levitzki states that St2n is an identity for the

algebra of n×nmatrices over a commutative ring. The original proof (see [3]) was highly combinatorial

and based on the properties of the matrix units. Several different proofs were given afterwards (see for

instance [49, 51, 55, 56]). If F is a field of characteristic different from 2, it is not hard to prove that

St2n is, up to a scalar, the only identity of minimal degree of Mn(F ), the algebra of n × n matrices

over F .

In this thesis we prove similar results in the case of ∗-algebras. More precisely, we find standard

identities of minimal degree in the setting of matrix ∗-algebras and we show, in this way, that the

Amitsur-Levitzki theorem can be improved by considering only certain kinds of matrices. The idea

draws inspiration from the results of Kostant and Rowen, concerning algebras with involution. It is

well known (see, for instance [53, Theorem 3.1.62]) that, up to isomorphism, we have only the transpose

and the symplectic involution on the matrix algebra Mn(F ). In [35], Kostant reproved the Amitsur-

Levitzki theorem by showing that it is equivalent to a theorem in Lie cohomology. Moreover, he

showed the power of his method by proving that St2n−2(K1, . . . ,K2n−2) = 0, for all n even, where Ki,

i = 1, . . . , 2n−2, are n×n skew-symmetric matrices with respect to the transpose involution. In 1974,

Rowen (see [52]) reproved Kostant’s theorem through a graph-theoretical approach and was able to

extend this result to the case n odd (see also [30]). Inspired from the results of Procesi and Razmyslov

(in [46, 49] they showed that the Amitsur-Levitzki theorem formally follows from the Hamilton-Cayley

polynomial), Rowen, in [54], presented a simple proof of Kostant’s theorem and solved the analogous

question for the symplectic involution s. In particular he showed that St2n−2(S1, . . . , S2n−2) = 0,

where Si, i = 1, . . . , 2n− 2, are n× n symmetric matrices with respect to s.

The first chapter of this thesis is introductory. We start with the basic definitions and properties

of associative algebras with polynomial identities (Section 1). A polynomial f(x1, . . . , xn), in non-

commuting variables, is a polynomial identity for the algebra A if f(a1, . . . , an) = 0, for all a1, . . . , an ∈

A. The set of all polynomial identities of A, Id(A), is an ideal of the free associative algebra F 〈X〉,

where X = {x1, x2, . . .} is a countable set. Moreover Id(A) is a T -ideal of F 〈X〉, i.e., an ideal invariant
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under all the endomorphisms of F 〈X〉. We also introduce the notion of variety of algebras: if A is

a PI-algebra, the variety V generated by A, var(A), is the class of all algebras B satisfying the same

set of identities of A. In Section 2 we give a brief introduction to the classical representation theory

of the symmetric group and of the general linear group via the theory of Young diagrams. Section

3 is devoted to the study of associative PI-algebras. We define the sequence of codimensions, cn(A),

and cocharacters, χn(A), for an associative PI-algebra A. In the last part of this section we focus our

attention to varieties of polynomial growth (their sequence of codimensions is polynomially bounded)

and we prove several characterizations concerning them. Recall that the growth of a variety V is

defined as the growth of the sequence of codimensions of any algebra A generating V. The next two

sections have a similar structure than the third one. We give analogous definitions and properties in

the setting of algebras with involution and of superalgebras.

The sixth section is devoted to the main objects of the thesis, that is the superalgebras with

superinvolution (∗-algebras). In this setting, we introduce the analogous objects than those of the

ordinary case. In particular we define the free ∗-algebra, the ∗-polynomial identities, the sequence of

∗-codimensions and cocharacters, and, moreover, we prove some basic results. Finally, we consider the

particular case of matrix algebras with superinvolution (Section 7) and present the so-called proper

polynomials (Section 8).

In the second chapter we give some characterizations concerning finite dimensional ∗-algebras

with polynomial growth of the ∗-codimensions. In Section 1 we introduce some finite dimensional

∗-algebras generating ∗-varieties (varieties of ∗-algebras) of almost polynomial growth, i.e., ∗-varieties

with exponential growth such that every proper subvariety has polynomial growth. Then we present a

Wedderburn-Malcev theorem for finite dimensional ∗-algebras (Section 2). In the final section we prove

several results characterizing ∗-varieties of polynomial growth. Between them, in the main theorem

of the chapter, we give the analogous result than that Kemer has proved for associative algebra:

in case A is a finite dimensional ∗-algebra, the sequence of ∗-codimensions c∗n(A), n = 1, 2, . . ., is

polynomially bounded if and only if the ∗-variety generated by A does not contain three explicitly

described ∗-algebras.

In the third chapter, we completely classify all subvarieties and all minimal subvarieties of the

∗-varieties of almost polynomial growth generated by a finite dimensional ∗-algebra. A ∗-variety V is

minimal of polynomial growth if c∗n(V) ≈ qnk, for some k ≥ 1, q > 0, and for any proper subvariety

U $ V we have that c∗n(U) ≈ q′nt, with t < k. We shall see that the three ∗-algebras which appear in

the main result of Chapter 3 are the only finite dimensional ∗-algebras generating ∗-varieties of almost

polynomial growth. In the last section we describe the ∗-algebras whose ∗-codimensions are bounded

by a linear function.

Finally, the fourth chapter is devoted to the study of standard identities in matrix ∗-algebras.
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If n = k + h, we define a particular Z2-grading on the matrix algebra Mn(F ) and, in this way, it

becomes a superalgebra, denoted by Mk,h(F ). If the field F is algebraically closed of characteristic

different from 2, then any non trivial Z2-grading on Mn(F ) is isomorphic to Mk,h(F ), for some k and

h. Moreover, in [47], Racine proved that, up to isomorphism, it is possible to define on Mk,h(F ) only

the orthosymplectic and the transpose superinvolution. In this chapter we find the minimal degree

for which the standard polynomial vanishes when evaluated in homogeneous symmetric or skew-

symmetric matrices of Mk,h(F ) in the case of both transpose or orthosymplectic superinvolution. In

the final section, we make a systematic study of the identities of the algebra M1,1(F ) endowed with

the transpose superinvolution: we compute a generating set of the ideal of polynomial identities and

we find the decomposition of the corresponding character into irreducibles.



Chapter 1

Preliminaries

In this chapter we present some preliminary concepts which allow us to treat the main arguments

of the thesis.

In the first section we give some basic definitions and well-known results concerning the theory of

polynomial identities for associative algebras. We start by introducing the free algebra F 〈X〉 and the

T -ideal of the identities, Id(A), of an associative algebra A. Then we discuss the so-called multilinear

polynomials and some results concerning them.

The second section is devoted to the description of the ordinary representation theory of the

symmetric group Sn and of the general linear group. In this part we introduce the so-called highest

weight vectors.

In third, forth and fifth section we focus our attention to PI-algebras (algebras satisfying a non-

trivial polynomial identities), algebras with involution (antiautomorphism of order 2) and superalge-

bras (Z2-graded algebra), respectively. For each of these structures we introduce the corresponding

sequence of codimensions (]-codimensions, supercodimensions) and cocharacters, the notion of va-

rieties of algebras (algebras with involution, superalgebras) and present results concerning varieties

(]-varieties, supervarieties) of polynomial growth.

In the sixth section we discuss the main objects of the thesis, that is the superalgebras with

superinvolution. They are Z2-graded algebras endowed with a graded linear map of order 2, with a

suitable property similar to that of an involution. In order to simplify the notation we shall refer to

the superalgebras with superinvolution simply as ∗-algebra and we shall use the prefix ”∗-” to denote,

in the setting of ∗-algebras, the analogous objects introduced in the case of associative algebra (for

instance, free ∗-algebra, ∗-polynomial identities, ∗-codimensions sequence, and so on).

Finally, we consider the particular case of matrix algebras with superinvolution (Section 7) and

present the so-called proper polynomials (Section 8).
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12 Preliminaries

1.1 Basic definitions

We start with the definition of free algebra. Let F be a field and X a countable set. The

free associative algebra on X over F is the algebra F 〈X〉 of polynomials in the non-commuting

indeterminates x1, x2, . . . ∈ X. A basis of F 〈X〉 is given by all words in the alphabet X, adding

the empty word 1. Such words are called monomials and the product of two monomials is defined

by juxtaposition. The elements of F 〈X〉 are called polynomials and if f ∈ F 〈X〉, then we write

f = f(x1, . . . , xn) to indicate that x1, . . . , xn ∈ X are the only variables occurring in f .

We define deg u, the degree of a monomial u, as the length of the word u. Also degxi
u, the degree

of u in the indeterminate xi, is the number of the occurrences of xi in u. Similarly, the degree deg f

of a polynomial f = f(x1, . . . , xn) is the maximum degree of a monomial in f and degxi
f , the degree

of f in xi, is the maximum degree of degxi
u, for u monomial in f .

The algebra F 〈X〉 is defined, up to isomorphism, by the following universal property: given an

associative F -algebra A, any map X → A can be uniquely extended to a homomorphism of algebras

F 〈X〉 → A. The cardinality of X is called the rank of F 〈X〉.

Now we can define one of the main objects of the thesis.

Definition 1.1. Let A be an associative F -algebra and f = f(x1, . . . , xn) ∈ F 〈X〉. We say that f is

a polynomial identity for A, and we write f ≡ 0, if f(a1, . . . , an) = 0, for all a1, . . . , an ∈ A.

We may also say that A satisfies f ≡ 0 or, sometimes, that f itself is an identity of A. Since the

trivial polynomial f = 0 is an identity for any algebra A, we say that A is a PI-algebra if it satisfies a

non-trivial polynomial identity.

Example 1.1. If A is a commutative algebra, then A is a PI-algebra since it satisfies the identity

[x1, x2] ≡ 0, where [x1, x2] = x1x2 − x2x1 denotes the Lie commutator of x1 and x2.

Example 1.2. If A is a nilpotent algebra, with An = 0, then A is a PI-algebra since it satisfies the

identity x1 · · ·xn ≡ 0.

Definition 1.2. Given an algebra A, the two-sided ideal of polynomials identities of A is defined as

Id(A) = {f ∈ F 〈X〉 : f ≡ 0 on A} .

Recalling that an ideal I of F 〈X〉 is a T -ideal if ϕ(I) ⊆ I, for all endomorphism ϕ of F 〈X〉,

it is easy to check that Id(A) is a T -ideal of F 〈X〉. Moreover, given a T -ideal I, it is proved that

Id(F 〈X〉/I) = I. Then all T -ideals of F 〈X〉 are actually ideals of polynomial identities for a suitable

algebra A.

Since many algebras may correspond to the same set of polynomial identities (or T -ideal) we need

to introduce the notion of variety of algebras.
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Definition 1.3. Given a non-empty set S ⊆ F 〈X〉, the class of all algebras A such that f ≡ 0 on A,

for all f ∈ S, is called the variety V = V(S) determined by S.

A variety V is called non-trivial if S 6= 0 and V is proper if it is non-trivial and contains a non-zero

algebra.

Example 1.3. The class of all commutative algebras forms a proper variety with S = {[x1, x2]}.

Notice that if V is the variety determined by the set S and 〈S〉T is the T -ideal of F 〈X〉 generated

by S, then V(S) = V(〈S〉T ) and 〈S〉T =
⋂

A∈V Id(A). We write 〈S〉T = Id(V).

In the following definition we introduce the concept of relatively free algebra.

Definition 1.4. Let V be a variety, A ∈ V an algebra and Y ⊆ A a subset of A. We say that A is

relatively free on Y (with respect to V), if for any algebra B ∈ V and for every function α : Y → B,

there exists a unique homomorphism β : A→ B extending α.

When V is the variety of all algebras, this is just the definition of a free algebra on Y . The

cardinality of Y is called the rank of A. Relatively free algebras are easily described in terms of free

algebras (see, for instance, [26, Theorem 1.2.4]).

Theorem 1.1.1. Let X be a non-empty set, F 〈X〉 a free algebra on X and V a variety with cor-

responding ideal Id(V) ⊆ F 〈X〉. Then F 〈X〉/Id(V) is a relatively free algebra on the set X̄ =

{x+ Id(V) | x ∈ X}. Moreover, any two relatively free algebras with respect to V of the same rank are

isomorphic.

The following theorem (see for instance [26, Theorem 1.2.5]) explains the connection between

T -ideals and varieties of algebras.

Theorem 1.1.2. There is a one-to-one correspondence between T -ideals of F 〈X〉 and varieties of

algebras. More precisely, a variety V corresponds to the T -ideal of identities Id(V) and a T -ideal I

corresponds to the variety of algebras satisfying all the identities of I.

If V is a variety and A is an algebra such that Id(A) = Id(V), then we say that V is the variety

generated by A and we write V = var(A). Also, we shall refer to F 〈X〉/Id(V) as the relatively free

algebra of the variety V of rank |X|.

If the ground field F is infinite, then the study of polynomial identities of an algebra A over F

can be reduced to the study of the so-called homogeneous or multilinear polynomials. This reduction

is very useful because these kinds of polynomials are easier to deal with.
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Let Fn = F 〈x1, . . . , xn〉 be the free algebra of rank n ≥ 1 over F . This algebra can be naturally

decomposed as

Fn = F (1)
n ⊕ F (2)

n ⊕ · · ·

where, for every k ≥ 1, F
(k)
n is the subspace spanned by all monomials of total degree k. The F

(i)
n s

are called the homogeneous components of Fn. This decomposition can be further refined as follows:

for every k ≥ 1, write

F (k)
n =

⊕

i1+···+in=k

F (i1,...,in)
n

where F
(i1,...,in)
n is the subspace spanned by all monomials of degree i1 in x1, . . ., in in xn.

Definition 1.5. A polynomial f ∈ F
(k)
n , for some k ≥ 1, is called homogeneous of degree k. If f ∈

F
(i1,...,in)
n it will be called multihomogeneous of multidegree (i1, . . . , in). We also say that a polynomial

f is homogeneous in the variable xi if xi appears with the same degree in every monomial of f .

Among multihomogeneous polynomials a special role is played by the multilinear ones.

Definition 1.6. A polynomial f ∈ F 〈X〉 is called linear in the variable xi if xi occurs with degree

1 in every monomial of f . Moreover, f is called multilinear if f is linear in each of its variables

(multihomogeneous of multidegree (1, . . . , 1)).

It is always possible to reduce an arbitrary polynomial to a multilinear one. This so-called process

of multilinearization can be found, for instance, in [26, Chapter 1].

We now introduce the notion of alternating polynomials and state a proposition concerning them.

Definition 1.7. Let f(x1, . . . , xn, t1, . . . , tm) be a polynomial linear in each of the variables x1, . . . , xn.

We say that f is alternating in the variables x1, . . . , xn if, for any 1 ≤ i < j ≤ n, the polynomial f

becomes zero when we substitute xi instead of xj.

Example 1.4. Let Sr denotes the symmetric group on {1, . . . , r}. The standard polynomial of degree

r

Str(x1, . . . , xr) =
∑

σ∈Sr

(sgnσ)xσ(1) · · ·xσ(r)

is alternating in each of its variables.

Proposition 1.1. Let f(x1, . . . , xn, t1, . . . , tm) be a polynomial alternating in the variables x1, . . . , xn

and let A be an F -algebra. If a1, . . . , an ∈ A are linearly dependent over F , then f(a1, . . . , an, b1, . . . , bm) =

0, for all b1, . . . , bm ∈ A.

We conclude this section with the following result, emphasizing the importance of multilinear

polynomials. For a proof of it see [26, Corollary 1.3.9] and previous results.
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Theorem 1.1.3. If charF = 0, every T -ideal is generated, as a T -ideal, by the multilinear polynomials

it contains.

1.2 The representation theory

1.2.1 Finite dimensional representations

In this section we survey the information on finite dimensional representations. We refer to [26,

Chapter 2] for the results of this section. For a start, let V be a vector space over a field F and let

GL(V ) be the group of invertible endomorphisms of V . We recall the following.

Definition 1.8. A representation of a group G on V is a homomorphism of groups ρ : G→ GL(V ).

Let us denote by End(V ) the algebra of F -endomorphisms of V . If FG is the group algebra of G

over F and ρ is a representation of G on V , it is clear that ρ induces a homomorphism of F -algebras

ρ′ : FG→ End(V ) such that ρ′(1FG) = 1.

Throughout we shall be dealing only with the case of finite dimensional representation. In this

case, n = dimF V is called the dimension or the degree of the representation ρ. Now, a representation

of a group G uniquely determines a finite dimensional FG-module (or G-module) in the following way.

If ρ : G → GL(V ) is a representation of G, V becomes a (left) G-module by defining gv = ρ(g)(v),

for all g ∈ G and v ∈ V . It is also clear that if L is a G-module which is finite dimensional as a

vector space over F , then ρ : G → GL(L), such that ρ(g)(l) = gl, for g ∈ G and l ∈ L, defines a

representation of G on L.

Definition 1.9. If ρ : G → GL(V ) and ρ′ : G → GL(W ) are two representations of a group G, we

say that ρ and ρ′ are equivalent, and we write ρ ∼ ρ′, if V and W are isomorphic as G-modules.

Definition 1.10. A representation ρ : G→ GL(V ) is irreducible if V is an irreducible G-module and

ρ is completely reducible if V is the direct sum of its irreducible submodules.

The basic tool for studying the representations of a finite group in case charF = 0, is the Maschke’s

theorem. Recall that an algebra A is simple if A2 6= 0 and it contains no non-trivial two-sided ideals

and A is semisimple if J(A) = 0, where J(A) is the Jacobson radical of A.

Theorem 1.2.1. Let G be a finite group and let charF = 0 or charF = p > 0 and p - |G|. Then the

group algebra FG is semisimple.

We now present two famous results of Wedderburn and Wedderburn-Artin concerning simple and

semisimple artinian rings. Recall that a ring R is said artinian if it satisfies the descending chain

condition for ideals (i.e., if every strictly descending sequence of ideals eventually terminates).
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Theorem 1.2.2. Let R be a ring. Then

1. R is simple artinian if and only if R ∼= Mk(D), the ring of k × k matrices over a division ring

D, k ≥ 1.

2. R is semisimple artinian if and only if R = I1 ⊕ · · · ⊕ In, where I1, . . ., In are simple artinian

rings and they are all minimal two-sided ideals of R.

As a consequence, it follows that, under the hypothesis of Maschke’s theorem,

FG ∼=Mn1(D
(1))⊕ · · · ⊕Mnk

(D(k)),

where D(1), . . ., D(k) are finite dimensional division algebras over F . In light of these results one can

classify all the irreducible representations of G: L is an irreducible G-module if and only if L is an

irreducible Mni
(D(i))-module, for some i. On the other hand, Mni

(D(i)) has, up to isomorphism, only

one irreducible module, isomorphic to

ni∑

j=1

D(i)eij , where the eijs denote the usual matrix units.

From the above it can also be deduced that every G-module V is completely reducible. Hence if

dimF V <∞, V is the direct sum of a finite number of irreducible G-modules. We record this fact in

the following.

Corollary 1.1. Let G be a finite group and let charF = 0 or charF = p > 0 and p - |G|. Then every

representation of G is completely reducible and the number of inequivalent irreducible representations

of G equals the number of simple components in the Wedderburn decomposition of the group algebra

FG.

Recall that an element e ∈ FG is an idempotent if e2 = e. It is well known that, since FG has

finite dimensional and it is semisimple, every one-sided ideal of FG is generated by an idempotent.

Moreover every two-sided ideal of FG is generated by a central idempotent. We say that an idempotent

is minimal (resp. central) if it generates a minimal one-sided (resp. two-sided) ideal. We record this

in the following.

Proposition 1.2. If L is an irreducible representation of G, then L ∼= Ji, a minimal left ideal of

Mni
(D(i)), for some i = 1, . . . k. Hence there exists a minimal idempotent e ∈ FG such that L ∼= FGe.

If F is a splitting field for the group G, e.g., F is algebraically closed, the following properties hold.

Proposition 1.3. Let F be a splitting field for the group G. Then the number of non-equivalent

irreducible representations of G equals the number of conjugacy classes of G.
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Since by Corollary 1.1 this number equals the number of simple components of FG, it follows that,

when F is a splitting field for G, it equals the dimension of the center of FG over F .

A basic tool in representation theory is provided by the theory of characters. From now on, we

assume that F is a splitting field for G of characteristic zero and let tr : End(V ) → F be the trace

function on End(V ).

Definition 1.11. Let ρ : G→ GL(V ) be a representation of G. Then the map χρ : G→ F such that

χρ(g) = tr(ρ(g)) is called the character of the representation ρ. Moreover, dimF V = degχρ is called

the degree of the character χρ.

We say that the character χρ is irreducible if ρ is irreducible. Moreover it is easy to prove that

χρ is constant on the conjugacy classes ofG, i.e., χρ is a class function ofG. Notice that χρ(1) = degχρ.

1.2.2 Sn-representations

We now describe the ordinary representation theory of the symmetric group Sn, n ≥ 1. We refer

to [26, Chapter 2] for the results of this section.

Since Q, the field of rational numbers, is a splitting field for Sn, for any field F of characteristic

zero, the group algebra FSn has a decomposition into semisimple components which are algebras of

matrices over the field F itself. Moreover, by Proposition 1.3, the number of irreducible non-equivalent

representations equals the number of conjugacy classes of Sn. Recall the following.

Definition 1.12. Let n ≥ 1 be an integer. A partition λ of n is a finite sequence of integers λ =

(λ1, . . . , λr) such that λ1 ≥ · · · ≥ λr and

r∑

i=1

λi = n. In this case we write λ ` n.

It is well known that the conjugacy classes of Sn are indexed by the partition of n. If σ ∈ Sn, we

decompose σ into the product of disjoint cycles, including 1-cycles, and this decomposition is unique

if we require that σ = π1 · · ·πr, with π1, . . ., πr cycles of length λ1 ≥ · · · ≥ λr ≥ 1, respectively. Then

the partition λ = (λ1, . . . , λr) uniquely determines the conjugacy class of σ. Since all the irreducible

characters of Sn are indexed by the partitions of n, let us denote by χλ the irreducible Sn-character

corresponding to λ ` n.

Proposition 1.4. Let F be a field of characteristic zero and n ≥ 1. There is a one-to-one corre-

spondence between irreducible Sn-characters and partitions of n. Let {χλ | λ ` n} be a complete set

of irreducible characters of Sn and let dλ = χλ(1) be the degree of χλ, λ ` n. Then

FSn =
⊕

λ`n

Iλ ∼=
⊕

λ`n

Mdλ(F ),
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where Iλ = eλFSn and eλ =
∑

σ∈Sn

χλ(σ)σ is, up to a scalar, the unit element of Iλ.

Definition 1.13. Let λ = (λ1, . . . , λr) ` n. The Young diagram associated to λ is the finite subset of

Z× Z defined as Dλ = {(i, j) ∈ Z× Z | i = 1, . . . , r, j = 1, . . . , λi}.

The array of the boxes denoting Dλ is such that the first coordinate i (the row index) increases

from top to bottom and the second coordinate j (the column index) increases from left to right.

For a partition λ = (λ1, . . . , λr) ` n we shall denote by λ′ = (λ′1, . . . , λ
′
s) the conjugate partition of

λ in which λ′1, . . ., λ
′
s are the lengths of the columns of Dλ. Hence Dλ′ is obtained from Dλ by flipping

Dλ along its main diagonal.

Definition 1.14. Let λ = (λ1, . . . , λr) ` n. A Young tableau Tλ of the diagram Dλ is a filling of the

boxes of Dλ with the integers 1, 2, . . . , n. We shall also say that Tλ is a tableau of shape λ.

Of course there are n! distinct tableaux. Among these a prominent role is played by the so-called

standard tableaux.

Definition 1.15. A tableau Tλ of shape λ is standard if the integers in each row and in each column

of Tλ increase from left to right and from top to bottom, respectively.

There is a strict connection between standard tableaux and degrees of the irreducible Sn-characters.

Theorem 1.2.3. Given a partition λ ` n, the number of standard tableaux of shape λ equals dλ, the

degree of χλ, the irreducible character corresponding to λ.

Next we give a formula to compute the degree dλ of the irreducible character χλ: the hook formula.

First we need some further terminology.

Given a diagram Dλ, λ ` n, we identify a box of Dλ with the corresponding point (i, j).

Definition 1.16. For any box (i, j) ∈ Dλ, we define the hook number of (i, j) as hij = λi+λ
′
j−i−j+1,

where λ′ is the conjugate partition of λ.

Note that hij counts the number of boxes in the ”hook” with edge in (i, j), i.e., the boxes to the

right and below (i, j).

Proposition 1.5. The number of standard tableaux of shape λ ` n is dλ =
n!∏
i,j hij

, where the product

runs over all boxes of Dλ.

We now describe a complete set of minimal left ideals of FSn. Given a partition λ = (λ1, . . . , λr) `

n, we denote by Tλ = Dλ(aij) the tableau Tλ of shape λ in which aij is the integer in the box (i, j).

Then we can give the following definitions.
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Definition 1.17. The row-stabilizer of Tλ is

RTλ
= Sλ1(a11, a12, . . . , a1λ1)× · · · × Sλr(ar1, ar2, . . . , arλr)

where Sλi
(ai1, ai2, . . . , aiλi

) denotes the symmetric group acting on the integers ai1, ai2, . . . , aiλi
.

Definition 1.18. The column-stabilizer of Tλ is

CTλ
= Sλ′

1
(a11, a21, . . . , aλ′

11
)× · · · × Sλ′

r
(a1λ1 , a2λ1 , . . . , aλ′

sλ1)

where λ′ = (λ′1, . . . , λ
′
s) is the conjugate partition of λ.

Hence RTλ
and CTλ

are the subgroups of Sn consisting of all permutations stabilizing the rows and

the columns of Tλ, respectively.

Definition 1.19. For a given tableau Tλ we define eTλ
=
∑

σ∈RTλ
τ∈CTλ

(sgnτ)στ .

It can be shown that e2Tλ
= aeTλ

, where a = n!
dλ

is a non-zero integer, i.e., eTλ
is an essential idempotent

of FSn.

Given a partition λ ` n, the symmetric group Sn acts on the set of Young tableaux of shape

λ as follows. If σ ∈ Sn and Tλ = Dλ(aij), then σTλ = Dλ(σ(aij)). This action has the property

that RσTλ
= σRTλ

σ−1 and CσTλ
= σCTλ

σ−1. It follows that eσTλ
= σeTλ

σ−1. We record the most

important fact about eTλ
in the following.

Proposition 1.6. For every Young tableau Tλ of shape λ ` n, the element eTλ
is a minimal essential

idempotent of FSn and FSneTλ
is a minimal left ideal of FSn, with character χλ. Moreover, if Tλ

and T ′
λ are Young tableaux of the same shape, then eTλ

and eT ′
λ
are conjugated in FSn through some

σ ∈ Sn.

The above proposition says that, for any two tableaux Tλ and T ′
λ of the same shape λ ` n,

FSneTλ
∼= FSneT ′

λ
, as Sn-modules.

We now regard the group Sn embedded in Sn+1 as the subgroup of all permutations fixing the

integer n + 1. The next theorem gives a decomposition into irreducibles of any Sn-module induced

up to Sn+1. Let us denote by Lλ an irreducible Sn-module corresponding to the partition λ ` n. We

have the following.

Theorem 1.2.4. Let the group Sn be embedded into Sn+1 as the subgroup fixing the integer n + 1.

Then
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1. If λ ` n, then Lλ ↑ Sn+1
∼=
∑

µ∈λ+ Lµ, where λ+ is the set of all partitions of n + 1 whose

diagram is obtained from Dλ by adding one box.

2. If µ ` n+1, then Lµ ↓ Sn ∼=
∑

λ∈µ− Lλ, where µ
− is the set of all partitions of n whose diagram

is obtained from Dµ by deleting one box.

We now embed the group Sn×Sm into Sn+m by letting Sm act on {n+ 1, . . . , n+m}. Recall that if

N is an Sn-module and N ′ is an Sm-module, then N⊗N ′ has a natural structure of (Sn × Sm)-module.

Definition 1.20. If N is an Sn-module and N ′ is an Sm-module, then the outer tensor product of N

and N ′ is defined as

N⊗̂N ′ ∼=
(
N ⊗N ′

)
↑ Sn+m.

Recall that (m) denotes a one-row partition µ ` m, i.e., µ1 = m. In the following theorem we

present the so-called Young rule.

Theorem 1.2.5. Let λ = (λ1, . . . , λk) ` n and m ≥ 1. Then

Nλ⊗̂N(m)
∼=
∑

Mµ

where the sum runs over all partitions µ of n +m such that we have µ1 ≥ λ1 ≥ µ2 ≥ · · · ≥ µn+m ≥

λn+m.

Definition 1.21. An unordered partition of n is a finite sequence of positive integers α = (α1, . . . , αt)

such that

t∑

i=1

αi = n. In this case we write α |= n.

Definition 1.22. Let λ ` n and α |= n. A (generalized) Young tableau of shape λ and content α is a

filling of the diagram Dλ by positive integers in such a way that the integer i occurs exactly αi times.

Definition 1.23. A Young tableau is semistandard if the numbers are non-decreasing along the rows

and strictly increasing down the columns.

We now consider the obvious partial order on the set of partitions. Let λ = (λ1, . . . , λp) ` n and

µ = (µ1, . . . , µq) ` m, then λ ≥ µ if and only if p ≥ q and λi ≥ µi, for all i = 1, . . . , p. In the language

of Young diagrams λ ≥ µ means that Dµ is a subdiagram of Dλ.

If λ ≥ µ, we define the skew-partition λ \ µ = (λ1 − µ1, λ2 − µ2, . . .). The corresponding diagram

Dλ\µ is the set of boxes of Dλ which do not belong to Dµ.

Definition 1.24. A skew-tableau Tλ\µ is a filling of the boxes of the skew-diagram Dλ\µ with distinct

natural numbers. If repetitions occur, then we have the notion of generalized skew-tableau. We also

have the natural notion of standard and semistandard skew-tableau.
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Definition 1.25. Let α = (α1, . . . , αt) |= n. We say that α is a lattice permutation if for each j the

number of i’s which occur among α1, . . . , αj is greater than or equal to the number of (i+1)’s for each

i.

We can now formulate the Littlewood-Richardson rule.

Theorem 1.2.6. Let λ ` n and µ ` m. Then

Nλ⊗̂Nµ
∼=

∑

ν`n+m

kµ
ν\λ Nν

where kµ
ν\λ is the number of semistandard tableau of shape ν \ λ and content µ which yield lattice

permutations when we read their entries from right to left and downwards.

1.2.3 Representations of the general linear group

In this section we survey the information on representation theory of the general linear group

over an algebraically closed field F of characteristic zero. We restrict our attention to the case when

GLm = GLm(F ) acts on the free associative algebra of rank m and consider the so-called polynomial

representation of GLm, which have many properties similar to those of the representations of finite

groups. We refer to [11, Chapter 12] for the results of this section.

Definition 1.26. The representation φ : GLm → GLs of the general linear group GLm is called

polynomial if the entries of the s × s matrix φ(aij) are polynomial functions of the entries of the

m×m matrix aij, for all aij ∈ GLm. When all the entries of φ(aij) are homogeneous polynomials of

degree k, then φ is a homogeneous representation of degree k.

Let Fm〈X〉 = F 〈x1, . . . , xm〉 denote the free associative algebra in m variables and let U =

spanF {x1, . . . , xm}. The action of the group GLm
∼= GL(U) on Fm〈X〉 can be obtained extend-

ing diagonally the natural left action of GLm on the space U by defining:

g(xi1 , . . . , xik) = g(xi1) · · · g(xik), g ∈ GLm, xi1 , . . . , xik ∈ Fm〈X〉.

Actually, Fm〈X〉 is a polynomial GLm-module, i.e., the corresponding representation is polynomial.

Let Fn
m be the space of homogeneous polynomials of degree n in the variables x1, . . . , xm. Then

Fn
m is a (homogeneous polynomial) submodule of Fm〈X〉. We observe that

Fn
m =

⊕

i1+···+im=n

F (i1,...,im)
m

where F
(i1,...,im)
m is the multihomogeneous subspace spanned by all monomials of degree i1 in x1, . . .,

im in xm.
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The following theorem states a result similar to Maschke’s theorem about the complete reducibility of

GLm-modules, valid for the polynomial representations of GLm.

Theorem 1.2.7. Every polynomial GLm-module is a direct sum of irreducible homogeneous polynomial

submodules.

The irreducible homogeneous polynomial GLm-modules are described by partition of n in no more

than m parts and Young diagrams.

Theorem 1.2.8. Let Pm(n) denote the set of all partitions of n with at most m parts (i.e. whose

diagrams have height at most m).

1. The pairwise non isomorphic irreducible homogeneous polynomial GLm-modules of degree n ≥ 1

are in one-to-one correspondence with the partitions of Pm(n). We denote by W λ an irreducible

GLm-module related to λ.

2. Let λ ∈ Pm(n). Then the GLm-module W λ is isomorphic to a submodule of Fn
m. Moreover the

GLm-module Fn
m has a decomposition:

Fn
m

∼=
∑

λ∈Pm(n)

dλW
λ,

where dλ is the dimension of the irreducible Sn-module corresponding to the partition λ.

3. As a subspace of Fn
m, the vector space W λ is multihomogeneous, i.e.

W λ =
⊕

i1+···+im=n

W λ,(i1,...,im),

where W λ,(i1,...,im) =W λ ∩ F
(i1,...,im)
m .

We want to show that if W λ ⊆ Fn
m, then W λ is cyclic and generated by a multihomogeneous

polynomial of multidegree λ1, . . . , λk, with λ = (λ1, . . . , λk) ∈ Pn
m.

We observe first that the symmetric group Sn acts from the right on Fn
m by permuting the places

in which the variables occur, i.e., for all xi1 , . . . , xin ∈ Fn
m and for all σ ∈ Sn, we have xi1 · · ·xinσ

−1 =

xiσ(1)
· · ·xiσ(n)

.

Let now λ = (λ1, . . . , λk) ∈ Pn
m. We denote by sλ the following polynomial of Fn

m:

sλ = sλ(x1, . . . , xλ′
1
) =

λ1∏

i=1

Sthi(λ)

(
x1, . . . , xhi(λ)

)
,

where hi(λ) is the height of the i-th column of the diagram of λ and Str(x1, . . . , xr) =
∑

σ∈Sr

(sgnσ)xσ(1) · · ·xσ(r)

is the standard polynomial of degree r. Note that by definition sλ is multihomogeneous of multidegree

(λ1, . . . , λk).
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Theorem 1.2.9. The following conditions hold:

1. The element sλ generates an irreducible GLm-submodule W of Fn
m isomorphic to W λ.

2. Every submodule W λ ⊆ Fn
m is generated by a non-zero polynomial called highest weight vector of

W λ, of the type

fλ = sλ
∑

σ∈Sn

ασσ, ασ ∈ F. (1.1)

The highest weight vector is unique up to a multiplicative constant and it is contained in the

one-dimensional vector space W λ,(i1,...,im).

3. Let
∑

σ∈Sn
ασσ ∈ FSn. If sλ

∑
σ∈Sn

ασσ 6= 0, then it generates an irreducible submodule W ∼=

W λ, W ⊆ Fn
m.

By Theorem 1.2.8 the multiplicity of W λ in Fn
m is equal to the dimension dλ of the irreducible

Sn-module corresponding to the partition λ. Hence every W ∼=W λ ⊂ Fn
m is a submodule of the direct

sum of dλ isomorphic copies of W λ and the problem is how to find the highest weight vectors of those

dλ modules.

We fix λ = (λ1, . . . , λk) ∈ Pn
m and let Tλ be a Young tableau. We denote by fTλ

the highest weight

vector obtained from (1.1) by considering the only permutation σ ∈ Sn such that the first column of

Tλ is filled from top to bottom with the integers σ(1), . . . , σ(h1(λ)), in this order, the second column

is filled with σ(h1(λ) + 1), . . . , σ(h1(λ) + h2(λ)) and so on.

Proposition 1.7. Let λ = (λ1, . . . , λk) ∈ Pn
m and let W λ ⊆ Fn

m. The highest weight vector fλ of W λ

can be expressed uniquely as a linear combination of the polynomials fTλ
with Tλ standard tableau.

1.3 PI-algebras

In this section we focus our attention on associative algebras satisfying a non-trivial polynomial

identity (PI-algebras). One of the most interesting and challenging problems in combinatorial PI-

theory is that of finding numerical invariants allowing to classify the T -ideals of F 〈X〉. A very useful

numerical invariant that can be attached to a T -ideal is given by the sequence of codimensions. It was

introduced by Regev in [50] and measures the rate of growth of the multilinear polynomials lying in

a given T -ideal.

In order to define this object, let A be a PI-algebra over a field F of characteristic zero and Id(A)

its T -ideal of identities. We introduce

Pn = span
{
xσ(1) · · ·xσ(n) | σ ∈ Sn

}
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the vector space of multilinear polynomials in the variables x1, . . . , xn in the free algebra F 〈X〉.

According to Theorem 1.1.3, since charF = 0, then Id(A) is determined by its multilinear polynomials

and so it is generated, in the free associative algebra F 〈X〉, by the subspace

(P1 ∩ Id(A))⊕ (P2 ∩ Id(A))⊕ · · · ⊕ (Pn ∩ Id(A))⊕ · · · .

It is clear that if A satisfies all the identities of some PI-algebra B, then Pn ∩ Id(A) ⊇ Pn ∩ Id(B) and

so dim(Pn ∩ Id(A)) ≥ dim(Pn ∩ Id(B)), for all n = 1, 2, . . .. Therefore the dimensions of the spaces

Pn ∩ Id(A) give us, in some sense, the growth of the identities of the algebra A.

Definition 1.27. The non-negative integer

cn(A) = dimF
Pn

Pn ∩ Id(A)

is called the n-th codimension of the algebra A. The sequence {cn(A)}n≥1 is the codimensions sequence

of A.

The most important feature of the sequence of codimensions was proved by Regev in [50]. We

recall such result in the following.

Theorem 1.3.1 (Regev, 1972). If A is a PI-algebra then cn(A), n = 1, 2, . . ., is exponentially

bounded.

We now introduce an action of the symmetric group Sn on Pn. From now on, we assume that

charF = 0. We start with the following lemma concerning arbitrary irreducible Sn-module.

Lemma 1.1. Let L be an irreducible left Sn-module with character χ(L) = χλ, λ ` n. Then L can be

generated, as an Sn-module, by an element of the form eTλ
f , for some f ∈ L and some Young tableau

Tλ. Moreover, for any Young tableau T ′
λ of shape λ, there exists f ′ ∈ L such that L = FSneT ′

λ
f ′.

The previous lemma says that, given a partition λ ` n and a Young tableau Tλ of shape λ, any

irreducible Sn-module L such that χ(L) = χλ, can be generated by an element of the form eTλ
f , for

some f ∈ L. By the definition of RTλ
, for any σ ∈ RTλ

, we have that σeTλ
f = eTλ

f , i.e., eTλ
f is stable

under the RTλ
-action. The number of RTλ

-stable elements in an arbitrary Sn-module L is closely

related to the number of irreducible Sn-submodules of L having character χλ.

Lemma 1.2. Let Tλ be a Young tableau corresponding to λ ` n and let L be an Sn-module such that

L = L1 ⊕ · · · ⊕ Lm, where L1, . . . , Lm are irreducible Sn-submodules with character χλ. Then m is

equal to the number of linearly independent elements g ∈ L such that σg = g, for all σ ∈ RTλ
.
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Let now ϕ : FSn → Pn be the map defined by ϕ

(
∑

σ∈Sn

ασσ

)
=
∑

σ∈Sn

ασxσ(1) · · ·xσ(n). It is clear

that ϕ is a linear isomorphism. This isomorphism turns Pn into an Sn-bimodule (i.e., an abelian

group that is both a left and a right Sn-module and in which the left and right multiplications are

compatible). If σ, τ ∈ Sn, then

σ
(
xτ(1) · · ·xτ(n)

)
= xστ(1) · · ·xστ(n) =

(
xσ(1) · · ·xσ(n)

)
τ.

The interpretation of the left Sn-action on a polynomial f(x1, . . . , xn) ∈ Pn, for σ ∈ Sn, is

σf(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)),

that is, of permuting the variables according to σ. Since T -ideals are invariant under permutations of

the variables, we obtain that the subspace Pn∩ Id(A) is invariant under this action, that is Pn∩ Id(A)

is a left Sn-submodule of Pn. Hence

Pn(A) =
Pn

Pn ∩ Id(A)

has an induced structure of left Sn-module.

Definition 1.28. For n ≥ 1, the Sn-character of Pn(A) = Pn/(Pn ∩ Id(A)), denoted by χn(A), is

called n-th cocharacter of A.

If A is an algebra over a field of characteristic zero, we can decompose the n-th cocharacter into

irreducibles as follows:

χn(A) =
∑

λ`n

mλχλ,

where χλ is the irreducible Sn-character associated to the partition λ ` n and mλ ≥ 0 is the corre-

sponding multiplicity.

Our next goal is to present several results concerning algebras of polynomial growth.

Definition 1.29. Let A be a PI-algebra. A has polynomial growth if its sequence of codimensions

cn(A), n = 1, 2, . . ., is polynomially bounded, i.e., cn(A) ≤ anb, for some constants a and b.

If V is a variety of algebras, then the growth of V is defined as the growth of the sequence of

codimensions of any algebra A generating V, i.e., V = var(A). Hence we have the following.

Definition 1.30. A variety V has polynomial growth if its sequence of codimensions cn(V), n =

1, 2, . . ., is polynomially bounded. We say that V has almost polynomial growth if cn(V), n = 1, 2, . . .,

is not polynomially bounded but any proper subvariety of V has polynomial growth.
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Actually, the condition cn(V) not polynomially bounded simply means that V has exponential

growth. In fact, the following result, due to Kemer, holds.

Theorem 1.3.2 ([32, 33]). Let A be a PI-algebra. Then cn(A), n = 1, 2, . . ., is polynomially bounded

or it grows exponentially.

In order to present another celebrated theorem of Kemer, let us define two suitable algebras

generating varieties of almost polynomial growth. Let G be the infinite dimensional Grassmann

algebra over F , i.e., the algebra generated by a countable set of elements {e1, e2, . . .} satisfying the

condition eiej = −ejei and let UT2 be the algebra of 2× 2 upper triangular matrices over F .

Such algebras, generating varieties of almost polynomial growth, were extensively studied in [36]

and [44]. In the following theorem we collect the results of [36, 44], concerning the T -ideals of these

two algebras. Recall that 〈f1, . . . , fn〉T denotes the T -ideal generated by the polynomials f1, . . . , fn ∈

F 〈X〉.

Theorem 1.3.3. 1. Id(UT2) = 〈[x1, x2][x3, x4]〉T .

2. Id(G) = 〈[[x1, x2], x3]〉T .

Now we are ready to state the celebrated result of Kemer.

Theorem 1.3.4 (Kemer, 1979). A variety of algebras V has polynomial growth if and only if G,

UT2 6∈ V.

Corollary 1.2. The varieties var(G) and var(UT2) are the only varieties of almost polynomial growth.

The next theorem characterizes the algebras of polynomial growth in terms of their cocharacter

sequence.

Theorem 1.3.5 ([32]). Let A be a PI-algebra. Then cn(A) is polynomially bounded if and only if

there exists a constant q such that, for all n ≥ 1,

χn(A) =
∑

λ`n
|λ|−λ1≤q

mλχλ.

As a consequence, it is possible to prove the following.

Theorem 1.3.6. If V is a variety of algebras with polynomial growth then V = var(A), for some finite

dimensional algebra A.

Finally, we present three results of Giambruno and Zaicev characterizing finite dimensional algebras

generating varieties of polynomial growth.
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Proposition 1.8 ([24]). Let V be a variety of algebras over an algebraically closed field F of char-

acteristic zero. Then V has polynomial growth if and only if V = var(A) for some finite dimensional

algebra A such that

1. A = A0 ⊕ A1 ⊕ · · · ⊕ Am a vector space direct sum of F -algebras where for i = 1, . . . ,m,

Ai = Bi + Ji, Bi
∼= F , Ji is a nilpotent ideal of Ai and A0, J1, . . ., Jm are nilpotent right ideals

of A;

2. for all i, k ∈ {1, . . . ,m}, i 6= k, AiAk = 0 and BiA0 = 0.

Moreover, if J is the Jacobson radical of A, then Id(A) = Id(A1 ⊕A0) ∩ · · · ∩ Id(Am ⊕A0) ∩ Id(J).

Theorem 1.3.7 ([24]). A variety of algebras V has polynomial growth if and only if V = var(A1 ⊕

· · · ⊕ Am), where A1, . . ., Am are finite dimensional algebras over F and dimF Ai/J(Ai) ≤ 1, for all

i = 1, . . . ,m.

If in Theorem 1.3.5 we take A to be a finite dimensional algebra (as we may by Theorem 1.3.6),

we can find an upper bound for the number of boxes below the first row of any diagram in the n-th

cocharacter of A (see [24, 32]).

Theorem 1.3.8. Let A be a finite dimensional algebra. Then A has polynomial growth if and only if

χn(A) =
∑

λ`n
|λ|−λ1<q

mλχλ,

where q is such that J(A)q = 0.

We now collect these results in the following.

Theorem 1.3.9. For a variety of algebras V, the following conditions are equivalent:

1) cn(V) is polynomially bounded.

2) G,UT2 /∈ V.

3) V = var(A), where A = A1 ⊕ · · · ⊕Am, with A1, . . . , Am finite dimensional algebras over F such

that dimAi/J(Ai) ≤ 1, for all i = 1, . . . ,m.

4) For all n ≥ 1, there exists a constant q such that χn(V) =
∑

λ`n
|λ|−λ1≤q

mλχλ. If V = var(A) with A

finite dimensional algebra, then q is such that J(A)q = 0.
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1.4 Algebras with involution

Let A be an associative algebra over a field F . From now until the end of this section the field F

is of characteristic zero.

Definition 1.31. An involution on A is a linear map ] : A → A of order two ((a])] = a, for all

a ∈ A) such that, for all a, b ∈ A,

(ab)] = b]a].

Let A be an algebra with involution ]. We write A = A+ ⊕ A−, where A+ =
{
a ∈ A | a] = a

}

and A−
{
a ∈ A | a] = −a

}
denote the sets of symmetric and skew elements of A, respectively. Let

X = {x1, x2, . . .} be a countable set and let F 〈X, ]〉 = F 〈x1, x
]
1, x2, x

]
2, . . .〉 be the free associative

algebra with involution on X over F . It is useful to regard to F 〈X, ]〉 as generated by symmetric and

skew variables: if for i = 1, 2, . . . , we let x+i = xi + x]i and x
−
i = xi − x]i , then

F 〈X, ]〉 = F 〈x+1 , x
−
1 , x

+
2 , x

−
2 , . . .〉.

Definition 1.32. A ]-polynomial f(x+1 , . . . , x
+
n , x

−
1 , . . . , x

−
m) ∈ F 〈X, ]〉 is a ]-identity of the alge-

bra with involution A, and we write f ≡ 0, if, for all s1, . . . , sn ∈ A+, k1, . . . , km ∈ A−, we have

f(s1, . . . , sn, k1, . . . , km) = 0.

We denote by Id](A) = {f ∈ F 〈X, ]〉 | f ≡ 0 on A} the T ]-ideal of ]-identities of A, i.e., Id](A)

is an ideal of F 〈X, ]〉 invariant under all endomorphisms of the free algebra commuting with the

involution ]. It is well known that in characteristic zero, every ]-identity is equivalent to a system of

multilinear ]-identities. Let

P ]
n = spanF

{
wσ(1) · · ·wσ(n) | σ ∈ Sn, wi ∈

{
x+i , x

−
i

}
, i = 1, . . . , n

}

be the vector space of multilinear polynomials of degree n in the variables x+1 , x
−
1 , . . . , x

+
n , x

−
n . Hence

for every i = 1, . . . , n either x+i or x−i appears in every monomial of P ]
n at degree 1 (but not both). The

study of Id](A) is equivalent to the study of P ]
n ∩ Id](A), for all n ≥ 1 and we can give the following

definition.

Definition 1.33. The non-negative integer

c]n(A) = dimF
P ]
n

P ]
n ∩ Id](A)

, n ≥ 1,

is called the n-th ]-codimension of A.
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Given a non-empty set S ⊆ F 〈X, ]〉, the class of all algebras with involution A such that f ≡ 0 on

A, for all f ∈ S, is called the ]-variety V = V(S) determined by S. Moreover, if A is an algebra with

involution, we write var](A) to denote the ]-variety generated by A, i.e., the class of all algebras with

involution B such that f ≡ 0 on B, for all f ∈ Id](A).

As in the case of associative algebras we have the following.

Definition 1.34. Let A be an algebra with involution. A has polynomial growth if its sequence of

]-codimensions c]n(A), n = 1, 2, . . ., is polynomially bounded.

At the same way we define the growth of a ]-variety V as the growth of the sequence of ]-

codimensions of any algebra with involution A generating V. Then a ]-variety V has polynomial

growth if c]n(V), n = 1, 2, . . ., is polynomially bounded and V has almost polynomial growth if c]n(V)

is not polynomially bounded but any proper subvariety of V has polynomial growth.

In order to present an analogous result than that Kemer proved for associative algebras, let us

consider the following suitable algebras with involution generating ]-varieties of almost polynomial

growth.

For a start, let UTn be the algebra of n× n upper triangular matrices over F . One can define on

UTn the so-called ”reflection” involution ref in the following way: if a ∈ UTn, a
ref = batb−1, where

at denotes the usual transpose and b is the permutation matrix

b = e1,n + e2,n−1 + · · ·+ en−1,2 + en,1,

where the eijs denote the usual matrix units. Clearly aref is the matrix obtained from a by reflecting

a along its secondary diagonal: if a = (aij) then a
ref = (bij) where bij = an+1−j n+1−i.

Let nowM =








u r 0 0

0 s 0 0

0 0 s v

0 0 0 u




| u, r, s, v ∈ F





be a subalgebra of UT4 endowed with the reflection

involution and let F ⊕ F be the two-dimensional commutative algebra endowed with the exchange

involution ex defined, for all (a, b) ∈ F ⊕ F , by (a, b)ex = (b, a).

In the following theorem we collect the results of [19, 45] concerning this two algebras with involu-

tion. Recall that 〈f1, . . . , fn〉T ] denotes the T ]-ideal generated by the polynomials f1, . . . , fn ∈ F 〈X, ]〉.

Theorem 1.4.1. The algebras F ⊕ F with exchange involution and M with reflection involution

generate ]-varieties of almost polynomial growth. Moreover

1. Id](F ⊕ F ) = 〈[x+1 , x
+
2 ], [x

+, x−], [x−1 , x
−
2 ]〉T ] .
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2. Id](M) = 〈x−1 x
−
2 〉T ] .

We remark that, in [45], Mishchenko and Valenti proved that, in the finite dimensional case over

an algebraically closed field of characteristic zero, actually var](F ⊕ F ) and var](M) are the only two

]-varieties of almost polynomial growth. In fact, the following theorem holds.

Theorem 1.4.2 ([45]). Let A be a finite dimensional algebra with involution over an algebraically

closed field F of characteristic zero. Then var](A) has polynomial growth if and only if F ⊕ F ,

M 6∈ var](A).

This result was improved by Giambruno and Mishchenko, that, in [20], were able to characterize

the ]-varieties of polynomial growth as follows.

Theorem 1.4.3 (Giambruno-Mishchenko, 2001). Let V be a ]-variety of algebras with involution

over a field F of characteristic zero. Then V has polynomial growth if and only if F ⊕ F , M 6∈ V.

Corollary 1.3. The ]-varieties var(F ⊕ F ) and var(M) are the only ]-varieties of almost polynomial

growth.

1.5 Superalgebras

Let A be an algebra over a field F of characteristic zero and let Z2 be the cyclic group of order 2.

We start by introducing the notion of Z2-graded algebra.

Definition 1.35. The algebra A is Z2-graded if it can be written as the direct sum of subspaces

A = A0 ⊕A1 such that A0A0 +A1A1 ⊆ A0 and A0A1 +A1A0 ⊆ A1.

The subspaces A0 and A1 are the homogeneous components of A and their elements are called

homogeneous of degree zero (even elements) and of degree one (odd elements), respectively. If a is

an homogeneous element we shall write deg a or |a| to indicate its homogeneous degree. A subspace

B ⊆ A is graded if B = (B ∩ A0) ⊕ (B ∩ A1). In a similar way one can define graded subalgebra,

graded ideals, and so on.

The Z2-graded algebras are simply called superalgebras.

Example 1.5. Any algebra A can be view as a superalgebra with trivial grading by setting A0 = A

and A1 = 0.

Example 1.6. Let A = Mn(F ) be the algebra of n × n matrices over F and let Z2
∼= {0, 1}. Given

any n-tuple (g1, . . . , gn) ∈ Zn
2 , one can define a Z2-grading on A, called elementary, by setting

Ai = spanF {eij | gi + gj = i} , i = 0, 1,

where eijs are the usual matrix units.
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The free associative algebra F 〈X〉 on a countable set X = {x1, x2, . . .} has a natural structure

of superalgebra as follows. We write X = Y ∪ Z, the disjoint union of two sets and we denote by

F0 the subspace of F 〈Y ∪ Z〉 spanned by all monomials in the variables of X having even degree

in the variables of Z and by F1 the subspace spanned by all monomials of odd degree in Z. Then

F 〈Y ∪ Z〉 = F0 ⊕F1 is a superalgebra called the free superalgebra on X = Y ∪ Z over F.

Definition 1.36. A superpolynomial f(y1, . . . , yn, z1, . . . , zm) ∈ F 〈Y ∪ Z〉 is a superidentity of the

superalgebra A = A0 ⊕A1, and we write f ≡ 0, if, for all v1, . . . , vn ∈ A0, u1, . . . , um ∈ A1, we have

f(v1, . . . , vn, u1, . . . , um) = 0.

We denote by Idsup(A) = {f ∈ F 〈Y ∪Z〉 | f ≡ 0 on A} the T2-ideal of superpolynomial identities

of A (i.e., an ideal invariant under all graded endomorphisms of F 〈Y ∪ Z〉).

It is well known that in characteristic zero Idsup(A) is completely determined by its multilinear

polynomials and we denote by P sup
n the vector space of all multilinear polynomials of degree n in the

variables y1, z1, . . . , yn, zn.

Definition 1.37. The non-negative integer

csupn (A) = dimF
P sup
n

P sup
n ∩ Idsup(A)

, n ≥ 1,

is called the n-th supercodimension of A.

Given a non-empty set S ⊆ F 〈Y ∪ Z〉, the class of all superalgebras A such that f ≡ 0 on A, for

all f ∈ S, is called the supervariety V = V(S) determined by S. Moreover, if A is a superalgebra, we

write varsup(A) to denote the supervariety generated by A, i.e., the class of all superalgebras B such

that f ≡ 0 on B, for all f ∈ Idsup(A).

As in the case of associative algebras we have the following.

Definition 1.38. Let A be a superalgebra. A has polynomial growth if its sequence of supercodimen-

sions csupn , n = 1, 2, . . ., is polynomially bounded.

At the same way we define the growth of a supervariety V as the growth of the sequence of

supercodimensions of any superalgebra A generating V. Then a supervariety V has polynomial growth

if csupn (V), n = 1, 2, . . ., is polynomially bounded and V has almost polynomial growth if csupn (V) is not

polynomially bounded but any proper subvariety of V has polynomial growth.

We now present a list of superalgebras generating corresponding supervarieties of almost polyno-

mial growth. Later we shall see that they generate the only supervarieties with this property.
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First let F ⊕ F be the two-dimensional commutative algebra with exchange involution, defined in

the previous section. Since F ⊕ F is commutative, the exchange involution is also an automorphism

of order 2 and so F ⊕ F can be regarded as a superalgebra with grading (F ⊕ F )0 = F (1, 1) and

(F ⊕ F )1 = F (1,−1).

Recall that if A is a PI-algebra, then A can be viewed as a superalgebra with trivial grading, i.e.,

A = A0 ⊕ A1, where A0 = A and A1 = 0. Thus var(A) can be viewed as the supervariety defined by

all the identities of the algebra A in even variables and by the identity z ≡ 0, z odd.

Let us consider the infinite dimensional Grassmann algebra G, i.e., the algebra generated by a

countable set of elements {e1, e2, . . .} satisfying the relations eiej = −ejei, for all i, j. It is well known

that G has a natural Z2-grading G = G0⊕G1, where G0 is the span of all monomials in the eis of even

length and G1 is the span of all monomials in the eis of odd length. Since we can define on G also the

trivial grading, in order to distinguish between the two, we denote Gsup the Grassmann algebra with

its natural Z2-grading and with G the Grassmann algebra with trivial grading.

In a similar way, we shall use UT2 to denote the algebra of 2× 2 upper triangular matrices over F

with trivial grading whereas UT sup
2 denote the algebra of 2×2 upper triangular matrices with natural

grading (UT sup
2 )0 = Fe11 + Fe22 and (UT sup

2 )1 = Fe12.

We now examine the structure of the superidentities of the above algebras. Recall that 〈f1, . . . , fn〉T2

denotes the T2-ideal generated by the polynomials f1, . . . , fn ∈ F 〈Y ∪ Z〉.

Since the two-dimensional commutative algebra F ⊕ F with exchange involution, can be regarded

as a superalgebra, by Theorem 1.4.1, we have the following.

Proposition 1.9. The superalgebra F ⊕ F generates a supervariety of almost polynomial growth.

Moreover

Idsup(F ⊕ F ) = 〈[y1, y2], [y, z], [z1, z2]〉T2 .

Let now consider the superalgebras G and UT2 with trivial grading. Since z ≡ 0 on G and UT2,

then we are dealing with ordinary identity and, by Theorem 1.3.3 we get the following.

Proposition 1.10. The superalgebras G and UT2 generate corresponding supervarieties of almost

polynomial growth. Moreover

1. Idsup(UT2) = 〈[y1, y2][y3, y4], z〉T2 .

2. Idsup(G) = 〈[[y1, y2], y3], z〉T2 .

We now treat the case of Gsup. In [21] the authors proved the following.

Proposition 1.11. The superalgebra Gsup generates a supervariety of almost polynomial growth.

Moreover

Idsup(Gsup) = 〈[y1, y2], [y, z], z1z2 + z2z1〉T2 .
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The following proposition collects the results, concerning the superalgebra UT sup
2 , proved by

Valenti in [57].

Proposition 1.12. The superalgebra UT sup
2 generates a supervariety of almost polynomial growth.

Moreover

Idsup(UT sup
2 ) = 〈[y1, y2], z1z2〉T2 .

Finally, we are ready to present the following result in which the authors characterize the super-

varieties of polynomial growth (see [21]).

Theorem 1.5.1 (Giambruno-Mishchenko-Zaicev, 2001). Let V be a supervariety of superalge-

bras. Then V has polynomial growth if and only if F ⊕ F , G, Gsup, UT2, UT
sup
2 6∈ V.

Corollary 1.4. The supervarieties var(F ⊕F ), var(G), var(Gsup), var(UT2), var(UT
sup
2 ) are the only

supervarieties of almost polynomial growth.

1.6 Superalgebras with superinvolution

In this section we introduce the main objects of the thesis, that is the superalgebras with super-

involution. From now on, unless otherwise stated, the field F is of characteristic zero.

Recall that, if A = A0 ⊕A1, B = B0 ⊕B1 are two superalgebras, then a linear map ϕ : A→ B is

said to be graded if ϕ(Ai) ⊆ Bi, i = 0, 1.

Definition 1.39. Let A = A0 ⊕ A1 be a superalgebra. We say that A is a superalgebra with superin-

volution ∗ if it is endowed with a graded linear map ∗ : A→ A with the following properties:

1. (a∗)∗ = a, for all a ∈ A,

2. (ab)∗ = (−1)|a||b|b∗a∗, for any homogeneous elements a, b ∈ A0 ∪A1.

Let A = A0 ⊕ A1 be a superalgebra with superinvolution ∗. Since charF = 0, we can write

A = A+
0 ⊕ A−

0 ⊕ A+
1 ⊕ A−

1 , where for i = 0, 1, A+
i = {a ∈ Ai : a

∗ = a} and A−
i = {a ∈ Ai : a

∗ = −a}

denote the sets of homogeneous symmetric and skew elements of Ai, respectively.

From now on, we shall refer to a superalgebra with superinvolution simply as a ∗-algebra.

Our next step is to define a superinvolution on the free associative superalgebra F 〈Y ∪ Z〉 which

we have defined in the previous section. We write the sets Y and Z as the disjoint union of two other

infinite sets of symmetric and skew elements, respectively. Hence the free algebra with superinvolution
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(free ∗-algebra), denoted by F 〈Y ∪ Z, ∗〉, is generated by symmetric and skew elements of even and

odd degree. We write

F 〈Y ∪ Z, ∗〉 = F 〈y+1 , y
−
1 , z

+
1 , z

−
1 , y

+
2 , y

−
2 , z

+
2 , z

−
2 , . . .〉,

where y+i stands for a symmetric variable of even degree, y−i for a skew variable of even degree, z+i

for a symmetric variable of odd degree and z−i for a skew variable of odd degree.

In order to simplify the notation, sometimes we denote by y any even variable, by z any odd

variable and by x an arbitrary variable.

Definition 1.40. A ∗-polynomial f(y+1 , . . . , y
+
n , y

−
1 , . . . , y

−
m, z

+
1 , . . . , z

+
t , z

−
1 , . . . , z

−
s ) ∈ F 〈Y ∪Z, ∗〉 is a

∗-identity of the ∗-algebra A = A+
0 ⊕A−

0 ⊕A+
1 ⊕A−

1 , and we write f ≡ 0, if, for all u+1 , . . . , u
+
n ∈ A+

0 ,

u−1 , . . . , u
−
m ∈ A−

0 , v
+
1 , . . . , v

+
t ∈ A+

1 and v−1 , . . . , v
−
s ∈ A−

1 , we have

f(u+1 , . . . , u
+
n , u

−
1 , . . . , u

−
m, v

+
1 , . . . , v

+
t , v

−
1 , . . . , v

−
s ) = 0.

We denote by Id∗(A) = {f ∈ F 〈Y ∪ Z, ∗〉 | f ≡ 0 on A} the T ∗
2 -ideal of ∗-identities of A, i.e.,

Id∗(A) is an ideal of F 〈Y ∪Z, ∗〉 invariant under all Z2-graded endomorphisms of the free superalgebra

F 〈Y ∪ Z〉 commuting with the superinvolution ∗.

Given polynomials f1, . . . , fn ∈ F 〈Y ∪Z, ∗〉, let us denote by 〈f1, . . . , fn〉T ∗
2
the T ∗

2 -ideal generated

by f1, . . . , fn.

As in the ordinary case, it is easily seen that in characteristic zero, every ∗-identity is equivalent

to a system of multilinear ∗-identities. Hence if we denote by

P ∗
n = spanF

{
wσ(1) · · ·wσ(n) | σ ∈ Sn, wi ∈

{
y+i , y

−
i , z

+
i , z

−
i

}
, i = 1, . . . , n

}

the space of multilinear polynomials of degree n in y+1 , y
−
1 , z

+
1 , z

−
1 , . . . , y

+
n , y

−
n , z

+
n , z

−
n (i.e., y+i or y−i

or z+i or z−i appears in each monomial at degree 1) the study of Id∗(A) is equivalent to the study of

P ∗
n ∩ Id∗(A), for all n ≥ 1.

Definition 1.41. The non-negative integer

c∗n(A) = dimF
P ∗
n

P ∗
n ∩ Id∗(A)

, n ≥ 1,

is called the n-th ∗-codimension of A.

Let n ≥ 1 and write n = n1+· · ·+n4 as a sum of non-negative integers. We denote by P ∗
n1,...,n4

⊆ P ∗
n

the vector space of the multilinear ∗-polynomials in which the first n1 variables are even symmetric,

the next n2 variables are even skew, the next n3 variables are odd symmetric and the last n4 variables

are odd skew. The group Sn1 × · · · × Sn4 acts on the left on the vector space P ∗
n1,...,n4

by permuting
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the variables of the same homogeneous degree which are all even or all odd at the same time. Thus

Sn1 permutes the variables y+1 , . . . , y
+
n1
, Sn2 permutes the variables y−n1+1, . . . , y

−
n1+n2

, and so on. In

this way P ∗
n1,...,n4

becomes a left (Sn1 × · · · × Sn4)-module. Now P ∗
n1,...,n4

∩ Id∗(A) is invariant under

this action and so the vector space

P ∗
n1,...,n4

(A) =
P ∗
n1,...,n4

P ∗
n1,...,n4

∩ Id∗(A)

is a left (Sn1 × · · · × Sn4)-module with the induced action.

Definition 1.42. For n = n1 + · · ·+ n4 ≥ 1, the (Sn1 × · · · × Sn4)-character of P ∗
n1,...,n4

(A), denoted

by χn1,...,n4(A), is called the (n1, . . . , n4)-th cocharacter of A.

If λ = (λ1, . . . , λr) is a partition of n, we write λ ` n. As we have seen in Proposition 1.4, there is

a one-to-one correspondence between partitions of n and irreducible Sn-characters. Hence if λ ` n, we

denote by χλ the corresponding irreducible Sn-character. If λ(1) ` n1, . . . , λ(4) ` n4 are partitions,

we write 〈λ〉 = (λ(1), . . . , λ(4)) ` (n1, . . . , n4) or 〈λ〉 ` n and we say that 〈λ〉 is a multipartition of

n = n1 + · · ·+ n4.

Since charF = 0, by complete reducibility, χn1,...,n4(A) can be written as a sum of irreducible

characters

χn1,...,n4(A) =
∑

〈λ〉`(n1,...,n4)

m〈λ〉χλ(1) ⊗ · · · ⊗ χλ(4), (1.2)

where m〈λ〉 ≥ 0 is the multiplicity of χλ(1) ⊗ · · · ⊗ χλ(4) in χn1,...,n4(A).

Now if we set c∗n1,...,n4
(A) = dimF P

∗
n1,...,n4

(A) it is immediate to see that

c∗n(A) =
∑

n1+···+n4=n

(
n

n1, . . . , n4

)
c∗n1,...,n4

(A) (1.3)

where
(

n
n1,...,n4

)
= n!

n1!···n4!
stands for the multinomial coefficient.

Remark 1.1. Let A be a ∗-algebra and cn(A) be its n-th ordinary codimension. For any n = n1 +

· · ·+ n4 then

c∗n1,n2,n3,n4
(A) ≤ cn(A).

Proof. If Pn = spanF {xσ(1) · · ·xσ(n) | σ ∈ Sn} is the space of multilinear polynomials of degree n in

the variables x1, . . . , xn, and Id(A) is the T -ideal of ordinary polynomial identities of A then

cn(A) = dimF
Pn1+···+n4

Pn1+···+n4 ∩ Id(A)
.

Notice that Id(A) ⊆ Id∗(A) and the map ψ : Pn1+···+n4 −→ P ∗
n1,...,n4

defined by

ψ (f(x1, . . . , xn1 , xn1+1, . . . , xn1+···+n4)) =
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f(y+1 , . . . , y
+
n1
, y−n1+1, . . . , y

−
n1+n2

, z+n1+n2+1, . . . , z
+
n1+n2+n3

, z−n1+n2+n3+1, . . . , z
−
n1+···+n4

)

is an isomorphism of vector spaces. Hence Id(A) ∩ Pn1+···+n4 ↪→ Id∗(A) ∩ P ∗
n1,...,n4

and, so,

dimF

P ∗
n1,...,n4

P ∗
n1,...,n4

∩ Id∗(A)
≤ dimF

Pn1+···+n4

Pn1+···+n4 ∩ Id(A)
.

The relation between ordinary codimensions, supercodimensions and ∗-codimensions for a ∗-algebra

A is given in the following.

Remark 1.2 ([22]). Let A be a ∗-algebra satisfying an ordinary polynomial identity. Then

cn(A) ≤ csupn (A) ≤ c∗n(A) ≤ 2ncsupn (A) ≤ 4ncn(A), n = 1, 2, . . . .

As a consequence, we obtain an analogous result of Theorem 1.3.1, i.e. an exponential bound for

the sequence of ∗-codimensions.

Corollary 1.5. Let A be a ∗-algebra satisfying a non-trivial identity. Then c∗n(A), n = 1, 2, . . . , is

exponentially bounded.

1.7 Matrix algebras with superinvolution

In this section we focus our attention on matrix algebras with superinvolution. We shall see that

it is possible to define on the algebra Mn(F ) of n× n matrices over F two different superinvolutions.

We start by introducing the matrix superalgebraMk,h(F ). Recall that, given a n-tuple (g1, . . . , gn) ∈

Zn
2 , one can define onMn(F ) the elementary Z2-grading by setting (Mn(F ))i = spanF {eij | gi + gj = i},

i = 0, 1, where eijs are the usual matrix units and Z2
∼= {0, 1}. Elementary gradings play a key role

among gradings in matrix algebras. In fact the following result holds (see [4]).

Theorem 1.7.1. Let F be an algebraically closed field. Then any Z2-grading on the matrix algebra

Mn(F ) is an elementary grading.

Let now (g1, . . . , gn) ∈ Zn
2 be an n-tuple defining an elementary grading on Mn(F ). It is obvious

that the n-tuple (g + g1, . . . , g + gn), g ∈ Z2, define the same grading. In particular, one may always

assume that g1 = 0. Furthermore, if we permute g1, . . . , gn, according to some permutation σ ∈ Sn,

then we get the isomorphic Z2-grading defined by the n-tuple (gσ(1), . . . , gσ(n)). In fact, if A and B are

the matrix algebra Mn(F ) with the grading defined by the n-tuple (g1, . . . , gn) and (gσ(1), . . . , gσ(n)),
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respectively, then ϕσ : A → B defined by ϕ(eij) = eσ(i)eσ(j) is an isomorphism of superalgebras. In

conclusion, up to isomorphism, any elementary Z2-grading on Mn(F ) is defined by the n-tuple

(0, . . . , 0︸ ︷︷ ︸
k

, 1, . . . , 1︸ ︷︷ ︸
h

)

with k + h = n. In this case Mn(F ) is the superalgebra denoted by Mk,h(F ) where

(Mk,h(F ))0 =

{(
X 0

0 T

)
| X ∈Mk(F ), T ∈Mh(F )

}
,

(Mk,h(F ))1 =

{(
0 Y

Z 0

)
| Y ∈Mk×h(F ), Z ∈Mh×k(F )

}
.

In [47], Racine proved that, up to isomorphism and if the field F is algebraically closed and of

characteristic different from 2, it is possible to define on Mk,h(F ) only the following superinvolutions.

1. The transpose superinvolution denoted trp. In this case h = k and for

(
X Y

Z T

)
∈Mk,k(F ), we

have (
X Y

Z T

)trp

=

(
T t −Y t

Zt Xt

)
,

where t is the usual transpose. Then the four sets of homogeneous symmetric and skew elements

are the following:

(Mk,k(F ), trp)
+
0 =

{(
X 0

0 Xt

)
| X ∈Mk(F )

}
,

(Mk,k(F ), trp)
−
0 =

{(
X 0

0 −Xt

)
| X ∈Mk(F )

}
,

(Mk,k(F ), trp)
+
1 =

{(
0 Y

Z 0

)
| Y = −Y t, Z = Zt, Y, Z ∈Mk(F )

}
,

(Mk,k(F ), trp)
−
1 =

{(
0 Y

Z 0

)
| Y = Y t, Z = −Zt, Y, Z ∈Mk(F )

}
.

2. The orthosymplectic superinvolution denoted osp. In this case h = 2l is even and

(
X Y

Z T

)osp

=

(
Ik 0

0 Q

)−1(
X −Y

Z T

)t(
Ik 0

0 Q

)
=

(
Xt ZtQ

QY t −QT tQ

)
,



38 Preliminaries

where Q =

(
0 Il

−Il 0

)
and Ir, Il are the r × r, l × l identity matrices, respectively. Thus, we

have

(Mk,2l(F ), osp)
+
0 =

{(
X 0

0 T

)
| X = Xt, T = −QT tQ, X ∈Mk(F ), T ∈M2l(F )

}
,

(Mk,2l(F ), osp)
−
0 =

{(
X 0

0 T

)
| X = −Xt, T = QT tQ, X ∈Mk(F ), T ∈M2l(F )

}
,

(Mk,2l(F ), osp)
+
1 =

{(
0 Y

Z 0

)
| Z = QY t, Y ∈Mk×2l(F )

}
,

(Mk,2l(F ), osp)
−
1 =

{(
0 Y

Z 0

)
| Z = −QY t, Y ∈Mk×2l(F )

}
.

1.8 Proper polynomials

1.8.1 Proper polynomials in the ordinary case

In this section we introduce a special kind of polynomials, the so-called proper polynomials. We

refer to [10] and [12] for the results of this section.

Definition 1.43. A polynomial f ∈ F 〈X〉 is called proper if it is a linear combination of products of

commutators

f(x1, . . . , xn) =
∑

αi,...,j [xi1 , . . . , xip ] · · · [xj1 , . . . , xjq ],

where αi,...,j ∈ F and [x1, . . . , xn] = [[. . . [[x1, x2] , x3] , . . .] , xn] is the Lie commutator with left normal-

ized brackets.

We denote by B the set of all proper polynomials in F 〈X〉, by Bm = B ∩ F 〈x1, . . . , xm〉 the set

of the proper polynomials in m variables and by Γn = B ∩ Pn, n = 0, 1, 2, . . . , the set of all proper

multilinear polynomials of degree n.

Definition 1.44. Let A be a unitary PI-algebra over a field of characteristic 0. We introduce the

proper codimensions sequence

γn(A) =
Γn

Γn ∩ Id(A)
, n = 0, 1, 2, . . . .

The special role that proper polynomials play in PI-theory, is underlined by the results that follow.

Proposition 1.13. If A is an unitary PI-algebra over an infinite field F then all polynomial identities

of A follow from the proper ones. Moreover, if charF = 0 then the polynomial identities follow from

the proper multilinear identities.
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In order to present the next theorem, that is the main result of this section, we need to specify the

notation as follows. If A is an algebra, for any S subset of F 〈X〉, we denote with S(A) the image of

S under the canonical homomorphisms

F 〈X〉 → F (A) = var(A) =
F 〈X〉

Id(A)

Theorem 1.8.1. Let A be an unitary PI-algebra over an infinite field F .

1. Let {wj(x1, . . . , xm) | j = 1, 2, . . .} be a basis of the vector space Bm(A) of the proper polynomials

in the relatively free algebra Fm(A) of rank m, i.e., Bm(A) =
Bm

Id(A) ∩Bm
. Then Fm(A) has a

basis

{xa11 · · ·xamm wj(x1, . . . , xm) | ai ≥ 0, j = 1, 2, . . .} .

2. If {ujk(x1, . . . , xk) | j = 1, 2, . . . , γk(A)} is a basis of the vector space Γk(A) of the proper mul-

tilinear polynomials of degree k in F (A), then Pn(A) has a basis consisting of all multilinear

polynomials of the form

xp1 · · ·xpn−k
ujk(xq1 , . . . , xqk), j = 1, 2, . . . , γk(A), k = 0, 1, . . . , n,

with p1 < · · · < pn−k and q1 < · · · < qk.

The previous theorem tells that in order to compute a basis for the T -ideal of the polynomial

identities for a unitary algebra, we need to study only the proper identities that are, of course, easier

to deal with. Moreover, we get the following relationship among proper codimensions and ordinary

codimensions sequence.

Corollary 1.6. The codimensions sequence cn(A) of an algebra A and the corresponding proper codi-

mensions γk(A) are related by the condition

cn(A) =
n∑

k=0

(
n

k

)
γk(A), n = 0, 1, 2 . . . .

1.8.2 Proper ∗-polynomials

In this section we introduce the proper ∗-polynomials, i.e. the corresponding object, in the setting

of unitary ∗-algebras, of the proper polynomials of the ordinary case. From now until the end of this

section, F denotes a field of characteristic zero.

Definition 1.45. A polynomial f ∈ P ∗
n is a proper ∗-polynomial if it is a linear combination of

elements of the type

y−i1 · · · y
−
is
z+j1 · · · z

+
jt
z−l1 · · · z

+
lr
w1 · · ·wm
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where w1, . . . , wm are left normed (long) Lie commutators in the variables from Y ∪ Z (here the

symmetric even variables appear only inside the commutators).

We denote by Γ∗
n the subspace of P ∗

n of proper ∗-polynomials and Γ∗
0 = span{1}.

Definition 1.46. The sequence of proper ∗-codimensions is defined as

γ∗n(A) = dim
Γ∗
n

Γ∗
n ∩ Id∗(A)

, n = 0, 1, 2, . . . .

For a unitary ∗-algebra A, the relation between ∗-codimensions and proper ∗-codimensions is given

in the following (see Corollary 1.6 for the analogous result in the ordinary case).

Theorem 1.8.2. The ∗-codimensions sequence c∗n(A) of a ∗-algebra A and the corresponding proper

∗-codimensions γ∗i (A) are related by the condition

c∗n(A) =

n∑

i=0

(
n

i

)
γ∗i (A), n = 0, 1, 2 . . . .

Given two sets of polynomials S, S′ ⊆ F 〈Y ∪Z, ∗〉, we say that S′ is a consequence of S if S′ ⊆ 〈S〉T ∗
2
.

By following closely the proof of Lemma 2.2 in [40, 42] we get the next proposition.

Proposition 1.14. For every i ≥ 1, Γ∗
k+i is a consequence of Γ∗

k.

As a consequence we have the following.

Corollary 1.7. Let A be a ∗-algebra with 1. If for some k ≥ 2, γ∗k(A) = 0 then γ∗m(A) = 0, for all

m ≥ k.

Let n = n1 + · · ·+n4 ≥ 1. We denote by Γ∗
n1,...,n4

⊆ P ∗
n1,...,n4

the subspace of proper ∗-polynomials

in which n1 variables are even symmetric, n2 variables are even skew, n3 variables are odd symmetric

and n4 variables are odd skew. Γ∗
n1,...,n4

is also an (Sn1 × · · · × Sn4)-submodule of P ∗
n1,...,n4

. Since

Γ∗
n1,...,n4

∩ Id∗(A) is invariant under the action of Sn1 × · · · × Sn4 , the vector space

Γ∗
n1,...,n4

(A) =
Γ∗
n1,...,n4

Γ∗
n1,...,n4

∩ Id∗(A)

is a left (Sn1 ×· · ·×Sn4)-module with the induced action. We denote by ψn1,...,n4(A) its character and

it is called the (n1, . . . , n4)-th proper cocharacter of A.

Since charF = 0, by complete reducibility, ψn1,...,n4(A) can be written as a sum of irreducible

characters

ψn1,...,n4(A) =
∑

〈λ〉`n

m〈λ〉χλ(1) ⊗ · · · ⊗ χλ(4), (1.4)
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where m〈λ〉 ≥ 0 is the multiplicity of χλ(1) ⊗ · · · ⊗ χλ(4) in ψn1,...,n4(A).

Now if we set γ∗n1,...,n4
(A) = dimF Γ∗

n1,...,n4
(A) it is immediate to see that

γ∗n(A) =
∑

n1+···+n4=n

(
n

n1, . . . , n4

)
γ∗n1,...,n4

(A). (1.5)
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Chapter 2

Characterization of finite dimensional

∗-algebras with polynomially bounded

codimensions

In this chapter we shall give several characterizations concerning finite dimensional ∗-algebras with

polynomial growth of the ∗-codimensions. From now on, unless otherwise stated, F denotes a field of

characteristic zero.

Definition 2.1. A ∗-algebra A has polynomial growth if its sequence of ∗-codimensions is polynomially

bounded, i.e., c∗n(A) ≤ ank, for some constants a and k.

We now introduce the notion of ∗-variety, that is the analogous of the varieties in the ordinary

case.

Definition 2.2. Given an non-empty set S ⊆ F 〈Y ∪ Z, ∗〉, the class of all ∗-algebras A such that

f ≡ 0 on A, for all f ∈ S, is called the ∗-variety V = V(S) determined by S.

If A is a ∗-algebra, we write var∗(A) to denote the ∗-variety generated by A, i.e. the class of all

∗-algebras B such that f ≡ 0 on B, for all f ∈ Id∗(A).

The growth of a ∗-variety V is defined as the growth of the sequence of ∗-codimensions of any

algebra A generating V, i.e., V = var∗(A). Then we have the following definition.

Definition 2.3. A ∗-variety V has polynomial growth if c∗n(V) is polynomially bounded and V has

almost polynomial growth if c∗n(V) is not polynomially bounded but every proper subvariety of V has

polynomial growth.

If we consider the language of ∗-varieties, in this chapter we present results characterizing ∗-varieties

of polynomial growth, generated by finite dimensional ∗-algebras.

43
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2.1 Varieties of almost polynomial growth

In this section we shall construct finite dimensional ∗-algebras generating ∗-varieties of almost

polynomial growth. We start with the following definition.

Definition 2.4. A superalgebra A = A0 ⊕ A1 is endowed with a graded involution if ] : A→ A is an

involution on A preserving the grading, i.e., A]
i ⊆ Ai, i = 0, 1.

In this way we are ready to prove the following remark.

Remark 2.1. Let A = A0 ⊕ A1 be a superalgebra such that A2
1 = 0. Then the superinvolutions on

A coincide with the graded involutions on A. In particular, if A1 = 0, then the superinvolutions on A

coincide with the involutions on A.

Proof. Let ∗ : A → A be a graded linear map of order 2 on A = A0 ⊕ A1. Since A2
1 = 0 then, for

all a, b ∈ A1, we have that b∗a∗ = −b∗a∗ = 0. Hence if ∗ is a graded involution then it is also a

superinvolution and vice versa. If A1 = 0, then every involution on A is a graded involution and the

result follows from the first part.

In Theorem 1.4.3 we have seen that a variety of algebras with involution has polynomial growth

if and only if it does not contain the two-dimensional commutative algebra F ⊕ F endowed with the

exchange involution ex andM = F (e11+e44)⊕F (e22+e33)⊕Fe12⊕Fe34, a subalgebra of UT4 endowed

with the reflection involution ref. Recall that the exchange involution is such that (a, b)ex = (b, a)

whereas the reflection involution ref on the algebras of n×n upper triangular matrices UTn is defined

as follows: if a = (aij) ∈ UTn then aref = (bij) where bij = an+1−j n+1−i.

Let us consider F ⊕ F and M with trivial grading. In this way, by Remark 2.1, the exchange

and the reflection involutions are also superinvolutions. Hence these algebras with involution can be

viewed as algebras with superinvolution (∗-algebras) and we can make the following definitions.

Definition 2.5. F ⊕ F denotes the two-dimensional commutative algebra with trivial grading and

exchange superinvolution.

Definition 2.6. M denotes the subalgebra of UT4 with trivial grading and reflection superinvolution.

In [20] the authors proved that F ⊕F andM generate the only varieties of algebras with involution

of almost polynomial growth (see Corollary 1.3). Since F ⊕ F and M have trivial grading (z ≡ 0 on

F ⊕ F and M), by Theorem 1.4.1, we get the following result.

Theorem 2.1.1. The ∗-algebras F ⊕ F with the exchange superinvolution and M with the reflection

superinvolution generate ∗-varieties of almost polynomial growth. Moreover
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1. Id∗(F ⊕ F ) = 〈[y1, y2], z
+, z−〉T ∗

2
.

2. Id∗(M) = 〈y−1 y
−
2 , z

+, z−〉T ∗
2
.

Let now define a non-trivial grading on M : we denote by M sup the algebra M with grading

(M sup)0 = F (e11 + e44) ⊕ F (e22 + e33) and (M sup)1 = Fe12 ⊕ Fe34 and endowed with reflection

involution.

It is easy to see that the reflection involution onM sup is a graded involution. Since (M sup)21 = 0, by

Remark 2.1, the reflection involution on M sup is also a superinvolution and we can make the following

definition.

Definition 2.7. M sup denotes the subalgebra of UT4 with grading (M sup)0 = F (e11+e44)⊕F (e22+e33)

and (M sup)1 = Fe12 ⊕ Fe34, endowed with reflection superinvolution.

The algebra M sup was extensively studied in [23]. In the following theorem we present these

results.

Theorem 2.1.2. The ∗-algebra M sup with reflection superinvolution generate a ∗-variety of almost

polynomial growth. Moreover Id∗(M sup) = 〈y−, z1z2〉T ∗
2
and, if

χn1,...,n4(M
sup) =

∑

〈λ〉`(n1,...,n4)

m〈λ〉χλ(1) ⊗ · · · ⊗ χλ(4)

is the (n1, . . . , n4)-th cocharacter of M sup, n1 + · · ·+ n4 = n, then

m〈λ〉 =





1 if 〈λ〉 = ((n), ∅, ∅, ∅)

q + 1 if 〈λ〉 = ((p+ q, p), ∅, (1), ∅)

q + 1 if 〈λ〉 = ((p+ q, p), ∅, ∅, (1))

0 otherwise

,

where p, q ≥ 0 and 2p+ q + 1 = n.

The final goal of this section is to prove that, in case A ∈ var∗(M sup) generates a ∗-variety of

polynomial growth, then A satisfies the same ∗-identities as a finite dimensional ∗-algebra. We start

with the following.

Theorem 2.1.3. If A ∈ var∗(M sup) then var∗(A) = var∗(B), for some finitely generated ∗-algebra B.

Proof. Let B be the relatively free algebra of var∗(A) with 2 even symmetric, 1 odd symmetric and 1

odd skew generators,

B =
F 〈y+1 , y

+
2 , z

+, z−〉

Id∗(A)
.
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We shall prove that var∗(A) = var∗(B). Clearly var∗(B) ⊆ var∗(A).

In order to get the opposite inclusion we need to prove that Id∗(B) ⊆ Id∗(A). Let f be a ∗-identity

of B. Since charF = 0, we may assume that f = f(y+1 , . . . , y
+
n1
, y−1 , . . . , y

−
n2
, z+1 , . . . , z

+
n3
, z−1 , . . . , z

−
n4
) is

multilinear. Let L be the left (Sn1 ×· · ·×Sn4)-module generated by f and let L = L1⊕· · ·⊕Lm be its

decomposition into irreducible components with Li generated by fi as a left (Sn1 × · · ·×Sn4)-module,

i = 1, . . . ,m. If fi ≡ 0 on A, for all i = 1, . . . ,m, then also f ≡ 0 on A. Hence, without loss of

generality, we may assume that L is irreducible.

Let χλ(1) ⊗ · · · ⊗ χλ(4) be the irreducible character of L, where λ(i) ` ni, i = 1, . . . , 4 and let

eTλ(i)
=




∑

τ∈RTλ(i)

τ







∑

σ∈CTλ(i)

(sgnσ)σ


 , i = 1, . . . , 4,

be the corresponding essential idempotents.

Notice that, if λ(1)3 6= 0 (here λ(1)3 means the length of the third row of the Young diagram

corresponding to the partition λ(1)) or λ(2) 6= ∅ or λ(3) /∈ {∅, (1)} or λ(4) /∈ {∅, (1)} then, by

Theorem 2.1.2 follows that f ≡ 0 on A.

Therefore, in order to complete the proof, we may assume that λ(1)3 = 0, λ(2) = ∅ and λ(3), λ(4) ∈

{∅, (1)}.

Now we consider g =

(∑
τ∈RTλ(1)

τ

)
f. Since L is irreducible and g 6= 0 (see [26, Lemmas 2.5.1 and

2.5.2]) then f ≡ 0 on A if and only if g ≡ 0 on A. We shall prove that g ≡ 0 on A.

Notice that g is symmetric on at most 2 disjoint subsets Y1, Y2 of
{
y+1 , y

+
2 , . . .

}
. If we identify

all variables of Y1 with y+1 and all variables of Y2 with y+2 we obtain a homogeneous polynomial

t = t(y+1 , y
+
2 , z

+, z−) which is still a ∗-identity of B. From the definition of relatively free algebra, it

follows that t ≡ 0 on A. But the complete linearization of t on all even symmetric variables is equal to

γg(y+1 , . . . , y
+
n1
, z+, z−) where γ = λ(1)1! λ(1)2! 6= 0. Hence g ≡ 0 on A and so f ≡ 0 on A follows.

In order to reach our goal we need to apply the following result.

Theorem 2.1.4 ([2]). If A is a finitely generated ∗-algebra over an algebraically closed field F of

characteristic zero then A satisfies the same ∗-identities as a finite dimensional ∗-algebra over F.

As a consequence of Theorems 2.1.3 and 2.1.4 we get the following.

Corollary 2.1. Let A be a ∗-algebra such that A ∈ var∗(M sup). Then Id∗(A) = Id∗(B), for some

finite dimensional ∗-algebra B.
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2.2 Wedderburn-Malcev theorem for finite dimensional ∗-algebras

In this section we present a decomposition of finite dimensional ∗-algebras, by giving the analogous

result than that Wedderburn-Malcev proved in the ordinary case. For a start we state the Wedderburn-

Malcev theorem in the case of associative algebras and the corresponding result in the setting of

superalgebras, proved by Giambruno and Zaicev.

Theorem 2.2.1. Let A be a finite dimensional algebra over a field F of characteristic 0 and let J(A)

be its Jacobson radical. Then there exists a semisimple subalgebra B such that

A = B + J(A).

Moreover if B and B′ are semisimple subalgebras such that A = B + J(A) = B′ + J(A), then there

exists x ∈ J(A) such that B′ = (1 + x)B(1 + x)−1.

Let A = A0 ⊕ A1 be a finite dimensional superalgebra over a field F of characteristic 0 and let ϕ

be the automorphism of order ≤ 2 determined by the Z2-grading on A. We recall that ϕ : A → A is

defined by ϕ(a0 + a1) = a0 − a1, for all a0 ∈ A0, a1 ∈ A1.

Definition 2.8. An ideal (subalgebra) I of A is a graded ideal (subalgebra), if I = (I ∩A0)⊕ (I ∩A1).

The algebra A is a simple superalgebra if A2 6= 0 and A has no non-trivial graded ideals.

Theorem 2.2.2. Let A be a finite dimensional superalgebra over a field F . Then

1. The Jacobson radical of A, J(A) is a graded ideal of A.

2. If A is a simple superalgebra then either A is simple or A = B⊕Bϕ, for some simple subalgebra

B.

3. If A is semisimple, then A is a finite direct sum of simple superalgebras.

4. If charF = 0, there exists a maximal semisimple subalgebra B of A such that Bϕ = B.

From now on A = A0 ⊕ A1 denotes a finite dimensional ∗-algebra over a field F of characteristic

zero, J(A) its Jacobson radical and ϕ the automorphism of order ≤ 2 determined by the grading on

A.

The following remark holds.

Remark 2.2. Let A be a ∗-algebra with superinvolution ∗ and let B ⊆ A be a subalgebra of A.

1. If B = B0 ⊕B1 is a graded subalgebra of A then B∗ = B∗
0 ⊕B∗

1 is a graded subalgebra of A.
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2. If I = I0 ⊕ I1 ⊆ B is a graded ideal of B then I∗ = I∗0 ⊕ I∗1 is a graded ideal of B∗.

3. If I is a minimal graded ideal of B then I∗ is a minimal graded ideal of B∗.

Lemma 2.1. If B is a semisimple graded subalgebra of A, then B∗ is a semisimple graded subalgebra

of A.

Proof. By Remark 2.2, B∗ is a graded subalgebra of A and we are left to prove that B∗ is semisimple,

i.e, J(B∗) = 0, where J(B∗) denotes the Jacobson radical of B∗. It is well known that J(B∗) is a

graded nilpotent ideal of B∗. We claim that J(B∗)∗ is a nilpotent ideal of B. Let m be the smallest

positive integer such that J(B∗)m = 0 and let a1, . . . , am ∈ J(B∗)∗. Since J(B∗) is a graded ideal of

B∗ we get that, for all i, ai = (bi + ci)
∗, where bi and ci are homogeneous elements of J(B∗) of degree

zero and one, respectively. Then

a1 · · · am =
∑

αj(d1 · · · dm)∗

where either di = bi or di = ci and αj = ±1. But J(B∗)m = 0 and, so, we get that a1 · · · am = 0 and

J(B∗)∗ is nilpotent. Since the Jacobson radical of an algebra is the maximal nilpotent ideal of it, then

J(B∗)∗ ⊆ J(B). But since B is semisimple we get that J(B∗)∗ = J(B) = 0 and, so, J(B∗) = 0.

By Theorem 2.2.2, we can write A = B + J, where B is a semisimple graded subalgebra of A

and J = J(A) = J0 ⊕ J1 is a graded ideal. Moreover B = B1 ⊕ · · · ⊕ Bk, with B1, . . . , Bk simple

superalgebras.

Lemma 2.2. If B and B′ are semisimple graded subalgebras of A such that A = B+J = B′+J, with

J2 = 0, then there exists x0 ∈ J0 such that

B′ = (1 + x0)B(1− x0).

Proof. By Theorem 2.2.2, B′ = (1 + x)B(1− x), for some x ∈ J . Therefore:

(1 + x)B(1− x) = B′ = (B′)ϕ = (1 + xϕ)Bϕ(1− xϕ) = (1 + xϕ)B(1− xϕ),

where ϕ is the automorphism of order ≤ 2 determined by the grading. Hence:

B = (1− x)(1 + xϕ)B(1− xϕ)(1 + x).

This says that, for any b ∈ B, there exists b̄ ∈ B such that b = (1− x+ xϕ) b̄ (1− xϕ + x) and, since

J ∩B = 0, we obtain that b = b̄ and (x− xϕ)b = b(x− xϕ). Hence:

B′ = (1 + x)B(1− x)

= (1 +
x+ xϕ

2
+
x− xϕ

2
)B(1−

x+ xϕ

2
−
x− xϕ

2
)

= (1 +
x+ xϕ

2
)B(1−

x+ xϕ

2
)

= (1 + x0)B(1− x0)
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where x0 =
x+ xϕ

2
∈ J0.

Now we are in a position to prove the Wedderburn-Malcev theorem for ∗-algebras. First we recall

the following definition.

Definition 2.9. An ideal (subalgebra) I of A is a ∗-ideal (subalgebra) of A if it is a graded ideal

(subalgebra) and I∗ = I. The algebra A is a simple ∗-algebra if A2 6= 0 and A has no non-trivial

∗-ideals.

Theorem 2.2.3. Let A be a finite dimensional ∗-algebra over a field F of characteristic 0. Then there

exists a semisimple ∗-subalgebra C such that

A = C + J(A)

and J(A) is a ∗-ideal of A. Moreover C = C1 ⊕ · · · ⊕ Ck, where C1, . . . , Ck are simple ∗-algebras.

Proof. By Theorem 2.2.2, we can write

A = B + J

where B is a semisimple graded subalgebra of A and J = J(A), its Jacobson radical, is a graded ideal

of A. Since J is nilpotent, as in the proof of Lemma 2.1, we have that J∗ is a nilpotent ideal of A. But

being J the maximal nilpotent ideal of A, we get J∗ ⊆ J and, so, J = J∗. Hence J is a ∗-ideal of A.

If J = 0 or B = B∗ then B is a semisimple ∗-algebra and we are done. So assume that J 6= 0 and

B 6= B∗.

Suppose first that J2 = 0.

By Lemma 2.1, B∗ is a semisimple graded subalgebra of A. Hence, by Lemma 2.2, we have

B∗ = (1 + x0)B(1− x0),

for some x0 ∈ J0. For any homogeneous element b ∈ B, we have that b∗ = (1+ x0)b̄(1− x0), for some

homogeneous element b̄ ∈ B with the same homogeneous degree as b∗ and b. Hence:

b = (b∗)∗ =
(
(1 + x0) b̄ (1− x0)

)∗

= (1− x∗0) b̄
∗ (1 + x∗0)

= (1− x∗0)(1 + x0) b̃ (1− x0)(1 + x∗0)

= (1− x∗0 + x0) b̃ (1 + x∗0 − x0)

for some b̃ ∈ B0∪B1 with the same homogeneous degree as b. As in the proof of Lemma 2.2 we obtain

that

(x0 − x∗0)b = b(x0 − x∗0).
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It follows that, for any b ∈ B0 ∪B1,

b∗ = (1 + x0) b (1− x0)

= (1 +
x0 + x∗0

2
+
x0 − x∗0

2
) b (1−

x0 + x∗0
2

−
x0 − x∗0

2
)

= (1 +
x0 + x∗0

2
) b (1−

x0 + x∗0
2

)

= (1 + x+0 ) b (1− x+0 ),

where x+0 =
x0 + x∗0

2
∈ J+

0 .

Consider the subalgebra C = (1+
x+0
2
)B(1−

x+0
2
) of A. Clearly C is a graded subalgebra of A and by

the above C is a ∗-subalgebra. Also, since C is isomorphic to B, it is a semisimple ∗-subalgebra of A.

Suppose now that J2 6= 0 and choose m ≥ 2 such that Jm 6= 0 and Jm+1 = 0. It is easy to see

that Jm is a ∗-ideal of A and, so, A/Jm is an algebra with induced superinvolution. Its Jacobson

radical J(A/Jm) = J(A)/Jm is such that J(A/Jm)m = 0. Hence, by induction on m, we have that

there exists a semisimple ∗-subalgebra B/Jm such that

A/Jm = B/Jm ⊕ J/Jm.

From J(B/Jm) = 0 it follows that J(B) = Jm and, so, we can write

B = C + Jm,

where C is a semisimple graded subalgebra of B. Since (Jm)2 ⊆ J2m = 0, by applying again induction

on m we can assume C∗ = C, i.e., C is a semisimple ∗-subalgebra of A and we are done since

A = B + J = C + Jm + J = C + J.

Finally we prove that C decomposes into the direct sum of simple ∗-algebras. By Theorem 2.2.2,

we have

C = D1 ⊕ · · · ⊕Dh,

where D1, . . . , Dh are all the minimal graded ideals of C. Hence, by Remark 2.2, for every i, D∗
i is also

a minimal graded ideal of C and, so, D∗
i = Dj , for some j ∈ {1, . . . , h}. We now rename D1, . . . , Dh

and we write

C = C1 ⊕ · · · ⊕ Ck

where either Ci = Dj with Dj = D∗
j or Ci = Dj ⊕D∗

j , with Dj 6= D∗
j . Thus C1, . . . , Ck are minimal

∗-ideals of C, i.e. simple ∗-algebras.

The structure of the simple ∗-algebras is given in the following.
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Lemma 2.3. If A is a finite dimensional simple ∗-algebra then either A is a simple superalgebra or

A = B ⊕B∗, for some simple superalgebra B.

Proof. Suppose that A is simple as a ∗-algebra but not as a superalgebra. Since J(A) is a ∗-ideal of

A, J = 0 and A is semisimple. If B is a minimal graded ideal of A, B∗ is still a minimal graded ideal

of A. Since A is a simple ∗-algebra we have that B∗ 6= B. Then B ⊕ B∗ is a ∗-ideal of A and hence

A = B ⊕B∗ and we are done.

We conclude this section by giving the classification of the finite dimensional simple ∗-algebras over

an algebraically closed field F . We start by introducing the simple superalgebras which are involved

in such a classification.

1. Given n = k + h ≥ 1, we recall the Z2-grading on Mn(F ) introduced in Chapter 1:

Mk,h(F ) =

{(
X Y

Z T

)
: X,Y, Z, T are k × k, k × h, h× k, h× h matrices, respectively

}

=

{(
X 0

0 T

)}
⊕

{(
0 Y

Z 0

)}
.

2. Q(n) = Mn(F ⊕ cF ) = Q(n)0 ⊕ Q(n)1, where Q(n)0 = Mn(F ) and Q(n)1 = cMn(F ), with

c2 = 1.

As we have already seen in Section 1.7, if h = 2l the superalgebra Mk,2l(F ) is endowed with the

orthosymplectic superinvolution osp defined by:

(
X Y

Z T

)osp

=

(
Ik 0

0 Q

)−1(
X −Y

Z T

)t(
Ik 0

0 Q

)
,

where t denotes the usual matrix transpose, Q =

(
0 Il

−Il 0

)
and Ik, Il are the identity matrices of

orders k and l, respectively.

If h = k the superalgebra Mk,k(F ) is endowed with the transpose superinvolution trp defined by:

(
X Y

Z T

)trp

=

(
T t −Y t

Zt Xt

)
.

If A is a superalgebra, we denote by Asop the superalgebra which has the same graded vector

space structure as A but the product in Asop is given on homogeneous elements a, b by a ◦ b =

(−1)(deg a)(deg b)ba. The direct sum R = A ⊕ Asop is a superalgebra with R0 = A0 ⊕ Asop
0 and R1 =

A1 ⊕Asop
1 and it is endowed with the exchange superinvolution (a, b)∗ = (b, a) .
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Definition 2.10. Let A = A0⊕A1 and B = B0⊕B1 be two algebras endowed with the superinvolutions

∗ and ?, respectively. We say that (A, ∗) and (B, ?) are isomorphic, as ∗-algebras, if there exists an

isomorphism of algebras ψ : A→ B such that

1. ψ(Ai) ⊆ Bi, i = 0, 1 (isomorphism of superalgebras),

2. ψ(x∗) = ψ(x)?, for all x ∈ A.

The following theorem gives the classification of the finite dimensional simple ∗-algebras.

Theorem 2.2.4 ([5, 27, 47]). Let A be a finite dimensional simple ∗-algebra over an algebraically

closed field F of characteristic different from 2. Then A is isomorphic to one of the following:

1. Mk,l(F ) with the orthosymplectic or the transpose superinvolution,

2. Mk,l(F )⊕Mk,l(F )
sop with the exchange superinvolution,

3. Q(n)⊕Q(n)sop with the exchange superinvolution.

At the light of such classification, by Theorem 2.2.3 we get the following.

Corollary 2.2. Let A be a finite dimensional ∗-algebra over an algebraically closed field F , charF = 0.

Then

A = B1 ⊕ · · · ⊕Bk + J(A)

where J(A) is a ∗-ideal of A and for every i, Bi is isomorphic to one of the algebras in the previous

theorem.

2.3 Varieties of polynomial growth

In this section we shall characterize the ∗-varieties generated by finite dimensional ∗-algebras of

polynomial growth. We start with the following definition.

Definition 2.11. Let A = A0 ⊕ A1 be a superalgebra. We say that A is endowed with the trivial

superinvolution ∗ if A1 = 0 and ∗ is the identity map. Clearly this says that A is commutative.

Lemma 2.4. Let A be a finite dimensional ∗-algebra over an algebraically closed field F of character-

istic zero and suppose that F ⊕F /∈ var∗(A). Then A = B + J(A), where B ∼= F ⊕ · · · ⊕F is endowed

with trivial (induced) superinvolution.
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Proof. By Theorem 2.2.3

A = A1 ⊕ · · · ⊕Ak + J,

where A1, . . . , Ak are finite dimensional simple ∗-algebras and J is the Jacobson radical of A.

We claim that, for every i, Ai
∼= F with trivial superinvolution. In fact, if not, there exists i such

that Ai
∼= B, where B is one of the ∗-algebras of Theorem 2.2.4, and B is not isomorphic to F.

Now, in all but one case, we shall construct a subalgebra C = 〈a, b〉 of B, generated by two

elements, with induced superinvolution. Then the linear map ψ : C → F ⊕ F which sends a to (1, 0)

and b to (0, 1) will be an isomorphism of ∗-algebras so that F ⊕ F ∈ var∗(B) = var∗(Ai) ⊆ var∗(A), a

contradiction. More precisely

- if B = Mr,s(F ) ⊕Mr,s(F )
sop with the exchange superinvolution, we let a = (e11, 0) and b =

(0, e11);

- if B = Q(n)⊕Q(n)sop, we let a = (e11, 0) and b = (0, e11);

- if B =Mn,n(F ) with the transpose superinvolution, we let a = e11 and b = en+1 n+1;

- if B = Mr,2s(F ) with the orthosymplectic superinvolution and s > 0, we let a = er+1 r+1 and

b = er+s+1 r+s+1.

We are left with the case B = Mr,0(F ) with the orthosymplectic superinvolution and r > 1.

Notice that Mr,0(F ) is an ordinary algebra (superalgebra with trivial grading) with involution and,

so, var∗(Mr,0(F )) = var]((Mr(F ), t)), where t denotes the usual transpose involution and var] denotes

a variety of algebras with involution. By [43], F⊕F ∈ var](M2(F ), t) ⊆ var]((Mr(F ), t)) = var∗(Ai) ⊆

var∗(A) and we reach a contradiction.

Hence, for every i, we have Ai
∼=M1,0(F ) = F with trivial superinvolution, and this completes the

proof.

Lemma 2.5. Let A = A1 ⊕ · · · ⊕ Am + J be a finite dimensional ∗-algebra over an algebraically

closed field F of characteristic zero, where for every i = 1, . . . ,m, Ai
∼= F is endowed with the trivial

superinvolution. If M,M sup /∈ var∗(A) then AiJAk = 0, for all 1 ≤ i, k ≤ m, i 6= k.

Proof. Suppose that there exist i, k ∈ {1, . . . ,m}, i 6= k, such that AiJAk 6= 0. Then there exist

elements a ∈ Ai, b ∈ Ak, j ∈ J such that ajb 6= 0, with a2 = a = a∗, b2 = b = b∗ and deg a = deg b = 0.

Without loss of generality we may assume that j is either symmetric or skew. In fact from ajb 6= 0

it follows that 2ajb = a(j + j∗)b+ a(j − j∗)b 6= 0 and at least one between a(j + j∗)b and a(j − j∗)b

must be non-zero. Also we may clearly assume that j is homogeneous. Let C be the subalgebra of A

generated by a, b, ajb, bja. Then C has an induced superinvolution and if I is the ideal generated by

ajbja, bjajb, then I is a ∗-ideal. Thus the algebra D = C/I has an induced superinvolution.
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Consider the algebra M as a ordinary algebra and let ψ : M → D be the linear map defined by

ψ(e11 + e44) = a + I, ψ(e22 + e33) = b + I, ψ(e12) = aj∗b + I, ψ(e34) = bja + I. Clearly ψ is an

isomorphism of ordinary algebras. Moreover ψ can be regarded as an isomorphism between algebras

with superinvolution M → D or M sup → D according as deg j = 0 or deg j = 1, respectively. In both

cases we reach a contradiction since we would have var∗(D) ⊆ var∗(C) ⊆ var∗(A).

By following word by word the proof given in [34, Theorem 2.2] it is possible to prove the next

theorem, characterizing the ∗-varieties of polynomial growth through the behaviour of their sequences

of cocharacters.

Theorem 2.3.1. Let A be a finite dimensional ∗-algebra over a field F of characteristic zero. Then

c∗n(A), n = 1, 2, . . . , is polynomially bounded if and only if, for every n1, . . . , n4, with n1+ · · ·+n4 = n,

it holds

χn1,...,n4(A) =
∑

〈λ〉`(n1,...,n4)
n−λ(1)1<q

m〈λ〉χλ(1) ⊗ · · · ⊗ χλ(4),

where q is such that J(A)q = 0 and λ(1)1 denotes the length of the first row of the Young diagram

corresponding to the partition λ(1).

We are now in a position to prove the main result of this chapter.

Theorem 2.3.2. Let A = A+
0 ⊕ A−

0 ⊕ A+
1 ⊕ A−

1 be a finite dimensional ∗-algebra over a field F of

characteristic zero. Then the sequence c∗n(A), n = 1, 2, . . . , is polynomially bounded if and only if

M,M sup, F ⊕ F /∈ var∗(A).

Proof. By Theorems 2.1.1 and 2.1.2, the algebras F ⊕ F , M , M sup generate varieties of exponential

growth. Hence, if c∗n(A) is polynomially bounded, then M,M sup, F ⊕ F /∈ var∗(A).

Conversely suppose that M,M sup, F ⊕ F /∈ var∗(A). Since we are dealing with codimensions that

do not change by extending the base field, we may assume that the field F is algebraically closed.

Hence, by Lemmas 2.4 and 2.5,

A = A1 ⊕ · · · ⊕Am + J,

where for every i = 1, . . . ,m, Ai
∼= F is endowed with the trivial superinvolution and AiJAk = 0, for

all 1 ≤ i, k ≤ m, i 6= k. Hence A−
0 ⊕ A+

1 ⊕ A−
1 ⊆ J and, if q is the least positive integer such that

Jq = 0, then A−
0 ⊕A+

1 ⊕A−
1 generates a nilpotent ideal of A of index of nilpotence ≤ q. By Theorem

2.3.1, c∗n1,n2,n3,n4
(A) = 0 as soon as n2 + n3 + n4 ≥ q. Hence, by (1.3), we get:

c∗n(A) =
∑

n1+···+n4
n2+n3+n4<q

(
n

n1, . . . , n4

)
c∗n1,...,n4

(A). (2.1)
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Notice that the number of non-zero summands in (2.1) is bounded by q3 and that
(

n
n1,...,n4

)
< nq (see

[34, Proposition 2.2]). By Remark 1.1, c∗r1,r2,r3,r4(A) ≤ cn(A) and, by Theorem 1.3.9, cn(A) ≤ ant, for

some constants a and t. In this way we get the desired conclusion.

As a consequence we have the following corollaries.

Corollary 2.3. The algebras M,M sup and F⊕F are the only finite dimensional ∗-algebras generating

∗-varieties of almost polynomial growth.

Corollary 2.4. If A is a finite dimensional ∗-algebra, the sequence c∗n(A), n = 1, 2, . . . , either is

polynomially bounded or it grows exponentially.

The next corollary follows directly from the proof of the theorem.

Corollary 2.5. Let A be a finite dimensional ∗-algebra over an algebraically closed field F of charac-

teristic zero. Then the sequence c∗n(A), n = 1, 2, . . . , is polynomially bounded if and only if

A = A1 ⊕ · · · ⊕Am + J(A),

where for every i = 1, . . . ,m, Ai
∼= F is endowed with the trivial superinvolution and AiJ(A)Ak = 0,

for all 1 ≤ i, k ≤ m, i 6= k.

We remark that if A is a ∗-algebra having the above decomposition then c∗n(A), n = 1, 2, . . ., is

polynomially bounded also if the field is not algebraically closed.

In order to get another characterization of finite dimensional ∗-algebras with polynomial growth

of codimensions, we recall the following definition and prove the subsequent lemma.

Definition 2.12. Given two ∗-algebras A and B, we say that A is T∗
2-equivalent to B and we write

A ∼T ∗
2
B in case Id∗(A) = Id∗(B).

Lemma 2.6. Let F̄ be the algebraic closure of the field F and let A be a finite dimensional ∗-algebra

over F̄ such that dimF̄ A/J(A) ≤ 1. Then A ∼T ∗
2
B, for some finite dimensional ∗-algebra B over F

with dimF̄ A/J(A) = dimF B/J(B).

Proof. Since dimF̄ A/J(A) ≤ 1, it follows that either A ∼= F̄+J(A) or A = J(A) is a nilpotent algebra.

We now take an arbitrary ∗-basis {w1, . . . , wp} of J(A) over F̄ (i.e., a basis consisting of even and

odd symmetric and even and odd skew elements) and we let B be the ∗-algebra over F generated by

B = {1F̄ , w1, . . . , wp} or by B = {w1, . . . , wp} according as A ∼= F̄ + J(A) or A = J(A), respectively.

Clearly dimF B/J(B) = dimF̄ A/J(A) and as F -algebras, Id∗(A) ⊆ Id∗(B). On the other hand, if

f is a multilinear ∗-identity of B then f vanishes on the basis B. But B is also a basis of A over F̄ .

Hence Id∗(B) ⊆ Id∗(A) and A ∼T ∗
2
B.
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Theorem 2.3.3. Let A be a finite dimensional ∗-algebra over a field F of characteristic zero. Then

c∗n(A), n = 1, 2, . . . , is polynomially bounded if and only if A ∼T ∗
2
B, where B = B1 ⊕ · · · ⊕ Bm, with

B1, . . . , Bm finite dimensional ∗-algebras over F and dimBi/J(Bi) ≤ 1, for all i = 1, . . . ,m.

Proof. Suppose first that A ∼T ∗
2
B, where B = B1 ⊕ · · · ⊕ Bm, with B1, . . . , Bm finite dimensional

∗-algebras over F and dimBi/J(Bi) ≤ 1, for all i = 1, . . . ,m. Then c∗n(A) = c∗n(B) ≤ c∗n(B1) + · · · +

c∗n(Bm) and the claim follows since, by the remark after Corollary 2.5, c∗n(Bi) is polynomially bounded,

for all i = 1, . . . ,m.

Conversely, let c∗n(A) be polynomially bounded. Suppose first that F is algebraically closed. Then

by Corollary 2.5, A = A1 ⊕ · · · ⊕ Al + J, where for every i = 1, . . . , l, Ai
∼= F is endowed with the

trivial superinvolution and AiJAk = 0, for all 1 ≤ i, k ≤ l, i 6= k.

Set B1 = A1 + J, . . . , Bl = Al + J . We claim that A ∼T ∗
2
B1 ⊕ · · · ⊕ Bl ⊕ J. Clearly Id∗(A) ⊆

Id∗(B1 ⊕ · · · ⊕ Bl ⊕ J). Now let f ∈ Id∗(B1 ⊕ · · · ⊕ Bl ⊕ J) and suppose that f is not a ∗-identity of

A. We may clearly assume that f is multilinear. Moreover, by choosing a ∗-basis of A as the union

of a basis of A1 ⊕ · · · ⊕ Al and a basis of J it is enough to evaluate f on this basis. Let u1, . . . , ut be

elements of this basis such that f(u1, . . . , ut) 6= 0. Since f ∈ Id∗(J) at least one element, say uk, does

not belong to J . Then uk ∈ Ai, for some i. Recalling that AiAj = AjAi = AiJAj = AjJAi = 0, for

all j 6= i, we must have that u1, . . . , ut ∈ Ai ∪ J . Thus u1, . . . , ut ∈ Ai + J = Bi and this contradicts

the fact that f is a ∗-identity of Bi. This proves the claim. Now the proof is completed by noticing

that dimBi/J(Bi) = 1.

In case F is arbitrary, we consider the algebra Ā = A⊗F F̄ , where F̄ is the algebraic closure of F

and Ā = A⊗F F̄ is a ∗-algebra with the induced superinvolution (a⊗ α)∗ = a∗ ⊗ α, for a ∈ A,α ∈ F̄ .

Clearly A is T∗
2-equivalent to Ā. Moreover the ∗-codimensions of A over F coincide with the ∗-

codimensions of Ā over F̄ . By the hypothesis it follows that the ∗-codimensions of Ā are polynomially

bounded. But then by the first part of the proof, Ā = B1 ⊕ · · · ⊕ Bm, where B1, . . . , Bm are finite

dimensional ∗-algebras over F̄ and dimF̄ Bi/J(Bi) ≤ 1, for all i = 1, . . . ,m. By Lemma 2.6, there exist

finite dimensional ∗-algebras C1, . . . , Cm over F such that, for all i, Ci ∼T ∗
2
Bi and dimF Ci/J(Ci) =

dimF̄ Bi/J(Bi) ≤ 1. It follows that Id∗(A) = Id∗(Ā) = Id∗(B1 ⊕ · · · ⊕ Bm) = Id∗(C1 ⊕ · · · ⊕ Cm) and

we are done.

The following theorem collects results about ∗-varieties of polynomial growth.

Theorem 2.3.4. For a finite dimensional ∗-algebra A over a field F of characteristic zero the following

conditions are equivalent:

1) c∗n(A) is polynomially bounded;



2.3 Varieties of polynomial growth 57

2) A ∼T ∗
2
B, where B = B1 ⊕ · · · ⊕ Bm, with B1, . . . , Bm finite dimensional ∗-algebras over F and

dimBi/J(Bi) ≤ 1, for all i = 1, . . . ,m;

3) for every n1, . . . , n4 with n1 + · · ·+ n4 = n it holds

χn1,...,n4(A) =
∑

〈λ〉`(n1,...,n4)
n−λ(1)1<q

m〈λ〉χλ(1) ⊗ · · · ⊗ χλ(4),

where q is such that J(A)q = 0;

4) M,M sup, F ⊕ F /∈ var∗(A).
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Chapter 3

Subvarieties of ∗-varieties of almost

polynomial growth

In this chapter we completely classify all subvarieties and all minimal subvarieties of the ∗-varieties

of almost polynomial growth, generated by a finite dimensional ∗-algebra. From now on, unless

otherwise stated, F denotes a field of characteristic zero.

In Corollary 2.3 we have seen that the algebras M,M sup and F ⊕F are the only finite dimensional

∗-algebras generating ∗-varieties of almost polynomial growth. We then classify here all subvarieties

and all minimal subvarieties of var∗(F ⊕ F ), var∗(M) and var∗(M sup), by giving a complete list of

finite dimensional ∗-algebras generating them.

We start with the definition of minimal ∗-varieties.

Definition 3.1. A ∗-variety V is minimal of polynomial growth if c∗n(V) ≈ qnk, for some k ≥ 1, q > 0,

and for any proper subvariety U $ V we have that c∗n(U) ≈ q′nt, with t < k.

In the first section of this chapter we deal with the subvarieties of var∗(F ⊕ F ) and var∗(M)

whereas in the second section we shall focus our attention to the subvarieties of var∗(M sup). Finally

we describe the ∗-algebras whose ∗-codimensions are bounded by a linear function.

3.1 Subvarieties of var∗(F ⊕ F ) and var∗(M)

In this section we classify, up to T ∗
2 -equivalence, all the ∗-algebras contained in the ∗-variety

generated by F ⊕ F or M. Recall that F ⊕ F is the two-dimensional commutative algebra endowed

with the exchange involution ex and M = F (e11+ e44)⊕F (e22+ e33)⊕Fe12⊕Fe34 is a subalgebra of

UT4 endowed with the reflection involution ref. The exchange involution is such that (a, b)ex = (b, a),

59
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for all (a, b) ∈ F ⊕ F whereas the reflection involution ref on the algebras of n × n upper triangular

matrices UTn is defined as follows: if a = (aij) ∈ UTn then aref = (bij) where bij = an+1−j n+1−i.

Since F ⊕ F is a ∗-algebra with trivial grading the following remark holds.

Remark 3.1. The ∗-variety var∗(F ⊕ F ), generated by F ⊕ F , coincide with the variety of algebras

with involution var](F ⊕ F ), where F ⊕ F is regarded as algebra with involution.

At the same way, we can state the analogous result for M .

Remark 3.2. The ∗-variety var∗(M), generated by M , coincide with the variety of algebras with

involution var](M), where M is regarded as algebra with involution.

Remarks 3.1 and 3.2 assure us that the classification of the ∗-algebras inside var∗(F ⊕ F ) or

var∗(M) is equivalent to the classification of the ordinary algebras with involution inside var](F ⊕ F )

or var](M). Such a classification was given in [41] by La Mattina and Martino. In what follows we

present such results in the language of ∗-algebras.

We start by constructing, for any fixed k ≥ 1, ∗-algebras belonging to the ∗-variety generated by

F ⊕ F whose ∗-codimensions sequence grows polynomially as nk.

For k ≥ 2, let eijs be the usual matrix units, Ik the k × k identity matrix and E1 =
k−1∑

i=1

ei,i+1. We

denote by

Ck = {αIk +
∑

1≤i<k

αiE
i
1 | α, αi ∈ F} ⊆ UTk,

a commutative subalgebra of UTk, the algebra of k × k upper triangular matrices over F . We also

write Ck to mean the algebra Ck with trivial grading and superinvolution ∗ given by

(αIk +
∑

1≤i<k

αiE
i
1)

∗ = αIk +
∑

1≤i<k

(−1)iαiE
i
1.

We next state the following result characterizing the ∗-identities and the ∗-codimensions of Ck (see

[41]).

Theorem 3.1.1. Let k ≥ 2. Then

1) Id∗(Ck) = 〈[y1, y2], y
−
1 · · · y−k , z

+, z−〉T ∗
2
.

2) c∗n(Ck) =
k−1∑

j=0

(
n

j

)
≈

1

(k − 1)!
nk−1.

The following result classifies all the subvarieties of the ∗-variety generated by F ⊕ F.
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Theorem 3.1.2. [41] Let A be a ∗-algebra such that A ∈ var∗(F ⊕ F ). Then either A ∼T ∗
2
F ⊕ F or

A ∼T ∗
2
N or A ∼T ∗

2
C ⊕N or A ∼T ∗

2
Ck ⊕N, for some k ≥ 2, where N is a nilpotent ∗-algebra and

C is a commutative algebra with trivial superinvolution.

Next we exhibit finite dimensional ∗-algebras belonging to the ∗-variety generated by M whose

∗-codimensions sequence grows polynomially.

For k ≥ 2, let

Ak = spanF

{
e11 + e2k,2k, E, . . . , E

k−2, e12, e13, . . . , e1k, ek+1,2k, ek+2,2k, . . . , e2k−1,2k

}
,

Nk = spanF

{
I, E, . . . , Ek−2, e12 − e2k−1,2k, e13, . . . , e1k, ek+1,2k, ek+2,2k, . . . , e2k−2,2k

}
,

Uk = spanF

{
I, E, . . . , Ek−2, e12 + e2k−1,2k, e13, . . . , e1k, ek+1,2k, ek+2,2k, . . . , e2k−2,2k

}
,

be subalgebras of UT2k, the algebra of 2k × 2k upper triangular matrices over F . Here I denotes the

2k × 2k identity matrix and

E =

k−1∑

i=2

ei,i+1 + e2k−i,2k−i+1.

We also write Ak, Nk and Uk to mean the above algebras with trivial grading and with reflec-

tion superinvolution. We next state the following results characterizing the ∗-identities and the ∗-

codimensions of these algebras (see [41] for more details).

Theorem 3.1.3. For every k ≥ 2 we have:

1) Id∗(Ak) = 〈y−1 y
−
2 , z

+, z−, y+1 · · · y+k−2St3(y
+
k−1, y

+
k , y

+
k+1)y

+
k+2 · · · y

+
2k−1, y

+
1 · · · y+k−1y

−y+k · · · y+2k−2〉T ∗
2
;

2) c∗n(Ak) ≈ qnk−1, for some q > 0.

Theorem 3.1.4. The T ∗
2 -ideal Id

∗(Nk) is generated by the polynomials [y+1 , y
+
2 ], [y

+, y−], y−1 y
−
2 , z

+, z−,

in case k = 2 and by [y+1 , . . . , y
+
k−1], y

−
1 y

−
2 , z

+, z−, in case k ≥ 3. Moreover

c∗n(Nk) = 1 +
k−2∑

i=1

(
n

i

)
(2i− 1) +

(
n

k − 1

)
(k − 1) ≈ qnk−1, for some q > 0.

Theorem 3.1.5. The T ∗
2 -ideal Id

∗(Uk) is generated by the polynomials [y+1 , y
+
2 ], y

−, z+, z−, in case

k = 2 and by [y−, y+1 , . . . , y
+
k−2], y

−
1 y

−
2 , z

+, z−, in case k ≥ 3. Moreover c∗n(U2) = 1 and

c∗n(Uk) = 1 +
k−2∑

i=1

(
n

i

)
(2i− 1) +

(
n

k − 1

)
(k − 2) ≈ qnk−1, for some q > 0, for k ≥ 3.

The following result classifies the subvarieties of var∗(M).
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Theorem 3.1.6. [41, Theorem 6 ] If A ∈ var∗(M) then A is T ∗
2 -equivalent to one of the following

∗-algebras:

M, N, Nk ⊕N, Uk ⊕N, Nk ⊕ Uk ⊕N, At ⊕N, Nk ⊕At ⊕N, Uk ⊕At ⊕N, Nk ⊕ Uk ⊕At ⊕N,

for some k, t ≥ 2, where N is a nilpotent ∗-algebra.

As a consequence of Theorems 3.1.2 and 3.1.6, we can also get the classification of all ∗-algebras

generating minimal ∗-varieties.

Corollary 3.1. A ∗-algebra A ∈ var∗(F ⊕ F ) generates a minimal ∗-variety of polynomial growth if

and only if A ∼T ∗
2
Ck, for some k ≥ 2.

Corollary 3.2. A ∗-algebra A ∈ var∗(M) generates a minimal ∗-variety of polynomial growth if and

only if either A ∼T ∗
2
Ur or A ∼T ∗

2
Nk or A ∼T ∗

2
Ak, for some r > 2, k ≥ 2.

3.2 Subvarieties of var∗(M sup)

3.2.1 Unitary ∗-algebras inside var∗(M sup)

In this section we classify, up to T ∗
2 -equivalence, all the unitary ∗-algebras contained in the ∗-variety

generated by M sup.

We consider the algebras Nk and Uk we have defined before endowed with an elementary Z2-

grading. Recall that if g = (g1, . . . , g2k) ∈ Z2k
2 is an arbitrary 2k-tuple of elements of Z2, then g

defines an elementary Z2-grading on UT2k, the algebra of 2k × 2k upper triangular matrices over F ,

by setting

(UT2k)0 = span{eij | gi + gj = 0} and (UT2k)1 = span{eij | gi + gj = 1}

(recall that equalities are taken modulo 2). If A is a graded subalgebra of UT2k the induced grading

on A is also called elementary.

Definition 3.2. For k ≥ 2, N sup
k is the algebra Nk with elementary Z2-grading induced by g =

(0, 1, . . . , 1︸ ︷︷ ︸
k−1

, 0, . . . , 0︸ ︷︷ ︸
k−1

, 1) and with reflection superinvolution.

The following result characterizes the ∗-identities and the ∗-codimensions of N sup
k .

Theorem 3.2.1. Let k ≥ 2. Then:

1) Id∗(N sup
k ) = 〈y−, z1z2, [z+, y1, . . . , yk−2]〉T ∗

2
;

2) c∗n(N
sup
k ) = 1 +

k−2∑

i=1

2i

(
n

i

)
+

(
n

k − 1

)
(k − 1) ≈ qnk−1, for some q > 0.
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Proof. Let I = 〈y−, z1z2, [z+, y1, . . . , yk−2]〉T ∗
2
. It is easy to see that I ⊆ Id∗(N sup

k ). Let now f be

a ∗-identity of N sup
k . We may assume that f is multilinear and, since N sup

k is an unitary algebra, we

may take f proper (see Section 1.8). After reducing the polynomial f modulo I we obtain that f is

the zero polynomial if deg f ≥ k, f is a linear combination of commutators

[z−i , y
+
i1
, . . . , y+ik−2

], i1 < · · · < ik−2,

in case deg f = k − 1 and f is a linear combination of commutators

[z−i , y
+
i1
, . . . , y+is−1

], [z+j , y
+
j1
, . . . , y+js−1

], i1 < · · · < is−1, j1 < · · · < js−1,

in case deg f = s < k − 1. Hence, for some s = 1, . . . , k − 1,

f =
s∑

i=1

αi [z
−
i , y

+
i1
, . . . , y+is−1

] +
s∑

j=1

βj [z+j , y
+
j1
, . . . , y+js−1

].

Suppose that there exists i such that αi 6= 0 (resp. βi 6= 0). By making the evaluation z−i =

e12 − e2k−1,2k, z
−
l = 0, for all l 6= i, z+j = 0, for j = 1, . . . , s (resp. z+i = e13 + e2k−2,2k, z

+
l = 0, for all

l 6= i, z−j = 0, for j = 1, . . . , s) and yl = E, for all l = i1, . . . , is−1, we get that αi = 0 (resp. βi = 0), a

contradiction. Hence αi = βi = 0, for all i = 1, . . . , s. This says that f ∈ I and, so, Id∗(N sup
k ) = I.

The argument above also proves the following fact concerning γ∗n(N
sup
k ), the sequence of proper

∗-codimensions of N sup
k . We have that γ∗s (N

sup
k ) = s for s = k − 1, γ∗s (N

sup
k ) = 2s for s < k − 1 and

γ∗s (N
sup
k ) = 0 for s ≥ k. Then, by Theorem 1.8.2, we have

c∗n(N
sup
k ) = 1 +

k−2∑

i=1

(
n

i

)
2i+

(
n

k − 1

)
(k − 1) ≈ qnk−1, for some q > 0.

Definition 3.3. For k ≥ 2, U sup
k is the algebra Uk with elementary Z2-grading induced by g =

(0, 1, . . . , 1︸ ︷︷ ︸
k−1

, 0, . . . , 0︸ ︷︷ ︸
k−1

, 1) and with reflection superinvolution.

The following results, characterizing the ∗-identities and the ∗-codimensions of U sup
k and of N sup

k ⊕

U sup
k , can be proved in a similar way as the previous theorem.

Theorem 3.2.2. Let k ≥ 2. Then:

1) Id∗(U sup
k ) = 〈y−, z1z2, [z−, y1, . . . , yk−2]〉T ∗

2
;

2) c∗n(U
sup
k ) = 1 +

k−2∑

i=1

(
n

i

)
2i+

(
n

k − 1

)
(k − 1) ≈ qnk−1, for some q > 0.
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Theorem 3.2.3. Let k ≥ 2. Then:

1) Id∗(N sup
k ⊕ U sup

k ) = 〈y−, z1z2, [z, y1, . . . , yk−1]〉T ∗
2
;

2) c∗n(N
sup
k ⊕ U sup

k ) = 1 +

k−1∑

i=1

(
n

i

)
2i ≈ qnk−1, for some q > 0.

The following remark is obvious.

Remark 3.3. If t > k then U sup
t ⊕N sup

k ∼T ∗
2
U sup
t whereas U sup

t ⊕N sup
k ∼T ∗

2
N sup

k if t < k.

We recall that if A = B + J is a finite dimensional ∗-algebra over F , where B is a semisimple

∗-subalgebra and J = J(A) is its Jacobson radical, then J can be decomposed into the direct sum of

B-bimodules

J = J00 ⊕ J01 ⊕ J10 ⊕ J11,

where for i ∈ {0, 1}, Jik is a left faithful module or a 0-left module according as i = 1 or i = 0,

respectively. Similarly, Jik is a right faithful module or a 0-right module according as k = 1 or k = 0,

respectively and for i, k, l,m ∈ {0, 1}, JikJlm ⊆ δklJim where δkl is the Kronecker delta (for a proof of

this see Lemma 2 of [25]).

From now until the end of this section we assume that the field F of characteristic zero is alge-

braically closed.

Theorem 3.2.4. For any k ≥ 2, N sup
k generates a minimal ∗-variety of polynomial growth.

Proof. Let A ∈ var∗(N sup
k ) be such that c∗n(A) ≈ qnk−1, for some q > 0. We shall prove that A ∼T ∗

2

N sup
k . Since A ∈ var∗(M sup), by Corollary 2.1, A satisfies the same ∗-identities as a finite dimensional

∗-algebra. Hence, since c∗n(A) is polynomially bounded, by Theorem 2.3.3 we may assume that

A = B1 ⊕ · · · ⊕Bm,

where B1, . . . , Bm are finite dimensional ∗-algebras such that dimBi/J(Bi) ≤ 1, for all i = 1, . . . ,m.

This implies that either Bi
∼= F + J(Bi) or Bi = J(Bi) is a nilpotent ∗-algebra. Since c∗n(A) ≤

c∗n(B1) + · · ·+ c∗n(Bm), then there exists Bi such that c∗n(Bi) ≈ bnk−1, for some b > 0. Hence

var∗(N sup
k ) ⊇ var∗(A) ⊇ var∗(F + J(Bi)) ⊇ var∗(F + J11(Bi)).

Hence, in order to complete the proof it is enough to show that F +J11(Bi) ∼T ∗
2
N sup

k . Thus, without

loss of generality, we may assume that A is a unitary ∗-algebra. Now since c∗n(A) ≈ qnk−1, then

c∗n(A) =
∑k−1

i=0

(
n
i

)
γ∗i (A) and, by Corollary 1.7, γ∗i (A) 6= 0, for all i = 0, . . . , k − 1.
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For n1 + · · ·+ n4, let

ψn1,...,n4(A) =
∑

〈λ〉`n

m〈λ〉χλ(1) ⊗ · · · ⊗ χλ(4) and ψn1,...,n4(N
sup
k ) =

∑

〈λ〉`n

m′
〈λ〉χλ(1) ⊗ · · · ⊗ χλ(4)

be the (n1, . . . , n4)-th proper cocharacters of A and N sup
k , respectively. Since Id∗(A) ⊇ Id∗(N sup

k ), we

must have m〈λ〉 ≤ m′
〈λ〉, for all 〈λ〉 ` n = n1 + · · ·+ n4.

For any i = 2, . . . , k − 1, let f1 = [z+1 , y
+
2 , . . . , y

+
2 ] and f2 = [z−1 , y

+
2 , . . . , y

+
2 ] be highest weight

vectors corresponding to the multipartitions 〈λ〉 = ((i − 1), ∅, (1), ∅) and 〈µ〉 = ((i − 1), ∅, ∅, (1))

(see Section 1.8 and [11, Chapter 12] for more details). It is easily seen that f1 is not a ∗-identity of

N sup
k , for i = 2, . . . , k − 2 and f2 is not a ∗-identity of N sup

k , for i = 2, . . . , k − 1.

Thus for i = 2, . . . , k−2, χ(i−1)⊗χ∅⊗χ(1)⊗χ∅ participates in the (i−1, 0, 1, 0)-th proper cocharacter

ψi−1,0,1,0(N
sup
k ) with non-zero multiplicity. Also, for i = 2, . . . , k−1, χ(i−1)⊗χ∅⊗χ∅⊗χ(1) participates

in the (i− 1, 0, 0, 1)-th proper cocharacter ψi−1,0,0,1(N
sup
k ) with non-zero multiplicity.

Hence, for i = 2, . . . , k − 2, since

γ∗i (N
sup
k ) = 2i =

(
i

i− 1, 0, 1, 0

)
degχ(i−1)⊗χ∅⊗χ(1)⊗χ∅+

(
i

i− 1, 0, 0, 1

)
degχ(i−1)⊗χ∅⊗χ∅⊗χ(1),

by (1.5) we have that, for n1 + · · ·+ n4 = i

ψn1,n2,n3,n4(N
sup
k ) =





χ(i−1) ⊗ χ∅ ⊗ χ(1) ⊗ χ∅ if (n1, n2, n3, n4) = (i− 1, 0, 1, 0)

χ(i−1) ⊗ χ∅ ⊗ χ∅ ⊗ χ(1) if (n1, n2, n3, n4) = (i− 1, 0, 0, 1)

0 otherwise

.

Similarly, if n1+· · ·+n4 = k−1, since γ∗k−1(N
sup
k ) = k−1 =

(
k − 1

k − 2, 0, 0, 1

)
degχ(k−2)⊗χ∅⊗χ∅⊗χ(1),

we get

ψn1,n2,n3,n4(N
sup
k ) =




χ(k−2) ⊗ χ∅ ⊗ χ∅ ⊗ χ(1) if (n1, n2, n3, n4) = (k − 2, 0, 0, 1)

0 otherwise
.

We claim that ψn1,n2,n3,n4(A) = ψn1,n2,n3,n4(N
sup
k ).

Suppose first that n1 + · · · + n4 = k − 1. Since γ∗k−1(A) 6= 0 and m〈λ〉 ≤ m′
〈λ〉, for any 〈λ〉 `

n1 + · · ·+ n4, then we get that

ψn1,n2,n3,n4(A) =




χ(k−2) ⊗ χ∅ ⊗ χ∅ ⊗ χ(1) if (n1, n2, n3, n4) = (k − 2, 0, 0, 1)

0 otherwise
.

Let now n1 + · · · + n4 = i, where i = 2, . . . , k − 2,. Since γ∗k−1(A) 6= 0 and m〈λ〉 ≤ m′
〈λ〉, for

any 〈λ〉 ` n1 + · · · + n4, if ψi−1,0,0,1(A) = 0, for some 2 ≤ i ≤ k − 2, then the highest weight vector
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[z−1 , y
+
2 , . . . , y

+
2︸ ︷︷ ︸

i−1

] corresponding to the multipartition ((i−1), ∅, ∅, (1)) would be a ∗-identity for A. But

this implies that also [z+1 , y
+
2 , . . . , y

+
2︸ ︷︷ ︸

k−1

] is a ∗-identity for A, and so ψk−2,0,0,1(A) = 0, a contradiction.

In a similar way one can prove that, if ψi−1,0,1,0(A) = 0, we would reach a contradiction and so the

claim is proved. Hence

c∗n(A) =
k−1∑

i=0

(
n

i

) ∑

n1+···+n4=i

(
i

n1, . . . , n4

)
γn1,...,n4(A) = 1 +

k−2∑

i=1

(
n

i

)
2i+

(
n

k − 1

)
(k − 1) = c∗n(N

sup
k ).

Thus A and N sup
k have the same sequence of ∗-codimensions and, since Id∗(N sup

k ) ⊆ Id∗(A), we get

the equality Id∗(N sup
k ) = Id∗(A) and the proof is complete.

In a similar way it is possible to prove the following.

Theorem 3.2.5. For any k ≥ 2, U sup
k generates a minimal ∗-variety of polynomial growth.

In the following result we classify, up to T ∗
2 -equivalence, all the unitary ∗-algebras inside var∗(M sup).

Theorem 3.2.6. Let A ∈ var∗(M sup) be an unitary ∗-algebra such that c∗n(A) ≈ qnk−1, for some

q > 0, k ≥ 1. Then either A ∼T ∗
2
C or A ∼T ∗

2
U sup
k or A ∼T ∗

2
N sup

k or A ∼T ∗
2
N sup

k ⊕ U sup
k , where C

is a commutative algebra with trivial superinvolution.

Proof. If k = 1 it is immediate to see that A is a commutative algebra with trivial superinvolution.

Let now k ≥ 2. Since c∗n(A) ≈ qnk−1, by Theorem 1.8.2, γ∗k−1(A) 6= 0. Hence at least one polyno-

mial among [z+, y+1 , . . . , y
+
k−2] and [z−, y+1 , . . . , y

+
k−2] cannot be a ∗-identity for A, since otherwise we

would have γ∗k−1(A) = 0, a contradiction.

If [z−, y+1 , . . . , y
+
k−2] is not a ∗-identity and [z+, y+1 , . . . , y

+
k−2] ≡ 0 on A then Id∗(N sup

k ) ⊆ Id∗(A) and

since c∗n(A) ≈ qnk−1, by Theorem 3.2.4, one gets that A ∼T ∗
2
N sup

k . Similarly, if [z+, y+1 , . . . , y
+
k−2] is

not a ∗-identity and [z−, y+1 , . . . , y
+
k−2] ≡ 0 on A one gets that A ∼T ∗

2
U sup
k .

Finally, suppose that neither of the polynomials [z+, y+1 , . . . , y
+
k−2] and [z−, y+1 , . . . , y

+
k−2] are ∗-identities

for A. Since c∗n(A) ≈ qnk−1, then γ∗k(A) = 0, and so Id∗(N sup
k ⊕ U sup

k ) ⊆ Id∗(A). As in the proof of

Theorem 3.2.4, for i = 2, . . . , k − 1, we get

ψi−1,0,1,0(A) = ψi−1,0,1,0(N
sup
k ⊕ U sup

k ) = χ(i−1) ⊗ χ∅ ⊗ χ(1) ⊗ χ∅,

ψi−1,0,0,1(A) = ψi−1,0,0,1(N
sup
k ⊕ U sup

k ) = χ(i−1) ⊗ χ∅ ⊗ χ∅ ⊗ χ(1)

and

ψn1,n2,n3,n4(A) = ψn1,n2,n3,n4(N
sup
k ⊕ U sup

k ) = 0,
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if (n1, n2, n3, n4) /∈ {(i− 1, 0, 0, 1), (i− 1, 0, 1, 0)}, n1+ · · ·+n4 = i. Hence A and N sup
k ⊕U sup

k have the

same sequence of ∗-codimensions

c∗n(A) =
k−1∑

i=0

(
n

i

)
γ∗i (A) = 1 +

k−1∑

i=1

2i

(
n

i

)
= c∗n(N

sup
k ⊕ U sup

k ).

Since Id∗(N sup
k ⊕ U sup

k ) ⊆ Id∗(A), we finally get the equality Id∗(N sup
k ⊕ U sup

k ) = Id∗(A).

3.2.2 Classifying the subvarieties of var∗(M sup)

In this section we can classify, up to T ∗
2 -equivalence, all ∗-algebras contained in the ∗-variety

generated by M sup. We start by constructing ∗-algebras without unit inside var∗(M sup).

Definition 3.4. For k ≥ 2, Asup
k is the algebra Ak with elementary Z2-grading induced by g =

(0, 1, . . . , 1︸ ︷︷ ︸
k−1

, 0, . . . , 0︸ ︷︷ ︸
k−1

, 1) and with reflection superinvolution.

Next we describe explicitly the ∗-identities of Asup
k .

Theorem 3.2.7. Let k ≥ 2. Then

1) Id∗(Asup
k ) = 〈y−, z1z2, y1 · · · yk−1zyk · · · y2k−2〉T ∗

2
;

2) c∗n(A
sup
k ) = 1 + 2

∑

t<k−1
or

n−t<k

(
n

t

)
(n− t) ≈ qnk−1, for some q > 0.

Proof. Write I = 〈y−, z1z2, y1 · · · yk−1zyk · · · y2k−2〉T ∗
2
. It is easily seen that I ⊆ Id∗(Asup

k ). In order to

prove the opposite inclusion, first we find a set of generators of P ∗
n modulo P ∗

n ∩I, for every n ≥ 1. Any

multilinear polynomial of degree n can be written, modulo I, as a linear combination of monomials of

the type

y+1 · · · y+n , y+i1 · · · y
+
it
z+l y

+
j1
· · · y+js , y+r1 · · · y

+
rpz

−
l y

+
s1
· · · y+sq , (3.1)

where i1 < · · · < it, j1 < · · · < js, t < k− 1 or s < k− 1, r1 < · · · < rp, s1 < · · · < sq and p < k− 1 or

q < k − 1.

We next show that the above elements are linearly independent modulo Id∗(Asup
k ). Let f ∈

Id∗(Asup
k ) be a linear combination of the above monomials:

f = δy+1 · · · y+n +
∑

t<k−1
or

s<k−1

∑

l,I,J

αl,I,J y
+
i1
· · · y+it z

+
l y

+
j1
· · · y+js +

∑

p<k−1
or

q<k−1

∑

m,R,S

βm,R,S y
+
r1
· · · y+rpz

−
my

+
s1
· · · y+sq ,

where t+s = p+q = n−1 and for any fixed t and p, I = {i1, . . . , it}, J = {j1, . . . , js}, R = {r1, . . . , rp}

and S = {s1, . . . , sq}.
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By making the evaluation y+1 = · · · = y+n = e11 + e2k,2k, and z
+
l = z−l = 0, for all l = 1, . . . , n, one

gets δ(e11 + e2k,2k) = 0 and, so, δ = 0.

For fixed t < k−1, l, I, J the evaluation z+l = e12+e2k−1,2k, z
+
l′ = 0, for all l′ 6= l, y+i1 = · · · = y+it =

E, y+j1 = · · · = y+js = e11+e2k,2k and z−m = 0, for m = 1, . . . , n, gives αl,I,J e2k−t−1,2k+αl,J,I e1,2+t = 0.

Thus αl,I,J = αl,J,I = 0.

Similarly, for fixed s < k − 1, l, I, J the evaluation z+l = e12 + e2k−1,2k, z
+
l′ = 0, for all l′ 6= l,

y+i1 = · · · = y+it = e11 + e2k,2k, y
+
j1

= · · · = y+js = E and z−m = 0, for m = 1, . . . , n, gives αl,I,J = 0.

In a similar way it is proved that the coefficients βm,R,S = 0, for all m,R and S.

Therefore the elements in (3.1) are linearly independent modulo P ∗
n ∩ Id∗(Asup

k ) and, since P ∗
n ∩

Id∗(Asup
k ) ⊇ P ∗

n ∩ I, they form a basis of P ∗
n modulo P ∗

n ∩ Id∗(Asup
k ) and Id∗(Asup

k ) = I. By counting,

we obtain

c∗n(A
sup
k ) = 1 + 2

∑

t<k−1
or

n−t<k

(
n

t

)
(n− t) ≈ qnk−1,

for some q > 0.

Remark 3.4. Let A = F + J ∈ var∗(M sup). Then J10J01 = J01J10 = (J11)1J10 = J01(J11)1 = 0.

In particular, if A ∈ var∗(Asup
k ) then (J11)1 = 0.

Proof. We start by proving that J10J01 = J01J10 = 0. Let a = a0+ a1 ∈ J10, b = b0+ b1 ∈ J01. Notice

that, since A−
0 = 0, a−a∗ = a1−a

∗
1 and b−b

∗ = b1−b
∗
1. Then, because of z1z2 ≡ 0, (a−a∗)(b−b∗) = 0

and, so, ab = a∗b∗ = 0.

Now let a ∈ (J11)1, b = b0 + b1 ∈ J10. Then a(b− b∗) = 0 and, so, ab = 0.

Finally, if A ∈ var∗(Asup
k ) then A satisfies the ∗-identity y+1 · · · y+k−1zy

+
k · · · y+2k−2 ≡ 0. Hence, since

(J11)1 = F · · ·F︸ ︷︷ ︸
k−1

(J11)1 F · · ·F︸ ︷︷ ︸
k−1

, we get the desired result.

Lemma 3.1. Let A = F + J ∈ var∗(Asup
k ) with J10 6= 0 (hence J01 6= 0). If c∗n(A) ≈ qnk−1, for some

q > 0, then A ∼T ∗
2
Asup

k .

Proof. Since A ∈ var∗(Asup
k ), by the previous remark we must have (J11)1 = J01J10 = J10J01 = 0.

Suppose first that (J10)1((J00)
+
0 )

k−2 = 0 and, so, ((J00)
+
0 )

k−2(J01)1 = 0. Since J is a nilpotent

ideal of A, then there exists m such that Jm. It can be proved that, for any n ≥ m, the multilinear

polynomial

f = yi1 · · · yily1 · · · yk−2zyk−1 · · · y2k−4yj1 · · · yjt ∈ Id∗(A),

where l + t+ 2k − 3 = n.
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Hence, if Q ⊆ Id∗(A) is the T ∗
2 -ideal generated by f plus the generators of the T ∗

2 -ideal Id
∗(Asup

k ),

it is easy to see that for any n ≥ m, a set of generators of P ∗
n(mod P ∗

n ∩Q) is given by the polynomials

y+1 · · · y+n , y
+
i1
· · · y+it z

+
l y+j1 · · · y

+
js
, y+i1 · · · y

+
it
z−l y+j1 · · · y

+
js
,

where t+ s = n− 1, t < k − 2 or s < k − 2, i1 < · · · < it, j1 < · · · < js. Hence

c∗n(A) ≤ 1 + 2
∑

t<k−2
or

n−t<k−1

(
n− 1

t

)
n ≈ qnk−2,

a contradiction.

Therefore we must have (J10)1((J00)
+
0 )

k−2 6= 0. In order to complete the proof it is enough to

show that Id∗(A) ⊆ Id∗(Asup
k ). Let f ∈ Id∗(A) be a multilinear polynomial. By Theorem 3.2.7, we

can write f , modulo Id∗(Asup
k ) as

f = δy+1 · · · y+n +
∑

t<k−1
or

s<k−1

∑

l,I,J

αl,I,J y
+
i1
· · · y+it z

+
l y

+
j1
· · · y+js +

∑

p<k−1
or

q<k−1

∑

m,R,S

βm,R,S y
+
r1
· · · y+rpz

−
my

+
s1
· · · y+sq ,

where I = {i1, . . . , it}, J = {j1, . . . , js}, R = {r1, . . . , rp}, S = {s1, . . . , sq} are such that I ∪ J ∪ {l} =

R ∪ S ∪ {m} = {1, . . . , n} and i1 < · · · < it, j1 < · · · < js, r1 < · · · < rp and s1 < · · · < sq. It is easy

to see that f must be the zero polynomial and so, f ∈ Id∗(Asup
k ). This says that Id∗(A) = Id∗(Asup

k )

and the proof is complete.

From now until the end of this section we assume that the field F of characteristic zero is also

algebraically closed. We are now in a position to prove the following theorem.

Theorem 3.2.8. For any k ≥ 2, Asup
k generates a minimal ∗-variety of polynomial growth.

Proof. As in the proof of Theorem 3.2.4 we may assume that A = B1⊕· · ·⊕Bm, where B1, . . . , Bm are

finite dimensional ∗-algebras such that either Bi
∼= F +J(Bi) or Bi = J(Bi) is a nilpotent algebra and

there exists Bi such that c∗n(Bi) ≈ bnk−1, for some b > 0. Since k ≥ 2, we must have that J10(Bi) 6= 0

(hence J01(Bi) 6= 0). If not, Bi
∼= (F + J11)⊕ J00 and c∗n(Bi) = c∗n(F + J11), for n large enough. But

since C = F + J11 ∈ var∗(Asup
k ), we get that C is a commutative algebra with trivial superinvolution

and, so, c∗n(F + J11) = 1, a contradiction. Therefore, since Bi satisfies the hypotheses of Lemma 3.1,

we get that Bi ∼T ∗
2
Asup

k and A ∼T ∗
2
Asup

k follows.

Lemma 3.2. Let A = F + J ∈ var∗(M sup) be a ∗-algebra. If J10 6= 0 (hence J01 6= 0) then A is

T ∗
2 -equivalent to one of the following ∗-algebras

Asup
k ⊕N, N sup

u ⊕Asup
k ⊕N, U sup

u ⊕Asup
k ⊕N, N sup

u ⊕ U sup
u ⊕Asup

k ⊕N,

for some k, u ≥ 2, where N is a nilpotent ∗-algebra.
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Proof. Since the proof is very similar to that given in [41, Lemma 8] we shall just give a sketch of it.

Let j ≥ 0 be the largest integer such that J10J
j
00 6= 0 (hence J j

00J01 6= 0). We shall see that

either A ∼T ∗
2
Asup

j+2 ⊕ J00 or A ∼T ∗
2
Asup

j+2 ⊕ N sup
u ⊕ J00 or A ∼T ∗

2
Asup

j+2 ⊕ U sup
u ⊕ J00 or A ∼T ∗

2

Asup
j+2 ⊕N sup

u ⊕ U sup
u ⊕ J00, for some u ≥ 2.

Suppose first that (J11)1 = 0.

It is checked that Asup
j+2 ∼T ∗

2
A/J j+1

00 and so, Id∗(A) ⊆ Id∗(Asup
j+2 ⊕ J00). In order to prove the opposite

inclusion, it is taken f ∈ Id∗(Asup
j+2 ⊕ J00) a multilinear polynomial of degree n. If n ≤ 2j + 2, since

f ∈ Id∗(Asup
j+2), then f must be a consequence of 〈y−, z1z2〉T ∗

2
⊆ Id∗(A). Hence f ∈ Id∗(A) and we are

done in this case. Now let n > 2j + 2. It is checked that f can be written modulo Id∗(Asup
j+2) as

f =
∑

t≥j+1
and

s≥j+1

∑

l,I,J

αl,I,J y
+
i1
· · · y+it z

+
l y

+
j1
· · · y+js +

∑

p≥j+1
and

q≥j+1

∑

m,R,S

βm,R,S y
+
r1
· · · y+rpz

−
my

+
s1
· · · y+sq + g,

where g ∈ 〈y−, z1z2〉T ∗
2
and I = {i1, . . . , it}, J = {j1, . . . , js}, R = {r1, . . . , rp}, S = {s1, . . . , sq} with

i1 < · · · < it, j1 < · · · < js, r1 < · · · < rp and s1 < · · · < sq. It is easily seen that f is a ∗-identity of

A and Id∗(Asup
j+2 ⊕ J00) ⊆ Id∗(A). So A ∼T ∗

2
Asup

j+2 ⊕ J00 follows.

Suppose now that (J11)1 6= 0.

Let B = F + J10 + J01 + J00. By Remark 3.4 it follows that B is a subalgebra of A and, since

(J11(B))1 = 0, by applying the first part of the lemma to B, we conclude that

B ∼T ∗
2
Asup

j+2 ⊕ J00.

Now let L = F + J11. By Theorem 3.2.6, either L ∼T ∗
2
F or L ∼T ∗

2
N sup

r or L ∼T ∗
2
U sup
r or

L ∼T ∗
2
N sup

r ⊕ U sup
r , for some r ≥ 2. It is proved that A ∼T ∗

2
L⊕B and this complete the proof.

Now we are in a position to classify all the subvarieties of var∗(M sup).

Theorem 3.2.9. If A ∈ var∗(M sup) then A is T ∗
2 -equivalent to one of the following ∗-algebras: M sup,

N , C, N sup
k ⊕ N , U sup

k ⊕ N , N sup
k ⊕ U sup

k ⊕ N, Asup
t ⊕ N , N sup

k ⊕ Asup
t ⊕ N , U sup

k ⊕ Asup
t ⊕ N ,

N sup
k ⊕ U sup

k ⊕Asup
t ⊕N , for some k, t ≥ 2, where N is a nilpotent ∗-algebra and C is a commutative

algebra with trivial superinvolution.

Proof. If A ∼T ∗
2
M sup there is nothing to prove. Now let A generate a proper subvariety ofM sup. Since,

by Theorem 2.1.2, M sup generates a ∗-variety of almost polynomial growth, var∗(A) has polynomial

growth. Hence by Corollary 2.1 and Theorem 2.3.3 we may assume that A = B1 ⊕ · · · ⊕ Bm, where

B1, . . . , Bm are finite dimensional ∗-algebras such that dimBi/J(Bi) ≤ 1. This means that for every

i, either Bi is a nilpotent ∗-algebra or Bi has a decomposition of the type Bi = F + J = F + J11 +

J10 + J01 + J00. Now, by applying Theorem 3.2.6 and Lemma 3.2, we get the desired conclusion.
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As a consequence of the previous theorem and of Theorems 3.2.4, 3.2.5, 3.2.8 we can also get the

classification of all ∗-algebras generating minimal ∗-varieties.

Corollary 3.3. A ∗-algebra A ∈ var∗(M sup) generates a minimal ∗-variety of polynomial growth if

and only if either A ∼T ∗
2
U sup
k or A ∼T ∗

2
N sup

k or A ∼T ∗
2
Asup

k , for some k ≥ 2.

3.3 Classifying ∗-varieties of at most linear growth

In this section we present a classification, up to T ∗
2 -equivalence, of the finite dimensional ∗-algebras

generating varieties of at most linear growth.

Throughout this section F denotes a field of characteristic zero.

The next theorem can be proved by following word by word the proof of [34, Theorem 5.1].

Theorem 3.3.1. Let A be a ∗-algebra. Then c∗n(A) ≤ anp, for some constants a and p, if and only if

for every n1 + · · ·+ n4 = n it holds

χn1,...,n4(A) =
∑

〈λ〉`(n1,...,n4)
n−λ(1)1≤p

m〈λ〉χλ(1) ⊗ · · · ⊗ χλ(4).

As a consequence, we get the following.

Lemma 3.3. Let A be a finite dimensional ∗-algebra such that c∗n(A) ≤ an, for some constant a.

Then A satisfies the polynomial identities x1x2 ≡ 0, with x1, x2 ∈ X \ Y +, where Y + =
{
y+1 , y

+
2 , . . .

}
.

Lemma 3.4. Let A = F+J be a finite dimensional ∗-algebra such that c∗n(A) ≤ an, for some constant

a. Then

A ∼T ∗
2
(F + J0)⊕

(
F + J+

1

)
⊕
(
F + J−

1

)
.

Proof. Since c∗n(A) ≤ an, by Lemma 3.3, A satisfies the polynomial identities x1x2 ≡ 0. Hence F +J0,

F + J+
1 and F + J−

1 are ∗-subalgebras of A and obviously

Id∗(A) ⊆ Id∗
(
(F + J0)⊕ (F + J+

1 )⊕ (F + J−
1 )
)
.

Conversely, let f ∈ Id∗
(
(F + J0)⊕ (F + J+

1 )⊕ (F + J−
1 )
)
be a multilinear polynomial of degree

n. By multihomogeneity of T ∗
2 -ideals we may assume, modulo Id∗(A), that either

f =
∑

σ∈Sn

ασy
+
σ(1) · · · y

+
σ(n) or f =

∑

i=1,...,n
σ∈Sn

βσy
+
σ(1) · · · y

+
σ(i−1)xσ(i)y

+
σ(i+1) · · · y

+
σ(n),

where xi ∈ X \ Y +, i = 1, . . . , n.

If f is of the first type, in order to get a non-zero value, we should evaluate f on F + J0. But

f ∈ Id∗(F +J0) by the hypothesis, and so we get that f ≡ 0 on A. Similarly, if f is of the second type

we get that f ≡ 0 on A. Hence Id∗
(
(F + J0)⊕ (F + J+

1 )⊕ (F + J−
1 )
)
⊆ Id∗(A) and we are done.
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Since it is easily checked that F + J0 ∈ var∗(M), F + J+
1 , F + J−

1 ∈ var∗(M sup), we get the

following.

Corollary 3.4. Let A = F + J be a finite dimensional ∗-algebra such that c∗n(A) ≤ an, for some

constant a. Then A ∼T ∗
2
B1 or A ∼T ∗

2
B2 or A ∼T ∗

2
B1 ⊕ B2, where B1 ∈ var∗(M) and B2 ∈

var∗(M sup).

Now we are ready to present the main result of this section.

Theorem 3.3.2. Let A be a finite dimensional ∗-algebra such that c∗n(A) ≤ an, for some constant a.

Then

A ∼T ∗
2
B1 ⊕ · · · ⊕Bm ⊕N,

where Bi ∈ var∗(M) or Bi ∈ var∗(M sup), for all i = 1, . . . ,m and N is a nilpotent ∗-algebra.

Proof. Since c∗n(A) ≤ an, for some constant a, by Theorem 2.3.3, we may assume that

A = A1 ⊕ · · · ⊕Am,

where A1, . . . , Am are finite dimensional ∗-algebras with dimAi/J(Ai) ≤ 1, 1 ≤ i ≤ m. Notice that

this says that either Ai
∼= F + J(Ai) or Ai = J(Ai) is a nilpotent ∗-algebra. Since c∗n(Ai) ≤ c∗n(A)

then c∗n(Ai) ≤ an, for all i = 1, . . . ,m. Now the result follows by applying Corollary 3.4 to each

non-nilpotent Ai.

Finally, by putting together Theorem 3.3.2 and Theorems 3.1.6 and 3.2.9, we get a finer classifi-

cation of the ∗-algebras of at most linear codimension growth.

Theorem 3.3.3. Let A be a finite dimensional ∗-algebra such that c∗n(A) ≤ an, for some constant a.

Then

A ∼T ∗
2
B1 ⊕ · · · ⊕Bm ⊕N,

where N is a nilpotent ∗-algebra and for all i = 1, . . . ,m, Bi is T
∗
2 -equivalent to one of the following

algebras:

Ni, C ⊕Ni, N2 ⊕Ni, A2 ⊕Ni, N2 ⊕A2 ⊕Ni,

N sup
2 ⊕Ni, U

sup
2 ⊕Ni, A

sup
2 ⊕Ni, N

sup
2 ⊕U sup

2 ⊕Ni, N
sup
2 ⊕Asup

2 ⊕Ni, U
sup
2 ⊕Asup

2 ⊕Ni, N
sup
2 ⊕U sup

2 ⊕Asup
2 ⊕Ni,

where C is a commutative algebra with trivial superinvolution and Ni is a nilpotent ∗-algebra.



Chapter 4

Standard identities on matrices with

superinvolution

In this chapter we focus our attention on particular identities on the matrix algebras with superin-

volution we have introduced in Section 1.7. We shall give results inspired from the celebrated theorem

of Amitsur and Levitski. Recall that the standard polynomial of degree r in the non-commutative

variables x1, . . . , xr is defined as

Str(x1, . . . , xr) =
∑

σ∈Sr

(sgnσ)xσ(1) · · ·xσ(r).

Theorem 4.0.4 (Amitsur-Levitzki, 1950). For each n ≥ 1, the standard polynomial St2n is an

identity for Mn(F ), the algebra of n×n matrices over the field F . Moreover, if charF 6= 2, then St2n

is an identity of minimal degree for Mn(F ).

The general question whether the Amitsur-Levitski theorem could be improved by considering only

certain kinds of matrices was positively solved by Kostant and Rowen, which proved some powerful

results in the setting of matrix algebras with involution. The following theorem clarify the situation

in this area (for a proof of it, see for instance, [53, Theorem 3.1.62]).

Theorem 4.0.5. For any infinite field F and any involution ] on Mn(F ), either Id(Mn(F ), ]) =

Id(Mn(F ), t) or Id(Mn(F ), ]) = Id(Mn(F ), s), where t and s denote the transpose and the symplectic

involution and (Mn(F ), ‡) denotes the matrix algebra Mn(F ) endowed with the involution ‡.

In practice, up to isomorphism, we have only the transpose and the symplectic involution on

Mn(F ). Recall that s is defined only when n = 2l is even by the formula

(
A B

C D

)s

=

(
Dt −Bt

−Ct At

)
,

73
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where the original matrix is partitioned into l × l blocks.

Theorem 4.0.6 (Kostant, 1958). Let (Mn(F ), t) be the algebra of n×n matrices endowed with the

transpose involution. If n is even, then St2n−2(x1, . . . , x2n−2) is a standard identity in skew variables.

Theorem 4.0.7 (Rowen, 1974). Let (Mn(F ), t) be the algebra of n× n matrices endowed with the

transpose involution. Then St2n−2(x1, . . . , x2n−2) is a standard identity of minimal degree in skew

variables.

In order to complete the case of the transpose involution, we present the following well known

result.

Theorem 4.0.8. Let (Mn(F ), t) be the algebra of n×n matrices endowed with the transpose involution.

Then St2n(x1, . . . , x2n) is a standard identity of minimal degree in symmetric variables.

Another famous result of Rowen concerns the symplectic involution.

Theorem 4.0.9 (Rowen, 1982). Let (M2l(F ), s) be the algebra of 2l× 2l matrices endowed with the

symplectic involution. Then St4l−2(x1, . . . , x4l−2) is a standard identity in symmetric variables.

We remark that in this case we have no results concerning the minimal degree. In fact, although

Rowen proved that 4l− 2 is the minimal degree of a standard polynomial in symmetric matrices with

respect to s when l = 2 and Adamsson, in [1], extended this result for l = 3, 4, the proof of the general

case has not been found yet (see [29] for more details). Then 4l− 2 appears to be the minimal degree

of a standard identity on 2l × 2l symmetric matrices with respect to the symplectic involution s but

we have no proof of that.

Let now focus our attention to skew-symmetric matrices with respect to the symplectic involution

s. The following lemma holds.

Lemma 4.1. Let (M2l(F ), s) be the algebra of 2l×2l matrices endowed with the symplectic involution.

Then the polynomial St4l(x1, . . . , x4l) is a standard identity of minimal degree in skew variables.

Proof. Let B1, . . . , Br, be 2l × 2l skew-symmetric matrices with respect to s. By Theorem 4.0.4, it

is obvious that Str(B1, . . . , Br) = 0, if r ≥ 4l. In order to complete the proof, let us consider the

set of skew-symmetric matrices αi = ei,i − el+i,l+i, βj = ej,j+l, γm = em+l,m, 1 ≤ i, j,m ≤ l and

δn = en,n+1 − en+1+l,n+l, 1 ≤ n ≤ l − 1. We claim that

e2l,2lSt4l−1(α1, . . . , αl, β1, . . . , βl, γ1, . . . , γl, δ1, . . . , δl−1)el+1,l+1 = 3l e2l,l+1.

Now, if g is a monomial of St4l−1 whose evaluation is a multiple of e2l,l+1, then αl, γl and δl−1 are

the only elements that can lie in the first position of g. Moreover, αl, βl, γl and δl−1 are the only ones
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where the index 2l or l appears, so if the first element of g is δl−1, we will obtain 0, since we can no

longer insert the matrices αl, βl, γl. Thus the first element of g must be either αl or γl and there are

only 3 non-zero possibilities:

(1) αl γl βl δl−1 g
′ = e2l,2l−1 g

′,

(2) γl βl αl δl−1 g
′ = e2l,2l−1 g

′,

(3) γl αl βl δl−1 g
′ = −e2l,2l−1 g

′,

where g′ is a monomial in the remaining matrices. We notice that (1) (resp. (2)) and (3) appear with

opposite sign in the standard polynomial.

Now we have to insert in g the matrices αl−1, βl−1, γl−1 and δl−2, that are the only ones where the

index 2l − 1 or l − 1 appears. We have only 3 non-zero possibilities

(1) g′1 = αl−1 γl−1 βl−1 δl−2 g
′′ = e2l−1,2l−2 g

′′,

(2) g′2 = γl−1 βl−1 αl−1 δl−2 g
′′ = e2l−1,2l−2 g

′′,

(3) g′3 = γl−1 αl−1 βl−1 δl−2 g
′′ = −e2l−1,2l−2 g

′′.

As before (1) (resp. (2)) and (3) appear with opposite sign in the standard polynomial. By

iterating the process, the result follows.

We now are ready to treat the so-called standard ∗-identities.

Definition 4.1. Let A = A+
0 ⊕ A−

0 ⊕ A+
1 ⊕ A−

1 be a ∗-algebra. We say that A satisfies a standard

∗-identity if

Str
(
u+1 , . . . , u

+
n , u

−
1 , . . . , u

−
m, v

+
1 , . . . , v

+
t , v

−
1 , . . . , v

−
s

)
= 0,

for all u+1 , . . . , u
+
n ∈ A+

0 , u
−
1 , . . . , u

−
m ∈ A−

0 , v
+
1 , . . . , v

+
t ∈ A+

1 and v−1 , . . . , v
−
s ∈ A−

1 .

In this chapter we focus our attention on standard ∗-identities on the matrix algebras Mn(F )

endowed with a superinvolution. As we have seen in Section 1.7, on the matrix algebra Mn(F ) it is

possible to define the following Z2-grading. Let be n = k+h, then A =Mn(F ) becomes a superalgebra

A = A0 ⊕A1, where

A0 =

{(
X 0

0 T

)
| X ∈Mk(F ), T ∈Mh(F )

}
,

A1 =

{(
0 Y

Z 0

)
| Y ∈Mk×h(F ), Z ∈Mh×k(F )

}
.
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Such superalgebra is denoted by Mk,h(F ) and, if F is an algebraically closed field of characteristic

different from 2, any non trivial Z2-grading on Mn(F ) is isomorphic to Mk,h(F ), for some k and h.

Moreover, in [47], Racine showed that, up to isomorphism, it is possible to define on Mk,h(F ) only

the orthosymplectic and the transpose superinvolution.

In this chapter we find the minimal degree for which the standard polynomial vanishes when

evaluated in homogeneous symmetric or skew-symmetric matrices of Mk,h(F ) in the case of both

transpose or orthosymplectic superinvolution, respectively. In the last section of the chapter we make a

systematic study of the identities of the algebra M1,1(F ) endowed with the transpose superinvolution.

We compute a generating set of the T ∗
2 -ideal of identities and we find the decomposition of the

corresponding character into irreducibles.

From now on, unless otherwise stated, F denotes an algebraically closed field of characteristic zero.

4.1 Standard identities on (Mk,k(F ), trp)

In this section we consider 2k×2k matrices endowed with the transpose superinvolution trp. Recall

that trp is defined by the formula

(
X Y

Z T

)trp

=

(
T t −Y t

Zt Xt

)
,

where t is the usual transpose. The four sets of homogeneous symmetric and skew elements are the

following:

(Mk,k(F ), trp)
+
0 =

{(
X 0

0 Xt

)
| X ∈Mk(F )

}
,

(Mk,k(F ), trp)
−
0 =

{(
X 0

0 −Xt

)
| X ∈Mk(F )

}
,

(Mk,k(F ), trp)
+
1 =

{(
0 Y

Z 0

)
| Y = −Y t, Z = Zt, Y, Z ∈Mk(F )

}
,

(Mk,k(F ), trp)
−
1 =

{(
0 Y

Z 0

)
| Y = Y t, Z = −Zt, Y, Z ∈Mk(F )

}
.

The main result of this section states that the polynomial St2k(x1, . . . , x2k) is a standard ∗-identity

of minimal degree of (Mk,k(F ), trp), where x1, . . . , x2k are all symmetric or skew variables of the same

homogeneous degree (i.e. the xis are all y+i s or y−i s or z+i s or z−i s). We shall prove the theorem in

several steps. For a start, the following remark holds.
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Remark 4.1. Let r ≥ 1 and let t be the usual transpose. If B1, . . . , Br ∈Mk(F ) then

Str
(
Bt

1, . . . , B
t
r

)
= (−1)f(r) (Str (B1, . . . , Br))

t ,

where

f(r) =




0 if r ≡ 0, 1 (mod 4)

1 if r ≡ 2, 3 (mod 4)
.

In the next proposition we find the minimal degree of a standard ∗-identity in the y+i s and y−i s,

respectively.

Proposition 4.1. The polynomials St2k(y
+
1 , . . . , y

+
2k) and St2k(y

−
1 , . . . , y

−
2k) are standard ∗-identities

of (Mk,k(F ), trp) of minimal degree in symmetric and skew variables of homogeneous degree zero,

respectively.

Proof. Let U+
1 , . . . , U

+
r ∈ (Mk,k(F ), trp)

+
0 , where U+

i =

(
Xi 0

0 Xt
i

)
and Xi ∈ Mk(F ), for all i =

1, . . . , r. By Remark 4.1 we get

Str
(
U+
1 , . . . , U

+
r

)
= Str

((
X1 0

0 Xt
1

)
, . . . ,

(
Xr 0

0 Xt
r

))

=

(
Str (X1, . . . , Xr) 0

0 Str
(
Xt

1, . . . , X
t
r

)
)

=

(
Str (X1, . . . , Xr) 0

0 (−1)f(r) (Str (X1, . . . , Xr))
t

)
.

Similarly, for all U−
1 , . . . , U

−
r ∈ (Mk,k(F ), trp)

−
0 , where U

−
i =

(
Ti 0

0 −T t
i

)
and Ti ∈Mk(F ), for all

i = 1, . . . , r, we get

Str
(
U−
1 , . . . , U

−
r

)
= Str

((
T1 0

0 −T t
1

)
, . . . ,

(
Tr 0

0 −T t
r

))

=

(
Str(T1, . . . , Tr) 0

0 (−1)rStr(T
t
1, . . . , T

t
r)

)

=

(
Str(T1, . . . , Tr) 0

0 (−1)f(r)+r (Str(T1, . . . , Tr))
t

)
.

Thus, Str(y
+
1 , . . . , y

+
r ) and Str(y

−
1 , . . . , y

−
r ) are polynomial identities if and only if Str(X1, . . . , Xr) =

0 and Str(T1, . . . , Tr) = 0, where the Xis and the Tjs are k × k matrices. By Theorem 4.0.4, we ob-

tain that in both cases, Str(y
+
1 , . . . , y

+
r ) and Str(y

−
1 , . . . , y

−
r ) are polynomial identities if and only if

r ≥ 2k.
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In order to simplify the notation, for i ≥ 1, let Si,Ki be k × k symmetric and skew-symmetric

matrices with respect to the transpose involution, respectively. Our next goal is to find the minimal

degree of a standard ∗-identity in the z+i s and z
−
i s. The following lemma shows that the two cases are

strictly related.

Lemma 4.2. In (Mk,k, trp), Str
(
z+1 , . . . , z

+
r

)
≡ 0 if and only if Str

(
z−1 , . . . , z

−
r

)
≡ 0, for all r ≥ 1.

Proof. Let V +
1 , . . . , V

+
r ∈ (Mk,k(F ), trp)

+
1 where V +

i =

(
0 Ki

Si 0

)
, for all i = 1, . . . , r. If we set

C =
∑

σ∈Sr

(sgnσ)Kσ(1)Sσ(2) · · ·Kσ(r−1)Sσ(r), if r is even,

D =
∑

σ∈Sr

(sgnσ)Sσ(1)Kσ(2) · · ·Sσ(r−1)Kσ(r), if r is even,

C ′ =
∑

σ∈Sr

(sgnσ)Kσ(1)Sσ(2) · · ·Kσ(r−2)Sσ(r−1)Kσ(r), if r is odd,

D′ =
∑

σ∈Sr

(sgnσ)Sσ(1)Kσ(2) · · ·Sσ(r−2)Kσ(r−1)Sσ(r), if r is odd,

a simple computation shows that Str(V
+
1 , . . . , V

+
r ) is equal to

(
C 0

0 D

)
if r is even and

(
0 C ′

D′ 0

)
if

r is odd.

Similarly, let V −
1 , . . . , V

−
r ∈ (Mk,k(F ), trp)

−
1 where V −

i =

(
0 Si

Ki 0

)
, for all i = 1, . . . , r. Then

Str(V
−
1 , . . . , V

−
r ) is equal to

(
D 0

0 C

)
if r is even and

(
0 D′

C ′ 0

)
if r is odd.

Therefore, it is clear that Str(z
+
1 , . . . , z

+
r ) ≡ 0 if and only if C = D = 0 if r is even, (resp.

C ′ = D′ = 0 if r is odd ), if and only if Str(z
−
1 , . . . , z

−
r ) ≡ 0.

The following remark holds.

Remark 4.2. For r ≥ 2 even, we have that Ct = D.

Proof. Ct =

(
∑

σ∈Sr

(sgnσ)Kσ(1)Sσ(2) · · ·Kσ(r−1)Sσ(r)

)t

=
∑

σ∈Sr

(sgnσ)S t
σ(r)K

t
σ(r−1) · · ·S

t
σ(2)K

t
σ(1) =

=
∑

σ∈Sr

(sgnσ)Sσ(r)(−Kσ(r−1)) · · ·Sσ(2)(−Kσ(1)) =
∑

σ∈Sr

(sgnσ)Sσ(1)Kσ(2) · · ·Sσ(r−1)Kσ(r) =

= D
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In the proof of the next proposition we shall use Rosset’s approach to the proof of the Amitsur-

Levitzki theorem (see [51]). Recall that the infinite dimensional Grassmann algebra G over F is the

algebra generated by a countable set of elements {e1, e2, . . .} satisfying the relations eiej = −ejei, for

all i, j. It is well known that G has a natural Z2-grading G = G0 ⊕ G1, where G0 is the span of all

monomials in the eis of even length and G1 is the span of all monomials in the eis of odd length.

We recall the following fact (see for instance [26, Lemma 1.7.4]).

Lemma 4.3. Let A be a commutative algebra over Q. If b ∈ Mk(A) is such that tr(b) = tr(b2) =

· · · = tr(bk) = 0 then bk = 0.

Proposition 4.2. The polynomials St2k(z
+
1 , . . . , z

+
2k) and St2k(z

−
1 , . . . , z

−
2k) are standard ∗-identities

of the ∗-algebra (Mk,k(F ), trp) of minimal degree in symmetric and skew variables of degree one,

respectively.

Proof. By Lemma 4.2 we need to deal only with Str(z
+
1 , . . . , z

+
r ).

We start by proving that Str(z
+
1 , . . . , z

+
r ) is a polynomial identity if r ≥ 2k. Since it is well-known

that

Str+1(x1, . . . , xr+1) =
r+1∑

i=1

(−1)i+1xiStr(x1, . . . , x̂i, . . . , xr+1),

where x̂i means that the variable xi is omitted (see for instance [26, Proposition 1.5.7]), it suffices to

work with standard polynomials of degree 2k.

For 1 ≤ i ≤ 2k, let V +
i =

(
0 Ki

Si 0

)
∈ (Mk,k(F ), trp)

+
1 , ei ∈ G, the infinite dimensional Grassmann

algebra over F and define

a =
2k∑

i=1

V +
i ei ∈M2k(G).

Recalling that, for all σ ∈ S2k, eσ(1) · · · eσ(2k) = (sgnσ)e1 · · · e2k, we get that

a2k = St2k
(
V +
1 , . . . , V

+
2k

)
e1 · · · e2k.

Hence, in order to prove that St2k
(
z+1 , . . . , z

+
2k

)
≡ 0 it is sufficient to show that a2k = 0. For all

1 ≤ i ≤ k,

a2i =
∑

St2i(V
+
j1
, . . . , V +

j2i
)ej1 · · · ej2i ∈M2k(G0),

where the sum runs on j1, . . . , j2i ∈ {1, . . . , 2k} such that j1 < · · · < j2i. Since the trace of a standard

polynomial of even degree evaluated in any set of matrices is zero (see for instance [26, Corollary

1.7.6]), we get that, for all 1 ≤ i ≤ k,

tr(a2i) = tr


 ∑

j1<···<j2i

St2i(V
+
j1
, . . . , V +

j2i
)ej1 · · · ej2i


 =

∑

j1<···<j2i

tr
(
St2i(V

+
j1
, . . . , V +

j2i
)
)
ej1 · · · ej2i = 0.
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Now, by Remark 4.2, it is clear that a2i =

(
Ci 0

0 Ct
i

)
, where

Ci =
∑

j1<···<j2i

∑

σ∈S2i

(sgnσ)Kσ(j1)Sσ(j2) · · ·Kσ(j2i−1)Sσ(j2i) ej1 · · · ej2i ∈Mk(G0).

Hence 0 = tr(a2i) = tr

((
Ci 0

0 Ct
i

))
= 2tr(Ci) and, so, tr(Ci) = 0, for all 1 ≤ i ≤ k.

Since G0 is commutative, Lemma 4.3 applies and we get that Ck = 0. But then a2k = 0 and we are

done.

In order to complete the proof we have to show that St2k−1(z
+
1 , . . . , z

+
2k−1) does not vanish in

(Mk,k(F ), trp).

If k = 1 then 2k − 1 = 1 and clearly z+ 6≡ 0.

Let now k ≥ 2. For V +
1 , . . . , V

+
2k−1 ∈ (Mk,k(F ), trp)

+
1 we have

St2k−1(V
+
1 , . . . , V

+
2k−1) = St2k−1

((
0 K1

S1 0

)
, . . . ,

(
0 K2k−1

S2k−1 0

))
=

(
0 C ′

D′ 0

)
,

where

C ′ =
∑

σ∈S2k−1

(sgnσ)Kσ(1)Sσ(2) · · ·Kσ(2k−3)Sσ(2k−2)Kσ(2k−1),

D′ =
∑

σ∈S2k−1

(sgnσ)Sσ(1)Kσ(2) · · ·Sσ(2k−3)Kσ(2k−2)Sσ(2k−1).

We now specialize the matrices S1, . . . , S2k−1 and K1, . . . ,K2k−1 as follows: S1 = e11, S2 = 0, S3 =

e22, S4 = 0, . . . , S2k−3 = ek−1k−1, S2k−2 = 0, S2k−1 = ekk, K1 = 0, K2 = e12 − e21, K3 = 0,

K4 = e23 − e32, . . . , K2k−3 = 0, K2k−2 = ek−1k − ekk−1. It turns out that

D′ =
∑

σ∈S2k−1

(sgnσ)Sσ(1)Kσ(2) · · ·Sσ(2k−3)Kσ(2k−2)Sσ(2k−1) = e1k + (−1)kek1 6= 0

and the proof is complete.

By putting together these results we get the main theorem of this section.

Theorem 4.1.1. The polynomial St2k(x1, . . . , x2k) is a standard ∗-identity of minimal degree of

(Mk,k(F ), trp) where x1, . . . , x2k are all symmetric or skew variables of the same homogeneous de-

gree.
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4.2 Standard identities on (Mk,2l(F ), osp)

Let us now consider the orthosymplectic superinvolution on Mk,2l(F ). We will see that the sit-

uation in this case is much more complicated than in the previous section. First, recall that the

orthosymplectic superinvolution, denoted osp, is defined by

(
X Y

Z T

)osp

=

(
Ik 0

0 Q

)−1(
X −Y

Z T

)t(
Ik 0

0 Q

)
=

(
Xt ZtQ

QY t −QT tQ

)
,

where Q =

(
0 Il

−Il 0

)
and Ir, Il are the r × r, l × l identity matrices, respectively. Thus, we have

(Mk,2l(F ), osp)
+
0 =

{(
X 0

0 T

)
| X = Xt, T = −QT tQ, X ∈Mk(F ), T ∈M2l(F )

}
,

(Mk,2l(F ), osp)
−
0 =

{(
X 0

0 T

)
| X = −Xt, T = QT tQ, X ∈Mk(F ), T ∈M2l(F )

}
,

(Mk,2l(F ), osp)
+
1 =

{(
0 Y

Z 0

)
| Z = QY t, Y ∈Mk×2l(F )

}
,

(Mk,2l(F ), osp)
−
1 =

{(
0 Y

Z 0

)
| Z = −QY t, Y ∈Mk×2l(F )

}
.

Now we can prove the following.

Proposition 4.3. The polynomial Str(y
−
1 , . . . , y

−
r ) is a standard ∗-identity of the ∗-algebra (Mk,2l(F ), osp)

if and only if r ≥ max {2k − 2, 4l} .

Proof. Let U−
1 , . . . , U

−
r ∈ (Mk,2l(F ), osp)

−
0 , where U

−
i =

(
Xi 0

0 Ti

)
, Xi = −Xt

i and Ti = QT t
iQ, for

all i = 1, . . . , r. An easy computation shows that

Str(U
−
1 , . . . , U

−
r ) = Str

((
X1 0

0 T1

)
, . . . ,

(
Xr 0

0 Tr

))
=

(
Str(X1, . . . , Xr) 0

0 Str(T1, . . . , Tr)

)
.

Since the Xis are k×k skew-symmetric matrices under the transpose involution, by Theorem 4.0.7,

we get that Str (X1, . . . , Xr) = 0 if and only if r ≥ 2k − 2.

Moreover the Tis are 2l× 2l matrices of the kind

(
A B

C −At

)
where A,B,C ∈Ml(F ), B = Bt and

C = Ct. Hence they are skew-symmetric matrices with respect to the symplectic involution and by

Lemma 4.1, Str(T1, . . . , Tr) = 0 if and only if r ≥ 4l.

It clearly follows that Str(y
−
1 , . . . , y

−
r ) ≡ 0 if and only if r ≥ max {2k − 2, 4l} and the proof is

complete.
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In a similar way it is possible to prove the following lemma.

Lemma 4.4. The polynomial Str(y
+
1 , . . . , y

+
r ) is a ∗-identity of (Mk,2l(F ), osp) if r ≥ max {2k, 4l − 2} .

Proof. Let U+
1 , . . . , U

+
r ∈ (Mk,2l(F ), osp)

+
0 , where U

+
i =

(
Xi 0

0 Ti

)
, Xi = Xt

i and Ti = −QT t
iQ, for

all i = 1, . . . , r. As in the previous proposition,

Str(U
+
1 , . . . , U

+
r ) = Str

((
X1 0

0 T1

)
, . . . ,

(
Xr 0

0 Tr

))
=

(
Str(X1, . . . , Xr) 0

0 Str(T1, . . . , Tr)

)
.

Since the Xis are k × k symmetric matrices under the transpose involution, by Theorem 4.0.8,

Str(X1, . . . , Xr) = 0 if and only if r ≥ 2k.

Moreover, from Ti = −QT t
iQ, we get that the Tis are matrices of the type

(
A B

C At

)
, where

B = −Bt and C = −Ct. Hence they are symmetric with respect to the symplectic involution. By

Theorem 4.0.9, if r ≥ 4l − 2, then Str(T1, . . . , Tr) = 0. Thus it is clear that Str(y
+
1 , . . . , y

+
r ) ≡ 0 if

r ≥ max {2k, 4l − 2}.

Since, as we have remarked before, 4l− 2 appears to be the minimal degree of a standard identity

on 2l × 2l symmetric matrices with respect to the symplectic involution s but we have no proof of

that, we can only state the following conjecture.

Conjecture 4.1. If Str(y
+
1 , . . . , y

+
r ) is a ∗-identity of the algebra (Mk,2l(F ), osp) then r ≥ max {2k, 4l − 2} .

Next we analyse identities in homogeneous degree one variables of the ∗-algebra (Mk,2l(F ), osp).

The following lemma shows that standard ∗-identities in z+s and z−s, respectively, are strictly related.

Lemma 4.5. In (Mk,2l(F ), osp), Str
(
z+1 , . . . , z

+
r

)
≡ 0 if and only if Str

(
z−1 , . . . , z

−
r

)
≡ 0, for all

r ≥ 1.

Proof. For 1 ≤ i ≤ r, let V +
i =

(
0 Yi

QY t
i 0

)
∈ (Mk,2l(F ), osp)

+
1 , where Yi ∈Mk×2l(F ). If we set

C =
∑

σ∈Sr

(sgnσ)Yσ(1)QY
t
σ(2) · · ·Yσ(r−1)QY

t
σ(r), for r even,

D =
∑

σ∈Sr

(sgnσ)QY t
σ(1)Yσ(2) · · ·QY

t
σ(r−1)Yσ(r), for r even,

C ′ =
∑

σ∈Sr

(sgnσ)Yσ(1)QY
t
σ(2) · · ·Yσ(r−2)QY

t
σ(r−1)Yσ(r), for r odd,

D′ =
∑

σ∈Sr

(sgnσ)QY t
σ(1)Yσ(2) · · ·QY

t
σ(r−2)Yσ(r−1)QY

t
σ(r), for r odd,
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then an easy computation shows that Str(V
+
1 , . . . , V

+
r ) equals

(
C 0

0 D

)
if r is even and

(
0 C ′

D′ 0

)
if

r is odd.

Similarly, for V −
1 , . . . , V

−
r ∈ (Mk,2l(F ), osp)

−
1 , where V

−
i =

(
0 Yi

−QY t
i 0

)
, Yi ∈Mk×2l(F ), 1 ≤ i ≤

r, we get that Str(V
−
1 , . . . , V

−
r ) equals

(
C 0

0 D

)
if r ≡ 0(mod4) or

(
0 C ′

−D′ 0

)
if r ≡ 1(mod4) or

(
−C 0

0 −D

)
if r ≡ 2(mod4) or

(
0 −C ′

D′ 0

)
if r ≡ 3(mod4).

Then Str(z
+
1 , . . . , z

+
r ) ≡ 0 if and only if C = D = 0 if r is even, (resp. C ′ = D′ = 0 if r is odd), if

and only if Str(z
−
1 , . . . , z

−
r ) ≡ 0.

Proposition 4.4. The polynomials Str(z
+
1 , . . . , z

+
r ) and Str(z

−
1 , . . . , z

−
r ) are ∗-identities of the algebra

(Mk,2l(F ), osp) if r ≥ min {2kl + 1, 2k + 4l} .

Proof. Due to Lemma 4.5, in order to prove the statement it suffices only to study Str(z
+
1 , . . . , z

+
r ).

Let V +
1 , . . . , V

+
r ∈ (Mk,2l(F ), osp)

+
1 as before. By Theorem 4.0.4,

Str(V
+
1 , . . . , V

+
r ) = 0 for all r ≥ 2(k + 2l) = 2k + 4l.

Moreover, since dimF (Mk,2l(F ), osp)
+
1 = 2kl and the standard polynomial is alternating on all of its

variables, by Proposition 1.1, we get that

Str(V
+
1 , . . . , V

+
r ) = 0 for all r ≥ 2kl + 1.

It follows that Str(z
+
1 , . . . , z

+
r ) ≡ 0 if r ≥ min {2kl + 1, 2k + 4l} and the proof is complete.

Next we are searching for the minimal degree of a standard ∗-identity Str(z
+
1 , . . . , z

+
r ) ≡ 0. In this

case we have only partial results. First we observe that 2kl+1 ≤ 2k+4l if and only if l = 1 and k ≥ 1

or k = 1 and l ≥ 1 or k = 2 and l ≥ 1 or k = 3 and l = 2.

We fix the following basis for (Mk,2l(F ), osp)
+
1

{
ei,j − ej+l,i, ep,q + eq−l,p | i, p = 1, . . . , k, j = k + 1, . . . , k + l, q = k + l + 1, . . . , k + 2l

}
.

The following lemma holds.

Lemma 4.6. Let l = 1, k ≥ 1 and let f1, . . . , f2k be the following elements of (Mk,2(F ), osp)
+
1

f1 = e1,k+1 − ek+2,1, . . . , fk = ek,k+1 − ek+2,k, fk+1 = e1,k+2 + ek+1,1, . . . , f2k = ek,k+2 + ek+1,k.

Then ek+2,k+2St2k(f1, . . . , f2k)ek+2,k+2 = (−1)k k! ek+2,k+2.
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Proof. In order to obtain ek+2,k+2 we have to start with one fi, i = 1, . . . , k and end with one fj ,

j = k + 1, . . . , 2k. Let m = f1fk+1f2fk+2 · · · fkf2k be the first combination for which we obtain

ek+2,k+2. It is easy to see that f1fk+1 · · · fkf2k = (−1)k ek+2,k+2. Moreover, any other combination

that gives ek+2,k+2 will be of the type

mσ = fσ(1)fσ(1)+kfσ(2)fσ(2)+k · · · fσ(k)fσ(k)+k

with σ ∈ Sk, since in m we can permute only groups of fifk+i among each other. We remark that

each mσ has the same sign and so the proof is complete.

With a similar argument we also get the following lemma.

Lemma 4.7. Let k = 1, l ≥ 1 and f1, . . . , f2l be the following elements of (M1,2l(F ), osp)
+
1

f1 = e1,2 − el+2,1, . . . , fl = e1,l+1 − e2l+1,1, fl+1 = e1,l+2 + e2,1, . . . , f2l = e1,2l+1 + el+1,1.

Then el+2,l+2St2l(f1, . . . , f2l)el+2,l+2 = −2l−1 (l − 1)! el+2,l+2.

Lemmas 4.6 and 4.7 show that the minimal degree of the standard ∗-identity in case of symmetric

or skew variables of odd degree is 2kl + 1 if l = 1 and k ≥ 1 or k = 1 and l ≥ 1.

When k = 3 and l = 2 a straightforward computation shows that

Str(z
+
1 , . . . , z

+
r ) ≡ 0 if and only if r ≥ 11.

If k = 2 and l ≥ 1 and when 2kl + 1 ≥ 2k + 4l some computational difficulties arise. Then in

general, we have no information about the minimal degree of standard ∗-identities in odd variables.

Finally, in the next theorem we resume the results of this section.

Theorem 4.2.1. In the ∗-algebra (Mk,2l(F ), osp) hold

1. Str(y
+
1 , . . . , y

+
r ) ≡ 0 if r ≥ max {2k, 4l − 2} ,

2. Str(y
−
1 , . . . , y

−
r ) ≡ 0 if and only if r ≥ max {2k − 2, 4l},

3. Str(z
+
1 , . . . , z

+
r ) ≡ 0 if r ≥ min {2kl + 1, 2k + 4l},

4. Str(z
−
1 , . . . , z

−
r ) ≡ 0 if r ≥ min {2kl + 1, 2k + 4l}.
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4.3 Polynomial identities and cocharacters of (M1,1(F ), trp)

In this section we consider the case of 2× 2 matrices endowed with the transpose superinvolution.

We shall find generators for the T ∗
2 -ideal of identities of (M1,1(F ), trp) and we shall compute the

(n1, . . . , n4)-th cocharacter and the codimensions sequence c∗n((M1,1(F ), trp)), where F denotes an

algebraically closed field of characteristic zero. From now on, we write (M1,1(F ), trp) as M1,1(F ).

Recall that the transpose superinvolution on M1,1(F ) is defined as

(
a b

c d

)trp

=

(
d −b

c a

)
.

Clearly (M1,1(F ))
+
0 = F (e11 + e22) , (M1,1(F ))

−
0 = F (e11 − e22) , (M1,1(F ))

+
1 = F e21 and (M1,1(F ))

−
1 =

F e12.

In the following lemma we compute a basis for the T ∗
2 -ideal of identities of M1,1(F ). In order to

simplify the notation we denote by z any odd variable and by x an arbitrary variable.

Lemma 4.8. The T ∗
2 -ideal of identities of M1,1(F ) is generated by the following polynomials

[y+, x], [y−1 , y
−
2 ], z

+
1 z

+
2 , z

−
1 z

−
2 , y

−z + zy−.

Proof. Let J be the T ∗
2 -ideal generated by the above polynomials. It is easy to prove that J ⊆

Id∗(M1,1(F )).

In order to prove the opposite inclusion, let f ∈ Id∗(M1,1(F )), deg f = n, and assume, as we

may, that f is multilinear and f ∈ P ∗
n1,...,n4

, n = n1 + · · · + n4. We want to show that f is the zero

polynomial modulo J . To this end, we notice that, since [y+, x] ≡ 0, [y−1 , y
−
2 ] ≡ 0 and y−z + zy− ≡ 0,

f is a linear combination (modulo J) of monomials of the type

y+1 · · · y+n1
y−1 · · · y−n2

zi1 · · · zin3+n4
,

where, for k = 1, . . . , n3 + n4, zik ∈ {z+1 , . . . , z
+
n3
, z−1 , . . . , z

−
n4
}. Since z+1 z

+
2 ≡ 0 and z−1 z

−
2 ≡ 0 we

cannot have monomials with two adjacent z+ or two adjacent z−. Hence

|n3 − n4| ≤ 1.

Moreover, from z+1 z
+
2 ≡ 0, z−1 z

−
2 ≡ 0 and y−z+ zy− ≡ 0 the identities z+1 z

−
2 z

+
3 − z+3 z

−
2 z

+
1 ≡ 0 and

z−1 z
+
2 z

−
3 − z−3 z

+
2 z

−
1 ≡ 0 follow. Hence in every monomial of f it is possible to reorder the variables z+

and z−. Thus, if n3 = n4 we obtain

f ≡ αy+1 · · · y+n1
y−1 · · · y−n2

z+1 z
−
1 z

+
2 z

−
2 · · · z+n3

z−n3
+ βy+1 · · · y+n1

y−1 · · · y−n2
z−1 z

+
1 z

−
2 z

+
2 · · · z−n3

z+n3
(mod J).

(4.1)

Whereas if |n3 − n4| = 1, we get
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1. f ≡ γy+1 · · · y+n1
y−1 · · · y−n2

z+1 z
−
1 z

+
2 z

−
2 · · · z+n3−1z

−
n4
z+n3

(mod J), if n3 = n4 + 1,

2. f ≡ γy+1 · · · y+n1
y−1 · · · y−n2

z−1 z
+
1 z

−
2 z

+
2 · · · z−n3−1z

+
n4
z−n3

(mod J), if n4 = n3 + 1.

Suppose that f is as in (4.1). By making the evaluation y+i = e11+e22, 1 ≤ i ≤ n1, y
−
j = e11−e22,

1 ≤ j ≤ n2, z
+
r = e21, 1 ≤ r ≤ n3, and z+s = e12, 1 ≤ s ≤ n3, we get ±αe22 + βe11 = 0. Thus

α = β = 0 and f is the zero polynomial modulo J . One can deal in a similar way with the other two

cases. Thus Id∗(M1,1(F )) = J and we are done.

We remark that Lemma 4.8 works as far as the field F is infinite and has characteristic different

from 2. We should also mention that Di Vincenzo in [6] determined a set of generators of the T2-ideal

of Z2-graded identities of M1,1(F ).

Let 〈λ〉 be a multipartition of n, 〈λ〉 = (λ(1), . . . , λ(4)), where λ(i) ` ni, 1 ≤ i ≤ 4. We shall next

compute the (n1, . . . , n4)-th cocharacter χn1,...,n4(M1,1(F )) of M1,1(F ). Since charF = 0, by complete

reducibility, χn1,...,n4(M1,1(F )) can be written as a sum of irreducible characters

χn1,...,n4(M1,1(F )) =
∑

〈λ〉`(n1,...,n4)

m〈λ〉χλ(1) ⊗ · · · ⊗ χλ(4), (4.2)

where m〈λ〉 ≥ 0 is the multiplicity of χλ(1) ⊗ · · · ⊗ χλ(4) in χn1,...,n4(M1,1(F )).

In the following lemmas we compute the non-zero multiplicities of such cocharacter. To this end,

we recall that the multiplicities in the cocharacter sequence are equal to the maximal number of

linearly independent highest weight vectors, according to the representation theory of GLn. Moreover

a highest weight vector is obtained from the polynomial corresponding to an essential idempotent by

identifying the variables whose indices lie in the same row of the corresponding Young tableaux (see

Section 1.2.3 and [11, Chapter 12] for more details).

Lemma 4.9. If 〈λ〉 = ((n1), (n2), ∅, ∅), with n1 + n2 > 0, then m〈λ〉 = 1 in (4.2).

Proof. Define the following tableaux

Tλ(1) = 1 2 · · · n1 , Tλ(2) = n1 + 1 n1 + 2 · · · n1 + n2 , Tλ(3) = Tλ(4) = ∅.

We notice that the polynomial a = (y+1 )
n1(y−1 )

n2 is a corresponding highest weight vector which

clearly is not a polynomial identity for M1,1(F ). Thus m〈λ〉 ≥ 1.

It is clear that, up to a scalar, a is the only highest weight vector in variables of homogeneous

degree 0 which is not an identity of M1,1(F ). Hence m〈λ〉 = 1 and the proof is complete.

Lemma 4.10. If 〈λ〉 = ((n1), (n2), (n3), (n3)), with n3 > 0, then m〈λ〉 = 2 in (4.2).
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Proof. We consider the following standard tableaux

Tλ(1) = 1 2 · · · n1 , Tλ(2) = n1 + 1 n1 + 2 · · · n1 + n2 ,

Tλ(3) = n1 + n2 + 1 n1 + n2 + 3 · · · n1 + n2 + 2n3 − 1 ,

Tλ(4) = n1 + n2 + 2 n1 + n2 + 4 · · · n1 + n2 + 2n3 ,

and the corresponding highest weight vector

b = (y+1 )
n1(y−1 )

n2z+1 z−1 · · · z+1 z−1 .

It is easily checked that b does not vanish in M1,1(F ).

Let also

T ′
λ(1) = 1 2 · · · n1 , T ′

λ(2) = n1 + 1 n1 + 2 · · · n1 + n2 ,

T ′
λ(3) = n1 + n2 + 2 n1 + n2 + 4 · · · n1 + n2 + 2n3 ,

T ′
λ(4) = n1 + n2 + 1 n1 + n2 + 3 · · · n1 + n2 + 2n3 − 1 ,

and

b′ = (y+1 )
n1(y−1 )

n2z−1 z+1 · · · z−1 z+1

the corresponding highest weight vector which is not a polynomial identity of M1,1(F ).

We claim that b and b′ are linearly independent modulo Id∗(M1,1(F )). In fact, if αb + α′b′ ≡ 0

(mod Id∗(M1,1(F ))), for some α, α′ ∈ F , by making the evaluation y+1 = e11 + e22, y
−
1 = e11 − e22,

z+1 = e21 and z−1 = e12 we get α = α′ = 0. Hence we deduce that

m〈λ〉 ≥ 2.

Let now T ′′
λ(1), T

′′
λ(2), T

′′
λ(3), T

′′
λ(4) be any tableaux where λ(1) = (n1), λ(2) = (n2), λ(3) = λ(4) =

(n3) and f the corresponding highest weight vector. According to Proposition 1.7 (see [13, Proposition

0.1]) we may consider that these tableaux are filled in a standard way. We consider f to be a non-zero

polynomial modulo the identities of M1,1(F ).

Due to the identities [y+, x] ≡ 0, [y−1 , y
−
2 ] ≡ 0 and y−z+zy− ≡ 0, without loss of generality, we may

assume that T ′′
λ(1) is filled with the integers 1, . . . , n1 and T ′′

λ(2) with the integers n1 + 1, . . . , n1 + n2.
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Moreover, since z+1 z
+
2 ≡ 0 and z−1 z

−
2 ≡ 0, the remaining integers n1+n2+1, . . . , n1+n2+2n3 can be

inserted in T ′′
λ(3) and T

′′
λ(4) only in two different ways: either n1+n2+2l lie in T ′′

λ(3) and n1+n2+2l−1

lie in T ′′
λ(4), for 1 ≤ l ≤ n3 or n1 + n2 + 2l − 1 lie in T ′′

λ(3) and n1 + n2 + 2l lie in T ′′
λ(4), for 1 ≤ l ≤ n3.

Hence we cover either one of the above highest weight vectors and this proves that m〈λ〉 = 2.

With a similar argument, one can also prove the following lemma.

Lemma 4.11. If 〈λ〉 = ((n1), (n2), (n3), (n4)), with n3 = n4 + 1 or n4 = n3 + 1, then m〈λ〉 = 1 in

(4.2).

We are now in a position to present the decomposition of the (n1, . . . , n4)-th cocharacter ofM1,1(F ).

Theorem 4.3.1. Let

χn1,...,n4(M1,1(F )) =
∑

〈λ〉`(n1,...,n4)

m〈λ〉χλ(1) ⊗ · · · ⊗ χλ(4)

be the (n1, . . . , n4)-th cocharacter of M1,1(F ). Then m〈λ〉 = 1 if either

1) 〈λ〉 = ((n1), (n2), ∅, ∅), n1 + n2 > 0 or

2) 〈λ〉 = ((n1), (n2), (n3 + 1), (n3)) or

3) 〈λ〉 = ((n1), (n2), (n3), (n3 + 1)).

Also, m〈λ〉 = 2 if 〈λ〉 = ((n1), (n2), (n3), (n3)), n3 > 0. In all other cases m〈λ〉 = 0.

Proof. Since dim(M1,1(F ))
+
0 = dim(M1,1(F ))

−
0 = dim(M1,1(F ))

+
1 = dim(M1,1(F ))

−
1 = 1 any poly-

nomial alternating on two symmetric or skew variables of the same homogeneous degree vanishes in

M1,1(F ) (see Proposition 1.1). This says that, if f is a highest weight vector, f /∈ Id∗(M1,1(F )),

then the corresponding tableaux cannot have more than one row. The conclusion of the theorem now

follows from Lemmas 4.9, 4.10 and 4.11.

We conclude this section by computing the ∗-codimensions sequence of M1,1(F ).

We recall that, if A is a ∗-algebra, then by (1.3),

c∗n(A) =
∑

n1+···+n4=n

(
n

n1, . . . , n4

)
c∗n1,...,n4

(A)

where c∗n1,...,n4
(A) = dimF P

∗
n1,...,n4

(A). Since χn1,...,n4(A) =
∑

〈λ〉`(n1,...,n4)
m〈λ〉χλ(1) ⊗ · · · ⊗ χλ(4) is

the (Sn1 × · · · × Sn4)-character of P
∗
n1,...,n4

(A), then c∗n1,...,n4
(A) = degχn1,...,n4(A). But

degχn1,...,n4(A) =
∑

〈λ〉`(n1,...,n4)

m〈λ〉 degχλ(1) · · · degχλ(4)
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and degχλ(i) = 1, for 1 ≤ i ≤ 4. Hence, by Theorem 2.1.2 we get

c∗n(M1,1(F )) =
∑

n1+···+n4=n

(
n

n1, . . . , n4

)
degχn1,...,n4(M1,1(F ))

=
∑

n1+n2=n

(
n

n1, n2, 0, 0

)
+ 2

∑

n1+n2+2n3=n
n3>0

(
n

n1, n2, n3, n3

)
+ 2

∑

n1+n2+2n3−1=n
n3>0

(
n

n1, n2, n3, n3 − 1

)

= 2n + 2

bn
2
c∑

i=1

1

i! i!
2n−2i n(n− 1) · · · (n− 2i+ 1) + 2

dn
2
e∑

i=1

1

(i− 1)! i!
2n−2i+1n(n− 1) · · · (n− 2i+ 2),

where b c and d e stand for the floor and ceiling functions, respectively. Moreover it can be checked

that

c∗n(M1,1(F )) ≈ αnk4n,

for some α, k > 0.
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