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"Il saccente è qualcuno che non parla dopo aver riflettuto,
ma spaccia con sicumera una scienza che non ha, o che ha

soltanto orecchiato."

– Luca Serianni

"All over the place, from the popular culture to the
propaganda system, there is constant pressure to make

people feel that they are helpless, that the only role they can
have is to ratify decisions and to consume."

– Avram Noam Chomsky

„Ich wollte nämlich schreiben, mein Werk besteht aus zwei
Teilen: aus dem, der hier vorliegt, und aus alledem, was ich
nicht geschrieben habe. Und gerade dieser zweite Teil ist der

Wichtige.“

– Ludwig Josef Johann Wittgenstein
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Incipit∗- Versione italiana

Questa tesi costituisce un resoconto delle attività e dei temi di ricerca affrontati nel corso del Dottorato di
Ricerca. Data la varietà degli stessi, ho strutturato la tesi dimodoché il lettore/la lettrice possa seguire percorsi
tematici preferenziali indipendenti. Infatti, il documento è stato strutturato in modo che le sue sezioni siano
potenzialmente slegate le une dalle altre, in modo che il lettore/la lettrice possa consultare ciò che ritiene più
interessante.

Il titolo di questa tesi si riferisce ad argomenti diversi. L’intera attività di ricerca iniziò incentrandosi su alcune
problematiche di alto livello legate alla biorobotica, in particolare quelle legate alla classificazione bioispirata.
Quest’argomento giocò un ruolo decisivo specialmente agli inizi dell’attività, quando la mia prima area di
ricerca fu quella delle reti neurali ricorrenti per la classificazione e la riduzione di dimensionalità tramite
automappe del Laplaciano. In seguito, fui convolto in attività differenti da quella testé menzionata concernenti
la modellazione di oscillatori non lineari attraverso una nuova strategia per il loro controllo. Ciò consentì lo
sviluppo di un filone di ricerca collaterale, inizialmente non legato al tema delle reti neurali di cui sopra. La
possibilità di poter legare questi ambiti si concretizzò in particolar modo quando potei lavorare sulla fisica
del plasma: in un simile contesto, essi trovarono un terreno comune in cui poter crescere parallelamente.
Inoltre, l’aver affrontato il problema della modellazione di materiali viscoelastici in sistemi medicali, nonché
del loro controllo, rafforzò ulteriormente questo legame. Ecco perché il testo in questione è stato realizzato in
modo che la struttura ricordi questo percorso che ho appena descritto.

Per mostrare meglio l’organizzazione del documento in maniera grafica, ho riportato una mappa concettuale
che descrive i possibili percorsi tematici.

∗ Dal latino medievale, "qui inizia".
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Più nel dettaglio, vorrei evidenziare i punti cruciali di ciascun capitolo:

1. Parte I: Context (Contesto) - Il titolo della prima parte è sufficientemente esaustivo, poiché è stata
introdotta per fornire le conoscenze fondamentali riguardanti tutti i lavori svolti nel corso del Dottorato
di Ricerca. La sua realizzazione, però, è avvenuta procedendo in modo che non si trattasse di una
pedissequa descrizione di tematiche prelevate da articoli, manuali o altro; piuttosto, l’idea di base è
stata quella di fornire una visione fluida e discorsiva, eppure coerente e coesa, degli strumenti necessari
alla comprensione dei lavori da me realizzati.

a) CapitoloData and information (Dati e informazione) - Questo capitolomira a fornire quelle conoscenze
fondamentali degli algoritmi e delle strategie per il processamento dei dati. Queste sono state
organizzate in modo che potessero corrispondere al meglio con la natura dei lavori realizzati,
escludendo quelle informazioni non strettamente necessarie al contesto in esame e privilegiando
dunque le nozioni propedeutiche alla consultazione dei capitoli successivi.

b) Capitolo Networks (Reti) - Questo capitolo tratta più nello specifico il tema delle reti neurali
artificiali, mostrandone alcune applicazioni peculiari con un interesse particolare per tutto ciò che
concerne la classificazione e la riduzione di dimensionalità, la seconda delle quali condivide alcuni
aspetti con la selezione degli attributi più significativi che, invece, è stata trattata nel capitolo
precedente.

c) Capitolo Modelling and control (Modellazione e controllo) - A differenza del capitolo precedente,
quest’ultimo si concentra sullamodellazione e sul controllodi sistemidinamici, un tema, questo, che
ha costituito una parte non indifferente della mia attività di ricerca sviluppantesi collateralmente
al tema delle reti neurali artificiali. La trattazione in questione si è concentrata sui casi di studio
di interesse, ovvero le dinamiche non lineari lente-veloci, la fisica del plasma ed il controllo di
sistemi di natura viscoelastica per applicazioni medicali. Per concludere il capitolo, poi, s’è deciso
di inserire un inserto sulla validazione dei modelli tramite alcuni criteri informativi.

2. Parte II: Contributions (Contributi) - In quest’ultima parte, ho incluso sia le introduzioni che delle brevi
descrizioni di tutti i lavori da me personalmente realizzati o nei quali sono stato coinvolto. Anche
stavolta, la struttura di questa sezione di documento riflette l’organizzazione principale del testo che
segue l’ordine in cui i temi, e quindi i capitoli della Parte I, sono stati presentati, con la finalità di
poter raggruppare questi lavori in maniera tematica. Si osservi che il Capitolo 1 della Parte I non ha
effettivamente una sezione dedicata nella Parte II, ma i temi in esso trattati hanno comunque costituito
degli elementi fondamentali per lo sviluppo dei Capitoli 1 e 2 della Parte II.

Vorrei precisare che, al momento della realizzazione di questa tesi, alcuni degli argomenti presentati nel
Capitolo 3 della Parte I non sono stati pubblicati oppure sono in corso di revisione. Per avere più informazioni
sempre aggiornate e dettagliate sulle attività in cui sono stato/sono coinvolto, è possibile consultare il mio
profilo Linkedin scansionando il seguente codice QR:



Incipit†- English version

This thesis is a comprehensive report of the research themes and activities I worked on as Ph.D. student.
Because of the diversity of these themes, I have structured the text so that the reader can follow various,
preferential pathways without neglecting anything. In fact, the document has been structured in such a way
each of its sections is potentially independent from each other, in order to allow the reader to consult what
may sound more interesting.

The title of this thesis refers to different things. The whole research activity started as mainly focused on
high-level issues in biorobotics, especially those regarding bio-inspired classification. This topic had played
an important role, especially at the very beginning, when my first area of intervention had been recurrent
networks for classification and dimensionality reduction through Laplacian Eigenmaps. In a next moment,
I was involved in different activities regarding the problem of modelling non-linear oscillators by means
of a novel control strategy. That had been the beginning of a new branch of my research, initially detached
from the first one on neural networks. The opportunity of binding them came when I had been working on
plasma dynamics. In that context, both data mining algorithms and systems theory had found a common
ground where to grow. This bond was further extended when I had dealt with the problem of modelling
visco-elastic materials for the development of control strategies in medical applications. That is why I have
thereby structured the whole text in order to recall this kind of journey henceforth.

To show how the document is organised in a graphical way, I have reported a map below to describe the
possible pathways.

† From medieval Latin, "here begins".
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In particular, I would point out what each chapter aims at:

1. Part I: Context - The title of this first part is quite self-explanatory: it aims at showing and discussing the
fundamental ideas behind each contribution produced in this work. When writing this part, it has been
decided not to slavishly report details from other sources (papers, manuals, and so forth), rather to
include them in a more cohesive and coherent manner to provide a verbose description of the problems
of interest.

a) Chapter Data and information - This chapter provides a very fundamental glimpse into data mining
and tools for information retrieval. I have revised some of the most known methods in this field to
give the reader the opportunity to understand both the notation and the basic definitions for the
topics I have reported in the next chapters.

b) Chapter Networks - This chapter deals with neural networks and some of their capabilities. In
particular, my main interest has concerned classification and dimensionality reduction, which is a
similar topic to feature selection that has been outlined in the previous chapter.

c) Chapter Modelling and control - Contrarily to the previous chapter, this one deals with slightly
different themes. Modelling and control of dynamical systems have constituted another branch of
my research activity and this chapter includes the topics I have worked on, ranging from non-linear
dynamics in slow-fast systems to plasma physics and modelling of visco-elastic materials for
medical applications and their control. To conclude the chapter, further information about model
validation by means of some information criteria have been reported for the sake of completeness.

2. Part II: Contributions - This last part includes all the papers I have personally written or have been
involved in. Again, to match these papers with the structure of the previous part of the document, I
have organised everything so that the papers are grouped together thematically. Observe that Part I -
Chapter 1 has not any explicit counterpart in Part II, but the themes I have presented there have been
somehow implicit and widely employed in both Part II - Chapter 1 and Part II - Chapter 2.

I would remind the reader that some of the themes in Part I - Chapter 3 have been either not totally published
or partially revised at the moment of writing. For more information about my work and activities I was/am
involved in, please visit my personal Linkedin profile by scanning the following QR code:
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1: In some cases these conditions are met
just in a wide sense and this may lead
to some approximations. An example is
given by the FSV algorithm [2], which is
based on concave minimisation.

Data and information 1
1.1 Overview on feature selection 6

Correlation-based criteria . . . 7
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1.2 Statistical tests . . . . . . . . . 15
On normality . . . . . . . . . . 16
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On variability . . . . . . . . . 19
On group association . . . . 20

The essential difference between data and information is given by interpre-
tation. This has always been a so engaging topic in semiotics and science
owing to the implications it carries, that even knowledge is difficult to
define in a formal way [1]. When gathering data from various sources,
information can be extracted once two conditions are met:

1. because of the perspective data can be observed through, users
ought to decide what kind of property mining algorithms have to
set off. This step is particularly crucial and strictly dependent on
the purpose, which is not easily generalisable;

2. once the algorithm is chosen, data must undergo an appropriate
treatment that makes them suitable for the algorithm itself. In fact,
not all the mining algorithms work similarly and they may require
different operating hypotheses1 .

On one hand, the first point provides variety to the problem of extracting
meaningful information from raw data, since the absence of a general
criterion forces designers to accurately choose an appropriate algorithm.
In fact, algorithms may elicit internal dependencies, as well as predictive
capabilities or other properties. On the other hand, the second point
provides admissibility for all the tasks and operations that follow and
depend on the previously extracted information. For example, paramet-
ric variations on empirically identified models have to be statistically
evaluated in order to understand whether they are valid independently
from changes in their parameters. For example, this can be primarily
assessed with confidence intervals: if they do not overlap, then model
differences due to parametric variations are statistically relevant.

1.1 Overview on feature selection

Redundancy can be either an advantage or a drawback depending on
the context. For example, it is a fundamental characteristic in language
learning thanks to which meaning can be expressed in many ways [3], as
well as in engineering or ICT applications [4]. However, the other side of
the coin concerns the mere aspect of information and how much amount
of it data sets can make explicit. In fact, redundancy can be thought of as
an index that should be as low as possible in order to:

I find the smallest subset(s) of features that carry the most informa-
tive content;

I simplify bothmodelling and simulation phases thanks to a reduced
number of degrees of freedom

and many other things. However, redundancy is just one of the different
characteristics an attribute may have and therefore feature selection
algorithms can detect various forms of relevance. That is why these
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algorithms try to emphasise specific aspects of the given attributes and
carry out a cautious selection according to a specific criterion. I have
already pointed out this aspect after all: in a wider sense, the mosaic of
feature selection algorithms include myriads of solutions depending on
what the designer aims at doing. To give a preliminary idea, Figure 1.1
is a schematic representation of the various forms of feature selection
algorithms. In this figure there is not any specific indication on particular
algorithms, instead it proposes to clearly show how algorithms are
conceptually organised and therefore how they differ to each other.

Butwhy should feature selection play such a role? To answer this question,
remember that feature selection

I reduces the training efforts by limiting the number of input at-
tributes the algorithm has to process;

I reduces the overall complexity of the model, because the latter will
depend on a reduced number of characteristics;

I prevents overfitting

among other things. Thereby, it is not surprising if feature selection may
accomplish good results in cost-benefit analyses. To give an idea, suppose
that a company wants to produce a new smart device endowed with
multiple sensors for continuous data acquisition and stream classification.
A proper cost-benefit analysis ought to highlight how needless the use
of over-dimensioned systems is if equivalent devices, with less sensors,
perform equivalently or even better. That would result in a great, financial
advantage too.

Correlation-based criteria

Let X = [x1 , · · · , x=]T be a collection of = �-dimensional vectors x8 =
[G8 ,1 , · · · , G8 ,�] ∈ ℝ� , 8 ∈ {1, · · · , =}. A correlation function maps a pair
of vectors (x8 , x9) to a single real value within [−1, 1] ⊂ ℝ and therefore
it is possible to calculate the whole correlation matrix as:

P (X) = P (X)T =



�(x1 , x1) �(x1 , x2) · · · �(x1 , x=)
�(x2 , x1) �(x2 , x2) · · · �(x2 , x=)
�(x3 , x1) �(x3 , x2) · · · �(x3 , x=)

...
...

. . .
...

�(x= , x1) �(x= , x2) · · · �(x= , x=)


(1.1)

In statistics there are (at least) three main types of correlation. In order to
show how they differ to each other, let us suppose two samples x8 and
x9 only for the sake of simplicity. Additionally, I will refer to cov(x8 , x9)
and �(x8) in the following as the covariance between x8 and x9 and the
standard deviation of x8 , respectively. In any case, an usual and generally
accepted way to interpret the correlation between two variables states
that the association is

I weak if 0 ≤ |�(x8 , x9)| < 0.3;
I medium (or moderate) if 0.3 ≤ |�(x8 , x9)| < 0.7;
I strong if 0.7 ≤ |�(x8 , x9)| ≤ 1
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Figure 1.1: General taxonomy of feature
selection algorithms. The first branch ex-
presses how the algorithms can be cat-
egorised, depending either on the infor-
mation given by (possible) labels or the
adopted strategy [5]. In the former case,
three solutions are possible and that re-
flects how the information given by the
membership to a specific class, if it exists,
is handled. Thereby, there are supervised,
semi-supervised or even unsupervised
algorithms (in this last case, no classes
are available and data are completely un-
labelled). In [6] a further categorisation
of the supervised methods is reported:
here, the author detected three types of
algorithms (ranking algorithms, subset
selection algorithms and embedded algo-
rithms), each having its own peculiarities.
Interestingly, but not surprisingly, some
algorithms can belong to both the major
categories, such as the embedded meth-
ods.

2: The expected value of a random vari-
able, either continuous or discrete, is the
probability-weighted average of all its pos-
sible values. In its most general formu-
lation, given a random variable - its ex-
pected value is E {-} =

∫
ℝ
G 5 (G)3G. For

more details, see the proper section about
random variables.

independently from the correlation function. The biggest limitation of
a correlation-based measure regards its capability of capturing linear
relationships only: for example, let - ∼ Uniform[−1, 1] and . = -2 be
two generic random variables (note that the expected value2 of - is
E {-} = 0). By calculating the correlation coefficient between - and .,
the result is given by:

E {(- − E {-})(. − E {.})} = E
{
-3} − E {

-2} E {-} = 0

Pearson’s correlation

Surely it is the most known form of correlation that can be calculated
whenever I want to check whether two series of data are mutually and
linearly related. Its expression is given by:

�Pearson(x8 , x9) �
cov(x8 , x9)
�(x8)�(x9)

(1.2)

One the most interesting properties of this coefficient is its invariance to
affine transformations, meaning that

�Pearson(0x8 + b, 2x9 + d) = �Pearson(x8 , x9) (1.3)
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3: Homoscedasticity is the condition of
having an equal error term across the inde-
pendent variables. In otherwords, data are
homoscedastic when they have the same
variance.

4: Ranks are defined as the positions of
every value assumed by a random vari-
able once sorted. For example, if x =

[9, 3, 4, 7, 5], then rank(x) = [5, 1, 2, 4, 3].

independently from 0, 2 ∈ ℝ and b, d ∈ ℝ� .

A right use of this correlation function requires some preliminary hy-
potheses that ought to be somehow assessed, otherwise it might lead to
unreliable outcomes in terms of both modelling and interpretation:

I when evaluating the Pearson’s correlation coefficient, data ought
to be normally distributed. There are different tools that may be
exploited for this purpose; in the following, I will provide some
prefatory information about the Shapiro-Wilk and the Kolmogorov-
Smirnov tests;

I data ought to manifest homoscedasticity3 and linearity. The former
can be assessed thanks to suitable statistical tests (as already
required by the aforementioned normality assumption), such as
the Bartlett’s test. Although the former is a formal way to identify
homoscedasticity within data, graphical approaches work as well
and more immediately; a simple solution in this sense is given
by scatter plots for regression analyses, because whenever data
are homoscedastic they distribute in scatter plots in a rectangular
pattern [7].

Spearman’s correlation

Spearman’s rank coefficient for correlation checks whether there is an
association, and how strong it is, between two variables that could
be described through a monotonic function. In order to run this (non-
parametric) test, the concept of rank4 of a given random variable is
required; eventually, the expression of the correlation coefficient is given
by:

�Spearman(x8 , x9) �
cov(rank(x8), rank(x9))
�(rank(x8))�(rank(x9))

(1.4)

It immediately follows that �Spearman(x8 , x9) ≡ �Pearson(rank(x8), rank(x9)).
�Spearman behaves differently compared to �Pearson and Figure 1.2 gives
some hints, despite some similarities. For example, both indicate either
a positive or negative association between the variables when the sign
is positive or negative, but �Spearman is less sensitive to outliers than
�Pearson, resulting in a more robust indicator for particularly noisy data.
Additionally, �Spearman does not require the hypothesis of normally
distributed data to work correctly, because it is a non-parametric test, as
already written before. This allows �Spearman to relate two variables of
interest through anymonotonic function, unlike �Pearson.

Figure 1.2: Comparison between �Pearson

and �Spearman. When a monotonic, but not
linear, function can relate two variables
(leftmost image), then �Spearman is higher
than �Pearson. Instead, both the coefficients
give comparable results when data are
roughly distributed without any criterion
(middlemost image), but when data are af-
fected by outliers �Pearson is more affected
by them than �Spearman (rightmost image),
resulting in a lower value.
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5: More indetail,Ω ≠ ∅ is oneof the items
belonging to a probability space (Ω,Λ, �)
where Λ ⊆ 2Ω is a Borel set of events and
� : Λ→ [0, 1] is the probability measure
that satisfies the Kolmogorov’s axiomatic
definition.

Kendall’s correlation

It is a non-parametric test that quantifies how strong the dependency
between two variables is:

�Kendall(x8 , x9) �
∑�
:=1

∑�
==1 sgn(G8 ,: − G8 ,=)sgn(G 9 ,: − G 9 ,=)

�(� − 1) (1.5)

where sgn(·) is the usual sign function that is exploited to evaluate the
discrepancy between concordant and discordant pairs. In particular, the
product sgn(G8: − G8=)sgn(G 9: − G 9=) can be thought of a concordance
indicator that is exactly equal to 1 (−1) for concordant (discordant)
pairs of values. Unlike the Pearson’s coefficient, what the Kendall’s test
for association does is to consider only the concordance/discordance
amongst pairs regardless of their degrees.

Information-based criteria

To begin with, a more formal description of random variables is required.
In its simplest formulation, a random variable is more properly a (real-
valued) function that maps the events $ from a sample space Ω5 to a
measurable space S:

X($) : Ω→ S ⊆ ℝ� (1.6)

Any real-valued random variable X is fully described by two functions
only:

I cumulative distribution function (CDF): CDFX(x) � Pr {X ≤ x}
I probability distribution function (PDF): PDFX(x) � 3CDFX(x)

3x

An interesting, alternative description of random variables is the one
founded on vector spaces [8]. These are possible if, given two stochastic
variables X and Y, the following operations are introduced:

I summation: X+ Y ∈ S
I scaling: �X ∈ S, ∀� ∈ ℝ
I :-norm: ‖X‖: � [E

{
|X|:

}
]−: ∈ ℝ+0 , ∀: ∈ ℝ

I :-distance: ‖X− Y‖: , ∀: ∈ ℝ
I inner product: X · Y � E {XY}

If E {X} = �X and E {Y} = �Y, then:

�Pearson(X, Y) = X · Y
cov(X, Y) = (X− �X) · (Y− �Y)

(1.7)

If not otherwise stated, in the following I will suppose � = 1 in Equation
1.6 so that X is a real-valued, scalar, random variable.
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6: Claude Shannon is credited with the
introduction of this concept in 1948 [9]. It
is said that Shannon named it following
John von Neumann’s recommendations
and eventually after the Boltzmann’s H
theorem.

Figure 1.3: Claude Shannon (1916-2001), a
pioneer of modern information theory.

7: This result is known in literature as
Jensen’s inequality [11].

Entropy and Kullback-Leibler divergence

A fundamental quantity in information theory is given by the entropy6
of a random variable:

H(X) � −
∫

(G) log (G)3G (1.8)

where (G) ≡ PDFX(G). Intuitively, the entropy quantifies the average
amount of information that a random variable contains and it can be
adopted as a discriminating function for feature ranking. To do that, I
introduce the Kullback-Leibler (KL) divergence [10] of the probability
distribution � from the probability distribution , or relative entropy, as
the function:

KL( ‖ �) � −
∫

(G) log
�(G)
(G)3G (1.9)

Observe that the KL function makes sense for those probability distribu-
tions (G) and �(G) such that �(G) = 0⇒ (G) = 0. Additionally, it can
be proved that:

I KL( ‖ �) ≠ KL(� ‖ )
I KL( ‖ �) ≥ 0

Mutual information

From Equation 1.9 themutual information between two random variables
Xand Y, whose marginal distributions are (G) and �(H) respectively, is
defined as follows:

MI(X,Y) � KL(Γ(G, H) ‖ (G)�(H)) = −
∫ ∫

Γ(G, H) log
(G)�(H)
Γ(G, H) 3G3H

(1.10)

where Γ(G, H) is the joint probability distribution ofXand Y. The mutual
information between two variables is characterised by the following
properties:

I MI(X,Y) ≥ 07
I MI(X,Y) = MI(Y,X)
I if both Xand Yare independent, then MI(X,Y) = 0
I let NMI(X,Y) � MI(X,Y)

H(Y) be the normalised mutual information; if
�(Y|X) = �(H) then NMI(X,Y) = 0, whilst NMI(X,Y) = 1 when
X completely identifies Y.

Unlike correlation-based measures, MI can detect arbitrary, nonlinear
relationships between two variables, whose probability distributions
should be calculated in advance.
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8: Training data sets with the information
gain is one of the most known applica-
tion of this measure, as shown by the ID3
algorithm [12].

Figure 1.4: Example of imperfect separa-
tion when training decision trees and cal-
culating the information gain. The best
decision tree, when trained with the in-
formation gain, is the one that maximises
it, because that is perfectly equivalent to
minimising the entropy.

9: To put it simply, the fractal dimension,
aka the Hausdorff-Bezicovič dimension,
quantifies how "complicated" a self-similar
figure is. In this sense, self-similarity is
a crucial property that refers to an infi-
nite nesting of structure on all scales and
strictly speaking refers to a characteristic
of a form exhibited when a substructure
resembles a superstructure in the same
form.

Information gain

Since entropy is something related to how "surprising" information is, it
could happen that a simple change of the reference frame may lead to a
significant change of the entropy value. Alternatively, this variation could
be used to evaluate how relevant a given feature is in determining a given
output class. Essentially, information gain is the reduction in entropy
or surprise by transforming a data set and is often used when training
decision trees8 . Thereby, it is calculated by comparing the entropy of the
data set before and after a transformation. In other words, information
gain quantifies how good a decision tree is at separating features to have
distinct clusters belonging to the same class.

Let Xand Ybe two random variables and let H(X) and H(X,Y) be the
marginal entropy ofXand the joint entropy of bothXand Y, respectively.
Thereby, the information gain can be easily calculated as:

IG(X) = H(X) −H(X,Y) (1.11)

Observe that H(X|Y) = H(X,Y) − H(Y), therefore H(X|Y) = 0 ⇒
H(X,Y) = H(Y) ⇒ IG(X) = ΔH ≡ H(X) −H(Y).

FCBF

FCBF, which stands for Fast Correlation Based Filter, was introduced in
[13] and makes use of the concept of predominant correlation, meaning
that this method selects features so that they have high correlation with
the target variable, but little correlation with each other. Notably, the
correlation used here is known as Symmetric Uncertainty (SU) [14],
which is an information theory-based form of correlation described as
follows (note that features have been meant as random variables and
therefore they have inherited the appropriate notation I have already
shown before):

SU(X,Y) = 2MI(X,Y)
H(X) +H(Y) (1.12)

At the beginning, the algorithm selects features whose SU with the class
variable is greater than a given threshold, then it detects predominant
correlations of features with the class. The definition is that, for a pre-
dominant feature X, no other feature is more correlated to X than X

itself to the class. The features more correlated withX than with the class
are then tested, and either Xor any other feature from this correlation
group emerges as the predominant correlation feature.

Morisita estimator of the Intrinsic Dimension

Data spaces have their own dimension, which might be even fractal9 .
But suppose a set K ⊆ ℝ= at first: it has topological dimension 0 if for
every point x ∈ K there is an open ball B�(x) in ℝ= having arbitrarily
small radius, whose boundary does not intersect K. Conversely, K has
topological dimension : ∈ ℤ+ if every point x ∈ K is surrounded by an
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Figure 1.5: An example of fractal set: the
Sierpiński triangle, whose fractal dimen-
sion is 3 = log2 3.

10: Historically speaking, this expression
was coined by Richard E. Bellman [17] and
refers to a situation where all or some of
the most relevant attributes in a data set
are not discriminating enough because
they are somehow concentrated near their
median or mean.

Figure 1.6: Hénon’s map and calculation
of its Lyapunov’s dimension. When 0 =
1.4 and 1 = 0.3, its Lyapunov’s exponents
are �1 = 0.603 > �2 = −2.34, thus 9 = 1
and therefore LD = 1.26.

Figure 1.7:Classification performance and
number of features. When the curse of di-
mensionality arises, the more the features
for classification are, the poorer the overall
goodness of classification becomes. This is
due to the increasingly "specialisation" of
the classifier, which learns the exceptions
instead of generalising what comes from
the external environment (overfitting).

open ballB�(x) having arbitrarily small radiuswhose boundary intersects
K in a set of topological dimension : − 1, and : is the least positive
integer with this property.

In order to introduce amore formaldescriptionof theHausdorff-Bezicovič
dimension, the concept of box is needed. A box inℝ= is a set of the form:

Bℝ= (a, b) � {x ∈ ℝ= : 08 ≤ G8 ≤ 18 , 8 = 1, ..., =} (1.13)

Now, if K ⊆ ℝ= then I can introduce #�(K) as the smallest number of
boxes, whose sides are equal to �, needed to fully cover K. It is quite
obvious to deduce that as long as � decreases, #�(K) increases following
a power law function #�(K) ∼ �−3 , where 3 is the box counting dimension
defined as:

3 � − lim
�→0

log#�(K)
log �

(1.14)

if it exists. For example, ifK = {G ∈ [0, 1]}, then we can cover it with one
interval of length � = 1, two intervals of equal � = 1/2 and so on. Thereby
#�(K) = 2= as long as � = 2−= , then 3 = 1 according to Equation 1.14
and as obviously expected. Conversely, the well-known Cantor set has
3 =

log 2
log 3 because it can be covered with 2= intervals of length � = 3−= .

What has fractality to dowith dynamical systems? Inmany research fields
this concept has proved to be particularly appealing for the implications
on the phenomena of interest. For example, in [15] it was pointed out
how fractality plays an interesting role in many biological phenomena,
whereas in [16] the author showed how fractality could be an emergent
property even in econometric systems. Now, the minimum number of
features that can minimally describe a data set is called the Intrinsic
Dimension (ID) and the so-called Morisita estimator of the ID does exactly
what it says. This algorithm proposes to solve the well-known curse
of dimensionality10 problem trying to find out which of the given input
features are the less redundant, thereby implying that the higher the
redundancy is, the needless keeping both is. It is interesting to note that
the idea behind the ID is similar to the Lyapunov’s Dimension (LD) in
non-linear dynamics, where the main interest regards the evaluation
of the size of attractors [18–20], such as the Lorenz’s system or the
Hénon’s map. In this case, an alternative approach is given by the well-
known Kaplan-Yorke conjecture [21], which is based on the calculation of
Lyapunov’s exponents. Formally speaking, let �1 ≥ �2 ≥ ...�= be the =
Lyapunov’s exponents once ordered so that ∃9 such that

∑9

8=1 �8 ≥ 0 and∑9+1
8=1 �8 ≤ 0. Thereby, the LD value is calculated as:

LD = 9 +
∑9

8=1 �8

|� 9+1 |
(1.15)

Regarding the calculation of the ID, to begin with let # be the number of
data points and & be the number of cell grids, whose diagonal size is
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Figure 1.8: Example of overfitting. When
the classifier learns perfectly how to sepa-
rate two classes, then there is no room for
further generalisation: in this case, a more
straightforward separation, given by the
black parabolic-like curve, is preferable.

set to �, a �-dimensional space is made up of. I introduce the index �<,� ,
namely the multi-point Morisita indicator [22], defined as:

�<,� = &
<−1

∑&
8=1

[∏<−1
:=0 (=8 − :)

]∏<−1
:=0 (=8 − :)

(1.16)

which measures how many times it is more likely that < ≥ 2 randomly
selected data points come from the same cell grid than it would be if the
# points were distributed accordingly to a Poisson process. Thereby, =8
in Equation 1.16 is the number of data points inside the 8-th grid cell and
generally �<,� is calculated ' times for different values of �. Figure 1.9
shows some examples of application of �<,� and how data partitioning
changes as long as & increases.

�<,� can be used to determine whether two features, namely �1 and �2 in
the following for the sake of simplicity, are redundant or not. According
to [23], where all the details about the feature selection algorithm are
reported and the reader is reminded to refer to for further information, it
can be established the following statement:

ID(�1 , �2) ≈
{
1 �1 and �2 are either linearly or non-linearly redundant
2 �1 and �2 are noy redundant

(1.17)

The idea of the feature selection algorithmbased on theMorisita estimator
regards the discovery of those features that mostly contribute to the ID of
the whole data set. Therefore, when incrementally adding new features,
similarly to other more common techniques like the Sequential Feature
Selection, therewill be amomentwhen further features will not addmore
information together with the previously included attributes. Selection
takes place when adding new features becomes useless because of the
small contribution they may give to the computation of the final ID
value.

Figure 1.9: �<,� and examples of data par-
titioning.

Other criteria

In the following, I have reported other methods for feature selection that
do not strictly belong to the previous categories I have already presented.
Some of these criteria rely on statistical tests used to assess specific
properties, but others simply do not. In the former case, I would refer the
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Figure 1.10: Corrado Gini (1884-1965), an
Italian statistiscian and sociologist, mas-
sively contributed to different fields like
economic statistics and demography with
more than 800 publications.

reader to the appropriate section of this document focused entirely on
statistical tests.

Gini’s index

The Gini’s index (GI) [24], named after the Italian mathematician and
sociologist Corrado Gini, is a measure that establishes how discriminant
a given feature is with respect to the classes it could be referred to. If = is
the number of classes and 28 is the 8-th class, then the index for the 9-th
feature f9 is calculated as follows:

GI(f9) =
=∑
8=1

[
?(f9 |28)?(28 |f9)

]2 (1.18)

where ?(f9 |28) gives the probability that the 9-th feature belongs to the
8-th class and ?(28 |f9) gives the probability that the 8-th class is drawn
from the 9-th feature. As well as the information gain, GI can be used
to realise decision trees as splitting measure in classification problems,
meaning that while building the decision tree those features with the
smallest GI are preferable.

Relief-F

The original idea behind the Relief algorithm came from Kira and
Rendell [25], who introduced a statistic to quantify how good a feature
at predicting the outcome is. These statistics are referred to as feature
weights so that F� is the weight of the feature �. Additionally, each
feature weight can range from −1 (worst score) to +1 (best score). The
algorithm for determining the best features is intrinsically iterative: after
establishing the number of iterations <, for each iteration a training
target instance ' is selected without replacement and the feature weight
is updated so that each update takes into account both the so-called
nearest hit � and the nearest miss", namely those instances with the
same class and with the opposite class respectively whose distance to
the selected target instance is minimum. Eventually, the feature weight is
updated as follows:

F- ← F- +
diff(-, ', ") − diff(-, ', �)

<
(1.19)

where diff(-, �1 , �2)may be defined differently depending on the type of
feature (discrete or continuous) [26].

1.2 Statistical tests

Independently from the task Imay be required to accomplish, data-driven
results ought to be validated somehow and this can be done by running
appropriate statistical tests. Additionally, these tools provide interesting
information about the variables of interest and can certify whether a
certain mathematical tool can be applied or not.
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11: In statistics, when a true null hypothe-
sis is wrongly rejected then the test com-
mits a type I error, whilst the test makes
a type II error when it accepts a false null
hypothesis.

Figure 1.11: Prasanta Chandra Maha-
lanobis (1893-1972), who is unanimously
credited with the foundation of modern
statistics in India.

When dealing with statistical features to be assessed by means of a
suitable test, a key concept is given by the power of that test, namely the
probability of rejecting the null hypothesis and thereby making a type
II error11 . If the probability of committing a type II error is equal to �,
then the power of a test is simply given by 1 − �. In the following, I have
reported some hints about the correct use of statistical tests with respect
to their power, providing a systematic way to categorise them according
to how good a formal assessment procedure for significant, statistical
features like normality and stationarity may be.

On normality

LetXbe a �-dimensional random variable defined as stated in Equation
1.6. If X is normally distributed, id est X∼N(-,�), then:

?(x) = 1
(2�)�/2

1
|�|1/2

4−
1
2 (x−-)T�−1(x−-) (1.20)

where � ∈ ℝ�,� is the covariance matrix and - ∈ ℝ� is the mean vector.
The quantity:

� �
√
(x − -)T�−1(x − -) (1.21)

is the Mahalanobis distance from - to x and reduces to the Euclidean
one when � = I. Furthermore, it is straightforward to check that �2 is
proportional to the log-likelihood function of the distribution:

log ?(x) = −1
2

[
� log 2� + log |�|

]
− 1

2
�2 (1.22)

The importance of this kind of distribution is due to its pervasiveness in
nature, where many phenomena follow, at least approximately, a normal
distribution [27, 28].Additionally, if a givenphenomenon canbedescribed
as normally distributed, manymore theoretically-grounded tools become
available for its analysis. Since correlation implies causation if and only
if the process is normal, the more Gaussian-like a phenomenon is, the
stronger the implication is. Therefore, I may be interested in checking
the normality of a data set out with proper tests. For the sake of this
work, two main tests have been considered and whose details have been
reported below, but before accounting for them I would refer the reader
to [29] for further details about the power of normality tests and some
hints for their mutual comparison. The aforecited article, then, states how
outperforming the Shapiro-Wilk test is with respect to other possible
candidates.

Shapiro-Wilk test

The most common way to determine whether some data are normally
distributed or not consists in carrying out the Shapiro-Wilk test and the
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12: i.i.d. stands for "independent and iden-
tically distributed" and applies for those
random variables that are independent
and whose distributions are equal.

13: The theoretical premises are given by
the Glivenko-Cantelli theorem [32], which
establishes the asymptotic behaviour of an
empirical distribution function like the one
described by the Kolmogorov-Smirnov
test.

corresponding statistic, [30], whose null and alternative hypotheses
are:

�0 : population is normally distributed
�1 : otherwise (1.23)

I refer the reader to the original paper for further details about the
expression of, ; for the sake of simplicity, when, tends to be small
then the data distribution departs from the normal one and, as a rule
of thumb, I reject �0 when the ?-value is lower than the significance
level (usually,  = 0.05). To some extent,, can be deemed the squared
correlation coefficient in Q-Q plots.

Kolmogorov-Smirnov test

Another solution for the problem of testing the normality hypothesis
is given by the Kolmogorov-Smirnov test, which has very often been
compared to other strategies like the aforementioned Shapiro-Wilk test
in many papers and works [31] due to the differences in terms of their
grounding principles. In fact, the Kolmogorov-Smirnov test is more
general than the Shapiro-Wilk test, even though its power is lower.
Additionally, the empirical CDF built when running the Kolmogorov-
Smirnov test converges in probability to the real distribution as long
as the number of i.i.d.12 observations increases13 . More in detail, let
�(G) and �(G) be the empirical CDF and hypothesised CDF, respectively.
Let:

�∗ � max
G
|�(G) − �(G)| (1.24)

be the Kolmogorov-Smirnov statistic. Therefore:

�0 : �∗ is sufficiently small
�1 : otherwise (1.25)

Straightforwardly the Kolmogorov-Smirnov test is exactly equivalent to
the Shapiro-Wilk test when �(G) ≡

∫ G

−∞ ?(G)3G and ?(G) is given by the
unidimensional version of Equation 1.20.

On stationarity

Before listing the most common ways of solving the problem of assessing
whether some data are stationary or not, it is mandatory to provide the
grounding elements to better understand what to be stationary implies.

As already done elsewhere in this document, random variables can be
defined over a probability space (Ω,Λ, �). Thereby, a stochastic process
is simply a collection of random variables indexed thanks to a proper
index set, usually referred to as T owing to the (usual) time-based nature
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of its items. On account of that, stochastic processes are functions in the
form:

S(C , $) : T ×Ω→ E ⊆ ℝ� (1.26)

whereS(·, $) is called realisationor sample function [33]. Stationarity occurs
when all the sample functions within the same process are identically
distributed, but this may be too restrictive for practical use. In many cases,
a more acceptable condition is a wide-sense stationarity that occurs when
the given stochastic process has:

I a time-independent mean value;
I a covariance function that depends on the difference between the

time instants only at which it is evaluated.

Of course, the stronger formulation of stationarity must imply the weaker
one, but onemust remind that the opposite implication is not always valid.
In fact, the unique exception is given by Gaussian stochastic processes,
for which both forms of stationarity are mutually inferable. Additionally,
when moments of a stochastic process are desumable from a single
realisation, then the process is further referable to as ergodic.

To assess stationarity given a time series, one may adopt various tools.
Following the same path I have already shown before when discussing
about normality, a common way consists in looking at some particular
plots that may highlight interesting trends within the data or running
appropriate statistical tests. To begin with the former type of assessment
procedure, it is worth mentioning an interesting graphical tool for time
series called correlogram (akaAuto Correlation Function plot or evenACF
plot for the sake of brevity), namely a plot that shows autocorrelation in
time-varying data like time series. In other words, the ACF plot tells how
the autocorrelation changes when lagged. To give an idea of how the ACF
plot works, I have reported an example with real stock trends of Amazon
drawn from Yahoo Finance Stock Market, starting from 1st January 2015
to 31st December 2019 (Figure 1.12). By looking at the corresponding
correlogram (Figure 1.13), it is easy to see that if the signal had been
stationary, then the autocorrelation function would have progressively
died down without those numerous fluctuations.

The interest in stationarity is thereby surely motivated, because it may
play a striking role in data analysis especially considering that it suffices
to determine whether statistical moments will converge in probability
to their real values. A cornerstone in statistical tests for stationarity is
the Augmented Dickey-Fuller (ADF) test [34]. As well as other similar
tests, this kind of inspection evaluates the presence of a unit root in
an autoregressive model, thereby stating that whenever �0 cannot be
accepted the process shows a stationary trend. In other words, the ADF
test checks the following hypotheses out:

�0 : unit root detected
�1 : stationary trend detected (1.27)



1 Data and information 19

Figure 1.12: Amazon stocks by Dollar vol-
ume from 1-1-2015 to 31-12-2019.

Figure 1.13: Correlogram calculated from
the Amazon stocks by Dollar volume
shown in Figure 1.12. Dashed lines denote
the 95% significance interval.

On variability

One of the most interesting, yet straightforward, concepts in statistics is
variance. Thanks to it, it is possible to determine the degree of dispersion
and therefore evaluate how good some measurements are with respect
to an estimated mean value. The analysis of variance, aka ANOVA,
is therefore particularly enthralling for data processing, because by
selecting those features whose variance is significantly high it impacts
the performance of the classifier (the lower the variance of a given feature
is, the less impactful it is with respect to the final outcome). The ANOVA
test assumes the following hypotheses:

�0 : Mean values of all groups are equal
�1 : There is (at least) one mean that differs from the others (1.28)

It is crucial to highlight that ANOVA works properly if data are normally
distributed; when this were false, then non-parametric tests ought to be
adopted, such as the Kruskal-Wallis test or the Friedman’s test. Therefore,
assume that two groups of data to analyse are normally distributed: if so,
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14: Given a random variable Xwith pa-
rameters 31 and 32, if X∼ F(31 , 32) then

the PDF of X is

√√
(31G)31 3

32
2

(31G+32)31+32
GB(0.531 ,0.532)

, where

G > 0 and B(G, H) =
∫ 1
0 CG−1(1− C)H−13C is

the Beta function.

their reciprocal difference is significant as long as their distributions do
not overlap, meaning that their mean values are very distant from each
other. To quantify how different two means are, the F-ratio14 is generally
adopted and then employed for ranking features.

On group association

One may want to test how strong a possible association between two
groups of data is. Although other metrics are possible, such those I
have already presented before like correlation and mutual information,
the "2 test has been designed exactly for this purpose. This test can be
used to determine the association between categorical variables for =
observations and is founded on the difference between the expected
frequencies, denoted here as 48 , 9 , and the observed frequencies, denoted
here as =8 , 9 in one or more categories in the frequency table. If 48 , 9 =

=8= 9
= ,

then the "2 statistic is calculated as follows:

"2 =
A∑
8=1

2∑
9=1

(=8 , 9 − 48 , 9)2

48 , 9
(1.29)

Practically speaking, this distribution returns a probability for the com-
puted "2 and the degrees of freedom df = (A − 1)(2 − 1). When this
probability equals 0, then there is a complete dependency between two
categorical variables, whilst a probability equal to 1 means that two cate-
gorical variables are completely independent. Very often, to quantify how
dependent two features are the Tschuprow’s Contingency Coefficient
[35] (TCC, for short) is used:

TCC =

√
"2

=
√
df

(1.30)

where TCC = 0 denotes the absence of any association.
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they do not require any prior information
about which class data belong to.
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Data classification constitutes a very well-known problem in artificial
intelligence. Technically speaking, data are classified when they are
provided with their own classes of membership a priori, meaning that
attributing a label to them is essentially supervised. To some extent,
assigning a label to some data is exactly equal to teaching: the student
learns what the teacher says and the teacher indicates the right direc-
tion to follow. In other words: the outcomes of the process itself are
already known and what the classifier ought to do is replicating them
without "learning by heart", otherwise it would fall into the trap of data
overfitting.

On the other hand, unsupervised learning is more complicated because
of the lack of any direction to follow in order to guide learning towards
knowledge. In other words, the learner must learn by its own without
any help. Generally speaking, unsupervised learning tries to find hidden
structures or meaningful properties according to a pre-defined objective,
that can greatly vary depending on the purpose the architecture aims at
fulfilling. For example, one may want to highlight how data are spatially
mapped in a "topographic" fashion: Self-Organising Maps (SOMs)1 and
their variants have been designed for that. And again, one may want to
detect naturally emerging groups within a data set according to some
distance metrics: k-means and its variants do exactly that.

Independently from themyriads of algorithms one can adopt for learning,
in this thesis a key role has been played by neural networks mostly. As
the name itself suggests, neural networks are structures of mutually
and variably connected items that resemble the structure of a brain
and therefore they were introduced as a computational paradigm for
emulating it. Interestingly, neural networks can be considered both as
supervised and unsupervised instruments (of course, it depends on
the specific type of network, because not all the neural networks have
this sort of versatility) and therefore have a great range of applications.
But most importantly, neural networks work very well when realising
computational models of biological phenomena, owing to their intrinsic
tendency to biological resemblance. In contexts like biorobotics, where
one may want to introduce biologically plausible mechanisms in robots,
this sounds undeniably compelling.
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Figure 2.1: Graphical explanation of su-
pervised learning. A prediction model re-
quires a suitable machine learner trained
over some data that constitute the training
set and some test data to evaluate its perfor-
mance through some statistics. Accuracy
will definitely depend on how many data
are correctly assigned to the expected class.
Data partitioning may assume different
forms: the most trivial consists in selecting
a fixed amount of data from the whole
data set and assigning it to the learner,
but smarter solutions, like the stratified
sampling or cross-validation, are allowed.

Figure 2.2:Warren McCulloch (left) (1898-
1969) and Walter Pitts (right) (1923-1969)
were a neurophysiologist and a mathe-
matician, respectively. In 1943 they intro-
duced the very first computational model
of artificial neuron [37], trying to resemble
some biological and physiological proper-
ties like the firing effect through a simple
thresholding mechanism.

2: In this paper, it is not clearly stated
that the type of network the author dealt
with was a proper AE, however. Historical
ambiguitiesmay be due to the different ter-
minologies that various authors had used,
even though they might have referred to
the same concepts.

2.1 Dimensionality reduction and networks

One may argue that there is not any real difference between feature
selection and dimensionality reduction. Actually, these are two distinct
concepts that share some similarities. When talking about feature se-
lection, as I have already done before, one refers to those methods for
selecting the most relevant features and ruling the useless ones out
because of their poor contribution to a specific objective. There is not
any transformation so that the feature space turns into something else.
On the contrary, dimensionality reduction changes a space by means
of suitable transformations that are designed to highlight specific prop-
erties. Literature offers myriads of techniques that can be exploited for
dimensionality reduction [38], but unfortunately there is not a solution
that can solve every possible scenario and it all depends on what kind of
data the system is requested to process.

Autoencoders

Autoencoders (AEs) have gained an increasing popularity in the last few
years, despite being a relatively old form of neural network which was
proposed as a modular architecture for pre-training further learners in
the first place, as stated in [39]2 .

The simplest form of AE is given by a network made up of three layers,
where the number of hidden nodes is (strictly) lower than the number
of the input nodes which in turn must equal the number of the output
nodes. These constraints may sound curious, but the real motivation
regards the objective this kind of network proposes to reach: what an AE
outputs is a set of signals whose reconstruction error due to the compressed
representation it stores in its innermost section is as low as possible.
Thereby, let U� �

{
u ∈ ℝ�

}
(Y� �

{
y ∈ ℝ�

}
) be the set of all the �-

dimensional input (output) vectors; what an AE does is to learn how to
map properly these two sets thanks to an encoding function ) : U→ F and
a decoding function � : F → Y so that the reconstruction error ‖u − y‖22
is minimum. According to this notation, F =

{
f ∈ ℝ3

}
is the set of the

compressed features, where 3 < �. It turns out that Y ≡ (� ◦ ))(U)
and therefore the problem of training an AE consists in finding both the
encoding and the decoding functions:

∃)̄, �̄ : )̄, �̄ = arg min
),�

u − (� ◦ ))(u)
2

2 (2.1)
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3: In this context, 2(·) denotes the mul-
tivariate activation function of a single
node.

There are different reasons why AEs are particularly interesting. Because
of their intrinsic structure, which resembles symmetric layering, and the
sizes of the hidden layers, AEs automatically perform a dimensionality
reduction process by which input data are mapped onto a shrunk repre-
sentation stored inside the innermost layer within the whole structure.
The problem stated in 2.1 can be rewritten differently by introducing a
proper loss function that could consider various aspects of learning, such
as sparsity (referred to as a function S) or regularisation (referred to as a
function W):

∃)̄, �̄ : )̄, �̄ = arg min
),�

(
L+ �S+ �W

)
(2.2)

where �,� ∈ ℝ are just weighting coefficients. In order to show how each
term in 2.2 is formed, suppose that all quantities related to the encoding
(decoding) part of the AE are labelled with subscript E (D), so that output
features are given by y = 2D (WDf + bD), whilst f = 2E (WEu + bE)3 .
Thereby:

L≡ ‖u − 2D (WD2E (WEu + bE) + bD)‖22 (2.3)

Regarding S, let # and 1̂ =
[
�̂1 , ..., �̂3

]
be the total number of input

patterns to feed into the AE and the distribution of the average activation
values of every hidden node, respectively. If the features produced by
inputting the 9-th pattern u(9) is f(9) = 2E(WEu(9) + bE), then:

1̂ =

∑#
9=1 f(9)

#
(2.4)

If 1̂ is requested to be as close as possible to a desired reference value �,
Scan be expressed by means of the KL of 1̂ and �:

S≡
3∑
9=1

KL(� ‖ �̂ 9) =
3∑
9=1

[
� log

(
�

�̂ 9

)
+ (1 − �) log

(
1 − �
1 − �̂ 9

)]
(2.5)

Consequently, KL(� ‖ �̂ 9) ⇐⇒ � = �̂ 9 and as long as these values
are different their mutual KL divergence increases. One of the collateral
effects of sparsification concerns the small value of the sparsity regulariser
itself due to smaller WE and higher x. This kind of effect can be regulated
by introducing a so-called !2 weight regularisation W:

W≡ 1
2

#ℎ∑
8

#∑
9

#E∑
:

F
(8)
9 ,:

(2.6)

where F(8)
9 ,:

is the (9 , :)-th element in WE for the 8-th input pattern. Here,
#ℎ and #E denote the total number of hidden layers and the number



2 Networks 24

Figure 2.4: 10-by-10 hexagonal SOM of
the Swiss Roll data set.

of variables in the training data, respectively. Eventually, I can write the
final form of the optimisation problem to be solved by the AE:

∃&̄, �̄ : &̄, �̄ = arg min
&,�

(L(u, y) + �S+ �W) (2.7)

where � weighs the contribution of the weight regulariser and thereby it
behaves similarly to �.

Figure 2.3: Basic scheme of an AE. Owing
to the many hidden layers the AE is made
up of, it should be said that this AE is deep
because of the deepness through which
data pass. In any case, AEs reproduce
symmetric structures where the main core
constitutes the compressed representation
of all the input data.

Laplacian Eigenmaps

To distinguish dimensionality reduction methods, one can rely on the
type of space given by the input patterns; in this sense, one can distin-
guish linear sub-spaces from non-linear ones. In the first case, classical
techniques like Principal Component Analysis (PCA) are sufficient to find
a low-dimensional representation of the original data, but sometimes this
cannot be possible. To better explain this concept, I would introduce to
the well-known Swiss Roll data set, which is widely used in this context
in order to show how good a manifold reduction process can be [40].

Laplacian Eigenmaps (LEs) constitute a non-linear dimensionality reduc-
tion algorithm, which employs an algebraic transformation that turns
the original data space into a smaller approximating manifold. More
generally, non-linear techniques like LEs, diffusion maps or Hessian
Local Linear Embedding (LLE), are processing techniques and because of
this they are similar to regularisation methods. However, there are some
differences between these two groups of approaches [42]. The algorithm
for computing LEs consists of several steps. For the sake of clarity, I have
reported them below in a ordered way to highlight the natural processing
flow the algorithm is based on:

1. suppose = �-dimensional points x1 , ..., x= . The first step consists
in creating a directed graph G = (+, �), where |+ | = = is the

Type of embedding algorithm Power
MDS 0.49
Joint Isomaps 1
Laplacian Eigenmaps 0.94

Table 2.1: Power of various manifold
matching algorithms over the Swiss Roll
Data set.
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4: This approach is particularly simple
to interpret even from a geometrical per-
spective, but one must pay attention to
multiple connected components within
the graphs that may arise.

5: :-NN does not tend to create multiple
connected components. In spite of this,
the geometrical interpretation becomes
weaker.

6: Given 0 < � < 1, a set X ⊆ ℝ#

of < points and a number = >
8 log<
�2 ,

the lemma states that ∃ 5 (·) : X → ℝ=

such that ‖ 5 (D)− 5 (E)‖
2

1+� ≤ ‖D − E‖2 ≤
‖ 5 (D)− 5 (E)‖2

1−� .

set of nodes and |� | = 0 is an initially empty set of edges. To
populate the graph, one may adopt various solutions to give the
sense of "closeness" amongst nodes. For example, one can use a &-
neighbourhood so that nodes 8 and 9 are connected if

x8 − x9
 ≤ &4

or the :-NN algorithm5 ;
2. once established whether two nodes are connected or not, one

has to determine how strong the connection is. To begin with, let
F8 , 9 be the weight of the link between nodes 8 and 9. The simplest
formulation thinks of the graph as an undirected object with just
0/1 entries within the adjacencymatrix, so thatF8 , 9 = 0 if the nodes
are not connected, F8 , 9 = 1 otherwise. Another solution consists in
calculating the weights by means of the so-called heat kernel:

F8 , 9 =

{
4−
‖x8−x9 ‖2

C

x8 − x9
 ≤ &

0 otherwise
(2.8)

which leads to a weighted adjacency matrix whose entries belong
to the real interval [0, 1];

3. if G is has multiple connected components, this last step must be
repeated for each component. Therefore, suppose a connected G

whose (symmetric) adjacency matrix is W. If the (8 , 9)-th element of
W isF8 , 9 , then thematrixD, whose (8 , 9)-th element is 38 , 9 =

∑
9 F8 , 9 ,

is diagonal. Thereby, the Laplacian matrix of G is simply given by
L = D −W.

4. once the matrices D and L are known, the algorithm solves the
generalised eigenvector problem:

Lf = �Df (2.9)

Equation 2.9 admits = solutions f0 , ..., f=−1, where f0 is the eigen-
vector associated to the null eigenvalue.

Further details about LEs algorithm are listed in [43], whereas Donoho
and Grimes compared LEs with LLE reporting their own results in [44].
Here the manifold to be reduced was meant as locally isometric to an
open and connected Euclidean space with lower dimension. Further
considerations about manifold reduction and why its application in real
data sets may prove very useful are reported in [45]: here, the authors
have pointed out that the LEs algorithm belongs to the class of the
so-called sparse spectral techniques, a sub-category of more general
convex techniques for which the objective function to be optimised has
the form of a generalised Rayleigh quotient and whose optimisation
passes through the solution of a generalised eigenproblem. In [46] the
robustness of LEs to noise and outliers has been discussed and the authors
have highlighted how non-linear techniques try to preserve some notion
of local geometry in the final embedding. To some extent, embedding
projection relies on theoretical results that guarantee some kind of nearly
preservation of mutual distances among some given points, just like the
Johnson-Lindenstrauss lemma6 [47] claims.
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(a)Original 3D representation of the Swiss Roll Data set and its corresponding 2Dmanifold.

(b)Manifold matching of the Swiss Roll Data set by means of the MDS algorithm.

(c)Manifold matching of the Swiss Roll Data set by means of joint Isomap.

(d)Manifold matching of the Swiss Roll Data set by means of Laplacian Eigenmaps.

Figure 2.5: Manifold matching and ap-
proximated embeddings: the Swiss Roll
data set example. This kind of analysis
has been drawn from [41], where the idea
of defining a non-linear manifold match-
ing algorithm based on both shortest-path
distance and joint neighbourhood selec-
tion is exploited to evaluate how close
two embeddings are (the whole algorithm
has been called Manifold Matching using
Shortest-Path Distance and Joint Neigh-
bourhood Selection on purpose, or MMSJ
for short). By running a Procruster analy-
sis either with or without non-linear em-
bedding, one may determine how well-
performing amatching algorithm is by cal-
culating the degree of matching amongst
every couple of data (G8< , G 9<), where
< denotes the <-th modality of obser-
vation, so that when G8< ∼ G 9< then
these two data are somehow matched.
This analysis has been done with both
training and testing data to understand
the amount of "matchedness" grasped by
each possible matching algorithm. Apart
from the first figure on the top, every fig-
ure is made up of two rows, each hav-
ing three different pictures. Every second
row shows the degree of matching in a
graphical way: to put it simply, a match-
ing algorithm performs well if the match-
ing ratio, namely the amount of corrected
matched data, is very high. The MMSJ
algorithm is configured so that data are
split into three groups: training matched
data pairs, testing matched data pairs and
testing unmatched data pairs. Essentially,
it learns how to map data into a dimen-
sionally smaller embedding and then test
the matching over testing data. The null
hypothesis �0 states that there is match-
ing between two observations, therefore
the power of the test 1 − � contributes
to the calculation of the goodness of the
matching algorithm, which has been sum-
marised in Table 2.1. If the matching algo-
rithm is powerful enough, then mapped
points are close to each other (meaning
that the modalities overlap), otherwise
their mutual distance is much more sig-
nificant. When the latter situation occurs,
the resulting net of links connecting data
points becomes clearly entangled and this
is what happens with the MDS algorithm
in particular, where data belonging to the
two modalities are not close enough to
determine short, connecting edges within
the graph (that is why its second series of
pictures shows intricate connections). If
the MDS algorithm had performed better,
then the amount of long-distance connec-
tions amongst data point would have been
less significant, leading to sparse connec-
tions as happened with the Isomap algo-
rithm, where only two pairs have shown a
meaningful discrepancy. Similar concepts
hold for the Laplacian Eigenmaps, which
is at the halfway in terms of performance.
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Figure 2.6: John Hopfield (1933-), born
in the United States of America, is the
scientist credited with the introduction of
the first associative neural network.

7: Hopfield networks were introduced as
associative memories with binary thresh-
old units,meaning that the status of a node
can assume two values only depending on
whether it overcomes a given threshold or
not.

2.2 Reservoir Computing for classification

Reservoir Computing (RC) relies on networks where learning takes place
only at the output stage, id est the one that concerns connections from
the (last) intermediate layer to the output layer. This mechanism allows
trainable readout maps, usually through regression, that make the whole
network capable of replicating somepre-defined target signals (if learning
is supervised). Additionally, intermediate layers are characterised by
recurrent connections amongst their nodes, leading to both excitatory and
inhibitory effects within them that contribute to the overall evolution.

Recurrence in neural networks

More formally, reservoir-based networks are Recurrent Neural Networks
(RNNs), whose first details were introduced in 1986 [48] even though the
very first model of RNN was introduced by Hopfield7 in 1982 [49].

What deeply characterise RNNs is the capability of processing sequential
data and that constitutes a striking difference with more classical neural
networks. In fact, recurrence shows to be more reliable when both input
and output data are not independent from each other, as happens in
many real contexts where data are intrinsically sequenced (for example,
when processing audio/video streams [50] or text sequences [51]). To put
it differently, RNNs are endowed with memory capabilities which allow
them to be particularly useful for many applications, ranging from time
series processing [52, 53] to classification [54, 55]. The simplest way to
describe how a RNN works is shown in Figure 2.7, where by unfolding a
single recurrence it is possible to explain the intrinsic sequential nature
of the whole processing. Essentially, this property consists in turning a
RNN into a feed-forward network where each cell deals with information
at a specific time instant only, implying that a 10-folded RNN equals
a feed-forward network with 10 intermediate layers. Additionally, it is
worth noticing how both self-loops and connections from other nodes are
allowed when computing the total incoming signal to be processed.

Figure 2.7: Scheme of an unfolded basic
RNN (Image provided by fdeloche - Own
work,CCBY-SA4.0). The leftmost diagram
is equivalent to the unrolled sequence of
multiple diagrams where input and out-
put data are considered at different time
instants. Usually, the activation function
ℎ(·) is a sigmoidal function, but other pos-
sibilities are allowed.

Echo State Networks

Echo State Networks (ESNs) are a widely employed kind of RNN in RC
computing, named after the echo property they are endowed with [56,
57]. In fact, ESNs provide a (typically supervised) learning architecture
that aims to reproduce some input signals by training the weights
between an output layer, which determines a combination of the whole
set of incoming data, and a fixed, usually not adaptive, reservoir-like

https://commons.wikimedia.org/w/index.php?curid=60109157
https://commons.wikimedia.org/w/index.php?curid=60109157
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pool of units. Training takes place once a collective reservoir activity
is determined by the continuously applied input signals, which ought
to be properly defined to stimulate the internal nodes of the ESN, and
algebraically manipulated, typically involving the Least Mean Square
(LMS) optimisation procedure. The term "echo" is due to the tunable
capability of echoing past states throughout the whole time evolution,
thereby leading to an intrinsic recurrence that makes ESNs particularly
suitable for sequential data processing.

Suppose a neural network made up of three layers only, even though
there could be versions with more than one intermediate layer [58]. This
kind of network can be fully described by:

I weight matrices for both intra- and inter-layer connections. In
particular, let =8 , =A and => be the number of input, reservoir and
output neurons, respectively. Thereby, Win→res ∈ W1, Wres ∈ W2,
Wres→out ∈ W3 and Wout→res ∈ W4 are the input-to-reservoir
weights, the reservoir internal weights, the reservoir-to-output
weights and the feedback weights respectively, whereW1 ⊆ ℝ=8 ,=A ,
W2 ⊆ ℝ=A ,=A , W3 ⊆ ℝ=A ,=> and W4 ⊆ ℝ=> ,=A are normalising sets.
According to the RC paradigm, the only matrix that undergoes
learning is Wres→out and this can be accomplished thanks to differ-
ent approaches that will be discussed later;

I a time-valued state vector x ≡ x(C) = [G1(C), ..., G=A (C)], where =A
is the number of reservoir neurons. Generally speaking, it can be
either C ∈ T ⊆ ℝ+0 or C ∈ T ⊆ ℕ0 depending on whether time is
continuous or discrete.

On account of the previous notation, equations that govern a typical ESN
in discrete time domain are:



feedback[C] = Wout→resy[C]
old[C] = Wresx[C]

input[C + 1] = Win→resu[C + 1]
update[C + 1] = h (feedback[C] + old[C] + input[C + 1])

x[C + 1] = update[C + 1] + (1 − )x[C]
y[C] = g (Wres→outx[C])

(2.10)

where  ∈ [0, 1] is the damping coefficient that weighs the contribution
of the past state with respect to the newer one. The main idea of ESNs
regards the way they are trained, because their training is aimed to avoid
the so-called vanishing gradient problem, which mostly occurs in those
training algorithms based on gradient descent and back-propagation. To
put it simply, when a network is trained thanks to the gradient descent
and back-propagation algorithms, it may occur that weights do not
change sensitively due to low values of the partial derivative of the error
function. In the worst case, when a network is affected by the vanishing
gradient problem it cannot be updated anymore and its status is totally
frozen. This effect is even more impactful if the number of layers within
the network is high, because when differentiating the error function
the chain rule applies and therefore the gradient becomes smaller and
smaller. Although there are very simple ways of making this effect less
harmful, such as by changing the activation function of the nodes (for
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8: ReLU = Rectified Linear Unit, whose ex-
pression is given by ReLU(G) = max(0, G).

9: LetAbegeneric squarematrix. Then, its
spectral radius is �(A) = max�∈Spec(A) |�|.
Thanks to the Gelfand’s formula [60], it
can be rewritten differently as �(A) =
lim:→+∞

:
√A:

, where ‖·‖ is a generic
matrix norm.

example, ReLU8 suffers less from it [59]), a totally different approach
concerns how networks are trained, especially when dealing with long
data dependencies like in time series processing, where the vanishing
gradient problemmight be evenworse. In fact, when dealing with ESNs a
fundamental requirement is the echo state property which assures that the
network can actually forget its input signals after a while. This property is
pragmatically very easy to assess, because it is sufficient to guarantee that
the spectral radius9 of the underlying adjacency matrix that describes
how reservoir neurons are connected is not greater than 1.

Figure 2.8: Basic scheme of an ESN. In this
picture, I have assumed randomly fixed
connections amongst reservoir neurons
depicted as thinner arrows within the cir-
cle, whereas thicker arrows in grey show
all the othermatrices required by a general
ESN.

Figure 2.9: Effects of the vanishing gradi-
ent problem. The higher the number of
middle layers within the network is, the
smaller and smaller the gradient becomes
and thereby the less likely the weights
change. If a network undergoes the effects
of an increasingly vanishing gradient, then
it will not be able to reach the optimal
weights it may require to fulfil its task,
reaching instead a local optimal state.

Liquid State Machines

In principle, Liquid State Machines (LSMs) follow the same scheme
shown in Figure 2.8, but there is a crucial difference between them and
ESNs. Equations 2.10 describe how an ESN works, but no particular
assumptions are made on the state of each node. The simplest approach
consists in thinking of the state function as one of the sigmoid functions,
such as the hyperbolic tangent or the logistic function, but the degree of
complexity arises sensitively when the nodes are replaced with dynam-
ical systems. When doing that, what it is generally obtained is a more
complex architecture also referred to as LSMs, where the nodes behave
as spiking neurons with a certain degree of biological plausibility [61,
62]. In other words, those Spiking Neural Networks (SNNs) belonging to
the RC paradigm are LSMs. Biological groundedness could be obtained
not only by implementing spiking nodes, but even by connecting the
nodes differently and more appropriately. In fact, in spite of the original
formulation it had been given to LSMs I would point out that connec-
tions amongst reservoir neurons may not be randomly fixed necessarily.
Accordingly to the purpose of this kind of architecture, where spiking
neurons aims at emulating real neural behaviours, it could be interesting
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to analyse how the whole system behaves when internal connections
resemble, or at least try to, likely neuronal arrangements. This topic will
be further discussed in the following, where additional details about
network topologies have been reported for the sake of completeness.

Figure 2.10: Modelling of a spiking neu-
ron. The emission of spike from the neuron
#9 is possiblewhenever theweighted sum-
mation of the excitatory post-synaptic po-
tentials (EPSPs) generated by pre-synaptic
neurons is high enough to overcome a
threshold. This all-or-nothingmechanism
allows the post-synaptic neuron to fire
instead of decaying in time (usually, ex-
ponentially). Whenever the threshold is
overcome, thereby, the membrane poten-
tial "jumps".

Figure 2.11: Spike trains in LSMs. This
example has been realised thanks to the
open-source project Amygdala, whose
main purpose is to create realistic SNN-
based models for AI applications. In par-
ticular, this network is made up of 680
neurons and 6360 synapses, each firing at
different time instants. Pictures like this,
also known as raster plots, show graphi-
cally series of dots whenever the neurons
emit spikes.

Back in the day, LSMs had been introduced as a computational framework
for neuromodelling issues, with a particular attention to cortical circuits
modelling [63], proving to be quite successful. Actually, the majority of
the information I have already reported about ESNs is still valid for LSMs
as well, but LSMs aim to deal with spatio-temporal information encoded as
spikes produced by reactive neurons that emit action potentials when
properly stimulated. Being a specific type of SNN, it is reasonable to
think of them as computational models for bio-inspired architectures: in
this thesis I have worked on modelling tiny components of the Drosophila
melanogaster’s brain in order to emulate some interesting capabilities, such
as stimuli classification. These functionalities are not entirely concentrated
over reduced portions of the brain, but they are supposedly spread all
across it. However, a crucial information processing centre is given by
the so-called Mushroom Bodies, where sensory signals coming from the
external world are processed (Figure 2.12), which has been shown to be
devoted to olfactory learning and memory [64, 65].

http://amygdala.sourceforge.net/
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Figure 2.12:Drosophila melanogaster and its
MushroomBodies [66]. Structurally speak-
ing, they constitute neuropils of great in-
terest for many researchers, since their
involvement in learning and memory, as
well as sensory information fusion from
both the internal state of the body and
the olfactory input to determine innate
behaviour, constitutes a relevant lodestar
for artificial networks and models.

10: Essentially, if two neurons are con-
nected through a synapse with weight F,
then the connection is strengthenend or
weakened depending on the mutual spik-
ing interaction. More precisely, if the pre-
synaptic (post-synaptic) neuron emits a
spike at time Cpre (Cpost), then ΔF = 5 (ΔC),
where ΔC ≡ Cpre − Cpost and 5 is chosen so
that ΔC ≶ 0⇒ ΔF ↑↓.

11: Given the singular values �1 ≥ ... ≥
�= of a =-th order matrix M, the condition
number of M is �(M) = �1

�=
≥ 1.

How to train ESNs and LSMs?

As already mentioned elsewhere, what really makes the difference when
talking about RNNs belonging to the RC paradigm is how they are
trained, but so far I have not introduced these algorithms yet. Since this
kind of RNNs have been introduced in order to overcome the vanishing
gradient problem, it is quite expected to have networks that do not
follow the back-propagation paradigm, despite probably being the most
known way of training a network (actually, it is more a computational
approach than other). Allegedly, there could be a neural-like form of
back-propagation but that is not the same concept most of users may
expect, because its current formulation does not allow any possibility of
deeming it as something plausible in neural systems. But as already said,
there is a specific research field entirely devoted to the understanding
of whether a biological pool of neurons may reflect the essence of back-
propagation and how [67–69]. In any case, what these studies show is how
pressing finding an alternative description of neural phenomena is. Since
LSMs, and more generally all those models that deal with biological-like
dynamics, both handle and create information encoded as spike trains, an
interesting paradigm that may replace the back-propagation algorithm
is the Spike Timing-Dependent Plasticity10 [70, 71] (STDP) model, which
deeply binds to the spiking nature of the activity that arises in these
systems.

LMS optimisation

Let Ax = b be a system of linear equations, where A ∈ ℂ=,< and b ∈ ℂ=,1

are known, fixed quantities. Additionally, let A† ≡
(
AHA

)−1 AH be the
pseudo-inverse matrix, aka the Moore-Penrose matrix, of A. The non-trivial
solution to the problem is given by:

x̂ = A†b if det(AHA) ≠ 0 (2.11)

In this context, the most appealing property of pseudo-inverse matrices
regards how they are related to optimisation. In fact, it can be proved
[72] that:

∀x ∈ ℂ<,1 ‖Ax − b‖2 ≥ ‖Ax̂ − b‖2 (2.12)

which means that pseudo-inverse matrices solve the LMS problem
effectively. Unfortunately the condition number11 �(AHA) is likely to be



2 Networks 32

12: Two matrices A and B commute if
AB = BA.

13: This fact can be deemed a consequence
of the Gershgorin’s theorem [73].

veryhigh in real scenarios and thismay cause numerical instabilitieswhen
calculating the inverse matrix. Thereby, a simple correcting procedure,
known as Tikhonov’s regularisation, consists in adding a small perturbation
in the form of a <-th order matrix �I as follows:

x̂ ≡ x̂(�) =
(
AHA + �I

)−1 AHb (2.13)

To some extent, � gives a quantitative idea on how close spectra of both
M1 ≡ AHA and M2 ≡ M1 + �I are and thereby this can be shown by
analysing how their eigenvalues are related to this parameter. It is known
that the eigenvalues of two matrices added together is not always the
sum of their respective eigenvalues. However, there is a very particular
condition that guarantees some more detailed results and it happens
when the matrices commute12 . This is exactly what happens for M1 and
�I. When two matrices commute, eigenvalues are simply given by the
summation of the respective eigenvalues and therefore:

Spec(M2) =
{
� + � : � ∈ Spec(M1)

}
(2.14)

In other words, Tikhonov regularisation shifts a matrix spectrum accord-
ing to the tunable parameter � in order to move it away from singularity13
and therefore disallow non-invertibility.

LMS optimisation can be used in neural networks as well for determining
the optimal Wres→out capable of producing output signals very close to
some pre-defined targets. Supposing a linear read-out strategy like the
following:

ZWres→out = Y (2.15)

where Z ∈ ℝ=C ,=A is the whole reservoir activity stored in a suitablematrix
structure when the network undergoes some input stimuli of length =C
and Y ∈ ℝ=C ,=> is the corresponding set of time-varying output functions,
if T ∈ ℝ=C ,=> is the set of target signals to track then the LMS algorithm
allows to compute the optimal output weights as:

Ŵres→out = Z†T (2.16)

In this way, the algorithm guarantees the minimum ‖Y − T‖2. Again,
when necessary a regularising coefficient � can be employed to better
pose the computation from a numerical standpoint. I would bring up
the batch nature of this form of learning, which means that the ongoing
evolution of the whole system does not take part in the final stage of the
training process. Instead, what really matters is the final "snapshot" that
gives the total, collective, emerging activity stored inside the reservoir
matrix.
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14: In the following notation, square brack-
ets denote discrete time-valued functions
and subscripts denote entries of a vector
or matrix.

15: It is trivial to see that w(8) ,Δw(8) ∈
ℝ=A ,1.

FORCE algorithm

Although LMS training is essentially batch, meaning that learning does
not occur step-by-step but just once, there are online alternatives that
aim at changing the output weights at each simulation step.

Generally speaking, when dealing with incremental learning Wres→out ≡
Wres→out[C]14 , meaning that each of its entries is adapted so that an
error measure is minimised. For the sake of clarity, I refer to the weights
connecting all the reservoir nodes to the 8-th output node simply as
w(8) ≡ w(8)[C], therefore Wres→out =

[
w(8) , ...,w(=> )

]
and output weights

are modified so that w(8) ← w(8) + Δw(8), where Δw(8) is the 8-th weight
difference that is somehow function of an error measure15 . Depending on
the incremental learning algorithm, Δw(8) can be calculated in different
ways, but before accounting for it let z[C] be the state activity at time C of
the whole reservoir, id est the row of Z at time C (thereby, its 8-th entry
indicates the activity of node 8 at time C), and d ∈ ℝ1,=> ≡ d[C] be the
vector of the => target signals the network ought to track (thereby, its
8-th entry indicates the target that the 8-th output node ought to track).
According to the FORCE algorithm [74], Δw(8) is related to a matrix
P ≡ P[C] whose entries ?8 , 9 ≡ ?8 , 9[C] decay in time in order to allow the
algorithm to converge to a solution that minimises a given error function.
The equations this algorithm relies on are shown below:

P[C] =

{
I
 C = 0

P[C − 1] − PT[C−1]z[C]Tz[C]PT[C−1]
1+z[C]P[C−1]z[C]T otherwise

e[C] = d[C] − z[C]Wres→out[C]
Δw(8)[C] = −e8[C]P[C]zT[C]
w(8)[C] = w(8)[C − 1] + Δw(8)[C]

(2.17)

where  ∈ ℝ determines the diagonal of P[0] and therefore the perfor-
mance of the whole algorithm.

2.3 Network topologies

Speakingof reservoir-basednetworks, an engagingaspect I could consider
regards how middle neurons can be connected to each other. There is
not a preferred criterion for addressing this kind of issue, because
network topologies may be determined according to a specific property I
may be interested in. Although this deep characterisation is essentially
computational, there are some clues for selecting a topology instead of
another and this section aims to briefly report the essential properties of
both well-known schemes and less common configurations.

How to choose a network topology?

Generally speaking, many indices and properties can be considered in
order to analyse howwell-performing anetwork is. In themajority of cases
performance is determined by how nodes are topologically arranged and
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16: The degree is the number of connec-
tions directed to (in-degree)/from (out-
degree) a given node. There are no dif-
ferences in the graph if it is undirected,
because in-degrees and out-degrees are
exactly equivalent.

17: Hamming(G1 , G2) =
‖A1−A2 ‖1,1
#(#−1) .

18: Jaccard(G1 , G2) =
‖A1−A2 ‖1,1
‖A1+A2 ‖∗

.

19: Such a similarity exploits spanning
trees that could arise or be destroyedwhen
trying tomatch a graphwith another. That
is because spanning trees could be thought
of as a level of interconnectedness between
the given graphs and therefore if the num-
ber of spanning trees of graph G8 isT8 , then
spanning tree-based similarity is given by
Spanning(G1 , G2) =

��log(T1) − log(T2)
��.

20: Computationally speaking, this calcu-
lation has complexity $(#3) for a graph
with # nodes.

therefore their properties follow from that. The fundamental properties
are thereby:

I degrees16 within the network provide a first insightful indicator
of how connections are organised. It is a straightforward, yet
preliminary, way of showing how the whole network is generally
arrangedand it helps todeterminewhat kindof structure the system
assumes (scale-free configuration, preferential attachment...);

I paths constitute an engaging challenge when designing networks
because one may require that information travels as fast as possible
from one node to another;

I tendency to transitivity, id est the tendency of creating at least
triangles. The higher the level of transitivity is, the more probable
clusters of nodes within the networks are;

I centralities are less trivial measures of importance that take into
account multiple, and often more hidden, aspects of the network.
There are many forms of centrality each describing a specific
behaviour, therefore I refer the reader to the works and papers
available in literature for a wider comprehension [75, 76].

There might be different reasons for comparing two networks, as well as
tools andmetrics. For example, graph spectra capturewell the information
about the network as a whole, as already happens in dynamical systems
where eigenvalues determine their evolution. Additionally, algebraic
connectivities give more details on how the network is topologically
shaped [77]. Generally speaking, if G1 and G2 are two distinct graphs
with both # nodes and with adjacency matrices A1 and A2 respectively,
then it may be more convenient to distinguish two types of criteria for
their comparison:

I structural distances reflect local changeswithin a network. To this cat-
egory belong well-known measures like the Hamming’s distance17
or the Jaccard’s distance18 , which are particularly short-sighted
despite being relatively simple. In fact, what these measures do is
to analyse the neighbourhood of every node within the network
and therefore they neglect what is happening on a greater scale, but
this is quite comprehensible because of the intrinsic nature of the
distances themselves. It is also remarkable to state that whenever a
distance metric evaluated over two graphs is 0, it does not mean
that the graphs are equal necessarily. That is why it is necessary
to make use of multiple measures, as shown in [78] where it is
shown how the nullity of a distance does not imply topological
equivalence;

I spectral distances, instead, consider how the network evolves thanks
to changes in its Laplacian matrix. To this category belong the
aforementioned criteria based on algebraic connectivities, as well
as the spanning tree-based similarity19 or the Hamming-Ipsen-
Mikhailov distance [79, 80];

I although these distances try to overcome the limitations of the
structural distances, eigenvalues must be calculated in any case20
and sometimes this could be quite burdensome from various
perspectives, not only from a computational one but also because
of the sensitivity to the properties of the graph. That is why other
solutions have been proposed to give a further description from a
mesoscale standpoint. To this type of solutions belongs the so-called
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21: A power-law distribution occurs when
the fraction of nodes having degree : is
distributed exponentially as %(:) ∼ :−� ,
where 2 < � < 3 typically.

Figure 2.13: A 10-Barbell graph as exam-
ple of highly regular and hierarchical net-
work made up of two distinct modules.
The idea behind this kind of graph con-
sists in replicating a complete graph of =
vertices and connecting them by means of
a single link [84].

22: I refer to those nodes with the highest
degrees as hubs. Even though their im-
portance is due to their huge amount of
connections, it depends on the domain of
application and therefore it is drawn from
the context.

polynomial approach, which consists in dealing with consecutive
powers of the adjacency matrices.

How to classify network models?

According to theprevious list, collective behaviours arising fromnetworks
may differ a lot. An interesting classification in this sense is available in
[81] and I will refer to it in the following. That having been said, there
are some macro-groups of networks that can be described:

I regular graphs and trees are those networks whose level of hetero-
geneity is the lowest because of their intrinsic deterministic nature.
Thereby the whole network tends to be highly dense, implying
that clustering is very likely. However, statistically speaking these
networks have the longest average paths;

I highly random networks generated by iteratively connecting cou-
ples of nodes with uniform probability are the Erdős–Rényi net-
works [82]. Despite their low heterogeneity, degree distribution is
(approximately) normal and average paths are generally short;

I both the previous scenarios are extreme and rare situations. That
is why real contexts are characterised by networks whose degree
distributions vary a lot as well as the other properties I have
already listed. Scale-free networks [83] constitute an important
example in this sense: they are generally characterised by high
modularity and degree distributions that follow a power-law21 , at
least asymptotically. A crucial difference between the normal and
power-law distribution is that the number of nodes with really high
numbers of edges ismuch higher in the power-lawdistribution than
in the normal distribution. But generally, well-connected nodes
are more common in a normal distribution. This means that in
networks I often find a small number of very highly connected
nodes, which have a number of connections that would not occur
if the distribution were normal.

To summarise this brief introduction, I would refer the reader to Figure
2.14 where the various types of network are spatially arranged according
to three classification criteria only: randomness, heterogeneity and mod-
ularity. Interestingly enough, networks with a biological meaning tend
to be highly random or with a scale-free configuration [85, 86], probably
owing to the need of rapidly sending information through the underlying
graph.

Biological groundedness: a mere chimera or an
opportunity?

The problem of establishing whether a biological network is random or
not is far frombeing trivial. In fact, randomness in such networksmight be
the reflection of an internal organisational tendency that could be hidden
by it. In principle, these questions are just apparently contradictory. What
seems to be common in many biological networks is the preferential
attachment behaviour that typically arises in scale-free networks [87, 88].
Because of the way of connecting nodes, it turns out that bigger hubs22
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Figure 2.14: Types of network and
their classification based on how ran-
dom/heterogeneous/modular the net-
work is [81].

23: In this specific case, space is parti-
tioned so that identical hexagons regularly
occupy it. According to [91] there are at
least three irregular hexagonal tilings.

Figure 2.15: Intel Loihi, an example of
128-neuromorphic cores IC fabricated on
14 nm process by Intel for asynchronous
SNN programming. It comprises a total of
130.000 neurons 130 million synapses.

Figure 2.16: Intel Pohoiki Springs is cur-
rently the latest Intel Loihi-based system
for neuromorphic computation. With its
768 Intel Loihi chips, this board can repro-
duce 100 million neurons but consumes
just 500 W of power. Currently, it is the
closest programmable device to a (small)
mammal brain.

are close to smaller ones and this leads to an intrinsic robustness to
failure, even in biological networks [89]. On the other hand, there are
other cases where connections are not as random as before. For example,
in [90] it was shown how axonal connections in the mushroom bodies of
locusts are spatially arranged in honeycomb-like structures. In this case,
the underlying graph belongs to the class of the so-called lattice graphs
and these structures do not make any exception23 . There could be many
reasons why a certain phenomenon should produce highly patterned
and regular structures, such as the well-known reaction-diffusion process
[92], but establishing the reasons why regular graphs in neural networks
should appear is still not clear.

In a more general perspective, when speaking about the future models of
neural networks, the so-called 3rd generation of networks, some people
claim that SNNs will gain more and more popularity till reaching the
new de facto standard for neural networks. It is true that the gap between
SNNs and more artificial ones is increasingly vanishing [93] but there are
still some problems regarding both implementability (unless designers
have neuromorphic platforms at their disposal, simulating a SNN usually
takes more computational resources than its 2nd generation counterpart)
and goodness of the outcomes, thereby one may argue that whenever it
comes to defining intelligent machines the need of adopting biologically
plausible models is meaningless if not totally useless. Not surprisingly,
SNNs are mostly used in more theoretical scenarios, where the essential
crux of thematter is given by the investigation into the neuralmechanisms
per se.

Figure 2.17:Generational evolution of neu-
ral networks. One of the most striking
arguments against the 3rd generation of
neural networks regards performance: so
far, 2nd generation outperforms the 3rd
one almost always in many applications
and asking what even a 4th generation
will be like is practically a pie in the sky.



1: If two distinct sets A and B can be re-
lated through a bĳective function 5 ∈ �0 :
5 −1 ∈ �0, then A and B are homeomor-
phic and 5 (or 5 −1) is a homeomorphism.

Modelling and control 3
3.1 Neural-like oscillatory dynam-
ics . . . . . . . . . . . . . . . . . . . 37

Slow-fast systems as paradig-
matic lodestar . . . . . . . . . . . 37
3.2 Analysis and modelling of
plasma dynamics . . . . . . . . . 45

On the problem of tomographic
reconstruction . . . . . . . . . . . 45

On the identificationof the input-
output FTU model . . . . . . . . 47
3.3 Human-machine interaction in
remote ultrasound scans . . . . 52

Modelling of visco-elastic mate-
rials . . . . . . . . . . . . . . . . . . 52
3.4 Information criteria for model
validation . . . . . . . . . . . . . . 55

Akaike’s Information Crite-
rion . . . . . . . . . . . . . . . . . . 55

Bayesian Information Crite-
rion . . . . . . . . . . . . . . . . . . 56

Hannan-Quinn Information Cri-
terion . . . . . . . . . . . . . . . . . 56

Modelling of natural phenomena constitutes a striking example of how
challenging both the analysis and the control of complexity might be. In
fact, nature has proved to be a great source of inspiration for engineering
applications but a burdensome cradle of complexity as well for which
common modelling techniques may not be appropriate.

3.1 Neural-like oscillatory dynamics

To be interested in oscillatory behaviours is not a waste of time, since
many natural systems behave like that [94]. However, they arise from non-
linear dynamical systems most of the time and can be reproduced thanks
to some interesting properties drawn from their state space topology.
To better understand this fact, one ought to have a clear idea of what
manifolds are and what their role in modelling complex dynamics is.
These prefatory details are necessary to grasp the way the nullcline-based
algorithm for customisable slow-fast dynamics works.

Slow-fast systems as paradigmatic lodestar

A very common set of methods and mathematical details that proposes
to clarify the behaviour of such systems, at least near their fixed points, is
the centre manifold theory [95]. To begin with, manifolds are mathematical
objects and as such they require a proper formalism. Intuitively, a
manifold is a space that is locally Euclidean, but globally it might be
more complicated, for example resulting in a torus or a sphere. In other
words, given a point on a manifold its neighbourhood is constituted by
all those points that are homeomorphically1 related to an Euclidean space
of the same dimension of the manifold. More formally, if # ∈ ℕ then a
#-manifold is a Hausdorff space where each point has a homeomorphic
neighbourhood to D̊ �

{
x ∈ ℝ# : ‖x‖ < 1

}
, which is a #-dimensional,

real-valued open ring [96].

Suppose the system:

Σ :
{
¤x = Ax + F(x, y)
¤y = By +G(x, y) (3.1)

where (x, y) ≡ (x(C), y(C)) ∈ ℝ= × ℝ< for some =, < ∈ ℕ, ∀C and such
that F(0, 0) = G(0, 0) = JF(0, 0) = JG(0, 0) = 0. When F(x, y) = G(x, y) =
0, ∀(x, y), then x = y = 0 are two trivial manifolds. If <{�} = 0,
∀� ∈ Spec(A) and<{�} < 0, ∀� ∈ Spec(B), then on the x-manifold all
solutions decay to zero exponentially fast. In particular, x = 0 is called
stable manifold, whereas y = 0 is called centre manifold. More generally,
a centre manifold y = H(x), with H(0) = JH(0) = 0, is defined for small
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‖x‖ so that the y-dynamics follow the x-dynamics. This statement can be
rewritten alternatively as follows:

Theorem 3.1.1 Let Σ be a system governed by a set of equations as those shown
in Equations 3.1, where F,G ∈ �2, such that<{�} = 0, ∀� ∈ Spec(A) and
<{�} < 0, ∀� ∈ Spec(B). Thereby, ∃H(x) ∈ �1, with ‖x‖ < � where � > 0,
such that H(x) is a centre manifold.

Proof. Refer to [97].

Moreover, a manifold H(x) = 0 is said invariant when the following
condition holds:

H(x(0)) = 0⇒ H(x(C)) = 0 ∀C ≥ 0 (3.2)

When y(0) = H(x(0)), id est the initial conditions are located inside the
centre manifold itself, the centre manifold is invariant and thereby Σ can
be reformulated as:

Σ : ¤x = Ax + F(x,H(x)) (3.3)

that is intrinsically dimensionally smaller than the system described
by Equations 3.1. Additionally, the reduced system shown in Equations
3.3 plays a key role when evaluating stability of a non-linear system,
especially when the so-called Lyapunov’s indirect method for assessing
stability fails. This theorem states:

Theorem 3.1.2 (Lyapunov’s indirect method) Let x = F(x) be an au-
tonomous, non-linear systemwhose state function is defined over a =-dimensional
spaceX so that F : X→ X. Additionally, suppose that F ∈ �1 and x̄ is a fixed
point. Thereby:

I x̄ is asymptotically stable if all the eigenvalues of J(x̄) have strictly negative
real parts

I x̄ is unstable if there is at least one eigenvalue of J(x̄) whose real part is
strictly positive

Proof. Refer to [97].

As already written before, when the Lyapunov’s indirect method is not
applicable, for example when there is at least one eigenvalue of the
Jacobian matrix whose real part is 0, the centre manifold theory I have
introduced before can overcome this limitation:

Theorem 3.1.3 Supposing that the hypotheses of Theorem 3.1.1 are verified, if
the state x = 0 is an asymptotically stable (unstable) fixed point for the reduced
system in Equations 3.3, then so it is for the full system in Equations 3.1 as well.

Proof. Refer to [97].
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Singularly perturbed systems

In order to introduce how slow-fast dynamics work, it is necessary to
give more detail about a specific class of dynamical systems of great
interest in this field, whose generic expression is given by:{

¤x = F(C , x, y, �)
�¤y = G(C , x, y, �) (3.4)

where x ∈ ℝ= and y ∈ ℝ< . Here, � → 0+ is a very small positive
parameter that tunes how abrupt changes in time scale are between x
and y. Equations 3.4 describe a (= +<)-order system, but if � = 0 then its
order reduces to = only because of the either algebraic or transcendental
constraint given by:

0 = G(C , x, y, 0) (3.5)

Equations 3.4 constitute the broadest version of the so-called singularly
perturbed models, whose main feature is given by multiple time scales
occurring when feeding external signals into the system. This variety of
temporal behaviours is manifested through the emergence of both slow
and fast responses within the same system. Of course, if Equations 3.4
are time-invariant and do not depend on �, they can be rewritten in a
simpler form as {

¤x = F(x, y)
�¤y = G(x, y) (3.6)

and Equation 3.5 becomes:

0 = G(x, y) (3.7)

Slow and fast manifolds

To introduce this crucial topic, I would recall an example drawn from
[98] to better explain it. Let{

¤G = 1
� ¤H = −H + � 5 (G) (3.8)

with G(0) = H(0) = 1 and 5 (G) ∈ �∞ is a scalar function. Straightforwardly
� = 0⇒ H = 0, meaning that the resulting solution is given by:{

G(C) = C + 1
H(C) = 0 (3.9)

but it is clear that H(C) does not satisfy its initial condition. What the
theory of singularly perturbed systems says is that H(C) must change
suddenly when it is close to a neighbourhood of C = 0, after passing a
kind of threshold that is called boundary layer. Theoretically speaking,
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Figure 3.1: Andrey Nikolayevich
Tikhonov (1906-1993), a Soviet and
Russian mathematician and geophysicist
known for his contributions in different
areas of mathematics, such as topology,
ill-posed problems and functional
analysis.

Figure 3.2: Circuit scheme of a FitzHugh-
Nagumo neuron [102].

the time spent when such trajectories trespass a boundary layer is 0, or
at least infinitesimal.

A preliminary result for introducing the concept of slow and fast mani-
folds is given by the Tikhonov’s theorem:

Theorem 3.1.4 (Tikhonov’s theorem) Suppose a dynamical system as follows:{
¤x = F(x, y, C)
�¤y = G(x, y, C) (3.10)

Let y = 5(x, C) be the solution of the constraint 0 = G(x, y, C) when � = 0.
As long as �→ 0+ the solution of the given system approaches to the solution
of the reduced system ¤x = F(x,5(x, C), C) if y = 5(x, C) is a stable root of
¤y = G(x, y, C).

Proof. Refer to [99].

The Tikhonov’s theorem implies the existence of two types of manifolds:
x(C) is the equation of a slowmanifold,whilst y(C) is the fast counterpart.

Phase plane analysis

In two-dimensional dynamical systems, it is particularly interesting to
analyse how they behave in time by considering their evolution on the
phase plane, which is a common and suitable representation of the state
flow as parameterised curves.

An important, dynamical system for the nullcline-based algorithm I have
already mentioned is the FitzHugh-Nagumo model, fully described by
the following set of equations [100]:{

¤D = 2
(
F + D − 1

3D
3 + I

)
¤F = − 1

2 (D − 0 + 1F)
(3.11)

where D is the membrane potential-like variable, F is a recovery variable,
I is an external input and 0, 1, 2 are fixed parameters so that:


1 − 2

31 < 0 < 1
0 < 1 < 1

1 < 22
(3.12)

This model is one of the most known reductions aimed at describing
the properties of the original Hodgkin-Huxley model [101] and since
its publication it was acclaimed for its computational simplicity and
capability of showing non-trivial outcomes. To some extent, it is possible
to think of it as a slow-fast systemwhere � ≡ 1

2 , thereby as long as 2 → +∞
the relative speed between the two nullclines changes drastically so that�� ¤D
¤F
�� is weighted by a constant speed ratio of 1

�2 . No surprise, then, if the
D-nullcline (F-nullcline) is the fast (slow) manifold of the system.

One of the greatest advantages of the FitzHugh-Nagumo model regards
its easiness of interpretability, since neuronal dynamics can be viewed
on the phase plane directly as the result of proper stimulation. Like the
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2: Mathematically speaking, this corre-
sponds to have no saddle equilibria and
thereby the "illusion" of a firing thresh-
old is given by the emergence of a canard
explosion that arises when the input I is
sufficiently big to let the trajectory over-
come the resting basin shown in Figure
3.3.

Hodgkin-Huxley model, the FitzHugh-Nagumo model does not have a
fixed firing threshold because both models lack in terms of all-or-none
responses2 . Additionally, a preeminent aspect of such systems regards
the existence of limit cycles, as shown and deeply described by the
Poincaré-Bendixson theorem [103] and shown in Figure 3.4.

Figure 3.3: Phase plane of the FitzHugh-
Nagumo model (0 = 0.7, 1 = 0.8, 2 = 3
and I = 0).

Figure 3.4: Bounding surface for the ex-
istence of limit cycles in the FitzHugh-
Nagumo model. According to the
Poincaré-Bendixson theorem, a limit cy-
cle can emerge if a boundary surface that
surrounds a repulsive fixed point can be
constructed so that the state flow "points"
towards the interior.

Nullcline-based timing

It is clear that nullclines are strictly related to oscillations, because
whenever the system 3.11 evolves along the trajectories defined by its
limit cycle and makes a complete turn, a whole period is completed.
However, when dealing with slow-fast systems the calculation of a period
can be simplified a lot.

Let ) be the period of a single oscillation. Owing to the presence of two
distinct branches, namely the slow and the fast manifolds within the
system, one can assume that ) = )fast + )slow if )fast ()slow) is the time
spent by the system when it travels along the fast (slow) manifold. Now,
suppose a cycle like the one depicted in Figure 3.5, where �−(F) and
�+(F) are the descending and ascending portions of the whole slow
manifold, respectively. The fastest manifold is given by the union of



3 Modelling and control 42

3: Two dynamical systems are topologi-
cally equivalent if their fixed points are
qualitatively similar, despite their own an-
alytical formulations. This implies that if
a fixed point is asymptotically stable for
the first system, then it is asymptotically
stable for the second system too.

the two (either exactly or almost, depending on �) horizontal segments,
where )fast = 0 (or )fast → 0 at least), thereby:

lim
�→0

) = )slow (3.13)

Thus, to calculate the period one should only evaluate how the system
behaves within the slow manifold. Getting the results reported in [104]
back, this procedure is conceptually easy, because one can evaluate )slow
by means of the following notation:

S− �
{
F ≡ F(C) ∈ ℝ| % 5 (D,F)%D < 0

}
S+ �

{
F ≡ F(C) ∈ ℝ| % 5 (D,F)%D > 0

} (3.14)

so that: {
�−(F) = ¤F with F ∈ S−
�+(F) = ¤F with F ∈ S+

(3.15)

Therefore:

)slow =

∫
S−

3F

�−(F)
+

∫
S+

3F

�+(F)
' ) (3.16)

Figure 3.5: A generic slow-fast system
with a cubic-shaped nullcline, such as the
FitzHugh-Nagumo model, evolves along
two main branches. Horizontal segments
denote those "jumps" that occur when the
system passes from the fastest manifold to
the slowest ones and the time spent here is
practically irrelevant because of the small
�.

Equation 3.16 indicates a way to calculate the period of oscillation given
the nullclines of the system. However, the calculation of each integral may
be tricky and not so immediate, therefore one may think to simplify them
by replacing the nullclines with something else, easier but topologically
equivalent at the same time. In this context, a suitable approximation that
can be tuned as wished in order to fit the same topological properties of
an original nullcline is a piecewise function3 .

To begin with, let us introduce a function Π (G) to approximate a non-
linear expression as the union of multiple segments each one having its
own slope. If the number of segments is equal to = + 1, then the number
of break-points is =; furthermore, the 8-th slope is referred to as <8 ∈ ℝ,
with 8 ∈ {0, ..., =} being <0 the slope of the leftmost segment and <= the
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slope of the rightmost one [105]. Thus, the most generic form of Π (G)
is:

Π (G) = 00 + 01G +
=∑
9=1

1 9
��G − 4 9 �� (3.17)

whereΠ (0) ∈ ℝ and 00 , 01 , 1 9 , 4 9 ∈ ℝ, with 9 ∈ {1, ..., =}, depend on the
slopes of the segments:


00 = Π (0) −∑=

9=1 1 9
��4 9 ��

01 = 0.5(<0 + <=)
1 9 = 0.5(< 9 − < 9−1)

(3.18)

Thereby,Π(G) is a piecewise-linear function (PWL) with tunable parame-
ters which does not depend on the original function to be approximated.
In fact, Π(G) can be calculated in an iterative way by simply parti-
tioning the domain of a given function 5 (G) to approximate, where
G ∈ [Gmin , Gmax], so that 5 (:ΔG + Gmin) � H[:] is the (: + 1)-th value
obtained by sampling the function with a sampling interval equal to
ΔG and : ∈

{
0, ..., Gmax−Gmin

ΔG

}
. Therefore, it immediately follows that

<: ≡ H[:+1]−H[:]
ΔG and 4:+1 ≡ (: + 1)ΔG + Gmin.

Thanks to PWL functions, one may replace an entire nullcline with
something easier to handle from a computational standpoint, especially
to solve Equation 3.16 since it may contain non-linear functions within
each integral it is made up of. In fact, the essential idea is to replace both
�−(F) and �+(F) with affine functions, whose integration is certainly
more immediate. For the sake of the next results, I will suppose a slow-fast
system in the form of:{

¤D = 51(D, F) ≡ 1
� [Π (D) − F]

¤F = 52(D, F) ≡ 0D + 1F + 2 (3.19)

The first nullcline gives a PWL function F = Π(D) which can be thought
of as a series of segments in the form of affine functions F = <∗D + @∗ for
some <∗ , @∗ ∈ ℝ with <∗ ≠ 0 that change depending on the portion of
interest of the whole cycle (in other words, ∗ ≡ − for the leftmost branch,
∗ ≡ + otherwise). If F = <∗D + @∗, then D = 1

<∗
F − 1

<∗
@∗ and therefore

52( 1
<∗
F− 1

<∗
@∗ , F) ≡ �∗(F) =

(
1 + 0

<∗

)
F−

(
2 + 0

@∗

)
, that can be rewritten

in a more compact form as �∗(F) = "∗F + &∗ if "∗ ≡ (1 + 0
<∗
) and

&∗ ≡ −
(
2 + 0

@∗

)
. By means of this reduction, each integral in Equation

3.16 is easily solvable:


) left
slow ≡

∫
S−

3F
�−(F) =

∫ F+
F−

3F
"−F+&− = 1

"−
log

(
"−F++&−
"−F−+&−

)
)
right
slow ≡

∫
S+

3F
�+(F) =

∫ F−
F+

3F
"+F+&+ = 1

"+
log

(
"+F−+&+
"+F++&+

)
(3.20)

By means of Equations 3.20 it is possible to determine the whole period
of oscillation with a simple and suitable PWL approximation given by
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Equation 3.17, whose main idea consists in partitioning a non-linear dy-
namic intomultiple linear sub-parts, each describable thanks to 1-st order
polynomials. Observe that ) left

slow ≡ )
left
slow(<−) and )

right
slow ≡ )

right
slow (<+).

Equations 3.20 are particularly useful when it comes to determining
the period of a single oscillation and therefore to implementing more
advanced operations, such as synchronisation. For example, one may
implement them to create dynamical controllers that allow a slave system
to follow a pre-defined timing. Owing to their relationship with the
external slopes that model both the left and the right branches, it is
possible to alter the period of oscillation by making both the slopes (or
just one of them) steeper or flatter.
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4: This is a well-known concept in thermo-
dynamics, wheremore common state tran-
sitions occur by means of heat exchanges.
Technically speaking, the amount of ex-
changed heat is called latent heat.

3.2 Analysis and modelling of plasma
dynamics

Plasma arises spontaneously as state of matter in those fluids that
reach the thermo-dynamical equilibrium and whose temperature is
sufficiently high. However, the transition from gas to plasma by means
of over-heating is not as discontinuous as in other state transitions4 ,
meaning that this state is reachable whenever the ratio between thermal
collisions and electro-statical forces is increased. To put it simply, plasma
is an ionised gas characterised by ubiquitous electric fields that allow
the particles to collide, as well as the natural tendency of particles
to collision owing to temperature. This kind of state of matter exists
in vacuum only, otherwise air would cool the plasma and thereby
particles would turn into neutral atoms again. Observe that not all
ionised gases can be thought of as plasma: to be more precise, plasma
is therefore a quasi-neutral gas made of charged and neutral particles
capable of showing a collective behaviour, where "quasi-neutral" means
that ions and electrons are compelled to move without any sensible
charge separation (at least, macroscopically speaking) and "collective
behaviour" refers to that situation where particles generate collateral
effects due to the concentration of positive/negative charge, which in
turn produces magnetic fields that thereby affect motion [106].

Figure 3.6: Plasma reactions and how they
happen. To produce energy by means of
plasma, fusion reactions must be both
exothermic and occur amongst atoms
whose atomic numbers ought to be as low
as possible. Two possible candidates are
deuterium and tritium, but they must be
reduced to highly energetic plasma (about
10 KeV) to produce energy. More in detail,
in order to create a significant amount of
energy the Lawson’s criterion must hold
[107].

On the problem of tomographic reconstruction

Amongst the variety of issues designers and engineers may have to deal
with, tomographic reconstruction constitutes an interesting example of
well-known, but ill-posed problem. Introduced by Radon [108], who is
also credited with the integral transform named after him, and despite
being relatively familiar in plenty of real contexts, such as computed
tomographies [109], its conceptual core remains particularly burdensome
in terms of numerical realisation [110, 111]. Generally speaking, a tomo-
graphic reconstruction consists in getting a 2D or 3D profile of a given
physical quantity of interest thanks to a finite number of projections over
straight lines. Intuitively, the higher the number of projections is, the
more detailed the resulting profile is owing to the overall contribution of
themore numerous line integrals. As long as the integration operates over
a very high number of lines, numerical posedness becomes increasingly
better and this is perfectly coherent with the Radon’s statement claiming
that his transform is well-posed for an infinite number of data. That
having been said, not surprisingly there is a clear intention of handling
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Figure 3.7: Scheme of a Tokamakmachine.
This term is a transliteration of the Rus-
sian words "toroidal’naya kamera s mag-
nitnymi katushkami", or "toroidal cham-
ber with magnetic coils" in English and
refers to a system invented in the 1950s by
Soviet physicists Igor Yevgenyevich Tamm
andAndrei Sakharov (whowere in turn in-
spired by an original idea of Oleg Lavren-
tyev).

5: The Bessel’s functions of the first type
��(G), also knownas cylindrical harmonics,
are the non-trivial solutions of the differen-
tial equation G2 32H

3G2 +G
3H

3G
+(G2−�2)H = 0.

Figure 3.8: Bessel functions for = = 0, 1, 2.

the problem in order to make it more computational affordable and sig-
nificantly more reliable, especially when there is an intrinsic lack of data
the reconstruction algorithm has to work on. A relevant scenario in this
sense is given by nuclear fusion and what happens in Tokamak machines
[112–114]. To put it simply, these devices produce a toroidal magnetic field
for plasma confinement and subsequent energy production. One of the
main problems of plasma fusion is the high temperature that ions and
electrons reach, thereby leading to large velocities. In order to maintain
the fusion process, particles from the hot plasma must be confined in the
central region by means of the Lorentz’s force, otherwise the plasma will
rapidly cool.

Solution to the inverse problem

From a purely mathematical perspective, the problem of tomographically
reconstructing a spatial function from one-dimensional projections may
be severely ill-posed, as already written before. The conceptual key to
understanding of how it could be solved lies on some fundamental
integral transforms that relate both the resulting, spatial function and its
projections, namely the Abel’s transform (Equation 3.21), the Fourier’s
transform (Equation 3.22) and the Hankel’s transform (Equation 3.23):

A{(A)} (G) � 2
∫ +∞

G

A(A)3A√
A2 − G2

(3.21)

F{�(G)} (�) �
∫ +∞

−∞
�(G)4−2�8�G3G (3.22)

H�

{
�(�)

}
(:) �

∫ +∞

0
�(�)��(:�)�3� (3.23)

where �� is the first type Bessel’s function5 of order � ≥ − 1
2 . Together, they

constitute the so-called FHA cycle, which is the basis of the projection-
slice theorem [115]. This theorem states that the 1D Fourier transform
over a 1D projection of a 2D function exactly equals the slicing (id est, the
act of extracting a 1D central slice from a 2D function) of the 2D Fourier
transform of the same function. This is particularly helpful because
the inverse problem, namely the determination of (A) from its Abel’s
transform, is difficult to solve, since the analytical expression of the
inverse Abel’s transform, namely:

(A) = − 1
�

∫ +∞

A

(3A{(A)} (G))/3G√
G2 − A2

3G (3.24)

has not any real, practical relevance. In fact,most of the timeA{(A)} (G) is
available either at some points only or not at all and itmay be corrupted by
noise. However, when the function to be processed is circularly symmetric
it can be proved [116] that:

F{A{(A)}} = H� {(A)} (3.25)
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6: �∞ identification leads to a linear rep-
resentation of an unknown system and re-
lies on the calculation of the homonymous
norm. Generally it is employed to cre-
ate even approximated models that abide
by the Hankel’s approximation, mean-
ing that if �(B) is a continuous trans-
fer function whose singular values are
�1 ≥ ... ≥ �=and �̃(B) is an approx-
imated version of it, then a A-th order
model (A < =) leads to the disequalities
�A+1 ≤

�(B) − �̃(B)∞ ≤ ∑=
8=A+1 �8 .

7: MHD stands for magnetohydrodynam-
ics, namely the study of the magnetic
properties and behaviour of electrically
conducting fluids, such as plasma or elec-
trolytes.

and thereby implying that:

A−1 {(A)} = H−1
� {F{(A)}} (3.26)

Observe that the inverse Hankel’s transform of a generic function ��(:)
is given by:

H−1
� {��(:)} =

∫ +∞

0
��(:)��(:A):3: (3.27)

which is practically equivalent to Equation 3.23 except for ��(:) in place
of �(�).

On the identification of the input-output FTU model

Instead of being interested in reconstructing a plasma profile, one would
determine a (computational) model of a Tokamakmachinewhenworking
at steady, regular conditions. This may lead to (among other things):

I a better understanding of the underlying phenomena that regulate
plasma production;

I a further tool for modelling and analysis of complex dynamics.

It is worth noticing that modelling plasma dynamics is not a novelty.
In [117] authors attempted to model a Tokamak device by means of the
�∞ identification procedure6 , whilst in [118] a linearised, yet non-rigid
MHD7 consistent displacement model was introduced to fit the study
of the vertical stability of a plasma in either an air-core or iron-core
Tokamak.

Prediction Error Method for grey-box models

Unlike other forms of model, grey-box ones are partially known: what it
is known is given by their internal structure, thereby this implies that
grey-box identification aims to find the best parameter space according
to both the given structure and input-output relationships. In other
words, with grey-box models theoretical aspects and data-grounded
issues are combined together to provide a more complete depiction of a
phenomenon. The problemof determining the parameters of suchmodels
could be particularly onerous, but fortunately there are different strategies
to solve it. In this paragraph, I will introduce the very fundamental ideas
of the Prediction Error Method (PEM) [119].

Unlike other approaches like those based on likelihood maximisation,
where the modelling accuracy is given by the mismatch between the
estimated model and the expected one (which is essentially statistical),
PEM is probably the most system-oriented because it determines the
overall modelling goodness in terms of how close the outcomes produced
by the estimated model to the observations are. Providing a model:

H = 6(G, �0) + & (3.28)
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where G ≡ G[C], & ≡ &[C] and thus H ≡ H[C], the problem I am interested in
is calculating the parameter �. To better point out the peculiarities of the
PEMalgorithm, Iwould compare itwith other common strategies, namely
the Least Squares (LS) and the Maximum Likelihood (ML) methods, as
follows:

LS : �̂ � arg min
�

1
2
∑=
C=1

[
H[C] − 6(G[C], �)

]2

ML : �̂ � arg max
�

logLikelihood(.1 , ..., .= , �)

PEM : �̂ � arg min
�

1
2
∑=−1
C=1

[
H[C + 1] − Ĥ[C + 1](H[1], ..., H[C], �)

]2

(3.29)

The LS method is quite self-explanatory. On the other hand, ML aims
to maximise the likelihood function of a stochastic model, namely
a =-variate PDF, whilst PEM determines the best parameter so that
the error between the output and its predicted value Ĥ, which is
supposed to be dependent on its previous values, is minimum. It
has been shown that PEM can outperform other identification tech-
niques, such as the Subspace Identification Methods (SIMs) proposed
by Viberg in 1994 [120, 121]. For the sake of next considerations, let
�=(�) � 1

2
∑=−1
C=1

[
H[C + 1] − Ĥ[C + 1](H[1], ..., H[C], �)

]
; the optimisation

problem that PEM aims to solve is not generally solvable analytically,
but it requires an iterative approach which consists in evaluating the
function �=(�) for several � ∈ {�1 , ..., �<} such that:

�=(�8) ≥ �=(�8+1) (3.30)

for each 8 ∈ {1, ..., <} until �=(�<) ≈ �̂ for some < ∈ {1, ..., <}. Starting
from an initial value �1, the parameter is updated as follows:

�8 = �8−1 + Δ (3.31)

where Δ is the incremental update that can be calculated in different
ways:

Steepest descent : Δ ≡ −�8∇�=(�8)
Newton-Raphson : Δ ≡ −�8

[
∇2�=(�8)

]−1 ∇�=(�8)
Gauss-Newton : Δ ≡ −�8E

{[
∇2�=(�8)

]−1
}
∇�=(�8)

(3.32)

Wavelet networks as non-linear estimators

What about the form of the predictor Ĥ? Actually, there is not a specific
criterion for selecting an estimator and thereby one has multiple choices.
An interesting estimator I would discuss here is given by Wavelet Neural
Networks (WNNs), which have gained an increasingly significance in
the last years because of both their structure and concept. Additionally,
they fit well the general idea of this thesis of using neural-like tools for
solving various problems.
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Figure 3.9: Most typical wavelets [123].

8: P ∈ ℝ<,? and Q ∈ ℝ<,@ respectively,
where ? ≤ < (equality does not hold if
there are linearly dependent components
within the data). Furthermore, @ denotes
the number of components used in both �
and #.

9: A function 5 (x) defined on ℝ= is said
radial if its value at each point depends
only on the distance between that point
and the origin. In other words, 5 (x) is
radial if ∃ 5̄ (A) : 5 (x) = 5̄ (A)with A = ‖x‖2.

This approach consists in superimposing dilated and translated copies
of a single function, namely the mother wavelet, localised in both the
space and frequency domains in order to reproduce non-linearities. The
combination of a sufficiently high number of these modified replica can
actually lead to the approximation of any given input function, which
makes the whole network a universal approximator. WNNs embed
wavelets as activation functions, allowing them to bemore easily trainable
than classical multi-layered networks because of the spatial localisation
of the wavelets [122]. A wavelet #(C) is therefore adapted to a given
signal by means of proper translations and dilations, which are given by
tunable, real-valued parameters:

#0,1(G) �
1√
0
#

(
G − 0
1

)
(3.33)

where 0 (1) is the shifting (scaling) term. Each #0,1(C) is (not surprisingly)
a child waveletwhose parameters are usually calculated by means of the
back-propagation algorithm, although more exotic solutions, such as
genetic programming [124] or hierarchical evolutionary algorithms [125],
are allowed:


�(z) = 4−

1
2 zzT

#(z) = (< − zzT)�(z)
Ĥ(x, �) = (x − r)PL +∑=�

8=1 0
(�)
8
�

(
1
(�)
8

[
(x − r)Q − 2(�)

8

] )
+

+ ∑=#

8=1 0
(#)
8
#

(
1
(#)
8

[
(x − r)Q − 2(#)

8

] )
+ 3

(3.34)

where �(z) is the scaling function whose argument is z ∈ ℝ1,@ , � is the
parameter that ought to be estimated and P and Q are projection matrices
drawn from the PCA of the estimation data8 . Additionally, r ∈ ℝ1,< is
the mean of the estimation data. There are other parameters in Equa-
tions 3.34 with either the upperscript (�) (a(�) =

[
0
(�)
1 , ..., 0

(�)
=�

]
, b(�) =[

1
(�)
1 , ..., 1

(�)
=�

]
and c(�) =

[
2
(�)
1 , ..., 2

(�)
=�

]
), namely the shifting parameters,

or the upperscript (#) (a(#) =
[
0
(#)
1 , ..., 0

(#)
=#

]
, b(#) =

[
1
(#)
1 , ..., 1

(#)
=#

]
and

c(#) =
[
2
(#)
1 , ..., 2

(#)
=#

]
), that refer to the wavelet parameters. Eventually,

3 simply defines an offset. Observe that both #(·) and �(·) are radial
functions9 .

Hammerstein-Wiener models

A typical Hammerstein’s model consists of a static, non-linear mod-
eller followed by a linear dynamic element, whilst a Wiener’s model
behaves reversely so that the linear element precedes the static, non-
linear characteristic. When these two forms are "sandwiched" so that
the linear modeller is placed amid two non-linear functions, the result-
ing model, whose general structure is shown Figure 3.10, is a so-called
Hammerstein-Wiener (HW) model [126, 127].

In HWmodels, input signals are processed throughoutmultiple elements
each pursuing the known outcomes. Non-linearities within the model
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Figure 3.10: Structure of Hammerstein-
Wiener models. non-linearities are given
by pre-defined estimators, as well as the
linear block in the form of a transfer func-
tion. It immediately follows that F(C) =
5 (D(C)) and H(C) = ℎ(G(C)), while both �(·)
and �(·) are polynomial functions whose
orders are pre-defined.

process both the input and the output of the unique linear sub-system,
which could easily be expressed as a collection of transfer functions:

TF(?) �



∑>=
8=0 0

(1,1)
8

? 8∑>3
8=0 1

(1,1)
8

? 8
· · ·

∑>=
8=0 0

(1,=D )
8

? 8∑>3
8=0 1

(1,=D )
8

? 8

...
. . .

...∑>=
8=0 0

(=H ,1)
8

? 8∑>3
8=0 1

(=H ,1)
8

? 8
· · ·

∑>=
8=0 0

(=H ,=D )
8

? 8∑>3
8=0 1

(=H ,=D )
8

? 8


(3.35)

where ? coincides either with the usual Laplace complex variable B for
continuous systems or with the complex variable I of the /-transform
otherwise. In other words, if Transform(·) denotes either the Laplace
transform or the /-transform, then G(C) = Transform(F(C)). In the previ-
ous notation, =D and =H refer to the number of input and output signals
respectively, whilst >= and >3 denote the orders of both the numerator and
the denominator (generally, >3 ≥ >=). Observe that TF(?) ≡ TF(?,A,B),
where

A �


a(1,1) · · · a(1,=D )
...

. . .
...

a(=H ,1) · · · a(=H ,=D )

 ∈ ℝ
=H ,=D >= (3.36)

B �


b(1,1) · · · b(1,=D )
...

. . .
...

b(=H ,1) · · · b(=H ,=D )

 ∈ ℝ
=H ,=D >3 (3.37)

where a(9 ,:) =
[
0
(9 ,:)
1 , ..., 0

(9 ,:)
>=

]
and b(9 ,:) =

[
1
(9 ,:)
1 , ..., 1

(9 ,:)
>3

]
are the pa-

rameters estimated during the identification phase. A fundamental
requirement for all the functions in Equation 3.35 is stability, meaning
that if

Spec(9 ,:) �

{
? ∈ ℂ :

>3∑
8=0

1
(9 ,:)
8

? 8 = 0

}
(3.38)

then the identification procedure must determine the matrices A and B
so that ∀9 , : it follows:

Spec(9 ,:) ⊆
{
{B ∈ ℂ :<(B) ≤ 0} ? ≡ B
{I ∈ ℂ : |I | ≤ 1} ? ≡ I (3.39)

Regarding the non-linear estimators, one can adopt the preferred estima-
tor depending on the purpose, meaning that even WNNs may work well.
If so, it follows that both F(C) and H(C) are computed by implementing
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the system shown in Equation 3.34, thereby implying that both of them
depend on some additional parameters that I have referred to as � to be
identified.

To sum up, a generic HWmodel is a combination of three operators in
the form Σ � ( 5 ◦ Transform ◦ ℎ); if S � {Σ} and Fitness(Href(C), H(C))
is a fitness function evaluated between the real output signal and the
known outcome Href, then the problem of finding the best Σ corresponds
to solving the following optimisation problem:

∃Σ̄ : Σ̄ = arg max
Σ∈S

(
Fitness(Href(C), H(C))

)
(3.40)
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10: Attenuation can occur in different
ways. For example, it happens whenever
the energy associated to the travelling me-
chanical waves is converted into heat (ab-
sorption) or when the waves encounter
some irregular tissues whose size is much
smaller than the wavelength (scattering).

3.3 Human-machine interaction in remote
ultrasound scans

To put it simply and from a purely physical perspective, ultrasound is
perfectly equal to the normal audible sound, except that humans cannot
hear it. As normally happens in medical examinations, frequencies of
ultrasound scans change according to the part of the body to scan (see
Table 3.1), but how they are executed does not.

The sonographer usually holds a transducer which is placed on the
patient’s skin. Ultrasound travels through soft tissue and fluids, but it
bounces back off denser surfaces. This allows the creation of an image
that is analysed and interpreted by radiologists, cardiologists or other
specialists. Higher frequencies provide better quality images but aremore
readily absorbed by the skin and other tissue, so they cannot penetrate
as deeply as lower frequencies. On the contrary, lower frequencies
penetrate deeper, but the image quality is inferior. In fact, it is important
to remember that mechanical waves cannot travel without attenuation10
and each body they enter in contact with behaves differently in this
sense (actually, attenuation will occur not only in the beam of sound
produced by the transducer as it propagates through tissue, but also in
the returning echoes as they travel back to the transducer).

Many researchers [128] have worked on the field of remote sensing with
ultrasound probes and equipment, but some of them have also claimed
an intrinsic difficulty using these devices especially for a long time [129,
130]. An important point of more recent advances inmedical technologies
is remote diagnosis; on one hand this implies the possibility of operating
without an effective physical contact and therefore allowing the physician
to help people in spite of long distances and logistic difficulties, such
as those concerning rural areas, on the other hand it implies several
problems, such as delays, instability and implementative issues. Various
researches have been proposed to account for the intrinsically higher
complexity of a remote sensing-based ultrasound equipment [131, 132].

Modelling of visco-elastic materials

It is quite interesting that the most common models for visco-elastic
materials are linear [133]. Generally speaking, there are different possible

Figure 3.11: Cross-sectional view of an ul-
trasound transducer that shows how it is
structured. The transducer housing is the
wrapping material inside which all those
elements required for the scan are placed.
In other words, it provides the necessary
support and protection for them. The back-
bouncing effect is due to the presence of
a piezoelectric crystal (usually PZT) that
allows the device to work both as trans-
mitter and as receiver. Since the operator
is interested in capturing only those vibra-
tions that come off the front face of the
transducer, the backing material, usually
realised in tungsten powder and plastic or
epoxy resin, acts as a damper.
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Frequency Applications
2.5 MHz deep abdomen, obstetric and gynaecological imaging
3.5 MHz general abdomen, obstetric and gynaecological imaging
5 MHz vascular, breast, pelvic imaging
7.5 MHz breast, thyroid
10 MHz breast, thyroid, superficial veins, superficial masses, musculoskeletal imaging
15 MHz superficial structures, musculoskeletal imaging

Table 3.1: Examples of application involv-
ing ultrasound scan with their operating
frequencies.

Figure 3.12: Maxwell’s model of visco-
elastic materials.

Figure 3.13: Kelvin-Voigt model of visco-
elastic materials.

solutions to describe the behaviour of a visco-elastic material through a
linear framework:

I Maxwell’s model (Figure 3.12): the combined action of both the
viscous and the elastic behaviour is modelled through a spring and
a damper attached together so that the stress of the former equals
the stress of the latter, whilst the total strain is given by the sum of
the two strain functions. The equations that govern the model are
reported below:

�spring = :�spring
�damper = � ¤�spring
�total = �spring = �damper
�total = �spring + �damper

(3.41)

where : is the stiffness of the spring and � is the viscosity. All the
previous equations are perfectly equivalent to the single differential
equation:

¤�total +
1
�
¤�total = : ¤�total (3.42)

where � = �
: is the time constant. The model is usually applied to

the case of small deformations, because when these are too marked
one should include some non-linear effects that depend on the
geometry of the material. An important disadvantage of this model
concerns its incapability of describing creep or recovery.

I Kelvin-Voigtmodel (Figure 3.13): thismodeldiffers from theMaxwell’s
one because of the presence of a deferred elasticity: instead of plac-
ing the damper in series to the spring, these items are positioned
in parallel so that the underlying equations that describe how the
system evolves become:

�spring = :�spring
�damper = � ¤�spring
�total = �spring + �damper
�total = �spring = �damper

(3.43)

Again, these equations can lead to a single ODE as follows:

¤�total +
1
�
¤�total =

1
:�
¤�total (3.44)

where � = �
: again. One of the drawbacks of this model regards

the impossibility of describing stress relaxation.
I Zener’s model: there are two possible ways to present this model,

namely the Maxwell’s (Figure 3.14) and the Kelvin’s representation
(Figure 3.15). However, the underlying ODE is formally equivalent
for both the variants:

0 ¥�total + ¤�total + 1 ¥�total + 3 ¤�total (3.45)
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Figure 3.14: Zener’s model of visco-elastic
materials according to the Maxwell’s rep-
resentation.

Figure 3.15: Zener’s model of visco-elastic
materials according to the Kelvin’s repre-
sentation.

Figure 3.16: Burgers’ model of visco-
elastic materials.

Figure 3.17: Maxwell-Weichert model of
visco-elastic materials.

but


0

1

2

 =



�

�(:1 + :2)
:1

 Maxwell’s representation
�

:1+:2
:1�
:1+:2
:1:2
:1+:2

 Kelvin’s representation

(3.46)

where � = �
:2
.

I Burgers’ model (Figure 3.16): this model is realised by placing two
Maxwell’s models in parallel and therefore it is governed by the
following equation:

�1�2 ¥�total+(�1+�2) ¤�total+�total = �1�2(:1+ :2) ¥�total+(�1+�2) ¤�total
(3.47)

where �8 =
�8
:8
are two distinct time constants that determine how

fast/slow the modes are.
I Maxwell-Wiechert model (Figure 3.17): this is the most general linear

model for visco-elastic materials. Given (#+1) stiffness coefficients
:8 and viscosities �8 so that �8 =

�8
:8
is the 8-th relaxation time, the

model is governed by the following differential equation:

�total +
∑#
==1

(∑#−=+1
81=1 · · ·

(∑#−(=−0)+1
80=80−1+1 · · ·

(∑#
8==8=−1+1

(∏
9∈{81 ,...,8= } �9

))))
%=�total
%C=

=

:4� +
(∑#−=+1

81=1 · · ·
(∑#−(=−0)+1

80=80−1+1 · · ·
(∑#

8==8=−1+1

(
:4 +

∑
9∈{81 ,...,8= } : 9

) (∏
;∈{81 ,...,8= } �;

) ))) %=�total
%C=

(3.48)
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11: The idea of the English Franciscan friar
William of Ockham is an example of ab-
ductive reasoning and the preference for
simpler solutions agrees with the falsifia-
bility principle introduced by Karl Popper
in his Logik der Forschung (1934).

Figure 3.18:Hirotugu Akaike (1927-2009),
credited with the introduction of the
homonymous information criterion. For
this important advancement in statistics,
he received the Kyoto Prize in 2006.

3.4 Information criteria for model validation

A system can be modelled in many ways. That is why it is crucial to set
a common set of tools to compare them properly. Statistically speaking,
these tools are usually referred to as information criteria and most of the
time they consider two main aspects:

I predictive/explanatory power: the model must be as exhaustive
as possible with respect to the data used to create the model
itself, albeit this could imply severe drawbacks in terms of its own
realisation;

I structural complexity: this is the other side of the coin, because
whenever the model tends to be very precise at predicting an
outcome, its internal complexity becomes significant. It is not
preferable to have such models, because the number of degrees of
freedom increase too and this could make things more difficult to
handle.

To some extent, model selection embodies the Ockham’s razor11 : the
simplest model is most likely to be the best choice. In the following, I
have covered just some methods because of their implications in some of
my papers.

Akaike’s Information Criterion

The Akaike’s Information Criterion (AIC) [134] is an information theory-
based method for quantifying how good a model is with respect to
various candidates:

AIC = 2=? − 2 log (Lmax) (3.49)

where =? is the number of parameters and Lmax is the maximum of the
likelihood function for the given model. As already written before, the
AIC is based on information theory, meaning that if I represented an
unknown process 5 by means of two possible candidates 61 and 62 and I
had to select the best one, I could calculate KL( 5 ‖ 61) and KL( 5 ‖ 62)
to evaluate the information lost from using 61 and 62 to represent 5 .
Therefore, the best model would be the one that minimises this loss, but
unfortunately this decision cannot be made without uncertainty and
that is why the AIC was introduced as an asymptotic estimation, which
may fail if the number of observations is particularly small. In this last
scenario, if the number of observations is # then the AIC indicator ought
to be modified as follows:

AICc = AIC +
2=?(=? + 1)
# − =? − 1

(3.50)

and straightforwardly lim#→+∞AICc = AIC.

Independently from the version of the AIC one wants to use, from
a practical standpoint if A candidate models have AIC values equal to
AIC1 , ...,AICA , then∃Ā : AICĀ = min8 AIC8 so that 4

AICĀ−AIC8
2 ∝probability
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12: This statementwas proposed at first by
the SovietmathematicianA. Y.Khinchin in
1924 [139] and states that ifX1 , ...,X= are =
randomvariables, each havingmean equal
to 0 and variance equal to 1, and S= �∑=
8
X8 , then lim sup=←+∞

±S=√
2= log log =

= 1

almost surely.

that the 8-th model minimises the estimated information loss. Thereby,
the Ā-th model is the best amongst the others.

Bayesian Information Criterion

The Bayesian Information Criterion (BIC, for short) was introduced by
G. Schwarz in 1978 [135] and is very similar to the AIC, except for some
slight changes as shown below:

BIC = =? log(#) − 2 log (Lmax) (3.51)

where the symbols have the same meaning as reported in the previous
paragraph. A first difference between the AIC and the BIC concerns
how each criterion penalises the number of parameters, since the latter
penalises model complexity more than the former. Additionally, what
the BIC aims at doing is different: if the AIC proposes to evaluate the best
model amongst various candidates that may explain an unknown system
or collection of data, the BIC aims at finding the true model amongst
these possibilities. However, in terms of practicality both the AIC and
the BIC tend to agree, implying that when a model is characterised by a
low AIC, then its BIC ought to be low as well. Mutual discrepancies arise
because of the way these criteria were designed; as already mentioned,
the difference in penaltymay provide slightly different outcomes in terms
of numerical values and this explains why the BIC behaves better than
the AIC when the number is relatively small [136]. Unfortunately, the
BIC has some drawbacks too:

I the underlying approximation of the BIC is valid as long as# � =? ;
I when it comes to evaluating models in highly dimensional spaces,

the BIC may not perform as well as other information criteria [137].

Hannan-Quinn Information Criterion

An alternative to both the AIC and the BIC is given by the Hannan-Quinn
Criterion (or HQC, for short), which was introduced by E. J. Hannan and
B. G. Quinn in 1979 [138]. Like the BIC, but unlike the AIC, the HQC is
not an estimator of KL and is not asymptotically efficient; however, it
misses the optimal estimation rate by a very small log

(
log(#)

)
factor,

which allows the HQC to be much more consistent than the AIC and the
BIC because of the law of the iterated logarithm12 . The expression of the
HQC is given below:

HQC = 2=? log
(
log(#)

)
− 2 log (Lmax) (3.52)

Again, the notation is the same as the one used before.
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Conspectus 4
Before introducing a complete list of my publications, I have reported a
simple, yet effective, graphical summary of the works I did during my
Ph.D. activity.

Figure 4.1: Count of the publications and
their categorisation into research themes.

Figure 4.2: Categorisation of every publi-
cation into type (either journal or confer-
ence) and destination.



1: The so-called Cellular Non-linear (or
Neural) Network paradigm (CNN, for
short) was introduced by Leon Chua and
Lin Yang in 1988 [140] to describe a way
of connecting several nodes within a regu-
lar lattice. Each node is characterised by a
neighbourhood that affects nodal commu-
nication, meaning that a node can commu-
nicate with its neighbours only.

Networks 5
5.1 Insect-inspired spatial-temporal
cellular processing for feature-
action learning . . . . . . . . . . 59
5.2 A CNN-based neuromorphic
model for classification and deci-
sion control . . . . . . . . . . . . . 60
5.3 Data-based analysis of Laplacian
Eigenmaps for manifold reduction
in supervised Liquid State classi-
fiers . . . . . . . . . . . . . . . . . . . 61
5.4 Structural and input reduction
in an ESN for robotic navigation
tasks . . . . . . . . . . . . . . . . . . 61
5.5 Robust modelling of binary
decisions in Laplacian Eigenmaps-
based Echo State Networks . . . 62

5.1 Insect-inspired spatial-temporal cellular
processing for feature-action learning

Abstract - In this paper, an insect brain-inspired neural processing archi-
tecture was developed to be applied on board of a bio-robot requested to
solve feature-to-action association tasks. Relying on visual features, the
system could solve classification problems by using a spatial-temporal
approach that is typical of bio-inspired neural architectures. Taking
inspiration from the mushroom bodies of the fruit fly, the proposed
neural structure was employed to emulate some capabilities that had
been discovered in various experiments, especially those focused on non-
elemental learning strategies. An important peculiarity of the hidden
processing layer of the proposed multi-layer architecture was the local
connectivity amongst spiking neurons, that had resembled the Cellular
Non-linear Network1 paradigm.

Description - My first conference paper concerned the development of
a LSM for classification by means of the parallel computing paradigm.
The original idea regarded the understanding of the decision making
processes occurring in bio-inspired neural networks implemented in
simulated, legged robots that had resembled the common fruit fly. In par-
ticular, the LSMwas trained to make sequential decisions in a Markovian-
like fashion, meaning that the robot had been requested to make two
conceptually disjointed, but environmentally related, decisions where
the latter had depended on the former. More in detail, once placed the
virtual robot within a Y-shaped labyrinth the decisions regarded which
motor action the robot needed to perform depending on environmental
stimuli (for the sake of simplicity, simple, visual indicators were used to
encode the information). In this particular case study, these indicators
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2: Of course, there is also its negative
counterpart, namely the Negative Pattern-
ing Discrimination (or NPD, for short)
paradigm. An example of that regards
students: as result of poor performance
on a midterm, they are prompted to study
intensely for the final to raise their class
grade. As result of poor performance on
quizzes in another class, they are again
prompted to study intensely for the final to
raise their grade. However, if they perform
poorly on the midterm and on quizzes in
the same class, they will not be prompted
to study at all for the final because a high
grade on the final cannot raise their overall
grade in the class. Therefore, they will be
more likely to study for final exams when
they have performed poorly on a midterm
in one class and quizzes in another.

were employed to provide a pragmatical representation of the so-called
Positive Patterning Discrimination [141] (or PPD, for short) paradigm
[141], which claims that if two singularly acting stimuli A and B are
somehow reinforced, then their combined action, namely the stimulus
AB, is not2 . The stimuli were encoded as two distinct pairs of actions:
turn right-turn left and walk-climb. The former pair was expressed with
the colour of a landmark (a red or green object had encoded the "turn
right" decision, whereas a yellow object (red + green) had encoded the
"turn left" decision), whilst the latter was expressed by means of its shape
(both horizontally and vertically distributed objects had denoted the
presence of an obstacle and thereby had implied the need of climbing,
whereas a perfectly squared object had denoted the absence of obstacles).
According to these premises, then, the whole architecture was tested in
order to deal with Markovian-like decision making processes affected by
"contradicting" outcomes. Both the networks and the simulations within
the dynamical environment where the legged Drosophila-like robot was
simulated were carried out by means of the open-source simulators
GeNN [142] and V-REP [143], respectively. The results I obtained were
particularly indicative of the encumbrance imputable to the sequential
nature of the whole computational activity, thereby justifying the use of
RNNs because of their intrinsic capability of dealing with temporal in-
formation. Despite the elaborateness, a simple LSM endowed with Class
I Izhikevich neurons, arranged in a 8-by-8 grid with local connections,
and trained by means of the LMS algorithm and aWinner-Takes-All layer
(or WTA, for short) for label assignment could perform pretty well (the
average probabilities of correctly classifying each possible pair of motor
action were equal to 87.05% for the learning phase and 86.91% for the
testing phase).

More details can be found in [144].

5.2 A CNN-based neuromorphic model for
classification and decision control

Abstract - In this paper, an insect brain-inspired computational struc-
ture was developed. The peculiarity of the core processing layer was
the local connectivity amongst spiking neurons in a CNN-like fashion.
Moreover, the processing layer worked as a LSM with fixed connections
and trainable, output weights. Learning was accomplished by adopt-
ing a simple supervised, batch approach based on the calculation of
the Moore–Penrose matrix. Then, the architecture was evaluated and
compared with other standard and bio-inspired solutions available in
literature, with a view to three different scenarios.

Description - This work prosecuted what already shown in the previous
paper by introducing new elements and insights and was dedicated to
the improvement of LSMs with local connections and Class I Izhikevich
neurons for classification, especially of more realistic and less abstract
data. Additionally, I provided new information on how the size of the
processing layer affected the resulting classification performance, in
comparison with other common methods.

More details can be found in [145].
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5.3 Data-based analysis of Laplacian
Eigenmaps for manifold reduction in
supervised Liquid State classifiers

Abstract - The manuscript introduced a data-driven technique founded
on LEs for manifold reduction in bio-inspired LSMs. Starting from a
preliminary introduction about the algorithm and the need of using
manifold reduction methods for data representation, a statistical analysis
of hyperparameters involved in the LEs technique was presented and the
effects of quantisation over trained weights was discussed with a view
to efficient implementation of multiple, parallel mappings in the digital
domain.

Description - Together with the two previous papers, this work constituted
a preeminent part of my publications because it extended the context of
LSMs in bio-inspired computation further and introduced the problem
of curse of dimensionality as well, together with a possible solution by
means of LEs. This was the beginning of a new section ofmywork, mainly
consisting in finding smaller, easier data representations by means of
feature selection and/or algorithms for dimensionality reduction. The
use of LEs in LSMs allowed me to create classifiers whose noise rejection
had improved significantly; in particular, this work dealt with various
forms of noise and results showed that LEs made the network more
robust against parametric disturbances over the learnt weights. Moreover,
the whole strategy was deeply specialised, meaning that selection of
hyperparameters was made semi-automatic thanks to the statistical
properties of the data at disposal, namely how each percentile had
distributed. According to that, it was possible to set the heat kernel and
thereby realising a semi-automatic dimensionality reduction procedure,
without anyprior knowledge about the signals to process.Model selection
was performed thanks to the HQC index, which had allowed me to select
the optimal = as stated by Equation 2.9.

More details can be found in [146].

5.4 Structural and input reduction in an ESN
for robotic navigation tasks

Abstract - Thismanuscript aimed at showing the effects of feature selection
and manifold reduction methods when dealing with the wall-following
problem in mobile robotics, a well-known, non-linearly separable classi-
fication problem in which sensor recordings are associated to controlled
motor responses. The capabilities of state manifold reduction in ESNs
through LEs were described in terms of noise rejection over the trained
weights. Furthermore, various machine learning-based and data mining-
based methodologies were applied to show the advantages of using the
most informative contents drawn from the original sensor readings.

Description - This paper aimed to show the effects of both feature selection
and LEs over ESNs when dealing with real recordings drawn from
experiments concerning mobile robotics. The idea was to provide less
complex, yet reliable, ESNs capable of dealing with multiple decisions
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3: The fancy term "hypercube" is used to
refer to the generalisation of a cube in a
multidimensional space. From a compu-
tationally perspective, however, this does
not sound scary at all, since hypercubes
are collection of vectors of homogeneous
data of smaller dimension. The problem
of encoding each of their vertices is freely
solvable, in the sense that there is not
a strict requirement and two consecutive
verticesmay have a distance (like theHam-
ming’s distance) greater than 1 bit.

with a reduced number of discriminant, input features. In fact, what
emerged was the interesting property of manifesting good classification
performance despite the lack of some input attributes, which had been
less determinant in encapsulating the core information regarding the
decisions to make. The evaluation of the most significant features was
carried out thanks to most of the methods I have reported in Part I, such
as FCBF, IG, GI, Relief-F and both the ANOVA and "2 tests. As expected,
the effects of feature selection were totally positive because it had helped
the ESNs (and other classifiers used for the sake of comparison) to
perform better. In order to finely tune the dimensionality reduction
algorithm, all the information criteria I have mentioned before were used
and compared.

More details can be found in [147].

5.5 Robust modelling of binary decisions in
Laplacian Eigenmaps-based Echo State
Networks

Abstract - This paper aimed to present a framework for supervised, binary
classification of =-Boolean functions through ESNs endowed with LEs
for dimensionality reduction. The proposed method was applied both
to improve the classification performance when the learnt weights are
quantised in view of a digital implementation and as a computational
demonstration of the neural reuse theory [148] when parallel outputs are
allowed. My analysis focused on the effect of various forms of noise (id est,
normal noise, uniform noise and quantisation noise) over all the possible
Boolean functions of = input bits. These disturbances were applied both
over the learnt weights and the input features so that we could analyse
how resilient the whole architecture was. Results presented here showed
that dimensionality reduction allowed by the LEs improved robustness
to these different sources of noise, leading to reduced memory storage
requirements while maintaining high classification performance. Our
results were compared to those derived from other more common classi-
fication techniques in terms of learning performance and computational
complexity.

Description - The concepts of neural reuse and parallel mappings, which
had been introduced in the first paper reported in this section, were
further discussed here. Generally speaking, a complex decision may be
thought of as the combination of multiple, elementary decisions. Once
established how many sub-decisions can determine a more complicated
outcome, the essential idea of this work consisted in developing ESNs
capable of learning every possible Boolean function determined by
the single sub-decisions. In this context, a binary encoding established
the occurrence or the absence of a given sub-decision and thereby
each macro-decision was meant to be a collection of 0 and 1 only. The
problem, then, resulted in determining the best synaptic weights in
order to explore, in presence of parametric uncertainty, a complete =-
dimensional hypercube3 whose vertices had corresponded to distinct
binary strings/macro-decisions. Observe that the number of possible
macro-decisions increases double-exponentially as 22= , therefore the
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problem of storing the hypercube required some efforts in terms of
memory consumption. That is why I proposed to quantise the learnt
weights after training the network, in order to reduce the number of
bits for each possible macro-decision. Again, as already confirmed in
literature I showed that LEsmade the networkmore resistant to noise and
therefore, when endowedwith them, they couldmake themacro-decision
correctly in spite of flipping the bits within each binary string. The idea
of treating Boolean functions is not as abstract as it seems, because in
many factory applications the activation/deactivation of switches and/or
sensors determines how machines or devices work. LEs were tuned by
means of the usual information criteria I have reported before (AIC, BIC
and especially HQC).

More details can be found in [149].
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6.1 A nullcline-based control strategy for
PWL-shaped oscillators

Abstract - Starting from the PWL framework applied to networked
FitzHugh-Nagumo oscillators, this paper aimed at presenting a control
strategy relying on phase portrait reshaping through the manipulation
of their nullclines, in order to fulfil both phase and time requirements.
This was achieved by relating the slopes of piece-wise, linearly approx-
imated nullclines to the oscillation period of the model. Additionally,
the targeted issue was addressed by combining the former framework
with an event-driven control strategy aimed at reducing the control
effects to specific time instants instead of continuously applying them,
which would bemuchmore computationally expensive. The strategy was
therefore motivated by its simplicity and supported by key applications
for bio-inspired locomotion control in legged robots, suggesting how a
dynamics-preserving approximation of the phase portrait combinedwith
a sampled control action could produce pre-defined phase topologies in
directed, non-diffusive tree graphs.

Description - Most of the time, phase-locking and therefore synchronisa-
tion of oscillators occur in a diffusive way, meaning that there is a sort of
physical connection amongst the units that carries the "feedback error"
employed for corrections in terms of frequency and/or phase. What I
aimed at in this work was something different: by coupling non-linear
oscillators through a more computational-oriented framework and by
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1: A Central Pattern Generator, or CPG, is
allegedly the main, nervous centre respon-
sible for locomotion and production of
rhythmic, patterned movements, not nec-
essarily involved in motion (for example,
respiration, heartbeat or even swallowing)
[150].

exploiting a simple, yet topologically equivalent, approximation of their
nullclines, it was possible to control their behaviour so that an undefined
number of slave nodes had been capable of tracking a single master once
fixed their reciprocal phase displacements. I proved the goodness of the
piece-wise approximation for a series of complex scenarios, ranging from
the aforementioned phase-locking phenomenon to canards explosions.
Additionally, everything was presented with an exhaustive, yet simple-
to-follow, appendix with the mathematical details to clarify the most
crucial aspects. Furthermore, the paper presented some examples of gait
modelling because of the importance that CPGs1 have in biorobotics;
thanks to its intrinsic adaptability, the algorithm allowed to reproduce
bipedal, quadrupedal and even dodecapodal gaits that had resembled
animal locomotion. Additionally, instead of implementing a continu-
ously operating algorithm, the whole strategy was set as an event-driven
method that had allowed lower control efforts. This was meant to be a
further advantage in view of microcontroller-based applications.

More details can be found in [151].

6.2 High-Level Analysis of Flux Measurements
in Tokamak Machines for Clustering and
Unsupervised Feature Selection

Abstract - Plasma physics is an example of research field where many
measurements carried out at very specific working conditions need to be
collected and processed. By looking at the properties of these data, it can
be possible to explore their hidden features in order to solve challenging
problems that usually require high computational efforts, such as the
tomographic reconstruction. In this paper, preliminary but non-trivial
analyses of flux measurements produced in a Tokamak machine were
shown and discussed, with the aim of introducing an application of some
algorithms for feature selection to detect hidden, relevant relationships
within given sets of channels. All the statistical details, and therefore
the feature selection procedure itself, were introduced in view of further
deepenings, such as the aforementioned problem of tomographically
reconstructing plasma profiles from flux measurements or modelling the
system in terms of its input-output behaviour.

Description - This paper was thought of as an introductory, exploratory
analysis of some time series produced by the FTU machine in Frascati
(Rome), a common Tokamak used in plasma physics. Starting from
preliminary considerations about the machine itself, this article reports
both common and less perfunctory considerations about feature selection
for physical signals. The analyses were of different types, from correlation
analysis (Spearman’s coefficient was the most suitable choice because
both the normality assumption and the homoscedasticity hypothesis
had noy been met and due to the spiky nature of the signals of interest)
to non-linear analyses through MI and ID. Classical statistical tests,
such as the Kolmogorov-Smirnov test and ADF test, were used as well.
The results were quite interesting: apart from the mere, gnoseological
impact, they showed that these kind of signals had tended to cluster
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autonomously owing to some internal similarities, that could be exploited
for the definition of reduced order models.

At the moment of writing, further details were not available because the
paper was accepted, but not published yet.

6.3 Human-Machine Models for Remote
Control of Ultrasound Scan Equipment

Abstract - In this contribution, a new aspect in robotic applications
was approached. The problem regarded the human-machine modelling
for remote ultrasound scan equipment. Even though robotic systems
for ultrasound scan applications with remote operations had widely
been studied, in this research the remote force feedback control was
investigated. Accordingly, the human operator receives the correct force
perception as input that is transmitted by the remote ultrasound scan
equipment to analyse the patient’s body. Two principal aspects were
investigated, namely the introduction of an artificial body model that
would receive the control signals from the remote equipment and the
study of suitable feedback control laws that would compensate both the
uncertainty between the artificial body and the patient’s body by also
taking into account the transmission delay. Therefore, the task was to
give to the operator the real perception, considering the force effect as
well, in order to make a quite real platform capable of working in remote
condition for ultrasound scan equipment.

Description - The content of this paper was realised in accordance with
the participation of the university team to the Innovation Award 2020:
Medical Robotics Challenge sponsored by KUKA, whose main aim had
been the development of new solutions for medical and surgical robotics.
Essentially, this work focused on developing effective, yet structurally
simple, models for remote communication and actuation by means of
a microcontroller-based platform that should have simulated haptic
feedback on proper human tissue-like materials, in order to develop
appropriate control laws for shaping the force response to apply. This
was due to the essential fact that remote sensing had required both the
modelling of the communication line and the deployment of a suitable
controller capable of mixing both the outputted, sensor signal and the
force applied by an operator. A crucial role in this work was played by the
modelling of visco-elastic materials, whose properties have been shown
to be perfectly fittable to the characteristics of most of the human tissues,
especially those of our interest in this paper which regards ultrasound
equipment. Further considerations about the use of these models were
reported to show how resilient the whole setup was in terms of stability
and promptness against transmission delays, which had constituted the
main source of non-linearities.

More details can be found in [152].



Explicit∗

Una formica si muove su una corda di gomma lunga 1 m ad una velocità di 1 cm/s verso una delle due estremità e
partendo dal centro della stessa. Allo stesso tempo, la corda si estende uniformemente in entrambe le direzioni ad una
velocità di 1 m/s. Riuscirà la formica a raggiungere la sua destinazione?†

Ho deciso di iniziare questo documento con tre dif-
ferenti citazioni di tre differenti autori. Chi non mi
conosce potrebbe falsamente ritenere che si tratti
semplicemente di un modo altezzoso e pomposo di
scrivere un documento, ignorando invero che queste
tre citazioni sono la migliore espressione di ciò che
questo dottorato di ricerca è stato perme. Se dovessi in-
dividuare delle persone a cui rivolgere i miei ringrazi-
amenti per questo lavoro finale, allora mi rivolgerei
a me stesso. Tutto è derivato dalla mia volontà di
proseguire quest’inutilmente pernicioso percorso per
la mia salute nonostante validi motivi per non farlo.
Ringrazio nessun altro se non me stesso per essere riuscito
a raggiungere la fine della corda. Voglio solo fare qualche
menzione sic vos non vobis perché, nonostante tutto,
queste persone hanno determinato i miei pensieri
mentre il Torschlusspanik si diffondeva.

La mia famiglia ha avuto un ruolo non costante ma
non per questo meno rilevante. La sua influenza è
stata comunque determinante per il raggiungimento
di questo traguardo, in un modo o nell’altro.

Andando a ritroso sino agli anni della mia infanzia,
forse tra i più genuini a mia disposizione, non posso

non ricordareGiuseppe eDanilo. Nonostante l’attuale
lontananza reciproca, forse mai più colmabile, sono
stati loro i fautori della forma più pura di amicizia
che io abbia mai esperito.

Gli anni delle scuole superiori sono stati di gran lunga
più incisivi e determinanti di quelli universitari. In
quel periodo di alti e bassi ebbi la fortuna di incon-
trare docenti che hanno saputo veicolare l’interesse e
la passione verso le materie tecniche: se so qualcosa
di informatica od elettronica, è decisamente merito di
professori come i professori Biuso, Cutugno,Dilettoso,
Mita e Riscica, le cui personalità resteranno qualcosa
che un qualsiasi docente universitario da me incon-
trato può solo lontanamente sperare di acquisire.

Durante gli anni dell’università diverse sono state le
figure incontrate, molti i colleghi ma poche le per-
sone degne di stima. Per questo motivo, mi vengono
in mente Dario P. e Dario S., Francesco ed Antonio,
Andrea V. e Andrea C., Luca ed Alberto, così come
Carmelo e Serena, due sostegni che hanno desider-
ato ardentemente che io combattessi il buio che è in
me, finendo con l’essere ripagati ingiustamente con
malumore, disinteresse, indifferenza.

Non c’è altro da aggiungere.

A.G.S.,
la formica sulla corda di gomma

∗ Dal latino medievale, "qui finisce".
† Possibile formulazione del paradosso della formica sulla corda di gomma.

https://en.wikipedia.org/wiki/Ant_on_a_rubber_rope
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