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Chapter 1
Nucleosynthesis in massive stars:
an introduction

All the theories regarding the nucleosynthesis of the elements in the uni-
verse have to correctly reproduce one unquestionable experimental evi-
dence: the abundance of these elements in the universe itself that astro-
physicist can reliably measure. By looking at Fig. 1.1 where the abun-
dances of the elements in the universe, relative to that of the silicon, are
plotted as a function of the mass number A, one can immediately no-
tice several peaks. Leaving aside those of hydrogen (H) and helium (He),
which are deeply linked to the primordial nucleosynthesis, it’s possible to
note a greater abundance of elements with a mass lower than that of iron
(Fe). Moreover, also in correspondence of the iron (A = 52), a pronounced
peak is obtained, after which the abundance is reduced with two different
slopes between iron and xenon (Xe) and between xenon and lead (Pb).

The reason for these different abundances can be explained by observ-
ing the binding energy per nucleon as a function of the mass number,
plotted in Fig. 1.2. In the proximity of iron the absolute maximum of
the binding energy per nucleon is obtained: this means that all nuclear
reactions that produce elements lighter than iron can take place in an ex-

7
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Figure 1.1: Graphical representation of the abundances, relative to those
of silicon, of the elements estimated for the whole universe, as a function
of the mass number A. [1]
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Figure 1.2: Graphical representation of the average binding energy per
nucleon as a function of the mass number A.

oenergetic regime, i.e. with a positive Q-value of reaction. These elements
are substantially produced [2] by thermonuclear fusion processes, i.e. ra-
diative captures of either protons or alpha particles at energies lower than
the Coulomb barrier. While all of these processes are quite similar, it is
possible to discern various stages, also in relation to the evolution of the
stars involved, for the various nuclei used as a fuel for the reactions.

In contrast, producing elements heavier than iron using the same ther-
monuclear fusion processes would mean that the reactions should now
proceed through an endoenergetic regime with a negative Q-value. More-
over it should be considered that increasing the atomic number of the
elements involved in the radiative capture process means also increasing
the value of the Coulomb barrier between it and the other charged par-
ticle involved. It is clear that, at moderate stellar temperatures, it is very
unlikely to find a particle with such energy to overcome the Coulomb
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barrier, considering also the energy loss due to the negative Q-value of
the reaction itself. Meanwhile at very high temperatures, charged-particle
reactions at such energies will result in nuclides of the iron peak group
or lighter species[3].

If reactions induced by charged particles are so heavily suppressed
by the Coulomb barrier, those induced by neutrons can therefore thrive
instead, since they are not affected by the Coulomb potential. Indeed,
by looking at Fig. 1.1, one can easily notice that after the iron peak all
the other peaks corresponds to those elements for which the neutron nu-
clear shell is closed. Therefore it is possible to divide the nucleosynthe-
sis process in two macro-categories: thermonuclear reactions induced by
charged particles and neutron induced reactions.

Moreover, as suggested by the title of the chapter, the astrophysical site
of interest for this work of thesis are massive stars, i.e. stars with an initial
mass greater than about eight times the mass of the sun (M >∼ 8M⊙).
They are key drivers for the stellar nucleosynthesis since they are the
site where most of the heavy nuclei in the universe are produced. They
are however also much rarer than low and intermediate mass stars and
only in recent years the statistics of observations is starting to become
significant enough to have precise experimental data on their structure
and emission, thanks also to the so-called multi-messenger astronomy.
Describing their evolution and the stellar models used to study them
is beyond the scope of this thesis. In this first chapter we will instead
introduce and discuss the two main families of nucleosynthesis reactions,
focusing then in particular on those reactions relevant for this work.

1.1 Thermonuclear reactions

In the stellar environment the energy available to the nuclei is solely
that of their thermal motion: for this reason the reactions occurring in
this environment are indeed called thermonuclear reactions. It should
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not come as surprise that, in most cases, the nuclear matter in stars is
non-relativistic and non-degenerate. This means that the velocities of the
nuclei can be simply described by a Maxwell–Boltzmann distribution[3].
Usually when talking about thermonuclear reactions, physicist refers to
reaction networks rather than a single reaction process. This is due to the
fact that many nuclear processes can take place simultaneously in the stel-
lar plasma: nuclei created by some fusion reactions can be subsequently
destroyed by other reactions occurring in the same environment and so
on. In these reaction networks, for a given temperature and abundance
of elements in the plasma, those with the lowest Coulomb barrier will
ignite first. Indeed nuclear reactions involving hydrogen and helium are
the main energy sources for most of the stars in the universe [3]. Then,
when these light nuclei have been consumed, the nuclear energy pro-
duction will decrease until it can not balance the gravitational push and
subsequently the star will contract. The temperature will in turn increase
until the next nuclei with the lowest Coulomb barrier can be "consumed",
producing once again the necessary nuclear energy to balance the gravi-
tational collapse. Depending on its initial mass, a star can experience only
a few or several of these so-called "nuclear burning stages". In particu-
lar massive stars, depending on their mass [3], can undergo most of the
stages referred to as hydrogen burning, helium burning, carbon burning, neon
burning, oxygen burning and silicon burning. In this work we will focus
mainly on carbon and oxygen burning.

1.1.1 Carbon burning

After hydrogen and helium are consumed in the core of the star, the ele-
ments with the highest abundance are now 12C and 16O, produced by the
famous 3α process and by the 12C(α, γ)16O radiative capture. These two
elements can then interact via three different process: 12C+12 C, 12C+16 O
and 16O +16 O. However, when a new gravitational collapse increases the
core temperature the first Coulomb barrier that can be overcome is the
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Figure 1.3: Graphical representation of the 12C +12 C fusion process (top)
and the energy level scheme of the intermediate 24Mg system. [1]

one between two 12C nuclei (VC ≈ 8MeV) and therefore the 12C +12 C
fusion process ignites.

This fusion produces a 24Mg intermediate system with a significantly
high excitation energy of about 14 MeV: at such energy the density of
nuclear states is quite high and the particle decay channels are favorite
over the emission of a photon, as it usually happens for radiative captures
by light nuclei. A sketch of the process can be seen in Fig. 1.3. The three
primary reactions involved in the process are:

• 12C(12C, p)23Na (Q = 2.24 MeV);

• 12C(12C, α)20Ne (Q = 4.67 MeV);

• 12C(12C, n)23Mg (Q = -2.6 MeV).
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The light particles liberated as byproduct of the reactions are then
captured again, with a certain probability, by secondary reactions in the
C-burning stage that involve the nuclei present in the environment. On
this regard in Fig. 1.4 it is possible to see the evolution over time of
the abundances of the elements during the core C-burning. The typical
temperatures reached in this case are T = 0.6 ÷ 1 GK. Without going
too into the details of the reactions network, it is possible to see that
while the 12C depletes almost completely after 105 s, the 16O only slightly
decreases indicating a partial involvement in the network. Meanwhile, all
the heavy products of the primary reactions increase to significant values
of mass fractions: 20Ne (X=0.35), 23Na (X=0.014) and 24Mg (X=0.025). The
abundance of 20Ne nuclei is such that the subsequent burning phase is not
the O-burning, as one would assume looking at the nuclei mass, but the
Ne-burning ignited by the photodissociation of 20Ne occurring at T > 1
GK after a new contractions takes place at the end of C-burning. While
most of the nuclear species in the environment have a quite high (Es =

10 ÷ 20 MeV) particle separation energy, the α separation energy of 20Ne
is only about 4.73 MeV [3].

1.1.2 Oxygen burning

After the neon burning comes to an end, the stellar core, which is now
composed mainly of 16O, 24Mg and 28Si, undergoes a new contraction
and reaches temperatures of about 2 GK at which the energy is high
enough to finally overcome the Coulomb barrier between two 16O nuclei.
In a way this stage resembles the carbon burning since again the main
process sustaining the nucleosynthesis is a fusion of two medium mass
nuclei that produce an heavy intermediate system, a 32S nuclei in this
case, with an high excitation energy (about 16.5 MeV) that corresponds to
a region with an high density of excited states. The main decay channels
are once again those involving the emission of a proton, a neutron, a
deuteron or an α such as
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Figure 1.4: Evolution of the abundances for a constant temperature and
density (T = 0.9 GK, ρ= 105 g/cm3) typical of core C-burning in stars with
an initial mass of M ≈ 25M·. [3]
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• 16O(16O, p)31P (Q = 7.67 MeV);

• 16O(16O, n)31S (Q = 1.5 MeV);

• 16O(16O, d)30P (Q = -2.4 MeV);

• 16O(16O, α)28Si (Q = 9.6 MeV);

even though two particle emission decay are also possible, such as

• 16O(16O, 2p)30S (Q = 381 keV);

• 16O(16O, 2α)24Mg (Q = -390 MeV).

In this case however, in contrast to the carbon burning, the number
of open exit channels is quite higher since the 32S compound nucleus
achieves much higher excitation energies. Moreover, the branching ratio
between the different O-burning channels is still mostly unknown and
their rates are know only up to a factor of 3. Also in this case, the light
particles emitted by the primary reactions are quickly captured by sec-
ondary reactions of the network, involving again the heavy nuclei pro-
duced by the primary reactions as well as the ashes of neon burning. The
temperatures reached during core oxygen burning have typically a value
of T = 1.5 ÷ 2.7 GK, depending on the mass of the star[3].

1.1.3 12C +16 O fusion

Now that we have briefly introduced the carbon and oxygen burning
stages, we can turn our attention on the third fusion process that could
take place from the ashes of helium burning: the 12C +16 O fusion. As
it can be seen in Fig. 1.5, during the last part of the He-burning, when
the fuel is almost all depleted, the abundance of carbon reaches a maxi-
mum and then suddenly decreases while the abundance of oxygen rises
instead. This is due to the onset of the 12C(α, γ)16O radiative capture
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Figure 1.5: Abundance of 12C and 16O nuclei as a function of the residual
mass fraction of 4He nuclei for different values of temperature and den-
sity. [3]

that consumes the remaining of helium fuel and part of the carbon. This
process however does not end with the He-burning in the core: we know
indeed that even if the core is burning an heavier fuel there can be shells
around the core where lighter nuclei are still consumed. This means that
when the carbon burning actually ignites in the core the relative abun-
dance of 12C/16O in the environment can vary in a significant way, thus
altering the future development of the star.

In Fig. 1.6 it is possible to see the reaction rates for the main reactions
involved in the 12C +12 C, 12C +16 O and 16O +16 O processes normalized
to the 12C(12C, α)20Ne reaction rate.

While the reaction rates for the 12C +16 O fusion are lower than the
ones for the 12C +12 C at any temperature up to 10 GK and indeed the
latter is the main process during carbon burning, in the later phases of
this stage the abundance of oxygen is significantly higher [3] than that
of 12C nuclei. In particular, as visible in Fig. 1.6, at temperatures higher
than 1 GK the contribution of the 12C +16 O fusion becomes significant.
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Figure 1.6: Reaction rates for various 12C +12 C, 12C +16 O and 16O +16 O
reaction channels [3].

Similarly, the 12C +16 O fusion can be ignited also in the subsequent
oxygen burning stage. Indeed, as visible in Fig. 1.7 above a certain tem-
perature and density, the 16O photo dissociation becomes the main burn-
ing process in this stage and thus frees again 12C nuclei in the stellar en-
vironment which can then interact with the oxygen present. Going back
to Fig. 1.6 it is then possible to notice that the various reactions involved
in the 12C +16 O fusion have actually an higher rate that any reaction of
the 16O +16 O fusion. This means that as soon as a significant quantity
of carbon nuclei is available during the O-burning the 12C+16 O becomes
prevalent.

In summary, the 12C +16 O fusion is supposed to come into play in
a significant way in a range of temperatures that span between 1 GK,
in the case of hydrostatic core carbon burning, 3 GK, during the oxygen
burning, and 3.6 GK for explosive burning phases. This corresponds to
an energy range, in the center of mass of the system, between respectively
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Figure 1.7: Decay constants for the 16O +16 O fusion and 16O(γ, α)12C
photo-disintegration as a function of the temperature.

3 and 7.2 MeV.

1.2 Neutron induced reaction

Neutrons, unlike protons, are unstable if not bound to a nucleus and they
transform into protons by β− decay (n → p+ + e− + νe) in the vacuum
with a average lifetime of 881.5 ± 1.5s. Therefore the neutron abundance
in the interstellar medium can not be significant: the presence of an active
source of neutrons inside the star is then required. Moreover, while we
already said that there are not barrier effects that can hinder neutron
captures by the nuclei, there are still a series of mechanism in place that
prevent an indefinite number of neutrons to be added into a nucleus: if
the nucleus formed by the reaction has a particularly asymmetric density
of the nucleons, it could then become unstable and decay.

Neutron induced reactions are then regulated by two time scales: the
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Figure 1.8: Table of nuclides and the paths followed by the s- and the
r-process The vertical and horizontal lines corresponds to the closures for
the protons and neutrons shell [4].

mean β decay time of the nuclei involved in the reactions and the mean
time for the neutron capture to occur. If, on average, the β decay time
is smaller than the neutron capture time, the nucleus will have enough
time between two subsequent captures to actually decay if it is β unstable.
Then the reaction chain will proceed mainly through the nuclear valley of
stability. On the contrary, if the β decay time is greater than the neutron
capture time, the capture process will happen so rapidly that the nucleus
would not have enough time to decay, increasing the asymmetry between
nucleons and moving away from the nuclear valley of stability. The first
case takes the name of "s-process" due to being the slower than the two,
meanwhile the other is called "r-process" being the most rapid. In figure
1.8 it is possible to see a graphic representation of the paths followed by
the two processes within the chart of nuclides. In this thesis, only the
slow capture process will be investigated.
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1.2.1 s-process

As already said, the s-process is substantially characterized by a series
of neutron capture reactions involving heavy nuclei close to the valley of
stability. We can then imagine of taking a small portion of the nuclei chart
and tracing the theoretical path followed by the reactions. In general we
can imagine, as visible in Fig. 1.9(a), that a nucleus of mass A is produced
by the neutron capture exerted by the nucleus of mass A-1. The same
nucleus of mass A is then "destroyed" when it captures again a neutron,
thus producing a new nucleus of mass A+1. If we now actually reproduce
the proper trace in the chart of nuclides and also introduce the possibility
that the nucleus produced is unstable due to β decay, Fig. 1.9(b), the
nucleus A-1 now can produce a nucleus, indicated in figure by the white
square, with mass number A but β unstable. Under the s-process time
scale condition the β decay time is much faster than the time between
one capture and the next, therefore the produced nucleus can decay into
a new nucleus with the same mass number A but an atomic number Z
higher than one unit, therefore converting one neutron into a proton. This
means that the process now moves diagonally along the nuclei chart, as
indicated by the diagonal arrow in Fig. 1.9(b). This new nucleus can
either be still β unstable and undergo a new decay in a similar fashion or,
as visible in figure, capture a new neutron, finally creating the nucleus of
mass A+1.

The s-process therefore consists of a series of these chains that uses
the nuclei already synthesized in the star by the previous reactions as
seed nuclei for the production of heavier elements up to 209Bi where the
process comes to an end. This is in fact the heaviest stable nucleus and
further neutron capture would lead to the production of highly unstable
nuclei that will undergo α decays.

Without going much into the details of the nuclear formalism, which
will be examined in the next chapter of this thesis, it is possible to say
that there are two different components in the s-process, the main and
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Figure 1.9: Path of the s-process among the charts of nuclides if we ex-
clude the possibility of β decay (a) or if we include it instead (b) [3].

weak component, that can be distinguished for a series of factors. Actu-
ally, some authors have shown [5] that these two components do not fully
reproduce the abundances of all the elements involved in the s-process,
which has led to consider new components different from the two men-
tioned, however the debate is still open. What it has been assessed is that
the main component is responsible for the production of nuclei of mass
A ≳ 90, while the weak component produces the nuclei of mass A ≲ 90
down to the iron peak around A ∼ 60.

The two components also manifest in stellar sites that are particularly
different from each other and in different moments of the evolution of the
star: while the main component occurs in carbon pockets in the envelope
during the AGB phase, the weak component occurs instead during the
core He-burning and shell C-burning of massive stars. Since the latter
are, as already pointed out, the astrophysical environment of interest for
this thesis, we will now focus only on the weak component.

1.2.2 The 17O(n, α)14C as a weak component s-process poi-
son

The weak component of the s process manifests itself [6] when its main
neutron source 22Ne(α, n)25Mg ignites, producing the necessary neutron
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flux. This source reaction occurs in massive stars both in the core, dur-
ing the He-burning, and in the convective shells, during the C-burning if
the neutron density is high enough to have an exposure comparable to
that in the core. As mentioned in the previous section, He-burning in the
core ignites when all the hydrogen has been already consumed and the
gravitational collapse brings the temperature to about Tc ∼ 0.16 GK[7]
that allows the helium fusion through the famous 3α process [2]. Further-
more, at these temperatures in a massive star the CNO cycle is also active
which involves, among other things, the presence of nitrogen. The latter
can trigger the chain of reactions 14N(α, γ)18F(β+)18O(α, γ)22Ne which
produces the 22Ne that can then interact with the helium nuclei in the
stellar environment to ignite the needed neutron source 22Ne(α, n)25Mg.
However not all the 22Ne is consumed in the core and it can then diffuse
to the stellar envelope which in turn allow a second ignition of the neu-
tron source later in the stellar evolution, in the aforementioned C-burning
shells where the 12C(12C, α)20Ne reaction provides the needed α particles
at temperatures of about T ∼ 1.1 GK [7]. Although the neutron source
reaction is the same, the environmental conditions of these two different
sites are remarkably different. This is reflected in the flux of neutrons pro-
duced: in the case of the core He-burning the source produces neutrons
for about a thousand years but with a low exposure efficiency, on the
contrary, for the shell C-burning, the efficiency is higher but the neutron
source is active for a significantly smaller time frame.

In order to correctly determine the rate of all reactions taking part in
the s-process, it is not enough to precisely define the neutron sources in
the environment. Indeed there are reactions, called "neutron poisons",
that can remove one or more neutrons for the environment without tak-
ing part in the s-process reaction network. Among the most important[7]
neutron poisons of the weak component there is the 16O(n, γ)17O capture
reaction. The produced 17O can then undergo different process in com-
petition with each other: 17O(α, n)20Ne, 17O(p, α)14N and 17O(n, α)14C.
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The first one recycle a neutron back in the stellar environment, having
a null net neutron footprint, meanwhile the last one actually removes a
second neutron from the environment and it is indeed another subse-
quent poison that can occur after the main one. To correctly define the
abundance of neutrons present in the stellar environment, it is therefore
necessary to evaluate the rates of each of these possible reaction channels
and their branching ratio. In this thesis the 17O(n, α)14C reaction will be
studied at energies of astrophysical interest corresponding to the typical
temperatures where the poison can occur (T ∼ 0.016 ÷ 1.1 GK)[7, 8].
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Chapter 2
Nuclear Physics for Astrophysics

Before discussing the theoretical and experimental methodologies used
for the study of the reactions of interest for the astrophysics in the labo-
ratory, it is necessary to provide some background on nuclear reactions,
by defining the fundamental characteristic of the phenomena involved.

2.1 Reaction Cross-Section

In the case a reaction between a beam of particles accelerated on a tar-
get is considered, it is possible to give a practical definition [3] of the
cross-section as as the ratio between the number of interactions actually
occurred in the unit of time (NR/t) and the product between the number
of incident particles (Nbeam) per unit area and time (tS) and the number
of particles in the target

(︁
Ntarget

)︁
σ =

NR/t
[Nb/ (tS)] Nt

=
NR/t
JbNt

(2.1)

where Jb is the flux of the beam. However, it is often more useful to
express the differential cross section which is the derivative of the cross
section for the solid angle Ω. In fact, when carrying out an experiment it
is not always possible to cover the whole solid angle around the spatial

25
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Figure 2.1: Schematic representation of a generic experimental setup with
indicated the quantities related to the cross section.

region in which the reaction takes place, therefore the measurement that
would be obtained from an instrument placed at a certain angle Ω and
covering a certain interval ∆Ω would only be valid locally: therefore,
it must be integrated over the entire 4π range to obtain the complete
information about the physical phenomena studied. Thus, we would
have:

σ =
∫︂

dΩ
[︃

dσ(Ω)

dΩ

]︃
(2.2)

where dσ(Ω)
dΩ is the differential cross-section defined as:

dσ(Ω)

dΩ
=

NR/t
∆ΩJbNt

(2.3)

2.2 Barrier effects

The empirical formula given for the cross-section is useful to understand
the physical meaning of this observable, however when dealing with nu-
clear reactions, one must take into account all the relevant phenomena
taking place. One important aspect to address here is the presence of two
potential barriers which hinder the probability of the interaction to occur.
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2.2.1 Centrifugal barrier

The centrifugal barrier is a repulsive effect that emerges from quantum
mechanics when addressing the problem of three-dimensional scattering
between a particle and a spherically symmetrical potential. In fact, by
separating the radial part of the Schrödinger equation from the angular
one, which can be easily solved thanks to the formalism of spherical har-
monics, it is possible to reduce the problem from three dimensions to
only one, concentrated exclusively on the radial part. In the presence of
a system with spherical symmetry it is in fact possible to factor the wave
function (w.f.) as follows:

ψk,ℓ,m(r, θ, ϕ) = Rℓ(r)Yℓ,m(θ, ϕ) (2.4)

where Rn,ℓ(r) is the radial w.f. and Yℓ,m(θ, ϕ) are the spherical harmonics,
whose explicit expressions, as a function of the quantum numbers ℓ, m are
known and tabulated. The Hamiltonian operator of the system is given
by the sum of the Hamiltonian of a free particle P2/2µ and the potential
V(r) exclusively dependent on the radius module, as mentioned above.
As it is known, however, the impulse operator can be written as [9] in the
representation of spherical coordinates

P2

2µ
= − h̄2

2µ

[︃
1
r2

∂

∂r

(︃
r2 ∂

∂r

)︃
− L2

h̄2r2

]︃
(2.5)

where µ is the mass of the scattered particle and L is the angular momen-
tum operator that is obtained by the means of the following identity:

L2 = − h̄2

sin2 θ

[︃
∂

∂θ

(︃
sin θ

∂

∂θ

)︃
+

∂2

∂φ2

]︃
(2.6)

Replacing the equations 2.4 and 2.5 in the generic Schrödinger equation
for the eigenvalues and remembering that, from the definition of spherical
harmonics, it follows that

L2Yℓ,m(θ, ϕ) = h̄2ℓ (ℓ+ 1)Yℓ,m(θ, ϕ) (2.7)



28 CHAPTER 2. NUCLEAR PHYSICS FOR ASTROPHYSICS

we can finally obtain:

− h̄2

2µ

d2

dr2 ul(k, r) +

[︄
V(r) +

h̄2ℓ (ℓ+ 1)
2µr2

]︄
ul(k, r) = Eul(k, r) (2.8)

where ul(k, r) = krRl(r) is the so-called reduced radial wave function.
The equation 2.8 thus expresses, as anticipated, a problem with only one
dimension and the solution is quite simple. In fact, it can be rewritten as
the Bessel or Ricatti-Bessel equation, in the case in which the potential is
zero. If we ignore electrical charge for the moment, the potential V(r) will
be the only attractive nuclear potential while the second term in square
brackets, positive by definition and therefore repulsive, is precisely the
centrifugal potential mentioned above. :

Vcentr
l (r) =

h̄2ℓ (ℓ+ 1)
2µr2 (2.9)

The penetrability of this repulsive barrier must therefore be evaluated,
as a function of the angular momentum of the neutron, by means of the
penetration factor Pℓ which is determined starting from the logarithmic
derivative [3] calculated at a radius r equal to the range of the potential
R, that is to the radius of the target nucleus.

R
(︃

1
uℓ(r)

duℓ(r)
dr

)︃
r=R

= Sℓ + iPℓ (2.10)

where Sℓ is the shift factor, responsible for the displacement of the ener-
gies observed in case of resonances, and Pℓ is the factor we were searching
for. Writing explicitly the logarithmic derivative we obtain the expression
for this factor

Pℓ = R

(︄
kˆ︁j2ℓ(kR) + ˆ︁η2

ℓ (kR)

)︄
(2.11)

where ˆ︁jℓ and ˆ︁ηℓ are the solutions to the first and second kind Ricatti-Bessel
equation. These two functions are defined starting from the spherical
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Figure 2.2: Probability of penetration of the centrifugal barrier for the
reaction 17O + n at energies of astrophysical interest for different values
of the quantum number ℓ

Bessel functions, solutions of the spherically symmetrical Bessel equation,
as follows:

ˆ︁jℓ = (kr)jℓ(kr) ˆ︁ηℓ(kr) = (kr)ηℓ(kr) (2.12)

Since these functions are known and tabulated, it is possible to evaluate
the value of Pℓ as a function of the energy as the angular momentum ℓ

varies, as shown in figure 2.2,

As can be easily observed, the centrifugal barrier has a significant
influence only at low energies, of the order of hundreds of keV, precisely
in the range of astrophysical interest and, at such energies, it is noted that
the influence is already effective for angular moments greater than unity.
This means that, in the calculation of the cross section, the probability of
penetration must be included as a multiplying factor.
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2.2.2 Coulomb barrier

If the two interacting nuclei, or particles, both possess an electrical charge
then also the Coulomb barrier must be taken into account. We talk of a
barrier, like the centrifugal one, since nuclei only posses a positive charge
and therefore they can only repel each other. The negative charge of
electrons has an effect that will be explained later. The Coulomb potential
between two point-like charges is defined as the ratio between the product
of the charges of the interacting nuclei Zi and their distance r

Vcoul(r) =
Z1Z2e2

r
(2.13)

In this case the potential V(r) visible in Eq. 2.8 would be given by the
sum between the nuclear potential, attractive and usually factored as a
Wood-Saxon potential, and Vcoul(r). However, as it can be seen in Fig. 2.3,
for distances larger than the sum of the two nuclear radius, i.e. outside
the nucleus, the Coulomb potential prevails.

At low energies the general solution of the radial Schrödinger equa-
tion 2.8 is given by

uℓ(r) = AFℓ(r) + BGℓ(r) (2.14)

where Fℓ(r) and Gℓ(r) are the two independent solution of 2.8 in the
presence of the coulomb potential and they are called, respectively, the
regular and the irregular Coulomb wave functions for the angular mo-
mentum ℓ . The barrier penetrability can be evaluated as the ratio

Pℓ =
|uℓ(∞)|2

|uℓ(R)|2
=

1
AFℓ(R) + BGℓ(R)

(2.15)

where uℓ(∞) is the asymptotic wave function, meanwhile uℓ(R) is the
radial w.f. evaluated at the classical turning point of the barrier. For low
energies the interaction between two point-like particles can be approxi-
mated in s-wave, neglecting all contribution with ℓ > 0:
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Figure 2.3: Graphical representation of the nuclear and Coulomb poten-
tial between to interacting nuclei as a function of the distance r between
the pair.

P0 ∼ exp(−2πη) (2.16)

The penetrability P0 takes the name of Gamow factor, where η is the
Sommerfeld parameter and is equal to:

η =
Z1Z2e2

h̄ν
(2.17)

The Sommerfeld parameter is a measure of the Coulomb interaction
intensity since it is directly proportional to the product of the charges
of the interacting ions and to the inverse of the kinetic energy, i.e. it
decreases when the kinetic energy increases, as the interaction time de-
creases. Remembering the results from the centrifugal barrier section, it
should be clear that under the s-wave approximation we had to make the
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Figure 2.4: Graphic comparison between a generic direct capture cross
section as a function of energy (top) and the corresponding astrophysical
factor (bottom).

centrifugal barrier vanishes, therefore Eq. 2.16 represents the total barrier
penetrability factor.

2.2.3 Astrophysical Factor

As it can be seen in 2.4, the presence of the Coulomb barrier causes a
sudden drop of several order of magnitude in the cross-section at low
energies. Therefore, as it will be explained better in Chapter 3 of this
thesis, to work with a smoothly varying function, the astrophysical S-
factor was introduced. It is defined as:

S(E) = σ(E)Ee2πη (2.18)
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but, inverting this relation and writing it as

σ(E) =
1
E

e−2πηS(E) (2.19)

it is immediately clear that the S-factor is essentially the cross-section
compensated for the gross contribution due to the Coulomb penetration.
While the Gamow factor is only the s-wave approximation of such effects,
it is the one with the most significant energy dependence, therefore its
removal is important even if the reaction would proceed via partial waves
with ℓ > 0.

2.3 Reaction rate

In nuclear astrophysics we are interested in not only the cross-section of
the process but also in the so called reaction rate of the process which is
defined as the number of occurring reactions per unit of time and volume:

r ≡ NR

tV
=

1
V

σJbeamNtarget (2.20)

where Jbeam is the beam flux and Ntarget is the number of nuclei in the
target. It is possible to express the flux as Jbeam = νNbeam/V = νnb, where
nb indicates the numerical density of particles of the beam and with ν

the relative speed between beam and target. In this way Ntarget/V is
precisely the numerical density of particles of the target nt and that the
cross section depends on the energy of the process or, consequently, of
the speed. Finally one can write:

r = σ(ν)νntnb (2.21)

In a stellar environment, however, the speed between the beam and the
target is not uniquely defined but rather follows a distribution deter-
mined by the thermodynamic conditions. We can therefore generalize
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the previous equation as:

r = ntnb

∫︂
σ(ν)P(ν)νdν ≡ ntnb ⟨σν⟩ (2.22)

where P(ν) is the relative velocity distribution, normalized to unity
in the range [0, ∞[, and ⟨σν⟩ is the reaction rate per pair of interacting
particles, i.e. the integral of the product between the cross section and
the relative velocity between them weighted for the velocity distribution.
The latter, in most cases studied by nuclear astrophysics, is precisely the
Maxwell-Boltzmann distribution for a classic gas, therefore:

P(ν)dν =
(︂ µ

2πkT

)︂3/2
e−µν2/(2kT) 4πν2dν (2.23)

where µ is the system reduced mass, k = 8.6173 × 10−5eV/K is the
Boltzmann constant and T is the system temperature. However, it is often
more convenient to express the cross section as a function of the energy
of the system, therefore it is also necessary to express 2.23 as a function
of energy: remembering that E = µν2/2 e dE = µνdν we can switch the
variables and get

P(E)dE =
2√
π

1

(kT)3/2

√
Ee−E/kTdE (2.24)

The maximum value of the Maxwell-Boltzmann distribution is obtained
at the value νT =

√︁
2kT/µ which corresponds, if you decide to use the

expression as a function of energy, to an energy equal to E = kT/2. In a
stellar site where the temperature remains almost constant, the reaction
rate therefore depends mostly on the cross section. The latter is usually
expressed as a function of the energy of the system, rather than the speed,
therefore it is usually preferred to also express the reaction rate as a func-
tion of energy, starting from the distribution 2.24, this form is valid for all
processes induced by charged and non-charged particles:

⟨σν⟩ =
∫︂

σ(ν)P(ν)νdν =

(︃
8

πµ

)︃1/2 1

(kT)3/2

∫︂ ∞

0
σ(E) E e−E/kTdE (2.25)
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If the reaction is induced by neutrons, it is possible to apply a further
simplification by considering, instead of the reaction rate per pair ⟨σν⟩
the product between the most probable speed and the average of the
cross section weighted on the Maxwell-Boltzmann distribution (MACS)
⟨σ⟩T νT. This average is precisely the integral

⟨σ⟩T =
⟨σν⟩
νT

=
4

ν2
T
√

π

∫︂ ∞

0
νσn(ν)

(︃
ν

νT

)︃2

e−(ν/νT)dν (2.26)

Having thus obtained the various expressions for the reaction rate, it
is necessary to distinguishing the cases in which the cross section of the
process presents a continuous "smooth" variation as a function of energy
from the cases in which the variation it is very fast at a certain energy val-
ues, which are known as resonances. The latter, in nuclear physics, can be
formally treated in different ways but they are essentially the result of the
population of a collective state of the intermediate system given by the
interaction between the beam and target nuclei. Thus, it can be said that
the cross section of a process has a continuous background due to differ-
ent contributions among which different discrete peaks, corresponding to
the resonant processes, may stand out.

2.3.1 Resonant Reactions

Quite often the cross-sections studied are significantly dominated by res-
onances arising from the excitation of a nuclear level of the compound
nucleus. If the resonance is narrow, i.e. its width at half height is negligi-
ble with respect to the value of its centroid, and isolated, i.e. it is possible
to resolve this resonance with respect to any other resonances of the sys-
tem close to it, it is possible to use the known Breit-Wigner formula for a
single-level resonance:

σBW(E) =
π

k2
(2J + 1)

(2jb + 1) (2jt + 1)
ΓinΓout

(E − ER)
2 + Γ2/4

(2.27)
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where λ = 2π/k is the De Broglie wave length while δbt is a Kronecker
delta which is equal to unity only if the beam and target nuclei are the
same. Moreover Γin is the partial width of the entrance channel, given by
the product between twice the barrier penetrability (2Pℓ) and the square
of the reduced width

(︁
γ2)︁, which incorporates within it all the effects and

properties of the nuclear structure, meanwhile Γout is the one of the exit
channel and Γ is the total width of the resonance. Finally jb and jt are
the total spin of, respectively, a particle of the beam and one of the target,
while J is the resonance total angular momentum and Er is the resonance
energy value.

The formula therefore shows that the cross section is directly propor-
tional to the partial widths of the input channels but inversely propor-
tional to its width. It also depends on a statistical factor linked to the
number of states accessible by the resonant reaction. Substituting the 2.27
in the 2.25, we obtain the reaction rate for a narrow and isolated reso-
nance, valid for both charged and neutral particles:

⟨σν⟩ =
√

2πh̄2

(µkT)3/2 ω
∫︂ ∞

0

ΓinΓout

(Er − E)2 + Γ2/4
e−E/kTdE (2.28)

where, to simplify the presentation, we indicated with ω the statistical
factor (2J + 1) (1 + δbt) / (2jb + 1) (2jt + 1) which does not depend on en-
ergy and therefore can be taken out of the integral argument. Assuming
the partial widths Γin and Γout constant along the whole energetic range
of the resonance, it is possible to analytically solve the integral obtaining

⟨σν⟩ =
(︃

2π

µkT

)︃3/2

h̄2e−E/kTωγ (2.29)

With γ we have indicated the relationship ΓinΓout/Γ and the product
ωγ is called strength of the resonance and is proportional to the area
subtended by it. The reaction rate therefore depends only on the energy
and on the strength of the resonance, the exact form of the resonance does
not come into play. Therefore, it is evident that this treatment, obtained



2.3. REACTION RATE 37

in the case of narrow and isolated resonances, is not applicable in the
case of a broad resonances, or resonances in which the FWHM begins to
be significant compared to the value of the centroid, as for the latter the
exact dependence on the energy of the cross section is also significant. In
this case the cross-section should be defined as:

σ(E) = σ(Er)
Er

E
Γ1(E)
Γ1(Er)

Γ2(E)
Γ2(Er)

[Γ(Er)/2]2

(E − Er)2 + [Γ(E)/2]2
(2.30)

2.3.2 Neutron induced non-resonant Reactions

In stars, neutrons are thermalized very quickly therefore nuclear reac-
tions induced by neutrons occurs substantially at the speed given by the
peak of the Maxwell-Boltzmann distribution. For neutrons in s-wave and
low energy it has been seen that the trend of the cross section can be
approximated to

σ ∼ 1
ν
∼ 1√

E
(2.31)

This law, known as Wigner’s law, is also valid in those cases where mul-
tiple resonant contribution combine together resulting in a smooth cross
section. It is also valid when the reaction proceeds through a long tail
of a broad resonance, which is something that often happens when deal-
ing with sub-threshold resonances thanks to their long tail that extends
above the threshold. If we consider in particular the tail at lower energy
of a very large resonance (E << Er) we can easily analytically verify the
Wigner’s law. We can take the Breit-Wigner formula 2.27 and consider
the following approximations: E << Er, Γout ∼ cost. . If we also consider
the energy dependence of Γin for low energy neutrons [3] and the partial
wave factorization:

σℓ=0 ∼ 1
ν2 Γℓ=0 ∼ 1

ν2 ν ∼ 1
ν

(2.32)

The reaction rate for a cross section following this law is therefore, as
seen also in the previous chapter, a constant and can also be expressed in
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terms of Maxwellian averaged cross-section. For low-energy neutrons in
the s wave it also follows that

⟨σ⟩T νT = σ(νT)νT (2.33)

therefore it would be possible, in principle, to obtain the reaction rate by
simply measuring the cross section for the value νT, although in reality
the measurement of the cross section is usually repeated at different en-
ergies, included in the range of greatest probability, to improve the exper-
imental error. However, non-resonant reactions do not always strictly fol-
low this law which, as said, is an approximation. Therefore it is not valid
for all those cases excluded by the conditions we applied, that is when
the neutron energy is not small or the contribution of the partial waves
with ℓ > 0 is not negligible. For the latter case it is sufficient to consider
the approximation Γℓ(ν) ∼ (νR)(2ℓ+1) to obtain approximate cross section
values for each partial wave: σℓ=1 ∼ ν or σℓ=2 ∼ ν3. The reaction rate can
be obtained with equal simplicity considering that (νR)(2ℓ+1) ∼ E(ℓ+1/2):

⟨σν⟩ ∼
∫︂ ∞

0
E(ℓ+1/2)e−E/kTdE (2.34)

The presence of ℓ as a power of the energy involves a shift in the statistical
factor Ee−E/kT of the generic formula 2.25, this corresponds, as shown in
the figure 2.5, to a shift in the range of greater probability of the cross sec-
tion, i.e. the window within which, in a stellar environment, the reaction
usually takes place.

2.3.3 Charged particle induced non-resonant Reactions

In case of reactions between charged particles that proceed without reso-
nances, it is possible to substitute in Eq. 2.25 the definition of the S-factor
in Eq. 2.18 and write:

⟨σν⟩ =
(︃

8
πµ

)︃1/2 1

(kT)3/2

∫︂ ∞

0
e−2πη S(E) e−E/kTdE (2.35)
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Figure 2.5: Graphical representation of the statistical factor Ee−E/kT as a
function of energy as the value of the quantum number ℓ varies.
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Figure 2.6: Representation of the Maxwell-Boltzmann distribution (dashed
line), Gamow factor (dashed dotted line) and their convolution (solid line)
[3].

When studying the energy dependence of the integrand, as it can be
easily seen in Fig. 2.6, one can notice that the factor e−E/kT coming from
the Maxwell-Boltzmann distribution, decreases to zero for high energies
meanwhile the Gamow factor, as already explained, decreases to zero at
low energies. The latter can be rewritten as an explicit function of the
energy considering that:

2πη = 0.989Z1Z2

√︃
µ

1
E

(2.36)

The Gamow factor therefore shifts the peak of the Maxwell-Boltzmann
distribution to higher energies, which are usually part of the tail of the
distribution. For this reason the convolution between the two distribu-
tions is usually referred as the "Gamow peak" and its energy range is the
one at which the nuclear reactions of astrophysical interest occurs in stars.
Finally, if we consider the S-factor, which is a smooth varying function,
as a constant for the integral it is then possible to rewrite Eq. 2.35 as:
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⟨σν⟩ =
(︃

8
πµ

)︃1/2 S0

(kT)3/2

∫︂ ∞

0
exp

(︄
− E

kT
−
√︃

EG

E

)︄
dE (2.37)

where EG is the "Gamow energy" and is merely a parameterization of
the Gamow factor. Going back to the Gamow peak one can notice that
it can be reasonably approximated to a Gaussian distribution having its
maximum at an energy E0 which would the centroid of the distribution.
It is possible to approximate the argument of the exponential in order to
obtain a Gaussian distribution, as it follows [3]:

exp

(︄
− E

kT
−
√︃

EG

E

)︄
∼ exp

(︃
−3E0

kT

)︃
exp

[︄
−
(︃

E − E0

∆/2

)︃2
]︄

(2.38)

where ∆ is the width of the Gamow peak and it can be evaluated to
be [3] equal to:

∆ =
4√
3

√︁
E0kTa = 0.24(Z2

1Z2
2µT5

9 )
1/6 (2.39)

Finally we can rewrite Eq. 2.37 inserting the Gaussian approximation

⟨σν⟩ ≃
(︃

8
πµ

)︃1/2 S0

(kT)3/2 e−3E0/kT
∫︂ ∞

0
exp

[︄
−
(︃

E − E0

∆/2

)︃2
]︄

dE (2.40)

and by changing, without introducing a significant , the lower limit of
the integral from 0 to −∞ it is finally possible to solve the integral:

⟨σν⟩ ≃
√︄

2
µ

∆

(kT)3/2 S0e−3E0/kT (2.41)
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Chapter 3
Theoretical and Experimental
Methods for Nuclear Astrophysics

3.1 Experimental challenges in nuclear astrophysics

Nuclear reactions are the engine that makes nucleosynthesis in the uni-
verse possible, however, their direct study in the laboratory under the
same astrophysical conditions is quite challenging due to the many differ-
ences between the stellar environment and terrestrial laboratories. First
and foremost one has to consider that stellar matter is a plasma mean-
while reactions studied in the laboratory occur between partially ionized
beam and neutral targets. Moreover, the abundance of elements in astro-
physical sites is multiple scales of magnitude greater than the one in the
laboratory. Those differences have a profound impact on the experimen-
tal activity of nuclear astrophysics: thermonuclear fusion reactions occur
in stars at energies below the Coulomb barrier thanks to quantum tunnel-
ing, as we saw in the previous chapter of this thesis. Thus such reactions
are mainly induced in the so-called Gamow energy region which, as it
can be seen in 3.1 is defined as the convolution between the probability
of tunneling through the Coulomb barrier and the energy distributions

43
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Figure 3.1: Graphical representation of the Maxwell-Boltzmann probabil-
ity distribution, the Coulomb barrier penetration probability by tunnel
effect and their convolution, colored in gray, all as a function of energy.

of the interacting nuclei and/or particles. While for neutron induced re-
actions only the centrifugal barrier is present the barrier effect is however
still relevant, especially at highers values of the angular momentum be-
tween the interacting nuclei.

When considering the typical temperatures at which reactions occur in
the astrophysical sites, the related Gamow window usually sits at ranges
of the order of hundreds of keV down to substantially zero energy, which
is significantly lower than those usually studied in nuclear physics labora-
tories. These low energy values are quite problematic to study in the lab-
oratory, even with accelerators working at low energies, since the reaction
cross-section are very small (10−9 ÷ 10−12barn) due to both the centrifugal
(charged and neutral particles) barrier and Coulomb (charged particles)
barrier. In a typical stellar environment this low value is largely compen-
sated by the large number of particles that could interact but in the labo-
ratory we are limited by the density of targets and by the beam intensity.
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Studying events with such low rates inevitably results in a signal-to-noise
ratio in the detectors that is vanishingly small. Usually therefore, in order
to carry out direct measurements in the laboratory, two alternative ways
are followed: reduce noise to the minimum possible by performing mea-
surements in a highly shielded laboratory or at energies greater than the
Gamow window and then extrapolate the cross-section or the S-factor to
lower energies. This is also relevant when working with neutron induced
reactions, due to the centrifugal barrier. Moreover one must take into
account also the experimental difficulties that arise when working with
neutrons. The obtained result is however inevitably affected by the actual
mathematical operation: extrapolating the value of a function beyond its
known domain it is feasible only for functions that vary very slowly with
a predictable trend. Unfortunately this is not true when considering the
cross-section as a function of energy both for a non-resonant reaction but
even more when considering the presence of resonances since they are,
by definition, sudden variations of the cross section.

Indeed in the case of a non-resonant reaction, as visible in top por-
tion of Fig. 2.4, at very low energies right in the range of astrophysical
interest, the cross section varies so rapidly that any extrapolation in this
region is indeed impossible. To reduce systematic errors, as anticipated
in the previous chapter, it was decided to extrapolate not the value of
the cross-section but rather the so-called S-factor which was defined in
Eq. 2.18. In this way, as visible in the bottom part of Fig. 2.4, the steep
variation of the cross-section at low energies, due to the barrier pene-
tration, is transformed into the slowly variable S-factor. This of course
cannot help much in the resonant case due to the aforementioned sudden
variations: for known resonant states this can be mitigated by using for
example the R-Matrix theory, more on that will be described in the ded-
icated section. Unfortunately, despite all these precautions, direct mea-
surements of reactions between charged particles face a further problem
which is presently unavoidable: the electron screening. When we defined
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the cross-section in Chapter 2 we assumed that the interacting nuclei were
completely stripped of the electron cloud which surrounds them in ordi-
nary matter. Usually we refer to this by saying that we have considered
the "bare nuclei" cross-section. However this hypothesis is not completely
true either in the stellar environment or in the laboratories on Earth: in
the first case matter is in a plasma state, so nuclei are mostly stripped
of electrons but still immersed in a electron sea, meanwhile on Earth the
situation is different since nuclei are surrounded by a cloud of electrons
in the atom. In both cases the cloud or sea of electrons, having a charge
opposite to the positive charge of the protons in the nucleus, lowers the
value of the Coulomb barrier actually experienced by the nuclei during
their interaction, subsequently causing an increase in the barrier penetra-
tion likelihood. Since the charge distribution is substantially different in
those two cases, the electron screening effect and the relative enhance-
ment factor of the barrier penetrability is markedly different. To trace the
measurement of the cross section conducted in the laboratory to the one
actually valid in a stellar environment it would be necessary to measure
the electronic screening in both conditions.

3.2 Indirect methods

To help solving the issues listed so far, in the last few decades various
indirect methods have been developed and used to successfully evaluate
the cross section of the reaction of interest by studying a complementary
reaction properly chosen. Among all the indirect methods the one used in
this thesis is the Trojan Horse Method (THM) which will be extensively
explained in the following paragraph. In addition to THM, the most
used methods are undoubtedly the asymptotic normalization coefficient
(ANC) and coulomb dissociation (CD) techniques.

The ANC method exploits the evidence that the direct capture of a
particle by nuclei usually occurs on the tail of the nuclear overlap func-
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tion in the corresponding two body channel. The shape of this overlap
function is given by the Coulomb barrier meanwhile the absolute scale
can be changed by a normalization factor, the so-called ANC, which is re-
lated to the cross section of the direct capture process. This method was
successfully applied to study the S-factor of the 8Be →7 Be+ p reaction by
studying the 10B(7Be,8 B)9Be and 14N(7Be,8 b)13C transfer reactions [10].

The CD method uses a virtual photon, generated by the Coulomb
interaction between the beam and heavy nuclei thick target, to induce
a photo-dissociation process in the nuclei of the beam itself. If the nu-
cleus a of the beam has a cluster configuration b + c, it is possible to
study the break-up reaction a + T → b + c + T, where T is the target.
By studying this process it is possible to evaluate the cross section of the
photo-disintegration a + γ → b + c and subsequently, by the means of
the detailed balance method, it is possible to study the inverse radiative
capture process b + c → a + γ. This method was applied to the three-
body 208Pb(16O, α12C)208Pb) study the 12C(α, γ)16O reaction and to the
208Pb(8B, p7Be)208Pb) to study the 7Be(p, γ)8B [11] .

3.2.1 The Trojan Horse Method

The Trojan Horse method (THM), first proposed by Baur[12] in the 1986,
in order to study a two body reaction of interest uses a properly cho-
sen three-body reaction in which one of the interacting nuclei has a well
known clustered state and acts as a "Trojan Horse" in a way that it will be
clear once the basic features and theoretical foundations of the method
will be explained in this section. The THM lays its foundations on the
well established direct reactions theory, in particular on the so-called
"quasi-free" (QF) break-up reactions, which will be explained in the fol-
lowing paragraph. Assuming we want to obtain the cross section of
the binary process x + A → b + B at astrophysical energies, the THM
would be applied to a ternary reaction, called Trojan Horse (TH) reaction,
a + A → b + B + s where a = x + s is a nucleus with a high probability of
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Figure 3.2: Diagram of the TH reaction: the top vertex refers to the quasi-
free break-up, while the bottom vertex refers to the two-body reaction of
interest. The colors are used to facilitate observation [13].

having a cluster structure. A diagram of the process can be seen in Fig.
3.2.

The cluster x is called "participant" as it will actively take part in the
interaction, meanwhile the cluster s is called "spectator". This nomen-
clature is not by chance and it derives from the formalism of quasi-free
reactions in which only a part of the nucleus, usually a single nucleon,
takes part in the reaction while the remaining part is practically unper-
turbed by the interaction.

Quasi-Free break-up

To better understand the THM it is helpful to describe how the reaction
evolves: one of the two nucleus, either a or A, is accelerated to such
energies as to overcome the potential barriers between it and the other
nucleus in the entrance channel, so as to maximize the cross section for
the three-body reaction and suppress the any barrier effect. Once the bar-
rier is overcome, the TH nucleus a undergoes a break-up splitting into its
two constituent clusters, x and s. Then, if the reaction takes place under
the quasi-free regime, only cluster x interacts with the nucleus while the
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cluster s continues undisturbed, preserving the momentum it had inside
the TH nucleus. To achieve this the relative momentum, in the entrance
channel, between the TH nucleus and the nucleus A must be such as to
resolve distances lower than those between the two clusters inside the
TH nucleus. Thus, the QF break-up gives the greatest contribution to the
cross section of the three-body reaction in the phase space region where
the relative momentum between the two clusters x and s is zero or very
small compared to the momentum of the TH nucleus in the entrance
channel [14]. This QF kinematics condition is the best[14] condition for
treating cluster s as a spectator since it minimizes the interaction between
it and participating cluster x, which corresponds to stating that the dis-
tance between them is maximized.

The reaction represented in figure 3.2 is invariant to rotations around
the beam axis, therefore, considering the energy-momentum conservation
laws, it is regulated only by four Galilean invariant variables which by
themselves completely determine the kinematics of the reaction. Thus,
during the experiments the emission angles and the energy of only two of
the three particles in the final state are measured meanwhile the variables
of the third particle are analytically reconstructed. It can be shown [14]
that the cross section of the QF process has a maximum for certain pairs
of angles of the two measured particles, which usually take the name of
quasi-free angles: it is therefore ideal to place the detectors at these angles
to maximize the expected yield of the desired mechanism as much as
possible.

Then by applying the conservation of the energy-momentum to both
vertices of the diagram in figure 3.2 we obtain one of the fundamental
equations of the THM formalism which defines [14] the relative energy
between the cluster x and the nucleus A in the system of reference of the
center-of-mass between these two particles:

Ec.m.
xA =

p2
xA

2µxA
− p2

sx
2µsx

− ϵa
sx (3.1)



50 CHAPTER 3. METHODS FOR NUCLEAR ASTROPHYSICS

where µxA and µsx are the reduced masses, meanwhile p2
xA and p2

sx are
the off-energy-shell momenta, respectively between the x cluster and the
nucleus A and between the clusters x and s. ϵa

sx is the binding energy
between these two cluster inside the TH nucleus a. By applying the quasi-
free kinematics condition which means considering the value of p2

sx as
negligible, Equation 3.1 can be simplified as follows:

Ec.m.
xA =

(︂
pQF

xA

)︂2

2µxA
− ϵa

sx (3.2)

where with pQF
xA we have indicated the same variable seen in Equation

3.1 above but calculated under the QF kinematics condition. With this
equation another of the advantages of THM is easily shown: the presence
of the binding energy in Eq. 3.2 with negative sign allows to lower the
energy in the center of mass between the x cluster and the nucleus A,
which makes it possible to reach, as will be seen in the analysis of the
experimental data, even energies lower than the threshold of the two-
body reaction, thus being able to study sub-threshold resonances that
may be present in the two-body channel of interest.

Plane Wave Impulse Approximation

The Plane Wave Impulse Approximation (PWIA) considers the interac-
tion so rapid that it can be approximated as occurring only between the
incident wave, which in the case of the PWIA is precisely a plane wave
not distorted by any field effects, and only a few nucleons of the nucleus.
It is usually stated that the PWIA is valid only at high energies [15] but
in reality, as also demonstrated by the works of the Nuclear Astrophysics
groups of Catania and Zagreb [16, 17], it is rather necessary to evaluate
the impulse transferred in the interaction: therefore the condition on the
energy must also include the Q-value of the reaction, which makes it pos-
sible to apply the approximation also in reactions where the beam energy
is generally not considered to be high. Indeed, the validity condition of
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the approximation is not so much on the energy transferred as on the time
needed for the transfer: in fact, to consider an interaction as "impulsive" it
is necessary that the transit time inside the nuclear matter is much shorter
than the characteristic time of the nucleus. This is equivalent to saying
that the nuclear system does not have time to notice and respond to the
presence of the incident wave as a collective nucleon system. Therefore
the interaction takes place between the wave and just a single nucleon or,
as in the THM case, a cluster of the nucleus. In general, we can define the
transit time as:

τtr =
2RN

νbeam
(3.3)

where RN is the nuclear radius, meanwhile νbeam is the speed of the
beam’s particles accelerated on the nucleus. The characteristic time of
the nucleus is defined instead as:

τnucl. =
2π

ωnucl.
=

2πh̄
BE

(3.4)

where ωnucl. is the characteristic frequency of the nucleus meanwhile
BE is the binding energy of the nucleus. The PWIA condition is thus
written as follow:

τtrans. ≪ τnucl. →
2RN

v/c
BE

2πh̄c
≪ 1 (3.5)

Using in the Eq. 3.5 approximated values such as 2RN ∼ 2 f m, v/c ∼
0, 103 which corresponds to a beam energy of about 5 MeV/nucleon,
BE ∼ 6MeV, h̄c = 200MeV f m one obtains the condition 1/50 ≪ 1 which
is satisfied. It is clear, however, that the shorter the transit time, compared
to nuclear time, the better the accuracy of the approximation. Therefore,
using the PWIA, whose validity has just been underlined for the purposes
of this thesis, it is possible to link [18] the differential cross section of the
three-body TH reaction with that of the two-body reaction of interest:

d3σTH

dΩbdΩBdEb
∝ K.F. |Φ(ps)|2

(︄
dσb.n.

xA
dΩ

)︄
HOES

(3.6)
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K.F. is the so-called kinematic factor derived, together with the 3.6, in the
appendix of Ref. [18] and which includes various factors linked, as the
name suggests, exclusively to the kinematics of the reaction:

K.F. =
kbk2

BEsE2
c.m.

kAEa {kbEs + Eb [kb − kA cos θb + kA(cos θB − cos θb)]}
(3.7)

where ki is the momentum of the i-th particle. In Eq. 3.6 also appears the
square of the absolute value of the spectator’s wave function (w.f.) inside
the nucleus a expressed in the momentum space, which is linked to the
w.f. in the coordinate space by the Fourier transformation:

Φ(ps) = (2π)(−3/2)
∫︂ +∞

−∞
d3r ψ(rs) e(−ipsrs) (3.8)

Finally
(︁
dσb.n.

xA /dΩ
)︁

HOES is the differential cross section, evaluated half-
off energy-shell, of the two-body reaction in the case of bare nuclei, which
means that the interaction between the nucleus is evaluated without any
electron in their surrounding. To obtain the valid value in the stellar
environment it is therefore necessary to incorporate electronic screening
for the plasma state, evaluated in other ways. It should also be empha-
sized that Eq. 3.6 is not an exact equation but a proportionality relation:
this means that the values obtained will be determined up to a constant
of proportionality, that is, they will be expressed in arbitrary units. It is
therefore necessary to normalize the values obtained by a THM experi-
ment with datasets in absolute units: this is often achieved by using data
from direct measurements.

Results of the method

For several decades now, the application of the Trojan Horse Method to
Nuclear Astrophysics has made it possible to obtain significant results,
providing information on the trend of the astrophysical factor, on the
electronic screening potential and on the astrophysical reaction rates. Nu-
merous reactions induced by charged particles have been studied during
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the last 20 years, as reported in Ref.[19, 20] and references therein, and in
the last 10 years it has also been successfully applied to neutron-induced
reactions [21, 22].

3.3 R-matrix formalism

3.3.1 Theoretical framework

When studying the cross section of reactions usually there is not a sharp
separation between the resonant and non-resonant contribution, as we
saw in the previous chapter. In reality quite the contrary is actually true:
in most cases a series of resonances are dominant over a non-resonant
background contribution. As we saw, the study of reactions of astrophys-
ical interest requires often to extrapolate the value of the cross section at
energies lower than the one measured in the laboratory. To do so, in the
past, a phenomenological approach was used: for example when dealing
with reactions at low energy forming a low level density compound nu-
cleus, usually a single Breit-Wigner formula was used. This approach is
however not precise enough when dealing with more complex systems
since it neglects certain contributions from low energy mechanisms. It is
clear therefore that there is a desperate need of a theory capable of tak-
ing into account all the possible contributions to the cross section with
mathematical rigor. To this aim the R-matrix theory was applied to the
study of nuclear astrophysics experimental data. The first assumption
of the R-matrix method is that configuration space of the system ca be
sharply divided in two distinct region: the internal one, where the sys-
tem is represented by the eigenstates base and interactions are regulated
by the many-body nuclear physics, and an external one where only the
Coulomb interaction remains and therefore the system is represented by
an exact analytical solution. The R-matrix approach then makes a second
assumption: the wave functions and their derivatives in the two regions
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must match at the connection point between the two. Usually this is
called "boundary surface" and is thought to be approximated by the sum
of the radius of the two interacting nuclei. In order to match the w.f. at
the boundary radius R, one can write the radial part of the w.f. in the
external region, calculated for r = R [23, 24]:

ϕc =

(︃
1
νc

)︃1/2

(yc Ic + xcOc) (3.9)

where Ic and Oc are the incoming and outgoing wave functions, which
as we have seen in Eq. 2.15 depend on the Coulomb wave functions Fc

and Gc, while yc and xc are the incoming and outgoing amplitudes and
νc is the relative velocity. In all of these variables we can see the index
c: this is a compact representation of what the R-matrix theory calls a
channel, which is defined by a specific particle pair, among all the possible
combination in which the compound nucleus can be formed or decay,
with a specific angular momentum and spin coupling. Therefore c = αsl
where α represent the particle pair, s the channel spin and l is the relative
angular momentum between the nuclei of the pair. Now, introducing the
collision matrix U defined by the relation

xc = −∑
c′

Ucc′yc′ (3.10)

and inserting it into Eq. 3.9 we can write the external w.f. just in term
of the incoming wave amplitudes:

ϕc =

(︃
1
νc

)︃1/2
(︄

yc Ic − ∑
c′

Ucc′yc′Oc

)︄
(3.11)

Similarly we can evaluate, again at the boundary radius, the radial
part of the w.f. in the internal region which is given by the expression
[23, 24]:
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φc =

(︃
µcac

h̄2

)︃1/2

∑
c′

⎡⎣Rcc′

(︄
h̄2

µc′ac′

)︄1/2 (︁
ρc′ φ

′
c′ − Bc′ φc′

)︁⎤⎦ (3.12)

where µ is the reduced mass, a the channel radius, ρ = ka is the
product between the wave number k and the channel radius, B is the
boundary condition, which is just the logarithmic derivative of an eigen-
state w.f. evaluated at the boundary radius, and finally R is the so-called
R-matrix which is defined as

Rcc′ = ∑
λ

γλcγλc′

Eλ − E
(3.13)

where γ is the reduced width amplitude of the channel, i.e. the mea-
sure of the strength of the contribution from the resonant level λ to the
w.f. of the channel c, given by the formula

γλc =

(︄
h̄2

2µcac

)︄1/2 ∫︂
X∗

λψcdS (3.14)

in which X is the eigenstate w.f. meanwhile ψc is the surface channel
w.f. . In the R-matrix approach therefore the reduced width amplitude
and the eigenenergy Eλ are treated as free parameters that need to be
determined by the experimental data fit. Finally matching the solutions
in the two regions it is possible to relate the collision matrix to the R-
matrix by the following matrix relation:

U = ρ1/2O−1(1 − RL0)
−1(1 − RL∗

0 )Iρ−1/2 (3.15)

The matrices ρ, O, I, B are defined with only the diagonal elements
ρc, Ic, Oc and Bc, respectively, meanwhile L0 = ρO′O−1 − B. In order to
solve this relation it is necessary to invert the channel matrix (1 − RL0),
this is a trivial calculation if the are many levels but only a few chan-
nels, however in the opposite case, when there are few levels and many
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channels to calculate, the time for the inversion exponentially increases.
In order to more easily perform the calculation there is another relation
used:

Ucc′ = ΩcΩc′

{︄
δcc′ + i ∑

cc′
Γ1/2

λc Γ1/2
λ′c′ Aλλ′

}︄
(3.16)

where Aλλ′ is the level matrix and it is defined as

(A−1)λλ′ = (Eλ − E)δλλ′ + ∆λλ′ − iΓλλ′

2
(3.17)

in which we introduced the resonance partial width Γλc = 2Pcγ2
λc and

the level shift ∆λλ′ = −∑c γλcγλ′c(Sc − Bc). From this formula it also
clear the relation between the R-matrix parameters and the one actually
measured when studying a nuclear reaction. However, the simple defi-
nition for the partial width Γ is in truth complicated by the dependence
of the reduced width amplitudes γ and of the eigenenergies Eλ on the
boundary condition, which is defined for each group of levels with the
same Jπ. Therefore, to convert the formal R-matrix parameters to the exper-
imental resonance parameters a set of mathematical transformations were
developed[25]. Once the collision matrix Ucc′ is calculated, it is possible to
obtain the angle-integrated total cross section of the reaction going from
α → α′ which is given by

σαα′ =
π

k2
α

∑
Jll′ss′

[︃
2J + 1

(2Iα1 + 1)(2Iα2 + 1)

⃓⃓⃓
T J

cc′

⃓⃓⃓2]︃
(3.18)

where we used the transition matrix in place of the collision matrix
since they are related via the following formula:

Tcc′ = e2iωc δcc′ − Ucc′ (3.19)

in which ωc is the Coulomb phase shift. It is possible also to find an ex-
pression of the differential cross-section which depends on the transition
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matrix, however, in that case a more complicated and rigorous calculation
is needed.

3.3.2 The AZURE2 code for R-matrix calculations

There are various code available to the community to perform the R-
matrix analysis, among which we decided to use AZURE2, a multi-level
multi-channel R-matrix code publicly available and developed by a col-
laboration supported by the JINA[26] network and under the leadership
of R.E.Azuma, hence the name of the code. It is designed to analyze re-
actions induced by charge particles, neutrons and γ rays in the resolved
resonance region of astrophysical interest. Therefore, if was developed
from the start to study reactions occurring at low energies with the main
focus being extracting, from the experimental data regarding the cross
section and angular distribution, the level partial widths or bound state
normalization parameters, such as the ANC, other than the level energy
itself. Being a multi-level and multi-channel code, it is possible to in-
clude, obviously as long as they are allowed by conservation laws, all the
channels, i.e. all the various reactions that can populate the compound
state or to which the latter can decay, and all the desired resonant levels
of the compound state taken into exam. This means that we can have a
best-fit of the cross-section using at the same time all the various datasets
for all the possible reaction channels, which is exactly what we were look-
ing for. Moreover the code automatically takes into account all possible
interference between levels which can have a significant impact on the
cross-section, thus better evaluating the fitted parameters. This means
that since the datasets included in the calculation come from different
experiments, for each one a precise evaluation of target thickness effects
and energy calibration must be performed. For this reason the code has
an entire section devoted to the experimental effects evaluation. The code
also allow to extrapolate the behavior of the cross section or the S fac-
tor at energies which are not covered by experimental data, this, however,
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should be taken as what it is: a prediction based on the experimental data
and R-matrix theory, but still a prediction. Moreover, as we will se in the
dedicated section, the code can also calculate the reaction rate for a list of
temperatures given by the user, therefore by using a proper sampling it
is possible to properly calculate the reaction rate.

It should be clear by now that AZURE2 was developed with the nu-
clear astrophysics community in mind and indeed it quickly became one
of the most used R-matrix codes both within the JINA[26] and interna-
tional nuclear astrophysics networks such as IReNA[27]. Thanks to its
versatility and being relatively easy to use, i.e. the code integrates Brune
[28] and Barker[25] transformations for R-matrix parameters thus allow-
ing to input and output directly the R-matrix "observable" parameters,
the code has been widely used by also the nuclear structure and applied
nuclear physics communities. One downside of using such codes to per-
form the analysis is that they usually only uses routines such MINUIT2
for χ2 minimization, when performing the fit, but then they leave to the
end user, which should know exactly what are the errors involved in each
of the measurements used for the fit, the burden of evaluating the actual
errors on each parameter. It is immediately clear that this approach can
easily get out of hand when the number of datasets and parameters used
starts to grow. An alternative solution, that has been developed in the last
years, could be to shift away from "classical" frequentist approach that re-
searchers have employed to apply phenomenological R-matrix models
to data. In recent years, Bayesian methods have gained a lot of interest
across the astrophysics and nuclear physics community: this led the way
for the application of Bayesian methods also to R-matrix analysis [29].

3.3.3 Bayesian statistic and the Markov Chain Monte Carlo

Bayesian analysis treats the parameters of the chosen model as true ran-
dom variables and then evaluates their probability distribution function
(PDF) using the well-known Bayes theorem which states that the posterior
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PDF of the parameters Θ, given the data D, is equal to the ratio between
the product of the likelihood PDF of D, given the parameters Θ, for the
prior PDF of Θ and the model evidence PDF of D. In formula:

p(Θ|D) =
p(D|Θ)p(Θ)

p(D)
(3.20)

Bayesian approach therefore uses probability functions to describe
what is known about the parameters, however applying the theorem on
its own in real situations where probabilistic inference is used is quite
complicated: we need to compute the three PDFs in Eq. 3.20 however,
while p(D|Θ) and p(Θ) can be easily expressed, since they are part of
the model and in most cases are actually explicitly known, the model
evidence requires to compute the following integral:

p(D) =
∫︂

Θ
p(D|Θ)p(Θ)dΘ. (3.21)

While this calculation could be easily achieved when dealing with
a low dimension parameter vector Θ, when the number of parameters
starts to increase the operation can become intractable: the exact evalua-
tion of the posterior PDF is practically impossible. For this reason a series
of approximation techniques have been developed to compute the solu-
tions to problems that require to know this posterior without dealing with
the model evidence PDF calculation. This can be done because we are not
changing the experimental data during the R-matrix analysis, thus in our
case p(D) is therefore just a normalization factor that we can rightly ig-
nore. Among the various method that have been developed to overcome
this issue, in recent years Markov Chain Monte Carlo (MCMC) methods
are becoming the status of art for sampling the posterior PDFs. Indeed,
MCMC methods can be used even without a full analytic description of
the posterior PDF since they assume no model for this PDF. As a conse-
quence they do not require to compute any process-intensive task, such
as calculating derivatives or integrals of the function, they have a low
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Figure 3.3: Schematic drawing of a simple Markov chain[30]

bias and high variance, which means that they are more computational
expensive than competing methods but the final result is more accurate.
A Markov chain is a model that describe a stochastic system which can
transit through a series of states according to certain probabilistic rules.

The base idea of MCMC is then to use Monte Carlo techniques to sam-
ple these probabilistic rules instead of trying to exactly calculate the chain
by simulating a random sequence of states long enough to almost reach
the equilibrium, which will correspond to the chain system we actually
want to study. This means that the desired posterior PDF is the equilib-
rium distribution of the Markov chain, which is uniquely defined for the
the chain. Many of the practical MCMC applications uses a Metropolis-
Hasting algorithm [31, 32] to generate the chain which takes advantage
of the reversibility property of the Markov chain: this means that every
transition between two states of the chain is reversible, i.e. the probability
to go from the state A to B is equal to the probability of going from state
B to A. The so-called "walker" of the algorithm generates a candidate for
the next move in the chain based on the current state, then the candidate
is either accepted and stored as the new value, or rejected and the gener-
ation of the candidate restart from current value. This choice is taken by
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comparing the values of probability function for the current and for the
candidate state with respect to the desired distribution.

However, in this way two subsequent samples are correlated with each
other and they do not correctly represent the equilibrium distribution,
even though over the long run they actually do. This could be a serious
issue leading to large errors in the calculation, especially when the sam-
ple size is not significantly higher than the number of samples required to
loose the correlation. Usually therefore only the states that are separated
by a number of steps higher than the so-called auto-correlation time" are
saved on disk. This autocorrelation time is the time, expressed in number
of iterations, that the system requires lose any correlation between the
current state and a previous one. Moreover, although the Markov chain
will eventually converge to the equilibrium distribution, at the beginning
of the sampling procedure the walkers may diverge from the equilibrium
and the chain will follow a very different distribution: for this reason
usually a "burn-in" phase is defined during which the computed samples
are thrown away. Finally, when dealing with a parameter space with an
high number of dimension, finding the next candidate in the chain start
to become computational intensive since the parameter in each dimen-
sions there may behave in a very different way than the others. It can
be seen [31, 32] that his method heavily depends on N(N + 1)/2 "tuning
parameters", where N is the dimension of the parameter space, which,
in a multivariate calculation, will quickly scale out of hands. For this
reason in the last decades several heuristic methods have been developed
in order to solve the problem of generating the next move in the chain
in a data-driven fashion. In 2010 Goodman and Weare [33] proposed a
new and powerful approach: rather than just creating one walker that
goes through the chain generating the moves in the parameter space,
they thought to follow many walkers simultaneously. In this way, the
proposals for new candidate state for each walker now depends on the
relative locations of the other walkers. In a sense the group of walkers
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now evolves like one ensemble of walkers, moving through the param-
eter space like a single entity. Therefore each walker evolution depends
on its starting point, the definition of which is left to the end user. The
most common way is to have a point in the parameters space that it is
thought to be close to the equilibrium and then generate the rest of the
initial walkers by perturbing the parameter values only slightly. Another,
totally different, approach is generate the start of the walkers in random
points in the parameter space: however this would easily lead to a series
of problem. Indeed, considering the possibility of multiple local max-
ima for the posterior distribution of the parameters, the walkers can end
up to those totally different maxima, which means that the next candi-
date move will now end up on multiple valleys. In this way only a very
small fraction of generated proposals could be accepted wasting precious
computational resources.

Once the initial value is set the algorithm has to generate each move of
the multiple walkers spawned. Now, instead of proposing and evaluating
only one update per step as in Metropolis-Hasting algorithm, the candi-
date generation and evaluation is done for each of the spawned walkers
in a single step. In literature one can find various approaches to do so
but the one that Goodman and Weare [33] recommend is what they call a
stretch move, where the next point in the parameter space is generated as

Xk(t) → Xj(t) + Z
[︁
Xk(t)− Xj(t)

]︁
(3.22)

where j and k are different walkers and Z is a scaling variable. In
summary, MCMC is an extremely powerful method for sampling a mul-
tidimensional space and these recent improvements have significantly im-
proved both the speed and accuracy of the method.
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3.3.4 The emcee and BRICK Python packages

Multiple MCMC codes are available nowadays but four our analysis we
used the emcee [34] Python package that is based on the Goodman and
Weare algorithm [33] described above. This package has been thoroughly
used in astrophysics, so it is already well established in the physics com-
munity, has a well documented API and uses the HDF5 file format [35]
to store all the steps taken by the chain, which is of fundamental impor-
tance for our application since it gives us the ability to read each step of
the evolution also after the calculation. To use this package the end user
needs to declare the model it wants to use for the calculation: the func-
tion to calculate the likelihood must be defined, the initial values of all the
parameters and their prior distributions must be explicitly declared. The
package will then take care to generate the walkers of the MCMC chain,
calculate the posterior probability and store everything on disk. In our
case, however, we do not need to redefine the likelihood function since
it can be easily obtained by invoking the AZURE2 code and perform a
simple calculation using the current values of the parameters vector Θ
as the input. Therefore we need just a way to let emcee and AZURE2
communicate with each other: to this aim, the BRICK (Bayesian R-Matrix
Inference Code Kit) python package was developed [29]. By initializing
an instance of an "AZR" object in BRICK, by simply indicating the path
of the AZURE2 input file we want to compute, the packages takes care of
initializing the whole workspace, reading the input file parameters and
pass them to the emcee package for the initialization. Moreover, when cal-
culating the likelihood probability the code will take care of calling back
AZURE2 to let it perform the R-matrix calculation in the current point of
the parameters space. This means creating a new, temporary workspace
for AZURE2, which needs to be thoroughly cleaned after the calculation is
performed: indeed having multiple walkers that concurrently runs means
that actually multiple instances of AZURE2 needs to be created without
generating any conflict. Using an algorithm implemented in emcee that
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evaluates the auto-correlation time is then possible to stop the calculation
when this variable does not change, which means that the chain should
be indeed stable and therefore should have reached the equilibrium state
we are interested in. Another approach is to directly input in the code the
number of steps that each walker has to take before killing the calcula-
tion. The output file can then be used to extract various information such
has the evolution of each parameter for each of the walkers used and the
posterior distributions which we need for our analysis.

3.4 Modified R-matrix

The THM formalism, originally developed using the surface approxi-
mation for non-resonant reactions, has been further expanded to study
the case of resonant reactions and deduce the resonance parameters of
interest. The parametrization of the model, treated in details in Ref.
[36, 37, 38, 39], takes a form similar to the one of the R-matrix formal-
ism: for this reason it is usually referred to as Modified R-matrix. In this
section we will report a summary of the theoretical model alongside the
equations relevant to our analysis.

If we consider the TH reaction as transfer into the continuum, i.e. a
transfer to an unbound nucleus intermediate state which will then decay,
and we disregard the spin and any other internal degree of freedom of the
particles involved in the reaction, we can write the TH reaction amplitude
in the post form as [36]:

M̃(P, kaA) =
⟨︂

χ
(−)
ksF

Φ(−)
F

⃓⃓⃓
∆VsF

⃓⃓⃓
Ψ(+)

i

⟩︂
(3.23)

where:

• F = x + A = b + B is the intermediate system;

• P = {ksF, kbB} the 6D momentum matrix describing the three body
(s + b + B) system in the exit channel;
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• χ
(−)
ksF

is the distorted wave of the system s + F;

• Φ(−)
F is the w.f. of the system F;

• ∆VsF = VsF − UsF is the difference between the interaction potential
VsF, between s and F, and their optical potential UsF;

• Ψ(+)
i is the exact a + A scattering w.f..

Then, using the spectral decomposition of Φ(−)
F given in Eq. (3.8.1) of

Ref. [40] it is possible to write Φ(−)
F using a shell-model-based resonant R-

matrix representation which is similar to the level decomposition formula
for the internal w.f. in the R-matrix approach we saw in this chapter. In
formula:

Φ(−)
F ≈

N

∑
ν,τ=1

ṼbB
ν (EbB)[D−1]ντΦτ (3.24)

where N is the number of levels, ν and τ are excited states of the in-
termediate system, ṼbB

ν (EbB) =
⟨︂

χ
(−)
bB φb |∆VbB|Φν

⟩︂
is the resonant form

factor for the decay of the compound state Fν, represented by the Φν w.f.
, into the final state b + B, χbB is the distorted w.f. of the two body fi-
nal state. Finally D is a matrix similar to the level matrix we saw in the
R-matrix formalism, a in depth treatment can be found in Ref. [40]. By
substituting Eq. 3.24 into Eq. 3.23 we obtain the N-level, two channels
generalization of the R-matrix for the TH reaction:

M̃(TH)
(P, kaA) ≈

N

∑
ν,τ=1

ṼbB
ν (EbB)[D−1]ντ M̃τ(ksF, kaA) (3.25)

where M̃τ(ksF, kaA) =
⟨︂

χ
(−)
sF Φτ

⃓⃓⃓
∆VsF

⃓⃓⃓
Ψ(+)

i

⟩︂
is the amplitude of the

transfer reaction a + A → s + Fτ that populates the τ excited state of
the intermediate system F. This amplitude is intended as the exact form
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which can be well approximated by the DWBA amplitude, where the
exact solution of the Ψ(+)

i w.f. is substituted with the approximation

φa φAχ
(+)
aA . However, when we talked about the THM in this chapter we

used the PWIA where any distortion of the entrance channel is disre-
garded. This further approximation is still valid in this formalism since,
for values of kxA sufficiently high the interaction will take place only
between the participant cluster x and the A particle, without any contri-
bution from the interaction with the spectator such as rescattering effects.
Under the PWIA the transfer amplitude is simply the Fourier transform
of the inter-cluster s − x w.f. and, subsequently, its square is the momen-
tum distribution of the intercluster s− x motion that we already described
in the section dedicated to the THM. In formula:

M̃PWIA
τ (ksF, kaA) =

⟨︂
eiksF·rsF φsΨτ

⃓⃓⃓
VsA + VxA

⃓⃓⃓
φa φAeikaA·raA

⟩︂
≈ (3.26)

≈
⟨︂

eiksF·rsF IFτ
xA

⃓⃓⃓
< VxA >Ax

⃓⃓⃓
Ia
sxeikaA·raA

⟩︂
where IFτ

xA = ⟨φA φx|Φτ⟩ and Ia
sx = ⟨φs φx|φa⟩ are the overlap function,

respectively, between the w.f. of Fτ and the bound-state w.f. of x and
A and between the bound-state w.f. of a and the bound-state w.f. of s
and x. Finally, < VxA >Ax is just is the expectation value of VxA for the
φA φx state. Under the hypothesis that the reaction proceeds via isolated
non-interfering resonances and by applying further simplifications [41] it
is possible to define the double-differential TH cross section as:

d2σ

dExadΩs
= K ∑

i
(2J + 1) ·

⃓⃓⃓⃓
⃓⃓
√︄

k f Exa

µcd

√︂
2Pli(kcdRcd)Mi(pxaRxa)γi

cdγi
xa

Di(Exa)

⃓⃓⃓⃓
⃓⃓
2

(3.27)
where K is a normalization factor, introduced due to the fact that the

HOES cross section is obtained in arbitrary units, Pli is the penetration
function for the li wave, RbB and RxA are the channel radii, γ are the
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reduced widths for each channel, Di(ExA) is the standard R-matrix de-
nominator in the case of one-level, two-channel R-matrix formula [23].
Mi(kxARxA) is the TH reaction amplitude defined now as [41]:

Mi(pxaRxa) =

[︃
((Bxa)i − 1)jli(ρ)− ρ

∂jli(ρ)
∂ρ

]︃
. (3.28)

where jli(ρ) are the spherical Bessel functions and Bxa is an arbitrary
boundary condition chosen as described in Ref. [41]. It is worth notic-
ing that, similarly to what we have seen for the R-matrix formalism, the
differential cross section is proportional to the inverse of the level matrix
but, unlike the typical R-matrix formalism, here we have only the transfer
amplitude in the entrance instead of the channel width Γ = 2Plγ

2 which
is present only for the exit channel. This is in line with what it has been
already said regarding the absence of any barrier effect in the entrance
channel of the TH reaction.
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Chapter 4
Study of the 17O(n, α)14C reaction

4.1 Status of Art

As already mentioned in the previous chapters, the 17O(n, α)14C reac-
tion can be a possible poison reaction for the weak-component of the s-
processes in a temperature window ranging from 0.16 to 1.3 GK. For such
a reason, cross section data have to be measured at energies between 0
and 300 keV. At such energies, the 17O(n, α)14C (Qvalue = 1.82MeV) cross
section has been already measured in the past both via direct [42, 8, 43]
and indirect [44, 22] measurements.

In the work of Guardo et al.[22] the authors displays the experimental
cross section data, which we report in Fig. 4.1. There it is shown the cross
section as a function of the energy in the center-of-mass (c.m.) for three
direct measurements [42, 8, 43] of the 17O(n, α)14C reaction and a study
[45] of the inverse reaction 14C(α, n)17O.

One can immediately notices that in the data by Wagemans et al. [43],
indicated by the empty triangles in figure 4.1, two resonances are pop-
ulated, namely the one at about 170 keV due to the intermediate 18O
E∗ = 8.213MeV, Jπ = 2+ excited level and the one at 240 keV due to
the population of the E∗ = 8.282MeV, Jπ = 3− excited level. The same

69
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E∗
18O (MeV) Jπ Etheo.

c.m. (keV) Γc.m. (keV)
8.039 1− -5.74 <2.5
8.125 5− 80 n.a.
8.213 2+ 168 1.0 ± 0.8
8.282 3− 237 8 ± 1

Table 4.1: Excited states of 18O in the range of astrophysical interest: in
the first column the excitation energy of the level in MeV is expressed, in
the second the value of Jπ for the respective level is indicated, in the third
energy value in the c.m. of the α −14 C pair and in the last the natural
width of the state. [46]

resonances are also populated by the measurement of Sanders et al. [45]
although their experimental resolution is worse than the natural width of
the explored levels. The remaining cross section data sets do not clearly
allow us to disentangle the contribution of these two resonances and, fur-
ther, at energies lower than 150 keV all the available datasets do not agree
well with one another. Below 1 keV, it is also possible to observe in the
data of Wagemans et al. a slow growth in the cross-section that could be
linked, as suggested by the authors, to either Wigner’s law (Eq. 2.31) or
to the presence of a sub-threshold resonance with a long tail.

The table 4.1 shows the the spectroscopic properties of the four excited
states of the 18O intermediate system that come into play in the range of
astrophysical interest (0 < Ec.m. < 300keV) with their respective values
of Jπ. It is evident that the last two levels are at energies similar to the
resonant structures observed by Wagemans et al. [43] while there is no
trace of the first two levels in any of the datasets: the first is located at
-5 keV below the threshold and, based on its width, could contribute to
the rise below 1 keV also observed by Wagemans et al. [43]; the second,
on the other hand, is absent from any direct measurements because of
its Jπ = 5− high value. Indeed, by applying the selection rules for the
spin and the angular momentum, it is possible to see that the level is
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Figure 4.1: Cross section as a function of energy for the reaction
17O(n, α)14C for the only four direct measurements available to date.[22]
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Figure 4.2: THM data of the 17O(n, α)14C reaction as obtained by (a)
Gulino et. al[44] and (b) Guardo et al. [22]

populated only via ℓ = 3, thus it strongly suppressed in direct cross
section measurements because of the centrifugal barrier.

To shed light on the discrepancies between the already existing set,
the 17O(n, α)14C has been studied in the energy range of interest by using
the THM [44, 22]. Figure 4.2 shows the THM data as discussed in Gulino
et al. [44] (top) and Guardo et al. [22] (bottom).

These two aforementioned indirect measurements confirm the pres-
ence of the resonant levels already assessed in the direct measurement of
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Wagemans et al. and Sanders et al., however THM data also shows the
two other resonant structures not present in direct data. The first one is
located around 75 keV of energy in the c.m. frame, which corresponds to
the population of the 8.121 MeV 18O excited state. Due to the high angu-
lar momentum ℓ = 3, it is suppressed in direct measurements while it is
clearly populated in THM data because of the ability of the application
to overcome both Coulomb and centrifugal barrier penetration effects.
The second one is centered at -7 keV in the c.m., which corresponds to
the 8.039 MeV level of 18O, and it is indeed a sub-threshold resonance
influencing the 17O(n, α)14C cross-section at very low energy values.

These indirect measurements however would need further improve-
ments: in the work of Gulino et al. the resonance at the highest energy
was only partially populated by the experiment. For this reason the work
Guardo et al. was carried out using a different facility and a slightly mod-
ified [22] experimental setup, covering a smaller region in θc.m., i.e. the an-
gle between the particles in the exit channel evaluated in their c.m. frame.
In this case the energy resolution was lower, as it can be seen from Fig.
4.2, than the one of Gulino et al. work and the detected resonances can-
not be completely resolved. Therefore, to better resolve the resonances,
evaluate the contribution of the sub-threshold one, cover a wider range in
θc.m., obtain a lower statistical uncertainty and, finally, evaluate the overall
reaction rate a new THM measurement with an improved experimental
setup was carried out. In this chapter we will present the results obtained
by the new THM experiment alongside a complete review of the direct
data using the R-matrix formalism.
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4.2 Applying the THM to the 17O(n, α)14C

4.2.1 TH Nucleus choice and kinematics

The first step in applying the THM is to choose the 3-body TH reaction
appropriately, thus reflecting in a proper choice of the TH-nucleus which
is indeed a fundamental one: even thought for the same participant clus-
ter there may be various possible combinations with different spectator
clusters, which leads to the formation of different TH nucleus, however,
it is necessary to choose the combination that best approximates the re-
quirements expressed in the theoretical works [15, 47] which are linked
to [14]:

• the binding energy, the momentum distribution and the angular
momenta between the two clusters of the TH nucleus;

• the momentum transferred by the participant cluster;

• the possibility of populating the kinematical region where the direct
transfer contribution is maximized over sequential decays.

For the study of the 17O(n, α)14C reaction we decided to use the deuteron
as a TH nucleus to transfer the neutron. This means that the three-
body reaction used to apply the THM is 2H(17O, α14C)p. The choice of
deuteron as a TH-nucleus is supported by a number of reasons:

• it has a very simple structure, being composed only of a proton and
a neutron, and its wave function is well known [48];

• it has a relatively low binding energy, of only about 2.2 MeV;

• p-n relative motion mostly occurs in s-wave [48];

Since the p-n clusters motion in deuterium occurs in s-wave the mo-
mentum distribution has its maximum at 0 MeV/c, which corresponds
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Figure 4.3: Pole diagram of the three body TH reaction of interest.

to large proton-neutron distances inside deuteron. This, as we discussed,
is relevant for the QF mechanism we are interested in. The momentum
distribution between the clusters can be described as the Fourier transfor-
mation of the Hultén [49] wave function:

Φ(ps) =
1

2π

√︄
ab(a + b)
(a − b)2

(︃
1

a2 + |ps|2
− 1

b2 + |ps|2

)︃
(4.1)

where a = 0.2317 f m−1 e b = 1.202 f m−1 are two parameters with fixed
values for deuterium [48].

The next step to apply the method is to choose the beam energy to
reach in the c.m. of the two-body reaction the energy range of astrophys-
ical interest. By inverting relation 3.2, it follows:(︂

pQF
xA

)︂2

2µxA
= Ec.m.

xA + ϵa
sx (4.2)

Then, remembering the energy range of interest for the astrophysical ap-
plication, we can choose the value ExA = 200keV as the central value for
the energy range. Remembering that the binding energy of the deuteron

is equal to about 2.2 MeV, we get a value of
(︂

pQF
xA

)︂2
/2µxA equal to 2.4
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Figure 4.4: Two-dimensional plot of the emission angles of the α and 14C
nuclei as obtained from MC simulation: in black the pairs of angles that
satisfy the condition |ps| < 30 MeV/c while in red only those that satisfy
the more strict condition |ps| < 5 MeV/c.

MeV: this is the kinetic energy transferred, under the QF conditions, to
the participant cluster x. In this way it is possible to calculate the needed
energy for the beam in the laboratory frame as:

Elab
beam = 2.4MeV

mn + m17O
mn

(4.3)

Substituting the values of the masses in 4.3, we obtain a beam energy
of about 43.5 MeV in the laboratory frame. If we convert it in the c.m. sys-
tem we would get an energy of about 4 MeV which is above the Coulomb
barrier between the 17O and deuterium, at about 2.8 MeV. As explained
in the previous chapter, since the energy available in the reaction is much
higher than the barrier we can rightly neglect its penetrability effects.

After the selection of the 3-body process, a devoted Monte Carlo (MC)
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simulation was performed to single out the phase space regions we pop-
ulate and, therefore, choose the angular range to explore for properly
selecting the QF contribution of the 2H +17 O interaction. Figure 4.4
shows the simulated emission angles for 14C and α particles. As said,
we need only to detect two of the three particles in the exit channel to
completely define the kinematics of the process. The black points have
been produced by imposing values to the momentum of the proton spec-
tator of |ps| < 30MeV/C while the red ones have a narrower selection
of |ps| < 5MeV/C. Such a strict selection mimic the occurrence of the
QF mechanism, i.e. the proton maintains in the exit channel the same
momentum distribution it had inside deuteron before its break-up, thus
allowing us to clearly see the phase space region we should cover with
our detectors. In a sense the red points indicate us where the maximum
of the spectator momentum distribution is located in the phase-space of
the final particles, while the black points give us a more broad selection
that will be used to select the QF events during the analysis of the data
to cover an energy range in the c.m. frame rather than a single value
of energy. In addition, Figure 4.5 shows the simulated 2D plot of the
energy of the emitted 14C and α particles in the 2H + 17O interaction at
43.5 MeV: once again black points refer to the |ps| < 30 MeV/c selec-
tion while the red ones refer to |ps| < 5 MeV/c. From the the inspection
of the simulation results, we can conclude that the QF reaction channel
should populate an angular region defined by the values 0 ≤ θα ≤ 35 and
0 ≤ θ14C ≤ 10, while the energies of the emitted particles should range
from 2 to 20 MeV for α particles and from 24 to 40 MeV for 14C nuclei.

4.2.2 Experimental Setup

In the light of these results, the experimental setup was chosen to cover
the selected angular regions.

In figure 4.6 a schematic drawing of the experimental setup used is
shown. To detect in coincidence the α particles and the 14C nuclei in
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Figure 4.5: Kinematic locus obtained by MC simulation for the three-body
reaction 2H(17O, α14C)p at the energy of 43.5 MeV by imposing a cut on
the emission angles equal to 0 ≤ θα ≤ 35 and 0 ≤ θ14C ≤ 10 and a cut
on the spectator’s momentum equal to |ps| < 30 MeV/c (in black) and
|ps| < 5 MeV/c (in red).
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Figure 4.6: Sketch (not in scale) of the used experimental setup.

θ (deg) d (cm)
A1 7.5 ± 2.5 50
B1 7.5 ± 2.5 50
A2 22.5 ± 5 25
B2 22.5 ± 5 25

Table 4.2: Position of the detectors in the experimental setup: the first
column refers to the angle with respect to the beam axis, while the second
column refers to the distance between the detector and the target

the exit channel, two pairs (A1-B2, B1-A2) of silicon Position Sensitive
Detector (PSD) were used, placed symmetrically with respect to the beam
in order to double the statistics.

The A1 and B1 detectors were placed according to the MC simula-
tion in order to cover the QF angular region of the 14C nuclei while the
detectors A2 and B2 were dedicated to the QF region populated by α par-
ticles. A1 and B1 detectors were also coupled to an ionization chamber
(IC), placed in front of the PSD, to be used as a ∆E − E telescope for the
identification in charge of the detected particles [50].
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Figure 4.7: Schematic representation of a PSD and the relative functioning
principles.

These A1 and B1 PSDs had a thickness of 1000µm while A2 and B2
were 500µm thick: these values were chosen to completely stop all the
particles of interest inside the sensitive volume of the detector, as calcu-
lated via the LISE++ tool [51].

As shown in figure 4.7, a PSD is essentially a junction diode, consist-
ing of a silicon crystal with different doping on each side, covered by a
resistive electrode: when a particle hits the detector it generates a signal
on the contact labeled "B" which is proportional to E x

L where E is the en-
ergy released in the layer, x is the distance between the interaction point
and the grounding connected to A and L is the overall length of the elec-
trode. After crossing this resistive layer the particle proceed to interact
with the depletion region of the diode, i.e. the diode region where no
charge carriers are present, where it produces a number of charge pairs
which will generate an electrical signal proportional to the energy [52].

For this type of detectors the measurement sensitivity on the position
is ±250µm while the final angular resolution obviously depends on the
distance at which the detector is placed with respect to the target. In the
present experiment, because of the target-detector distances, an intrin-
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sic angular resolution of 0.03◦ − 0.06◦ was found. However, the overall
spatial resolution is mainly affected by the beam spread. Indeed, with a
diameter of about 1 mm, the spot of the beam on the target introduces a
significant angular spread and consequently an uncertainty regarding the
actual interaction point in the target which is higher to the intrinsic res-
olution of the detector. On the other hand, the overall energy resolution
for this type of detector is usually estimated to be about 1 % [52].

The ionization chambers (IC) have a length of about 5 cm and are
equipped with two windows, one at the entrance and one at the exit, of
Mylar with a thickness of 1.5µm: this value was chosen to withstand the
difference between the internal and external pressure while, at the same
time, minimize the energy loss of the detected particles. The chambers
were filled during the entire duration of the experiment with isobutane
gas, maintained at a constant pressure of 100 mbar. The energy resolu-
tion of the chambers was estimated to be about 10% [52] which is more
than sufficient to discriminate the particles in charge, as required for this
experiment.

4.2.3 Detector calibrations

To correctly calibrate the detectors it is better to use particles of charge
and mass equal to those that we actually want to reveal during the ex-
periment. Using different particles would entail, as is known from the
Bethe-Bloch formula [52] , a different energy loss curve in the detector
thus requiring a subsequent correction on the obtained calibration fac-
tors.

For this purpose, a series of experimental runs devoted to the cali-
brations were performed using different sources. For the PSDs dedicated
to alpha particles both a radioactive source made of 228Th, which emits
alpha particles with 8 different energies, was used alongside different
nuclear reactions which, unlike a radioactive source, have also the advan-
tage of presenting a kinematic structure, i.e. the energy of the incident
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particle varies with the angle of detection allowing us to perform also a
better calibration of the position signal, as it will be discussed below. In
particular, a beam of 6Li was accelerated at energies of 15 and 18 MeV on
a polyethylene target (CH2) of 119 µg/cm2 in order to exploit the nuclear
reactions 6Li + p → α +3 He and 6Li +12 C → α +14 N. For these runs the
detectors were momentarily moved to a suitable angle to span a region
in which the α particles possess the desired energy for calibration. For
the PSDs in the telescopes dedicated to the detection of carbon nuclei,
elastic scattering reactions of a beam of 12C on a gold target 146 µg/cm2-
thick were used. To populate different energy regions of the detector and
have a fair number of experimental points for calibration, the beam was
accelerated to five different energies: 40, 30, 25, 20, 15 MeV. For each of
them, the measurements were carried out with the ionization chamber
both empty and filled with isobutane gas at about 100 mbar. Although
it is not necessary to fill the chambers, as their calibration is not neces-
sary, they have been used in this way to degrade the energy of the beam,
thus doubling the number of energies actually used. However, this choice
also has negative sides: using a volume of gas to reduce the beam energy
causes a significant energy spread linked to the variability with which the
carbon nuclei lose energy as they pass through the gas.

Calibration of the energy signal

The dependence of the amplitude of the signal produced by the PSD on
the energy released in its active volume is linear: this means that, by
collecting a series of points with known energy, it is possible to construct
a calibration line such as

Ech = e1Eth + e0 (4.4)

where Ech is the energy expressed in ADC channels,Eth is the known
value of the energy, e1 and e0 are the coefficients to be obtained through
the best-fit procedure of the experimental points of known energy col-
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lected during the calibration runs.In the case of the 228Th source, the
energies of the emitted particles are tabulated while for the particles pro-
duced by nuclear reactions their energy was theoretically reconstructed
by means of two-body kinematics calculations. Moreover, the energy loss
in the different dead regions of the detectors, in half of the target, since
it is assumed that on average the reaction takes place in the middle of it,
and in the IC Mylar windows were also taken into account in the recon-
struction of the energy of the particles after the reaction occurred in the
target. In the case of the PSD used for the detection of carbon, it was also
necessary to take into account, as mentioned, the energy loss in the gas of
the ionization chamber, for those runs when it was used. It follows that
the energy observed in the detector will be a "residual" energy linked to
that actually energy possessed by the particle after the reaction through
the relation:

Ee f f = Eres + Eloss (4.5)

The energy loss Eloss in each dead layer was estimated using the well-
known LISE++ software[51].

Calibration of the position signal

As described above, the PSDs are devoid of any segmentation and pro-
vide a continuous signal in position, thus, to obtain reference values that
can be used for calibration, a metal grid with vertical slits was placed in
front of each of the detectors. As already mentioned, the amplitude of
the signal in position is proportional both to the energy released by the
particle in the active region of the PSD and to the ratio x/L as shown
in figure 4.7. By plotting the position signals as a function of the energy
signal also coming from the detector, it can be observed that this depen-
dence described involves, as shown in figure 4.8, the formation, for each
of the slits, of a locus of points that roughly follows a straight line, with
a certain spread given by the width of the slits.
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Figure 4.8: Raw position-energy two-dimensional plot (expressed in ADC
channel number) for detector A2 from the calibration run with the 6Li
beam accelerated to the energy of 18 MeV on a polyethylene target.

A calibration function for this signal can be obtained with simple
mathematical reasoning. Considering the amplitude of the position signal
as a linear function (given the previous relationship) of both the energy
and the angle, we can write:

Pch = e1,1θslitEch + e0,1Ech + e1,0θslit + e0,0 (4.6)

where e1,1, e0,1, e1,0 and e0,0 are again the parameters to be obtained
through the best-fit procedure of the experimental points of known en-
ergy and angle.

Calibration parameters

After having determined all the coefficients of the relations 4.4 and 4.6
by means of the calibration procedure, it is possible, by inverting the
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aforementioned relations, to obtain the two calibration functions, which
can be then applied to the data obtained by the detectors during the
proper measurement phase:

⎧⎨⎩E(MeV) = Echan−e0
e1

θ(deg) =
Pchan−e0,1Echan−e0,0

e1,1Echan+e1,0

(4.7)

As a final test, the successful outcome of the calibrations was evalu-
ated by plotting the calibrated angle values as a function of energy for
the data acquired in the various calibration runs, alongside the known
energy and position values used for the calibration itself.

In figure 4.9 it is possible to observe the two-dimensional plot θ(deg)
- E(MeV) referred to detector A2 for the events given by the reactions,
induced by a beam of 6Li accelerated to 18 MeV on the CH2 target, where
and alpha particle was present in the exit channel: namely the 6Li +12

C →4 He +14 N and 6Li + p →4 He +3 He reactions. It should be noted
that, being in this case the events linked to a two-body reaction, it is
possible to observe how the points are arranged along a vertical curve
given by the kinematics of the reaction. Moreover, it is possible to notice
that for the 6Li +12 C →4 He +14 N reactions there are multiple vertical
loci of points: this is due to the fact that not only the ground state but
also multiple excited states of the compound 18F intermediate system
are populated in the reaction. The seemingly missing points in the plot
are absent because they were not used for the calibration due to either a
low statistic in the experimental data. The good correspondence between
theoretical and experimental points ensures the success of the calibration
operation.

4.2.4 Selection of the 2H(17O, α14C)p reaction channel

Next it is necessary to correctly select the three body reaction of interest
among the others that could arise from the interaction of the 17O beam
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Figure 4.9: Angle versus energy calibrated 2D plot for the B1 detector. The
theoretical points for the two reactions actually used for the calibrations
are highlighted in red (6Li +12 C →4 He +14 N) and green (6Li + p →4

He +3 He). For the 6Li +12 C →4 He +14 N reaction were used the point
regarding the ground state and the first of the compound 18F
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and the various nuclides that can be found in the target. Indeed, other
than the needed deuterium nuclei in the target there is a quite significant
portion of carbons, being a CD2 polymer, other than various impurities
that can be trapped inside the target during the production process.

It is therefore necessary to identify at least one of the two detected
particles. For this reason, the ∆E-E telescopes were used to identify in
charge one of the two detected particles and subsequently select only
those events in which a carbon nuclei hit one of the two available tele-
scopes in coincidence with a detection of a particle from the PSD complet-
ing the symmetrical pair. Indeed it is known [52] from the Bethe-Bloch
formula that the loss of energy per unit of space traveled by a particle
in a material is proportional, for non-relativistic particles, to the mass of
the particle, to the square of its charge and to the inverse of its energy, in
formula:

dE
dx

∝
mz2

E
(4.8)

Therefore, by plotting the energy loss in the IC as a function of the total
energy of the detected particles, obtained by completely stopping them in
the detector, we will obtain a series of hyperbolas with the same curvature
but separated along the ∆E axis of a value proportional to the charge and
mass of the detected particle. However, as mentioned, the resolution of
the ICs is not high enough to distinguish the particles by their mass.

In Figure 4.10 it is possible to see the aforementioned ∆E − E 2D spec-
trum. With a careful observation it is possible to identify two loci with an
higher statistic of events, indicated in the figure by a red and a green ar-
row. We can identify the source of those events as it follows: first we select
only one of these loci and plot, for the corresponding events, the angle
of emission against the energy as measured by the PSD of the telescope.
Then it is possible to compare this plot to various two body kinematical
calculations involving the scattering of the beam and identify the corre-
spondences. Fig. 4.11 shows the superimposition of these plots for the
various loci into one picture.
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Figure 4.10: Scatter plot of the ∆E energy loss (in ADC channels) as a
function of the total energy of the E particle (in ADC channels) as ob-
tained by the telescope formed by the IC-B chamber and the PSD B1. The
red arrow indicates the scattering of the beam off deuterium of the target,
while the green one the scattering off carbon. The black labels indicate
the inferred atomic number for each locus.
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Figure 4.11: Angle of emission versus the energy of the particles detected
in the PSD of the telescope for only the events selected as explained in
the text.
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Figure 4.12: Scatter plot of the variables Y and X as defined in Ref.
[53]. The red line is calculated for the expected values As ∼ 1 and
Q3 = −0.407MeV.

Therefore in Fig. 4.10 were also added two arrows to indicate these
events: the red one refers to the scattering of the beam from the deu-
terium, while the green one refers to the scattering from the carbon nuclei.
Consequently, it is possible to label each locus according to the atomic
number Z, as indicated in the figure. In this way we are able to select
only the events originating from the arrival of a carbon nucleus in the
detectors A1 and B1. Then, assuming that the events measured in coinci-
dence in the detectors A2 and B2 come from α particles and that the third
particle is indeed a proton, using the energy and angle values measured
by each pair of PSDs it is possible, as explained in the chapter on THM,
to reconstruct all the kinematical quantities of the undetected proton.

It is possible to verify this assumption on the mass of the spectator by
applying the method described in Ref. [53] which will be briefly reported
in the following. By defining the variables



4.2. APPLYING THE THM TO THE 17O(n, α)14C 91

⎧⎨⎩Y = Ebeam − E14C − Eα

X = p2
s

2m

(4.9)

where m is atomic mass unit, one can obtain the relation

Y =
1

As
X − Qval (4.10)

It should also be emphasized that the momentum of the spectator is de-
fined regardless of its mass which appears only in the formulation of the
kinetic energy as p2

s /2ms, which makes the use of the formula 4.10 valid
to independently evaluate the mass of the spectator. In fact, drawing a
scatter plot of the Y-X variables, the points should line up along a line
whose angular coefficient depends exclusively on the mass number As of
the spectator. As it can be seen in Fig. 4.12, the experimental values, indi-
cated by the black dots, are distributed correctly around the value of the
line calculated for the theoretical values As ∼ 1 and Qvalue = −0.407MeV.

Subsequently the Q-value of the three-body reaction can be recon-
structed from the energy conservation law as:

Q3 = E14C + Eα + Ep − E17O (4.11)

and compared with the theoretical one for the reaction 2H(17O, α14C)p,
as it can be seen in Fig. 4.13, where the presence of a clear peak in
correspondence to the theoretical value confirms that the events have been
correctly selected and that the kinematical variables of the third particle
have been adequately reconstructed.

Once only the events coming from the three-body reaction 2H(17O, α14C)p
are selected, it is possible to verify the goodness of such selection using
a series of tests developed alongside the THM. Indeed, in figure 4.14 a
comparison has been made between the experimental kinematic loci, in
red, and those obtained from the MC simulation, in black.

The four scatter plots refer to different cuts on the detection angle of
the two particles, the first in the upper left includes the entire angular



92 CHAPTER 4. STUDY OF THE 17O(n, α)14C

Figure 4.13: Reconstructed Q-value of the selected events. The red dashed
line indicates the theoretical value for the Q-value of the three-body reac-
tion 2H(17O, α14C)p.

range covered by the detectors, while the other three refer to 2 degree
cuts on each of the detectors repeated in various sections of the covered
range. From the figure it can be seen how the experimental events cor-
rectly populate the region of the space E14C − E alpha indicated by the MC
simulation. It must be noted that, since the simulation does not contain
any experimental effects, the local density of these loci can be different,
as visible in Fig. 4.14

What has been done so far is limited only to selecting the exit channel
of the reaction, however the same channel can be populated via different
reaction mechanisms, as it can be seen in Fig. 4.15.

For the application of the THM, however, as explained in the dedi-
cated section we are interested only in the QF break-up events in which
the deuteron, having passed the Coulomb field between 17O nuclei and
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Figure 4.14: Kinematic locus for the E14C and Eα variables. The dots
in black represent the events obtained from MC simulation while the
experimental data in red. The locus is defined with several cuts on the
detection angles, shown in the labels.
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Figure 4.15: Pole diagrams of the possible reaction channels for the three
body 2H(17O, α14C)p reaction.

itself, breaks under the effects of the nuclear field. After the QF break-
up a virtual neutron is transferred to the oxygen with which it forms an
excited intermediate 18O∗ system, which then decays into a 14C nucleus
and an α particle. Meanwhile, the residual proton from the break-up
continues its motion undisturbed with the same momentum that it had
inside the deuterium. To be sure to select only the events coming from
this particular mechanism and therefore to discard all the events com-
ing from other possible sequential reaction mechanisms, as seen in Fig.
4.15, it is necessary to check if there are correlations between the particles
in the exit channel, i.e. if they come from the decay of an intermediate
system. To this aim, the energies for the pairs E14C−α, E14C−p and Eα−p

have been reconstructed. The presence or the absence of resonances in
this plots would testify the formation or not of a excited state of an inter-
mediate system of, respectively, 18O, 15N and 5Li. Those three variables
were plotted against each other in Fig. 4.16 and 4.17. There it is possible
to see the presence of resonant structures only in relation to the E14C−α
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Figure 4.16: Scatter plot of the E14C−p and Eα−p energy pairs versus the
E14C−α energy.



96 CHAPTER 4. STUDY OF THE 17O(n, α)14C

energy and nothing for the other two energy pairs: this is a confirmation
of the population of the desired reaction channel and, at the same time,
of the absence of the other undesired sequential mechanisms. Moreover
no correlation between the three energy pairs are present in the two plots.

Figure 4.17: Scatter plot of the E14C−p versus the Eα−p. Vertical loci of
experimental points are due to the population of an excited stated of the
intermediate 18O system.
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4.2.5 Selection of the QF reaction mechanism

The QF break-up events can be then filtered out by analyzing the momen-
tum distribution of the spectator. Indeed, by inverting the relation 3.6 it
is possible to conclude that the momentum distribution is proportional to
the ratio between the triple differential TH cross section, the kinematical
factor and the two body cross-section. In formula:

|Φ(ps)|2 ∝
1

K.F.
1

dσb.n.
xA /dΩ

d3σTH

dΩbdΩBdEb
(4.12)

From this last relation it is understood that it is possible to extract the
momentum distribution, in arbitrary units, by simply dividing the ex-
perimental yield by the kinematic factor, taking care, however, to select

Figure 4.18: Scatter plot of the Ec.m. versus the momentum of the spectator
ps .
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a region in which the 2-body cross-section dσN
xA/dΩ can be considered

constant. This can be achieved by limiting the selected data to a small
energy region of the c.m. of the pair 14C − p, defined as :

Ec.m. = E14C−α − Q2 (4.13)

where Q2 = 1.817 MeV is the theoretical Q-value for the 17O(n, α)14C
two body reaction. By looking at Fig. 4.18, where the Ec.m. is plotted
against the momentum of the spectator ps, it is possible to notice that
the resonances detected do indeed populate the QF region around zero
for the spectator momentum distribution. To study how these levels are
populated with respect to the momentum of the spectator, the triple dif-
ferential cross section d3σTH/dΩbdΩBdEb, which is proportional to the
experimental coincidence yield, was divided for the K.F. and plotted in
Fig. 4.19 as a function of Ec.m., for different ranges of |ps|: 0-20, 20-40,
40-60 MeV/c. If Eq. 4.12 is true we should see a decrease in the popu-
lation of those resonances when the absolute value of the momentum of
the spectator increase. This is precisely what is shown in Fig. 4.19 which
then confirms that those resonances are indeed populated under the QF
mechanism.

Therefore it is possible to go back on Eq. 4.12 and evaluate |Φ(ps)|2

by taking only the events in a small energy region around the center of
each one of the four resonances. The result of such calculation, when
selecting only the events around the most populated resonance at Ec.m. =

170.41 keV, is visible (black dots) in figure 4.20 where it is compared to
the theoretical distribution (red line) given by Eq. 4.1.The good agreement
between the experimental and theoretical distribution is an indication of
the presence of the QF break-up reaction mechanism. Moreover, the full
width at half maximum (FWHM) of the momentum distribution plotted
in Fig. 4.20 was measured to be FWHM = 57.34± 4.05MeV/c: this value
is in agreement with FWHM ∼ 60MeV/c obtained [54, 48], under the
PWIA hypothesis, for the wave function in asymptotic form. Moreover,
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Figure 4.19: Triple differential cross section of the three-body reaction
divided the kinematic factor as a function of Ec.m., calculated for different
ranges of the momentum of the spectator: 0-20 (top frame), 20-40 (middle
frame), 40-60 (bottom frame) MeV/c.



100 CHAPTER 4. STUDY OF THE 17O(n, α)14C

Figure 4.20: Momentum distribution of the spectator proton normalized
on the kinematic factor with a narrow cut on the energy of the c.m. to
select the third resonant peak. The theoretical momentum distribution is
drawn in red.

by following the procedure described in Ref. [54], this value, as a function
of the transferred momentum in the TH reaction qt, was compared with
the others obtained in past THM experiment also using the deuteron as
TH nucleus. As it can be seen in figure 4.21 there is a good agreement
between the value obtained here and the established data, confirming
once more the goodness of the events selected.
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Figure 4.21: FWHM of the p-n inter-clusters momentum distribution in-
side the deuteron as function of the corresponding transferred momen-
tum, as defined in Ref. [54]. Black triangles are referred to past THM
experiments using the deuteron as TH nucleus, meanwhile the blue full
circle refers to the present experiment.
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4.2.6 Extraction of the two-body cross-section

Considering what was discussed in the previous section, to perform the
analysis with only the QF events, a cut on the data given by the |ps| < 40
MeV condition will be used.

Under the PWIA assumptions, it is possible to rearrange the formula
in Eq. 3.6 as it follows:(︄

d2σN
xA

dΩdEc.m.

)︄
HOES

∝
1

K.F.
1

|Φ(ps)|2
d3σTH

dΩbdΩBdEb
(4.14)

This means that we can extract the bare-nucleus cross-section for the
17O(n, α)14C reaction by dividing the triple differential cross section, pro-
portional to the experimental yield, by the product of the kinematical
factor and the square of the momentum distribution K.F. × |Φ(ps)|2, ob-
tained by the means of the devoted MC simulation.

In Fig. 4.22 it is possible to see the result of such analysis: the black
dots represent the value of the experimental yield, divided by K.F. ×
|Φ(ps)|2, as a function of Ec.m. meanwhile the red line represents the re-
sult of a fit performed using the sum of four Gaussian functions without
taking into account any interference effect, since the resonance widths is
much lower than their energy separation as discussed in Ref.[38]. The fit
was executed to deconvoluted the weight of each resonance over the total
reaction yield and to better identify the 18O levels corresponding to the
resonances. As found in previous experiments[44, 22], the excited states
populating the experimental yield are the ones at 8.039MeV (Jπ = 1−),
8.125MeV (Jπ = 5−), 8.213MeV (Jπ = 2+) and at 8.282MeV (Jπ = 3−)
which produce four resonances in the 17O(n, α)14C cross section respec-
tively at −8.49keV, 96.38keV, 170.41keV and 241.24keV in Ec.m.. It must be
noted that, thanks to the THM, it is possible to populate a sub-threshold
resonance with quite good statistic and to properly detect the resonance
at 96.38keV, which is usually heavily hindered in direct experiments by
the presence of the centrifugal barrier, due to the level being populated in
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Figure 4.22: Bare nuclei cross-section for the 2-body reaction 17O(n, α)14C
as a function of Ec.m.. The red line is the result of a best-fit performed
using the sum of four Gaussian functions, without taking into account
any interference effect, meanwhile the gray lines are the results for the
Gaussian fit of each resonance.
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Ec.m. (keV) 18O (MeV) Jπ ℓin

-8.49 8.039 1− 1
96.38 8.125 5− 3

170.41 8.213 2+ 0,2
241.24 8.282 3− 1

Table 4.3: Spectroscopic parameters of the four detected resonances

d-wave, between the neutron and the 17O nucleus in the entrance channel.
A summary of each detected resonance is reported in table 4.2.6.

The data shown in Fig. 4.22 is limited to only a certain region of the
full possible angular range of the θc.m. reaction angle, expressed in the
c.m. of the α −14 C system, which is defined as [55]:

θc.m. = cos−1 (ν⃗17O − ν⃗n) · (ν⃗14C − ν⃗α)

|ν⃗17O − ν⃗n| |ν⃗14C − ν⃗α|
(4.15)

where ν⃗i is the velocity for the particle i in the laboratory frame. The
θc.m. range for the present experiment spans the interval between 60° and
120°, significantly increasing the range covered in comparison to the pre-
vious experiments. However, it is still necessary to integrate the angular
distribution to obtain the total cross-section, thus taking into account the
full angular range, between 0° and 180°. To do so it’s necessary to first
reconstruct the angular distribution dσ/dΩ as a function of cos θc.m. for
each one of the four resonance, isolated from the others by the means of
the aforementioned Gaussian fit procedure. Then we must fit each angu-
lar distribution with the theoretical on-energy-shell angular distribution,
calculated as explained in Ref. [44], leaving a scaling factor as the sole
free parameter in the procedure, in order to correctly scale the already
published distributions to the present experiment yield. The results ob-
tained with this procedure are plotted in Fig. 4.23 where the red stars
represent the present experiment data, the black dots the data by Gulino
et al. [44] and the hollow squares the data by Guardo et al. [22], while the
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black lines are the theoretical angular distributions calculated for each
resonance with the given value of ℓin also reported in Table 4.2.6. The
present experiment provided a higher statistics of the events collected,
significantly lowering the statistical error in comparison to the two past
experiments as it can be seen in Fig. 4.23, while still maintaining a broad
coverage of the θc.m. range.

To take into account the θc.m. region not covered by the experimental
data, a correction factor usually defined as [22]

Ξ =

∫︂ 120◦

60◦
dσ
dΩ (cos θc.m.)dθ∫︂ 180◦

0◦
dσ
dΩ (cos θc.m.)dθ

(4.16)

was calculated for each resonance and then used to properly scale the
events related to that particular resonance, which were already deconvo-
luted with the procedure described before. Then all the data was summed
over again finally obtaining the correct THM differential cross section as
it can be seen in Fig. 4.24.

The data is still expressed in arbitrary unit since, as discussed in the
third chapter of this thesis, the HOES nature of the cross section does not
allow to measure it in an absolute scale and we need a trustworthy direct
measurement to properly scale it. To do so, as it will be explained in the
dedicated section, we need the partial widths of the resonances obtained
by direct measurements. But, as we clearly saw, the data in literature do
not agree well with each other: for this reason we decided to perform an
independent and complete R-matrix analysis.

A review, using the R-matrix approach, does not add new information
that is not already present in the data itself, it is only a way to better un-
derstand strengths and flaws of each datasets in order to obtain in the end
a common "best fit" of the parameters we need and of the cross-section
itself. Any issue in the data would be still there, only mitigated thanks to
the information obtained from other sources and this is indeed one of the
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Figure 4.23: Differential cross section as a function of the cos θc.m. for each
of the detected resonances as obtained in the present work (red triangles),
by Gulino et al. [44] (black dots) and Guardo et al. [22] (hollow squares).
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Figure 4.24: Bare-nucleus cross-section for the 17O(n, α)14C reaction as
a function of Ec.m., after taking into account the correction for the θc.m.

region not covered by the data, as explained in the text. The red line is the
result of a best-fit performed using the sum of four Gaussian functions,
without taking into account any interference effect, while the gray lines
are the results for the Gaussian fit of each resonance.
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most important aspect of the R-matrix approach: being able to use var-
ious independent measurement of different reactions that populate the
same intermediate state in order to constrain the R-matrix with multiple
sources of information. Moreover, even if there was a way to precisely
know the exact value for the resonances detected in direct measurements
we should remember that the THM allow us to also measure resonant
states that are hindered or totally absent in direct data which are of fun-
damental importance to estimate the real value of the cross-section and
the reaction rate in the stellar environment.

Therefore, it is clear that those two approaches are complementary
and only by using the strengths of each one we would be actually able to
study in the best way possible the reaction we are interested in.

4.3 R-matrix analysis of direct data in literature

4.3.1 Experimental data used

For a comprehensive R-matrix analysis of the 17O(n, α)14C reaction ide-
ally all available data at the energy range of interest, for all the reactions
that populate an intermediate 18O system, should be included. How-
ever, there are only a few datasets in literature for the astrophysical
region, thus allowing us to include only data for the 17O(n, α)14C and
14C(α, n)17O reactions and the 14C(α, α)14C scattering: only these three
channels were therefore activated in AZURE2. We already showed most
of the data for the first two reactions in the direct data compilation from
Guardo et al. [22] in Fig. 4.1 and we already know about their ambigui-
ties. We decided therefore to use the data coming from the 14C(α, α)14C
scattering measurement as a significant constraint to the Γα of the levels.
However, we still need a reference to which normalize all the data: to this
aim we used the value of the thermal neutron absorption cross-section
for the 17O(n, α)14C that was measured by Sears et al. [56] as 0.236 barns
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at 0.025 eV of energy.
In order to perform the analysis, AZURE2 needs as an input also all

the properties of the resonant levels of the intermediate 18O system that
are included in the energy region of interest. All the four resonant states
already found in the THM analysis were included, using the tabulated
values for their energy, Jπ and partial widths as initialization values for
the fit. As usual for an R-matrix analysis with AZURE2, a "background
pole" was also added for each Jπ of the levels included. A background
pole is a fictitious level added to approximate the effects of all the other
levels of the intermediate system that are not included in the analysis: for
this reason these poles must be initialized in the code with a fixed energy
significantly higher than the range we are studying. Moreover, a sub-
threshold level was also included to reproduce the behavior of the cross-
section at low energies and in particular the Er = 5.254MeV, Jπ = 2+ level
of the 18O was chosen in order to also take into account an interference
effect with the Er = 8.213MeV, Jπ = 2+ that was noticed during the
R-matrix analysis described below.

14C(α, α)14C scattering: a constraint to the Γα

Looking over all the available datasets in literature for the 14C(α, α)14C
scattering reaction, only two of them cover the energy range we are ana-
lyzing: the works from Avila et al. [57] and the one from Weinman and
Silverstein [58]. The first one is significantly more recent than the latter,
thus should have the advantage given by modern technology and tech-
niques. Indeed, the data from Avila et al. are recorded in the EXFOR
database, however the values indicated there do not match with the one
published in the images of the paper. For this reason we decided to use
a image digitization software to extract the data point for both works,
thus in fact neutralizing the starting advantage Avila et al. works had.
Avila et al. used the thick-target inverse kinematics technique to study
the 14C(α, α)14C elastic scattering: a 14C beam was accelerated at 42 MeV
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Figure 4.25: Part of the experimental setup used by Avila et al. [57]

by an FN Tandem Van de Graaff accelerator to a pure helium (99.9%)
4He gas target. A sketch of the experimental setup used is visible in Fig.
4.25. In this technique, the pressure of the gas is tuned to completely stop
the beam in the target thus, when a interaction indeed occurs, the 4He
hit by the beam gains kinetic energy and propagates forward where an
array of detectors are set up to detect its position and energy, which is
less hindered by the loss on the target having a charge and mass signifi-
cantly lower than the one of the beam. However, this technique inevitably
brings a degree of indeterminacy in the measurements, which means that
the obtained cross-section is heavily influenced by those experimental ef-
fects, especially in the lowest part of the energy range measured which
is exactly the range we are interested in. When the beam hits a nuclei
of the target the exact point of interaction must be know to precisely
reconstruct the energy of beam during the interaction: this is done by
measuring with high precision not only the energy of the scattered nuclei
but also its angle, however this approach suffers from the quality of the
reconstruction. Indeed, as it can be seen in Fig. 4.26, the experimental
effects are quite important and they cause a significant broadening of the
resonance peaks. For this reason we decided to not use this data set to
constrain the alpha partial width of the levels, we will use it after the fit
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Figure 4.26: Scattering differential cross section (red points) and the rela-
tive R-matrix fit (blue curve) as reported by Ref. [57]
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has been performed as a test to see if, considering all the experimental
effects, we can reproduce their measurements. Weinman and Silverstein
did their measurement in 1958 using an alpha beam accelerated from
2 to 4 MeV in the laboratory frame to a carbon target enriched of 14C
(38.6%), thus studying the excited states of 18O in the energy range of
7.8 to 9.4 MeV, exactly where the resonances detected by THM data are
located. They scattered 4He ions were selected by an electrostatic ana-
lyzer to separate the ones scattered by 14C nuclei in the target to those
scattered by the 12C ones, which make up the rest of the target (61.4%)
and the whole backing. The experimental yield was measured at four
fixed angles, 90◦, 125.3◦, 140.8◦ and 149.5◦ which corresponds to zeros of
Legendre polynomial for ℓ = 1, 2, 3, 4, and at the back angle (169◦).

The resulting differential cross section is reported here in Fig.4.27. As
it can be clearly seen, the experimental effects on the cross section in
this measurement are much less significant than the ones in the work
from Avila et al., therefore we decided to use this data set to perform
the R-matrix analysis. First the graphs in Fig. 4.27 were digitized, tak-
ing into account a 10% margin of error for the whole digitizing process
which should be then combined with the error in the measurement de-
clared by the authors and included in AZURE2 as a normalization error.
Subsequently we performed an R-matrix fit of this data, treating each
measurement at different angle as a separate segment in AZURE2, in or-
der to verify that we are able to precisely reproduce the experimental
effects. A segment is a unit of data that contains a series of experimental
points referring the same measurement of the same quantity, i.e. inte-
grated cross-section, differential cross-section, angular distribution, etc. .
As we can see in Fig. 4.28, we indeed succeed in doing so. Therefore we
packed all the data into one single segment in AZURE2 to have the same
normalization coefficient, as it should be given that the measurements are
coming from the same experiment, and proceed to add the 17O(n, α)14C
and 14C(α, n)17O reactions datasets into the software.
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Figure 4.27: Scattering differential cross section as reported by Ref. [58]
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Figure 4.28: R-matrix fit (red curve) of the experimental differential cross
section (black dots) from Ref. [58] for the 180◦ measurements (top) and
125◦ measurement (bottom)
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17O(n, α)14C and 14C(α, n)17O datasets

The data available in literature for the 17O(n, α)14C reaction were already
showed in the dedicated section of this chapter, therefore we will just
briefly analyze each work in order to better understand how the exper-
iment was carried out and how the data was acquired so that, in turn,
we can better understand their data. For each one of them we would
also carry out a standalone fit only considering the scattering data as a
secondary source just to still maintain the constraint on the alpha partial
width.

Koehler et al. [42] (Fig. 4.29) measured the 17O(n, α)14C cross section
from 1 MeV down to thermal energy range: this could be advantageous
for our analysis since we could normalize this data to the thermal neu-
tron absorption cross-section of 0.236 barn and use it as a reference for
the normalization of other segments in AZURE2. The Koehler et al. mea-
surement was carried out using a moderated white neutron source and
a Nb2O5 target made by anodizing niobium in a 17O enriched (37.5%)
water. The energy of the neutrons was measured using the time-of-flight
technique while the energy of the emitted alphas was measured by a
10µm thick silicon surface-barrier detector. As the authors themselves
point out, due to the uncertainties in the neutron energy combined with
the fact that they did not measured angular distributions and that they
covered only a small portion of the solid angle, their data above 100keVis
not adequate enough to extract nuclear structure information. Consider-
ing this we decided to include in this analysis only the points below 100
keV. This means that we would not be able to use this data for getting
information about the resonant levels above the threshold, however we
can still get the significant advantage of precisely study the low energy
region and use it as a reference for the normalization, as explained before.
Indeed by looking at the value of the cross section measured by Koehler
et al. at 0.025eV we can see a value very similar to the one mentioned
above for thermal neutrons. We then multiply the data for a small correc-
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Figure 4.29: R-matrix fit (red curve) of the experimental cross section
(black dots) from Ref. [42] taking also into account the scattering data
from Ref. [58]

tion factor, of the order of 1%, an fix the normalization in AZURE2: the
code will use this data as a reference from now on.

The data from Wagemans et al. [43] (Fig. 4.30) cover significantly bet-
ter the energy region where the two resonances above threshold lay: we
then must assess if we can reliably use it for our analysis. The measure-
ment was carried out using a peculiar target, made by implanting 17O
ions in ultra-pure aluminum foils which in turn resulted, as the authors
underline, in an higher density of 17O in the final target with respect to
the target used by Koehler et al. . The neutron beam was created us-
ing a primary proton beam from a Linac, therefore also in this case the
time-of-flight technique was used to measure the energy of the neutrons,
meanwhile the energy and angle of the alpha particles were measured us-
ing a ionization chamber equipped with a Frisch grid. Without going too
much into the experimental details of the measurement, we clearly saw
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Figure 4.30: R-matrix fit (red curve) of the experimental cross section
(black dots) from Ref. [43] taking also into account the scattering data
from Ref. [58]

at the beginning of this chapter, in Fig. 4.1, that the energy resolution is
good enough to asses the presence of two separate resonant structures in
the cross section. Wagemans et al. also carried out the measurement at
thermal energies as Koehler et al. did, however the plot in which they
show this data suggest a value for the cross-section three orders of mag-
nitude lower than the one from Koehler et al. which we already assessed
as reliable, by comparing it to the thermal neutrons value of 0.236 barn.
Unfortunately, unlike the data from Koehler et al., the cross section from
Wagemans et al. is not available on EXFOR so we have no way to verify
the reliability of this low energy part: therefore, we have no choice other
than excluding this part of the data from our analysis.

Moreover, both Wagemans et al. and Koehler et al. gave an evaluation
of the reaction rate which is quite similar in the overall shape but it is
scaled differently by a multiplying factor with a value of ∼ 3 [43]. This
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could be explained by a difference in the normalization of the data, how-
ever, using the neutron thermal energy we already apply a constraint in
this sense to the data from Koehler et al., even if it was just only one point
at low energy. In any case, for the R-matrix analysis it is beneficial to have
as many measurements as possible covering the same energy region. We
therefore added to the analysis the data from Bair et al.[59] (Fig. 4.31) of
the inverse reaction 14C(α, n)17O obtained using an alpha particle beam
of energies between 2.5 and 5.1MeV in the laboratory frame, which cor-
respond to an excitation energy of the 18O intermediate system between
8 and 10MeV thus covering the region where there are the two resonant
levels we are interested in. The experiment was carried out using a Van
de Graaff accelerator for the alpha beam, impinging on a target produced
from 14C-enriched acetylene and with a thickness of 17keV. The pro-
duced neutrons were measured with a spherical graphite detector, more
information can be found in Ref. [59] and references therein.

Finally we also took into exam the data from Schatz et al. [8]: even
thought there are only five points with a quite large energy resolution
they are still useful to link the low energy region covered by Koehler et
al. with the region above 100keV covered by Wagemans et al. and Bair et
al. with their data.
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Figure 4.31: R-matrix fit (red curve) of the experimental cross section
(black dots) from Ref. [59] taking also into account the scattering data
from Ref. [58]
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4.3.2 Reproducing experimental effects in the data

Before proceeding with the concurrent fit of all the data we must first
evaluate if the fit of each segment needs further tuning by including the
experimental effects affecting the data, using the dedicated section in the
AZURE2 code, in order to correctly reproduce the shape of the cross sec-
tion as measured by the various authors. The user can take advantage
of target integration and beam resolution convolution techniques imple-
mented in the code.

The beam resolution convolution function is used to better reproduce
the effect on the cross section from the finite energy resolution of the
detection system and the finite thickness of the target used. Often the
distortion of the cross section by these experimental effects can be simu-
lated by convoluting the R-matrix cross section with a Gaussian function
which is energy independent, considering that these effects are also usu-
ally energy independent. The target integration function is used instead
to evaluate the energy loss of the beam as it interacts with the target.
Therefore, AZURE2 calculates the final simulated spectrum as [60]:

F(E0) =
∫︂ E0

E0−∆

∫︂ +∞

E=−∞

σ(E′)

ϵ(E′)
g(E − E0)dE′dE (4.17)

where E0 is the mean beam energy, σ(E′) is the cross section devoid
of any experimental effect, ϵ(E′) is the stopping cross section, which rep-
resents the energy distribution resulting from the scattering process of
the beam particles inside the target, g(E − E0) is the spreading function,
which represents the energy distribution of the beam[60]. To correct for
these effects the user can perform basic target integration corrections by
adding in the code the density of the active target material, i.e. the den-
sity of the nuclei in the target actually involved in the reactions of interest,
alongside the total stopping cross section, considering all the materials in
the target. The latter must be declared as a continuous function of energy
so that the effected can be determined at any arbitrary energy.
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In most of the segments in exam the effect can be actually neglected
but in two cases we were forced to include the target thickness effects to
perform a valid fit: for the scattering data from Weinman et al. and for the
data of Bair et al. . In both cases, the active target value was inferred from
the data reported on the paper, meanwhile the stopping cross section
was determined by fitting the values obtained by performing a SRIM [61]
calculation reproducing the actual experimental conditions for each case.
All the fit showed in the previous paragraphs in figures 4.28,4.29,4.30 and
4.31 are already obtained with these experimental effects turned on.

4.3.3 Assessing the normalization factor

With all the data set up inside the AZURE2 code we first initialize the val-
ues for the parameters of the 18O resonant levels with the one present in
the literature and then perform the first of a series of fits: we are not sure
if we are actually near the point of absolute minimum in the parameters
space for the χ2 function, used by the minimization algorithm to perform
the fit, therefore there could be some issues with the calculation, such as
the algorithm getting stuck on a local minimum or taking too much time
due to the experimental effects integration. By repeating the calculation
with small changes in the initialization values of the parameters we can
test the stability of the fit by looking at how the final values change. First
we focus on the normalization parameter, i.e. a multiplying constant for
each data set, and we start by giving to all the segments a value of 1,
indicating also for each of the the error in the normalization of the data,
which in most of the cases was already mentioned in the original paper
while in some cases we had to extrapolate it from other values reported
by the authors. After repeating the fit for multiple runs, if the results
were stable, we took the values obtained in the last 10 runs and calculate
the average of the values obtained for each parameter which are reported
in Table 4.3.3.

The normalization of Koehler is obviously fixed because, as mentioned
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Source Data Normalization factor
Koehler et al. [42] 1 (fixed)

Weinman et al. [58] 0.927 ± 0.01
Bair et al. [59] 1.411 ± 0.05

Schatz et al. [8] 1.763 ± 0.05
Wagemans et al. [43] 3.266 ± 0.1

Table 4.4: Normalization factor obtained for each of the direct measure-
ment data included in the R-matrix analysis.

before, we already found to be in accordance with the thermal neutrons
energy value. All the remaining datasets, except the one for Wagemans
et al. data have a normalization factor of about 1. For the scattering
data we put the measurements at various angles in a single AZURE2
segment in order to have a common value for the normalization, since all
the data comes from the exact same experimental setup, and we indeed
get a factor close to one which confirms the goodness of the data. The
value for Wagemans et al. of about 3.3, having fixed the data of Koehler
et al. to the thermal neutrons value, also confirms the scaling difference
we already mentioned. The remaining values for Bair et al. and Schatz
et al. are slightly higher than 1 because the code tries to increase them
to match the data of Wagemans et al. . The errors for the normalization
factors are a first gross estimate obtained by considering the excursion of
each value along all the multiple runs of the code used to calculate the
mean value. However, this estimation is of course not adequate for our
purpose. A more strict error evaluation of all the fit parameters will be
given in a dedicated section in the following.

4.3.4 Fitting the partial widths of the levels

Finally, once we have defined a stable set of values for the normalization
factors, we use them as an input in the code and we repeat the fit again
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R-matrix fit (this work)
E∗

18O (MeV) Jπ Γn (eV) Γα (eV) Γtot (eV)
8.038 1− 170 (rw) 1901.5 1950
8.218 2+ 257.7 2003.9 2262
8.289 3− 9501.6 3492.8 12994

Table 4.5: Partial and total widths for the resonances in the energy region
of interest included in the R-matrix analysis. For the 1- resonance the
neutron partial width is substituted with the reduced width (rw) due to
the sub-threshold nature of the channel.

for multiple runs, still giving the code the possibility to vary them, while
performing small adjustment to the initial values of the strength of the
resonances or to the ANC, in the case of sub-threshold ones. The details
of the fit procedure are described in details in the AZURE2 User manual
[60]. In Table 4.3.4 there are reported the values for the partial widths and
the total width of each detected resonant levels obtained by calculating
the average on multiple runs.

We can then compare the results for the total widths with the ones
available in the literature. In particular we took into exam the tabulated
values in Wagemans et al., since it is the most recent and the one with
the lowest relative error, those from Guardo et al., obtained via the appli-
cation of the THM, and those given by Avila et al., because it could be
an interesting comparison to do as a cross-check since their data was not
included in this fit.

As we can see from Table 4.3.4, except for the resonance with the high-
est energy in the work of Avila et al. , all the values obtained from the
R-matrix fit for the total width are in line with the data available in lit-
erature, coming both from direct and indirect (THM) measurements. We
will not focus on comparing the partial widths for multiple reasons. First
the values obtained by the various references come from totally different
experimental approaches that are sensible to different channels. Indeed,
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Γtot (eV)
E∗

18O (MeV) Jπ R-matrix fit Wagemans Avila Guardo
8.038 1− 1950 2400 2000 ± 700 2400 ± 300
8.218 2+ 2262 2258 ± 135 1900 ± 200 2260 ± 300
8.289 3− 12994 14739 ± 590 8500 ± 900 14700 ± 3800

Table 4.6: Comparison the values obtained for the total strength of the
resonances of interest by this R-matrix analysis and by Ref. [43, 57, 22]

Avila et al., which obtained significantly different values for the partial
widths with respect to the ones obtained by Wagemans et al., verified
[57] that when they used the partial widths from Wagemans et al. in their
R-matrix analysis the 14C(α, n) spectrum was still well reproduced while
the 14C(α, α) was not. Moreover, Wagemans et al. fitted their data with
non-interfering Breit-Wigner shapes using the total level widths, the re-
duced neutron widths and the statistical spin factor g. The alpha partial
widths were then calculated using the tabulated values for the gamma
partial widths. Meanwhile Avila et al. obtained the partial widths by the
means of an R-matrix fit of their scattering data combined with various
other datasets to constrain the other open channels. Therefore the best
approach is to just consider the actual experimental data and perform an
independent R-matrix fit, as we did.

4.3.5 Error evaluation using emcee and BRICK

As we have seen so far, no errors were showed for the output values
of the fit parameters obtained from AZURE2. This, as explained in the
devoted section of the previous chapter, is the standard behavior of the
code that simply uses MINUIT2 to perform the minimization but does
not calculate any estimation of the error of the parameters. As said, we
have to use emcee alongside BRICK to link the MCMC analysis proce-
dure with AZURE2. For the starting values of the Markov chain, BRICK
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will automatically read the AZURE2 workspace files and obtain the in-
put values given by the user for the parameters and then use them to
generate slightly different starting points for each of the walker, as ex-
plained before. Considering that, in the Bayesian formalism, the priors
PDFs represent our a priori beliefs on the parameters, i.e. what it is known
before the experimental data is considered, it is a good practice to start
to sample a small region of the parameters space around the most likely
value, which we already obtained through the AZURE2 fit, and then ex-
pand this region as much as possible giving as little bias as possible to
the prior PDFs. In the final iteration of the input model, which we will
show here in this paragraph, the prior PDFs of the R-matrix parameters
are defined as a flat distribution with a quite large range, calculated as
x ± x where x is the starting value of the parameter, except for the energy
of the resonances that are defined in a small region, of about 0.05MeV,
since these values are already well known.

The final posterior PDFs obtained from the MCMC analysis can be
plotted using the corner python package, precisely developed to graphi-
cally represent this type of data, since it indeed create a corner plot where
the diagonal is populated by the one dimension posterior distributions of
the parameter. The i, j (i ̸= j) non-diagonal slots will be then populated
by the 2D plot of the corresponding i, j parameters. However consider-
ing the large number of parameters involved in this calculation, the final
dimension of the corner plot would be too large for the A4 paper of this
work. Instead, we will show here only small section of it that are of
particular interest for our analysis.

In Fig. 4.32 it is possible to see the a small section of the corner plot
obtained, where n1, n3, n7 , n9 are respectively the normalization factor
for the data of Wagemans et al., Schatz et al., Bair et al. and Weinman et
al. . Here it is possible to clearly see that there is a correlation between n1,
n3 and n7: this means that the high value we obtain for the normalization
of Schatz et al., Bair et al. are influenced by the need of having an high
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Figure 4.32: Part of the corner plot of the R-matrix parameters calculated
in the MCMC analysis, focusing only on the normalization factors of the
datasets
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Source Data Var. name Value (MCMC))
Koehler et al. [42] n.a. 1 (fixed)

Wagemans et al. [43] n1 3.3 ± 0.2
Schatz et al. [8] n3 1.9 ± 0.3
Bair et al. [59] n7 1.4 ± 0.1

Weinman et al. [58] n9 0.928 ± 0.008

Table 4.7: Normalization factors and their confidence interval obtained by
the MCMC calculation for each of the direct measurement data included
in the analysis.

scaling factor for the data of Wagemans et al. . In Table 4.3.5 it is possible
to see the values obtained for these parameters from the MCMC, calcu-
lated as the 50th percentile of the posterior distribution, alongside the 1σ

confidence interval obtained by evaluating the 16th and 84th percentile.

Moreover by leveraging the functions of BRICK, it is possible to plot
the MCMC R-matrix calculation for the cross section, including again the
confidence interval. This is done evaluating the R-matrix at multiple en-
ergy values and for each one of them repeating the calculation for each of
the values of the posterior distribution of the parameters. While it may
sound complicated this simply means that instead of having one cross
section value for each energy we will now have a cross section distribu-
tion, an example of which can be seen in Fig. 4.33. Finally in Fig. 4.34 we
can see the 17O(n, α)14C cross section and its confidence interval as ob-
tained by the MCMC calculation (orange line) plotted along with the data
from Ref. [43] (blue points) and [42] (green points). Here the cross section
is unfortunately cut at a lower limit of 10−5 MeV since, going to a limit
closer to zero would require a significantly smaller sampling step in that
range and a much longer computational time. We can however see that
the MCMC cross section nicely reproduces the experimental data trend
but for the data of Wagemans et al. there is of course a normalization
factor of about 3 to take into account.
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Figure 4.33: MCMC evaluation for the cross-section distribution at the
energy value of 159.61 keV

MCMC calculation
E∗

18O (MeV) Jπ Γn (eV) Γα (eV) Γtot (eV)
8.0380 ± 4e−04 1− 200 ± 20 (rw) 1880 ± 210 2080 ± 310
8.2184 ± 1e−04 2+ 260 ± 20 2000 ± 100 2260 ± 120
8.2891 ± 2e−04 3− 9570 ± 450 3530 ± 200 13100 ± 650

Table 4.8: Spectroscopic parameters obtained by the means of the MCMC
calculation for the resonances included in the analysis.
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Figure 4.34: Cross section and its confidence interval as obtained by the
MCMC calculation (orange line) plotted along the data from Ref. [43]
(blue points) and [42] (green points)
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Meanwhile in Table 4.3.5 we can see the values obtained by the MCMC
R-matrix calculation for the strength of the resonances. The total widths
are, considering the experimental errors calculated as explained before,
in accordance with the values available in the literature. However, for the
neutron partial widths we get values consistently higher than the ones
obtained by Wagemans et al. : this could be explained by the aforemen-
tioned normalization factor in the data of Wagemans et al. that is also
clearly visible in Fig. 4.34. On the other hand, the alpha partial widths
are instead lower than to the ones showed by the authors in their work[43]
and more in line to what Avila et al. report in their work. This behavior
should require further investigation since, as already mentioned, the data
set is not present on EXFOR or any other database and there might be
only an issue in the plotted data. Another explanation could be that the
authors are aware of some experimental effects or correction that we are
obviously missing in our analysis. The same relation holds true when
comparing the result in Table 4.3.5 to what Guardo et al. reported in
their work, this comparison will be however discussed in depth in the
following section when taking into account also our THM data.

We can then conclude that the analysis procedure was correctly car-
ried out and we can use the obtained values for the reduced widths,
present in the output file created by AZURE2, to perform our modified
R-matrix analysis as it will explained in the dedicated section below.

4.4 Modified R-matrix analysis of THM data

With the THM cross-section correctly extracted, as shown before, it is
then possible to calculate the reduced widths for each of the detected
resonances by the means of the Modified R-matrix approach described in
the previous chapter, using Eq. 3.27. Remembering the standard formula
for the channel radius, R = 1.3(A1/3

1 + A1/3
2 ) where A1 and A2 are the

mass of the two nucleus involved in the channel, it is possible to define
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the values for Rn17O = 4.64 fm and Rα14C = 5.20 fm. The HOES cross
section was also folded with four Gaussian having a σ = 17 keV to take
into account the finite experimental energy resolution. It is clear that the
only free parameter to match the HOES modified R-matrix calculation to
the THM experimental data is the normalization factor K, which can be
obtained by applying the procedure described in Ref. [41] that we will
schematically report here.

First we take the reduced widths, obtained using the R-matrix fit pro-
cedure described before, for the resonances detected by direct measure-
ments, namely the 2+ and 3− one. We then use these reduced widths
as an input for the modified R-matrix calculation and subsequently ad-
just the scaling factor K in order to reproduce the THM experimental
cross section. However, as it can be seen in Fig. 4.35 it was not possible
to correctly reproduce at the same time the experimental THM data for
both resonance considered. The calculated Modified R-matrix was signif-
icantly higher than the experimental data for the 3− resonance. For this
reason we decided to take as reference only the 2+ resonance at ∼ 170
keV and its γn and γα reduced widths to tune the scaling factor K. In
this way we normalized the Modified R-matrix calculation to the experi-
mental data for the 2+ resonance. We therefore evaluated an error on the
estimation of this normalization factor K of about 10%. Once the normal-
ization procedure is complete, K is fixed as a constant alongside γn and
γα of the 2− resonance used as reference. Then the Modified R-matrix will
be fitted, leaving the γn and γα of the remaining three resonances as free
parameters, to the whole THM experimental differential cross section.
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Figure 4.35: Intermediate result of the Modified R-matrix (red curve) nor-
malization procedure to the experimental HOES differential cross section
(black points). Labels attached to the black arrows pointed at the four
detected resonances indicate the corresponding excited level of the inter-
mediate 18O system (in MeV) and the relative Jπ. Details are reported in
the text.
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Figure 4.36: HOES differential cross section as obtained by the Modified
R-matrix calculation (red line) alongside its confidence interval (light red
band) and the THM data (black points). Labels attached to the black ar-
rows pointed at the four detected resonances indicate the corresponding
excited level of the intermediate 18O system (in MeV) and the relative Jπ.
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In Fig. 4.36 we can see the result of the Modified R-matrix fit pro-
cedure for the HOES cross section (red curve) alongside its confidence
interval (light red band) and the THM data (black points). By looking
at the figure we can say that the fit was indeed successful and we were
able to reproduce our experimental data. By comparing this result with
the ones obtained in past THM measurements [44, 22] we can see that we
have indeed achieved a better energy resolution, a slightly better statisti-
cal error but unfortunately the hindered population of the 3− resonance
still remains. A deeper analysis on this should be carried out to under-
stand what is the real cause of the issue, even thought we can assume
that it could be related to the energy selection of the events. Therefore a
solution could be performing the experiment a higher energies which in
turn could be also beneficial for the normalization procedure of the THM
data, having now more resonances to use that also are at higher energies
and, as we saw in the dedicated section, better studied by scattering and
other direct measurements.

The values for Γn, Γα and Γtot for each detected resonance are finally
e reported and compared to the ones obtained in the work of Guardo et
al. [22] and Wagemans et al. [43] Tab. 4.9 . It must be stressed once again
that the HOES reduced widths are exactly the same that appear in the
OES R-matrix, therefore the values obtained via the modified R-matrix fit
can be rightly compared to the ones obtained by direct measurements.
For simplicity, however, usually the comparison is done by looking at the
partial widths, as we did here, that can be easily calculated from reduced
widths as we already mentioned.

By looking at Tab. 4.9 it is possible to notice some interesting aspects
when comparing our data to the one of Guardo et al. . First it must
be stressed that, as the authors wrote in their work, they used the data
of Wagemans et al. to perform the normalization of THM data. As we
saw in the dedicated section, the values of Wagemans et al. are very
similar to the ones we obtained through the MCMC analysis despite the
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Ec.m. (keV) Jπ Γn (eV) Γα (eV) Γtot (eV)
Modified R-matrix fit

−5.4 ± 0.4 1− 200 ± 10 (rw) 1884 ± 100 1884 ± 100
90 ± 0.1 5− 0.16 ± 0.8 26 ± 10 27 ± 12
172 ± 0.5 2+ 250 ± 10 2000 ± 80 2250 ± 100
240 ± 0.2 3− 2100 ± 400 9100 ± 2000 11200 ± 2400

Guardo et al. [22]
-6 1− 0.01 ± 0.001 2400 ± 300 2400 ± 300
75 5− 0.05 ± 0.006 36 ± 5 36 ± 5

178 2+ 86 ± 11 2200 ± 300 2260 ± 300
244 3− 1700 ± 450 13000 ± 3400 14700 ± 3800

Wagemans et al. [43]
-6 1− 27 (rw) 2399 2400

n.a. 5− n.a. n.a. n.a.
178.3 ± 0.8 2+ 76 ± 4 2182 ± 132 2258 ± 135
253.0 ± 1.2 3− 1078 ± 22 13661 ± 416 14739 ± 590

Table 4.9: Partial and total widths for each of the detected resonance as
obtained by the Modified R-Matrix calculation, alongside the ones ob-
tained by Ref. [22, 43]. Ec.m., as obtained by the the current fit and by
Ref. [22, 43], is also reported (first column) with the Jπ value of the cor-
responding level.

normalization factor needed to fit their data. This then clearly explain
the similarities for the alpha partial strength, expect for the 3− resonance
where we were forced to constrain only the total width to the MCMC
result. Shifting our focus to the the neutron partial width, we can see that
for the sub-threshold level the authors gave an estimation of the partial
width, meanwhile we here report just the reduced width as in Ref.[43].
For the other resonances we get consistently higher values of the neutron
partial widths which, as already said before in this chapter, can be also
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explained by the normalization used. In a sense, when comparing our
THM data to the one of Guardo et al. we are getting the same relation to
when comparing the MCMC/R-matrix calculation to the data of Wage-
mans et al. . This is a clear evidence of how the normalization of THM
data is a fundamental step for the good outcome of the analysis.

Another interesting aspect to notice is that Guardo et al. have smaller
relative errors for the 5− and 3− resonances: this is linked to the different
error evaluation between our work and theirs. As the authors wrote,
they attributed to the normalization factor K a relative error of about 15%
which is then responsible of most of the error in the Modified R-matrix
calculation of the HOES cross section. We however put a lower value
of about 10% to the normalization factor and in turn we increased the
relative error in the reduced widths used as input when needed. Indeed,
when performing the fit one can notice that the 5− resonance is not much
sensitive to variations of the relative neutron and alpha reduced widths,
which makes sense since it is populated at an high angular momentum
ℓ = 3 which also effects the HOES cross section via the TH amplitude
reported in Eq. 3.28. Something similar holds true for the 3− resonance:
in this case, having experimental point with lower statistical count and
higher relative statistical error, the fit is less constrained by the parameters
of the resonance, thus explaining the higher overall error in the partial
widths obtained with respect to the ones of Guardo et al. .

Comparing now our results with the one reported by Wagemans et al.
we can notice once more the effect of the different normalization of the
two datasets. However even taking into account this, we can still notice
that the neutron reduced width for the 1− resonance is much higher
in our data, ten times more than what Wagemans et al. reported. This
significant difference can be due to the different experimental approaches
used to obtain the measurements in the first place. Another explanation
can come from the analysis procedure, considering Wagemans et al. used
a different approach to fit their data. It would be interesting to see how
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Figure 4.37: R-matrix calculation (red line) for the cross section using the
partial widths as obtained by the Modified R-matrix fit of THM data.
Data from Ref. [42] (blue points) and [43] (black points) are reported for
reference

this affect the reaction rate, as it will be discussed in the following section.

Finally, in Fig. 4.37 we used the partial widths obtained by the THM
analysis to calculate the R-matrix cross section and compare it to the di-
rect measurement of Wagemans et al. and Koehler et al.

As we can see, the parameters obtained by the Modified R-matrix fit
well reproduce both the low energy trend of the data of Koehler et al. and
the shape of the high energy points of Wagemans et al. with a difference
in the scaling of about 3, in accordance to what we obtained before by the
means of the R-matrix analysis.
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4.5 Reaction Rate evaluation

Once the cross section has been evaluated, it is possible to calculate the
reaction rate for the 17O(n, α)14C using the standard formula [3]:

NA ⟨σv⟩ = 3.7318 · 1010

T3/2
9

√︄
A1 + A2

A1A2

∫︂ ∞

0
Eσ(E) exp

(︃
−11.605E

T9

)︃
dE

(4.18)
where NA is the Avogadro number and ⟨σv⟩ is the convolution of the

cross section with the Maxwell distribution, E is the energy expressed in
MeV, Ai is the atomic mass of the i-th nuclei in a.m.u., σ is the cross section
in barn, and T9 is the temperature in expressed in GK. Having performed
both a R-matrix analysis of direct data and a new indirect measurement
using the THM, we will therefore calculate the reaction rate using the
results obtained by these two approaches.

4.5.1 Direct data

AZURE2 already gives the user the possibility to calculate the reaction
rate by inputting a list of temperatures at which perform the calculation,
the code will then interpolate between these points and plot the resulting
graph. However during this work a peculiar bug of the code was encoun-
tered, which resulted in an underestimation of the reaction rate at the
boundaries of the energy range of interest. The issue was simply over-
come by setting up a Mathematica notebook which will take as input the
cross section as obtained from the MCMC calculation and calculate the
integral for both the most probable value and for the error bands. We ver-
ified that in our case there is no difference in the relative error obtained
between this approach and obtaining the 16th,50th and 84th percentile of
the rate directly from the MCMC calculation. In Figure we can see the
final result: the rate obtained is identical, at low temperatures, to the one
of Koehler et al., which is expected since in the thermal energy region
our fit is strongly constrained by their data, but then it evolves in with
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a trend very similar to the one of Wagemans et al., only with a scaling
factor. This is also expected, as we explained before.
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Figure 4.38: Reaction rate and its confidence interval as calculated by the
combined MCMC and R-matrix analysis (red) alongside those obtained
in Ref. [43] (black) and [42] (blue)
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4.5.2 THM data

With the cross section calculated by using the partial widths obtained
from the THM data fit as input for the R-matrix, it is possible to also eval-
uate the reaction rate using Eq. 4.18, the result of which is shown (green
line) with its confidence interval in Fig. 4.39 alongside the reaction rate
as calculated by Ref. [42, 43] (again blue and black lines, respectively)
and to what we obtained by the means of the MCMC analysis and al-
ready reported in Fig. 4.38 (again in red). Here we can see that for high
temperatures we get something very similar to what Koehler et al. and
our MCMC analysis already obtained. However, the more interesting as-
pect is that we get a sensible higher reaction rate at lower temperature,
also when compared to the MCMC result which, in a sense, represent
the summary of the direct data available in the literature. This increase
is linked to the higher value for the neutron reduced width we obtained
for the sub-threshold 1− resonance, as already explained above. It should
be definitely studied in the context of the astrophysical environment to
verify if this variation indeed affects weak component of the s-process.
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Figure 4.39: Reaction rate and its confidence interval as calculated by
using the values of the resonance strengths obtained through the THM
analysis (green) alongside the rate obtained in [42, 43] (blue and black
lines, respectively) and to what we obtained by the means of the MCMC
analysis (red)
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4.6 Conclusions and future perspectives

We can conclude this chapter by affirming that we were able to analyze in
details the 17O(n, α)14C reaction by both reviewing the direct data avail-
able in literature, by the means of a R-matrix analysis, and analyzing the
data obtained by a new devoted THM measurement. The inconsistencies
between direct measurements were mostly resolved thus obtaining a com-
mon result for the R-matrix fit that, in turn, we used as a reference for the
THM data analysis. Finally, by the means of a Modified R-matrix fit, we
were able to extract the partial widths for the detected resonances in the
THM data obtaining a significantly higher result for the sub-threshold
resonance with respect to the value estimated by direct measurements.
This difference was also visible in the reaction rate calculation, where we
found a significantly higher value at lower temperatures than the one ob-
tained from the R-matrix analysis of the direct data in the literature. The
natural development for this work would be then to evaluate the impact
of such difference to the weak component of the s-process.



Chapter 5
Study of the 12C +16 O fusion
process via the THM

5.1 Status of Art

As we already discussed in the first chapter of this thesis, the tempera-
ture range of interest for 12C +16 O fusion lies between 1 (for hydrostatic
carbon burning) and 3.6 GK (for explosive carbon and oxygen burning),
which corresponds to a center of mass energy range between 3 and 7.2
MeV. This fusion process proceeds mainly through three reaction chan-
nels: the 12C(16O, α)24Mg (Q = 6.77 MeV), 12C(16O, p)27Al (Q = 5.17 MeV)
and partially the 12C(16O, n)27Si (Q= - 0.424 MeV). The latter is less fa-
vored due to its negative Q-value, in a similar fashion to what has been
observed for the 12C +12 C fusion and other medium-mass systems [62].
Other reaction channels such as 12C(16O, 2α)20Ne are hindered by the
presence of the Coulomb barrier in the exit channel [63].

In the literature it is possible to find numerous measurements , involv-
ing both charged particle and gamma ray spectroscopy [65, 66, 67, 63], of
these main reaction channels for the 12C +16 O fusion. A comprehen-
sive summary of such measurements can be found in Ref. [63], which

143
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Figure 5.1: Compilation of measured S-factor for the 12C +16 O fusion,
as shown in Ref. [63]. In addition to the direct measurements, indicated
by the various symbols visible in the legend, the dotted line denotes the
calculations performed using the Sao Paulo potential [64], the dashed
lines represents the fit of all the direct data using the hindrance model
in Ref. [62], meanwhile the red line refers to an R-matrix calculation
performed also by Ref. [63]
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we show here in Fig. 5.1. As it can be seen from the figure, multiple
measurements of the S-factor for these reactions show a pronounced res-
onance structure just below the Coulomb barrier (BC = 8 MeV) at about
6.4 MeV in the center of mass frame. Below this energy region the datasets
show different behaviors: while all seem to suggest an increase of the S-
factor around 4.6 MeV, some of the data [65, 66] clearly show a smooth
behavior while others show the presence of two more resonance struc-
tures around 4.6 and just below 4 MeV. The data of Fang et al. goes even
beyond showing three different resonances in the energy region from 5
down to around 4 MeV.

From Fig. 5.1 it is also possible to notice that up to now the S-factor
has been measured only down to around Ec.m. = 4MeV. Only the data of
Fang et al. [63] goes lower, pushing down to around Ec.m. = 3.6MeV, but
with an error bar larger than the experimental points at higher energies.
This means that even with the data of Fang et al. it is not possible to
enforce a significant constraint on the S-factor fit calculation. Therefore
the use of extrapolation is still required for the remaining part of the en-
ergy range of interest, namely from 4 down to 3 MeV. The result of the
extrapolation procedure is, however, heavily influenced by a series of fac-
tors both nuclear, such as the chosen model for the interaction potential
or the presence of unforeseen nuclear effects (i.e. clustering, molecular-
like behavior, etc.), and astrophysical such as the stellar environment [62].
Extrapolations from current data based on different models differ by two
orders of magnitude around 3 MeV and in particular, the proposed [62]
sub-barrier fusion hindrance effect would drastically reduce the reaction
rate at astrophysical energies. It is worth noticing that even small vari-
ations of the strength of the reaction channels mentioned above would
imply large variations in the α or p production for further nucleosynthe-
sis processes.

For all the reasons mentioned in this paragraph, it is clear that further
measurements extending down to at least 3 MeV would be extremely im-
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portant. In the aforementioned astrophysical scenario this will translate
to a better evaluation of the influence of the 12C +16 O fusion in hydro-
static carbon burning. We therefore decided to perform a new measure-
ments using the THM to better explore this energy region, leveraging
the strengths of the method in studying the S-factor below the Coulomb
barrier.

5.2 Applying the THM to the 12C +16 O fusion

As stated in the previous chapter, the first step for applying the THM
to a two-body reaction is to choose a proper TH nucleus and therefore a
proper three-body reaction. In this case we need to either transfer a 12C
or a 16O nucleus in the entrance channel. Since making both a carbon or
oxygen target is relatively easy, the choice depends only on the kinematics
of the three-body reactions, considering the energy we want to reach in
the two-body one, and on the TH nucleus itself that needs to have a well
known cluster structure hosting either a 12C or a 16O nucleus and and a
binding energy that is adequate for the energy range we want to study in
the corresponding two-body reaction. In this regard there is already in lit-
erature the evidence [68] of a 12C+ d clustered state for the 14N nuclei that
has been already successfully used in a THM experiment [13]. Therefore
we decided to study the 12C(16O, α)24Mg and 12C(16O, p)27Al reactions
by applying the THM to the 16O(14N, α24Mg)2H and 16O(14N, p27Al)2H
three-body reactions.

Once again, by using Eq. 4.2 and 4.3 it is possible to evaluate the
necessary beam energy to explore the energy range of interest, namely
between 2 and 5 MeV in the center of mass frame. Since the 12C + d
cluster system inside the 14N nuclei has a binding energy of 10.27 MeV, if
we choose a value of Ec.m. = 6 MeV we can calculate the beam energy to
be:
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Figure 5.2: Pole diagram of the three body TH reactions of interest.

Ebeam = (Ec.m.
xA + ϵa

sx)28 ∗ 187
m12C + m16O

m16O

m14N
m12C

∼ 33.2MeV (5.1)

We choose to focus our energy range on 6 MeV in the center of mass
frame to have as much direct measurements data as possible in order to
have the best chance to properly perform the normalization of THM data
which, as we saw in the previous chapter, is a fundamental part of the
analysis. We can then use the Fermi motion between the clusters inside
the TH nucleus to compensate for the momentum transferred to the two
body reaction, thus expanding the energy range that we can study. It’s
possible to verify this assumption before running the experiment by using
the Monte Carlo simulation mentioned in the previous chapter: indeed,
by looking at Fig. 5.3 where Ec.m.

xA as obtained by the simulation is plotted
against the momentum of the spectator, we can clearly see that by putting
a cut of ps < 80MeV/C it is possible to actually span an energy region of
Ec.m.

xA between 1 and 8 MeV. Of course it should be remembered that using
events from the tail of the momentum distribution of the spectator, while
still below the Shapiro limit, can result in some distortion effects that we
should be able to identify and remove during the analysis.

Once the beam energy was correctly selected and the entrance chan-
nel of the three-body reaction is defined, it is possible to use the Monte
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Figure 5.3: Two-dimensional plot of the energy in the center of mass
frame Ec.m.

xA versus the momentum of the spectator as obtained from
Monte Carlo simulation with the condition |ps| < 80 MeV/c.
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Figure 5.4: Two-dimensional plot of the energy versus the angle of emis-
sion of the α particles (blue locus), protons (green locus) and deuterons
(red locus) as obtained from Monte Carlo simulation with the condition
|ps| < 80 MeV/c.

Carlo simulation to evaluate the behavior of the particles in the exit chan-
nel. It was immediately clear that detecting the intermediate mass nuclei,
either a 24Mg or a 27Al, was not feasible since they would exit the re-
action with a kinetic energy too low to produce a proper signal in our
detectors. Therefore we turned our attention to the light particle of the
two-body reaction, either an α or a proton, and the deuteron spectator.
In Fig. 5.4 it is possible to see the energy versus the angle of emission of
each of the three particles we want to detect, as calculated by the simula-
tion with once again a cut on the momentum of the proton spectator of
ps < 80MeV/C. One can immediately notice that the deuteron spectator
(red points in the plot) has, as expected for the QF breakup of the TH nu-
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cleus in the beam, a narrow angular range of emission of 30° around the
beam axis, while the α and the proton (respectively blue and green points)
span a wider range between 0° and 60°. This means that in the range be-
tween 0° and 30° we should be able to perform a particle identification
not only in charge but also in mass, having to distinguish protons from
deuterons. However, we should also take into account that the emission
energy for the deuterons could go from 12 MeV down to 1 MeV, therefore
the energy threshold of the detectors should be lower than such values.
Moreover, we should also consider the possibility that a lower threshold
might cause the protons, that have a slightly lower mass but a significant
higher energy than the deuterons, to "punch through" the detector.

5.3 Experimental setup

Considering what was discussed in the previous section we decided once
again to perform the particle identification by applying the ∆E − E tech-
nique using an array of detector telescopes, arranged as showed in Fig.
5.5. In this case each telescope is composed by three different stages to
correctly identify all the products of interest in the exit channel, as al-
ready discussed. The first stage consisted of a 35 µm Position Sensitive
Detector (PSD), the second one of a 100 µm PSD, and the third one of a
1500 µm silicon pad detector. The thickness of the first stage was chosen
in order to balance the detection threshold with the necessity to discern
protons from deuterons, meanwhile the third stage was added in order to
collect high energy protons that might not stop in the first two stages. A
total of four telescopes were used, symmetrically placed with respect to
the beam axis, covering the angular range from 7° to 30° and from 45° to
68° in order to fulfill the QF kinematic conditions as showed by the MC
simulation. In Table 5.1 a summary of the setup is reported.

For a series of experimental runs for the first stage of T2 and T3 tele-
scopes a 65 µm thick PSD was used instead of the 35 µm one to better
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Telescope Angular range (deg)
T1 45 ÷ 68
T2 7 ÷ 30
T3 7 ÷ 30
T4 45 ÷ 68

Table 5.1: Angular range covered by the four telescopes in the experimen-
tal setup.

resolve deuterons from protons though with a larger detection thresh-
old,but still not affecting the relevant phase space region of interest for
the experiment.

The 14N beam was accelerated by the Van de Graaff tandem of the
Laboratori Nazionali del Sud (LNS-INFN) to an energy of 33.7 MeV. A
458 µg/cm2 thick WO3 target was used. All the detection setup was
placed inside the CT2000 scattering chamber, as it can be seen in Fig. 5.6
where a picture of the experimental setup is showed.

5.4 Calibration of the detectors

The first stage of the telescopes needs to be used just for the particle iden-
tifications, in conjunction with the second one, therefore no calibration is
necessary to its purpose, however we should still evaluate the energy lost
in the detector by each of the detected particle in order to correctly define
their energies. To this aim the thickness of the detector, being quite small,
was treated as a dead layer of silicon and the energy reconstructed using
three different dE/dx energy loss curves obtained by fitting a SRIM cal-
culation with a polynomial. Meanwhile, since the third stage is included
in the setup with the only purpose of stopping high energy protons, we
just need to calibrate its energy signal with protons. The second stage
is then the main detector of the telescope and therefore it must be pre-
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Figure 5.5: Sketch (not in scale) of the experimental setup used.

Figure 5.6: Picture of the experimental setup taken from the point of view
of the beam injection hole inside the scattering chamber.
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cisely calibrated both in energy and position, since it will be the main
source of information for the energy and angle of emission of the de-
tected particles. Having to detect three different particles with the same
apparatus, three different energy calibrations of the detectors needs to be
performed with devoted experimental runs: an eight-peak α source and
the 2H(14N, α)12C) reaction were used for α particles calibration, mean-
while the elastic scattering of 14N on 1,2H was used for both protons and
deuterons calibrations. Angle calibration of the second stage detector was
also performed, during the same runs, by once again covering it, as we
did in the previous chapter, with a grid with equally spaced slits placed
at known angles. For what discussed so far, only the calibration of the
second stage detectors will be shown, moreover for this thesis work we
will focus only on the central telescopes, T2 and T3.

5.4.1 Second stage detector calibration for energy and po-
sition

The calibration procedure of the PSDs is virtually identical to what shown
in the previous chapter: we need to fit Eq. 4.4 and 4.6 on a series of exper-
imental points of known energy and position. In Fig. 5.7 it is possible to
see the position versus the energy signal, as acquired by the ADC, from
the second stage detector of the T2 telescope. The data was acquired dur-
ing a calibration run using the 14N beam impinging on a CD2 target. As in
the previous chapter, it is again possible to see various experimental loci
coming from two-body reactions populating the plot with a background
coming from three-body reactions. In this case we are interested only in
those events coming either from a proton, a deuteron or an α particle.
For this run we identified three different kinematics, highlighted in Fig.
5.7 by ellipses of different colors: in particular the red one indicates the
events coming from the scattering of the deuteron in the CD2 target after
the collision with the 14N beam, the green one refers to events coming
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Figure 5.7: Two dimensional plot of the uncalibrated position signal ver-
sus the energy signal as measured by the ADC for the second stage de-
tector of the T2 telescope. The data was acquired during a calibration run
using the 14N beam impinging on a CD2 target.

from the scattering of protons in the target while the black one refers to
α particles coming from the 2H(14N, α)12C) reaction.

We then fitted this data, alongside the points coming from other simi-
lar runs carried out at different energies of the beam, against Eq. 4.4 and
4.6 to obtain three sets of calibration parameters for each of the detected
particles. Then, the successful outcome of the calibrations was evaluated
by plotting the same data in Fig. 5.7 but with the calibrated variables this
time, namely the angle values and the energy released in the detector. For
the plot in Fig. 5.8 we used the fit parameters obtained for the deuterons,
that should represent a mean value between protons and α. The known
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Figure 5.8: Two dimensional plot of the calibrated variables θ versus E
for the same events shown in Fig. 5.7

energy and position values, used for the calibration procedure, are rep-
resented by filled circles. Once again red circles refers to events coming
from the scattering of deuterons, the green ones to events coming from
the scattering of protons and the black ones refer to α particles from the
2H(14N, α)12C) reaction. From the figure a good agreement shows up
within the experimental limits, between all the theoretical points and the
corresponding accumulation regions of the measured events, which in-
dicates both the correct calibration procedure for this detector and that
the correction factor in the calibration parameters, for the three detected
particles, is negligible.
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5.5 Selection of the 16O(14N, α24Mg)2H reaction
channel

For the first step of the THM analysis we need once again to perform the
particle identification procedure described in the previous chapter, using
the ∆E − E technique on the energy data collected from the first and sec-
ond stages of our telescopes. Once the particles are correctly identified
we can then select the 16O(14N, α24Mg)2H reaction channel of interest.
First we must select the deuterons in either T2 or T3 telescope and, sub-
sequently, the α particle in the other. However, as it can be seen in Fig.
5.9 the ∆E energy signal from the first stage detector underwent a drift
during the various runs due to instabilities in the electronics.

Likely, the drift was slow enough that it is possible to divide the data
in bunches composed of 104 events, where the signal was stable and per-
form the particle identification for each bunch separately. In Fig. 5.10
the same ∆E − E plot for one of these data subset is showed and indeed
it is possible to see three different loci where we can easily identify the
protons, due to their punch-through effect, and subsequently identify the
deuterons and the α particles. However here another issue appeared: in
Fig. 5.10, highlighted by a red ellipse it is possible to see the presence of
a strange accumulation of points in what should be the deuterons locus.
The accumulations is strange because it suddenly stops at a certain ET3

value in a similar fashion to what happens to protons punching through
the detector. This however should not happen for the deuterons since the
thickness of the second stage detector was chosen in order to stop all the
deuterons, considering what has been shown in Fig. 5.4. We then turn
over the experimental runs obtained using a first stage detector 65 µm
thick, to verify if this behavior is also present in those data. Once again
the drift of the ∆E signal is present, since only the detectors were changed
but not the electronics, confirming that the issue is indeed not caused by
the detectors. Therefore, we sliced also this data, taking again only 104
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Figure 5.9: Scatter plot of the energy loss (in ADC channels) as a function
of the total energy of the particle (in ADC channels) as obtained by the
first two stages of the T3 telescope. The broadening of the loci is due to a
drift in amplifications, as discussed in the text.
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Figure 5.10: Scatter plot of ∆E versus E as shown in Fig. 5.9 but with a
cut on the total number of events displayed to 104.
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Figure 5.11: Scatter plot of ∆E versus E variables as obtained for the runs
with the 65 µm PSD detector as first stage of the telescope. Also in this
case the total number of events shown is limited to 104.

events to populate the ∆E − E plot in Fig. 5.11 Here we can immediately
see that such accumulation of events is not present in the deuterons locus,
confirming our suspects. What it has been shown so far refers to the first
stage of the T3 telescope, however an identical situation is present in the
symmetrical T2 telescope that we need to also use for our analysis.

Since completely removing the problematic region of the ∆E − E plot
is not feasible without also loosing most of our data, we then decided to
proceed with the selection of the particles also including these events as
if they are actually coming from deuterons. Then, in order to isolate this
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odd behavior in the 35 µm data, we also proceed in parallel with the anal-
ysis of the 65 µm data. Once two of the three particles in the exit channel
are selected we assume also the presence of an undetected 24Mg nucleus
and then reconstruct its kinematical quantities, the energy and the angle
of emission, as we did in the previous chapter for the spectator. In this
case however we cannot to verify this assumption using the procedure
described in Ref. [53], since the selection of the deuterons is not precise
enough to exclude events relative to protons. We then proceed to recon-
struct the experimental Q-value for the three-body reaction and compare
it with the expected values for the 16O(14N, α24Mg)2H reaction, to check if
we can clearly see the events of interest and subsequently asses the extent
of the background events. In Fig. 5.12 it is possible to see such plot for the
35 µm data (black histogram) against the theoretical values for the ground
state and the first three excited state (Qvalue = −3.5,−4.87,−7.62, MeV)
of the 24Mg + α intermediate system, indicated by the red vertical lines
and the αi labels.

It is immediately clear that our data is indeed contaminated by events
corresponding to completely different reactions which cause a significant
background in the Q-value histogram, where it is not possible to easily
discern the events we are interested in. As said, we ran the same proce-
dure on the 65 µm data and obtained the plot in Fig. 5.13 where we can
see instead the absence of such significant background and indeed the
experimental data agree quite well with expected value for the ground
state α0 and the first excited state α1. Some unexpected peaks are still
present, however they do not interfere with the Q-value region of inter-
est. This data set however has quite a low statistic, as it can be seen from
the plot, therefore it is not possible to proceed the analysis only with it
totally discarding the runs with the 35 µm PSD as first stage.

Still, this comparison confirms that this cluster of events that we saw
in the 35 µm ∆E-E plot is clearly not coming from the 16O(14N, α24Mg)2H
reaction channel we are interested in. We stated that running the proce-
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Figure 5.12: Reconstructed Q-value for the selected events in the 35 µm
data. The red vertical lines indicate the theoretical values for the ground
state and the first three excited state of the 24Mg+ α intermediate system,
as indicated by the red labels.
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Figure 5.13: Reconstructed Q-value for the selected events in the 65 µm
data. The red vertical lines indicate the theoretical values for the ground
state and the first three excited state of the 24Mg+ α intermediate system,
as indicated by the red labels.



5.5. SELECTION OF THE 16O(14N, α24Mg)2H REACTION CHANNEL 163

dure described in Ref. [53] would not make much sense in this particular
case, however, considering the issue we are facing, we can exploit the
procedure to better select the deuterons spectator. We already defined
Eq. 4.10:

Y =
1

As
X − Qvalue

but in this case we consider⎧⎨⎩Y = Ebeam − E24 Mg − Eα

X = p2
s

2m

Normally the procedure should be applied to the particle not detected
in the exit channel, however here we took into account the kinematical
variables for the 24Mg nuclei as reconstructed starting from the variables
of the detected α particles and the deuterons themselves. This means that
we are making an error in evaluating E24 Mg for those events that are not
related to deuterons. Nonetheless, since in the worst case scenario they
could come from protons, the correction factor we would need to apply
to the reconstructed kinematical values for the undetected 24Mg nuclei
should be relatively small. In this case we should also consider that the
variable X is not reconstructed but actually directly calculated from the
energy measured of the detected spectator. In Fig. 5.14 we can see the plot
of the Y versus the X variables where also the theoretical values for the
ground state and the first three excited states of the 24Mg+ α intermediate
system are reported for deuterons (red lines) where As = 2.

By looking at the figure we can finally confirm that in our data are
indeed present the events for the 16O(14N, α24Mg)2H reaction channel
but they are covered by a significant number of background events. The
cluster of events that we saw in Fig. 5.10 here is represented by a series
of clusters aligned on the left side of the plot with a steeper angular
coefficient that can only arise if the mass of the particle is lower than
As = 2. This also confirms our suspect that those events are indeed
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Figure 5.14: Scatter plot of the variables Y and X as defined in Ref.
[53]. The red lines are calculated for the values As = 2 and Qvalue =

−3.5,−4.87,−7.62, MeV. Yellow ellipses are an visual hint to highlight
the events selected for filter out the deuterons from the protons.

coming from protons punching through the detector: the explanation of
such behavior of the detection system, however, is yet to be determined.
We can now proceed with the analysis taking into account all the data by
carefully selecting, as showed by the yellow ellipses, the events that are
located on the right side of the plot near the theoretical values represented
by the red lines.

After selecting in such way the events relative to the ground state α0,
we can verify our selection by comparing, as visible in Fig. 5.15, the
experimental (red points) kinematical loci E24Mg versus Eα and Eα versus
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Ed with those obtained from the Monte Carlo simulation (black points).
As it can be easily seen, the experimental data agrees with the simulation
except few events that are outside the expected boundaries and that will
be therefore excluded from the following analysis.
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Figure 5.15: Upper panel: experimental (red points) kinematical loci
E24Mg versus Eα (). Lower panel: Eα versus Ed plotted against those ob-
tained from the Monte Carlo simulation (black points)
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5.6 Selection of QF mechanism

We can now select the QF break-up events of interest by analyzing the
momentum distribution of the spectator that we directly measured and
by comparing it with the expected value it had inside the TH nucleus. In
this case we can calculate the momentum distribution directly from the
energy measured by the detectors for deuterons spectator, meanwhile the
theoretical distribution is obtained from the Wood-Saxon 12C − d bound
state potential, considering the standard [13] parameters r0 = 1.25 fm, a =

0.65 fm and V0 = 54.428 MeV tuned to obtain the experimental ground
state 12C−d binding energy inside the 14N TH nucleus. By looking at Fig.
5.16, where the Ec.m. is plotted against the momentum of the spectator ps,
it is possible to notice two important facts. First of all, in this case there
are no isolated resonances as it instead happened in the previous chapter:
this was expected considering what we saw in Fig. 5.1. Therefore in
this case we can take most of the energy range covered by the data and
evaluate the momentum distribution of the spectator, since the HOES
cross-section does not vary significantly in this range. The second fact
that must be noted is that in Fig. 5.16 it is possible to see once again
an unexpected bulge of events, highlighted by a red circle, that should
not be present: we therefore also removed from the analysis the events
contained inside this region.

Finally in Fig. 5.17 it is possible to see the experimental momentum
distribution of the spectator evaluated for 2.5 < Ec.m. < 6MeV (blue
crosses) and compared with the theoretical distribution (red curve). This
analysis shows a good agreement between the experimental data and
the theoretical curve, which is therefore a clear sign of the presence of
the desired QF break-up events. However if we look closely we can see
the presence of a distortion in the distribution slightly above 70 MeV/c:
for this reason we decide to continue the analysis only with events for
ps < 70MeV/c. Considering what it is shown in Fig. 5.16 this cut should
not affect the Ec.m energy range we want to study.
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Figure 5.16: Scatter plot of the Ec.m. versus the momentum of the spectator
ps .

5.7 Extraction of the two-body cross section

Remembering that under the PWIA assumptions, it is possible to rear-
range the formula in Eq. 3.6 as it follows:(︄

d2σN
xA

dΩdEc.m.

)︄
HOES

∝
1

K.F.
1

|Φ(ps)|2
d3σTH

dΩbdΩBdEb
(5.2)

we can extract the bare nuclei cross-section
(︁
d2σN

xA/dΩdEc.m.
)︁

HOES for the
2-body 12C(16O, α)24Mg reaction by dividing the triple differential cross
section d3σTH/dΩbdΩBdEb of the three-body 16O(14N, α24Mg)2H reaction
for the product of the kinematical factor and the square of the momentum
distribution K.F. · |Φ(ps)|2, obtained by the means of the devoted MC
simulation. Remembering also that d3σTH/dΩbdΩBdEb is proportional to
the experimental yield and that we are still working in absolute units, we
can finally obtain the result showed in Fig. 5.18.
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Figure 5.17: Momentum distribution of the deuteron spectator (blue
crosses) compared with the theoretical distribution (red curve)
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Figure 5.18: HOES cross-section for the 2-body reaction 12C(16O, α)24Mg
as a function of Ec.m.. The red arrows indicate the energy position of the
resonant structures seen in the S-factor by Fang et al., while green arrows
indicate new candidate resonances in the cross section detected in the
present work.
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While this result certainly requires further analysis and improvements,
we can still see some interesting evidence in it. At the same energy values
where the three bumps in the S-factor obtained by Fang et al. are present,
indicated by red arrows in the figure, we can also see in our data small
bumps in the two-body differential cross section which should be clearly
better characterized in order to confirm their nature. But probably the
most exciting evidence in the figure is the presence of similar bumps
in the cross-section at energies below the current lower limit at 4 MeV,
down to 3 MeV. If confirmed those bumps could also arise from the same
physical phenomena suggested by Fang et al., such as the presence of
molecular resonances in the intermediate 28Si system.

5.8 Conclusions and future perspectives

In this chapter of this thesis we have show that the data available in the
literature about the 12C +16 O fusion gives important insights on the total
cross-section of the fusion process but do not cover the lower energy part
of the Gamow region, forcing to extrapolate below 4 MeV in the center
of mass. A new measurement, using the THM, that covers the whole en-
ergy region of astrophysical interest is shown and the preliminary results
of the analysis procedure are presented. While we still need to analyze
the data from the two peripheral telescopes (T1 and T4) for the 24Mg + α

channel, we already saw encouraging results regarding the cross-section
of the α0 channel, with the presence of new candidate resonances. The
analysis will be further improved, considering the other channels men-
tioned and, finally, the cross-section and the corresponding reaction rate
for both reaction channels will be evaluated. Once the reaction rate will
be defined it will be also used to evaluate the impact of the 12C +16 O
fusion process in both the carbon and oxygen burning.
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