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0.1 Introduction

One of the main reasons of the falling out of the high-duty constructions is the

appearance of defects (such as flaws, cavities, etc.) as a result of their continu-

ous exploitation. These defects results in the strength loss of the construction

material and, in the extreme case, can cause their partial or complete destruc-

tion. Quite a number of scientific works are dedicated to the crack theory, but

in actual practice the simple engineering solutions, which enable to identify

the appearance of the defects on its early stage and carry out their evaluation,

are used more often.

Non-destructive testing of materials represents common tool of detection

of such types of defects. In the early fifties of the 20th century, in addition

to the surface sensing, the x-ray method was developed, which is based on

the radioactive isotopes. Afterwards, the ultrasonic approach was evolved. It

uses frequencies with short wave-length, which, thanks to their high velocity of

propagation in metals and high frequency of oscillations, permits to recognize

small-size defects. Nowadays, ultrasound non-destructive testing is one of the

most efficient and frequently used methods of strength evaluation of modern

materials.

It is based on probing items by generating high-frequency (also known as

ultrasound) elastic waves. The ultrasonic waves propagate in the sample under

evaluation before they arrive at the boundary of defects. Defects arise in the

considered sample and in most cases may represent varying types of system

of cracks. The propagating ultrasound waves diffract (interact) with defects

and after that change their own characteristics. If placed on the boundary

of the considered material the ultrasonic transducer allows one to record the

scattered wave field (see Fig.1), then the change in wave characteristics can be

used to analyze the image of the internal defects.
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Figure 1: Ultrasound non-destructive testing

Currently, detection of the flaws position is considered to be a solved prob-

lem. From the time-of-flight information of the ultrasonic signal one can pre-

dict the location of defects with a high accuracy. The determination of the

crack form is not so trivial task and nowadays theoretical researches of the

described problems cannot be realized within the framework of any accurate

model because the arising equations cannot be solved in real-time even on mod-

ern computers. Practically, important three-dimension problems, especially in

the high-frequency range of vibration, demand too huge computer resources.

The methods of acceleration of the computations described in literature can

be applied only to single defects of canonical form (plane, sphere, wedge, etc.).

In generic case it is necessary to analyze diffraction integrals on huge nets,

because one needs to take at least 10 nodes per each wavelength. It is clear,

that with the frequency rise the number of nodes in such straight numerical

methods increases considerably. It leads to the instability of the calculation,

as well as to intolerably large span time. It is also known that analytical

2
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expressions lose their accuracy at medium high frequency. It is particularly

noticeable in the case of a large order of multiple propagation, because in this

case the divergence of the ultrasonic wave beam becomes quite substantial.

Eventually, the comparison of asymptotic formulas with the direct numerical

methods is possible only for rather high frequency, where, as it was mentioned

above, the efficiency of the known direct numerical methods decrease due to

the huge size of the computational mesh. It is obvious that the existing com-

putational methods, described and reported in the literature, cannot perform

calculation in mentioned ranges of changing physical properties, which occurs

in the practice of ultrasonic nondestructive testing. In this connection it is

urgent to design numerical algorithms which can be applied in real time for

extremely high frequencies.

In the meantime, at the present day, many scientists look forward to the

supercomputers and multiprocessor devices, which would allow to “parallelize”

the problem and to solve it in a reasonable time. However, development of

the fast numeric algorithms, adapted to the problem, can build up the nec-

essary foundation for the creation of portable devices, which could solve the

problem “on-fly”, without having to pass measured data to the computation

centre. Especially, as the fast progress in the electronics engineering during

past few decades has resulted in so well developed modern portable devices

which become comparable by their parameters with ten-years-old PCs

The main aim of the current research is concerned with the development of

fast numerical algorithms, which take into account the physics of the ultrasonic

flaw detection, and also the adaptation of some already-existing algorithms to

the needs of the engineering practice.

Mathematically, recent methods of solving the dynamic crack theory prob-

lems and ultrasonic non-destructive testing reduce them to boundary inte-

grals and integral equations taken over the surface of the considered defects.

3



The well known standard numerical methods are suitable for this equation.

But , as mentioned above, in the three-dimensional problems, especially in

high-frequency range of vibration, the computation requires huge computer

resources even on present-day computers. On the other hand, the integrals in

similar problems can be reduced to a form permitting application of the fast

Fourier transform (FFT). Thus, in the present research we propose to use fast

algorithms, which will allow us to significantly reduce the computational time

for the elastic stress fields and to improve theoretical and numerical methods

of strength evaluation of materials in the case of accumulation of cracks and

other defects.

Another aspect, which we would like to emphasize in the current work, is

a mathematical clarity of the numerical algorithms. This is due to the fact,

that fast algorithms, which are well developed in the computational mathemat-

ics, are often connected with too complicated mathematical tools, and their

application is not so simple for non-specialists.

0.2 Content of the work by chapters

Logically, the current dissertation is constructed in such a way, that we pass

from the simple model problems to the complex one, which are close to the

physical reality.

In the first chapter we propose a new alternative method, based on reduc-

tion of diffraction integrals and boundary integral equations of elastic dynamic

cracks theory to the forms, which permit application of the FFT. This approach

demands a special change of variables, based on a specific form of the phase

function. Then, reduction to a form which permits application of the FFT

based on some efficient semi-analytic realization of this change of variables.

Finally, the computation of elastic wave fields can be performed in real-time
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on personal computer. The developed algorithms allow us to solve this problem

in the extremely high-frequency range. We apply this method to solve diffrac-

tion problem for plane rigid screen in the high frequency range. Derivation of

the diffraction integral is based on Kirchhoff‘s physical diffraction theory. It is

shown, that the developed method allows us to significantly reduce the time

of computation, keeping the accuracy of direct numerical methods.

The second chapter is devoted to the application of similar technique in

the contact problems. Mathematically, such problems can be treated in terms

of some integral equations of the first kind. The numerical treatment of such

problems is based on the application of various numerical methods, that means

the change of initial integrals by finite-dimensional ones. At the same time,

integrals in such problems expressed in discrete form can be considered as a

convolution of two signals that allows us to use the property of the discrete

Fourier transform, also known as the convolution theorem. Thus, the Fourier

transform of the unknown function is expressed as a Fourier transform of the

right-hand side of the integral equation and the kernel of integral operator.

After this evaluation we only need to estimate the inverse transform to find

the unknown quantity. The fast Fourier transform method is used to reduce

significantly the time of calculation for the proposed algorithm.

At the end of the chapter we demonstrate an application of the acceler-

ated iterative conjugate gradient method in the crack problem in the porous

elastic plane, by using the model developed by Nunziato and Cowin. With

the help of Fourier transform the problem is reduced to an integral equation

over the boundary of the crack. Some analytical transformations are applied

to calculate the kernel of the integral equation in its explicit form. We perform

a numerical collocation technique to solve the derived hyper-singular integral

equation. Due to convolution type of the kernel, we apply, at each iteration

step, the classical iterative conjugate gradient method in combination with

5



LIST OF TABLES

the fast Fourier technique, to solve the problem in almost linear time. Some

numerical examples for materials of various values of porosity are presented.

In the next chapter the new iterative approach for diffraction problems on

the obstacles with arbitrary shape is developed. When the problem is reduced

to the integral equations via Boundary Integral Equation (BIE) method and

then discretized, this leads to the linear algebraic system with the dense matrix

which can be solved by classical Gauss-elimination method in O(N3) arithmetic

operations , where N is the size of the matrix. However, such matrices have

special structure which permits effective algorithms of matrix-vector multipli-

cations in such a way that it needs only linear instead of quadratic arithmetic

operations. Thus, such types of techniques are used in iteration schemes where

matrix-vector multiplication is the most expensive computational operation. If

the iteration scheme converges rapidly, then the total cost to solve the initial

problem is nearly linear depending on the size of the mesh. These compression

methods are well studied, so we are concentrating on a certain improvement

of the iterative schemes. We develop new iterative algorithms where on each

iteration step one should solve an approximated problem with a special ma-

trix. This is performed in such a way, that the initial matrix becomes Toeplitz

after having applied this approximation. In the case of star-like obstacles it

can be done analytically by constructing a linear algebraic system on the cir-

cle. In this case the matrix is circulant and the form of its exact inversion is

known and can be achieved by applying fast Fourier transform which requires

O(N log(N)) arithmetic operations. In the case when the obstacle has more

general form, the approximate matrix is computed numerically by a certain

averaging procedure. Then a conjugate gradient method is applied to solve

the approximate system with the Toeplitz matrix by nearly linear amount of

arithmetic operations.

In the last chapter, similar idea to construct the iteration scheme is applied

6



LIST OF TABLES

in the diffraction problem for the system of linear obstacles. The problem

is reduced to a system of boundary integral equations, which are discretized

by applying the Belotserkovskii-Lifanov method. In discrete form, a finite

number of systems with Toeplitz matrices (the number of systems is equal to

the number of barriers) are solved at each iteration step by applying the fast

bi-conjugate gradients method with preconditioning. The algorithm is tested

on several geometries, and its convergence in these cases is analyzed.

7



Chapter 1

An efficient numerical algorithm

for one-dimensional diffraction

integrals

1.1 Introduction

First steps in the field of the fast computations are historically connected with

the operation of the matrix-vector multiplication. The well-known paper by

Cooley-Tukey [1] on the algorithm of the fast Fourier transform (FFT), has

greatly influenced the modern computational world, and nowadays it is widely

used in different fields. Formally, this operation can be considered as the fast

multiplication of the Fourier matrix, which represents the Vandermond matrix

of the special form, on the vector [2,3]. Further, we will refer in detail on

this representation. In the present chapter we will consider the FFT in the

classical formulation as finite series. Another example, that we would like to

mention here, is the fast multipole method (FMM) developed by Rokhlin in his

works [4–6]. This algorithm also represents fast matrix-vector multiplication,

8



CHAPTER 1. An efficient numerical algorithm for one-dimensional

diffraction integrals

but in contrast to FFT, such approach is approximate. These two mentioned

methods differ from their predecessor in the fact, that they allow one to re-

duce the number of required operations from classical N2 for matrix-vector

multiplication to almost N operations.

The ideas of application of the FFT algorithm for evaluation of diffraction

integrals arising in acoustical problems were discussed in works [7,8]. Here we

propose an alternative approach. To this end, let us show how mathematical

model which describes the wave process of interaction of the elastics waves

with cracks can be adapted to the possibility of the FFT application. In fact,

integrals arising in these types of problems, are very similar in their structure

to the form on which one can apply the fast Fourier transform. At least,

such interpretation is possible after some substitutions of the variables. To

this aim, there was developed an efficient semi-analytic method of reduction

of diffraction integrals to a form permitting the application of the FFT. It is

based on a special transform of coordinates adapted to current type of the phase

function. It requires the combination of analytical and numerical methods.

As a result of application of the proposed method the cost of numerical

computation of the current problems will be reduced practically by the order

of mesh dimension, because, as already mentioned, any direct numerical cal-

culation of integral requires N2 operations, but the proposed technique takes

only N log(N) operations, where N is the mesh dimension. Such a method

is efficient in the high-frequency range of vibration, which is typical for wave

problems of ultrasonic non-destructive testing. The developed method and

the connected numerical algorithm are applied to the problems of diffraction

of ultrasonic waves by linear cracks.

9
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diffraction integrals

1.2 Application of FFT to the diffraction by a

plane hard screen in echo-case

1.2.1 Formulation of the problem

To demonstrate the proposed method, we consider the planar two-dimensional

problem of diffraction of the ultrasonic waves by the crack in an elastic isotropic

material. As a first approximation, we assume that the crack at its initial stage

of growth is given by a finite interval (say, l long). Suppose that it is planar. We

relate rectangular coordinate system Oxy to this interval, so that the origin of

coordinates coincides with the beginning of this interval, and the horizontal axis

is directed along the length. Then we locate the ultrasound-radiation source

S(xS, yS) at some distance from crack in this coordinate system. Moreover, in

the present example, we will consider the case when the source and the receiver

of the sound signal match that corresponds to the echo-sounding when both

sensors are integrated into a single device (see Fig.1.1). It should also be stated

that the echo method is one of the most popular, taking about 90% of the total

measurements performed.

We will seek the scattered pressure field, considering the shape and position

of the crack to be given, as well as incident wave to be known. Moreover, we

assume that all the wave processes are harmonic, so the time factor e−iωt will

be omitted in the subsequent calculations (where ω is the angular frequency).

Technically, the issue at hand is not the object of ultrasonic testing, but it will

help to understand how high-frequency diffraction integrals can be adapted to

the use of fast methods.

We consider this problem (as well as the following examples) in the frame-

work of linear acoustics, and the pressure p will be the main wave characteristic

of the acoustic field. According to this model, the total perturbed wave field

10
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diffraction integrals

Figure 1.1: Diffraction by the plane screen in echo-case

can be represented as the sum of the direct and reflected signals respectively

p = pinc + psc [9,10]. We assume that the cylindrical acoustic wave

pinc =
eikr√
r

(1.1)

is sent from the source S, where i is the imaginary unit, r is the distance from

the source to the screen, which is expressed by the formula r =
√
(xS − ξ)2 + y2S,

and k is the wave number connected with the wavelength λ by the ratio

k = 2π/λ. Given the ultrasonic waves are short wavelength, the parameter

k is large (recall that λ = c/f where c is the speed of sound in the medium,

and f – its temporal frequency).

Firstly, let us consider the case when the source-receiver of the signal lies

outside the interval [0, l], say to the right of it (i.e., xS > l). It is convenient to

demonstrate the logic of the solution, leaving the transparency of mathematical

calculations, since in this case the distance function r increases monotonically.

Next, we show how this case can be generalized to an arbitrary position of the

11
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diffraction integrals

source S.

The physical Kirchhoff diffraction theory can be applied for the ultrasonic

waves with large wave number [11]. This model is convenient because it im-

mediately gives an expression for the reflected signal at the receiver using the

integral formula of the incident wave

psc = 2

∫ l

0

pinc
∂Φ

∂nξ
dξ (1.2)

where Φ is the Green’s function and n - normal to the surface. Thus, to find

the unknown function it is sufficient to integrate the equation (1.2).

Given that [9] in the two-dimensional acoustic case the Green’s function is

expressed in terms of the Hankel function of the first kind, namely

Φ(r) =
i

4
H

(1)
0 (kr) (1.3)

which in its asymptotics for large argument (in our high-frequency case kr >>

1) can be expressed in terms of exponential function [12]

H
(1)
0 (kr) ≈

√
2

πkr
ei(kr−π/4) =

2

(1 + i)
√
πkr

eikr (1.4)

whence it follows that

Φ(r) ≈ i+ 1

4
√
πkr

eikr (1.5)

Normal integration can be represented as

∂Φ

∂nξ
=
∂Φ

∂r

∂r

∂nξ
≈ (i+ 1)yS

4
√
πk

eikr
√
r(ik − 1/(2r))

r2
≈ (i− 1)yS

4
√
π

√
k

r
√
r
eikr (1.6)

Substituting this expression in equation (1.2), we obtain the integral represen-

tation for finding the unknown pressure field

psc ≈ i− 1

2
√
π
yS
√
k

∫ l

0

e2ikr

r2
dξ (1.7)

From this equation one can obtain the exact solution with standart nu-

merical methods. However, due to the points given in the introduction, this

12
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approach would be time-consuming. To implement the proposed alternative

approach based on the use of the FFT method, we make the following change

ξ = xS −
√
r2 − y2S, dξ = −r/

√
r2 − y2Sdr, (1.8)

which transforms the foregoing equation to

psc = i−1
2
√
π
yS
√
k
∫√x2

S
+y2

S√
(xS−l)2+y2S

e2ikr

r
√
r2−y2

S

dr =

= i−1
2
√
π
yS
√
ke2ika

∫√x2
S
+y2

S
−a

0
e2ikη

(η+a)
√

(η+a)2−y2
S

dη
(1.9)

where η = r − a, a =
√
(xS − l)2 + y2S.

We assume that the wave number is given by a large initial value, i.e. k =

k0+Ω. Introducing, for convenience, constant A and denoting the subintegral

function through u(η)

A =
i− 1

2
√
π
yS
√
k, u(η) =

e2ik0η

(η + a)
√

(η + a)2 − y2S
(1.10)

we obtain the final form of the integral equation

psc(Ω) = Ae2i(k0+Ω)a

∫ √
x2
S
+y2

S
−a

0

u(η)e2iΩηdη (1.11)

suitable for reduction to the discrete Fourier transform.

1.2.2 Numerical treatment

For the numerical solution of the equation (1.11) we introduce a uniform spaced

grid of N nodes ηn = (n + 1/2)h, n = 0, 1, .., N − 1 with a constant pitch on

the interval of integration h = (
√
x2S + y2S − a)/N . Then, the first integral can

be approximated by the approximate integral sum:

∫ √
x2
S
+y2

S
−a

0

u(η)e2iΩηdη ≈ h

N−1∑

n=0

u(ηn)e
2iΩηn (1.12)

13
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If we take the countable set of wave numbers as

Ωm =
πm√

x2S + y2S − a
, (m = 0, 1, .., N − 1) (1.13)

then it easy to see, that the integral in the equation (1.12) represent a standard

expression for the FFT [13], which according to the ideology of the FFT can

be calculated for all N simultaneously, i.e. for all wave numbers. The final

expression of the pressure of the reflected wave will be the following

pscm ≈ hAe2i(k0+Ωm)aeiΩmh
N−1∑

n=0

un e
i2πmn/N = hNAe2i(k0+Ωm)aeiΩmh FFT−1[un]

(1.14)

Further, this problem is calculated numerically. Note that, unlike the existing

approximate methods of matrix-vector multiplication, the approach presented

here is accurate.

1.2.3 Analytical solution

In the case where the source abscissa coincides with the end of the interval

(xS = l), in the subintegral function u(η) there is root singularity at the lower

end of integration since a = yS and correspondingly

u(η) =
e2ik0η

(η + yS)
√

(ηyS)2 + 2ηyS
(1.15)

The application of L’Hopital rule shows that u(0) = 0. Nevertheless, using

this feature, the problem can be solved analytically. We take this feature into

a single integral.

∫ L

0

e2ikη√
η

(
1

(η + yS)
√
η + 2yS

− 1

yS
√
2

)
dη +

1

yS
√
2

∫ L

0

e2ikη√
η
dη (1.16)

where L =
√
x2S + y2S − yS.
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The second integral in the equation (1.16) can be represented in standard

integrals. For this purpose we represent the exponential as a sum of trigono-

metric functions

∫ L

0

e2ikη√
η
dη =

∫ L

0

cos(2kη)√
η

dη + i

∫ L

0

sin(2kη)√
η

dη (1.17)

Replacing z = 2kη we observe that the resulting integrals

1√
2k

∫ 2kL

0

cos(z)√
z
dz + i

1√
2k

∫ 2kL

0

sin(z)√
z
dz =

√
π

k
C2(2kL) + i

√
π

k
S2(2kL)

(1.18)

represent the sum of the Fresnel integrals, which are given by

C2(x) =
1√
2π

∫ x

0

cos(t)√
t
dt, S2(x) =

1√
2π

∫ x

0

sin(t)√
t
dt (1.19)

For these integrals there is a good rational approximation [12]

C2(2kL) = C
(
2
√

kL
π

)
= 1

2
+ q

(
2
√

kL
π

)
sin(2kL)− g

(
2
√

kL
π

)
cos(2kL)

S2(2kL) = S
(
2
√

kL
π

)
= 1

2
− q

(
2
√

kL
π

)
cos(2kL)− g

(
2
√

kL
π

)
sin(2kL)

(1.20)

Therefore, using the Fresnel integrals, we rewrite the desired pressure of the

reflected wave in a compact form

psc(k) ≈ Ae2ikyS
(C2(2kL) + iS2(2kL))

√
π

yS
√
2k

(1.21)

1.2.4 Generalization for arbitrary position of the inductor-

receiver system

Similarly, the analysis is done in the case where the abscissa of the source-

receiver is above the screen (see Fig.1.2). The main difference is the fact that

the integrand function becomes piecewise smooth, as in this case, after the
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change of variable (1.8), the integration interval is split into two sub-intervals

psc ≈ − i−1
2
√
π
yS
√
k
∫√(xS−l)2+y2S√

x2
S
+y2

S

e2ikr

r
√
r2−y2

S

dr =

= i−1
2
√
π
yS
√
k

(∫√x2
S
+y2

S

yS

e2ikr

r
√
r2−y2

S

dr +
∫√(xS−l)2+y2S
yS

e2ikr

r
√
r2−y2

S

dr

)
=

= i−1
2
√
π
yS
√
k
∫√x2

S
+y2

S

yS
u(r)e2ikrdr

(1.22)

where, the piecewise smooth function was introduced for the convenience

u(r) =





2 e2ikr

r
√
r2−y2

S

, r ∈ [yS,
√
(xS − l)2 + y2S],

e2ikr

r
√
r2−y2

S

, r ∈ (
√
(xS − l)2 + y2S,

√
x2S + y2S]

(1.23)

For definiteness, we assume
√
(xS − l)2 + y2S <

√
x2S + y2S (i.e., the sound

source is located to the right of the center of the screen). Then all the ar-

guments repeat exactly the previous case and differ only in more complex

derivation of Fresnel integrals. The final form of the analytical solution is as

follows

psc(k) ≈ Ae2ikyS
(C2(2kL) + C2(2kLl) + i(S2(2kL) + S2(2kLl))

√
π

yS
√
2k

(1.24)

where Ll =
√

(xS − l)2 + y2S − yS.

1.2.5 Numerical results

The comparative analysis of the results of fast numerical integration of the

equation (1.14) (denoted as “numeric 2” in the figures) with an explicit asymp-

totic solution (1.21),(1.24) of the problem (in the case when the sound source

is located above the screen) shows good convergence of the proposed method.

Numerical experiments have also shown that the accuracy of calculation of the

integral from the formula (1.14) almost coincides with the direct numerical

integration of the equation (1.7)(denoted as “numeric 1” in the figures). Thus,
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Figure 1.2: Diffraction in the case when source-receiver is above the screen

when the number of the nodes is N = 210 = 1024 FFT method differs only in

the third decimal place, which is reflected in the graph 1.3.

In the calculation of the pressure dependence of the horizontal coordinates

of the source the following parameters were taken: l = 5mm, yS = 35mm,

N = 210 = 1024, c = 5940m/s (which corresponds to the propagation velocity

of sound in steel). At frequencies below f ≤ 1MHz the influence of the flaw

does not essentially change the magnitude of the reflected pressure. This is

logical from the physical point of view, because this wave-length is almost equal

to the size of the crack and there are not any diffraction effects in fact. This

fact is well known to experimenters who use high-frequencies to detect small

flaws. Obviously, because of the symmetry of the problem, the magnitude of

the pressure module |p| of the reflected field to the left of the interval will

coincide with the field in the symmetric point to the right of it.

In practice, the ultrasonic amplitude variation under the variations of fre-

quency over a wide frequency range, i.e. the so-called amplitude-frequency

characteristic (AFC) is sometimes measured. The corresponding analysis for

the different number of nodes N = 2M is shown in Figures 1.4–1.6. In the

calculations the same parameters as the previous example were taken, how-
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x

|p|

Figure 1.3: Pressure dependence of the horizontal coordinates of the source (l =

5mm, yS = 35mm, N = 210 = 1024, c = 5940m/s)

ever, the abscissa of the source was fixed at xS = 20mm. Figure 1.4 shows

the graphs in the frequency range f ≈ 1MHz − 104MHz. It can be seen

that the direct numerical calculation from formula (1.7) at a certain frequency

becomes unstable, which is reflected in the strong oscillations of the solution

at high frequencies. This is due to the fact that the grid of the input nodes is

too small for such an oscillating function. It is evident that more dense grids

should be used at higher frequencies. However, the calculation on the modified

formula (1.14) on the same grid falls in agreement with the solution "later",

i.e. for higher frequencies. Moreover, this solution does not oscillate. This can

be explained by the nature of the discrete Fourier transform, which typically

converts the signal from a time-frequency range (where the function is oscil-

lating ) into the amplitude-frequency range, where the signal is represented by

a more regular function. The difference of the approximate "critical" frequen-
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Table 1.1: Comparison of executional time upon N

number of method "critical" executional

nodes N = 2M frequencies time (ms)

N = 28 = 256 Straight 2.09 · 105 91–188

FFT 2.46 · 105 0.5–0.8

N = 29 = 512 Straight 4.78 · 105 500–624

FFT 5.66 · 105 1.2–2.12

N = 210 = 1024 Straight 1.08 · 106 827–1134

FFT 1.28 · 106 2.3–3.5

N = 211 = 2048 Straight 1.93 · 106 5939–6510

FFT 2.22 · 106 4.9–7.4

N = 212 = 4096 Straight 4.27 · 106 29182–29801

FFT 5.01 · 106 11.4–16.4

N = 213 = 8192 Straight 9.11 · 106 116285-127518

FFT 1.07 · 107 21.8–35.2

cies above at which the solution begins to diverge, for the direct numerical

integration and the proposed method is shown in the comparative table 1.1.

It is evident that in the case of numerical integration if we divide the screen

into N nodes and perform calculations for N different frequencies, then the

direct evaluation of integral (1.7) would require N2 operations, whereas the

fast Fourier transformation results in N logN operations. For example, for

N = 210 = 1024 the difference in speed of calculation is N2/(N logN) = 102.4.

With increasing frequency the effect of the FFT grows exponentially. This is

also reflected in table 1.1.

Note that the frequency step depends only on the location of the source-

obstacle, and the maximum calculated frequency also depends on the number
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|p|

k

Figure 1.4: Modulus of the scattered wave pressure |p| versus wave number k in a

wide range

of nodes N . The range given in the previous graph is the direct consequence

of this fact. It is evident that most of the solutions are not of practical interest

since they refer to the hyper-sound. The range of the ultrasonic waves is defined

as f ≈ 1MHz− 103MHz. The graph for the range is shown in figure 1.5. The

figure shows that the number of nodes which equals M = 10, N = 2M = 1024

approximates well the frequency domain f ≈ 1MHz − 500MHz. This range

is shown in more detail in the graph (1.6). To reduce the grid spacing on the

frequency parameter the distance between the sound source and the screen

should be increased, which is probably the only drawback of the proposed

method.

It is significant that the use of the FFT provides a solution for all wave

numbers only in N log(N) operations without any approximations. In this

respect, this method is equivalent to the direct numerical calculation of the
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|p|

k

Figure 1.5: Modulus of the scattered wave pressure |p| versus wave number k in

ultrasound range (f ≈ 1MHz − 103MHz)

|p|

k

Figure 1.6: Modulus of the scattered wave pressure |p| versus wave number k in the

range of frequency between 1MHz and 500MHz)

21



CHAPTER 1. An efficient numerical algorithm for one-dimensional

diffraction integrals

equation (1.7).

1.3 Extension to the case of spaced source and

receiver

In practice, the sound source does not always coincide with the sound receiver.

For example, in "end-to-end" test of the walls of the building, the source is

located on one side of the wall, and the receiver on the back one. Therefore,

in this section we consider a model of spaced source and receiver of the audio

signal (see Fig.1.7)

As can be seen from the figure, the distance from the source to the screen

and from the screen to the signal receiver is different, namely r1 =
√

(ξ − xS)2 + y2S

and r2 =
√
(ξ − xR)2 + y2R where (xS, yS) and (xR, yR) are the coordinates of

the sound source and receiver, respectively. It makes its own changes to the

integral representation for the incident wave in the framework of the Kirchhoff

diffraction

psc ≈ yR(i− 1)
√
k

2
√
π

∫ l

0

eik(r1+r2)

r2
√
r1r2

dξ (1.25)

To reduce the diffraction integral to the form of the Fourier transformation we

make the following changes. As in the previous example, firstly it is necessary

to replace the variable in equation (1.25) so that the integration was defined

for the variable, located in the exponent. Thus, introducing a new variable

r(ξ) = r1 + r2 =
√

(ξ − xS)2 + y2S +
√

(ξ − xR)2 + yRS (1.26)

expressing further ξ through r, and r1 and r2 through ξ(r) we arrive at the

expression

psc ≈ yR(i− 1)
√
k

2
√
π

∫ r(l)

r(0)

ξ′1,2e
ikr

r2
√
r1r2

dr (1.27)
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Figure 1.7: Diffraction by the plane screen. S - sound source, R - receiver, B -

specular point.

The solution of the quadratic equation resulting from the conversion of (1.26)

has two roots ξ1,2(r) = (−b/2 ±
√

(D/4))/a where D - is the discriminant,

a - is the first coefficient, b - is the second coefficient of the equation. From

physical point of view it is clear that one of the roots belongs to the interval

from the origin to the point of specular reflection, and the second one belongs

to the other half of the interval (see Fig. 1.7). We will use the simple relations

such as a condition for membership to a particular interval:

ξ1(r(0)) = 0, ξ2(r(l)) = l (1.28)

where ξ1 ∈ [0, B), ξ2 ∈ (B, l].

Then the reflected pressure field for an acoustic wave (1.27) will be as

follows

yR(i− 1)
√
k

2
√
π

(
−
∫ r(0)

r(B)

ξ′1e
ikr

r2
√
r1r2

dr +

∫ r(l)

r(B)

ξ′2e
ikr

r2
√
r1r2

dr

)
(1.29)

We note that by integrating this expression at mirroring (ξ = B) a singularity
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appears. To avoid this problem we make the following changes. We extract

the summands which have this feature from each of the previous integral ex-

pression:

−
∫ r(0)

r(B)

u1e
ikrdr +

∫ r(l)

r(B)

u2e
ikrdr −

∫ r(0)

r(B)

1

a

D′

4
√
D
eikrdr +

∫ r(l)

r(B)

1

a

D′

4
√
D
eikrdr

(1.30)

Here, the prime denotes the derivative with respect to the variable r and

functions u1, u2 contain the remaining members, i.e.

u1,2(r) =
−(a′(−b/2±

√
D/4))/a2 − b′/(2a)

r2(ξ1,2)
√
r1(ξ1,2)r2(ξ1,2)

(1.31)

It should be pointed out that it is the discriminant D that becomes zero at

the point of specular reflection. Further, replacing η = r− r(B), we divide the

integrals containing the feature into the sum of the two as follows

∫ r(0)−r(B)

0
1
ã

D̃′

4
√
D̃
eikηdη =

∫ r(0)−r(B)

0
eikη√
η


 1

ã
D̃′

4
√
D̂
−
(

1
ã

D̃′

4
√
D̂

)∣∣∣∣∣
η=0


 dη+

+

(
1
ã

D̃′

4
√
D̂

)∣∣∣∣∣
η=0

∫ r(0)−r(B)

0
eikη√
η
dη

(1.32)

where the wave marks the same magnitude after substituting r = η + r(B)

there. Here D̂ = D̃/η, D̃ = 4η6 + Uη5 + Tη4 + Eη3 + Qη2 + Wη, and the

constants U, T, E,Q,W are expressed in terms of the coordinates of the sound

source and the receiver.

The resulting integrals are easily calculated as the first integral has a re-

movable singularity at the lower limit, which is calculated by the L’Hopital

rule, and the second integral can be represented as the sum Fresnel integrals,

which, as mentioned above, have fairly good approximation by rational func-

tions. Thus, the reflected pressure field can be sought as the sum of the Fresnel
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integrals and integral of a known function:

psc ≈ yR(i−1)
√
k

2
√
π

eikr(B)
( ∫ L2−L0

0
F (η)eikηdη−

−
(

1
ã

D̃′

4
√
D̂

)∣∣∣∣∣
η=0

(∫ L1−L0
0

eikη√
η
dη +

∫ L2−L0
0

eikη√
η
dη
)

 (1.33)

where L0 = r(B), L2 = max{r(0), r(l)}, L1 = min{r(0), r(l)}.
The first integral of the formula (1.33) can be represented as an integral

sum:

∫ L2−L0

0

F (η)eikηdη = l

∫ (L2−L0)/l

0

F (χl)eiΩχdχ = lh

N−1∑

m=0

F (χml)e
iΩχm (1.34)

which after selecting the dimensionless units

χm = mh = m
L2 − L0

Nl
, Ωn =

2πl n

L2 − L0
(1.35)

represent a standard expression for the fast Fourier transformation. According

to the FFT this sum can be calculated for all N at once, i.e. for all wave

numbers simultaneously. Thus, with the increase of the number of points of

division the maximum wave number for which one can calculate the pressure

field increases as well, as kn = Ωn/l = 2πl n/(L2− L0), n = 0, 1, .., N − 1.

Next, as in the previous section, we represent each integral of the second

summand of the equation (1.33) as the sum of the Fresnel integrals. Then, the

final form of the reflected pressure field will be as follows

psc ≈ eikr(B)yR




√
Ωl√
2π
h · FFT (F (χml))−

(
1
ã

D̃′

4
√
D̃

)∣∣∣∣∣
η=0

(
C2(Ω(L2 − L0)/l)+

+C2(Ω(L1 − L0)/l) + i
(
S2(Ω(L2 − L0)/l) + S2(Ω(L1− L0)/l)

))]

(1.37)

The graphs 1.8, 1.9 show that this method gives results similar to direct nu-

merical simulations as well as the asymptotic behavior of the expression (1.37)
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Figure 1.8: Pressure of scattered wave field versus x-coordinate of the sound receiver

given that the wave number tends to infinity. It should be noted that the Fres-

nel integrals mainly contribute to the asymptotic solution. When construct-

ing these graphs the following values were taken: l = 3, xS = 0.3, yS =

3.2, xR = 0.6, yR = 0.9.

After Ω ≈ 4000 direct numerical calculation becomes erratic, as shown in

Figure 1.10. This is due to the fact that one wavelength has less than ten

nodes. However, the proposed method saves the results which are close to the

asymptotic behavior almost all along the axis (see Fig. 1.11). For clarity, all

the graphics are shown for N = 210, since the convergence of the numerical

calculation and the proposed method based on the FFT is virtually absolute

with the increase of this parameter. The numerical implementation of this

problem when the number of nodes N = 16384 (which corresponds to 214)

in the programming environment Visual C++, took 44.99 seconds, while the
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Figure 1.9: Pressure of scattered wave field versus wave number in a short range

proposed method using FFT demanded just 0.124 seconds! i.e. about 500

times faster.

It is clear that the proposed approach has three major advantages: 1) short

calculating time; 2) calculation of the wave field for the frequency range, and

3) good convergence with the asymptotic theory where conventional numerical

methods are erratic. Thus, the developed method showed good accuracy of

calculations in the problem of diffraction on the solid plane screen, allowing to

reduce the computation time of the considered integrals by many times.
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Figure 1.10: Pressure of scattered wave field versus wave number. Comparison be-

tween asymptotic solution and direct numerical treatment (N = 1024)

Figure 1.11: Pressure of scattered wave field versus wave number. Comparison be-

tween asymptotic solution and FFT-based method (N = 1024)
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Chapter 2

Application of the FFT to solve

integral equations in mechanics of

continua

2.1 Introduction

As we have already pointed out, the external loads give rise to defects in the

exploited materials. The study of the changes in the crack shape under load

allows predicting the crack growth and the condition of the material strength.

Mathematically, contact problems are the closest to the crack problems. Both

problems can be reduced to integral equations of the first or the second kind.

Numerical treatment of such problems is based on application of various al-

gorithms which reduce the initial integral equations to a finite-dimensional

form. If there is a need to solve the problem on a large grid for different right-

hand sizes, the numerical calculations of the received linear algebraic system is

computer-intensive. On the other hand, the kernel of the integral in such prob-

lems represents, in the discrete form, a certain matrix of a specific structure.
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Thus, one can apply well-developed fast algorithms of computational linear al-

gebra for structured matrices. Note that, the use of the FFT is directly related

to the solution procedure, based on the application of the analytical Fourier

transformation.

2.2 Application of the fast sine and cosine trans-

forms in contact problems on elastic layer

For example, let us consider the contact problem of the distributed load action

on an infinite layer. In this section, we will present the form of the integral

equation. Its derivation for the problem of a crack in a porous elastic material

will be considered in detail in the relevant chapter.

So, let us assume that the distributed load p0 applied on the interval [0, a]

(y = h) acts on the infinite, linear-elastic, isotropic and homogeneous layer

(|x| <∞, 0 ≤ y ≤ h), with the height of h, clamped to the base y = 0.

As is well known [14], the displacement field for such a problem can be

expressed by the formula

u(x) =

∫ a

0

p0(ξ)K(x− ξ)dξ (2.1)

where the kernel of the integral operator

K(x) =

∫ ∞

0

ch(2s)− 1

s(sh(2s) + 2s)
cos(sx)ds (2.2)

2.2.1 Case of the point load

Let us consider a simple example, when a single-point force acts on the layer

instead of a distributed load, such as applied at the origin, i.e. p0(ξ) = p0δ(x)

(see Fig.2.1). Then, using the property of Dirac delta function δ(x), the equa-
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Figure 2.1: Contact problem on elastic layer in the case of single-point force

tions (2.1),(2.2) are reduced to a rather simple form:

u(x) = p0

∫ ∞

0

ch(2s)− 1

s(sh(2s) + 2s)
cos(sx)ds (2.3)

Further, not to lose the accuracy because of the deletion of points at infinity

when substituting the integral by the finite-dimensional sum, we distinguish

the additive component in an explicit form in the integrand corresponding to

the asymptotic behavior at infinity:

u(x) = p0

∫ ∞

0

(
ch(2s)− 1

s(sh(2s) + 2s)
− 1√

s2 + 1

)
cos(sx)ds+ p0

∫ ∞

0

cos(sx)√
s2 + 1

ds

(2.4)

Using the L’Hopital rule, we find that the integrand at the lower limit is 1/3.

The second component is the standard integral and is exactly the modified

Bessel function (MacDonald function) K0(x) [12].

Numerical experiment shows that the distinguished root feature already at

s > 10 differs from the original function only in the third decimal place. In our

calculations we have limited first integral upper limit to A = 350 where the

difference is reduced to O(10−8). Then, by introducing nodes grid sn = nh =
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nA/N, n = 0, 1, .., N − 1, the first integral is replaced by the integral sum

∫ A

0

f(s)cos(sx)ds ≈ h

N−1∑

n=0

f(sn)cos

(
xn

A

N

)
(2.5)

, which, when selected xk = 2πm/A, m = 0, 1.., N−1 reduces to the fast cosine

transform. Here

f(s) =
ch(2s)− 1

s(sh(2s) + 2s)
− 1√

s2 + 1
(2.6)

Then the final form of the expression for the strain field is given by the following

formula

u(xm)/p0 ≈ hFCT [f(sn)] +K0(xm) (2.7)

where FCT - is the fast cosine transform algorithm. The rational approxi-

mation is used for the numerical calculation of the modified Bessel function

[12].

Below there is a comparative graph (Fig. 2.2) of the proposed method

(shows by the points) and the direct numerical calculation of the equation

(2.4). The results are given for the following design parameters: N = 213 =

8192, p0 = 1, A = 350.

The direct numerical computation in the programming environment Visual

C++ took 4.72 seconds. The proposed approach took only 0.045 seconds, that

is about 100 times faster. It is worth noting that in the first case, it is necessary

to calculate the integral for each coordinate separately, whereas the use of fast

transform allows finding it immediately for the entire interval. Moreover, the

bigger the number of nodes N we take for the numerical score, the greater the

length of this interval is, because, xN = Nπ/A.

2.2.2 Case of the uniform load

Likewise the problem of a uniformly distributed load p, acting on the interval

[0, a] can be considered. Indeed, it is easy to notice that in this case the
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Figure 2.2: Displacement vector u versus x-coordinate in the case of point load

equation (2.1) takes the form:

u(x) = p

∫ a

0

∫ ∞

0

ch(2s)− 1

s(sh(2s) + 2s)
cos(s(x− ξ))ds dξ (2.8)

Exchanging the order of integration in (2.8) and integrating over the interval

of loading, we obtain the expression (2.9)

u(x) = p

∫ ∞

0

ch(2s)− 1

s2(sh(2s) + 2s)
(sin(sx) + sin(s(a− x))) ds (2.9)

which in our view is convenient to consider as the sum of two integrals , i.e. for

each sinus separately. Note that the integral in the equation (2.9) allows one to

use the fast sine transform almost immediately. For this it is only necessary to

select appropriately the partition mesh for both variables. However, as in the

previous example, we distinguish the additive component in an explicit form

in the integrand corresponding to the asymptotic behavior at infinity for the

greater accuracy of the numerical integration:

∫∞
0

2sh2(s)
s2(sh(2s)+2s)

sin(sx)ds =
∫∞
0

(
2sh2(s)

s2(sh(2s)+2s)
− 1

2s

)
sin(sx)ds+

+1
2

∫∞
0

sin(sx)
s

ds ≈
∫ A
0
f(s)sin(sx)ds+ Si(Ax)

2

(2.10)
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Figure 2.3: Displacement vector u versus x-coordinate in the case of uniform load

It can be seen that the second component is the standard integral, namely

the integral sine Si(Ax) where A - is the upper limit of integration. Further,

replacing the first integral by the integral sum, we arrive at a form that when

chosen xk = kπ/A is reduced to a fast sine transform [15]:

∫ A

0

f(s)sin(sx)ds ≈ h
N−1∑

j=0

f(sj)sin(sjx) (2.11)

where h = A/N, sj = jh, j = 0, 1, .., N − 1. Then the final expression for the

displacement field will have the form

u(xk)/p ≈ h
∑N−1

j=0 f(sj)sin(sjxk) + h
∑N−1

j=0 f(sj)sin(sj(xk − a))+

+Si(Axk)−Si(A(xk−a))
2

(2.12)

The graph 2.3 comparing this technique with direct numerical integration

of equation (2.10) is given above. The calculations were performed for the
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following parameters: A = 10, a = 50, N = 213 = 8192, p = 1. The rational

approximation was used for the numerical calculation of the integral sine [12].

Here a direct numerical calculation in the programming environment Visual

C++ took 32.46 seconds, and the present method - 0.008 seconds.

2.2.3 Case of the non-uniform load

From the previous section it is evident that the FFT is a fast and efficient

method for integration. However, the equations kernels do not always allow

bringing them to the form suitable for direct use of the FFT. Nevertheless,

over a wide problem class the integrals presented in discrete form can be con-

sidered as the convolution of two signals, that allows to use the discrete Fourier

transformation property, also known as the convolution theorem. Thus, the

Fourier transform of the unknown function is expressed in terms of the Fourier

transform of the right-hand side of the integral equation and the kernel of the

integral operator. After their calculation it is only necessary to perform the

inverse transform to find the unknown value. Obviously, to increase the calcu-

lation speed of the proposed algorithm the method of fast Fourier transform is

used.

To demonstrate the proposed approach, we assume that in the previous

problem the load is distributed unevenly and is given as a function of force

distribution p(x) (0 ≤ x ≤ a, y = h) (see Fig. 2.4). Obviously, in this case,

the discretization of the integral equation (2.1)–(2.2) leads to the following

sum

un ≈ h1

N−1∑

0

pjKnj, n = 0, 1, .., N − 1 (2.13)

where h1 = a/N, un = u(xn), pj = p(ξj), and the coefficients of the matrix

35



CHAPTER 2. Application of the FFT to solve integral equations in

mechanics of continua

Figure 2.4: Contact problem on elastic layer in the case of non-uniform load

Knj are given by the following expression

Knj = K(xn − ξj) ≈ h2

M−1∑

n=0

ch(2sm)− 1

sm(sh(2sm) + 2sm)
cos(sm(xn − ξj)), h2 = A/M

(2.14)

Here, the constant A is the upper limit of integration arising when replacing

the integral finite sum, and the nodes are calculated using the formulas xn =

nh1, ξj = jh1, sm = mh2.

In the case where the unknown function is the displacement field, the direct

calculation of the double sum (2.13) for only one fixed position xi takes N×M
operations. On the other hand, the right-hand side of the equation (2.13) can

be regarded as a convolution of two discrete signals. Thus, by applying the

discrete Fourier transform to this equation and using the convolution theorem

[13], we obtain

û = DFT

[
h1

N−1∑

j=0

p(ξj)K(xn − ξj)

]
= h1p̂K̂ (2.15)

Here the values û, p̂, K̂ denote the Fourier transform of functions u, p, K re-

spectively, and DFT - is the Discrete Fourier Transform. Therefore, the solu-
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tion of the direct problem is obtained by applying the inverse Fourier transform

to the equation (2.15), i.e.

u = DFT−1
[
h1p̂K̂

]
(2.16)

For the efficient computation of Fourier transforms made in the proposed

method, the FFT algorithms are used. However, the solution of this prob-

lem can be even more effective if we note that the discretized kernel of integral

operator (2.14) by means of a special choice of the partition mesh can be pre-

sented in the form of fast cosine transformation, which in turn can be expressed

by the inverse discrete Fourier transform. Such an approach would present the

kernel as the inverse discrete Fourier transform of the integrand, as a result

there is no need to apply the direct conversion in the formula (2.16), since

instead integrand kernel can be directly used. Mathematically, it is as follows.

Since

K(xj) ≈ h2

M−1∑

m=0

fm cos(sm xj), fm =
ch(2sm)− 1

sm(sh(2sm) + 2sm)
(2.17)

when selecting a partition mesh of xj = jπ/(h2M) this expression takes the

form of fast cosine transformation [15].

To bring the resulting sum to an inverse Fourier transform we expand the

discretized integrand so that it is even with respect to m =M :

f2M−m = fm, m = 0, 1, ..,M − 1 (2.18)

Then the inverse FFT of the extended functions will be:

Fj =
1

2M

2M−1∑

m=0

fm e
−iπjm

M m = 0, 1, ..,M − 1 (2.19)

The second half of this sum from m = M to 2M − 1 can be simplified if we

use replacement m′ = 2M −m:

2M−1∑

m=M

fm e
−iπjm

M =

M−1∑

m′=0

f2M−m′e−i
πj(2M−m′)

M =

M−1∑

m′=0

fm′ei
πjm′

M (2.20)
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Thus

Fj =
1

2M

M−1∑

m=0

fm

[
e−i

π jm
M + ei

π jm
M

]
=

1

M

M−1∑

m=0

fm cos(πjm/M) (2.21)

Finally, we obtain that the kernel of the integral operator is expressed

through the inverse discrete Fourier transform of f as follows:

Kj =Mh2Fj (2.22)

Substituting this expression in equation (2.15), we obtain

û = DFT

[
h1

N−1∑

j=0

p(ξj)K(xn − ξj)

]
= h1h2Mp̂f (2.23)

Consequently, the required displacement field is obtained from the following

equation:

u = DFT−1 [h1h2Mp̂f ] (2.24)

The described approach is quite versatile and can be applied to various

integral equations with difference kernels. When the right-hand side of the

original equation (2.1) has a rather simple form, it is more expedient to bring

the numerical integration to the fast transforms by a special change of variable.

2.3 Fast numerical solution of the crack problem

in the porous elastic material

In the examples above, we restricted ourselves to the evaluation of integrals,

however, FFT algorithms can be successfully applied to the solution of integral

equations (i.e. in cases where the integrand is unknown). Let us demonstrate

application of this idea in the crack problem for a medium with voids. Materials

of this nature play important role in many fields, such as soil mechanics, civil

engineering, ultrasonic non-destructive testing and others. The used theory
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for the behavior of the porous elastic media has been proposed by Nunziato

and Cowin in 1980s [16,17]. In accordance to this model, there is introduced

an unknown function which takes into account a certain volume fraction field.

This new function of volumetric density significantly influences the stress-strain

state, being introduced as a product of material density field and the volume

fraction field. The general theory, developed in detail, has been tested on

numerous concrete problems for special domains under particular boundary

conditions (see, for example, [18–21]) and shows good agreement with both

experimental data and physical conclusions. The application of this theory

for the crack problem in porous materials has been presented in [22] and our

further treatment is based upon this work.

Mathematically, when the problem for linear crack is reduced to the lin-

ear algebraic system by a collocation technique, the obtained matrix has a

Toeplitz-like structure. The algorithms to solve such matrix equations are

well-developed and there are many different approaches presented in litera-

ture. For N × N systems direct “fast” methods require N log2(N) arithmetic

operations. To improve such approaches, there have been developed faster

methods based on a preconditioned conjugate gradient method with circulant

pre-conditioners.

2.3.1 Formulation of the problem and review of previous

results

Let us consider a linear crack of length 2a in the considered porous material

with a distributed load p0 acting on its boundary. We couple with this crack

a fixed system of rectangular Cartesian coordinates Oxyz in such a way that

the center of the system is located at the center of the crack (see Fig.2.5). As

proposed in [16,17], we call ν0ρ the constant volume fraction. In this frame the
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Figure 2.5: Linear crack in the porous elastic material

constant mass density ̺ is represented as a product of two fields: the density

of the matrix material γ and the volume fraction field νρ (0 < νρ ≤ 1), i.e.

̺ = γνρ . This representation introduces an additional degree of kinematic

freedom and, in absence of the volume fraction field, this theory reduces to the

classical theory of elasticity.

Assume that φ (φ = νρ − ν0ρ) represents the change in volume fraction

from the reference one, ū denotes the displacement vector, µ and λ are usual

elastic constants, and α, β, ζ represent some constants related to porosity of

the medium. Then, according to the Nunziato and Cowin model [16,17], it

is possible to describe the behavior of the homogeneous and isotropic elastic

material using the following system of partial differential equations





µ ∆ ū+ (λ+ µ) grad div ū+ β grad φ = 0

α ∆ φ− ζ φ− β div ū = 0 ,

(2.26)

It is clear that β = 0 corresponds to the case when the elastic and the “porosity”
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fields are independent from each other. Thus, in the case β = 0 the stress-

strain state is insensitive with respect to function φ. The components of the

stress tensor are represented by the following formulas




σij = λ δij εkk + 2 µ εij + β φ δij

εij =
1
2
(ui,j + uj,i) .

(2.27)

where δij is Kronecker’s delta.

In the plane problem, where u = {ux(x, y), uy(x, y), 0}, one can rewrite

system (2.26)-(2.27) in the two-dimensional form




∂2ux
∂x2

+ c2 ∂2ux
∂y2

+ (1− c2) ∂2uy
∂x∂y

+H ∂φ
∂x

= 0

∂2uy
∂y2

+ c2 ∂2uy
∂x2

+ (1− c2) ∂2ux
∂x∂y

+H ∂φ
∂y

= 0

l21

(
∂2φ
∂x2

+ ∂2φ
∂y2

)
− l21

l22
φ−

(
∂ux
∂x

+ ∂uy
∂y

)
= 0,

(2.28)

with 



σxx
λ+2µ

= ∂ux
∂x

+ (1− 2c2) ∂uy
∂y

+Hφ ,

σyy
λ+2µ

= (1− 2c2) ∂ux
∂x

+ ∂uy
∂y

+Hφ ,

τxy
µ

= ∂ux
∂y

+ ∂uy
∂x

.

(2.29)

Here, for the sake of convenience, some new positive physical parameters are

added. Two of them are dimensionless:

c2 =
µ

λ+ 2µ
, H =

β

λ+ 2µ
, (2.30)

and

l21 =
α

β
, l22 =

α

ζ
(2.31)

are measured in meters.

The boundary conditions over the line y = 0 are given as follows:

σyy = p0(x) ≡ σ0, |x| ≤ a; uy = g(x) =





u0(x), |x| ≤ a,

0, |x| > a.

τxy = 0 (y = 0), ∂φ
∂y

= 0

(2.32)
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Here, for simplicity, the tangential load is assumed to be absent. The last

boundary condition refers to an elastic material with voids and it follows from

the balance principle (see [20]).

In order to transform the problem into an integral equation problem, it

is convenient to apply the Fourier transform along the x-axis [22]. We recall

here that, for arbitrary function f(x) and respective Fourier image F (s), the

Fourier transform can be written as

F (s) =

∫ ∞

−∞
f(x) eisx dx , f(x) =

1

2π

∫ ∞

−∞
F (s) e−isxds . (2.33)

By applying the Fourier transform (2.33) to system (2.28), one reduces the

system of partial differential equations to a system of ordinary differential

equations with constant coefficients regarding images of functions ux, uy, φ.

Obviously, these functions depend only on variable y:





c2U ′′
x − s2 Ux + (1− c2)(−is)U ′

y − isH Φ = 0

(1− c2)(−is)U ′
x + U ′′

y − c2 s2 Uy +H Φ′ = 0

is Ux − U ′
y + l21 Φ

′′ −
(
l21
l22
+ l21 s

2
)
Φ = 0 .

(2.34)

In [18,19] it is shown that solution of homogeneous system (2.34) can be

found by classical exponential substitution. This leads to a couple of double

characteristic values (the same as in the classical linear elasticity) and a simple

value, arising due to porosity of the material. Finally, the general solution is

constructed in the form




Ux

Uy

Φ




= D1




isH
1−CN

H
√
s2+1−CN
1−CN

1


 e−y

√
s2+1−CN + D2




i sign(s)

1

0


 e−|s|y +

(2.35)
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+D3




1−CN+c2

(−is)(CN−1+c2)
+ iy sign(s)

y

2CNc2

H(1−CN−c2)



e−|s|y , (2.36)

where the dimensionless physical parameter CN = (l22/l
2
1)H, 0 ≤ CN < 1 is

usually called the “Coupling Number”. The constants D1, D2, D3, which de-

pend on s, can be found by substituting the above equation into the boundary

conditions, since we have three boundary conditions for three unknowns.

Finally, the application of the inverse Fourier transform to the images of

the unknown functions leads to the following representation [18,19]

ux,y(x, y) =
1
2π

∫∞
−∞ Yx,y(s, y)

[∫ a
−a u0(ξ)e

isξdξ
]
e−isxds =

= 1
2π

∫ a
−a u0(ξ)dξ

∫∞
−∞ Yx,y(s, y)e

is(ξ−x)ds
(2.37)

Function φ can be written by analogy. It is proposed in [22] to use the sec-

ond equation of system (2.29), to obtain an integral equation for the stress-

deformation relation. This approach gives the following integral representation

σyy(x,y)

λ+2µ
= 1

2π

∫ a
−a u0(ξ)dξ

∫∞
−∞ {(1− 2c2)(−is)Yx(s, y)+

+ ∂Yy(s,y)
∂y

+HYΦ(s, y)
}
· eis(ξ−x)ds

(2.38)
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where coefficients Yx, Yy, YΦ are given by the formulas





iYx(s, y) =
2CNc2s3

(CN−1)2
√
s2+1−CN e

−y
√
s2+1−CN+

+
(

(1−CN)c2−2CNc2s2

(CN−1)2
sign(s) + 1−CN−c2

CN−1
ys
)
e−y|s|

Yy = − 2CNc2s2

(CN−1)2
e−y

√
s2+1−CN+

+
(

(CN−1)2+2CNc2s2

(CN−1)2
+ CN−1+c2

CN−1
y|s|
)
e−y|s|

HYΦ(s, y) =
2CNc2|s|
(CN−1)

(
s√

s2+1−CN e
−y

√
s2+1−CN − e−y|s|

)

(2.39)

After some routine mathematical transformations, by putting y = 0, it is

possible to connect the unknown displacement and the stress on the boundary

of the crack:
σyy(x)

λ+ 2µ
=
c2

π

∫ a

−a
L(ξ − x)u0(ξ)dξ (2.40)

where the kernel function L(x) is given by the expression

L(x) =
∫∞
−∞

{
2CNc2s4

(1−CN)2
√
s2+1−CN −

− |s|[2CNc2s2+(1−CN)(1−c2)]
(1−CN)2

}
eisxds

(2.41)

The authors of [22] show that the kernel can be reduced to a more explicit

form. This based on some classical tabulated integrals [12,23]. Thus, if one

takes into account that the integrand is even, then integral in (2.40) can be

rewritten on the semi-interval (0,∞) as follows:

L(x) = 4CNc2

(1−CN)2

∫∞
0

s4√
s2+1−CN cos sx ds−

− 4CNc2

(1−CN)2

∫∞
0
s3 cos sx ds− 2(1−c2)

(1−CN)

∫∞
0
s cos sx ds

(2.42)
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It is easy to check that the last integral is the same as in the classical linear

problem. Moreover, with CN → 0 (no voids), there remains only the last

term, like in the crack problem for the ordinary material without voids.

It is shown in [22] that the kernel is hyper-singular. Thus, for a stable

numerical calculation for every x on the interval [−a, a] (outside the origin)

the kernel can be divided to regular and irregular parts

L(x) = 4CNc2
[
K0(|x|b)

(
1 + 3

(xb)2

)
+K1(|x|b)

(
2

|x|b +
6

(|x|b)3

)
−

− 6
(xb)4

− 1
2(xb)2

]
+ 2(1−c2b2)

(xb)2
= L0(x) +

(
2
b2
− 2c2

)
1
x2

(2.43)

where we have introduced parameter b=
√
1−CN , and L0(x)=O(ln |x|), x→

0 is a function with a more regular behavior when compared with the char-

acteristic hyper-singular part. Finally, integral equation (2.40) takes the form

appropriate for an efficient numerical treatment:

∫ a

−a
L0(x− ξ)u0(ξ)dξ +

(
2

b2
− 2c2

)∫ a

−a

u0(ξ)

(x− ξ)2
u0(ξ)dξ =

π

µ
σ0, |x| ≤ a.

(2.44)

2.3.2 Discrete implementation and fast algorithms

To perform the numerical calculation needed to solve Eq. (2.44), one may use

the collocation technique proposed in [24]. In this case the interval of the crack

boundary (−a, a) is divided into n small subintervals of length h = 2a/N . The

set of nodes ξm = −a + mh, m = 0, ..., N are chosen in discretization over

internal variable, and in dicretization of the external variable one should take

the nodes xn = −a+(n−1/2)h, n = 1, ..., N placed at the central points of each

sub-interval [ξi−1, ξi]. Thus, the initial integral equation can be approximated

by the following linear algebraic system

N∑

n=1

Anmum = σn, (σn = σ0 π/µ, ∀n), (2.45)
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where the non-diagonal elements of the matrix Anm, (n 6= m) are equal to

Anm =

(
2

b2
− 2c2

)(
1

xn − ξm
− 1

xn − ξm−1

)
+ hL0(xn − ξm) (2.46)

with um = u0(ξm). The diagonal elements of the matrix (n = m) are calculated

as

Ann =

(
2

b2
− 2c2

)(
1

xn − ξn
− 1

xn − ξn−1

)
(2.47)

System (2.45)–(2.47) can be solved by classical numerical methods (for ex-

ample, by Gauss elimination), but this requires O(N3) number of arithmetic

operations [15]. When the number of nodes N is large, such a technique takes

too much computational time. Thus, a faster iterative approach should be

applied to reduce the computational cost of the solution. The advantage of it-

erative techniques is connected with the fact that one may stop the algorithm,

when a desired precision is attained. In fact, in practical computing with appli-

cations we are usually interested in some accurate solution but not exact one,

because computer implementation itself does bring some deficiency in the solv-

ing process. Moreover, real electronic devices installed in the industry never

give exact input or output data, because of presence of “noise”.

Generally, iterative methods are faster when compared to direct methods.

In the present work we test the conjugate gradients method (CG)[2] as one

of the most efficient and popular techniques in the nowadays computational

mathematics. This method provides a minimization of the function

t(x) =
1

2
uAu− σu (2.48)

Such a minimization problem is solved when the gradient of function t is equal

to zero:

grad(t) = Au− σ = 0 (2.49)

which is equivalent to the initial problem (2.45). The principal advantage

of this method is that its recurrence relations are very compact and can be
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represented only by few lines:

αj = (rj−1, rj−1)/(Azj , zj),

uj = uj−1 + αjzj,

rj = rj−1 − αjAzj ,

βj = (rj, rj)/(rj−1, rj−1),

zj+1 = rj + βjzj .

(2.50)

At the first step one should set the initial residual vector r0 = σ − Ax0 and

the initial basis vector to be z1 = r0. The initial solution x0 can be set trivial

or taken from some general assumptions (for example, from the asymptotic

behavior). It is clear from (2.50) that the most computer-expensive operation

is a matrix-vector multiplication in the first and third lines of the iteration

algorithm. If one operates with a general dense matrix, this operation is per-

formed in N2 numerical operations. Thus, the overall numerical cost of such a

method is O(NitN
2), where Nit is the number of iterations needed to achieve

the desired precision.

However, let us notice that the matrix in system (2.45) has a special form,

because its elements depend only on difference of subscripts, i.e. Anm = An−m,

and then all the information about the matrix is collected in its first row

and first column. This also means that the overall computer memory storage

required for this kind of matrix includes only an array of length 2N − 1, or

even N in the case of symmetric matrix. This is much lower than the classical

N2 required for matrices with a dense structure. Just this fact was an origin

for development of the algorithms which solve such a system in a reasonable

computational time [25]. In fact, in the present day the solution of matrix

systems with Toeplitz and Toeplitz-type matrices is an intensively developing

area of computational mathematics.

Actually, there are various approaches to solve LAS with Toeplitz matrices.

The most convenient way is a construction of a certain numerical scheme that
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calculates the unknown vector u. The algorithms of such a kind are based

on the developed results of computational mathematics and often include too

complex numerical schemes. One of disadvantages of such approaches is that

they are very unstable for ill-conditioned systems and as, a result, give in-

accurate solutions. To improve the stability of such a technique, there have

been proposed few approached of complexity O(N log3N) [26,27]. It is easy

to check that if N = 103, then such an algorithm requires almost O(N2) op-

erations. However, real applications usually require to solve LAS (2.45) for

different right-hand sides. This means that we should apply any “fast” algo-

rithm several times (as much as the number of right-hand sides we have).

Another idea is based on the fact that the inverse of a Toeplitz matrix can

also be represented in compact manner (as a sum of products of Toeplitz ma-

trices, i.e. A−1 = W1V1 +W2V2, where A,W1, V1,W2, V2 are Toeplitz matrices

[28]). Below we will show some fast ideas for the product of general Toeplitz

matrices by using an algorithm based on a FFT method which requires only

O(2N log(2N)) operations. It becomes clear from this fact that the inversion

of any Toeplitz matrix can by multiplied by a right-hand side vector just in

O(8N log(2N)) operations. This again justifies the efforts of many authors to

develop fast inversion algorithms for such matrices. In fact, an obvious ad-

vantage of this approach is that, when a system has to be solved with several

right-hand sides, the algorithm is applied only once, followed by only matrix-

vector multiplications. A shortcoming of such methods is that they are also

unstable in the case of ill-conditioned systems.

Both approaches described above can be implemented using two classical

algorithms: direct or iterative. The earliest works in this domain were concen-

trated on the development of the direct methods. As a rule, their complexity

is quadratic (instead of a cubic) number of operations, which is a considerable

advantage. Generally, this methods impose some restrictions to matrix A. As
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an example, the invertibility of the (N − 1) × (N − 1) principal sub matrix

of A was required for first “fast” Toeplitz solvers such as well-known Levin-

son and Trench algorithms [29,30]. Further, faster algorithms of quasi-linear

complexity O(N log2N) have been developed by de Hoog, Ammar and others

[31,32] and now known as “superfast” solvers. The key idea of these methods

is to solve the problem recursively. As a rule, such algorithms dealt with well-

conditioned, symmetric positive-define Toeplitz matrices and were unstable in

the case of poor conditioning. To overcome the obstacle various look-ahead

algorithms have been recently developed for the Teoplitz systems with singular

or ill-conditioned principal sub-matrix.

However, in the case of Toeplitz matrices, the iterative approach is clearer

and easier to implement. In fact, the most popular way of solving Toeplitz sys-

tems in engineering mechanics is represented by the simple and rather efficient

conjugate gradient method with preconditioning (PCG), where the power of

the fast Fourier transform is intensively used. It has been shown that the so-

lution of such a LAS by the conjugate gradient method requires a quasilinear

number of operations if preconditioning is applied to the matrix of the sys-

tem [33, 34]. This approach has been widely used in applications because of

its convenient implementation. It is this approach that we used in our study.

Below, we describe it in more detail, following [2].

Recall that the preconditioning technique is based on the simple idea that

a system

An−mum = σn (2.51)

with an ill-conditioned matrix A is replaced by a preconditioned system

AC−1u = σ (2.52)

where the preconditioning matrix C is chosen so that the matrix of the product

AC−1 has a low condition number. Theoretically, any matrix can be improved
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with this technique as soon as a suitable preconditioner has been found.

PCG can be compactly rewritten as the following recurrence relations [2]

αj = (rj−1, C
−1rj−1)/(Azj, zj),

uj = uj−1 + αjzj,

rj = rj−1 − αjAzj ,

βj = (rj , C
−1rj)/(rj−1, C

−1rj−1),

zj+1 = C−1rj + βjzj .

(2.53)

In the contrast to the classical CG, here at the first step the initial basis vector

is set to be a solution of the system Cz1 = r0 or, equivalently, z1 = C−1r0 if the

inverse matrix is known. Likewise, this inverse matrix appears two times at

each iteration of PCG algorithm. Therefore, the inversion of the matrix C−1

and the multiplication of the matrices C−1 and A by the corresponding residual

and basis vectors are the most expensive operations and, as we said earlier,

in the general case the first operation requires a cubic number of operations,

while the second one, a quadratic number of operations. Hence, this approach

is faster then CG method only in the case when the inverse to matrix C can

be found at least in N2 (or even less) operations and both the multiplication

of matrix C−1 by vector and construction of preconditioning matrix C can be

performed in sufficiently less operations than N2.

In the case of Toeplitz matrices, both operations are reduced to quasilin-

ear complexity by applying the properties of circulant matrices, which are a

discrete representation of the convolution operation. A circulant matrix is a

periodic Toeplitz matrix with c−k = cN−k for 1 ≤ k ≤ N − 1. Here, the vector

c̄ is the first row of the matrix C.

In the modern literature on computational mathematics there are many

various techniques to construct a preconditioning matrix [35]. Advanced ap-

proaches use a generating function of the matrix and are known as “function-

based”. For symmetric matrices a classical preconditioner, which is built from
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the elements of the given matrix, generally works well. This idea has initially

been proposed by G. Strang in 1986 [33] and in his algorithm is constructed

from a half of elements of the first row and first column of original Toeplitz

matrices:

cj =




Aj , 0 ≤ j < N+1

2

Aj−N ,
N+1
2

≤ j < N

(2.54)

recalling that An−m = Anm. This circulant matrix minimizes norms ||C −A||1
and ||C −A||∞.

Let us also recall the so-called optimal circulant preconditioned matrix

proposed by T.Chan [34]. This matrix is the nearest, in the Frobenius-norm,

circulant matrix to the given Toeplitz matrix. Namely, this solves the opti-

mization problem: min ||C − A||F . The first row of this matrix is built from

the elements of the initial Toeplitz matrix by the following formula

cj =
(N − j)Aj + jAj−N

N
, 0 ≤ j < N (2.55)

In the case of poor conditioning, one can use the technique described in [36].

The advantage of using circulant preconditioned matrices is justified by

the fact that circulant matrices can be easily inverted and both initial and

inverse matrices can be multiplied with any vector in O(N log(N)) arithmetic

operations by the fast Fourier transform. It is well known that circulant matri-

ces have explicit singular value decomposition (SVD) with the help of Fourier

matrices: C = F−1ΛF , where the Fourier matrix F is a special type of Van-

dermonde matrix with the elements Fkl = e2πikl/N . The matrix-vector mul-

tiplication of such matrices can be performed in O(N log(N)) operations by

applying Fast Fourier transform algorithms [3]. It is easy to see that by using

this decomposition, the inverse to the circulant matrix also has an explicit

representation, specifically, C−1 = FΛ−1F−1, where matrix Λ is a diagonal
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matrix with singular values of C on its diagonal, and is obtained by multiply-

ing a Fourier matrix by the first row of C. Hence, the inversion of this matrix

requires only O(N) operations. It has been shown that, with a good choice of a

circulant preconditioner, PCG is faster than available direct superfast Toeplitz

solvers and the number of iterations is independent of the dimension of the

problem.

Let us show how one can multiply a Toeplitz matrix A by a vector using

the aforecited decomposition of circulant matrices. First of all, let us analyze

the difference between the circulant and the Toeplitz matrices. The accepted

notations for Toeplitz matrix imply that its elements are constant along every

diagonal parallel to the principal one, i.e.

A =




a0 a1 . . . aN−2 aN−1

a−1 a0 a1 aN−2

... a−1 a0
. . .

...

a−(N−2)
. . .

. . . a1

a−(N−1) a−(N−2) . . . a−1 a0




. (2.56)

From the other hand, the circulant matrix is just a periodic Toeplitz matrix,

where c−k = cN−k for 1 ≤ k ≤ N − 1, i.e.

C =




c0 c1 . . . cN−2 cN−1

cN−1 c0 c1 cN−2

... cN−1 c0
. . .

...

c2
. . .

. . . c1

c1 c2 . . . cN−1 c0




. (2.57)

It is clear that the original Toeplitz matrix can be extended to the matrix

of larger size, of circulant structure:

Ac =


A ⊠

⊠ A


 (2.58)
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where matrix ⊠ is constructed in a special way, to provide the final matrix Ac

to be circulant (ac−k = ac2N−k, 1 ≤ k ≤ 2N − 1). Again, positive subscripts

of vector a correspond to the first row of Ac and negative ones – to the first

column. The vector which is to be multiplied by matrix A is also filled (usually

by zeros) in order to reach the length 2N . The final product of the extended

matrix by this vector produces a certain vector of length 2N , from which one

keeps only first N elements and remove the remaining part. It is easy to control

that this procedure precisely represents the matrix-vector product:


A ⊠

⊠ A




u
0


 =


Au
⊠u


 (2.59)

This can be executed as the multiplication of a circulant matrix by a vector

using FFT algorithm. As already discussed, the advantage of this approach

is that the number of required operations is only O(2N log(2N)), instead of

O(N2). Thus, if the CG algorithm results in a desired precision with Nit, then

the overall required cost of the algorithm is only O(6N Nit log(2N)).

In the works of T.Chan it has been shown that the required number of iter-

ations Nit of PCG with optimal circulant preconditioner for Toeplitz systems

is considerably small and does not depend on the number of nodes N . In fact,

in our numerical experiments Nit does not exceed 25 steps, while the number

of nodes is varied from 256 to 1024. This fact allows us to conclude that the

numerical scheme is “quasi-linear” in the sense that it is much smaller than

classical O(N2) but not yet linear O(N).

2.3.3 Some numerical results

We have performed a number of computational experiments in accordance

with Eq.(2.45) for various values of parameter CN and for different types of

materials. Some of them are reflected in figures 2.6–2.9. The applied vertical
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stress σ0 is accepted to be of unit value.

In figure 2.6 we present an example of dependence of the displacement

vector for concrete with Young’s modulus E = 30 (GPa) and Poisson’s ratio

ν = 0.2 versus parameter CN (GPa represents one gigapascal). It can be

noted that, with growing “coupling number” CN , the opening of the crack

becomes smaller. Thus, one can conclude that the crack in the materials with

voids is less sensitive to the load (recall, that value CN = 0 corresponds to

the classical linear elasticity). However, the qualitative behavior is similar to

those obtained for analogous classical problem.

In figure 2.7 we show another example where the displacement profile is

calculated for different types of materials with CN = 0.5. In our computer

simulations we have used different types of real materials with the following

values of physical parameters: concrete - ν = 0.2, E = 30 (GPa); glass -

ν = 0.25, E = 60 (GPa); aluminum - ν = 0.34, E = 70 (GPa); steel - ν =

0.3, E = 200 (GPa). One can conclude from these numerical experiments that

increasing of Young’s modulus E results in decreasing of opening u.

Figure 2.8 shows the correlation between vector u and the “coupling num-

ber” CN for different types of materials, at the central point over the crack’s

faces: x = 0, where vector u has its maximum. From this figure one can also

see the properties outlined in the two previous paragraphs.

Other numerical experiments are demonstrated in figure 2.9. The depen-

dence of u versus length of the crack shows that for larger cracks the opening

grows less rapidly.

Another series of numerical experiments have been performed to exam-

ine the efficiency of the proposed numerical algorithm to solve LAS (2.45).

These results are represented in tables 2.1, 2.2. First of all, let us estimate the

number of numerical operations needed. It is well known that the straight-

forward Gauss elimination technique requires O(N3) numerical operations to
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solve LAS N × N . Iterative CG method uses only a matrix-vector multipli-

cation on each iteration, thus the overall cost of the classical CG approach is

O(NitN
2), where Nit is the number of iterations needed to arrive to a desired

precision and O(N2) is the cost of the matrix-vector multiplication on each

step. In order to speed-up this algorithm, we use a fast matrix-vector multi-

plication, as described in the previous section. Since such a treatment implies

a double size of the initial matrix, with the use of FFT method 3 times, one

attains O(Nit6N log(2N)) cost. In the case of the preconditioned algorithm it

is added supplementary a LAS solver at every iteration step. For the circulant

preconditioner it can be done also by applying FFT algorithm, i.e. we have

additional O(3N log(N)) operations at each step. Since the difference between

log(N) and log(2N) is considerably small, we can approximately estimate the

cost of PCG as O(Nit9N log(2N)).

The implementation of fast algorithms is more interesting on large meshes.

For example, it is seen from the table, that in the case N = 210 our approach

requires around a second only, instead of 4 minutes. When the number of

numerical calculations are almost equal, the classical straight-forward Gauss

elimination technique is more preferable. It is interesting to note the differ-

ence between classical CG and CG with fast Toeplitz matrix-vector multi-

plication for N = 26, where the classical approach is even faster, but twice

more expansive when compared with the fast CG algorithm. For other cases

(M > 6, N = 2M) one can see a considerable speed-up of the fast methods.

However it should be noted that the number of iterations grows rapidly in the

CG standard algorithm, while in PCG this remains near 20. Moreover, this

quantity does not depend upon a type of material or the value of its porosity.

Also, in our numerical experiments both T. Chan and Strang precondition-

ers give the same number of iterations for PCG. However, in more complex

problems some more advanced techniques can be used (see, for example [36]).
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Table 2.1: Dependence of execution time upon N

number of method number execution

nodes N = 2M of num.calc. time (ms)

N = 25 = 32 Gauss 32768 0.89

CG 41984 3.02

log(2N) = 4.15 fast CG 32739 3.35

fast PCG 20362 2.21

N = 26 = 64 Gauss 262144 6

CG 245760 6

log(2N) = 4.8 fast CG 111790 7

fast PCG 50305 4

N = 27 = 128 Gauss 2097152 35

CG 1376256 32

log(2N) = 5.5 fast CG 357730 23

fast PCG 114984 6

N = 28 = 256 Gauss 16777216 320

CG 7929856 249

log(2N) = 6.2 fast CG 1159430 70

fast PCG 287461 18

N = 29 = 512 Gauss 134217728 2347

CG 42991616 1297

log(2N) = 6.9 fast CG 3492130 245

fast PCG 670744 36

N = 210 = 1024 Gauss 1073741824 24097

CG 231735296 7524

log(2N) = 7.6 fast CG 10352890 535

fast PCG 1545906 7756
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Table 2.2: Number of iterations versus N

N = 2M CG PCG

25 = 32 41 17

26 = 64 60 18

27 = 128 84 18

28 = 256 121 20

29 = 512 164 21

210 = 1024 221 22

x

|u|

Figure 2.6: Opening u of the crack, −1 < x < 1, versus “coupling number” CN for

concrete (ν = 0.2, E = 30 (GPa), N = 210)
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✶ ✶

✶

✶

x

|u|

Figure 2.7: Displacement vector u over the crack boundary −1 < x < 1 for different

types of materials (CN = 0.5, N = 210)

|u|

NCN

Figure 2.8: The maximum of the opening (maxu = u(0)) versus CN for different

types of materials (N = 210)
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|u|

a

Figure 2.9: The maximum of the opening (maxu = u(0)) versus half-length of the

crack a for concrete with different values of porosity CN (N = 210)

Some figures for the opening of the crack for different types of material

are presented. Qualitatively, the vertical displacement field is similar to the

classical linear elasticity, but the quantitative behavior is different. One can

conclude from the figures that with porosity increasing the shape of cracks’s

opening becomes more uniform. This property is quite natural from the phys-

ical point of view.
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Chapter 3

A fast iteration method for

integral equations of the first and

second kind

3.1 Introduction

In the last chapter we have shown how integral equations arising in the prob-

lems of continuum mechanics, can be reduced to the linear algebraic equations

of convolution type. For fast solution of the integrals we used the properties of

circulant and toeplitz matrices, which permits to accelerate computations by

using FFT. However, in the diffraction problems such types of matrices arise

only in the case, when the reflecting object is of special geometry and nodes of

computational grid are arranged on equal distance between each other. Specif-

ically, circulant matrix corresponds to the diffraction on the circle obstacle,

and diffraction problem for the linear obstacle of finite length can be reduced

to the system with Toeplitz matrix. In the first chapter we demonstrated fast

method of evaluation of the diffraction integrals, which is based upon physical
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S

Figure 3.1: Diffraction by an arbitrary shaped object

Kirchhoff theory. For more accurate solution of the diffraction problems by

arbitrarily shaped body (see Fig.3.1) we use the Boundary Integral Equation

(BIE) method. In frames of this approach the unknown function is under the

integral and for numerical solution there is a need to solve respective LAS (in

contrast to Kirchhoff theory, which reduces the estimation of the reflected field

to the evaluation of a certain integral).

In fact, in wave problems of mathematical physics the BIE method repre-

sents one of the most powerful instruments to find and analyze solutions of

arising boundary value problems. The basic advantage of this method is that

such equations are more tractable from mathematical point of view than the

original differential equations. In the case of 2D scattering by hard or soft

obstacles the problem can be reduced respectively to a first- or second-kind

integral equations of Fredholm type [37]. In order to construct numerical so-

lution to the diffraction problem, it is used a certain appropriate quadrature

formula, which reduces the problem to some linear algebraic systems (LAS)

whose matrix has a fully dense structure. Therefore, the direct numerical treat-
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ment with a grid containing N nodes implies that the matrix has N2 nonzero

elements, and classical approaches require O(N3) arithmetic operations (for

example, by the Gauss elimination technique). As we said in introduction,

with the frequency increasing, if one keeps at least 10 nodes per wavelength,

such a treatment becomes computationally too expensive. Just for this reason

there have been proposed recently some “fast” numerical methods.

The most popular approach is based on some iteration scheme (such as

conjugate gradients (CG) method or generalized minimal residual (GMRES)

method). As mentioned in previous chapter, these methods usually require cal-

culation of a matrix-vector product on each step of iterations, which appears to

be the most expensive operation in such approaches, since in the general case of

matrices with dense structure it can be done in O(N2) operations with matrix

storage of O(N2). Hence, in order to reduce computational cost the most in-

tensive efforts were directed to arrange some fast matrix-vector multiplication

algorithms. As a rule, they are based on some special numerical techniques

connected with a representation of big data arrays by relatively small number

of parameters in a “easy-to-use” form. Such approaches are related to some

approximation methods which are in active use in statistics, speech recogni-

tion, image processing etc. As a rule, these methods are quasi-linear, since

the CPU cost of matrix-vector multiplication is O(N log(N)) operations with

O(N) storage dimension.

Some basic ideas of this sort have been proposed by Rokhlin and Greengard

[4,5] in 1985 that is known now as a fast multipole method (FMM). Similar

method was also developed by Hackbusch and Novak [38,39], this is known as

a panel clustering method. Further, both method were generalized in H2− and

H-matrix approaches [40–42]. Some other methods are based upon a certain

approximation of the initial matrix by a matrix of block structure, with the ma-

trix rank equal to 1. This method, proposed by Tyrtyshnikov in 1993 [43,44], is
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known as mosaic-skeleton method. The other, interpolation method, reduces

the problem to a dense matrix of a smaller regular grid. The constructed ma-

trix in this case is Toeplitz or block-Toeplitz one, for which there exist some fast

matrix-vector multiplication algorithms based on the Fast Fourier Transform.

This idea was considered by Nechepurenko in 1985 [45]. Further development

in this direction was performed by A. Brandt [46], who applied these ideas

to irregular grids. Other powerful methods are based upon wavelet analysis,

when the initial matrix transforms to a pseudo-sparse form (or T-sparse, by

A. Harten definition [47,48] which means that the matrix is sparse if one ne-

glects its small elements). This idea is currently under active development

[49,50]. Some alternative fast treatments of BIE arising in diffraction theory

are proposed in [51–54].

All above methods are based upon a special decomposition of the initial

matrix. Depending on structure of the operator, as well as on disposition of

the “source” and the “observation point” , the elements of the initial matrix

are divided to two groups related to the so-called “long-range” and “short-

range” interaction. Typically, the elements located near the principal diagonal

correspond to “short-range” interaction, just these elements are associated with

the singularities. All operations with such blocks are performed in a standard

way. The matrix blocks, out of the diagonal, connected with the “long-range”

action zone, may be approximated by some matrices of a specific structure.

The algorithms discussed above operate just with these blocks.

The first attempts in this research direction were founded on some special

analytical decomposition of the kernel in the considered integral equation. The

evident lack of such an approach is that there is a need to construct a specific

computational code for every specific kernel. Besides, some types of kernels

do not permit the required decomposition. Recently, there are created the

algorithms which operate only with the elements of the matrix and do not use
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any information about the kernel [43,55]. In the present work we use one of

such methods, namely, “adaptive cross approximation” (ACA) algorithm [43].

In this algorithm the elements out of the principal diagonal are approximated

by matrices of small rank. In practice, we used the C++ library HLibPro, to

realize a fast matrix-vector multiplication by the ACA method [56].

This modern fast matrix methods implies numerous applications of new

efficient algorithms in many branches of applied mathematics and mechanics.

Mentioned fast algorithm gives a good basis to apply an iterative solver to

construct a fast numerical scheme. Therefore, the main aim of the present

chapter is to propose an alternative iterative scheme. The method we present

at each iteration step requires to solve a convolution integral equation, or in

discrete form, a linear algebraic system with circulant or Toeplitz matrix. This

can be attained by a fast method. In frames of such approach, the computation

time required to solve systems of linear algebraic equations generated by BIE is

linear instead of quadratic or cubic in classical methods that is a big advantage

when solving problems of huge mesh dimension.

3.2 Integral equation of the first kind arising in

2D diffraction by soft obstacles

In applications to diffraction problems many authors prefer to treat a second-

kind Boundary Integral Equation (BIE) which, as predicted by the classical

Fredholm theory, provides a continuous inverse operator for every wave number

different from an enumerable set [37]. This property leads to stability of the

numerical treatment. In frames of the direct BIE method integral equations

of the second kind arise in the case of acoustically hard boundary (Neumann

boundary-value problem). Analogous direct treatment for acoustically soft
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obstacles results in a first-kind BIE where the Fredholm theory is not valid. It

is known that indirect BIE formulation allows one to come again to an integral

equation of the second kind [37]. Nevertheless, it is very interesting to study

fast numerical methods applied to direct integral equation of the first kind in

the case of acoustically soft boundary.

It is well known [9,37] that the direct BIE method reduces the diffraction

problem for acoustically soft obstacle (Dirichlet-type boundary condition) to

the Fredholm integral equation of the first kind
∫

l

Φ(|y0 − y|)∂p(y)
∂n

dly = pinc(y0), y0 ∈ l, (3.1)

where l is the boundary contour of the obstacle, dly is the elementary arc-length

of the boundary line coupled with point y ∈ l, pinc = exp[ik(y01 cosα+y
0
2 sinα)]

is the incident plane wave, α defines the direction of incidence, and k is the

wave number. As we mentioned in the first chapter, in the 2D-case Green’s

function is represented by the Hankel function

Φ(r) =
i

4
H

(1)
0 (r), r = |y0 − y| . (3.2)

Let us consider, to be more specific, a star-like obstacle described in the

polar coordinate system by a single-valued polar-radius function ρ:

y1 = ρ(θ) cos θ, y2 = ρ(θ) sin θ, 0 ≤ θ ≤ 2π,

y01 = ρ(ψ) cosψ, y02 = ρ(ψ) sinψ, 0 ≤ ψ ≤ 2π,

(3.3)

Then Eq. (3.1) can be rewritten over the interval [0, 2π]:

i
4

∫ 2π

0
H

(1)
0

{
k
∣∣sin θ−ψ

2

∣∣
√[

ρ(θ)−ρ(ψ)
sin θ−ψ

2

]2
+ 4ρ(θ)ρ(ψ)

}
g(θ)dθ = pinc(ψ),

g(θ) = ∂p(θ)
∂n

√
ρ ′ 2(θ) + ρ2(θ) , (0 ≤ ψ, θ ≤ 2π).

(3.4)

Integral equation of the first kind in its general form (3.1), as well as in the

star-like polar representation (3.4), for complex geometries and high frequen-

cies is difficult-to-solve, since any direct approach demonstrates instability for
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some examples. However, the numerical treatment can be performed by the

simplest quadrature rule, on the uniform grid:

θm = mh, ψj = jh, h =
2π

N
, (m, j = 0, 1, .., N − 1), (3.5)

that leads to the following algebraic system

Cg = f, ∼
∑N−1

m=0 cjmgm = fj , j = 0, 1, .., N − 1; gm = g(θm), fj = pinc(ψj),

cjm = ih
4
H

(1)
0



k

∣∣∣sin θm−ψj
2

∣∣∣

√[
ρ(θm)−ρ(ψj )
sin

θm−ψj
2

]2
+ 4ρ(θm)ρ(ψj)



 , m 6= j.

(3.6)

The diagonal elements should be calculated more accurately, by arranging

integration of a logarithmic function which is the asymptotic representation

of the Hankel function for small argument: (i/4)H
(1)
0 (z) → −(1/2π)[ln(z/2) +

γ], z → 0 (where γ = 0.57721566 is Euler’s constant) [12]:

cjj = − 1
2π

∫ ψj+h/2
ψj−h/2

{
ln
[
k
∣∣∣sin θ−ψj

2

∣∣∣
√
ρ ′ 2(ψj) + ρ2(ψj)

]
+ γ
}
dθ ≈

≈ − h
2π

[
ln

kh
√
ρ ′ 2(ψj)+ρ2(ψj)

4
+ γ − 1

]
.

(3.7)

The classical Gauss elimination gives a natural tool to deal with LAS (3.6).

The alternative strategy to arrange fast computations is to proceed with a

matrix of a specific structure. The essence of the algorithm proposed is to

arrange a circulant matrix in the left-hand side of system (3.6)-(3.7). This can

be done by the following averaging in the argument of the Hankel function:

H
(1)
0

{
k
∣∣sin θ−ψ

2

∣∣
√[

ρ(θ)−ρ(ψ)
sin θ−ψ

2

]2
+ 4ρ(θ)ρ(ψ)

}
≈ H

(1)
0

(
Ak
∣∣sin θ−ψ

2

∣∣) ,

A =
(

1
2π

)2 2π∫
0

2π∫
0

√[
ρ(θ)−ρ(ψ)
sin θ−ψ

2

]2
+ 4ρ(θ)ρ(ψ) dθdψ .

(3.8)

This allows us to rewrite the system in the following equivalent form:

C0g = f + (C0 − C) g, c0jj = − h
2π

(
ln Akh

8
+ γ − 1

)
,

c0jm = ih
4
H

(1)
0

(
Ak
∣∣∣sin θm−ψj

2

∣∣∣
)
, m 6= j .

(3.9)
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As pointed out in previous chapter, solution of LAS and matrix-vector multi-

plication with such a matrix both are O(N logN) expensive, where solution is

attained by a simple convolution scheme. It is obvious that circulant matrix

operator, or a convolution integral operator in the continuous form, is related

to a problem of diffraction by a certain round obstacle [57]. This is the phys-

ical meaning of the algorithm. Now, if the norm of the matrix operator in

the right-hand side is sufficiently small: ζ = ||C0 − C|| ≪ 1 (that is certainly

valid for any contour close to a circle), and operator C0 in the left-hand side of

Eq. (3.9) is invertible: ||(C0)−1|| < B, then operator equation (3.9) is equiva-

lent to: g = F +(C0)−1 (C0 − C) g, F = (C0)−1f . Hence, by classical Banach

theory, this provides the norm ||(C0)−1 (C0 − C) || < 1, therefore the solution

to this equation may be obtained either as the Neumann operator series or by

successive iterations [58]:

C0gn+1 = f +
(
C0 − C

)
gn, n = 0, 1, ..., (3.10)

where the solution on the initial step (i.e. for n = 0) may be taken trivial.

Each iteration step requires a certain kind of fast circulant solver that is per-

formed by convolution theorem. As we mentioned before, the computational

cost of such solver is O(N logN), by using an appropriate FFT algorithm. The

most expensive operation in this scheme is the matrix-vector multiplication in

the right hand side of (3.10). This can also be done in O(N logN) operations

by using some efficient methods, such as wavelet-transform, Fast Multipole

Method (FMM), skeletonization and others. As noted in the Introduction, in

our algorithm we used for this purpose a C++ code of the ACA algorithm as

a part of the standard library HLibPro [56].

In practice, in the low-frequency case the method demonstrates powerful

convergence. An example of this sort is presented in Fig. 3.2.

For higher frequencies, good convergence takes place only for geometries of
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Figure 3.2: Diffraction by a soft four-leaves rose: ρ(θ) = 2 + cos(4θ), k = 0.1,

N = 2 9 = 512

not very complex shape, like in example shown in Fig. 3.3.

3.2.1 Extension to other parametric representations of

the boundary contour

The approach developed in the previous section for star-like contours can suc-

cessfully be applied for some alternative representations of the boundary con-

tour. For example, in the case of a simple elliptic obstacle the equation of the

boundary contour in the polar coordinate system is not very simple:

ρ(θ) =
ab√

a2 sin2 θ + b2 cos2 θ
, y1(θ) = ρ(θ) cos θ, y2(θ) = ρ(θ) sin θ.

(3.11)

Much more natural parametric form, to describe this contour, is given as

y = {a cos θ, b sin θ}, y0 = {a cosψ, b sinψ}, (0 ≤ ψ, θ ≤ 2π), (3.12)
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Figure 3.3: Diffraction by a soft three-leaves rose: ρ(θ) = 1 + 0.4 cos(3θ), k = π,

N = 2 8 = 256

where parameters ψ, θ are no longer polar angles. Such a parametrization

results in the following integral equation

i
4

∫ 2π

0
H

(1)
0

[
2k
∣∣sin θ−ψ

2

∣∣
√
(a2 − b2) sin2 θ+ψ

2
+ b2

]
g(θ)dθ = pinc(ψ),

g(θ) = ∂p(θ)
∂n

√
a2 sin2 θ + b2 cos2 θ, (0 ≤ ψ, θ ≤ 2π),

(3.13)

which is again equivalent to the one similar to Eq. (3.9):

D0g = f + (D0 −D) g, d 0
jj = − h

2π

(
ln Akh

4
+ γ − 1

)
,

d 0
jm = ih

4
H

(1)
0

(
2Ak

∣∣∣sin θm−ψj
2

∣∣∣
)
, m 6= j ,

A =

{(
1
2π

)2 2π∫
0

2π∫
0

[
(a2 − b2) sin2 θ+ψ

2
+ b2

]
dθdψ

}1/2

=
(
a2+b2

2

)1/2
,

(3.14)

with

djm = ih
4
H

(1)
0

[
2k
∣∣∣sin θm−ψj

2

∣∣∣
√

(a2 − b2) sin2 θm+ψj
2

+ b2
]
, m 6= j .

djj = − h
2π

[
ln

kh
√

(a2−b2) sin2 ψj+b2
4

+ γ − 1

]
.

(3.15)
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Figure 3.4: Diffraction by a soft ellipse, k = 10, b/a = 0.9, N = 210 = 1024

The iterative process is absolutely analogous to (3.10). An example for a

soft elliptic obstacle is demonstrated in Fig. 3.4.

3.2.2 The estimate of the number of required iteration

steps

It is conventionally accepted for many classical iteration algorithms (see, for

example [28]) that they must provide a consistent criterion to stop the iter-

ations. Let us give some appropriate estimates of this sort for the algorithm

proposed in the present work.

As follows from Eq. (3.10), the difference between the solution on the cur-
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rent step and exact solution g∗ is (recall that f = Cg∗):

gn+1 − g∗ = (C0)−1f + (C0)−1 (C0 − C) gn − g∗ =

= (C0)−1 (C0 − C) gn + [(C0)−1C − (C0)−1C0] g∗ = (C0)−1 (C0 − C) (gn − g∗)

· · · = [(C0)−1 (C0 − C)]
n+1

(g0 − g∗),

(3.16)

where g0 is the chosen initial iteration. Therefore,

||gn+1 − g∗|| ≤ ||(C0)−1||n+1 ||C0 − C||n+1 ||g0 − g∗||. (3.17)

where the following norm for arbitrary vector c = {cj} and arbitrary matrix

C = {ckj} are used in the standard functional space l∞ [58]:

||c|| = max
1≤j≤N

|cj|, ||C|| = max
1≤k≤N

N∑

j=1

|ckj|. (3.18)

The first term in the right-hand side of Eq. (3.17) can easily be estimated

from the concept of condition number [28] which is

cond(C0) = ||C0|| ||(C0)−1||. (3.19)

Since the norm of the circulant matrix δ = ||C0|| can easily be calculated

directly by its definition on a pre-processing step and since the calculation of

the condition number for any matrix is a simple technical procedure [28], one

can simply estimate the norm of inverse to the circulant matrix, as ||(C0)−1|| =
δ/β, β = cond(C0). It should also be noted that the norm ζ = ||C0 − C|| is

again calculated directly by its definition. Then Eq. (3.17) gives a good basis

for the sought estimate of the required number of iteration steps, if one applies

after n iteration steps the following approximation g∗ ≈ gn, ⇒ g0 − g∗ ≈
g0 − gn. With all these comments made, Eq. (3.17) can be arranged less that

the required arbitrarily small quantity: ||gn+1 − g∗||/||g∗|| ≤ ε ≪ 1 provided
(
δζ

β

)n+1 ||g0 − gn||
||gn||

≤ ε. (3.20)
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This gives a finite-number-of-steps stopper at least for boundary contours suf-

ficiently close to a circle, since as noted above, in this case ζ ≪ 1. It is

interesting to note that with the trivial initial step g0 = 0 the last inequality

becomes even simpler: (βζ/δ)n+1 ≤ ε.

3.3 Integral equation of the second kind arising

in 2D diffraction by hard obstacles

In the previous chapter we have proposed an alternative iterative approach

to diffraction by the soft obstacles, which requires at each iteration step to

solve only a LAS with circulant matrix. Since, in the case of the star-like

contours, the kernel of integral equation contains a certain exactly convolution

term, the approximation procedure can be based on reducing the remaining

part to a constant by averaging over the polar angle. Such an approach is very

attractive, but, unfortunately, it is not clear how to construct such a matrix

for more general kernel functions. The main goal of the present chapter is to

extend this approach to the diffraction problems for hard obstacles. At the

same time, we apply here a different, improved, strategy to construct circulant

matrix. Namely, the proposed method is based upon the algebraic instead

of analytical construction of the circulant matrix. Another goal is to evaluate

convergence of the proposed method versus frequency and obstacle’s geometry.

Let us consider 2D diffraction of a plane incident wave pinc by a hard

obstacle with smooth closed boundary curve ℓ. The governing equation is

the Helmholtz partial differential equation with the Neumann-type boundary

condition [37]:

∆p+k2p = 0, p = pinc+psc,
∂p

∂n

∣∣∣∣
l

= 0 ∼ ∂psc

∂n

∣∣∣∣
l

= −∂p
inc

∂n

∣∣∣∣
l

. (3.21)

By applying Green’s integral formula, this can directly be reduced to the

72



CHAPTER 3. A fast iteration method for integral equations of the first and

second kind

following integral equation of the second kind:

p(y0)

2
−
∫

l

p(y)G(y, y0)dly = pinc(y0), y0 ∈ l; y = (y1, y2), y0 = (y01, y
0
2).

G(y, y0) =
∂Φ(r)

∂ny
= −ik

4
H

(1)
1 (kr)

(r̄ · n̄y)
r

. (3.22)

Here dly is the elementary arc-length of the boundary line coupled with point

y ∈ l, n̄y is the outer unit normal vector to contour at this point, Φ(r) is

Green’s function expressed in terms of Hankel transcendental function.

Now, by dividing contour ℓ to N small subintervals of length ∆lj and

choosing nodes yj, j = 0, 1, . . . , N − 1, say at the central points of each small

subinterval, one can reduce BIE in a standard way to the following LAS with

respect to quantities pj = p(yj) [59]:

N−1∑

j=0

pjcmj = pinc(ym), m = 0, 1, . . . , N − 1, (3.23)

where with the simplest approach cmm=1/2; cmj = −G(yj, ym)∆lj , (j 6= m).

3.3.1 Iteration algorithm

In the previous chapter we showed analytical approximation of the kernel. Here

we arrange the algebraic averaging over the elements belonging to any diagonal

parallel to the principal one. Actually, there is no need to collect all elements

of the circulant matrix, since they can be collected in a vector of dimension

N , sufficient to represent the matrix. To this end, we build an approximated

vector di with N elements, where i = 0, . . . , N − 1, that satisfies the relation
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d =
∑N

j=1 ej/N . That is clearly shown in the following scheme:

C =




• • • e1 • • • •
• • • • e2 • • •
• • • • • . . . • •
• • • • • • em−1 •
• • • • • • • em

em+1 • • • • • • •
• . . . • • • • • •
• • eN • • • • •




=⇒

C c =




• • • d • • • •
• • • • d • • •
• • • • • . . . • •
• • • • • • d •
• • • • • • • d

d • • • • • • •
• d • • • • • •
• • d • • • • •




(3.24)

This algebraic approximation is convenient from the computational point of

view, since it allows one to organize a unique machine code for many differ-

ent physical problems with different geometry of obstacles. So, by using this

approximation, one can rewrite LAS (3.23) in the equivalent form

C cp = f + (C c − C) p (3.25)

and then arrange iteration scheme

C cpq+1 = f + (C c − C)pq, q = 0, 1, . . . , (3.26)

where the initial-step solution may be taken trivial: p0 = 0.
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Figure 3.5: Diffraction by a hard three-leaves rose: ρ(θ) = 2 + 1.5 cos(3θ), k = 2

As follows from the classical results of functional analysis, given in the

previous chapter, if ||C c−C|| is sufficiently small then the iteration process is

certainly convergent.

The convergence of the proposed algorithm has been tested on many exam-

ples. One of them is demonstrated in Fig. 3.5, for a three-leaves rose which in

the polar coordinate system is described in the legend to Fig. 3.5. The number

of nodes with the discretization is N = 210 here and all other examples below.

In this case the classical CG method diverges. The proposed method con-

verges, and one can see that the 8th iteration is practically indistinguishable

from the exact diagram constructed by the Gauss elimination.

The numerous calculations carried out show that convergence of the itera-

tive scheme takes place up to significantly higher frequencies when compared

with the standard CG method. The number of iterations in the proposed al-

gorithm does not depend on the size of numerical grid, being more sensitive to

the wave number and to the shape of the obstacle. In particular, for geometry
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Figure 3.6: Diffraction by a hard quadratic obstacle with a unit side, k=8. The first

node is near the left lowest boundary point

shown in Fig. 3.5 our algorithm converges for 0 < k ≤ 5.6.

For a four-leaves rose ρ(θ) = 2 + 1.5 cos(4θ), (0 ≤ θ < 2π), the proposed

method converges for 0 < k ≤ 0.8, and we did not succeed in finding any,

even very small, value of k when the direct CG algorithm converges for this

geometry.

With further increasing of the number of leaves, the upper frequency bound-

ary of convergence is naturally decreases. Thus, in the case of 8-leaves rose,

ρ(θ) = 2 + 1.5 cos(8θ), (0 ≤ θ < 2π), the algorithm converges only for

0 < k ≤ 0.35.

In the example of diffraction by a simple quadratic obstacle the proposed

iteration algorithm converges for 0 < k ≤ 8.7. Fig. 3.6 demonstrates conver-

gence for k = 8, and the direct CG iterations again diverge in this example.

It is very interesting to study the convergence in the class of elliptic obsta-

cles with various aspect ratio. Let us set the bigger semi-axis of the ellipses to
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be unit: a = 1. Then with variation of the second semi-axis one can observe

the following: b = 0.3 – convergence for 0 < k ≤ 5; b = 0.1 – convergence for

0 < k ≤ 3; and the critique value is b = 0.0022 when the convergence breaks

even for extremely low frequencies.

3.4 Application of the fast BIE iteration method

for an arbitrary body in a flow of incom-

pressible inviscid fluid

In the present chapter let us demonstrate the variation of the method we

propose on the 2d problem about an arbitrary body placed in a flow of in-

compressible inviscid fluid. Since the solution of Toeplitz system by the PCG

(preconditioned conjugate gradients) method with a circulant pre-conditioner

is O(N logN) expensive, we try here to approximate the exact matrix by a

certain Toeplitz one instead of circulant, and then apply a fast algorithm for

this matrix, on each iteration step. We illustrate the convergence of this it-

eration scheme by a number of numerical examples, both for hard and soft

boundary conditions. It appears that the method is highly efficient for hard

boundaries (indeed, the most natural case), being much less efficient for soft

bodies (which are of less interest in practice).

To be more specific, the flow is assumed stationary in time and uniform at

infinity. Then the classical Boundary Element Method (BEM), or Boundary

Integral Equation (BIE) method can be formulated here either in terms of

velocity potential ϕ(y), y = (y1, y2), v̄ = gradϕ, or in terms of stream function

ψ(y). Again, to be more specific, we treat the problem by using function ϕ.

Then, the classical theory [60] determines potential ϕ′ to the perturbed value

of the velocity vector v̄, at arbitrary point y0 = (y01, y
0
2) in the flow, through the
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integral taken over the boundary contour l to the body under consideration:

ϕ′(y0) =

∫

l

[
ϕ(y)

∂Φ(y, y0)

∂ny
− ∂ϕ(y)

∂ny
Φ(y, y0)

]
dly (3.27)

If the boundary of the body is absolutely hard: ∂ϕ/∂ny|l = 0 then (3.27) is

simplified to

ϕ′(y0) =

∫

l

ϕ(y)
∂Φ(y, y0)

∂ny
dly (3.28)

Here ϕ = ϕ′ + ϕ∞, Green’s function is Φ(y, y0) = − ln r/(2π), r = |y − y0| =
[(y1 − y01)

2 + (y2 − y02)
2]1/2, n̄y is the outer unit normal vector to contour l,

ϕ∞(y) = v0(y1 cosα+y2 sinα), where α is the angle between axis y1 and flow’s

velocity vector at infinity v̄0.

It should be noted that representation (3.28) is valid only in the case when

the velocity circulation is zero. We thus leave aside all questions related to the

Kutta-Zhukovsky hypothesis if the body has a sharp edge on its boundary.

Now, by setting point x approaching to the boundary line from the fluid:

y0 → x ∈ l, and taking into account the standard properties of the double layer

potential [9,60], Eq. (3.28) is directly reduced to the following second-kind BIE

of Fredholm type:

ϕ(x)

2
−
∫

l

ϕ(y)
∂Φ(y, x)

∂ny
dly = f(x), x ∈ l, (3.29a)

f(x) = ϕ∞(x) = v0(x1 cosα+ x2 sinα). (3.29b)

Eq. (3.29) is valid for smooth contours only, but it can easily be rewritten in

an appropriate form if there is a sharp edge on contour l [60].

The natural way to arrange a direct numerical treatment of the basic BIE

(3.29) is to apply the so-called collocation technique [9]. One may arrange

a dense set of nodes xj ∈ l, j = 1, . . . , N , distributed over contour l along

its full length: the same nodes for “internal” variable y ∈ l and “external”
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variable x ∈ l. One then can associate the nodes for variable y with subscripts

j, xj ; and for variable x with subscripts i, xi. If we approximate the integral

in (3.29a) by a quadrature formula, the simplest one is indeed to put the

integrand approximately constant over each elementary arc, then this leads to

the following LAS (linear algebraic system):

Cϕ = f , ∼
N∑

j=1

cijϕ(xj) = fi, i = 1, . . . , N ; fi=v0(x
i
1 cosα + xi1 sinα),

(3.30a)

cii=
1

2
; j 6= i : cij = −∂G(xj , xi)

∂ny
lj =

(xj1−xi1)nj1+(xj2−xi2)nj2
(xj1 − xi1)

2 + (xj2 − xi2)
2

lj
2π
,

(3.30b)

where lj denotes the length of elementary arc. Besides, only in this section we

accept the notation more standard for discrete mathematics, when the elements

of any vector vary over 1, . . . , N , instead of 0, 1, . . . , N − 1.

It should be noted that the integral in (3.29a), after discretization, gives

a certain contribution to the diagonal terms cii. It is well known that this is

defined by the value of the curvatue of the boundary line l at node xi. However,

this contribution contains again a small factor lj , being asymptotically small

at N → ∞, when compared with the term cii = 1/2 given by that present

outside the integral.

3.4.1 An application of the proposed iterative scheme

Typically, LAS (3.30) can be treated directly, by the Gauss elimination process.

In the meantime, there is a case when the matrix {cij} has a specific structure.

We mean the case when the body placed in the flow is a circle, then with the

set of the nodes, arranged with a uniform step hθ over the polar angle, the
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matrix elements become (x1(θ) = a cos θ, x2(θ) = a sin θ):





xj1 = a cos θj ,

xj2 = a sin θj ,





nj1 = cos θj ,

nj2 = sin θj ,

θj = (j − 1
2
)hθ, hθ = 2π/N,

lj = a hθ, j = 1, . . . , N,

(xj1 − xi1)n
j
1 + (xj2 − xi2)n

j
2 = a[1 − cos(θi − θj)] = a{1− cos[(i− j)hθ]},

(xj1 − xi1)
2 + (xj2 − xi2)

2 = 2a2{1− cos[(i− j)hθ]}.
(3.31)

Therefore, the elements of the matrix depend on the difference of subscripts

(i − j), i.e. the matrix is of convolution type or, by other words, this is a

periodic Toeplitz matrix. Note that in this particular case of hard boundary

the matrix is even degenerated since the numerator and the denominator cancel

to each other. However, periodic Toeplitz structure of the matrix remains valid

in all problems for round geometries, including with full (not only degenerated)

structure.

The principal idea of the method we propose here is to arrange, in the case

of arbitrary geometry of the body, an iterative process when at each iteration

step there is a need to solve a certain LAS with a Toeplitz matrix. This

idea looks very attractive since solution to Toeplitz LAS can be constructed

more efficiently than in the case of matrices of general structure. The required

Toeplitz matrix, for arbitrary shape of boundary contour l, can be constructed

if we change in matrix cij (3.30) all elements on every diagonal parallel to the

principal one by the average value of all elements situated over this chosen

diagonal. Such an approach yields a new matrix {ctij} with the elements:

ctij=di−j, dk+n−1,k =
∑N−n+1
j=1 cj+n−1,j

N−n+1
, n = 1, . . . , N ; k = 1, . . . , N − n+ 1;

dk,k+n−1 =
∑N−n+1
j=1 cj,j+n−1

N−n+1
, n = 2, . . . , N ; k = 1, . . . , N − n + 1.

(3.32)

This formal definition is clearly demonstrated here:
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C =




• • • e1 • • • •
• • • • e2 • • •
• • • • • . . . • •
• • • • • • em−1 •
• • • • • • • em

• • • • • • • •
• • • • • • • •
• • • • • • • •




d =
∑m
j=1 ej

m

=⇒

Ct =




• • • d • • • •
• • • • d • • •
• • • • • . . . • •
• • • • • • d •
• • • • • • • d

• • • • • • • •
• • • • • • • •
• • • • • • • •




(3.33)

With so constructed Toeplitz matrix Ct let us represent LAS (3.30) in the

equivalent form:

Ctϕ = f + (Ct − C)ϕ (3.34)

This allows us to organize the iteration process

Ctϕq+1 = f + (Ct − C)ϕq, q = 0, 1, . . . , (3.35)

where ϕ0 = 0 is accepted as the initial iteration step, which is obviously to

solve the LAS with the Toeplitz matrix in the left-hand side and the true

right-hand side.
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Numerical experiments performed show that the rate of convergence is in-

dependent of the number nodes, but is quite sensitive to the geometry of the

boundary line l. This is quite natural from the physical point of view. In

fact, the number of nodes must increase also in standard approaches of direct

treatment if the geometry of the object becomes more complicated.

Generally speaking, for bodies of arbitrary complex geometry it is not so

easy to give a strict proof of the convergence for the proposed iteration al-

gorithm. However, this can be done for some particular classes of boundary

contours. For example, let us restrict the consideration by the class of elliptic

domains:

xj1 = a cos θj , xj2 = b sin θj , (a > b); lj = hθ
√
a2 sin2 θj + b2 cos2 θj ,

nj1 =
b cos θj√

a2 sin2 θj+b2 cos2 θj
, nj2 =

a sin θj√
a2 sin2 θj+b2 cos2 θj

,

θj =
(
j − 1

2

)
hθ, hθ = 2π/N, j = 1, . . . , N.

(3.36)

Then the elements of matrix C in (3.30) become

cii=
1
2
; j 6= i : cij =

(xj1−xi1)n
j
1+(x

j
2−xi2)n

j
2

(xj1−xi1)2+(xj2−xi2)2
lj
2π

=

=
a(cos θj−cos θi)b cos θj+b(sin θj−sin θi)a sin θj

a2(cos θj−cos θi)2+b2(sin θj−sin θi)2
hθ
2π

=

= ab hθ

4π
[
(a2−b2) sin2 θi+θj

2
+b2

] = ab hθ

4π
[
(a2−b2) sin2 (i+j−1)hθ

2
+b2

] ,

(3.37)

therefore, Eq. (3.32) implies

Ct= 1
2
(I+D), dk+n−1,k =

ab hθ
2π(N−n+1)

N−n+1∑
j=1

1

(a2−b2) sin2 (2j+n−2)hθ
2

+b2
,

dk,k+n−1=dk+n−1,k (n=2, . . . , N ; k=1, . . . , N − n + 1); dii = 0,

(3.38)

where D is evidently a Toeplitz matrix. Such a representation allows us to

rewrite Eq. (3.34) as a second-kind matrix operator equation:

(I+D)ϕ=2f+2(Ct−C)ϕ, =⇒ ϕ=F+2(I+D)−1(Ct−C)ϕ, F =2(I+D)−1f.

(3.39)
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Let us estimate the elements of matrix D in (3.38) in the class of ellipses of

small eccentricity, i.e. with a = (1+ε)b, ε << 1, when the ellipse is very close

to a circle. Let us keep in all expressions only linear terms over parameter ε.

Then one deduces from (3.38):

dk,k+n−1=dk+n−1,k=
hθ

2π(N−n+1)

N−n+1∑
j=1

2ab
(a2+b2)−(a2−b2) cos[(2j+n−2)hθ ] ≈

≈ hθ
2π(N−n+1)

N−n+1∑
j=1

1+ε
1+ε{1−cos[(2j+n−2)hθ ]} ≈

≈ hθ
2π(N−n+1)

N−n+1∑
j=1

{1+ε cos[(2j+n−2)hθ]}=

= hθ
2π

〈
1+ ε

N−n+1

{
sin[(N−n+2)hθ ]

sinhθ
cos[(N−n+1)hθ]− cos[(n−2)hθ]

}〉
=

= 1
N

〈
1+ ε

N−n+1

{
1
2
− sin[2π(2n−3)/N ]

2 sin(2π/N)
− cos[2π(n− 2)/N ]

}〉
,

(3.40)

where we have used a tabular value of a finite sum for trigonometric functions

[61].

For all estimates we introduce the standard normalized space l∞ of dimen-

sion N , where the norm for arbitrary vector c = {cj} and arbitrary matrix

C = {ckj} are, respectively [58,62]

||c|| = max
1≤j≤N

|cj|, ||C|| = max
1≤k≤N

N∑

j=1

|ckj|. (3.41)

Then

N∑
j=1

|dkj| =
N+1−k∑
n=2

|dk,k+n−1|+
k∑

n=2

|dk,k−n+1| =
N+1−k∑
n=2

|dk,k+n−1|+
k∑

n=2

|dk+n−1,k| =

= 1
N

(
N+1−k∑
n=2

+
k∑
n=2

)∣∣∣1+ ε
N−n+1

{
1
2
− sin[2π(2n−3)/N ]

2 sin(2π/N)
− cos[2π(n−2)/N ]

}∣∣∣
(3.42)

Let us notice that for N >> 1
∣∣∣ ε
N−n+1

{
1
2
− sin[2π(2n−3)/N ]

2 sin(2π/N)
− cos[2π(n−2)/N ]

}∣∣∣ ≤ ε
N−n+1×

×
{
3
2
+ | sin[2π(2N−2n+3)/N ]|

2 sin(2π/N)

}
≤ ε

N−n+1

{
3
2
+ 2π(2N−2n+3)/N

4π/N

}
≈ ε<<1,

(3.43)
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hence expression under the modulus in (3.42) is positive. Therefore,

N∑
j=1

|dkj| =

= 1
N

(
N+1−k∑
n=2

+
k∑

n=2

)〈
1+ ε

N−n+1

{
1
2
− sin[2π(2n−3)/N ]

2 sin(2π/N)
− cos[2π(n−2)/N ]

}〉
=

= N−1
N

+ ε
N

(
N+1−k∑
n=2

+
k∑

n=2

)
1

N−n+1

{
1
2
− sin[2π(2n−3)/N ]

2 sin(2π/N)
−cos[2π(n−2)/N ]

}
≤

≤ 1− 1
N
+ ε

N

N∑
n=2

1
N−n+1

(
3
2
+ 1

4π/N

)
< 1, (ε << 1), =⇒ ||D|| < 1.

(3.44)

Now, if in operator equation of the second kind (3.39) the norm of operator

||D|| < 1, then, by Banach theorem [58], equation (3.39) is uniquely solvable

and ||(1 +D)−1|| ≤ 1/(1− ||D||) is finite.

Let us estimate the norm of operator Ct−C in Eq. (3.39). Obviously, both

these matrices have the constant elements 1/2 on the principal diagonal which

is canceled when calculating their difference. Then, for the elements outside

the principal diagonal one obtains from (3.38)

4π
ab hθ

(dk+n−1,k − ck+n−1,k) =

= 1
N−n+1

N−n+1∑
j=1

1

(a2−b2)sin2 (2j+n−2)hθ
2

+b2
− 1

(a2−b2)sin2 (2k+n−2)hθ
2

+b2
=

= 1
N−n+1

N−n+1∑
j=1

[
1

(a2−b2)sin2 (2j+n−2)hθ
2

+b2
− 1

(a2−b2)sin2 (2k+n−2)hθ
2

+b2

]
=

= a2−b2
N−n+1

N−n+1∑
j=1

sin2
(2k+n−2)hθ

2
−sin2

(2j+n−2)hθ
2[

(a2−b2)sin2 (2j+n−2)hθ
2

+b2
][
(a2−b2)sin2 (2k+n−2)hθ

2
+b2

] .

(3.45)

This implies

|dk+n−1,k − ck+n−1,k| ≤ ab hθ
4π

a2−b2
N−n+1

N−n+1∑
j=1

2
b4

≈ 2ε
N
, =⇒

||Ct − C|| = max
1≤k≤N

N∑
j=1

|dkj − ckj| ≤ 2ε << 1,

(3.46)
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Figure 3.7: Flow over a hard ellipsis, b/a = 0.5, N = 200, (1 ≤ n ≤ N). The first

node is near rightmost boundary point

that yields the following final estimate in Eq. (3.39):

ϕ=F+2(I+D)−1(Ct−C)ϕ, ||2(I+D)−1(Ct−C)|| ≤ 2||(I+D)−1||||Ct−C|| ≤ 2ε

1−||D||
(3.47)

the value which can be attained arbitrarily small for small ε. Again, according

to the classical Banach theory, if the last norm is less than unit value then

operator equation of the second kind (3.47) is uniquely solvable and its solution

can be constructed by the standard successive iteration process, or equivalently,

by Neumann’s operator series [58].

When evaluating practical convergence of the proposed iteration algorithm,

one may notice that this converges provided all above estimates are valid. For

example, the real range of convergence in the class of elliptic objects is much

wider that those with small eccentricity. Further examples show that the

convergence is perfect also for various geometries different from elliptic ones.

Figures 3.7 and 3.8 demonstrate convergence of the iteration process for

the ellipse with aspect ratio ε = b/a = 1/2 and for quadratic domain. For
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Figure 3.8: Flow over a hard quadrate, N = 400, (1 ≤ n ≤ N). The first node is

near left lowest boundary point

such simple geometries 10 iteration steps provide relative error less than 10−5

in the solution, when compared to the Gauss elimination technique. Note that

in these and all forthcoming examples the enumeration of nodes is arranged

counterclockwise when passing along the boundary contour.

Fig. 3.9 demonstrates a 8-leaves contour, for a correct treatment one needs

to take at least 800 nodes, 100 nodes per every leaf.

Since during the intensive investigation we could not find any geometry

where the method proposed diverges, let us restrict the calculations by the

class of ellipses with varying aspect ratio. By decreasing ε = b/a up to value

ε = 0.02 we come to the geometry demonstrated with its BIE solution in

Fig. 3.10. With further decrease of parameter ε the calculations show that for

extremely small values of ε the iteration process diverges. The critical value

separating convergence from divergence is somewhere near ε∗ = 0.014.

When looking at so stable convergence of the proposed algorithm, one may

suppose that all considered examples are taken only for objects close, in some

86



CHAPTER 3. A fast iteration method for integral equations of the first and

second kind

Figure 3.9: Flow over a hard 8-leaves flower, N = 800, (1 ≤ n ≤ N). The first node

is near rightmost boundary point

Figure 3.10: Flow over a hard ellipsis, b/a = 0.02, N = 800, (1 ≤ n ≤ N). The first

node is near rightmost boundary point
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Figure 3.11: Flow over a hard roll, N = 400, (1 ≤ n ≤ N). The first node is near

upper boundary point

sense, to a round shape which exactly generates a real Toeplitz matrix. In

order to study this question, let us consider two other geometries which seem

absolutely different, both topologically and quantitatively, from any circular

domain, see Figures 3.11 and 3.12.

As a final remark in this section we note that the structure of the exact

matrix C is such that its principal diagonal in (3.30a) cii = 1/2 is Toeplitz-

like. Since the principal diagonal is usually dominant for well-posed matrices,

one may assume that this property makes the iteration process convergent and

stable. The next section demonstrates the convergence in the case when the

principal diagonal is of more general structure.
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Figure 3.12: Flow over a hard body of a complicated shape, N = 1120, (1 ≤ n ≤ N).

The first node is close to the center of the lower boundary segment

3.4.2 Flow over a soft body

If the boundary condition is ϕ|e = 0, then Eq. (3.27) immediately yields the

following integral equation

∫
l

g(y) ln |y − x|dly = f(x), x ∈ l,

g(y) = ∂ϕ
∂n

∣∣
l
= vn|l, f(x) = −2πϕ∞(x) = −2πv0(x1 cosα + x2 sinα).

(3.48)

which is the basic BIE in the case of soft boundary.

The same discretization like in the case of hard body, applied to Eq. (3.48),

leads to the following LAS

∑N
j=1 cijgj = fi, cij = ln |xj − xi|∆lj , j 6= i,

fi = f(xi), xi ∈ l, i = 1, . . . , N.
(3.49)

In order to write out correctly the diagonal elements of the matrix here, j = i,
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one needs to calculate explicitly the contribution over small arc:

cii =

xi+
∆li
2∫

xi−∆li
2

ln |y − xi|dy = 2

∆li/2∫

0

ln y dy = ∆li

(
ln

∆li
2

− 1

)
(3.50)

The same iteration scheme proposed in the previous section can be applied

to system (3.49)-(3.50) too. Let us note that if the length of the elementary

arc varies with i: ∆li 6= const, then diagonal elements (3.50) are different for

different i, and so matrix cij is not of Toeplitz type.

The detailed numerical analysis shows that the proposed iteration algo-

rithm converges in many cases also in the case of soft boundary, like for the

hard contour. First of all, it is very interesting to find the critical value ε∗ = b/a

for ellipses, if exists, analogous to that in the case of absolutely hard body. This

is found to be around ε∗ = 0.15. The comparison with ε∗ = 0.014 from the

previous section leads to the supposition that the developed iteration technique

is less applicable in the soft case. Numerous examples considered confirm that

this is so indeed. The quadratic domain gives the example when the method

converges, respective solution is reflected in Fig. 3.13. However, for geometries

used in Figures 3.11 and 3.12 the iterations diverge.

One may assume that the supposition indicated above is valid, namely that

the Toeplitz-type principal diagonal predetermines convergence, therefore such

a diagonal structure takes place for hard body with good convergence but it

is not Toeplitz for soft boundaries. However, on example related to Fig.3.12

the constant elementary arc length ∆lj = const, ∀j can easily be arranged, but

even in this case the iteration process diverges.

Let us try to improve the convergence of the iteration algorithm by pass-

ing to the indirect BIE method which reduces the Dirichlet boundary value

problem to a second-kind integral equation. This means that one may seek the
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solution as a double-layer potential:

ϕ′(y0) =

∫

l

u(y)
∂Φ(y, y0)

∂ny
dly, (3.51)

where y0 = (y01, y
0
2) is an arbitrary point in the flow, and u(y) is a certain

unknown function on the boundary contour. If the boundary of the body is

absolutely soft: ϕ|l = 0, ϕ = ϕ′ + ϕ∞, then (3.51) implies

u(x)

2
+

∫

l

u(y)
∂Φ(y, x)

∂ny
dly = −ϕ∞(x), x ∈ l , (3.52)

where the boundary property of the double-layer integral has again been ap-

plied. Let us note that, like with the direct BIE treatment for rigid boundary,

equation (3.52) is indeed the Fredholm integral equation of the second kind.

However, a detailed numerical analysis performed for Eq. (3.52) in its dis-

crete form, analogous to what is presented by expressions (3.30), shows that

convergence of the iteration scheme is even worse than with the treatment by

the first-kind integral equation, see Eqs. (3.48), (3.49). In particular, for el-

liptic obstacles iterations converge if 0.738 < b/a < 1 only. It is completely

unexpected, since the only difference between the integral operators in the

left-hand sides of Eqs. (3.29) and (3.52) is opposite signs in front of integral.

This property indicates implicitly that such a poor behavior of the proposed

algorithm in the case of soft boundary is connected with the physical nature

of the flow for soft obstacles rather than with the type of integral equation.

3.5 Conclusions

In the present chapter we propose a new numerical iteration method to solve

BIEs arising in various boundary value problems of mathematical physics.

The essence of the algorithm is demonstrated for integral equations of the

first and second kind as a direct BIE method to diffraction by acoustically
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Figure 3.13: Flow over a soft quadrate, N = 400, (1 ≤ n ≤ N). The first node is

near left lowest boundary point

soft and hard obstacles, and also for a flow of inviscid incompressible fluid

around a body, in the two-dimensional formulation. At each iteration step

there is a need to solve a certain LAS with a circulant or Teplitz matrix,

which is constructed both analytically and algebraically, by a certain averaging

along diagonals parallel to the principal one. As Toeplitz solvers we use some

special techniques known from literature, and give an estimate of respective

computational expenses which shows an evident significant acceleration of the

algorithm, when compared to standard Gauss elimination.

The fast methods known in literature, to solve BIE arising in mathematical

physics, are typically based upon some iteration techniques like CG method

and others. This has rather weak relationship with the physical nature of the

considered problem. Particularly, such an approach is indifferent with respect

to geometry of the obstacle and to the frequency of the oscillations. In practice,

the efficiency of these fast methods is determined by the condition number of

respective matrix equation, after discretization. Usually, they become less
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efficient with the frequency increasing.

The method proposed is more coupled with the physical essence of the

diffraction problem. This is developed for integral equations of the first kind

as a direct BIE method to diffraction by acoustically soft obstacles. It is based

on an iterative scheme whose each iteration step requires to solve a certain BIE

with a convolution kernel, that is equivalent to a circulant matrix in the discrete

form. The meaning of this idea is that the method proposed operates at each

step with a BIE which is close to a certain physical obstacle with respective

convolution kernel. Naturally, this is chosen in the first paragraph as a kernel

corresponding to round obstacle, but this is not the only choice. In fact, for

volumetric obstacles the circle represents a natural geometry with convolution

kernel, which in numerical implementation on uniform grid represent circulant

matrix. However, for thin obstacles one may recall linear screens which also

provide convolution-type, hypersingular kernels, holding again as first-kind

integral equations [24], and after discretization give Toepliz matrix.

Essentially, the new feature of the proposed method is a new iteration

scheme. Like in the more standard approaches, each iteration requires a fast

matrix-vector multiplication. This can be done by analogy to what is applied

for this purpose in other known methods (a brief survey is given in the Intro-

duction). In our computations we used an ACA standard algorithm, in frames

of the Hierarchical matrix technique.

The computational cost of the proposed algorithm is quasi-linear, like in

some other fast methods mentioned in the Introduction when solving boundary

value problems of mathematical physics of this kind. Therefore, there arises a

natural question: what is the advantage of this method compared, say to the

straightforward CG in terms of accuracy and efficiency? By our opinion, there

are several motivations. First of all, this leads to exact solution for any round

obstacle. Then, for complex shapes this demonstrates a clear physical sense,
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showing how close is the real geometry respectively a round shape. Finally,

in the cases of convergence, the method demonstrates very efficient practical

convergence.

The method demonstrates a perfect practical convergence for low frequen-

cies with complex geometry of the obstacles with hard boundary. Only a few

iterations are sufficient to attain good precision. With the frequency increas-

ing the convergence becomes less optimistic. However, this is still efficiently

applicable for the obstacles which do not permit multiple reflections on the

interior parts of the boundary curve – the phenomenon playing important role

in diffraction just at higher frequencies.

Another principal question with the proposed method is related to the

problem of its convergence. Unfortunately, the convergence cannot be proved

strictly for arbitrary geometry of the object. However, we demonstrate a proof

in the class of ellipses with sufficiently small eccentricity. The scheme of the

proof shows that the key point for the convergence is that operator I +D in

Eq. (3.39) must be invertible. As follows from the Fredholm theory [58], this

property is valid for a wider class of boundary contours, not necessarily with the

condition ||D|| < 1. Therefore, the practical significance of the method is that

this is applicable not only for the class of elliptic objects of small eccentricity

with the given proof.

As stated above, if geometry of the obstacle is sufficiently close to a round

shape then this converges for arbitrary frequency. Certainly, practical con-

vergence is absolutely different from theoretical one. We studied this question

thoroughly with a lot of numerical experiments, trying to distinguish examples

where it converges and where it does not. By collecting together the results of

such experiments, we could establish that convergence breaks if either complex

geometry or high frequency takes place.

The method demonstrates wonderful stability for hard boundaries of var-
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ious complex geometry. There has been performed a special investigation, to

find the cases when the algorithm diverges. We could only detect that this

diverges for extremely elongated ellipses, and we did not succeed in finding

any other examples.

Unfortunately, in the case of the Dirichlet boundary condition the effi-

ciency of the algorithm is poorer. This is so when applied to the first-kind

Fredholm integral equation of the direct BIE method, and unexpectedly even

worse convergent when applied to the second-kind equation of the indirect

method. Therefore, we come to the conclusion that probably the convergence

is more dependent on physical nature of the problem, rather than upon the

kind of the integral equation.

In the case of perfect convergence, i.e. with the Neumann-type boundary

condition, the number iterations is insensitive with respect to the numerical

grid dimension. This significantly depends on geometry of the body only. The

more complex the geometry the more iterations are required. This means in

practice that the complexity of the algorithm is free of number of iterations,

being determined only by the computational expenses to solve Toeplitz-type

LAS.

When comparing the method proposed with other existing fast methods in

diffraction, we only note that, as indicated by those authors, their approaches

become, as a rule, less efficient for high frequencies. Our method converges for

any frequency if the geometry is sufficiently close to a certain circle. Since, with

the frequency increasing, the geometry must be too close to the round shape,

one can conclude that both the standard and the proposed method loose their

efficiency if the frequency is high enough.
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Chapter 4

Fast Iteration Method in the

Problem of Waves Interacting with

Set of Thin Screens

In the current section we propose a similar iterative technique for the wave

equation describing the scattering of a harmonic wave from an arbitrary con-

figuration in the form of an array of thin straight barriers.

Scattering of waves by a set of breakwaters representing barriers or screens

is an important problem in the fluid dynamics of waves. In the first approxima-

tion, they can be assumed to be thin rigid bodies. Classical research techniques

for this scattering problem are available for a single screen, in which case an

exact solution in the form of an infinite series in Mathieu functions can be

constructed (see [63]). It is well known that this series expansion becomes in-

effective in the case of short wavelengths. In this context, asymptotic methods

have been widely used, which are designed for both short and long wavelengths

[11, 64]. An alternative approach to such problems is based on the numerical

solution of boundary integral equations (BIE) [9, 65]. For sets of plane scat-
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terers, effective methods have been developed in the case of periodic arrays

of barriers, where the underlying integral equation for wave scattering can be

derived using the periodicity of the problem. Both asymptotic [66] and vari-

ational methods and techniques based on series expansions in certain systems

of functions have been found fruitful as applied to such integral equations (see

[67, 68]).

However, classical methods cannot be applied if a set of barriers (obsta-

cles) has no special geometric configuration. A method applicable to such

problems is based on scattering T matrices (see [69]). Another possible tech-

nique for solving such problems is the BIE method. For any numerical method,

as the number of barriers grows, the computational dimension of the problem

increases considerably. For example, in the case of the BIE method, an increas-

ingly larger number of nodes has to be chosen, and the numerical solution of

the arising systems of linear algebraic equations turns out to be an extremely

complicated task for modern computers. This restriction is much more criti-

cal for short wavelengths, since, as we already mentioned, a finer grid with at

least 10 nodes per wavelength has to be used in that case. As a result, it is

practically not possible to investigate important physical features associated

with mode locking and other wave effects in such problems (see [68, 69]).

In this chapter, we develop an approach applicable to an arbitrary configu-

ration in the form of an array consisting of an arbitrary number of thin straight

barriers. The idea underlying the proposed algorithm is that, in the case of a

single obstacle, the corresponding BIE has a convolution kernel. As a result,

discretizing the matrix of the corresponding LAS, we obtain a Toeplitz matrix

and such a system can be solved using special fast methods for Toeplitz matri-

ces described in previous chapters. In the case of several barriers, we propose

an iteration process. At each iteration step, an integral equation is solved for

each screen separately. The solutions for the other screens are taken from the
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Figure 4.1: Geometry of the problem of a plane wave interacting with a set of thin

screens.

previous iteration. Hence, they appear on the right-hand side of the operator

equation. Thus, each iteration step in the discrete formulation involves a LAS

of Toeplitz structure, which can be solved using well-known fast computational

methods.

4.1 Statement of the problem and reduction to

a system of boundary integral equations

Consider the gravity driven oscillations of a free surface of an ideal incompress-

ible fluid in a channel of constant depth h (see [70]). Assume that these are

small harmonic linear oscillations of constant circular frequency ω. Assume

also that the channel is much longer than the wavelength. As in the previous

chapters, the pressure in the incident wave is denoted by pinc.

Let N rigid disjoint barriers high enough to prevent a wave from completely

covering it be placed perpendicularly to the bottom. The width of the barriers

is much less than their length, and their curvature is so small that it can be

neglected. Since the depth of the bottom is a constant, the velocity of wave

propagation c2 = gh is also a constant. By definition, the wavelength is λ = cT
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,where T = 2π/ω is the period of oscillations. The wave number k is defined

as k2 = ω2/gh. Then the wavelength is related to the wave number by the

formula λ = 2π/k.

On the water surface, we introduce a Cartesian coordinate system such

that the direction of the incident wave is aligned with the x1 axis, as shown

in Fig. 4.1. Then the positions of the barriers can be specified by their base

segments lm = [am, bm], m = 1, .., N , where am = (am1 , a
m
2 ) and bm = (bm1 , b

m
2 ).

Let L denote the composite line representing the union of the barrier seg-

ments: L =
∑N

m=1 lm. The task is to find the wave pressure at an arbitrary

point x = (x1, x2) on the water surface. Let u1 and u2 denote the horizontal

components of the velocity of particles at the point x, z be the depth below

the free surface, and ξ denote the free surface elevation above the unperturbed

level.

First, we consider a plane water layer of constant depth h (see [70]). On

retaining the leading terms, the continuity equation for the fluid flow in a

prismatic volume with the base given by the elementary rectangle δx1δx2 can

be written as

∂

∂x1
(u1hδx2)δx1 +

∂

∂x2
(u2hδx1)δx2 = − ∂

∂t
{(ξ + h)δx1δx2} , (4.1)

whence
∂ξ

∂t
= −h

(
∂u1
∂x1

+
∂u2
∂x2

)
. (4.2)

If there is no perturbing forces, the equations of motion have the form

ρ
∂u1
∂t

= − ∂p

∂x1
, ρ

∂u2
∂t

= − ∂p

∂x2
. (4.3)

If the vertical acceleration of the fluid particles is neglected, it is easy to

show that the pressure at an arbitrary point x is approximately equal to the

static pressure caused by the depth below the free surface (see [70]). As a
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result, we have the equation

p− p0 = gρ(z0 + ξ − z), (4.4)

where z0 is the ordinate of the free surface in the unperturbed state. This

equation yields

∂p

∂x1
= gρ

∂ξ

∂x1
,

∂p

∂x2
= gρ

∂ξ

∂x2
,

∂2p

∂t2
= gρ

∂2ξ

∂t2
(4.5)

From relations (4.2)–(4.5), it is easy to derive the wave equation

∂2p

∂t2
= c2

(
∂2p

∂x21
+
∂2p

∂x22

)
(4.6)

Assuming that the wave process is a harmonic one with the frequency ω

and the time dependence given by the multiplier exp(−iωt), Eq.(4.6) can be

reduced to the Helmholtz equation

∂2p

∂x21
+
∂2p

∂x22
+ k2p = 0 or (∆ + k2)p = 0, (4.7)

which describes harmonic oscillations of water on the sea surface.

The boundary condition on the boundary of the barriers has the form

∂p

∂ny
L = 0, (4.8)

where y is a point on the barrier surface and ny is the normal vector to the

barrier surface at this point.

The wave pressure is sought in the form of the sum of the incident plane

wave and the wave pinc scattered from the set of barriers psc:

p = pinc + psc, pinc = eikx1 . (4.9)

The boundary value problem (4.7) with boundary conditions (4.8) can be

reduced to a system of BIEs on the considered array of barriers. Consider a
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Figure 4.2: Set of contours for deriving the underlying BIE.

contour l enclosing all the obstacles under study, while the observation point

x remains outside it (see Fig. 4.2).

For this contour, we have the standard integral representation (see [65])

psc(x) =

∫

l

(
p(y)

∂Φ

∂ny
− ∂p(y)

∂ny
Φ

)
dly (4.10)

where Φ = Φ(r) is the Green’s function and here, again, we use its two-

dimensional representation as Hankel function Φ(r) = (i/4)H
(1)
0 (r), r = |y−x|.

The integration point y belongs to l.

It is easy to see that the contributions made by a pair of contours traversed

along the same arc segment but in opposite directions cancel out, since the

corresponding integrals involve the same functions with normal derivatives of

opposite signs. This means that the integral over the original outer contour is

equal to the sum of the integrals over three arcs, each enclosing its own barrier

(for illustrative purposes, Fig. 4.2 depicts only three barriers, but they can be

as many as desired).

Let each arc shrink to its barrier. Then the contour is replaced by the array

of two-sided rectilinear arcs along the banks of the physical barriers. Each two-

sided arc is represented as a pair of one-sided ones: l+m and l−m , where m is the
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index of the corresponding barrier. Here, l+m is chosen so that the unit normal

vector n+
m to it is directed to the right of the segment (am, bm). Accordingly,

the unit normal vector n−
m to l−m is directed to the left of the segment (am, bm).

The wave pressures on l+m and l−m are denoted by p+ and p−, respectively.

The point ym belongs to l+m. Then, in view of boundary condition (4.8), rep-

resentation (4.10) is rearranged into

psc(x) =

N∑

m=1

(∫

l+m

(
p+(y)

∂Φ

∂n+
m

)
dl+y +

∫

l−m

(
p−m(y)

∂Φ

∂n−
m

)
dl−y

)
=

=
N∑

m=1

∫

l+m

g(y)
∂Φ

∂n+
m

(k|y − x|)dl+y , g(y) = p+(y)− p−(y), y ∈ lm, (4.11)

where g(y) is the jump in pressure in passing the corresponding barrier. Thus,

if the pressure jump function is found, then the scattered field at an arbitrary

point x on the fluid surface can be obtained using formula (4.11).

To derive BIEs, following the standard approach [9, 65], on the left-hand

side of (4.11), we take into account that the scattered field is equal to the total

field minus the scattered one. Then we send x in this relation to the boundary

(x → y0j ∈ L) and differentiate the resulting expression with respect to the

normal n+
j at the point y0j :

∂p(y0j )

∂n+
j

=
∂pinc(y0j )

∂n+
j

+
N∑

m=1

∫

l+m

g(y)
∂2Φ

∂n+
j ∂n

+
m

(k|y − y0j |)dl+y . (4.12)

Again using boundary conditions (4.8), from the last equality, we derive a

system of BIEs for determining the jump in pressure:

N∑

m=1

∫

l+m

g(y)
∂2Φ

∂n+
j ∂n

+
m

(k|y − y0j |)dly = −
∂pinc(y0j )

∂n+
j

. (4.13)

Note that Eq. (4.13) in the more general case of curvilinear contours can

be found in [71, 72]. Here, we only demonstrate the derivation procedure for

a set of screens.
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All the quantities involved in (4.13) can be written as closed form expres-

sions. Specifically,

nm+
1 =

bm2 − am2
|bm − am|

, nm+
2 = − bm1 − am1

|bm − am|
,

∂pinc(y0j )

∂n+
j

= ik
bj2 − aj2
|bj − aj |

eiky
j
1 .

(4.14)

Moreover, in view of the recurrence expressions for Hankel functions, we

have

∂H
(1)
1

∂r
=
H

(1)
0 (r)−H

(1)
2 (r)

2
, H

(1)
1 (r) =

r

2

[
H

(1)
0 (r)−H

(1)
2 (r)

]
. (4.15)

Then, for y ∈ lm, it is easy to obtain

∂2Φ

∂n+
j ∂n

+
m

(k|y − y0j |) =

= −
ikH

(1)
1 (k|y − y0j |)

[
(bm2 − am2 )(b

j
2 − aj2) + (bm1 − am1 )(b

j
1 − aj1)

]

4|bm − am||bj − aj||y − y0j |
. (4.16)

Moreover, system (4.13) becomes

∑

m

∫

l+m

g(y)K(y, y0j )dly = 4|b2j − a2j |eiky
j
1 ,

K(y, y0j ) =
H

(1)
1 (k|y − y0j |)

[
(bm2 − am2 )(b

j
2 − aj2) + (bm1 − am1 )(b

j
1 − aj1)

]

|bm − am||y − y0j |
(4.17)

In the integrand, it is convenient to pass to dimensionless variables. For

this purpose, we make the following substitutions (0 ≤ t, τ ≤ 1):

ym1 = am1 + (bm1 − am1 )tm, yj1 = aj1 + (bj1 − aj1)τj , (4.18)

ym2 = am2 +(bm2 −am2 )tm, yj2 = aj2+(bj2−aj2)τj , dlmy = |bm−am|dtm, (y ∈ lm)

(4.19)

Then system (4.17) takes the form

∑

m

∫ 1

0

g(tm)K(tm, τj)dtm = 4(b2j − a2j)e
ikyj1(τj),
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K(tm, τj) =
H

(1)
1 (k|y(tm)− y(τj)|)

[
(bm2 − am2 )(b

j
2 − aj2) + (bm1 − am1 )(b

j
1 − aj1)

]

|y(tm)− yj(τj)|
(4.20)

Note that the kernels of system (4.20) have a hypersingular singularity. If the

points y(tm) and y(τj) lie on a single barrier (i.e., m = j ), the kernels of

system (4.20) become

H
(1)
1 (k|y(tm)− y(τj)|)

[
(bm2 − am2 )(b

j
2 − aj2) + (bm1 − am1 )(b

j
1 − aj1)

]

|y(tm)− yj(τj)|
=

=
H

(1)
1 (k|bj − aj ||tj − τj |)|bj − aj |

|tj − τj |
. (4.21)

From the asymptotics of the Hankel function for small values of the argu-

ment, H
(1)
1 (x) ≈ −2i/(πx), it follows that

H
(1)
1 (k|bj − aj ||tj − τj|)|bj − aj |

|tj − τj |
∼ − 2i

πk(tj − τj)2
, tm → τj ; (4.22)

i.e., the kernel is hypersingular.

Extracting the singularity of the kernel in explicit form, we reduce system

(4.20) to
∑

m

∫ 1

0

g(tm)Kj,m(tm, τj)dtm = 4(bj2 − aj2)e
ikyj1(τj), (4.23)

where the kernel is given by

Kj,m(tm, τj) =





H
(1)
1 (k|y(tm)−y(τj )|)[(bm2 −am2 )(bj2−a

j
2)+(bm1 −am1 )(bj1−a

j
1)]

|ym(tm)−yj(τj)| , m 6= j,

− 2i
πk

[
1

(tj−τj)2 +
πki|tj−τj |H(1)

1 (k|bj−aj ||tj−τj |)|bj−aj |−2

2|tj−τj |2

]
, m = j

(4.24)

Here, the hypersingular singularity of the kernel is extracted in explicit form.

4.1.1 Iteration algorithm and its discrete implementation

using fast computational mathods

The idea of the proposed iteration method can be described as follows.
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System (4.23), (4.24) is discretized using the Belotserkovskii-Lifanov method

[71, 72]. Taking into account that, for each pair of barriers (m, j), the variables

tm and τj range within the interval (0, 1), we introduce the following partition

of the barriers with a discrete set of nodes chosen on them:

τ jv =
v − 0.5

nj
, v = 1, 2, .., nj; tmu =

u

nm
, u = 1, 2, .., nm, (4.25)

where nm and nj are chosen so that the number of partition points in lm and

lj for the wavelength λ is sufficiently large. Practical experience shows that

the partition must be such that it ensures at least ten points per wavelength.

Then, according to the Belotserkovskii-Lifanov method, system (4.23), (4.24)

has the discrete analogue

N∑

m=1

nm∑

u=1

g(tmu )K
mj
uv = 4(bj2 − aj2)e

ikyj1(τ
j
v ), (4.26)

where

Kmj
uv =





H
(1)
1 (k|y(tmu )−y(τ jv )|)[(bm2 −am2 )(bj2−a

j
2)+(bm1 −am1 )(bj1−a

j
1)]

nm|y(tmu )−y(τ jv )|
, m 6= j,

− 2i
πk

(
1

τ jv−tju
− 1

τ jv−tju−1

)
+

|bj−aj ||tjv−τ ju|H(1)
1 (k|bj−aj ||τ jv−tju|)−2

nj |τ jv−tju|2
, m = j

(4.27)

Note that the discretization of general hyper singular equations is also

discussed in [71, 72].

It is easy to see that the dimension of LAS (4.26) is D =
∑N

m=1 nm. If

the incident waves are of high frequency, satisfactory accuracy can be achieved

by using fine grids on the set of barriers. Then the resulting system is of

high dimension and direct classical methods, such as Gaussian elimination,

become ineffective, since their complexity is O(D3) (see [28]). With the aim

of devising a faster solution method, we examine the structure of the matrix

of system (4.26) in more detail.

Obviously, when m = j (the points belong to a single barrier), the formula

for finding the coefficients is a difference scheme with respect to the indices
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Figure 4.3: Structure of the matrix for the discretization of the problem for N

barriers.

u and v. In this case, we obtain a symmetric Toeplitz matrix, which can

be solved using fast methods described in previous chapters. Physically, the

case m = j determines the contribution made by scattering from a single

barrier to the complete wave field. However, for m 6= j (the points belong to

different barriers), the matrix elements have no special form. Physically, this

case describes the influence exerted on the general structure of the wave field

by multiple reflections of a wave from various barriers.

The structure of the coefficient matrix is shown in Fig. 4.3. Here, T

denotes the Toeplitz parts of the matrix. Based on this matrix representation,

we construct an iteration algorithm in which N Toeplitz systems of equations

order nm are solved at every step.

At the zero step of the algorithm, the pressure on each barrier is determined

regardless of the other barriers:

nj∑

u=1

g0(tju)K
jj
uv = 4(bj2 − aj2)e

iky1(τ
j
v ), j = 1, 2, .., N, v = 1, 2, .., nj. (4.28)
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At every new iteration step, the pressure is refined using the values obtained

at the previous step:

nj∑

u=1

gs(tju)K
jj
uv = 4(bj2 − aj2)e

iky1(τ
j
v ) −

N∑

m=1,m6=j

nj∑

u=1

gs−1(tmu )K
mj
uv , (4.29)

where j = 1, 2, .., N, v = 1, 2, .., nj. Obviously, several independent LAS (as

many as the number of barriers) with Toeplitz matrices have to be solved at

every step.

In our problem we have used the conjugate gradient method with circulant

preconditioning (PCG) as in the previous chapters. The overall complexity

of the this approach to the solution of a system with a Toeplitz matrix is

O[2Nitern log 2n], where the number Niter of iterations is small. Based on this

estimates for Toeplitz solvers, we can analyze the complexity of the fast method

proposed for solving the problem of waves interacting with a set of thin screens.

For convenience, the segments are assumed to have an identical length. Then

the number of nodes for all the segments is identical as well and the size of

system (4.26) is D =
∑N

m=1 n = Nn. As was noted above, the direct numerical

solution of this system would require O(D3) = O(N3n3) operations. Instead,

the problem for each barrier is solved separately at each iteration step. Even

without using fast methods, the complexity is then reduced to O(Nn3). If the

number miter of iterations in the algorithm is small (which is confirmed by nu-

merical experiments), this simple approach is superior for miterNn
3 < (Nn)3,

i.e., if miter < N2. The efficiency of this method can be further enhanced by

applying superfast solvers for Toeplitz systems at each step of the algorithm.

Then, as is easy to see, we obtain the estimate O[2miterNiterNn log 2n], where

Niter is the number of iterations in PCG method. This estimate is confirmed

by numerical experiments.

The numerical results presented below were obtained using the iteration

method described above. Within five significant digits, they coincide with
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Figure 4.4: Scattering of a plane wave from a single barrier placed at an angle of 30◦.

the solution of the corresponding Toeplitz-structured LAS based on Gaussian

elimination. Moreover, with the use of the fast algorithm, the computations

can be executed in real time.

The following examples were considered.

Example 1. Canonical case: a single barrier placed at an angle of 30◦

to the wavefront. The length of the barrier = 10 meters, and the wavelength

= 0.628 m (wave number = 10 rad/m). Obviously, for a single barrier, there

is no influence of neighboring barriers, so the iteration method immediately

produces an exact result. The structure of the wave field is shown in Fig. 4.4.

As was expected, the method converged after two steps. Moreover, the

second step was required only because the residual cannot be determined at

the first step. At the first step, CG without preconditioning converged after

44 iterations. At the second step, CG immediately produced the exact result.

The number of nodes was N = 256.
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Figure 4.5: Scattering of a plane wave from a set of three parallel barriers placed at

an angle of 30◦.

Example 2. Another two barriers separated by a distance of 2 m are

placed in parallel to the one considered in Example 1. The total number of

nodes is N = 3 ∗ 256 = 768.

The structure of the wave field is displayed in Fig. 4.5. This time the

method converged after nine steps. The process of computations is described

in Table 4.1.

Example 3. Two barriers make an angle of 90 degrees. The distance

between their neighboring ends is 2.8m (
√
22 + 22), N = 2 ∗ 256 = 512. The

other parameters are the same as in Example 4.1. The complete geometry is

presented in Fig. 4.6.

As in Example 1, the method converged after two steps. This is a surprising

result, since there must be multiple reflections of waves from the barriers.

However, by varying the wave number, it becomes clear that the interaction
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Figure 4.6: Scattering of a plane wave from two mutually orthogonal barriers.

of the barriers is weak in this case. Specifically, the method converges after

three steps if the wavelength is doubled and after eight steps if the wavelength

is three times as long.

Example 4. The same as in Example 3 but for two adjoining barriers (see

Fig. 4.7). The wavelength is 1.884m. This case required the largest number

of iterations: N = 2 ∗ 128 = 256. The method converged after five steps (see

Fig. 4.7).

Example 5. The barriers form a square-like configuration. The distance

between the ends of neighboring barriers is 2.8 meters (
√
22 + 22). The other

parameters are the same as in Example 1 (see Fig. 4.8). The dimension of the

system is N = 4 ∗ 256 = 1024. The convergence process is described in Table

4.2.

Example 6. The same as in Example 5 but the barriers are adjoining,

N = 4 ∗ 256 = 1024 (see Fig. 4.9).
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Figure 4.7: Scattering of a plane wave from two mutually orthogonal adjoining bar-

riers.

Figure 4.8: Scattering of a plane wave from four mutually orthogonal barriers.
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Figure 4.9: Scattering of a plane wave from four mutually orthogonal adjoining

barriers.

In this case, the method converged after 41 steps. Curiously, no oscillations

must be observed inside the square, since the wave process inside the square

is fictitious. This is confirmed by the direct computation of the complete LAS

based on Gaussian elimination, which produces the same wave pattern.

Note that the performance of the algorithm is demonstrated here for several

screens. If the number of screens is increased considerably, the dimension of

the LAS after the discretization can reach tens of thousands and more. It is

in this case that the proposed algorithm becomes efficient.

Note also that the idea of using an iteration algorithm in which every step

involves the inversion of matrices corresponding to scattering from a single

screen can also be applied to curvilinear screens. However, the advantages of

Toeplitz solvers fail to be used in that case.
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Table 4.1: Number of iterations of the conjugate gradient method

Step Norm of

the error barrier 1 barrier 2 barrier 3

1 - 44 44 44

2 2.566861 11 36 22

3 0.205326 9 3 4

4 0.010384 2 2 2

5 0.004213 1 3 1

6 0.003428 1 1 3

7 0.002215 1 1 1

8 0.001082 1 1 1

9 0.000850 1 1 1

Table 4.2: Number of iterations of the conjugate gradient method

Step Norm of

the error barrier 1 barrier 2 barrier 3 barrier 4

1 - 44 49 44 49

2 0.098940 7 2 7 2

3 0.001390 1 1 1 1

4 0.001242 1 1 1 1

5 0.001627 1 1 1 1

6 0.003054 1 1 1 1

7 0.001458 1 1 1 1

8 0.001906 1 1 1 1

9 0.000829 1 1 1 1
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4.2 General Conclusions

The current research concern a solving of fundamental problem about efficient

numerical realization of integral expressions and boundary integral equations

arising in wave dynamics, acoustics, and boundary-value problems of mechan-

ics with mixed boundary conditions. This includes:

1) Development of an FFT-based method to accelerate numerical algo-

rithms in diffraction problems. This is based on the reduction of integrand

to a form suitable for application of the fast Fourier transform. Developed

approach is applied to solve diffraction problem for plane rigid screen in high

frequency range. Derivation of the diffraction integral is based on Kirchhoff‘s

physical diffraction theory. After a special change of variables, based on a

specific form of the phase function, with the use of some efficient semi-analytic

realization of this change, the integral is reduced to a form permitting applica-

tion of FFT. It is shown, that the developed method allow us to significantly

reduce the time of computation, keeping the accuracy of direct numerical meth-

ods. An essential decreasing of necessary computer resources at the expense

of high performance of the developed method permit the research wide range

of physical parameters.

2) The fast numerical algorithm is also developed for solving wide range of

problems in mechanics of continua. Integral equations in such problem often

has difference kernel and in numerical form can be represented as discrete

convolution. Application of the convolution theorem with the fast Fourier

transform algorithm allows us to evaluate this integral fast and accurate.

The numerical solution to the static crack problem for linear cracks in the

non-classical porous material of a Cowin-Nunziato type is constructed by fast

iteration methods founded on Conjugate Gradient method with a precondition-

ing. It is shown, that arising integral equation, after discretization, may be

114



CHAPTER 4. Fast Iteration Method in the Problem of Waves Interacting

with Set of Thin Screens

reduced to linear algebraic systems with matrix of Toepliz form. To accelerate

CG method there can be applied FFT-methods. This leads to a quasi-linear

numerical algorithm. There is presented a comparison between the classical

direct Gauss elimination, iterative conjugate gradients method and fast ver-

sions of the CG method, such as preconditioned CG. We can conclude that

fast PCG methods considerably accelerate numerical calculations, while the

number of iterations is weakly sensitive to the number of nodes.

3) In the case when the diffraction is happen by a general-form object whose

shape is neither linear nor circular, the problem can be reduced to an integral

equation with a general-form kernel. There is developed a new approach, which

operate on each iteration step with an integral equation, which has a convo-

lution kernel. Different averaging procedures of changing the full kernel with

convolution one are presented. Analytical approximation is applied to star-like

obstacles for two-dimensional scattering by soft obstacles. Discrete numerical

approximation is demonstrated on the problem of a flow around bodies placed

in the incompressible inviscid fluid. With such a treatment, we approximate

the exact matrix by a certain Toeplitz one and then apply a fast algorithm for

this matrix, on each iteration step. This admits again a quasi-linear numeri-

cal algorithm. The practical convergence of the algorithm is demonstrated by

examples for different geometries. We illustrate the convergence of this itera-

tion scheme both for hard and soft boundary conditions. It appears that the

method is highly efficient for hard boundaries, being much less efficient for soft

boundaries.

4) In the present chapter we apply the same idea to wave processes with

obstacles which represent an arbitrary set of linear rigid screen of finite length.

The iteration process is proposed, when at each iteration step one needs only

solution of the problem for every isolated single screen. All equations in this

case are of convolution type, and they are reduced again to Toepliz-like matrix
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equations in a discrete form. The algorithm developed shows fast convergence

for respective second-kind Fredholm integral equation.

116



Bibliography

[1] Cooley J.W., Tukey J.W., An algorithm for the Machine Calculation of

Complex Fourier Series, Math. Comp., 19, 297–301 (1965)

[2] Tyrtyshnikov E.E., Methods for Numerical Analysis. Akademiya, Moscow

(2006) [in Russian]

[3] Van Loan C., Computational Frameworks for the Fast Fourier Transform.

SIAM, Philadelphia (1992)

[4] Rokhlin V., Rapid solution of integral equation of classical potential theory,

J. Comput. Physics., 60, 187–207 (1985)

[5] Greengard L., Rokhlin V., A fast algorithm for particle simulations, J.

Comput. Physics., 73, 325–348 (1987)

[6] Rokhlin V., Rapid solution of integral equations of scattering theory in two

dimensions, J. Comput. Physics., 86, 414–439 (1990)

[7] Williams E.G., Maynard J.D., Numerical evaluation of the Rayleigh inte-

gral for planar radiators using the FFT, JASA, 2020–2030 (1982)

[8] Williams E.G., Numerical evaluation of the radiation from unbaffled, finite

plates using the FFT, JASA, 343–347 (1982)

[9] Sumbatyan M.A., Scalia A., Equations of Mathematical Diffraction Theory.

CRC Press, Boca Raton, Florida (2005)

117



BIBLIOGRAPHY

[10] Skudrzyk E., The Foundations of Acoustics, Basic Mathematics and Basic

Acoustics. Springer-Verlag, Wien (1971)

[11] Honl H., Maue A.W., Westpfhal K., Theorie der Beugung, in Handbuch

der Physik, Ed. by S. Flugge, 25(1). Springer-Verlag, Berlin (1961)

[12] Abramowitz M., Stegun I., Handbook of Mathematical Functions. Dover,

New York (1965)

[13] Ifeachor E.C., Jervis B.W., Digital Signal Processing: A Practical Ap-

proach, 2nd Edition. Prentice Hall, Upper Saddle River, New Jersey (2002)

[14] Aizikovich S.M., Alexandrov V.M., Argatov I.I., et al., Mechanics of Con-

tact Interactions, Ed. by I. I. Vorovich and V. M. Alexandrov. Fizmatlit,

Moscow (2001) [in Russian]

[15] Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P., Numerical

Recipes: The Art of Scientific Computing, second ed.. Cambridge University

Press, Cambridge (1992)

[16] Cowin S.C., Nunziato J.W., Linear elastic materials with voids, J. Elast.,

13, 125–147 (1983)

[17] Puri P., Cowin S.C., Plane waves in linear elastic materials with voids, J.

Elast., 15, 167–183 (1985)

[18] Scalia A., Sumbatyan M.A., Contact problem for porous elastic half-plane,

J. Elast., 60, 91–102 (2000)

[19] Scalia A., Contact problem for porous elastic strip, Int. J. Eng. Sci., 40,

401–410 (2002)

[20] Atkin R.J., Cowin S.C., Fox N., On boundary conditions for polar mate-

rials, ZAMP, 28, 1017 (1977)

118



BIBLIOGRAPHY

[21] Chandrasekharaiah D.S., Effects of surface stresses and voids on Rayleigh

waves in an elastic solid, Int. J. Eng. Sci., 25, 205–211 (1987)

[22] Ciarletta M., Iovane G., Sumbatyan M. A., On stress analysis for cracks

in elastic materials with voids, Int J Eng Sci, 41, 2447–2461 (2003)

[23] Gradshteyn I.S., Ryzhik I.M., Table of Integrals, Series, and Products.

Academic Press, New York (2007)

[24] Lifanov I.K., Poltavskii L.N., Vainikko G.M., Hypersingular Integral

Equations and Their Applications. CRC Press, Boca Raton, Florida (2004)

[25] Voevodin V. V., Tyrtyshnikov E. E., Numerical Processes with Toeplitz

Matrices. Nauka, Moscow (1987) [in Russian]

[26] Stewart M., A superfast Toeplitz solver with improved numerical stability,

SIAM J. Matrix Anal. Appl., 25, 669–693 (2003)

[27] Van Barel M., Heinig G., Kravanja P., A stabilized superfast solver for

nonsymmetric Toeplitz systems, SIAM J. Matrix Anal. Appl, 23, 494–510

(2001)

[28] Golub G.H., Van Loan C.F., Matrix Computations, 3rd Edition. Johns

Hopkins Univ. Press, Baltimore, Md. (1996)

[29] Levinson N., The Wiener RMS (Root-Mean-Square) error criterion in fil-

ter design and prediction, J. Math. and Phys., 25, 261–278 (1946)

[30] Trench W., An algorithm for the inversion of finite Toeplitz matrices,

SIAM J. Appl. Math., 12, 512–522 (1964)

[31] de Hoog F., A new algorithm for solving Toeplitz systems of equations,

Linear Algebra Appl., 88/89, 123–138 (1987)

119



BIBLIOGRAPHY

[32] Ammar G., Gragg W., Superfast solution of real positive definite Toeplitz

systems, SIAM J. Matrix Anal. Appl., 9, 61–76 (1988)

[33] Strang G., A proposal for Toeplitz matrix calculations, Studies Appl.

Math., 84, 171–176 (1989)

[34] Chan T., An optimal circulant preconditioner for Toeplitz systems, SIAM

J. Sci. Stat. Comput., 9, 766–771 (1988)

[35] Chan R.H., Ng M.K., Conjugate gradient methods for Toeplitz systems,

SIAM Rev., 38, 427–482 (1996)

[36] Oseletets I. V., Tyrtyshnikov E. E., A unifying approach to the construc-

tion of circulant preconditioners, Linear Algebra Appl., 418 (2,3), 435–449

(2006)

[37] Colton D., Kress R., Integral Equation Methods in Scattering Theory.

John Wiley, New York (1983)

[38] Hackbusch W., Novak Z.P., On the fast matrix multiplication in the

boundary element method by panel clustering, Numer. Math., 54 (4), 463–

491 (1989)

[39] Bebendorf M., Approximation of boundary element matrices, Numer.

Math., 86, 565–589 (2000)

[40] Borm S., Grasedyck L., Huckbusch W., Introduction to hierarchical ma-

trices with applications, Eng. Anal. Bound. Elem., 27, 405–422 (2003)

[41] Bebendorf M., Hierarchical Matrices. Springer, Berlin (2008)

[42] Borm S., Efficient Numerical Methods for Non-local Operators: H2-

Matrix Compression, Algorithms and Analysis. Ems Tracts in Mathematics,

Zurich (2010)

120



BIBLIOGRAPHY

[43] Tyrtyshnikov E., Incomplete cross approximation in the mosaic-skeleton

method, Computing, 64, 367–380 (2000)

[44] Goreinov S.A., Tyrtyshnikov E.E., Zamarashkin N.L., A Theory of

pseudo-skeleton approximations, Linear Algebra Appl., 261, 1–21 (1997)

[45] Nechepurenko Yu.M., Fast numerically stable algorithms for a wide class

of linear descrete transformations, Preprint 92, Dpt. Comp. Math., Russian

Academy Sci., (1985) [in Russian]

[46] Brandt A., Lubrecht A.A., Multilevel matrix multiplication and fast so-

lution of integral equations, J. Comput. Physics., 90, 348–370 (1990)

[47] Harten A., Discrete multiresolution analysis and generalized wavelets, J.

Appl. Numer. Math., 12, 153–193 (1993)

[48] Harten A., Adaptive multiresolution schemes for shock computations,

UCLA CAM Report, 93–06 (1993)

[49] Beylkin G., Coifman R., Rokhlin V., Fast wavelet transform and numerical

algorithms, Comm. Pure Appl. Math., 44, 141–183 (1991)

[50] Canning F.X., The impedance matrix localization (IML) method for

moment-method calculations, IEEE Anten. Prop., 32, 18–30 (1990)

[51] Phillips J.R., White J.K., A precorrected-FFT method for electrostatic

analysis of complicated 3-D structures, IEEE Trans. Comput. Aided Des.

Integr. Circuits Syst., 16, 1059–1072 (1997)

[52] Fata S.N., Fast Galerkin BEM for 3D potential theory, Comput. Mech.,

42, 417–429 (2008)

[53] Hu F.Q., A spectral boundary integral equation method for the 2D

Helmholtz equation, J. Comp. Phys., 120, 340–347 (1995)

121



BIBLIOGRAPHY

[54] Liu J., Liu Q.H., A spectral integral method (SIM) for periodic and non-

periodic structures, IEEE Microwave Wireless Compon. Lett., 14 (3) 97–99

(2004)

[55] Martinsson P.G., Rokhlin V., An accelerated kernel-independent fast mul-

tipole method in one dimension, SIAM J. Sci. Comp., 29(3), 1160–1178

(2007)

[56] http://www.hlibpro.com.

[57] Bojars N.N., Scattering by a cylinder: A fast exact numerical solution,

JASA, 75(2), 320–323, 1984.

[58] Kantorovich L.V., Akilov G.P., Functional Analysis. Pergamon Press, New

York (1982)

[59] Banerjee P.K., Butterfield R., Boundary Element Methods in Engineering

Science. McGraw Hill, London (1981)

[60] Bonnet M., Boundary Integral Equations Methods for Solids and Fluids.

John Wiley, NY (1999)

[61] Prudnikov A.P., Brychkov Y.A., Marichev O.I., Integrals and Series

(vol.1). Gordon and Breach, Amsterdam (1986)

[62] Horn R.A., Johnson C.R., Matrix Analysis. Cambridge University Press,

Cambridge (1985)

[63] Bowman J.J., Senior T.B.A., Uslenghi P.L.E., Electromagnetic and

Acoustic Scattering by Simple Shapes. North-Holland, Amsterdam (1969)

[64] Shenderov E.L., Wave Problems in Underwater Acoustics. Defense Tech-

nical Information Center (1974)

122



BIBLIOGRAPHY

[65] Brebbia C.A., Telles J.C.F., Wrobel L.C., Boundary Element Techniques:

Theory and Applications in Engineering. Springer-Verlag, Berlin (1984)

[66] Scarpetta E., Sumbatyan M.A., On the oblique wave penetration in elastic

solids with a doubly periodic array of cracks, Quart. Appl. Math., 58, 239–

250 (2000)

[67] Linton C.M., McIver P., Handbook of Mathematical Techniques for

Wave/Structure Interactions. CRC, Boca Raton, Florida (2001)

[68] Porter R., Evans D.V., Wave scattering by periodic arrays of breakwaters,

Wave Motion, 23, 95–120 (1996)

[69] Lim R., Hackman R.H., A formulation of multiple scattering by many

bounded obstacles using a multi-centered T supermatrix, J. Acoust. Soc.

Am., 91, 613–638 (1992)

[70] Lamb H., Hydrodynamics. Dover, New York (1945)

[71] Vainikko G.M., Lifanov I.K., Poltavskii L.N., Numerical Methods in Hy-

persingular Integral Equations and Their Applications. Yanus-K, Moscow

(2001) [in Russian]

[72] Lifanov I.K., The Method of Singular Integral Equations and Numerical

Experiment. Yanus, Moscow (1995) [in Russian]

Publications concerning PhD thesis:

[73] Sumbatyan M.A., Popuzin V.V., Application of FFT to the short wave-

length diffraction by a plane hard screen, Proc. XII Intern. Conf. Modern

problems in mechanics of continua, 1–5 Dec. 2008, Rostov-on-Don: TsVVR,

199–202 (2008) [in Russian]

123



BIBLIOGRAPHY

[74] Popuzin V.V., Application of the FFT to solve integral equations in me-

chanics of continua, Proc. of international school-conference of young sci-

entists “Mechanics 2009”, 28 Sep – 1 Oct 2009, Aghavnadzor, Armenia:

EGUAS, 292–296 (2009) [in Russian]

[75] Sumbatyan M.A., Popuzin V.V., An efficient numerical algorithm for one-

dimensional diffraction integral, Izvestiya Vuzov. Severo-Kavkazskii Region.

Natural sciences series. Special edition., ISSN 0324–3005, 207–210 (2009) [in

Russian]

[76] Scalia A., Popuzin V., Pennisi M., Fast iteration algorithm for integral

equations of the first kind arising in 2d diffraction by soft obstacles, J. Com-

put. Acoust., 21(3), 1350007-1–1350007-10 (2013)

[77] Scalia A., Sumbatyan M.A., Popuzin V., A fast BIE iteration method

for an arbitrary body in a flow of incompressible inviscid fluid, J. Comput.

Applied Math., 237(1), 508–519 (2013)

[78] Popuzin V.V., Sumbatyan M.A., Tanyushin R.A., Fast iteration method

in the problem of waves interacting with a set of thin screens, Comput.

Math. Math. Phys., 53, 1195–1206 (2013)

[79] Popuzin V.V., An explicit-form representation for the kernel of integral

equation in the crack problem for a porous elastic material, Proc. of in-

ternational school-conference of young scientists “Mechanics 2013”, 204–208

(2013) [in Russian]

124


