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Introduction

During my PhD I studied cooperation and competition, two opposing manifesta-
tions that an entity of any nature can present when it interacts with another one.
I used the term “entity” because these two behavioral tendencies can manifest
themselves in various subjects and at different levels. Our cells cooperate to allow
the functioning of body, cancer cells instead, growing selfishly, tend to damage it.
Cooperation can take place between individuals of a group such as, for example,
colleagues who work for the same company; in turn companies are entities that
compete in their marketing sector. In the case of empires, civilizations and nations
throughout history, they struggled and fought each other, or have joined forces to
fight a common enemy. Each of us, in everyday life, chooses whether to cooperate
with other members the society we all are a part of, or to pursue their own selfish
interests. Building our philosophy on these choices we usually decide, for example
whether to recycle, keep public places clean or help a child or an old man to cross
the street, or not. The topic is therefore of crucial importance: understanding the
basic concepts of cooperation and competition is fundamental to improve social
behavior of humans and animals, to explain historical events and even to better
understand the functioning of our body.

The first chapter is devoted to the discussion of mathematical models for the
study of cooperation and competition. From the mathematical point of view the
topic of cooperation as opposed to competition was the main object of Game The-
ory. Indeed this branch of mathematics studies and analyzes individual choices in
situations of conflict or strategic interaction between individuals in order to maxi-
mize one’s payoff. For this reason, section 1.1 is dedicated to a brief discussion on
game theory and the famous prisoner’s dilemma which represents the conflict be-
tween individual and collective interests. The prisoner’s dilemma, which consists
of a strategy game between just two individuals, can be extended to a collective
action dilemma between several people and, as said before, any choice we face
during our daily life can be traced back to a problem of this kind. I discuss the
dilemmas of collective action in section 1.2. Section 1.3 is dedicated to Martin
Nowak who has dealt in depth with the theme of cooperation. All ecological com-
munities in nature are characterized by pervasive competition that constitutes the
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main way through which is realized Darwinian evolution. Nowak with his stud-
ies highlighted the role of cooperation in evolution showing how the first shapes
the latter. In section 1.4 a brief review of the equations describing the dynamics
of the populations present in an ecosystem is made: on the one hand the logistic
equation which describes intra-specific competition in presence of limited resources
and, on the other hand, the well-known Lotka-Volterra model which describes the
phenomenon of predation, the main modality through which inter-specific compe-
tition operates. Finally, in section 1.5 a general discussion on dynamic systems is
made.

Without claiming to explain the deep mechanisms underlying the phenomena
of cooperation and competition, during my PhD I explored two somewhat different
areas in which cooperation and competition play a massive role. The systems I
dealt with in these two studies are very different in nature, but their study still
falls within the framework of complex systems. The second chapter is therefore
dedicated to complex networks. In particular, section 2.1 deals with graph theory
through which it is possible to analyze the properties and topology of complex
networks, while section 2.2 is dedicated to an in-depth analysis of trophic networks,
which constitutes the topic of the second study.

In the first study I address the issue of tax evasion, an age-old phenomenon
that clearly is related to cooperation and competition. Think about a selfish
citizen who uses public goods and services without properly contributing to the
related costs. The main effect of this behavior is a severe damage to the socio-
economical environment that deprives governments of their fiscal resources and
plays an important role in reducing well-being of societies. In the third chapter
I present an agent-based model of a simple economic system where the personal
satisfaction gained from public services and the perceived opinion of neighbors are
shown to drive the individual decision on tax compliance. Results of simulations,
consistent with existing literature on the topic, suggest a peculiar approach to face
the plague of tax evasion.

In the second study, exposed in the fourth chapter, using data collected in
the Netherlands, I investigate ecosystems of soil invertebrates through the knowl-
edge of their characteristic trophic web. In the first part, I focus on a single
ecosystem and I create a model whose dynamics is dictated by an extension of the
Lotka-Volterra equations. In particular, I combine the Lotka-Volterra model with
the logistic equation in order to take into account intra-specific and inter-specific
competition. Subsequently, through simulations, I study what may be the conse-
quences of artificial perturbations induced to the system. Results are interesting
because they give an idea of the vulnerability of soil ecosystems if subjected to the
use of herbicides or pesticides typical of intensive agriculture.
In the second part, I apply the same model to other two ecosystems different from
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the first for the type of human activity to which they are subject. I compare their
structure and their response to external disturbances. The final analysis on their
robustness clearly shows that the ecosystem less subject to anthropogenic distur-
bances has a structure that makes it more resistent against perturbations. In this
second study, competitiveness is not only found at the level of the trophic web (in
the search for resources and in the fight for survival between prey and predator),
but, at a different level, comes into play competitiveness between ecosystem or-
ganisms and human action that tends to contaminate natural habitats. Human
cooperation in this case would consist of seeking eco-sustainable solutions rather
than intensive farming methods.
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Chapter 1

Mathematical Models of Cooperation and
Competition

1.1 Game Theory

Cooperation and competition are topic vastly treated in scientific literature and
particularly addressed by Game Theory, a branch of mathematics. As we will see,
most of the studies about this phenomenon are based on the famous Prisoner’s
Dilemma, that shows why two rational individuals might not cooperate, even if
appears that it is in their best interest to do so. The eminent mathematician
John von Neumann can be considered the founder of modern game theory. The
term “game” was used by von Neumann to indicate a generic conflict situation
between individuals whose purpose is to achieve the optimal result for them. In
these situations of rivalry a player must make decisions taking into account also
the possible strategies implemented by the opponent. Von Neumann realized that
these conflicting situations are present not only in board games, such as poker and
chess, but manifest themselves in a variety of forms in everyday life, in economics,
politics and war. The theory tries to find the most correct strategy to follow in a
competitive situation and to give a concrete explanation to the behavior of rival in-
dividuals. But beware, game theory cannot be considered a branch of psychology:
assuming that the players are perfectly rational in their thinking, game theory
admits that it is possible to carry out a precise analysis of the situation, which
therefore makes it a branch of mathematics. One of the fundamental questions
about game theory to which von Neumann tried to answer was if there is always a
rational way to solve a game. With his Minimax Theorem, von Neumann proved
mathematically that there is always an optimal way to play a game of two players
whose interests are completely opposed. He proved the minimax theorem in his
1928 article Zur Theorie der Gesellschaftsspiele (Theory of Parlor Games) that
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can be considered the seminal paper of game theory (von Neumann, 1928). In the
book Theory of Games and Economic Behavior written with the economist Oskar
Morgenstern in 1944, the pioneering intent of approaching the economy through
game theory was clearly announced by the authors who stated: “We hope to esta-
bilish satisfactorily...that the typical problems of economic behavior become strictly
identical with the mathematical notions of suitable games of strategy” (von Neu-
mann and Morgenstern, 1944). Von Neumann’s desire was to extend his result
even to games with more than two players whose interests could partly overlap,
only in this way could game theory have dealt with any type of existing human
conflict. After the publication of Theory of Games and Economics Behavior, game
theory became extremely popular especially in the RAND Corporation (of which
Von Neumann was a member along with other prominent scientists), founded by
the Air Force after the Second World War with the intent to carry out strategy
studies on nuclear war.

1.1.1 Minimax Theorem

The Minimax theorem applies to “zero-sum game”, ie those games in which the
total winnings are fixed so that the loss of one player equals the winnings of the
other, and therefore the interests of the players are completly opposed. It is also
assumed that the two players participating in the game are both rational and both
willing to win the game, choosing a particular strategy only for their own personal
benefit. With strategy we mean the set of choices made during the game by a
player in all situations that arise during the course of the game and therefore a
complete description of a player’s game mode. Let A and B be the two players.
Suppose that player A has different m strategies and player B has n. We will
indicate with i = 1, ...,m the strategy chosen by A and with j = 1, ..., n the one
chosen by B. For each pair of strategies chosen by A and B we can consider the
quantity aij which indicates the payoff of player A (being a zero-sum game, we will
also have unequivocally the payoff of player B given by −aij). We can therefore
associate a m × n matrix to a given game, whose elements are the quantities aij
(Figure 1.1). We then ask: what is the best strategy that A can adopt? For a
given strategy i chosen by A, player B will choose a strategy j such that the payoff
of A is the minimum, αij = minjaij. So, in the hope of getting a better win, A will
choose the strategy that has the highest value of αij, α = maxiαij = maximinjaij.
This is the value called maximin of the game. Similarly, player B will look for the
number β = minjmaxiaij, where β is the minimax value of the game from which
the theorem takes its name. When the maximin and the minimax are identical,
that outcome is called a saddle point and this is the rational solution of the game.
Von Neumann showed that in a 2-person, zero sum game, the optimal strategies
of each player would always end in a stable solution, a saddle point for which
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Figure 1.1: Payoff matrix of a game

minimax = maximin. More specifically, the minimax theorem states that in
every finite zero sum game with 2 rational players, there is always a rational
solution in the form of a pure or mixed strategy. Von Neumann believed that his
result could also extend to games with more than two players even though the
analysis of these games increases exponentially with the number of the players.
N-person game can be seen as cooperative game in which the players can create
coalitions between them. For example, a game with three people A, B and C in
which A and B join together, can be seen as a two-player game, the A-B coalition
and player C. Similarly, any n-person game can be traced back to the analysis of
a two-player game, whose solution is guaranteed by the Minimax Theorem.

1.1.2 The Nash Equilibrium

Another renowned member of the RAND corporation was the mathematician John
Nash. Von Neumann’s analysis was limited to the treatment of non-cooperative
two-player zero-sum games and cooperative n-person zero-sum games. Nash ex-
tended Von Neumann’s studies to include non-zero-sum games for two players
(whose interests are therefore not completely opposite) and non cooperative n-
person games in which each partecipant acts indipendently and no coalitions occur
(Nash, 1951).
The equilibrium points of a game are the outcome where the players, given the
other players’ strategies, have no interest in changing their game strategy. Con-
sider a game with N players each with a set of strategy Si. All players have an
utility function Ui consisting of the payoff to be maximized by playing, that will
depend on the strategies αi ∈ Si adopted. The set of all the strategies adopted by
all the players α = (α1, ..., αN) is a Nash equilibrium if

Ui(α1, ..., αi−1, αi, αi+1, ..., αN) ≥ Ui(α1, ..., αi−1, β, αi+1, ..., αN)

∀β ∈ Si, ∀i = 1, ..., N
(1.1)

6



That is, keeping the strategies of the other players fixed, none of them will be
interested in changing their own.
The minimax solutions are equilibrium point of zero-sum games, but Nash proved
that any finite non-cooperative game has at least one equilibrium point. In many
games equilibrium point corresponds to the most reasonable and rational solution,
but as we shall see, there are cases in which the Nash equilibrium turns out to be
a completely irrational choice in a collective perspective.

1.1.3 The Flood-Dresher Experiment

Two other mathematicians belonging to the RAND corporation were Merril Flood
and Melvin Dresher. With an experiment (Flood, 1952) they wanted to test the
concept of Nash equilibrium to understand if real people spontaneously converged
to the equilibrium strategy when playing a game. It was a two-player non-zero-sum
game, with the payoff table in Figure 1.2. Each of the two players was required to

Figure 1.2: Payoff matrix of Flood and Dresh experiment

choose their strategy at every turn without knowing the opponent’s choice. Player
1 is better off choosing his strategy 1, while player 2 choosing his strategy 2. But
if both choose their best strategy, both have a lower gain than if they both choose
their worst strategies. Considering Figure 1.2, Nash’s theory suggests that the
rational outcome is the lower left cell in which both players defect. But if both
players played as the upper right cell, both would earn more. This strategy can
be considered as a desire for cooperation by the two players. The two persons
who participated in the game played for 100 rounds. The results show that the
cooperation between the two players was the most frequent choice (sixty times out
of a hundred)(Flood, 1952). There was therefore no evidence of a natural tendency
towards Nash equilibrium.
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1.1.4 Prisoner’s Dilemma

In the attempt to test with an experiment the concept of the Nash equilibrium,
Flood and Dresher discovered what was later known as the Prisoner’s dilemma
thanks to the most know version devised by Albert Tucker. In Tucker’s anecdote
there are two members of a criminal gang that are arrested and imprisoned in
solitary confinement. The police don’t have enough evidence to convict the pair
on the principal charge, so they plan to sentence both to a year in prison on a
lesser charge. But the police offer each prisoner a bargain: if he testifies against his
partner, he will go free while the partner will get three years in prison on the main
charge. But if both prisoners testify against each other, both will be sentenced to
two years in jail. Each of them is informed that the other prisoner is being offered
the same deal, but they cannot know what the other has decided. The payoffs are
show in the matrix represented in Figure 1.3.
The argument of one prisoner can contemplate that testifying take a year off his

Figure 1.3: Payoff matrix of prisoner’s dilemma. The years of prison to which
players are forced, based on their decision, are indicated.

sentence, no matter what the partner does. So the rational move is to testify. The
trouble is that the other prisoner can come to the same conclusion. Therefore if
both parties are rational, both will testify and both will get two year in jail. But
if only they had both refused to testify, they would have got just a year each. In
prisoner’s dilemma rationality prevents a deal beneficial to both parties because
testifying undermines the common good. In a prisoner’s dilemma, the equilibrium
point strategy is called defection; a player is always better off defecting no matter
what the other does. The other strategy, which lead to the best collective outcome,
is called cooperation. How should one act in a prisoner’s dilemma is still an
unanswered question. There are many forms of the prisoner’s dilemma, it is only
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required that the reward payoff for mutual cooperation is greater than the average
of the payoff if only you defect and the payoff if only the other player defect.
Prisoner’s dilemma present a conflict between individual and collective interest
that we all experience in our everyday life, in this sense it represent an universal
problem (for example in Poundstone (1993) the insight of game theory, and in
particular of the prisoner’s dilemma, are related to real-world conflict).

1.2 Collective Action Dilemma

The dilemma of collective action can be considered an extension of the prisoner’s
dilemma generalized from two people to a group of any size and for this reason it is
also called many-person prisoner’s dilemma. This dilemma occurs whenever there
is a group whose members can decide whether or not to participate in a certain
activity. Joining this activity brings an individual disadvantage but, at the same
time, a benefit to the whole group, so that the members of the group are better off if
most of the other members participate without their contribution. In social life the
dilemma of collective action is a frequent problem that occurs in many forms. For
example, one of the most actual issues of our society, namely climate change and
environmental sustainability, is exactly what is called a collective action dilemma.
Making ecological choices in everyday life has a cost from the individual point of
view, whether it is eating less meat, being careful to use less plastic or having to
comply with public transport timetables. Making these eco-sustainable choices,
however, is in the interest of the whole society, to preserve the conditions of our
planet for future generations.
The philosopher and sociologist Jon Elster treats this issue in his book Nuts and
bolts for the social sciences (Elster, 1989), in which he shows the simplest case of
the many-person prisoner’s dilemma as represented in Figure 1.4. The two heavy
lines show how the expected benefits, for the cooperators and for the free riders,
vary with the number of cooperators (the altruists). The line representing reward
to free riders is constantly above the other, this means that noncooperation is
individually rational in terms of selfish benefits. At the same time, it is better for all
if everyone cooperate than if none do, indeed B is above 0. The free riders get the
largest benefit C, whereas the worst outcome A is reserved for the cooperators. If
there are at least D cooperators their benefits become positive. The thin line shows
how the average benefits for the collectivity varies with the number of cooperators
(by definition, it must begin at 0 and end at B). The distance between the two
heavy lines represents the cost (per altruist) of cooperation. In Figure 1.4 the cost
doesn’t vary with the number of cooperators, but in general it may increase or
decrease as more people cooperate. For example, in Figure 1.5 is represented
a circumstance in which the first and the last cooperators that join the activity,
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Figure 1.4: Many-person prisoner’s dilemma as represented in Elster (1989). Ex-
pected benefits as a function of the number of cooperators for the collective group,
for the cooperators and for the free riders.

Figure 1.5: Many-person prisoner’s dilemma as represented in Elster (1989). Ex-
pected benefits as a function of the number of cooperators for the collective group,
for the cooperators and for the free riders. The cost of cooperation vary with the
number of the altruists.
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add a little amount to everybody’s welfare, whereas those coming in the middle
are more efficacious. In this situation the cost of cooperation is very high when
there are few cooperators, so the first altruists make the average situation worse,
in the sense that the harm they do to themselves exceeds the benefit they do to
everybody else. As the number of altruists raises the cost of cooperation decrease,
so, beyond m, average benefits rapidly increase. It can also happen that when the
number of cooperators is very high, the cost of cooperation begin to increase and
after n, average benefits return to decrease.
Elster classifies individuals into three categories based on the motivations that lead
them to cooperate. The Kantians are the ones who decide to cooperate because this
would be the best for the society if only everyone did it. Utilitarians are those who
want to promote the collective good, so they participate in the activity only if their
collaboration leads to an increase in the average benefit. The last category is made
up of those who apply the norm of fairness, that is, those who collaborate only
if the majority of the community already does it, each with different thresholds.
Generally there are few Kantians in society, but their presence is fundamental
because, if they reach the threshold m in Figure 1.5, they constitute a trigger for
utilitarians, who in turn, increasing in number, will constitute a catalyst for people
who are motivated by the norm of fairness.
Let me take the case of intensive meat farms as an example. Intensive farms are
harmful to the environment for several reasons: they are one of the main sources of
greenhouse gases released into the atmosphere and indirect cause of deforestation
and exorbitant water consumption, for the cultivation of the feed necessary to make
the bred animals survive. For these ecological reasons same people have decided
not to eat meat from intensive farms anymore. Finding non-intensive breeding
meat is not easy, almost impossible at times. You pay a cost not to eat meat,
both in terms of health because the omnivorous diet involves the consumption of
meat (albeit little), and simply in the pleasure of enjoying a good slice of meat
cooked with barbeque. If this action is carried out by very few individuals, the
cost they pay is much greater than the benefit the society derives from it. The
farmers will not even perceive the effects of this little-attended boycott. But
if these Kantian people succeeded in reaching the adequate number so that the
demand for meat in the market suffered a significant decline, intensive farming
would decrease. Consequently there would be an improvement in environmental
conditions, that exceeds the cost paid by the cooperators, for the benefit of the
community. At this point even the utilitarians would begin to come into play and
if this action is carried out by many people the demand for meat from intensive
farms can drop drastically. Maybe a situation would be reached in which intensive
farming would give way to organic ones. I just wanted to do this example because
I am very sensitive to this issue and, as a perfect Kantian, are now 7 years that I
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do not eat meat from intensive farming in the hope that even utilitarians will join
my cause.

1.3 The Evolution of Cooperation

As we saw in the previous chapter the prisoner’s dilemma can be seen as the math-
ematical representation of a central struggle in life, the one between individual
interest and the greater good, between competition and cooperation. Darwinian
evolution underlines the fundamental role of competition: every living being is the
protagonist of a struggle for survival that aims to increase one’s own fitness, that
is to say, one’s reproductive success. In Darwinian evolution there is no room for
cooperation: if I help others, my fitness will decrease and their fitness will increase.
Making an analogy with the Elster theory discussed in the previous paragraph, we
know that cooperators will always have a lower fitness than that of defectors and
therefore less chances of survival. Yet a population formed entirely by cooperators
will have a higher average fitness than a population made up entirely of defec-
tors. According to this reasoning it would seem that natural selection is opposed
to what is the best for the entire population. In the book SuperCooperators the
mathematician and biologist Martin Nowak hypothesizes mechanisms that would
lead to the development of cooperation in biological populations, showing how
natural evolution is not opposed to cooperation (Nowak, 2011). Using computer
models, mathematics and experiments, Nowak has identified five mechanisms that
explain how cooperation may have prospered in a ruthless Darwinian world.
The first mechanism for the evolution of cooperation is, according to Nowak, the
kin selection, also called nepotism. The key entities for the functioning of this
mechanism are the genes. An individual can propagate his genes either by in-
creasing his fitness (direct fitness) or by increasing that of relatives who carry his
own gene (indirect fitness) (Haldane, 1955). Thus the concept of inclusive fitness,
given by the sum of direct and indirect fitness (Hamilton, 1964). The greater the
degree of kinship between an individual and his relative, i.e. how many more genes
are shared, the greater the inclusive fitness of the individual. Kin selection is an
evolutionarily stable strategy since the genes that codify altruism towards rela-
tives will be those that, thanks to the kin selection, will have more probabilities
of propagating. This mechanism could be the explanation of the phenomenon of
eusociality shown by some species of social insects and other animals that have
the aptitude to treat offspring in a cooperative manner.
The second mechanism is that of direct reciprocity, known as “tit for tat”. This
is the simple principle of the exchange. In order for direct reciprocity to work it
is necessary that two same individuals have repeated contacts so that they can
have the opportunity to repay any acts of courtesy. The experiment of Flood and
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Dresher suggests precisely this: if the prisoner’s dilemma is iterated it leads in most
cases to cooperation. According to the evolutionary biologist Robert Trivers, some
human emotions, such as gratitude, empathy, guilt and sympathy, have sprung up
from the logic of direct reciprocity (Trivers, 1971). Also in animal populations
there are numerous phenomena of direct reciprocity, such as grooming, that is the
mutual cleaning of the coat and skin exhibited by numerous mammals.
The third mechanism for the development of cooperation is that of indirect reci-
procity. The difference with respect to the second mechanism is that, in the
interaction with another individual, one does not only take into account own past
experience with him, but also the experience that others people have had with
the same individual. This interaction mechanism works through the reputation
that each individual has within the society. In a prisoner’s dilemma played with
a badly reputed adversary I will be less inclined to cooperate since I know that
his favorite strategy is defection. On the contrary, if I am faced with a reputable
player, I will be more inclined to cooperate. Following this way of thinking, it will
be more advantageous for the individual to make a good reputation and therefore
to collaborate most of the times, in this way cooperation can thrive. The moral
principle underlying this way of acting is the famous golden rule present in all
cultures and religions, quoting Confucius: “don’t do unto others what you don’t
want done unto you”. On this principle is based the optimistic thought that every
good deed you do to someone, in the future will come back to you even if not by
the same person. It is important to emphasize that this third mechanism of action
can be present only in evolved societies like the human one, since it presupposes a
certain social intelligence necessary to recognize the reputation of the others. For
indirect reciprocity to work it is necessary to have a way to communicate between
us and even Nowak hypothesizes that the demand for social cooperation through
indirect reciprocity has been one of the decisive factors for the evolution of human
language.
According to Nowak, the fourth mechanism for the evolution of cooperation is
network reciprocity that take into account the spatial structures present in living
societies. In a prisoner’s spatial dilemma we must be taken into consideration
random encounters between two individuals in a heterogeneous population with
a certain structure. In his models, Nowak set rules similar to those of cellular
automata: at each turn, every cell changes its state according to rules that depend
not only on its game’s strategy but also on the strategy of neighboring cells. Nowak
thus demonstrated that patches of cooperation coexist with patches of defection
in ever-changing complex forms which he called “dynamic fractals”. In particular,
he found that groups of cooperators are able to prevail even if surrounded by de-
fectors. Cellular automata and Nowak’s simulations show how complex structures
can be generated from simple rules, so much that it is supposed that this fourth
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mechanism for cooperation has been fundamental for the origin of life on Earth.
The fifth and last mechanism, that results in the development of altruism, is group
selection. All of us, someone more and someone less, have an innate instinct that
leads them to help people in need. In most cases, some charitable acts could fall
into the case of indirect reciprocity: unconsciously we help someone to increase our
good reputation in society. But in history there are also cases of heroism in which
the benefactor puts his own life at risk to save another person even if unknown.
These events are hardly attributable to indirect reciprocity: reputation is useless
if you are dead! These extreme cases can be explained only by taking group selec-
tion into consideration. The altruist acting against his own selfish interest gives
an advantage to his group. Thus groups formed by altruistic individuals are more
advantaged than groups formed by selfish individuals. Belonging to a cooperative
group guarantees you a greater chance of survival: this is another mechanism for
developing cooperation. It so happens that a soldier sacrifices himself for his own
country and perhaps that is why we are more willing to sacrifice our lives for a
child than for an old man, the child can still reproduce and therefore carry on our
species. Group selection occurs in humans and animals and also acts on multiple
levels, including the cellular and molecular one (a single individual can be consid-
ered as a group formed by a large number of cells that cooperate with each other).
This is why group selection is also called multi-level selection. It is a fundamental
mechanism that permeates the entire evolution, from the emergence of the first
cells to the social behavior of man.
With its five mechanisms for the evolution of altruism, Nowak demonstrates how,
after all, altruism is not an irrational choice as the prisoner’s dilemma suggests.
Nowak goes further, showing how essential cooperation was to several major tran-
sitions of evolution, from the origin of life to the evolution of social insects until
human domination of the planet. Nowak emphasizes how important it is to main-
tain and expand the range of cooperation for civilization to survive overcoming
the tragedies of the commons and making us what he calls supercooperators.

1.4 Intra-specific and inter-specific competition in population

ecology

An ecological community is a set of living organisms belonging to at least two dif-
ferent species that interact with each other, directly or indirectly, within a certain
geographical area. The ecological interactions can be classified as intra-specific,
if these occur between organisms of the same species, and inter-specific, if these
involve organisms belonging to two different species.
Living organisms increase their fitness by exploiting the resources of the environ-
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ment in which they live (food, space, light). When these resources are not enough,
there is a competition between the species to get hold of them. The intra-specific
competition for resources is stronger than the inter-specific one, since the organ-
isms belonging to the same species have all the resources they need in common. As
we will see, as long as the resources are sufficient for the whole community, there
is no competition and the abundance of the species increases exponentially. When
resources start to run low, intra-specific competition begins to act as a regulator of
population growth and a sigmoidal shaped growth of the population is observed.
Inter-specific competition, on the other hand, mostly concerns the phenomenon of
predation in which a predatory species feeds on another prey species. The density
of predatory species regulates the growth of prey species and vice versa.
In the next paragraphs, the mathematical equations describing the growth of pop-
ulations in situations of intra-specific and inter-specific competitiveness are shown.

1.4.1 Exponentially Growth Model

In the simplest mathematical model of population growth (Neal, 2019), the rate
of population increase is proportional to the size of population at any time, in the
assumption of unlimited resources. Let us denote by N(t) the population at the
time t and by k a positive constant. Then

dN

dt
= kN (1.2)

which gives by integration
N(t) = N0exp(kt) (1.3)

where N0 denotes the population at the time t = 0. This law is called the Malthu-
sian growth model and predicts an exponential growth in the population with time
(Figure 1.6).
A more realistic model considers

dN

dt
= (b− d)N = rN (1.4)

where b and d denote, respectively, the birth rate and death rate per individual
and r = b−d is known as the intrinsecal rate of natural increase, or the Malthusian
parameter. The exponential law corresponds to the case b = k and d = 0 (r > 0).
For b < d (r < 0) population decreases exponentially and for b = d (r = 0)
population dimension do not change.

1.4.2 Logistic Growth Model

In the real world, resources are not unlimited, and their demand tends to increase
with the growth of the population. The consequent reduction of the resources
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Figure 1.6: Exponential growth of a population with time.

produces, in turn, an increase of the mortality rate and a decrease of the natality
rate. The variation of the birth rate b and of the death rate d in function of the
abundance N of the population can be assumed as linear:

b = b0 − aN

d = d0 + cN

where b0 and d0 are the values respectively of the birth rate and of the death
rate when N is close to 0. Parameters a and c are, respectively, the slopes of the
straight lines that describe the variation of the birth rate and of the mortality rate
as a function of the population size N . Equation (1.4) thus becomes:

dN

dt
= [(b0 − aN)− (d0 + cN)]N (1.5)

that describes intra-specific regulation of the population.
When b > d population increases with a slower growth rate for increasing value

of N . When b < d the growth becames negative and population decreases. When
b = d the abundance of the population reaches a stationary state corresponding
to its maximum sustenaible value, also called carrying capacity K of the system.
This value can be obtained by putting dN/dt = 0 in equation (1.5), which gives:

K =
b0 − d0

a+ c
(1.6)

Using the carrying capacity, equation (1.5) takes the well-known form of the logistic
equation (Verhulst, 1838), that describes the sigmoidal growth of the population
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Figure 1.7: Logistic growth of a population with time.

when resources are limited:

dN

dt
= rN

(
1− N

K

)
(1.7)

with r = b0 − d0. Equation (1.7) has two component: an exponential term (rN)
which is important for small N values, and a second one (1 − N

K
) that reduces

population growth when approaching the environmental-driven carrying capacity
(Figure 1.7).

1.4.3 Lotka-Volterra equations

The chemist and statistician Alfred J. Lotka (Lotka, 1920) and the mathematician
Vito Volterra (Volterra, 1926 and 1939) produced independently the non-linear
coupled differential equations for the study of the ecological problem of predation,
the main modality through which inter-specific regulation occurs. The simplest
Lotka-Volterra model involves only two species. One of them feeds on the other,
which in turn feeds on a third available source of food. The assumptions about
the environment and the evolution of the predator and prey populations are:

• The prey population have an unlimited food supply.

• In the absence of predators, the population X1 of the prey would grow pro-
portionally to its size,

dX1

dt
= A1X1 (1.8)
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Figure 1.8: Periodic fluctuations of prey and predator populations, according to
the dynamics of the Lotka-Volterra equations.

being A1 > 0 the growth rate of the prey. So, in this case, a Malthusian
growth of the prey occurs.

• In the absence of prey, the population X2 of the predator would decline
proportionally to its size,

dX2

dt
= A2X2 (1.9)

being A2 < 0 the predators’ death rate, meaning extinction of that popula-
tion.

• When both predator and prey are present, to the previous terms is added
a quantity representing the effect of the predation that is a decrease in the
prey population and a growth in the predator population:

dX1

dt
= A1X1 + A12X2X1,

dX2

dt
= A2X2 + A21X1X2 (1.10)

being A12 < 0 and A21 > 0, respectively, the negative and the positive growth
rate for prey and predator.

The Lotka-Volterra equations connect the two populations each of which acts as a
regulator of the density of the other species. Predators act as a cause of mortality
for the prey and prey control the natality rate of the predators. In this way
periodic fluctuations of the two populations occur with the predator population
always following the prey (Figure 1.8).
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1.4.4 Multiple Prey-Predator Model

When in an ecosystem there are more then one prey and one predator species,
Lotka-Volterra equations can be extended as in Hodzic et al.(2016):

dXi

dt
= Xi

[
Ai +

∑
j

AijXj

]
(1.11)

where i, j = 1, 2, ..., n, being n the total number of species in the ecosystem.
Coefficient Ai is the intrinsic growth rate of the i-th species, while coefficients Aij
in the summation take into account the effect of the predation. We can therefore
build a community matrix A, relative to the ecosystem, whose elements weigh the
effect of predation between pairs of species:

A =


A11 A12 . . . A1j . . . A1n

A21 A22 . . . A2j . . . A2n

. . . . . . . . . . . . . . . . . . . . . . . . . . .
Ai1 Ai2 . . . Aij . . . Ain
. . . . . . . . . . . . . . . . . . . . . . . . . . .
An1 An2 . . . Anj . . . Ann


Here Aij 6= 0 when species i and j are linked by predation phenomena (in par-
ticular, Aij > 0 when species i preys species j and Aij < 0 when species j preys
species j) and Aij = 0 when species i and j do not have any predation connection.
Non-zero diagonal elements Aii represent the phenomenon of cannibalism when an
individual of species i preys on another individual of the same species.

1.5 Dynamic Systems Theory

A dynamic system can be defined as a set of elements in mutual interaction that
change over time and it is specified by a set of equations that determine its evolu-
tion. There is a class of dynamical systems whose evolution is described by a set
of n first-order differential equations

Ẋi = fi(X1, X2, ..., Xn)∀i = 1, 2, ...n. (1.12)

in which n is the number of degrees of freedom of the system that is, the number
of independent variables necessary to describe the dynamical state of the system.
The state of the system at any instant of time is specified by its location in state
space and its evolution over time is represented by a trajectory in state space de-
scribed by the time evolution equations. State space dimensionality is determined
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by the number of degrees of freedom of the system. The behavior of the trajec-
tories within the state space is strongly limited by the No-Intersection Theorem
according to which, two distinct state space trajectories cannot intersect nor can a
single trajectory cross itself at a later time. The No-Intersection Theorem derives
mathematically from the Existence and Uniqueness Theorem for the solution: if
the functions fi in equations 1.12 are continuous, only one solution can pass at a
given point in the state space.
To play a crucial role in the dynamics of these systems are the attractors, subspaces
of dimensionality inferior to that of the state space, which have the property of
attracting the trajectories. The dynamic systems characterized by the presence of
an attractor are called dissipative systems. Generally we can speak of “zones”in
the state space for which the variables that describe the system do not change. To
find these subspaces it will therefore be sufficient to set the time derivatives of the
state variables equal to zero.

1.5.1 One-Dimensional State Space

Let us first consider the case of a one-dimensional dissipative system described by
a single state variable X. The equation that regulates the dynamics of the system
is

Ẋ = f(X) (1.13)

In this case, since the system has dimensionality 1, the attractor can only have
dimensionality 0, so it is a fixed point. As we have already said, the fixed points are
stationary solutions of the system and can be found by setting the first derivative
of the state variable equal to zero:

Ẋ = 0 (1.14)

Let’s call this solution X0.
For a one-dimensional state space there are three types of fixed point:

• Nodes: fixed points that attract nearby trajectories.

• Repellors: fixed points that repel nearby trajectories.

• Saddle points: fixed points that attract the trajectories on one side and on
the other reject them.

To know the nature of the fixed point X0, we need to understand what happens
in the points near it. To do this we can evaluate a Taylor series expansion of the
function f(X) in the neighborhood of the fixed point X0:

f(X) = f(X0) + (X −X0)
df

dX
+

1

2
(X −X0)2 d

2f

dX2
+

1

6
(X −X0)3 d

3f

dX3
+ ... (1.15)
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in which all derivatives are calculated for X = X0. Considering that, for the
definition of fixed point, the first term on the right-hand side is zero and neglecting
the terms of order higher than the first because these are very small, we can write
the previous equation as

f(X) = (X −X0)
df

dX
(1.16)

which, by introducing the variable x = X −X0, becomes

ẋ =
df

dX

∣∣∣∣
x=0

x = λx (1.17)

whose solution is
x(t) = x(0)eλt (1.18)

The term λ, defined as

λ ≡ df(X)

dX

∣∣∣∣
X0

(1.19)

is the characteristic value of the fixed point, also called the Lyapunov exponent.
It is precisely this term that determines the nature of the fixed point, in fact, for
equation (1.18), if λ < 0 the trajectory approaches the fixed point, while if λ > 0
the trajectory is repelled from the fixed point. So to establish the nature of a fixed
point we need to calculate the derivative of the function f(X) with respect to X
evaluated in X = X0. If the derivative is negative the fixed point is a node, if
the derivative is positive the fixed point is a repellor. Finally, in the case in which
the derivative is zero, it will be necessary to calculate the second derivative with
respect to X and most likely the fixed point will be a saddle point, otherwise it is
a node or a repellor that attract or repel the trajectory slowly. The possible fixed
points in the one-dimensional case are summarized in Figure 1.9.

Once we have calculated the fixed points of a dynamic system and established
their nature, we know what happens in their proximity and therefore we know
the local behavior of the system. Knowing the nature of all the fixed points it
is also possible to construct a global phase portrait and to imagine the trend of
the trajectory in the state space, considering that the continuity of the function f
constitutes a constraint.
The logistic equation, described in the previous paragraph, is an example of a one-
dimensional dynamic system: by putting in equation 1.7 the carrying capacity K
of the system equal to 1, we obtain

Ṅ(t) = rN(1−N) (1.20)

in which the only degree of freedom is the abundance of the population N . By
putting the first derivative equal to zero it is easily found that the two fixed points
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Figure 1.9: Possible types of fixed point in one-dimensional dynamic system.

of the system are N1 = 0 and N2 = 1. Furthermore

f(N) = rN − rN2 (1.21)

which is the equation of a parabola, and

λ =
df(N)

dN
= r − 2rN (1.22)
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Then we can evaluate the nature of the fixed points:

λ(N1) = r > 0 (1.23)

therefore N1 = 0 is a repellor.

λ(N2) = r − 2r = −r < 0 (1.24)

so N2 = 1 is a node. We can conclude that the trajectory in the state space is
a parabola that starts from the point N = 0 and arrives at the point N = 1, as
shown in (Figure 1.10). Plotting N as a function of time we observe a sigmoid

Figure 1.10: Trajectory in state space for a system described by a logistic differ-
ential equation.

behavior as in Figure 1.7, in which the population grows until it reaches the value
of the carrying capacity, which in this case is equal to 1.

1.5.2 Two-Dimensional State Space

Now consider the case of a dynamic system described by two independent state
variables X1 and X2. The time evolution equations are

Ẋ1 = f1(X1, X2)

Ẋ2 = f2(X1, X2)
(1.25)

The evolution of the system will be plotted in a two-dimensional state space X1−
X2. Similarly to the previous case, fixed points are those points X10 and X20

satisfying

Ẋ1 = f1(X1, X2) = 0

Ẋ2 = f2(X1, X2) = 0
(1.26)
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A simple way to calculate the Lyapunov exponents, for knowing the type of fixed
points, is through the Jacobian method. We construct the Jacobian matrix, whose
elements are given by the partial derivatives of the functions f1 and f2 with respect
to the variables x1 = X1 −X10 and x2 = X2 −X20 evaluated at the fixed point:

J =

(
f11 f12

f21 f22

)
(1.27)

with

fij =
∂fi
∂xj

(1.28)

We then derive the eigenvalue equation by subtracting λ from the elements of the
principal diagonal and setting the determinant of this matrix equal to zero:∣∣∣∣f11 − λ f12

f21 f22 − λ

∣∣∣∣ = 0 (1.29)

Performing the determinant, we obtain the characteristic equation of the Jacobian:

λ2 − (f11 + f22)λ+ (f11f22 − f12f21) = 0 (1.30)

which has the solutions

λ± =
f11 + f22 ±

√
(f11 + f22)2 − 4(f11f22 − f12f21)

2
(1.31)

Observing that the trace and the determinant of the Jacobian matrix in equation
1.27 are given respectively by

TrJ = f11 + f22 (1.32)

and
∆ = f11f22 − f12f21 (1.33)

it is possible to write Lyapunov exponents as

λ± =
TrJ ±

√
(TrJ)2 − 4∆

2
(1.34)

It should be noted that in this case the Lyapunov exponents are complex numbers
consisting of a real part and an imaginary part:

λ± = R± iΩ (1.35)

with

R =
1

2
TrJ (1.36)
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and

Ω =
1

2

√
(TrJ)2 − 4∆ (1.37)

The variables x1 and x2 can be written as

x1(t) = C1e
λ+t +D1e

λ−t = eRt[C1e
iΩt +D1e

−iΩt] = F1e
Rtsin(Ωt)

x2(t) = C2e
λ+t +D2e

λ−t = eRt[C2e
iΩt +D2e

−iΩt] = F2e
Rtsin(Ωt)

(1.38)

These are oscillating solutions: in the case in which the Lyapunov exponents
are complex, the variables x1 and x2 (which are distances from the fixed point)
oscillate and the trajectories in the state space are spirals around the fixed points.
Whether or not the spirals approach the central point depends on the amplitude
and therefore on the sign of the real part R of the Lyapunov exponent. In the event
that the Lyapunov exponents are real, if both are negative we have an attractive
node, if both are positive we have a repellor and if these have opposite signs we
have a saddle point. The possible fixed points in the two-dimensional case are
summarized in Figure 1.11.
As an example of a two-dimensional dynamic system we can consider the Lotka-

Volterra model in the case of competition between only two species. In particular,
consider the case of a population of rabbits x(t) and a population of sheep y(t)
that compete for the same grassy resource whose availability is limited. We ignore
further complications such as the presence of other animal species and predators.
We assume that each of the two species follows a logistic growth to its carrying
capacity in absence of the other. As seen in section 1.4, the term b which describes
the intrinsic growth rate of the population, takes into account both the birth rate
b0 and an intra-specific competition term that depends on the abundance of the
population:

ẋ = xbrabbit = x(b0rabbit − arabbitx)

ẏ = ybsheep = y(b0sheep − asheepy)
(1.39)

In presence of the other species it will be necessary to consider a further subtractive
term, which describes inter-specific competition, that depends on the abundance
of the other species:

ẋ = x(b0rabbit − arabbitx− crabbity)

ẏ = y(b0sheep − asheepy − csheepx)
(1.40)

We can assign arbitrary values to the coefficients present in equations 1.40. Since
rabbits reproduce faster than sheep, we can assume b0rabbit = 3 and b0sheep = 2. We
also assume that animals consume grass in proportion to their size and that sheep
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Figure 1.11: Possible types of fixed points in two-dimensional dynamic system.
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are twice as large as rabbits, we will therefore have arabbit = asheep = 1, crabbit = 2
and csheep = 1. Equations 1.40 thus become:

ẋ = x(3− x− 2y)

ẏ = y(2− x− y)
(1.41)

To find the fixed points of the system it is necessary to solve simultaneously ẋ = 0
and ẏ = 0. In this way four fixed points are obtained: (0, 0), (0, 2), (3, 0) and
(1, 1). The nature of these fixed points can be inferred calculating the Jacobian
for each of them:

J =

(
3− 2x− 2y −2x
−y 2− x− 2y

)
(1.42)

• Fixed point (0, 0):

J =

(
3 0
0 2

)
(1.43)

The eigenvalues are λ = 3, 2 so the origin (0, 0) is a repellor. This means that
if we are close to this point, that is we are in a situation with few rabbits
and few sheep, both species will tend to thrive. The departure from the
origin takes place along the tangent to the direction given by the eigenvector
relatives to the lower eigenvalue, i.e. v = (0, 1).

• Fixed point (0, 2):

J =

(
−1 0
−2 −2

)
(1.44)

The eigenvalues are λ = −1,−2 so (0, 2) is a stable node. This means that
if we are close to this point, that is we are in a situation with more sheep
than rabbits, sheep will tend to thrive and rabbits will become extinct. The
approach to this point occurs along the direction v = (1,−2) associated with
the eigenvalue λ = −1.

• Fixed point (3, 0):

J =

(
−3 −6
0 −1

)
(1.45)

The eigenvalues are λ = −3,−1 so (3, 0) is a stable node. This means that
if we are close to this point, that is we are in a situation with more rabbits
than sheep, rabbits will tend to thrive and sheep will become extinct. The
approach to this point occurs along the direction v = (3,−1) associated with
the eigenvalue λ = −1.
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• Fixed point (1, 1):

J =

(
−1 −2
−1 −1

)
(1.46)

The eigenvalues are λ = −1±
√

2 so (1, 1) is a saddle point.

By putting together the previous information, we can build a global phase portrait
(Figure 1.12) that shows the dynamics of the system depending to the initial
conditions in which it is found. Figure 1.12 shows that the in-set of the saddle

Figure 1.12: Global phase portrait for the dynamical system rabbits vs. sheep.

point, also called stable manifold, divides the plane into two parts. The area below
the in-set constitutes a basin of attraction for the point (3.0) in which rabbits
thrive and sheep become extinct. The area above the in-set constitutes a basin
of attraction for the point (0.2) in which the sheep thrive and the rabbits become
extinct. Only if the dynamics takes place along the direction established by the in-
set, the system will be attracted by the point (1,1), which is the only one that allows
the coexistence of both species. But even small deviations downwards or upwards
the in-set will lead to the predominance of one species over the other which will
become extinct. This phase portrait has an interesting biological interpretation
that resides in the principle of competitive exclusion: two species that compete for
the same limited resource typically fail to coexist.
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Chapter 2

Complex Networks

Over the past three years, many people I have met have asked me what I was doing
in my job. The reaction to my answer, “I am doing a Ph.D in Complex Systems”,
has always been the same: perplexity. For non-experts, the idea of a complex
system easily refers to the concept of something complicated to understand or
something with which only scientists have to deal. They do not know that complex
does not mean complicated and they do not know that complex systems surround
us and each of us interacts with them or is a part of them ... let alone the reaction
when I tell them that they themselves are a complex system. The first question
to answer is therefore: what is a complex system? There is no univocal definition
of a complex system, but with it we can indicate those systems that are made up
of a multiplicity of elements that interact with each other usually in a non-linear
way. Any complicated technological machinery cannot be considered a complex
system because the relationships between its parts are designed to be predictable
and linear, in the sense that the effects are proportional to the cause. Think,
for example, of a car in which a double or triple brake pressure corresponds to a
double or triple braking. In a complex phenomenon, however, the individual parts
interact in a non-linear way giving rise to unpredictable behavior. The knowledge
of the individual components is not enough to derive the collective behavior of
the system. We also need to understand how these parts interact with each other.
For this reason, behind each complex system there is a network that encodes
all the interactions between the components. And thus every living being is a
complex system whose working mechanism can only be understood starting from
the cellular network that encodes the interactions between genes, proteins and
metabolites. The brain itself is a complex system that works through the neural
network. The society in which we live is a complex system that can be studied
through the social network of which we are part as components. The transportation
network, the power grid, the communications network and so on are all complex
systems. Therefore, complex systems constitute an interdisciplinary field whose
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study has a major scientific and social impact for the study of ecosystems, financial
markets, terrorist networks and the spread of pathogenic viruses, just to give
a few examples. Given the fundamental role that complex systems play in our
daily life, in science and economics, we agree that it is necessary to understand
them in order to be able to predict or control their behavior. Network science
is a new discipline that developed only in the 21st century thanks to the digital
revolution that made it possible to collect, store and analyze large amounts of
data and which allows to reproduce the behavior of systems made up of an ever-
increasing number of elements in mutual interaction through simulations. Despite
the diversity that distinguishes the various complex systems, due to the different
nature of its components and their interactions, the structure and the evolution of
the networks behind them are governed by common fundamental laws.

2.1 Graph Theory

From the mathematical point of view, the study of complex networks is carried
out through graph theory. A graph is the mathematical counterpart of empirical
real networks: it is made up of nodes or vertices that represent the elements of
the network and connections between them, called links or edges, which reflect the
interactions between the components. It follows that the basic parameters of a
graph are the number of nodes N , which determines the size of the network, and
the number of links L. A network or graph is said to be direct if all its links are
direct and therefore with a specific direction, otherwise the graph is indirect.
Each node of the graph is characterized by a degree, that is the total number of
links it has with other nodes. If ki is the degree of the i-th node of an indirect
network, we have that

L =
1

2

N∑
i=1

ki (2.1)

And the average degree is

〈k〉 =
1

N

N∑
i=1

ki =
2L

N
(2.2)

For a direct graph it is necessary to distinguish between the incoming degree kini ,
given by the number of links entering the node, and the outgoing degree kouti ,
which represents the number of links leaving the node. The total degree of a node
is therefore given by

ki = kini + kouti (2.3)
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The total number of links L and the average degree 〈k〉 for a direct network are
respectively given by

L =
N∑
i=1

kini =
N∑
i=1

kouti (2.4)

〈kin〉 =
1

N

N∑
i=1

kini = 〈kout〉 =
1

N

N∑
i=1

kouti =
L

N
(2.5)

A very important property of a graph is its degree distribution pk, which gives the
probability that any node of the graph has degree k. This probability is given by
the fraction of nodes with degree k with respect to the total number of nodes

pk =
Nk

N
(2.6)

For normalization we have
∞∑
i=1

pk = 1 (2.7)

A network can be encoded through its N × N adjacency matrix whose elements
are:

• Aij = 1 if there is a link from node j to node i;

• Aij = 0 if node j and node i are not connected to each other.

The adjacency matrix of an indirect network is symmetric and so Aij = Aji.
In weighted graphs, to each link is assigned a weight wij that represents the extent
of the connection between the nodes i and j. For these types of graphs, the non-null
elements of the adjacency matrix are given by these weights:

Aij = wij (2.8)

Considered two nodes i and j of a network, we can have different routes that,
following the links, connect the two nodes. The shortest of these paths, that is,
the one that is made up of the least number of links, is called distance dij between
nodes i and j. In an indirect network dij = dji, on the contrary in a direct network
generally dij 6= dji. To characterize a network we can consider the average path
length 〈d〉 given by the average distances between all pairs of nodes in the network.
For a direct network this quantity is given by

〈d〉 =
1

N(N − 1)

∑
i,j=1,N
i 6=j

dij (2.9)
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Another important property to characterize a network is the average clustering
coefficient 〈C〉 which gives an idea of how strong the aggregation between the
nodes is. For a single node i with degree ki, the local clustering coefficient is given
by

Ci =
2Li

ki(ki − 1)
(2.10)

where Li represents the number of links that connect the ki neighbor nodes of
node i. Basically, Ci gives the probability that two neighbors of a node are in turn
connected and it is a quantity between 0 and 1. The degree of clustering of the
entire network is determined by the average clustering coefficient

〈C〉 =
1

N

N∑
i=1

Ci (2.11)

2.1.1 Network Topology

The topology of a network is determined by the two aforementioned characteristic
quantities: the average path length 〈d〉 and the average clustering coefficient 〈C〉.
In the middle of the last century only two types of graphs were known: the regular
graph (figure 2.1 (a)), in which each node is connected, for example, only to
its first four neighbors and the random graph (figure 2.1 (c)) in which the links
between the nodes are randomly distributed. Looking at figure 2.1, it is easy to
understand that the regular graph has a strong aggregation, that is a high average
clustering coefficient, and a high average path length, in fact if we consider two
nodes placed at the antipodes it takes many steps to get from one to the other. On
the contrary, in random graphs the average path length and the average clustering
coefficient are both low.
One of the goals of graph theory is to reproduce the properties of real networks.
The social network, that is, the network of our friendships and acquaintances,
was one of the first real networks to be studied. In the late 1960s a Harvard
psychologist, Stanley Milgram, carried out an experiment to understand how many
degrees of separation exist on average between any two people within the United
States social network. Milgram chose a sample of 160 people taken at random in
Omaha, Nebraska, and asked them if they knew a specific person, a stockbroker
who lived in Boston. He asked them to send a letter to the stockbroker if they
knew him or otherwise to send a letter to one of his acquaintances, the one they
thought was most likely to know him. Sooner or later the letters would arrive at
destination and Milgram’s goal was to calculate the degrees of separation on the
basis of the number of stamps present in each letter. Considering that, at that
time, the United States social network counted almost 200 million people, Milgram
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Figure 2.1: Network Topology. (a) Regular graph. (b) Small world network. (c)
Random graph. (d) The small world network of the Watts and Strogatz model have
an intermediate randomness with respect to that of regular and random graphs.
It is characterized by a high average clustering coefficient and a low average path
length (Barabasi (2016)).
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expected to find hundreds of stamps on the letters. Instead he was stunned to find
that on average the stamps in the letters were only six. This experiment makes
us understand an important property of the US social network: it is a small world
in which the average distance between nodes is small. Subsequently it was found
that all social networks share this feature. Another property of social networks
is given by the presence of communities or aggregations of nodes connected in a
dense way by friendship or kinship links. This means that two people who are
our friends are often friends with each other. From a mathematical point of view
this property translates into a high average clustering coefficient. Social networks
therefore have a low average path length (the small world property) and a high
clustering coefficient, properties that are not reflected neither with the regular
graph nor with the random graph. Only in 1998 two mathematicians from Cornell
University, Duncan Watts and Steven Strogatz, proposed a type of graph halfway
between the regular and the random one (Wattz and Strogatz, 1998). It is a graph
that can be built from a regular graph by replacing some of its links with random
links (figure 2.1 (b)). The Watts and Strogatz model allows to create a graph that
presents both the small world property and a high average clustering coefficient
and which therefore reproduces the structure of many real networks, including the
social ones.
The small world networks of the Watts and Strogatz model are egalitarian networks
in which all nodes have about the same number of links. Examples of egalitarian
networks are neuronal networks whose nodes are neurons and whose links are axons
and synapses or electrical networks that distribute energy from power plants. This
type of graphs have a Poisson degree distribution which defines a typical scale given
by the average degree of the nodes in the network (figure 2.2 (a)). However, many
real small world networks (indeed most of them) do not follow a Poisson degree
distribution and are aristocratic consisting of most nodes with few links and a
minority of hyper-connected nodes, called hubs. Examples of real networks of this
type are the World Wide Web (Albert et al. 1999), the Internet (Faloutsos et
al. 1999), the network of scientific collaborations (Newman, 2001), the network of
sexual contacts (Liljeros et al. 2001), the protein networks (Jeong et al. 2001) or
the metabolic networks (Jeong et al. 2000). Since they do not have a typical scale,
they are called scale-free networks. Their degree distribution follows a power law
(figure 2.2 (b)):

pk ∼ k−γ (2.12)

The different nature of the systems which, if described in terms of complex net-
works, show the scale-free property make it an almost universal feature. One might
wonder why there are so many networks in nature that have the scale-free prop-
erty. It is due to a spontaneous mechanism known as the “Matthew effect”, due to
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Figure 2.2: Poisson distribution of an egalitarian network (a) and power law dis-
tribution of an aristocratic network (b) (Barabasi (2016)). The main difference
between the two types of distribution is the presence of the fat tail in the power
law distribution due to the presence of the hubs.

a passage from the Gospel according to Matthew in which, in verse 25-29, we read:
“For to every one who has will more be given, and he will have abundance; but
from him who has not, even what he has will be taken away”. The phenomenon
is also known with the expression “rich get richer”: it is easy to understand that
those who are richer have more chances of becoming richer, just as those who
have many friends are more likely to meet new people and so on. Exploiting the
Matthew effect it is possible to create scale-free networks, through the mechanism
of preferential attachment (Barabasi and Albert, 1999): starting from some nodes
whose links are chosen arbitrarily, so that each of them has at least one link, the
network evolves by adding new nodes one after the other and attaching them to
the existing ones with a probability Π(ki) proportional to the degree ki of the
latter:

Π(ki) =
ki∑
j kj

(2.13)

Through this procedure the hyper-connected nodes will tend to receive more and
more connections, while the little connected nodes will remain peripheral. If there
are no load limits or costs related to the addition of new nodes in the network,
a scale-free network is created with a power law distribution of the links. If, on
the contrary, there are costs or load limits, as in the case of adding new power
plants or new neurons to the existing networks, the formation of hyper-connected
hubs will be hindered and egalitarian small-world networks will be created with a
Gaussian distribution of the links.
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2.1.2 Network Robustness

Some natural and social systems show a great capacity in maintaining basic func-
tions despite the failure or lack of some of its components. Understanding the
reasons for the robustness of complex networks is of fundamental importance in
various fields: in biology and medicine to understand in which cases mutations
can lead to diseases, in sociology and economics to study the stability of human
communities and institutions, in ecology for the study of the environmental risks
to which ecosystems are subject due to anthropic activity, in epidemiology for the
study of the spread of pandemics or for the fight against terrorist attacks. Once
again what needs to be studied is the network that underlies the system, whatever
its nature.
The percolation theory studies the robustness of networks by assessing the impact
of removing nodes or, alternatively, links. Robustness is inferred from the per-
centage of nodes that must be removed to completely break up the system. The
percolation theory considers as a network a square lattice whose intersections can
be considered as nodes. A fraction f of nodes are randomly selected and removed.
To get an idea of the degree of disintegration of the system we can consider the
measure of the largest component of the network, which is given by the probability
P∞ that a randomly selected node belongs to it. If f is small, the lack of a few
nodes does not affect the integrity of the network. As the fraction f increases,
groups of nodes begin to come off from the giant component which therefore de-
creases in size. Finally, for sufficiently high values of f the giant component, and
therefore the whole network, breaks down into many small components that are
no longer connected to each other. In this phase, the system represented by the
network stops working. However, this fragmentation process is not gradual, but
it is characterized by a critical threshold fc. For f < fc the giant component
continues to exist, but as soon as f exceeds fc, it vanishes (Figure 2.3).
The percolation theory refers to regular lattices where all nodes have the same de-

gree k. It also fits well with random graphs whose nodes have comparable degrees.
Contrariwise, in scale-free graphs node degree is very variable, being there many
nodes with a low degree and very few nodes with a high degree, according to a
power law distribution. The topology of the graph, and in particular the presence
of hubs in scale-free networks, strongly influences its resistance to external attacks,
determining the robustness of the system.
The Molloy-Reed criterion (Molloy and Reed, 1995) establishes that the condition
for a random network to have a giant component is

κ =
〈k2〉
〈k〉

> 2 (2.14)
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Figure 2.3: Fragmentation process is not gradual and it is characterized by a
critical threshold fc: P∞ is nonzero under fc, but it drops to zero as we approach
fc (Barabasi, 2016).
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This criterion is valid for an arbitrary degree distribution. From the Molloy-Reed
criterion it follows that the critical threshold fc for the existence of the giant
component is given by (Barabasi, 2016):

fc = 1− 1
〈k2〉
〈k〉 − 1

(2.15)

In the case of a random network, using 〈k2〉 = 〈k〉(1 + 〈k〉), we get

fc = 1− 1

〈k〉
(2.16)

Therefore, the denser the network, the higher the fc. In any case, fc is a finite
quantity: after the removal of a finite fraction of nodes random network disinte-
grates. It can be shown (Barabasi, 2016) that in the case of scale-free networks
with degree exponent γ < 3, the second moment 〈k2〉 diverges in the N →∞ limit
and therefore we have fc = 1. This means that in order to fragment a scale-free
network it is necessary to remove almost all its nodes. In the case where γ > 3 the
scale-free network behaves like the random one, that is, it disintegrates after the
removal of a finite number of nodes. The greater robustness of scale-free networks
compared to random ones, in response to the random removals of links, is due to
the presence of hubs. Being random, removals will be much more likely to involve
nodes that have a low degree because these are much more numerous than hubs.
On the contrary, hubs will be removed with an extremely lower probability and
this is what allows the network to remain intact. In general, for a network that
is not infinite we have that the larger the network the more the critical threshold
approaches fc = 1. It can be said that a network shows good robustness if its
critical threshold exceeds that of a random graph of the same size.
The question is different in the case of targeted attacks on the system rather than
random removals. Assuming to know in detail the topology of the network, attacks
aimed at removing nodes with a high degree can be perpetrated. The removal of
even a small fraction of hubs is sufficient to disrupt a scale-free network. The
systems with a scale-free networks are therefore very tolerant of random errors
or failures, but very vulnerable to targeted attacks, for example think of terrorist
attacks that target the hubs of our social, economic or computer networks.
The removal or failure of one node is not independent of the others because the
activity of each node depends on the activity of its neighboring nodes. Therefore,
cascade failures could be observed in which the failure of a node induces the fail-
ure of the nodes connected to it, as in the domino effect in which a local variation
propagates throughout the whole system. We will have a demonstration of such a
phenomenon in the fourth chapter which concerns the study of a trophic network.
As we will see in fact, the forced removal of a species, which simulates a primary
extinction within the ecosystem, sometimes causes secondary extinctions.
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2.1.3 Degree Correlation

Degree correlation is a property of graphs that regard the tendency of nodes to
connect with other nodes of similar or completely different degrees. Based on this
characteristic, three types of networks are distinguished. In neutral networks nodes
link to each other randomly, so the number of links between the hubs coincides
with what predected by chance. In assortative networks nodes with comparable
degree tend to link each other: small-degree nodes to small-degree nodes and hubs
to hubs. Finally, in disassortative networks the hubs avoid each other, linking
instead to small-degree nodes.
In neutral networks nodes are randomly connected and the probability that nodes
with degrees k and k′ link to each other is

pk,k′ =
kk′

2L
(2.17)

A network displays degree correlation if the number of links between the high- and
the low-degree nodes is systematically different from what is expected by chance,
deviating from equation (2.17). But the calculation of this probability is not always
easy and this method does not allow to have information on the magnitude of the
correlation.
A simpler way to quantify degree correlation makes use of the degree correlation
function (Barabasi, 2016). For each node i we can measure the average degree of
its neighbors:

knn(ki) =
1

ki

N∑
j=1

Aijkj (2.18)

The degree correlation function calculates equation (2.18) for all nodes with degree
k:

knn(k) =
∑
k′

k′P (k′|k) (2.19)

where P (k′|k) is the conditional probability that by following a link of a degree-k
node, we reach a degree-k′ node. Therefore, knn(k) is the average degree of the
neighbors of all degree-k nodes. In a neutral network the average degree of a node’s
neighbors is independent of the node’s degree k. So plotting knn(k) as a function
of k we have a horizontal line, as observed for the power grid (figure 2.4 (b)). In
assortative networks the higer is the degree k of a node, the higer is the average
degree of its nearest neighbors. Consequently, knn(k) increases with k, as observed
for scientific collaboration networks (figure 2.4 (a)). In disassortative networks
hubs prefer to link to low-degree nodes. Consequently, knn(k) decreases with k, as
observed for the metabolic network (figure 2.4 (c)). If we approximate the degree
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Figure 2.4: The degree correlation function knn(k) on a log-log plot, for three
real networks. (a) Scientific Collaboration Network (assortative), (b) Power Grid
(neutral) and (c) Metabolic Network (disassortative) (Barabasi, 2016).

correlation function with
knn(k) = akµ (2.20)

the nature of the degree correlation is determined by the sign of the correlation
exponent µ: positive for assoratative neworks, negative for disassotative networks
and almost zero for neutral networks. Examples of assortative networks are the
Internet, Social Networks and the citation network. Instead the email network, bi-
ological networks (protein interaction and the metabolic network) and the WWW
have a disassortativity nature (Barabasi, 2016).
In scale-free networks there are few hubs and many more low-degree nodes. It is
therefore very likely that the hubs are connected with low-degree nodes rather than
with other hubs. This is the reason why the scale-free property can induce disas-
sortativity. But there are also networks, like the citation one, which, despite their
scale-free structure, are assortative. This suggests that networks degree correlation
could derive from evolutionary adaptations. There are many studies investigating
the properties of networks that derive from their degree correlation, among which
Murakami et al. (2017), D’Agostino et al. (2012), Tanizawa (2012) and Thed-
chanamoorthy et al. (2014). According to these studies, assortative networks have
the capacity to be more robust against targeted attacks, while disassotative net-
works have greater efficiency in the transport of informations. This would explain
why communication-oriented networks, i.e. networks whose primary function is
the exchange of information, have evolved a disassortative structure. In assor-
tative networks, hub removal in targeted attack causes less damage because the
hubs form a core group, hence many of them are redundant. Hub removal is more
damaging in disassortative networks, as in these the hubs connect to many small-
degree nodes, which fall off the network once a hub is deleted. Real world networks
display assortative hubs in some instances, particularly when high robustness to
targeted attacks is a necessity (Thedchanamoorthy et al., 2014).
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2.2 The complex structure of trophic networks

The first descriptions of trophic networks among living species of an ecosystem
date back to the late 1800s and were compiled by the American entomologist and
naturalist Stephen Alfred Forbes, who was recognized by the National Academy of
Sciences as the “founder of the science of ecology in the United States”. However,
it was the English biologist and ecologist Charles Elton that in 1927 coined the
term “food chains” for these type of food relationships and denoted with “food
cycles” the sets of food chains present in a community, what we now call “food
webs”: complex networks of trophic interaction between the species that coexist
in the same ecosystem.
The most recent research on the structure of food networks are based on Graph
Theory. Indeed food web can be seen as graph whose nodes represent the species
present in the ecosystem and whose links symbolize their food relationships. Each
node/species is distinguished by a degree which indicates the number of links that
connect it to other nodes. Graphs describing food webs are direct because trophic
relations are represented by oriented links that connect the predator/consumer
with the prey/resource it feeds on. Thanks to the progress in the study of complex
systems through graph theory, which also occurred in other fields of science, and
to the qualitative and quantitative growth of empirical documentation on trophic
networks, in the last decades the study of food webs has recognized a considerable
attention and development in the field of ecology.
The study of trophic networks is of fundamental importance from an ecologi-
cal point of view, as they feature the structure of the ecosystems and determine
their properties, including their resistance to environmental disturbances of various
kinds.

2.2.1 Complexity and stability in food webs

In the case of trophic networks, the number of nodes and therefore of species, de-
fines the biodiversity S of the ecosystem. By calling L the number of trophic links
between the species, each graph is distinguished by the value of the connectance
C, which gives the ratio between the number of connections actually present on
the possible ones. Therefore we have C = L/S2 in the event that loops (i.e. con-
nections of a node with itself) are taken into consideration, that, in the case of
food webs, is equivalent to consider the phenomenon of cannibalism. Otherwise,
if we do not consider the presence of loops, we have C = L/S(S − 1). Thereby
connectance gives a measure of the probability that two species interact with each
other within a graph. The complexity c of a network, and in particular in this case
of an ecosystem, is closely connected to the concept of connectance. Complexity
is in fact defined as the product of the connectance C for the biodiversity S of the
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ecosystem and corresponds to the linkage density L/S of the web: c = CS = L/S.
One of the most controversial debates in the context of food networks is the rela-
tionship between stability and complexity of an ecological system. The stability of
an ecosystem is connected to the resistance it opposes to its disintegration when
subject to various kinds of perturbations. In particular, the stability is consid-
ered as a measure of the reaction of the system to an external perturbation that
makes it move away from its state of equilibrium, given by the densities of the
populations of each species involved: a system is more stable the more quickly it
returns to its state of initial equilibrium or how much closer it returns to it after
the disturbance.
Until the seventies, the predominant idea among ecologists was that the stabil-
ity of ecological communities would increase with their complexity (Elton, 1958;
MacArthur, 1955). In this regard, Charles Elton stated that: “simple communi-
ties are more easily upset than richer ones; that is, more subject to destructive
oscillations in populations, and more vulnerable to invasions” (Elton, 1958). In-
deed, simpler communities would be more easily disturbed by changes than more
complex ones, whose multiplicity in the number of prey and predators would tend
to eliminate the risk of dramatic changes if one of the species decreased in density.
This belief was questioned by the theoretical ecologist Robert May (May, 1973)
who used methods related to dynamic models. May created community models
in which the connections between the elements are established in a random way.
Through a local stability analysis, he observed a transition from stable to unsta-
ble behavior with increasing complexity, thus coming to the conclusion that the
stability of an ecosystem decreases with increasing number of species and interac-
tions. Considering weighted graphs with an interaction force i between the nodes,
May formulated the criterion according to which ecological communities tend to
be stable when

i(SC)
1
2 < 1 (2.21)

that is, when there are low values of S, C or i. May’s result contradicts the
empirical observations of experimental ecologists and seems inconsistent with the
existence of extremely complex ecosystems, rich in biodiversity such as rain forests
and coral reefs. Thus was born the “paradox of May”. May’s analysis was therefore
subject to criticism that highlighted its limitations, including the most obvious one
of considering random interactions between species. In fact, within an ecosystem,
trophic relationships are not random (for example, most animals prey on species
smaller than their own) and these interactions significantly affect the dynamics of
the system.
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2.2.2 Scale invariance and the Cascade Model

If we consider the interaction force i as constant, May’s criterion suggests that a
community remains stable if a decrease in connectance C is accompanied by an
increase in diversity S, so that SC = L/S remains a constant quantity. Many
studies, among which Cohen and Newman (1985) and Cohen et al. (1986), at first
seemed to corroborate May’s hypothesis: the connectance C seemed to decreas
with the diversity S and the ratio L/S seemed to assume approximately constant
values between 1 and 2. In particular, they found that L/S ' 2 and called this
scale invariance link-species scaling law (Figure 2.5). This was not the only scale
invariance found. Other studies reported constant proportions between species
without predators above the food chain (top species T), intermediate species (I)
having both prey and predators and basal species (B)that have no prey. This reg-
ularity was called species scaling law. The proportion in the links between species
T, I and B also appeared to be constant, a regularity which was called link scaling
law (Briand and Cohen, 1984).
Cohen et al. tried to explain the regularities observed in empirical studies through

a simple Cascade Model. In this model, species and food links are distributed
stochastically and are subject to only two constraints: species are located in a
one-dimensional food hierarchy and can predate only species that are lower than
them in the hierarchy. This procedure for the construction of the trophic network
automatically excludes the presence of loops and therefore does not take into con-
sideration the phenomenon of cannibalism. The model is based on two parameters:
the number of species S and the link density L/S. Assuming the constancy of the
L/S ratio and setting for this quantity the average value found in the experimental
analysis, Cohen et al. found that their model correctly reproduced the regularities
empirically observed: the species scaling law and the link scaling law (Cohen and
Newman, 1985, Cohen et al., 1986). It therefore seemed that a simple stochastic
model, analytically treatable, could successfully generate network topologies and
regularities similar to those empirically observed.

2.2.3 Improvement of data and new evidences

Many criticisms were made of the studies that supported the evidence of the afore-
mentioned regularities and of the cascade model that sought to reproduce these
scale invariance. In particular, many studies, including Martinez (1991), high-
lighted the limitedness of the data accompanied by a poor resolution so that many
species within the food chains were poorly represented, even absent or even aggre-
gated into similar but different species. Instead the cascade model was reproached
for the stochastic method through which networks are built and for the exclusion
of the cannibalism phenomenon. New research, based on more detailed empirical
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Figure 2.5: A graph showing one of the results found by Cohen and Newman in
Cohen et al. (1986). The number of links L as a function of the number of species
S for 113 experimental trophic chains. The slope of the regression curve gives
L/S ' 2.
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Figure 2.6: A graph showing the result found in Sugihara et al. (1989). The
connectance C is positively related to the number of species.

data which also included cannibalism, was done. In his research, Martinez found
a value of the L/S ratio much higher (close to 10) than that obtained by Cohen
and Newman and therefore a higher degree of interaction between species. Other
studies improved sampling accuracy by also including information related to the
volumetric fraction of each prey in the diet of each predator. In this way weighted
graphs are created, in which the extent of the interaction between two species is
represented by the weight of the link that connects them. Using data structured
in this way, which also include the weakest connections, Sugihara et al. (1989)
obtained a positive relationship between C and S contrary to what predicted by
the May criterion (Figure 2.6). These new studies seem not to support the hy-
pothesis of the constancy of the L/S ratio and therefore of the decrease of C with
the increase of S. Rather Martinez (1992) proposes a new hypothesis on the con-
stancy of the connectance C = L/S2, so that instead of being constant, L/S would
grow with S in a fixed proportion. According to this hypothesis predators con-
sume an approximately constant fraction of the prey available, so that as diversity
increases, the number of interactions between species increases.

2.2.4 The Niche Model and the Generalized Analytical Model

The cascade model had been developed on the basis of poorly resolved data and
did not pass the tests with new more detailed data. Moreover, in this model
link distribution, besides being random, requires the constancy of the L/S ratio.
Williams and Martinez (2000) proposed the Niche Model, in the attempt to repro-
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duce real food webs by overcoming the limitations found in the cascade model. In
this model the two parameters to be set as input are the number of species S and
the connectance C, that determines the links between species. Unlike the cascade
model, this one makes no assumption about the constancy of the L/S ratio. Also
in the niche model species are ordered along a single dimension: each species is
assigned a random niche value which determines its position along a line. For link
distribution, each species is assigned a feeding range whose midpoint is a random
number less than the niche value. All the species that fall within this range consti-
tute the prey of the species considered. The length of the feeding range is randomly
selected from a beta distribution so that the connectance value of the simulated
network is close to that observed in the empirical network. With this model can-
nibalism is taken into consideration and the trophic overlap is higher than that
obtained with a purely stochastic link distribution and therefore more similar to
that observed in real food webs. Williams and Martinez in the same study tested
their model: through numerical simulations they statistically compared the results
obtained with the niche model with those obtained with the cascade model and
with a purely random model. They used S and C as input parameters, so that
the three models differed only in the link distribution. The niche model turned
out to be the best providing a good fit of the experimental data. Other models
were created in the attempt to further improve the match with experimental data
(including the Nested Hierarchy Model described in Cattin et al., 2004), but none
exceeded the quality of the results found with the niche model.
Stouffer et al. (2005) found that models must meet two conditions to well repro-
duce the central properties of real food webs:

• Niche values for species must form an ordered set;

• Each species has a specific probability of predating other species with a lower
niche value and this probability must be derived from an approximately
exponential distribution.

This theory is referred to as the Generalized Analytical Model. Stouffer et al.
tested their hypothesis on the centrality of these two conditions by modifying the
cascade model so that it also observed the second condition. This modified version
led to good results reproducing features of real food webs and so corroborating their
hypothesis.

2.2.5 Topology and universal patterns

As already mentioned, the topology of a network is strongly determined by three
quantities: the average path length, the average clustering coefficient and the de-
gree distribution of the nodes. Most real networks have a small world structure
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and appear to be scale-free, showing a power law degree distribution with many
low-degree nodes and a few highly interconnected nodes.
Many studies questioned the structure presented by trophic networks. In particu-
lar, Montoya and Solé (2002) compared the properties of real food webs with those
obtained for random networks with the same number of links and found that the
average path length is very similar and very short, but the clustering coefficient is
much greater for real food webs compared to random ones (Figure 2.7). This, as
we have seen, is a characteristic aspect of small-world behavior. In addition, they
obtained a strongly non-Poissonian link distribution P (k) which seems to follow a
power law (Figure 2.8).

Camacho et al. (2002) contradicted these results by stating that the clustering
coefficient of real food chains is lower than that observed in small-world networks
and therefore more similar to that of a random network. Furthermore, according
to them, link distribution does not appear to be scale-free. However, they found
that, when link distribution is normalized for link density L/S, it shows a univer-
sal functional shape given by an exponential decay instead of by a power law one
(Figure 2.9). Also the clustering coefficient and the average path length seem,
according to Camacho et al. (2002), to follow a universal functional form that
scales with the density of the links.
Milo et al. (2002) studied the presence, within food webs, of recurrent and signif-

icant interconnection patterns, defined by them as motifs. They used a statistical
approach through an algorithm that identifies and counts all possible configura-
tions of subgraphs with three or four nodes. Then they compared the frequency
of these subgraphs in empirical networks and in comparable random networks.
By applying this method to some empirical food webs, Milo et al. found that a
particular subgraph consisting of four species (a chain with two species sharing
both a predator and a prey) constitutes a universal pattern. The presence of this
pattern in food webs seems to be independent of network size, but their frequency
increases linearly with S.

2.2.6 Robustness of trophic networks

Research on trophic networks concerns topics of great ecological interest since the
robustness of an ecosystem in response to external perturbations depends on its
structure. Solé and Montoya (2001) studied the response of some food chains by
simulating the loss of nodes, i.e. the disappearance of species within the ecosystem,
and looking at the level of consequent secondary extinctions. Indeed, if the primary
extinction causes a species to lose all its resources, this will in turn become extinct.
They came to the conclusion that the removal of highly connected species causes a
very high rate of secondary extinctions compared to a random removal of species
(Figure 2.10). It would therefore seem that food webs are more vulnerable to
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Figure 2.7: (a) The Clustering coefficient for four food webs. The black columns
represent the real networks and the white columns the average results obtained
from over 200 randomly generated networks with the same average number of links
per species. Real clustering is greater than the random counterparts. (b) Aver-
age distance between two nodes: excluding the case of Little Rock the difference
between the random and the real case is very small (Montoya and Solé, 2002).
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Figure 2.8: Link distribution P (k) for the networks analyzed. Left column: the
data obtained in the case of Ythan and Silwood approximate a power law (pointed
line in the figure). Right column: distributions predicted using a random graph.
Poissonian behavior cannot be compared to the results obtained for real food webs
(Montoya and Solé, 2002).
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Figure 2.9: The distributions of the number of prey and predators scaled with the
link density follow the same pattern (an exponential decay) for all the food webs
(Camacho et al. (2002)).

targeted attacks to hubs than to random attacks, characteristic generally found
in scale-free networks. According to Solé and Montoya (2001), this would be
the proof that even trophic networks, like most real networks, have a scale-free
structure with a power law degree distribution.
As mentioned previously, however, trophic networks do not seem to have a scale-

free structure. According to Dunne et al. (2002), the degree distribution still
being fat tailed, even if not properly with a power law slope, alters the response
to targeted and random removals so that the first modality is more effective than
the second, similarly to what happens in scale-free networks. Dunne et al. also
found that the robustness of the food webs, defined as the fraction of primary
species removed which induces a total loss of at least 50 % of the species (primary
and secondary extinctions), increases with increasing connectance C = L/S2 and
this result applies both for targeted removals of hyper-connected species and for
random removals of nodes (Figure 2.11).
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Figure 2.10: Extinction rate (fraction of secondary extinctions) in relation to the
fraction of species removed f for three different empirical food webs (Solé and
Montoya, 2001).

Figure 2.11: Network robustness, as defined by Dunne et al., as a function of
connectance for 16 empirical trophic webs subjected to three different types of
node removal (Dunne et al., 2002).
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Chapter 3

First case study: Tax Evasion as a
contagion game

Tax evasion is the “illegal and intentional actions taken by individuals to reduce
their legally due tax obligations” (Alm 2012, p.55). Its main effect is a severe
damage to the socio-economical environment that deprives governments of their
fiscal resources and plays an important role in reducing well-being of societies. It
is quite an age-old phenomenon that has been studied for decades, both theoreti-
cally and empirically. The well-known free rider problem rises when a selfish cit-
izen consumes public goods and services without properly contributing to related
costs (Baumol 1952). This causes inefficiency and bad allocations of governments
expenditures for healthcare, education, defence, social security, transportation,
infrastructure, science and technology, as widely documented in a vast literature,
among which Andreoni et al. (1998), Slemrod and Yitzhaki (2002), Torgler (2002),
Kirchler (2007), Slemrod (2007). Tax evasion and the so-called black economy are,
also, related to social inequality, as underlined by part of the literature, among
which, Alstadsaeter et al. (2017), Bertotti and Modanese (2014, 2016), dealing
with the differentiation of the propensity to evade with respect to income and
with redistributive aspects. Finally, it matters in terms of social justice, since it
specially afflicts poorer people, who do not have the possibility to substitute public
services with private ones with higher prices.
In his An Essay on the Nature and Significance of Economic Science, Lionel Rob-
bins (1932, p.15) wrote that “economics is the science which studies human behav-
ior as a relationship between ends and scarce means which have alternative uses”.
Thus, human decision on public goods can be interpreted as a behavioral choice
in terms of cooperation vs. competition in the society. The model here presented
aims to show the collective relevance of such behavioral elements in driving the
decision of each citizen, which reflects also the perceived quality of the public good
and the relational feedback received by her surrounding social environment.
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The initial stages of the formal analysis of tax evasion can be dated back to the
Seventies, with contributions by Allingham and Sandmo (1972) and Srinivasan
(1973). Despite many similarities, such contributions, which are a propagation of
an earlier approach advanced by Becker (1968), differ from each other with re-
spect to optimization procedures, taxpayer’s risk attitudes (which affect second
order conditions of chosen objective functions), decision variables, audit probabil-
ities, tax tariffs, and fine functions. In particular, Allingham and Sandmo (1972),
find that income understatement is decreasing in audit probabilities or in the fine,
whereas the dependence on tax rate is more controversial, reflecting income and
substitution effects. Yitzhaki (1974) obtained a conter-intuitive result by mod-
elling fines computed on the basis of evaded taxes (instead of the understated
income): as the tax rate increases, the evasion decreases, differently from the em-
pirical evidence shown in Clotfelter (1983), Crane and Nourzad (1987), Poterba
(1987). Many other studies have been done in the attempt to find a positive re-
latioship between tax rate and evasion (see for example, among others, Yitzhaki
1987, Panades 2004, Dalamagas 2011, Yaniv 2013).
Such a standard theoretical framework inspired several contributions in related
literature, concerning tax evasion and related issues, such as the shadow economy,
as in Buehn and Schneider (2012), psychological perception and society (social
norms and moral sentiments like guilt or shame), as in Myles and Naylor (1996),
Traxler (2006), Fortin et al. (2007), Kirchler (2007) and many others. Also lit-
erature from statistical physics and network science is deeply connected to such
topics, as shown in recent reviews by Perc and Szolnoki (2010), Perc et al. (2013,
2017), Capraro and Perc (2018).
More generally, a growing stream of literature presenting agent-based models deal-
ing with tax evasion exists. A survey of such papers could be gained by the joint
reading of Bloomquist (2006), Alm (2012), Hokamp (2013), Pickhardt and Prinz
(2014), Oates (2015), Bazart et al. (2016). The advantage of agent-based mod-
els is that they are prone to describe the complexity of aggregate contexts, as
documented in previous studies of socio-economic analysis, Pluchino et al. (2010,
2011, 2018), Biondo et al. (2013a, 2013b, 2013c, 2014, 2015, 2017). Simulative
models (as in Lima and Zaklan, 2008) can help investigating relevant questions,
as the correspondence between the provision of the public good and tax evasion,
as in Hokamp (2013), the importance of social norms and auditing, as in Hokamp
and Pickhardt (2010), and the effect of social networks on the tax compliance,
as in Vale (2015). Such aspects, like many others, can be explained in terms of
behavioral attributes, seeking for the roots of decisions in the evolution of personal
traits, influenced by the surrounding environment.
As reported by the IRS (2016), given the extent of the tax evasion, the expendi-
tures paid by governmental authorities to induce virtuous behaviors are significant.
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Nonetheless, in many cases, free riders remain unpunished. Honest citizens con-
sidering the participation to social costs as a moral imperative are the sole fully
compliant taxpayers. We rephrase the provoking question asked by Alm et al.
(1992): why should people pay taxes? Different reasons can be reported: first of
all, because of altruism, as recalled, for just some examples, in Stevens (2018),
Epstein (1993), and Zappalà et al. (2014); secondly, because of imitation, as in
Callen and Shapero (1974), in Elsenbroich and Gilbert (2014) and McDonald and
Crandall (2015); finally, because of an assessment of the quality of the public good,
as in Nicolaides (2014), La Porta et al. (1999), Feld and Frey (2007) and Torgler
and Schneider (2009).
The main motivation of this study is to combine the agent-based approach to
the prisoner’s dilemma perspective of the standard public goods game, in order
to show a very simple way in which the conflict between individual and collec-
tive rationality (Rapoport 1974) can be enriched by imitation coming from the
social interaction. Such a social dilemma motivated a vast amount of literature,
regarding the production of public goods, as in Heckathorn (1996), the emergence
of social norms and social interaction, as in Hardin (1995), and Voss (2001), the
reasons behind cooperative behavior, as in Nowak (2006), the social preference
models, as in Fehr and Schmidt (1999), Bolton and Ockenfels (2000), Charness
and Rabin (2002), Capraro (2013) and with specific reference to moral preferences
in Capraro and Rand (2018) and Tappin and Capraro (2018). The effect of the
observation within social structures can be determinant to drive individual deci-
sions, as shown in previous contributions, among which, Granovetter (1978) and
Mäs and Opp (2016). This model contributes to the stream of literature dealing
with collective behavior (both in terms of triggering threshold and spreading) in
the dynamic perspective of a public good game, in the case in which players are
aware of the behavior of their neighbors within a realistic social network. A very
recent contribution on the same line is Liu et al. (2019).
The study presented here, developed in collaboration with Prof. Alessandro Pluchino
and Prof. Alessio E. Biondo, has been published by the European Physical Journal
(Di Mauro et al., 2019). The model describes a community in which agents decide
whether to pay taxes or not, according to their personal satisfaction and to the
imitation of neighbors’ behavior. In Section 3.1, is presented the simplest setting
of the model, showing that it is able to reproduce results obtained by Elster (1989)
in terms of multi-person prisoner’s dilemma; then, is highlighted the role of tax-
payers in contrast with that of evaders for the dynamics of the system; in Section
3.2 is introduced the dynamic decisional rule based on personal satisfaction and
imitation; in Section 3.3, is studied the effect of three policy parameters regulating
the tax rate, the fine, and the audit probability; finally in Section 3.4 are presented
some conclusive insights.
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3.1 Tax Evasion Model

Consider a community of N citizens (players), {Pi}i=1,2,...,N , who have to pay their
personal contributes di,t to produce a public good, e.g. a public service, assumed
to be perfectly non-excludable and only partly non-rival. We assume that time
t = 0, 1, 2, . . . , T is measured by a discrete variable indexing simulative steps (i.e.,
turns of the game). At each turn, a randomly number of citizens are assumed
to consume the public good/service, from which they receive a utility in terms of
units of a dimensionless reward, which we shall denominate Gi,t. Of course, the
total available amount of the public good is limited to the cumulated contributes
paid by tax-payers, i.e.

∑
i,tGi,t =

∑
i,t di,t, ∀t. Initially, at t = 0, all community

members are endowed with the same initial amount of capital Ci,0, which will be
increased at each time step, by ∆Ci,t = ∆C = 1 unit, ∀i. Thus, the monetary value
of individual utility is Ui,t = Ci,t + Gi,t. In the simplest setting, the topological
configuration of the social network is irrelevant because each player is assumed
to decide independently of other players’ decisions. Later we will remove such an
initial simplification and specify how people is reciprocally linked to each other.

3.1.1 The basic setting

At each turn, each player Pi chooses how to behave from the following two alter-
native strategies:

• strategy A: to pay di,t units of capital to contribute to the public good
production;

• strategy B: to evade the tax and possibly incur in the fine, equal to hi,t units
of capital (which will not be redistributed to other players), with probability
p.

Let us consider for simplicity a lump-sum taxation/fine system only, i.e., di,t = d
and hi,t = h, ∀i, and assume that h > d. As in every other prisoner’s dilemma,
from the individual point of view, the best choice is to play the non-cooperative
strategy B, since its payoff is greater than the one associated to strategy A for every
possible decision assumed by other players. Consider that the partial non-rivalry
of the public good is modeled by assuming that at each time step t, a random
number of players is extracted to divide among them the total amount of resources
collected from tax payment of the whole community. From the standpoint of the
single citizen/player, the ex-ante probability to be selected, i.e. to use the public
good, and receive any amount Gi,t is the same in both cases (equal to γ, say) and is
not affected by the fact that she is a cooperator or not. For the sake of simplicity,
let us assume that γGi,t = Γ, ∀i. The individual payoff associated to the strategy

55



A is πAi,t = ∆C + Γ − d, whereas πBi,t = ∆C + Γ − ph. Thus, for each player, the
strategy B Nash-dominates the strategy A if p < d/h.

Figure 3.1: Rules of the basic setting: at each turn, after receiving ∆Ci,t, each
player decides what to do: taxpayers play only strategy A; tax evaders play only
strategy B.

Figure 3.1 depicts the basic setting of the game at each time step. Agents
receive the exogenous ∆C and, according to their behavior, are partitioned in
two groups: taxpayers, who altruistically always play strategy A, indicated as
{Ai}i=1,2,...,Na ; and tax evaders, who selfishly always play strategy B, indicated as
{Si}i=1,2,...,Ns . Of course, N = Na + Ns. The basic settings for the first set of
simulations is: p = 0.4 (audit probability), d = 2 units (tax payment), h = 3 units
(fine) and ∆C = 1 units (external gain).

3.1.2 Effects of a change of Na

Let us investigate the asymptotic behavior of the average social capital C̄(T ) =
1
N

∑N
i=1Ci(T ), calculated at the end of a set of single-run simulations, with T = 100

turns per players, when the percentage f = Na/N of taxpayers changes by steps of
1 % in [0, 100]. In Figure 3.2, the average final capital C̄(T ) is reported (red line)
as function of f , confronted with its two components, i.e., C̄a(T ) = 1

Na

∑Na

i=1Ci(T )

(green line) and C̄s(T ) = 1
Ns

∑Ns

i=1Ci(T ) (blue line) calculated separately for the

altruistic taxpayers and selfish evaders (a horizontal black line at C̄ = 0 is also
drawn for comparison). The three values of social capital have been rescaled in
order to have C̄(T ) = 0 when f = 0%, since – by definition – if no one pays taxes
the collectivity must have zero benefits. A confirmation for a very elementary
intuition, i.e., that the average capital C̄s(T ) of the evaders is a positive function
of f . This happens because an always smaller number of evaders is surrounded
by an increasing number of taxpayers. Furthermore, even the capital of taxpayers
(C̄a(T ) ) is positively linked with f since, as long as the number of altruists grows,
the amount of available public good increases for all citizens and, meanwhile,
evaders are becoming numerically less relevant. When the fraction f of taxpayers

56



Figure 3.2: The final average social capital C̄(T ) (red), over T = 100 turns, as a
function of the percentage f of taxpayers. Average final capitals C̄a(T ) (green)
and C̄s(T ) (blue), for taxpayers and tax evaders respectively, are also reported and
compared with the first one.

goes below a threshold fth, which in Figure 3.2 is almost 40% (given the chosen
parameters), the average capital of taxpayers becomes negative, while the collective
capital C̄(T ) is still positive. This means that – on average – they pay more than
they receive. The average social capital of taxpayers is always lower than the
average social capital of evaders, i.e. C̄a(T ) < C̄s(T ) ∀f . This is the graphical
evidence of Nash-dominance of the non-cooperative behavior and reproduces the
same result described by Elster (1989) and shown in Figure 1.4. The two heavy
lines in the Elster’s diagram show the expected benefits, of both cooperators and
free riders, as functions of the number of cooperators (altruists). The strong
similitude is evident: as in our Figure 3.2, the average benefits are a positive
function of the number of cooperators and the line representing the reward to free
riders is constantly above the other one. It is very natural to conclude that the
capital of the collectivity increases only thanks to the contribution of altruistic
players. Thus, from the collective point of view, groups with more cooperators
are favored compared to groups with few cooperators. Indeed, the more numerous
altruists are, the smaller the cost of free riders (in both absolute and relative
terms).

57



3.1.3 Degrees of necessity, degrees of failure...

The basic setting showed the known market failure due to the presence of free
riders in action. Economic theory says that in this case the intervention of the
policy maker is the only solution to create a remedy, which hopefully can represent
a second best solution, since the social optimum cannot be reached by private
market forces only. Despite such a result is quite definitive, we try to advance
the analysis collaterally, by questioning whether the degree of importance (or the
difficulty of substitution) of the public good at hand can play a role and become
an endogenous mechanism to partly amend the disequilibrium. If, for example,
a public good were a primary good, then the low quality caused by insufficient
funds could force people (free riders included) to buy substitutes on the private
market. In other words, if a public pool is always crowded or dirty is one thing;
if an hospital is unable to aid people even for immediate emergency services, is
another. Both cases respond to the logic of the model with free riders and the
set of consequences is theoretically identical. Nonetheless, a citizen would suffer
from two qualitatively different losses. In particular, for the case of the hospital,
the primary need for health services pushes the citizen to buy them on the private
market. This dramatically creates a strong form of social injustice, since poor
people will be hit much harder than rich ones. For the sake of simplicity, we
neglect such redistributive issues (being developed in a forthcoming paper, in which
tax evasion is a function of personal income as well) and focus on the case of a
primary public good/service. If the number of taxpayers is not big enough, tax
evaders may end up with a negative final capital value, since they will have to
buy on the market what has not been produced because of their evasion. Thus,
when the public good is a primary good, a loss suffered by free riders emerges and
the percentage of taxpayers turns out to be a fundamental ingredient for the tax
evasion be a convenient strategy, as shown in Figure 3.3.
As a consequence, we can recognize no longer one but three thresholds, namely a,
b, c.

1) When f < a, social capital is negative for all of the three groups because
paid taxes cannot grant the public services for everybody. It is worth noting
that this is a very bad situation, in which tax evaders damage both the
community and also themselves, and tax payers suffer twice because they
pay taxes and may also need to buy private substitutes of the public good.

2) When a ≤ f < b, the number of altruists is sufficient to cover the expenses
of the public good production that make, on average, tax evasion convenient
for tax evaders (the break-even point is reached in point a). The average
capital of tax payers and that of the whole society remain negative.
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Figure 3.3: When the public good is a primary good, the loss suffered by free
riders matters. Average final capital functions presented in Figure 3.2, i.e., C̄(t),
C̄a(t) and C̄s(t), cannot be rescaled and the percentage of taxpayers turns out to
be a fundamental ingredient for the tax evasion be a convenient strategy. Two
new thresholds appear: see text for details.

3) When b ≤ f < c, the negative average capital of tax payers is more than
compensated, at the social level, by the gain of evaders.

4) When f ≥ c, average capital for taxpayers becomes finally positive and pub-
lic services are sufficient for the community (even if the collected resources
are less than they should be). Tax evaders are still present in the community
(unless f = 100%) and continue to be better off than altruists. In particular,
the reduction of tax evaders would improve the life conditions of the com-
munity either by increasing (if possible) the quality/quantity of the public
good, or by reducing the tax pressure.

The behavioral characterization of each citizen i, can be described by adapting
an interesting diagram proposed by Cipolla (2011) and showed in Figure 3.4. Let
us indicate on the horizontal axis the quantity/quality of the public good Γi and,
on the vertical axis, the individual contribution Ci of i, in order to identify four
types of players:

Smart: those who consume the public good and participate to its production for
the whole community by their personal contribution, namely, taxpayers when
f ≥ c;
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Figure 3.4: A possible taxonomy of citizens can be derived by considering how
each of them combine individual contribution (Ci) to the production of the public
good and consumption of it (Γi).

Naive: those who contribute to the public good production for the whole commu-
nity even when their consumption is insufficient or absent, namely, taxpayers
when f < c;

Stupid: those who do not contribute to the production of the public good but
suffer because their consumption of it is insufficient or absent, namely, tax
evaders when f < a;

Bandits: those who do not contribute to the production of the public good and en-
joy a satisfactory consumption of it at expenses of the rest of the community,
namely, tax evaders when f ≥ a.

3.2 Satisfaction and contagion on complex network

In this section we update the set of possible behaviors that each player can choose.
Differently from the basic setting, we add the possibility, at each time step, to
randomly alternate (with probability 0.5) between strategy A and strategy B. As
we named taxpayer players always choosing strategy A and tax evaders those ones
always choosing strategy B, we label “mixed players” all citizens choosing such a
third strategy, as explained in Figure 3.5. As described before, regarding the basic
setting, chosen strategies now determine univocally three groups in the population.

In order to select the transition rules from a group to another, each player has
been given a new variable, i.e., the “believeness” Bi,t ∈ [0, 1], which measures the
level of commitment in choosing and maintaining a given strategy. Values assumed
by this variable change in time and affect possible transitions. Values of Bi,t close
to 1 mean that the player is a sort of zealot and that most probably she will not
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Figure 3.5: New rules for a community of N players: taxpayers play only strategy
A, tax evaders play only strategy B, and mixed players randomly alternate between
strategy A and strategy B.

change behavior; on the contrary, values of Bi,t close to 0 mean that the agent
is easily influenced and that her behavioral change is highly probable. For both
taxpayers and tax evaders, the transition leads to become a mixed player (and the
value of Bi,t is re-set at random again). For mixed players, instead, the believeness
operates as a sort of reservoir, whose level affects the successive transformation:
values lower than 0.5 reveal a propensity to become an evader, if Bi = 0.5, the
agent is and remains undecided, and values greater than 0.5 show the tendency to
become taxpayers. The value of Bi,t is based on both the imitation of neighbors
and on the individual evaluation of the public good.

3.2.1 Imitation and social ties

In order to account the first point, we need to introduce a topological structure
for our community. We assume a realistic social structure configured as a small-
world (Watts and Strogatz 1998), where each player is a node connected with
short-range ties (to mimic strong social relationships) to four neighbors, and with
a small rewiring probability (r = 0.02) of substituting one of those ties with a
long-range one (representing a weak social relationship).
In the left panel of Figure 3.6 a small-world 2D-lattice is depicted, with taxpayers,
tax evaders, and mixed players (respectively, green, blue, and yellow nodes). For
taxpayers and evaders, if at a given time step the number of nearest neighbors
belonging to their same group is smaller (greater) than the sum of the players of
other groups, included the mixed one, the believeness value Bi decreases (increases)
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of a quantity IF × δB, where IF is the “Imitation Factor” and δB = 0.01. When
Bi ≤ 0, player i becomes a mixed player and a new value of Bi ∈ [0, 1] is randomly
assigned to her. For mixed players, if the number of nearest neighbors belonging
to their same group is smaller than the sum of players of other two groups, Bi

decreases of the quantity IF×δB if the evaders are more than taxpayers, otherwise
it increases of the same quantity. Instead, if the number of mixed players is greater
than (or equal to) the sum of the players belonging to the other two groups, Bi

moves towards 0.5 of a quantity IF × δB and the agent maintains her mixed
behavior. When, for a given mixed player i, Bi ≤ 0 (respectively Bi ≥ 1), that
player becomes a tax evader (respectively, a taxpayer).

Figure 3.6: Left panel: The small-world configuration of the community, with
taxpayers, tax evaders and mixed players (respectively green, blue and yellow
nodes). Right panel: Dynamics of groups (top) and respective average social
capital (bottom). Initial percentage of taxpayers is 60% (above the critical value
for both IF and CF equal to 1).

3.2.2 Satisfaction and behavioral reactions

The second mechanism influencing behavioral transitions concerns the economic
situation of the players. If the social capital of a given player is negative, the agent
will be disappointed because of her experience and so more prone to change her
strategy. Thus, for both evaders and taxpayers, when their capital is negative the
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Figure 3.7: The same setting of Figure 3.6, with the same plots, but in the case of
an initial percentage of taxpayers equal to 50% (below the critical value for both
IF and CF equal to 1).

believeness value decreases of a quantity CF × δB, where CF is the “Capital Fac-
tor”. Instead, for mixed players, Bi varies by the quantity CF ×δB, depending on
their actual state: if Bi ≥ 0.5 it will increase, if Bi < 0.5 it will decrease. Setting
the initial percentage of mixed players to zero, if taxpayers are more numerous
than tax evaders, our simulations show that there exist a critical value for the
initial percentage of taxpayers (depending on both IF and CF ), below which the
global situation gets always worse. Similarly, above that threshold, it gets always
better. In Figure 3.6 and in Figure 3.7, results of two typical single-run simula-
tions are reported, with IF = CF = 1 and two different initial percentages of
taxpayers - respectively, above (60%) and below (50%) the critical value (that, for
these values of IF and CF turns out to be around 55%). In the first one, the final
economic condition appears to be good for all citizens and a majority of taxpayers
emerges; instead, in the second case, the final economic situation is good only for
tax evaders, who become the majority.
Threshold values for the initial percentage of taxpayers as a function of CF are
showed in Figure 3.8 for different values of IF . As we can see, for a given value
of IF , generally the critical value of the initial percentage of pay taxes rapidly in-
creases with CF , then it tends to oscillate around a stationary asymptotic value,
which decreases with IF . For IF = 0, i.e. without imitation, a change in strategy
is due to CF only. Thus, when CF is low, i.e., when the dissatisfaction for a neg-
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ative economic situation is not significant, a small initial percentage of taxpayers
is enough to induce a final positive trend for the whole community; on the con-
trary, when CF is high, i.e., when a negative capital heavily acts on the personal
disappointment, the initial percentage of taxpayers has to be more consistent in
order to counterbalance the proliferation of tax evaders. Such an effect is reduced
by the effect of the imitation, which on average helps: however, the initial fraction
of taxpayers has to be always greater than 50%, for the altruism to spread around
the community.

Figure 3.8: Threshold values for the initial percentage of taxpayers as a function
of the capital factor CF and for different values of the imitation factor IF .

3.3 Tax rate, fines and audit probability

In this last section we present results of simulations with different values of the
three main free parameters of our model, namely, the tax rate, the fine and the
probability of an audit, set hitherto to: d = 2, h = 3, and p = 0.4. Changes in
∆C will be neglected because they would only produce a symmetric rescaling on
the final capital of all groups. Values for IF and CF have been set equal to 1, and
two different initial percentages of taxpayers have been used, above and below the
55% threshold (which has already been shown in Figure 3.8).
Considering a population with 60% taxpayers, 40% tax evaders, and 0% mixed
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players. Figure 3.9 presents results of simulations with different tax rates after
2000 time-iterations: the final percentage of individuals (panel a) and the final
average capital (panel b) are confronted with increasing values of the tax rate d.
It clearly appears that for d < 3 units (i.e. when the tax is lower than the fine h) the
final composition of the population is dominated by taxpayers, whose percentage
grows above 70%. This implies a good situation for all citizens. For higher values
of the tax (i.e. for d ≥ h), the evolution of the system leads to a majority of tax
evaders and this situation fits good only to evaders. This conclusion is strongly
consistent with the initial setting of the model (without the mixed strategy) in
which tax evasion Nash-dominates the other strategy if the probability to incur in
a fine is lower than the ratio between the tax rate and the fine amount.
Figure 3.9 presents, instead, results of simulations performed increasing values
of the fine h (panels c and d) and of the audit probability p (panels e and f),
respectively. Looking at the average capital in panels (d) and (f), we can see that
for values of the fine h > 6 and for the audit probability p > 0.8, tax evaders are
worse off than taxpayers and mixed players. This does not reduce of tax evasion:
while the number of mixed players increases at expenses of taxpayers, panels (c)
and (e) show that the final percentage of evaders is not lower for h > 6 and p > 0.8.
The reason is that in the present release of the model the behavioral update rules
are constant and not adaptive with respect to the ex-post probability that a tax
evader is discovered. Therefore, when required conditions occur (according to the
dynamics induced by imitation and/or capital factors) group shifting happens,
irrespective of the fact that simulations are running for higher values of fine and
audit probability. This means that both the amount of the fine and the audit
probability have an indirect effect. A higher probability and/or a more expensive
fine cause more frequent fine payments and an overall stronger reduction of the
capital of tax evaders. This can induce them, by means of the capital factor, to
change group. It is worth to notice that, in the current setting, the number of
taxpayer is sufficient to maintain the convenience to be tax evader even for high
values of the audit probability and neutralize the consequent negative indirect
effect on the capital. A small change in the percentage of tax payers can affect
this conclusion.

Considering a population with 50% taxpayers, 50% tax evaders, and 0% mixed
players. Figure 3.10 shows results of simulation with different tax rates (panels a
and b), fines (panels c and d) and audit probability (panels e and f). As expected,
the final capital of the taxpayers is always lower than before. Looking at the
final capital of tax evaders (right panels) a conclusion similar to the previous case
emerges: small values for the tax and high values for both the fine and the audit
probability do induce a worse economic situation for tax evaders. Further, the final
composition of the community (left panels) is always dominated by tax evaders,
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Figure 3.9: Final percentage and final average capital after 2000 turns of the
three groups for increasing values of, respectively, tax (a-b), fine (c-d) and audit
probability (e-f). The initial percentage of taxpayers is always equal to 60%.
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Figure 3.10: Final percentage and final average capital after 2000 turns of the
three groups for increasing values of, respectively, tax (a-b), fine (c-d) and audit
probability (e-f). The initial percentage of taxpayers is always equal to 50%.
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with the exception of the case with d = 1. It is worth to notice that, differently
from the previous case, an increase of either the fine or the audit probability, has
now the beneficial effect of reducing the number of evaders, who tend to change
strategy becoming mixed players. However, for maximum values h = 10 and
p = 1.0, this trend is inverted and the percentage of evaders slightly increases.

3.4 Conclusive insights

In this study is presented a simple model of tax evasion, which augments a pris-
oner’s dilemma framework with an agent-based design, in order to characterize
some elements of collective dynamics when altruism and egoism come to play with
regards to the number of taxpayer of a community.
In the first part of the study, the impact of a varying fraction of altruistic players
on the final capital of a fully connected community has been shown. Results of
simulations showed that, with its basic settings, the model replicated consolidated
results of basilar game theory, as presented by Elster (1989). A further specifica-
tion of the model, in which the public good has been designed as a primary good,
identified a threshold level for the fraction of taxpayers in the community. Below
such a threshold, not only do tax evaders create a damage for the collectivity (as
usual), but they harm themselves as well.
In the second part of the study, the model was enriched by the introduction of some
extensions: a small-world network topology for the social community (driving the
imitation), and a third group of “mixed” players (playing alternatively, at random,
the two possible strategies). New interesting results have been obtained, showing
the presence of a threshold, in the initial percentage of taxpayers, able to ensure
an average economic advantage to altruists. Such a threshold is influenced by the
individual propensity of agents to imitate and by their sensitivity with respect to
their personal economic situation.
Finally, a brief parametric analysis has shown how the tax rate, the fine, and the
audit probability are able to influence both the final composition of the commu-
nity and the final average capital of the three social groups (taxpayers, evaders
and mixed players). As in real systems, the percentage of citizens paying taxes is
crucial in sustaining a sufficient quality/quantity of the public good. Results of
simulations show that values above such a threshold can paradoxically allow tax
evaders to resist even to very high values of the audit probability.
Following such results, reasonable policy intuitions are devoted to induce a feeling
of satisfaction in taxpayers, in order to reduce the temptation to evade, even when
the personal economic situation is bad. Thus, if Government takes care of taxpay-
ers more than tax evaders is better: e.g., an educational policy spreading a tax
morale is expected to be more effective than a tax amnesty, because it operates in
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such a way that individuals feel themselves rewarded by institutions. Education
can also impact on the number of taxpayers, which has been described as a key
factor in determining the average social capital. There is also evidence that the
amount of the fine should be far greater than the tax pressure, in order to induce
tax payment as a strong economic convenience while an increase in the probability
of an audit drastically reduces the value of tax evasion.
Further research will be devoted to deepen both the analytical and the computa-
tional elements of the model, after a more detailed design of individual decision
process is added. The incentive to pay taxes will be shown to descend more directly
from interactions among citizens, when reputation and transparency of personal
conduct are added to the model.
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Chapter 4

Second case study: Ecological networks of
soil invertebrates

Safeguarding natural ecosystems is one of the most relevant current issues. A
new report from the Intergovernmental Science-Policy Platform on Biodiversity
and Ecosystem Services (IPBES), released on May 2019, finds that due to human
impact on the environment in the past half-century, the Earth’s biodiversity has
suffered a catastrophic decline: around 1 million animal and plant species are now
threatened with extinction, many within decades, more than ever before in human
history (IPBES, 2019). IPBES Chair, Sir Robert Watson said: “The overwhelming
evidence of the IPBES Global Assessment, from a wide range of different fields of
knowledge, presents an ominous picture. The health of ecosystems on which we and
all other species depend is deteriorating more rapidly than ever. We are eroding
the very foundations of our economies, livelihoods, food security, health and quality
of life worldwide.”
Natural ecosystems are increasingly subjected to severe stress due to human action:
climate change, deforestation and resource depletion as evidenced by numerous re-
search, including Exbrayat et al. (2017), Lawrence and Vandecar (2015), Malhi et
al. (2008). As a cause of this we observe on the one hand a decline in biodiversity
with many species at risk of extinction (Strona and Bradshaw (2018), Barnosky et
al. (2012), Barnosky et al. (2011), Ceballos et al. (2015), Jackson et al. (2001))
and on the other hand the phenomenon of alien species invasion (Simberloff et al.
(2013), Anton et al. (2019)).
In the context of the exploitation of land for agricultural purposes, chemical cock-
tails (including fungicides or herbicides) can affect entire functional guilds, hence
specific functional groups of species will be at risk. Given the rapidly increasing
trend in the use of chemical agents, especially emerging contaminants (Bernhardt
et al., 2017), such a functional loss due to human impact would strongly erode the
health of entire ecosystems and urgently deserves our attention to safeguard our
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Planet.
In the first study showed in this chapter, to investigate the structural changes
of a food-web architecture, real data coming from a soil food web in an aban-
doned pasture with former low-pressure agriculture management are considered.
The corresponding ecological network is reproduced within a multi-agent fully pro-
grammable modeling environment in order to simulate dynamically the cascading
effects due to the removal of entire functional guilds. Results give an idea of the
vulnerability of soil ecosystems if subjected to the use of herbicides or pesticides
typical of intensive agriculture. In the second part of the chapter, the same study
is carried out on two other Dutch ecosystems, that differ from the first for the
type of management, in order to compare the results with those obtained for the
first network. Then there is a study on the topology and robustness of the three
networks, which aims to ascertain whether and how they vary due to the different
anthropic disturbance to which the sites are subject.

4.1 Description of food web sites in Netherlands

The data used in this study derived from sampling and monitoring activities per-
formed in the framework of the Dutch Soil Quality Network. Thanks to this survey,
we have available data on the taxonomy, abundance, body size, and general feeding
habits of soil invertebrates at 135 sites in the Netherlands. Environmental vari-
ables were collected at each site, including soil chemistry, atmospheric variables
and human management practices of those sites. A total of 258 genera, families,
and morpha of free-living soil nematodes, mites, insects, myriapods, enchytraeids,
and earthworms, ranging in dry body mass more than 7 orders of magnitude, were
identified, counted and measured for biomass estimates (Cohen and Mulder 2014).
Data were collected in Pleistocene sandy soils at 135 sites in the Netherlands un-
der seven different regimes of management (Figure 4.1). Pine plantations were
kept following traditional low intensity agro-forestry. Other sites were cultivated
actively. Organic farms, grasslands, and conventional farms were subjected to
middle intensity management. Intensive and super-intensive farms were subjected
to high-intensity management. Organic farms were certified by the Agricultural
Economics Research Institute of the Netherlands (LEI) (Cohen and Mulder 2014).
The numbers and main characteristics of sites in each category were on average:

• 9 Mature grasslands with a suboptimal input of N, mostly fallowed pastures;

• 20 Organic farms, using compost/farmyard manure and no biocides, averag-
ing 1.7 livestock units per hectare;

• 19 Conventional farms, using mineral fertilizers, a much smaller amount of
farmyard manure, averaging 2.4 livestock units per hectare;
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Figure 4.1: Locations of the 135 investigated sites in sandy soils of the Netherlands.
Some locations were too close to each other to be plotted separately. Peaty or
loamy soils are shaded in gray (Cohen and Mulder 2014).

• 21 Intensive farms, using fertilizers, averaging 3.2 livestock units, and aiming
for high yield while minimizing pesticides per hectare;

• 19 Super-intensive farms, using registered biocides and fertilizers to obtain
maximum yield, averaging 5.1 livestock units per hectare;

• 28 Agricultural fields, mostly a 4-year crop rotation, pesticides only for seed
dressing, minimum input of mineral fertilizers; and

• 19 Scots Pine forests, often mixed with deciduous oaks or naturalized spruces.
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4.2 A first exploration on a single community

Interacting species are embedded within complex food webs and according to their
traits determine the architecture of the entire system (Brose et al., 2019; Potapov
et al., 2019). Despite the huge amount of literature on a catastrophic species
decline (IPBES, 2019), experimental evidence from the soil biota on weakened
functional groups (less individuals, less species, or even missing guilds) is still
lacking. The functional loss due to human impact would strongly erode the health
of entire agroecosystems and urgently deserves more attention. For instance, an
inverse correlation between aboveground farming intensity and the belowground
functional diversity is known (Mulder et al., 2003, 2005) and makes some assump-
tions on constant biomass restrictive. For instance, Hunt et al. (1987) assumed
that biomass inputs exactly balance biomass outputs at all times in each soil com-
partment of the detrital food web. But this steady-state assumption not always
holds, as the biomass decreases of microorganisms, microfauna and mesofauna in-
dicate negative effect on the soil buffer capacity (Hunt and Wall, 2002; Wall et al.,
2015), for instance due to an increased pressure, or even soil exploitation, caused
by intensive management practice (Mulder et al., 2008, 2011).
There is a consensus regarding the evidence that any loss of keystone species
severely disrupts ecosystem functioning (IPBES, 2019), but the functional impacts
of such decimations on the food-web architecture are almost unknown. Functional
guilds are keystone units and can be defined as trait-driven groups of species with
key roles in community architecture and therefore ecosystem functioning (Power
et al., 1996; Mouquet et al., 2013). Recently, Brose et al. (2019) pointed out
the importance of prey-predator relationships demonstrating that metabolic rate
and functional traits of predatory species are more important in determining the
interactions between the weight of the prey and that of the predator. Despite their
recent meta-analysis, it seems often difficult to extrapolate to a much wider con-
text, like behavioral ecology, ecosystem services or ecosystem functioning. Hence,
such an extrapolation has to rely entirely upon undiluted mathematical evidences
(Cohen, 2004; Bourne et al., 2005).
Many valuable models demonstrate the power of such an integration between
computation and field ecology. For instance, it is well-known that the density
of predatory species regulate the growth of prey species and vice versa. Lotka-
Volterra model is possibly one of the most used classical extrapolation that relies
upon maths. As the classical Lotka-Volterra model involves two species, here an
extension of it is used. Big data at all biological scales became a central feature
of research and discovery in the life sciences (Bourne et al., 2005).
This study was carried out in collaboration with Prof. Alessandro Pluchino and
biologists Prof. Christian Mulder and Prof. Erminia Conti and has been published
by the journal Ecology and Evolution (Conti et al., 2020). Our aim is to propose
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a simple method to quantify how disproportionate the impact of less taxonomic
and functional diversity can be, and to illustrate its application with one real soil
food web. In particular, we rebuilt the considered ecological network (Mulder
and Elser, 2009) within a fully programmable multi-agent environment (Wilensky,
1999) in an attempt to figure out the cascading effects by weakening the functional
diversity of soil invertebrates through a simulated removal of entire guilds.

4.2.1 Data Sampling

We used a reference data set of empirically observed soil invertebrates in the sandy
soils of one Dutch pasture with former low-pressure management (Mulder and
Elser, 2009). Three replicate samples of about 5 m2 from the upper 10 cm of
soil for the fauna were taken. Bulk samples of 50 soil cores (diameter 2.3 cm)
were used to extract the microfauna and two soil cores (diameter 5.8 cm) were
used to extract the mesofauna. Extraction of free-living nematodes was performed
within one week of core sampling using Oostenbrink funnels, and all the elutri-
ated nematodes were collected; ecto-and endoparasitic nematodes were recovered
with centrifugal flotation. All nematode individuals were counted, and ∼ 150 ran-
domly chosen specimens were identified and measured under a light microscope
(Mulder and Vonk, 2011). Enchytraeid worms (Oligochaeta: Enchytraeidae) were
sampled by wet extraction and microarthropods (Acarina and Collembola) by dry
extraction (Cohen and Mulder, 2014). In both sampling protocols, the heat was
increased gradually with incandescent bulbs, and the invertebrates escaped by
moving downward. For enchytraeids and microarthropods, the abundances for
1m2 × 10 cm depth were derived from the surface and the bulk density of the soil
samples (Mulder et al., 2011).

All these organisms live in a dark and intricate world, interacting in a detrital
food web and in close contact with the soil. Each organism has its own trait-driven
function in soil biota, giving the soil its exclusive properties, and an interaction
matrix was created based on an inventory of multitrophic interactions of soil food
webs that provide all links consistent with literature-derived guilds (Mulder and
Elser, 2009). Despite the observation that energetic equivalence rule is rarely sup-
ported within local communities (Morlon et al., 2009), our reference soil food web
was particularly stable according to both the Eltonian rule (Elton, 1927), being
the lumped dry weight of all the sampled invertebrates of the first trophic level
exactly 10.28 times the lumped dry weight of all the sampled invertebrates of the
second trophic level, as to the energetic equivalence rule (Mulder and Elser, 2009).
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Figure 4.2: View of the study area of Soest, the Netherlands, during the field
sampling in 2012. Photo credit: Christian Mulder.
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4.2.2 Analysis of the food web: a modified Lotka-Volterra model

In contrast to previous studies on simulated species extinction (e.g., Ives and Car-
dinale, 2004), in this study we want to disentangle the cascading effects of the
removal of selected functional groups (here, entire guilds of soil invertebrates).
Using the data obtained from the sampling discussed in the previous paragraph, a
food web consisting of n = 62 species of soil organisms was built (see Figure 4.4)
within NetLogo, a multi-agent fully programmable modeling environment partic-
ularly suitable for the simulation of complex systems (Wilensky, 1999). For these
species we know the abundance Xi, the body mass Mi, the biomass Bi (given by
Bi = XiMi) and the value of the growth rate ri in condition of mutual interac-
tion, with i = 0, 1, ..., n. All identified soil invertebrates in Figure 4.4 fell into
five guilds and the independent trophic links among guilds (from any resource to
its consumer) were inferred from published literature. The complete inventory of
multitrophic interactions consistent with literature-derived guilds is fully down-
loadable from Mulder and Elser (2009).
Mathematically, the species detected in the sample can be seen as nodes belonging
to a trophic web. The links between the nodes represent the known food interac-
tions existing between the species (the direction of the link follows the flow of en-
ergy that, through predation, passes from the prey to the predator). In Figure 4.3
is showed our ecological network, with the 62 numbered nodes/species placed in
a circular layout, where each group of species is distinguished by a different color
(as also explained in detail in Figure 4.4). The size of each node is proportional
to the base-10 logarithm of the abundance of the corresponding species (LogX).

As multitrophic interactions between basal consumers and allochthonous re-
sources are donor-controlled, i.e. according to Polis et al. (1997) “consumers
benefit from but do not affect resource renewal rate”, we postulated constant al-
lochthonous resources. Our lemma is therefore that the faunal populations have
an unlimited resource supply of bacteria, fungi and roots. This is because we are
focusing here only on the inter-specific prey-predator interactions among soil inver-
tebrates and not on all the resource-consumer interactions occurring in soil biota.
Hence, we kept in our simulations microbial and plant biomasses constantly avail-
able for grazing by basal (specialized) species and non-basal (omnivore) species
(cf. Hunt et al., 1987; Polis et al., 1997).
In order to model the dynamical behavior of the species in the food web, we adopt
a set of modified Lotka-Volterra equations. Our starting point is the logistic equa-
tion (1.7), which takes into account the intra-specific regulation due to the presence
of limited resources, applied here to the abundance Xi of each one of our n = 62
species as in Kondoh (2005):

dXi

dt
= riXi

(
1− Xi

Ki

)
(i = 1, 2, ..., n) (4.1)
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Figure 4.3: A sketch of the food web network with 62 nodes/species organized in
groups of different colors (see Figure 4.4) and placed in a circular layout. Directed
links, between the organisms belonging to trophic level 1 (primary consumers,
being they herbivorous, fungivorous or bacterivorous invertebrates) and the or-
ganisms belonging to trophic level 2 (secondary consumers, either carnivorous or
omnivorous invertebrates), represent the prey/predator connections, going from
the prey node to the predator node.
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Figure 4.4: Trophic ID, functional ID and name of the taxa (mostly families or
genera, here after called “species”) corresponding to the nodes of the network
shown in Figure 4.3.
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where ri and Ki are respectively the growth rate and the carriyng capacity of the
i-th species. It is likely important to state that we did not assume that all species
have the same carrying capacity as in other simulations (Gross and Cardinale,
2005), but species- specific Ki values. Within each guild, we derived the ri values
for the functional groups shown in Table 4.4 from Moore et al. (1993) and De
Ruiter et al. (1995).
In order to adapt these equations to real data, it must be considered that, in
addition to the intra-specific interaction, an inter-specific interaction also occur
among species. For this reason the growth rate ri must also consider the effect due
to predation. According to the prescription of equation (1.11), we assume that, in
presence of interaction, ri is expressed as:

ri = ri0 +
∑
j

AijXj (4.2)

where Aij are the elements of the community matrix A and ri0 is the growth rate
of the i-th species in absence of interaction. By combining formulas (4.1) and (4.2)
one finally gets:

dXi

dt
=

[
ri0 +

∑
j

AijXj

]
Xi

(
1− Xi

Ki

)
(4.3)

As we have already seen, in general the elements Aij of the community matrix
weigh the food interaction among pairs of species (Aij = 0 when species i and
j don’t have any predation connection). In this study we decided to link these
weights to the biomasses of the prey species. Such a biomass-driven perspective,
in fact, focuses on groups of species and on the lumped biomass values of the
populations that constitute that functional group (Moore and De Ruiter, 2012).
Let us consider, for example, a generic node/species i with degree 2 which is,
simultaneously, a predator for a given node/species m (therefore, an ingoing link
will exist from node m towards node i) and a prey for another node/species l (in
this case a directed outgoing link will exist from node i towards node l). In this
case, we will define the coefficient Aim as the following ratio:

Aim =
Bm∑
k Bk

(4.4)

where at the numerator there is the biomass Bm of the prey species m and at
the denominator the summation of the biomasses of all the prey species of node i
(included Bm): the coefficient is positive because the flux of energy goes from m
to i, therefore, after an encounter, species i will have an increase in abundance.
Similarly, the coefficient Ail will be defined as:

Ail = − Bi∑
hBh

(4.5)
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where at the numerator there is the biomass Bi of the prey species i and at the
denominator the summation of the biomasses of all the prey species of node l
(included Bi): in this case the coefficient is negative because the flux of energy
goes from i to l, consequently, after an encounter, species i will have a decrease
in abundance. The rationale behind these definitions (which, of course, can be
applied to node/species with any degree) is that, when a predator has a diet based
on a few prey species, he will consume a greater quantity of each of them depending
on their single biomass in relation to the total biomass of its prey species. If, on
the contrary, the same predator preys many species, it will consume a smaller
quantity of each of them in relation to their biomass compared to the total.
In order to proceed with the calculation of the abundances through equation (4.3),
we should know the term ri0 which can be inferred from real data by making the
following assumption. At the time of sampling, the system was, according to
Eltonian rules, in a state of stability in which the abundance of each species, in
presence of interactions with all the other ones, had reached its carrying capacity,
thus Xi = Ki. Therefore according to the formula (4.2), it is possible to obtain the
value of the net growth rate without interaction ri0 starting from that one measured
when there is interaction ri, considering all the species in their stationary state
Ki:

ri0 = ri − α
∑
j

AijKj (4.6)

The parameter α is a coupling coefficient that can be considered as a measure of
the interaction strength of a given species within the rest of the food web and it
is chosen so that the carnivores and part of the omnivores (species 57, 58, 59, 60
and 61 of Table 4.4) have a negative ri0. In fact, in the absence of interaction
between species, and therefore without possibility of predation, carnivores must
have a negative growth rate. The same can be said for omnivores whose diet is
composed of animal rather than plant.
Considering our lemma (we kept bacteria, fungi and roots constantly available to
soil invertebrates) and under the further plausible assumption that, in absence of
interaction among species, the carriyng capacity of each species, say Ki0, would be
greater than the same one in presence of interaction, i.e. Ki, we postulate that:

Ki0 = Ki +
Ki

2
(4.7)

Notice that, despite this prescription, in absence of interaction, species with ri0 < 0
will tend to extinction as expected.
Summarizing, we can effectively rewrite our dynamical equations (4.3) as:

dXi

dt
=

[
ri0 + βα

∑
j

AijXj

]
Xi

(
1− Xi

Ki + (1− β)Ki

2

)
(4.8)
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with β = 0 in the case in which there is no interaction and β = 1 in the case in
which there is interaction, of strength α, between the species.
Equation (4.8), applied to each node of our ecological network, allows us to sim-
ulate the dynamical evolution of the system in several representative scenarios,
where different kind of perturbations will be realized in order to study the reac-
tion of the species. All the simulations were done by choosing the initial abundance
of the species in the interval:

Xi(0) ∈
[
Ki −

Ki

2
;Ki

]
(4.9)

so that they cannot exceed their carriyng capacity. For each scenario, starting
from the initial conditions (4.9), at each time step the populations Xi(t) of all
species are updated by numerically integrating equation (4.8) until the system has
reached a condition of stability. Notice that a variation of Xi(t) for a given species
does imply a variation of its biomass Bi(t) = MiXi(t). Then, depending on the
chosen scenario, the forced removal of a certain number of species was carried out
in the following way: after 100 time steps, which has been verified to be enough
for the system to have reached a stationary state, i.e. for the populations of all
the species to have reached their initial carrying capacity Ki, the abundances of
the species we have chosen to remove are decreased exponentially over time. In
turn, this can induce cascading effects on some of the other species, according to
the following rules. When the abundances of carnivores or omnivores, for some
reason, start to decrease in time, it is reasonable to assume that a corresponding
increase in the carrying capacity Ki of their prey will occur. The latter can be
obtained starting from the potential variation of the biomass of the i-th prey at
time t, that is calculated as the product of its own current biomass Bi(t) times
the ratio between the total biomass of dead predators and the total biomass of all
their prey, i.e.:

∆Bi(t) = Bi(t)
tot biomass dead predators

tot biomass prey
(4.10)

This quantity can be translated into a consequent potential increase of the prey’s
abundance, allowed by the decrease of its predators,

∆Xi(t) =
∆Bi(t)

Mi

(4.11)

and this increase can therefore be added to its carrying capacity, so that:

Ki(t+ 1) = Ki(t) + 10×∆Xi(t) (4.12)
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for herbivores, fungivores and bacterivores (trophic level 1), and

Ki(t+ 1) = Ki(t) + ∆Xi(t) (4.13)

for carnivores and omnivores (trophic level 2). The multiplicative factor 10 in
equation (4.12) was inserted according to the Eltonian rule across adjacent trophic
levels (Elton, 1927). The new value for Ki(t + 1) will be inserted in the equation
(4.8) thus influencing the further dynamical evolution of the system. The same rule
does not need to be applied if the decrease concerns the abundances of herbivores,
fungivores and bacterivores since these grazing species are, according to the lemma,
only prey, therefore they cannot induce variations in the carrying capacity of other
species.
In order to quantify structural changes and to compare one single simulation to
others, i.e.the results of the simulations carried out by removing either guilds or
species, we introduce an Alteration Index (AI), defined as:

AI =
∑
k

|Xsk −Xfk|
Xsk

=
∑
k

|∆Xk|
Xsk

(4.14)

where Xsk and Xfk are, respectively, the abundance of species k-th calculated
after 100 time steps, i.e. in the steady state, and the abundance of the same
species calculated at the end of the simulation. In other words, AI considers the
sum of the absolute variations in abundance that the species undergo due to the
forced removal of some other species, normalized with respect to their abundance
in the steady state. It is therefore a measure of the alteration of the ecosystem
due to the introduced perturbation. Note that the summation includes only the
guilds/species for which forced removal does not occur, since we are interested in
quantifying only the effects of the perturbation (without including the perturbation
itself). Our AI is of particular interest as the stability of depaupered food webs
remaining after deleting functional groups has not been examined systematically
by Hunt and Wall (2002). These authors state that such a new food-web stability
maybe critically important to ecosystem function.

4.2.3 Computational results

In the simulation shown in Figure 4.6 we set β = 0 in order to test the behavior of
the system in the (unrealistic) scenario in which there were no interactions among
species. As expected, species with ri0 < 0, i.e. carnivores and omnivores 57, 58,
59, 60 and 61, become extinct. The other species, instead, rapidly reach their
own carrying capacity. On the other hand, in the simulation shown in Figure 4.7,
we set β = 1 i.e. we consider the standard scenario in which there is interaction
between species, but the system is not disturbed. In this case, all species reach
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their carrying capacity and the system goes rapidly in balance. This is the condi-
tion with which we have to compare all the next scenarios, in which we always set
β = 1 but the system is perturbed by the removal of several species.
Let’s now discuss in detail the results of the simulations performed in eleven differ-
ent scenarios. In the first nine of these we remove separately the five guilds or four
combinations of them, even an entire trophic level in the case of the removal of all
omnivores and carnivores to forecast an evolution of such an artificially depleted
food web. We are not aware of any study where a combination of functional guilds
was removed, although independent cascading effects due to the loss of a single
guild has been addressed by Hunt and Wall (2002). In the last two scenarios we
want to verify the importance of the abundance of the species by removing the
first two or the first three most abundant species.
Removal of either all the herbivorous species (AI = 3.39×10−7) or all the
bacterivorous species (AI = 1.08×10−4). The soil system does not seem to be
affected by one of these disturbances and all other species settle at their carrying
capacity (Figure 4.8 and Figure 4.9) and the alterations of the food-web archi-
tecture, as computed by equation (4.14), are in both scenarios statistically undis-
tinguishable from 0. Such comparable results for so different scenarios are rather
surprising, as the lumped biomass of the bacterivores is 1.58 times larger than
the lumped biomass of the herbivores (105.62 vs. 105.42 log[µg m−2 dry weight],
respectively), although the removal of all the fungivorous species (with a much
higher lumped biomass of 106.19 log[µg m−2 dry weight]) influences the numerical
abundances of other species (see next scenario). A possible biological explanation
is on one hand the specialization of grazing invertebrates, as herbivores and bac-
terivores have evident morphological adaptations to attack plant roots and ingest
bacterial cells (Yeates et al., 1993), in contrast to larger consumers like fungivore
oribatids which can handle many more different resources than smaller consumers
like bacterivore nematodes. On the other hand, the relative energetic contribu-
tion in terms of flux is on average the highest for herbivorous microarthropods
and bacterivorous enchytraeids (Mulder et al., 2008) and therefore we would have
expected stronger cascading effects.
Removal of all the fungivorous species (AI = 0.94). In this case, being
the fungivorous Tylenchidae (node 15) the most abundant species of the entire
system, its removal causes a slight decline of the second most abundant species of
the system, the herbivorous Helicotylenchus (node 2) which decreases from 105.9

to 105.82. A possible explanation of this unexpected correlation between a fungiv-
orous nematode and herbivorous nematode could be due to an indirect cascading
effect where the removal of the most abundant species forces a shift in the prey-
predator relationships. Consequently, after about 400 time steps with respect to
the diminishing herbivorous 2, a minimal decrease of the abundance of carnivorous
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Anatonchus (node 43 of Table 4.4) from 104.6 to 104.56 is observed (Figure 4.10),
as resources do not seem to be sufficient. This is surprising, as Anatonchusis is
well known to be a stress-resistant nematode, capable to survive and dominate in
hostile environments (Neher et al., 2005; Fiscus and Neher, 2002).
Removal of all the herbivorous and fungivorous species together (AI =
1.82). The abundance of the carnivorous nematode Anatonchus (node 43 of Ta-
ble 4.4) decreases from 104.6 to 104.48 and, as a consequence, a slight increase is
also observed in some species of bacterivorous nematodes and enchytraeid worms
(Figure 4.11) and the AI is correspondingly low (AI = 1.82). Being Anatonchus
the most abundant predatory nematode, the lack of herbivorous and fungivorous
prey not only affects this predatory species but also enhances the occurrence of
bacterivorous prey at a lower trophic level.
Removal of all the herbivorous and bacterivorous species together (AI =
11.53). The carnivorous mite Dendrolaelaps (node 47 of Table 4.4) and the truely
omnivorous mites (nodes 57-61, those with ri0 < 0) become extinct. Carnivores
43-46 succeed in adapting their population size to the much fewer resources avail-
able. There is also a slight increase in fungivores and in the remaining omnivores
(Figure 4.12). At the end, this simulation is resulting in a strong re-assemblage
of the food web with an AI equal to 11.53 and the fluctuations in the numerical
abundances of so many species were rather unexpected given the lack of response
of the food web to the removal of herbivores alone (Figure 4.8) or bacterivores
alone (Figure 4.9). In short, the sum of the effects due to the removal of both
guilds was highly relevant even if the separate removal of these two guilds did not
influence our web.
Removal of all the fungivorous and bacterivorous species (AI = 12.97).
Carnivores 44, 45 and 46 become extinct but even the abundance of second most
abundant species, the herbivorous Helicotylenchus (node 2) decreases. There is
still a slight increase in herbivorous and omnivorous species (Figure 4.13), in fact
AI reaches 12.97. Only the carnivores 43 and 47 seem to succeed in adapting
their number to the fewer resources available. As aforementioned, Anatonchus
(node 43) is well known as stress-resistant (Neher et al., 2005; Fiscus and Neher,
2002), and therefore its successful performance is expected. The same holds for the
mite Dendrolaelaps (node 47), because as generalist its trophic niche will be much
larger than that of other more specialized carnivores. As in the previous scenario,
the effect due to the removal of two guilds at the same time was really relevant,
although it should be mentioned that these effects are likely due to the removal
of fungivores (Figure 4.10) more than the removal of bacterivores (Figure 4.9).
In any case, the trophic effects due to the combined removal of microbivores in
Figure 4.13 were opposite for the first trophic level (mostly increase of herbivorous
species: primary consumers) and the second level (mostly decrease of carnivorous
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species: secondary consumers).
Removal of either all the omnivorous species (AI = 195.75) or all the car-
nivorous species (AI = 29.41). Omnivores are known to have the capability to
modify their feeding behavior based on the resource profitability, either by switch-
ing prey species (Holt and Polis, 1997) or by adjusting the relative proportion
of each prey across different guilds (for instance, preying on the most abundant
basal species, like in our case fungivorous 15, herbivorous 2 and bacterivorous 33).
Therefore omnivores and food-web architecture are closely linked to each other
and a high degree of omnivory mostly stabilizes the web structure (Holt and Polis,
1997, and Kratina et al., 2012, respectively). However, our Figure 4.14 clearly
shows the reduced exploitation of the soil system by the omnivores once the en-
tire functional guild has been removed. This destabilizing system is assessed by a
remarkably high food-web architecture alteration (AI = 195.75), the highest alter-
ation due to a sole deleted guild. In contrast, Figure 4.15) shows that the removal
of only the carnivorous species causes only a disproportionally small impact on the
food-web architecture (AI = 29.41).
Removal of all the invertebrates at trophic level 2 (omnivorous and car-
nivorous species) (AI = 261.41). Omnivores and carnivores ate the producers
in proportion to their biomass, with omnivores sharing no evident random prefer-
ence. As expected, species losses are very unlikely when predators were removed
and an increase in the abundance of all other species at trophic level 1 is observed,
showing the response of the system to the lack of top-down control (Figure 4.16).
This scenario is the one with the highest alteration value despite it does not lead
to the secondary extinction of any species because the entire upper trophic level
was removed. In fact, the removal of omnivores and carnivores causes a significant
increase of their preys according to the formula 4.12 and the total alteration due
to the removal of omnivores and carnivores together is much more than the sum of
the single alterations due to the removal of either the omnivores or the carnivores
(261.41 > 195.75 + 29.41 = 225.16). With an additional alteration of 16 % of the
food-web architecture, we can only conclude that omnivory strongly enhances the
flux of nutrients between the soil invertebrates belonging to the first trophic level
and those belonging to the second trophic level.
Power et al. (1996) distinguished keystone species from dominant species. Two
and three dominant species were chosen according to their numerical abundances.
Removal of the two most abundant species in the ecosystem: fungivo-
rous 15 and herbivorous 2 (AI = 2.76). The abundances of all carnivorous
species decrease but surprisingly it is just the generalist Dendrolaelaps that be-
comes extinct. There is also a slight increase in other species (Figure 4.17).
Removal of the three most abundant species in the ecosystem: fungivo-
rous 15, herbivorous 2 and bacterivorous 33 (AI = 15.21). The abundance
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Figure 4.5: Alteration Index for the simulations performed, sorted in ascending
order from left to right.

of all carnivorous species decrease. Again the generalist mite Dendrolaelaps and
all omnivore mites but Scheloribates (node 61) become extinct. There is also a
slight increase in other species (Figure 4.18). According to Power et al. (1996),
these three species are dominant but given the disproportionately large impact on
the other species by the removal of the bacterivorous nematode (node 33), the
latter might even be a foundation species.
In Figure 4.5 are reported, in ascending order and in logarithmic scale, the AI-
values calculated for each considered scenario. Comparing the results obtained in
the simulations with the values of the alteration index, one realizes that the latter
is very close to zero when spontaneous extinctions do not take place and there
are no variations of abundance in the species not removed (scenarios a and b).
On the other hand, the AI index takes relatively low values (between 1 and 10)
when a slight variation in the abundance of some species is observed (scenarios
c and d) or when there are also few spontaneous extinctions (scenario e), while
takes values greater than 10 in the scenarios (f, g, h, i, l and m) in which many
spontaneous extinctions occur. Finally, note that the last scenario (m) is the one
with the highest AI value despite it does not lead to the secondary extinction of
any species because the entire upper trophic level was removed (Figure 4.16). In
fact, the removal of omnivores and carnivores causes a significant increase of their
preys according to the formula (4.12). The results obtained for the Alteration
Index show its high sensitivity to altered food-web architectures.
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Figure 4.6: Graphic representation of the simulation results without interaction
(β = 0).Above the temporal evolutions of species abundances and below the rep-
resentations of the trophic web at the end of the simulation.
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Figure 4.7: Graphic representation of the simulation results with interaction
(β = 1). Above the temporal evolutions of species abundances and below the
representations of the trophic web at the end of the simulation.
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Figure 4.8: Graphic representation of the simulation results in the case all herbi-
vores are removed from the ecosystem. Above the temporal evolutions of species
abundances and below the representations of the trophic web at the end of the
simulation.
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Figure 4.9: Graphic representation of the simulation results in the case all bacteri-
vores are removed from the ecosystem. Above the temporal evolutions of species
abundances and below the representations of the trophic web at the end of the
simulation.
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Figure 4.10: Graphic representation of the simulation results in the case all fungi-
vores are removed from the ecosystem. Above the temporal evolutions of species
abundances and below the representations of the trophic web at the end of the
simulation.
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Figure 4.11: Graphic representations of the simulation results in the case all her-
bivores and fungivores are removed from the ecosystem. Above the temporal
evolutions of species abundances and below the representations of the trophic web
at the end of the simulation.
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Figure 4.12: Graphic representations of the simulation results in the case all her-
bivores and bacterivores are removed from the ecosystem. Above the temporal
evolutions of species abundances and below the representations of the trophic web
at the end of the simulation.
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Figure 4.13: Graphic representations of the simulation results in the case all fun-
givores and bacterivores are removed from the ecosystem. Above the temporal
evolutions of species abundances and below the representations of the trophic web
at the end of the simulation.
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Figure 4.14: Graphic representation of the simulation results in the case all omni-
vores are removed from the ecosystem. Above the temporal evolutions of species
abundances and below the representations of the trophic web at the end of the
simulation.This temporal simulation of a real food-web assemblage confirms the
theoretical scenario by Borrvall et al. (2000), when they stated that “the probability
of further species losses is almost zero when a top predator is removed”.
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Figure 4.15: Graphic representation of the simulation results in the case all carni-
vores are removed from the ecosystem. Above the temporal evolutions of species
abundances and below the representations of the trophic web at the end of the
simulation. This temporal simulation of a real food-web assemblage confirms the
theoretical scenario by Borrvall et al. (2000), when they stated that “the probability
of further species losses is almost zero when a top predator is removed”.
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Figure 4.16: Graphic representation of the simulation results in the case all om-
nivores and carnivores are removed from the ecosystem. Above the temporal
evolutions of species abundances and below the representations of the trophic web
at the end of the simulation. This temporal simulation of a real food-web assem-
blage confirms the theoretical scenario by Borrvall et al. (2000), when they stated
that “the probability of further species losses is almost zero when a top predator is
removed”.
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Figure 4.17: Graphic representation of the simulation results in the case only
herbivores 2 and fungivores 15 are removed from the ecosystem (see the text for the
explanation of these choices). Above the temporal evolutions of species abundances
and below the representations of the trophic web at the end of the simulation.
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Figure 4.18: Graphic representation of the simulation results in the case only
herbivores 2, fungivores 15 and bacterivores 33 are removed from the ecosystem
(see the text for the explanation of these choices). Above the temporal evolutions
of species abundances and below the representations of the trophic web at the end
of the simulation. 99



4.2.4 Conclusive insights

Natural ecosystems are increasingly subjected to severe stress events due to global
warming, deforestation and resource depletion, as evidenced by numerous studies,
e.g. Hunt and Wall (2002), Malhi et al. (2008), Barnosky et al. (2011, 2012), Ce-
ballos et al. (2015), but the contribution of particular species to the compensation
and the community resistance after the extinction of other co-occurring species is
uncertain (Ives and Cardinale, 2004). Therefore, the study of food webs is of fun-
damental ecological importance, as webs define the structure of the ecosystem and
determine its properties, including its stability respect to environmental distur-
bances. Any ecosystem is stable if the system opposes to its disintegration when
subject to various types of disturbances that can cause the extinction of species.
Following a numerical approach able to combine both dynamical and topological
aspects of the problem, in this study we quantified the reaction of a real density-
driven ecological network of soil invertebrates to different perturbative scenarios by
means of extended simulations realized within a fully programmable agent-based
environment. If we consider the average number of species per guild as functional
redundancy, the removal of all fungivorous and bacterivorous species lessens 60%
of redundancy of our food web in time. On the other hand, even the removal of the
three most abundant species belonging to the primary consumers (one herbivore,
one fungivore and one bacterivore) clearly shows evident bottom-up cascading ef-
fects among the secondary consumers, and lessens the biodiversity of carnivores
of 20% and the biodiversity of omnivores of 29%. Assuming like Borrvall et al.
(2000) and Katrin et al. (2012) that a major effect of omnivory is to lessen the risk
of species extinctions following the loss of a herbivore, it is surprising that so many
omnivores belonging to such a resilient guild got extinct. However, missing top-
down control by secondary consumers in general, and by omnivores in particular,
independently increased the numerical abundances of all the primary consumers
and confirm a recent meta-analysis (Mancinelli and Mulder, 2015). These au-
thors concluded in fact that omnivores, either alone or with predators, exerted a
much stronger negative effect than predators in terrestrial systems. Seen that the
probability of species loss in other food webs can be assessed when key species or
guilds disappear, this simple computational method visualizes alterations in the
food-web architecture and can identify possible tools in environmental assessment
and ecological conservation.
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4.3 Comparison between different communities

The aim of the study here described is to analyze the topology and the robustness
of three trophic networks corresponding to soil ecosystems under different regimes
of management, highlighting similarities and differences. Unlike previous studies,
that are based on a purely topological network-structure analysis, this study de-
rives the robustness of the food webs through a dynamical analysis through the
use of the model previously described (Conti et al., 2020). This represents an
upgrade considering that the structure of a given network has a strong impact on
the outcomes of dynamics, as highlighted in Pimm and Lawton (1978), McCann
and Hastings (1997), Hastings (1996) and Jordan et al. (2002). In this regard,
Dunne (2006) stated that “the dynamics of species in complex ecosystems are more
tightly connected than conventionally thought, which has profound implications for
the impact and spread of perturbations”.
Several studies have investigated the different structural characteristics shown by
food webs representative of different types of habitats and environments (Briand
(1983), Briand and Cohen (1987), Chase (2000), Cohen (1994), Link (2002), Dunne
et al. (2004)). Similarly, the present study is useful in highlighting structural differ-
ences between food networks representative of agricultural fields subject to differ-
ent types of management, differences that may affect the dynamics and robustness
of these networks. Land-management practices and environmental changes affect
belowground communities, influencing the overall stability and productivity of the
food webs (Wall et al. (2015), Clay (2004), Powell (2007)). In this respect this
study aims also to suggest a possible link between agricultural practices and the
robustness of ecosystems subject to these types of management. Understand if
and how anthropogenic action affects soil ecosystems can be helpful in establish-
ing the eco-sustainability of certain agricultural methods, promoting the ecological
complexity and robustness of soil biodiversity.
This study is the subject of a paper (Di Mauro et al., 2020) currently in phase of
submission to the journal Food Webs. It focused on three sampling sites, among
those described at the beginning of the chapter, and can be considered as a pre-
liminary study for further analysis to be carried out on the remaining available
sites. The first ecosystem considered is the one studied in the previous paragraph
(site 247), that is fallowed pastures with low pressure management. As mentioned
above this ecosystem turns out to be particularly stable according to both the
Eltonian rule (Elton, 1927) and the energetic equivalence rule (Mulder and Elser,
2009). Consequently, we can consider this ecosystem as a reference network sub-
ject to low anthropic disturbance.
The other two analyzed ecosystems (sites 225 and 230) are organic farms certi-
fied by the Agricultural Economics Research Institute of the Netherlands (LEI).
These meet all the legal requirements for this type of agriculture (using com-
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Figure 4.19: Concentration values of nitrogen from manure, mercury and lead in
the soil of sites 225 and 230.

post/farmyard manure and no biocides, averaging 1.7 livestock units per hectare)
and are periodically monitored (Cohen and Mulder (2014)). Despite this, being
fields dedicated to agriculture, albeit organic, are subject to middle intensity man-
agement and this is the main feature that distinguishes these sites from ecosystem
247.
Furthermore, the two organic farms differ from each other in the concentration of
some elements present in their soil. The first of these two ecosystems (site 225) is a
field with high concentrations of nitrogen from manure and this suggests that it is
an area subject to grazing (organic farming also includes the possibility of pasture).
The second ecosystem (site 230) was instead selected for its high concentrations
of heavy metals such as lead and mercury which might suggest the presence of a
nearby factory functioning at present or in the past. The concentration values of
these significant elements in the two sites are shown in table 4.19. Unfortunately
we are not aware of the concentration of these elements in site 247, because for
natural lands this type of chemical analysis has not been carried out.
Data sampling for sites 225 and 230 was carried out in the same ways and with the
same procedures described in the previous paragraph for site 247. In Figures 4.20
and 4.21, the list of the n species found in sampling sites 225 and 230 is shown.
For these species we know the abundance Xi, the body mass Mi, the biomass Bi

and the value of the growth rates ri, with i = 0, 1, ..., n. Even for these two soil
ecosystems, using the data obtained from the sampling, we have built two direct
and unweighted food webs. Figure 4.22 shows the representative networks (the
species present and how these are connected to each other) of ecosystems 225 and
230.

102



Figure 4.20: Trophic ID, functional ID and name of the taxa (mostly families
or genera, here after called “species”) corresponding to the nodes of the network
shown in Figure 4.22 (a) (site 225).
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Figure 4.21: Trophic ID, functional ID and name of the taxa (mostly families
or genera, here after called “species”) corresponding to the nodes of the network
shown in Figure 4.22 (b) (site 230).
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Figure 4.22: A sketch of the food web networks for site 225 (a) and for site 230
(b). Nodes/species are organized in groups of different colors (see Figures 4.20 and
4.21 ) and placed in a circular layout. Directed links represent the prey/predator
connections, going from the prey node to the predator node. The size of each node
is proportional to the base-10 logarithm of the abundance of the corresponding
species (LogX)
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4.3.1 Response of the three ecosystems to the different perturbative
scenarios

In the first analysis carried out, it was applied the same model created for network
247 to these two new food webs by simulating the same scenarios. The results of
the simulations for networks 225 and 230 are reported in the appendix. It is quite
evident that the results obtained are very similar for networks 225 and 230, while
these deviate quite from the results obtained for network 247.
The alteration index has proved to be a good parameter for the comparison of the
different simulation scenarios within the same network and its values can allows
to highlight the differences in the response of the three systems to the applied
perturbations. In Figure 4.5 the alteration indices for the different scenarios in the
three networks are shown.
We immediately notice that both networks 225 and 230 show a greater alteration

in the simulations in which the bacterivores species are removed. It can be deduced
that these webs are extremely sensitive to the removal of the bacterivores species
rather than to the removal of the species in the second trophic level (omnivores
and carnivores), a completely different response from that shown by network 247.
The explanation of this behavior would seem to be the strong presence, within
the two ecosystems, of the bacterivorous Rhabditidae (node 34 of network 225
and node 42 of network 230), with abundances of 105.74 and 105.61 respectively in
networks 225 and 230, not present in network 247. Just think that the number of
individuals of this species alone is almost half of all the living organisms sampled
in network 225, and a third of all those sampled in network 230. The removal
of such an abundant species is sufficient to create a great alteration within these
ecosystems, especially if combined with the removal of other species in the first
trophic level.
Considering the values assumed by the alteration index in the same network, we
observe that in networks 225 and 230 there are lower values in the scenarios that
concern the removal of species in the second trophic level. On the contrary, in
network 247 the scenarios concerning the removal of carnivores and, specially, om-
nivores are characterized by a much higher alteration than in the other scenarios.
A possible explanation could be that within network 247 there is a greater number
of omnivorous species with high betweenness and closeness centrality (these are
the omnivores with ri > 0, see next paragraph) compared to that one present
in the other two networks. As we will see, the species that have high values of
these two quantities are those which, if disturbed, cause greater disturbance and
therefore alteration within the system.
Finally, also in these networks, the phenomenon for which the alteration due to
the removal of two groups of species together is greater than the sum of the al-
terations due to the individual removals of the two groups, is observed, with the
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Figure 4.23: Alteration Index for the simulation scenarios performed for the three
networks.
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only exception of the scenarios involving the removal of the species in the second
trophic level where these two quantities assume almost the same values.

4.3.2 Topology of the three food webs

The three sites studied differ in the type of management and are subject to differ-
ent anthropic disturbances, as can be deduced from the concentration of certain
elements present in the soil. Therefore I found very interesting to analyze the
topology of the three networks in order to observe whether these differences we
are aware of are reflected in the structure of the three ecosystems. As already
mentioned, the structure of the network that underlies a complex system deter-
mines many of its features and emerging behaviors. The topological study of the
three networks could allow us to make considerations on some properties such as
efficiency in the exchange of information, degree of competition of the species and
robustness of the ecosystem.
To check if the three food networks have a small world structure I calculate their
average path length and their average clustering coefficient and I compare these
results with the average values of the same quantities obtained from 10 random
networks with the same number of nodes and the same average number of links.
Since the considered direct networks are disconnected, for the calculation of the
average path length it was preferred to take into account the corresponding indi-
rect graph. Results are shown in Figure 4.24. The average clustering coefficient
of real networks is much greater than that obtained for random networks. Instead
the average path length assumes a value similar, if not equal, to that of the random
counterpart. These results are in line with those obtained by Montoya and Solé
(2002) for other types of food webs. The low values of the average path length and
the great difference between the average clustering coefficient of real and random
networks can be considered a confirmation of the small world nature of the three
networks analyzed.
By comparing the values of the average clustering coefficient of the three real
networks, we observe that networks 225 and 230, both organic farms, have very
similar and, evidently, lower clustering coefficients than network 247, an uncul-
tivated land. A higher clustering coefficient could indicate a greater robustness
of the system, since the presence of clusters within the network, and therefore of
“triangles”, guarantees the presence of alternative routes in the event of disap-
pearance of nodes.
For all three networks the value of the connectance, given by C = L/S(S − 1) (as
the phenomenon of cannibalism was not taken into consideration), was calculated.
The connectance values are 0.27, 0.21 and 0.24 respectively for networks 247, 225
and 230. According to Dunne et al. (2002), low connectance values may reveal a
lower robustness of the network. Thus, also in this respect, network 247 seems to
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Figure 4.24: Average Clustering Coefficient and Average Path Length. The dark
grey columns represented the real networks and the light grey columns the average
results for 10 comparable random networks.

109



be the most robust.
The study of the degree distribution of the links did not show particular trends
in any of the three networks. So it cannot be said that they have a scale-free
structure. On the other hand, all three networks have a disassortative nature, as
expected for food networks (Newman (2002, 2003); Stouffer et al.(2005)): nodes
with many links are mostly connected with nodes with a low number of links. In
this calculation, the total number of links, given by the sum of the incoming and
outgoing links, was considered for each node. The results are shown in Figure 4.25
in which is plotted the node degree vs. the average degree of neighbor nodes for
the three networks. The assortativity values are deduced from the slope of the
lines that fitted the data in the log-log plot. All three networks have similar and
negative assortativity values: −0.387± 0.011, −0.388± 0.057 and −0.390± 0.064
for networks 247, 225 and 230 respectively. According to some research (Murakami
et al. (2017), D’Agostino et al. (2012), Tanizawa (2012) and Thedchanamoorthy
et al. (2014)), this property confers them a greater efficiency in the transport of
information and could explain their weakness towards targeted attacks to the most
interconnected nodes, more than their degree distribution.

4.3.3 Generalist species, vulnerable species and competition in the
three ecosystems

In the case of trophic networks, high in-degree value is characteristic of species
that show generalist trophic habits. As can be expected, in all three networks the
species that have highest in-degree values are omnivores and, secondly, carnivores.
On the contrary, species that have high out-degree value are vulnerable species,
i.e. species undergoing high predatory pressure (Rocchi et al. 2017). In the
three considered networks, these species are herbivores, fungivores, bacterivores
and those omnivores that have ri > 0 (see Figure 4.26).
Given the structure of a network, some nodes can be topologically more important
than others. Mainly there are two quantities that allow you to calculate the
centrality and therefore the importance of each node within the network. The
first of these is the betweenness centrality: to calculate this value for a node,
you take every other possible pairs of nodes and, for each pair, you calculate the
proportion of shortest paths between members of the pair that passes through the
considered node. The betweenness centrality of a node is the sum of these. It
measures how central a given node is in terms of being included in many shortest
paths in the network, thus describing how crucial a species is in mediating the
diffusion of indirect effects throughout the whole food web (Rocchi et al., 2017).
The second measure is the closeness centrality of a node, defined as the inverse of
the average of its distances to all other nodes. It measures how close a node is to
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Figure 4.25: Node degree vs the average degree of neighbor nodes in a log-log
plot for the three networks. The slope of the line that fits the data gives the
assortativity values. The three networks have similar and negative assortativity
values.
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the others and quantifies how rapidly an effect that generates from that species
can spread in the food web (Rocchi et al., 2017).
If a ranking of the nodes is carried out on the basis of their values of abundance, in-
degree, out-degree, betweenness and closeness centrality, interesting observations
can be made. The rankings for the three webs are shown in Figure 4.26. It should
be noted that, in the considered networks, the species with the highest betweenness
centrality correspond to omnivores with ri > 0, stressing that these species are the
most crucial for the diffusion of indirect effects throughout the whole web. We
also realize that the species with high out-degree are the same ones that have
high closeness centrality values. These are species topologically close to the others
for which a disturbance originating from them spreads quickly throughout the
system (note that omnivores with ri > 0 are also included in this case). Finally, it
can be seen that vulnerable species are approximatively more abundant than the
other species. Undoubtedly what is evident is that the dominant species (the most
abundand, i.e. nodes 15, 2 and 33 for network 247, nodes 34, 36 and 30 for network
225 and nodes 42, 19 and 38 for network 230) are always part of the groups with the
highest value of closeness centrality. This explains why the scenarios in which the
most abundant species are removed upset the architecture of the network and lead
to numerous secondary extinctions, even if few species and not entire functional
guilds are removed. Indeed, these species, besides being dominant, have a very
high closeness centrality value, which makes them fundamental for the integrity of
the ecosystem.
The number of species that have betweenness centrality equal to zero (let’s call this
value B0), may suggest the degree of competition between species in the ecosystem
(Rocchi et al., 2017). In Grassi et al. (2009) it is proved that the betweenness
centrality of a node is equal to zero if it belongs to only one complete subgraph
of a graph (complete means that all nodes are connected to each other). If B0

increase, then more species compete with only one particular group of species.
In this case we have that species with betweenness centrality equal to zero are
herbivores, fungivores and bacterivores, i.e all the species in the first trophic level.
These species compete with species in the second trophic level because they are
preyed upon by them. So an increase in B0 suggests a greater competition between
species in the first and species in the second trophic level. However at the same
time, the species belonging to the second trophic level compete with each other to
get hold of the prey that share (mostly in the first trophic level). So an increase
in B0, that is, an increase in the number of species in the first trophic level, also
causes a decrease in competition between the species in the second trophic level.
Normalizing with respect to the total number of nodes in the network, the fraction
of nodes with betweenness centrality equal to zero is 0.85 for network 247, 0.74
for network 225 and 0.72 for network 230. This would indicate that in ecosystems
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Figure 4.26: Ranking of the nodes on the basis of their values of abundance, in-
degree, out-degree, betweenness and closeness centrality for the three networks.
The gradations of color suggest groups of values for the five quantities.
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225 and 230 species in the second trophic level are subject to more competition
than those in ecosystem 247.

4.3.4 Robustness of the three food webs

The best way to verify what is suggested by the values of the clustering coefficient
and of the connectance regarding the robustness of the three networks, is to calcu-
late the value of the robustness of the networks according to the definition provided
by Dunne et al. (2002): the robustness value is given by the fraction of nodes that
must be removed to induce a total loss of at least 50 % of the species (either by
primary extinction and by secondary extinction). The removal or failure of one
node is not independent of the others because the activity of each node depends
on the activity of its neighboring nodes. As seen in the previous study, cascade
failures could be observed in which the failure of a node induces the failure of the
nodes connected to it. For this reason it is important to perform the calculations
of the robustness of the network, not only from a structural point of view, but
simulating the dynamics resulting from the removal of the nodes, as is done in the
present study. Using the model previously described, random and targeted attacks
were simulated. Random attacks consist of random removal of species from the
network, while targeted attacks are aimed at removing species that are considered
most important for the integrity of the network.
As specified by Dunne (2006), in the specific case of food webs, the removal of the
most interconnected species is not always the best strategy to carry out targeted
attacks affecting the integrity of the ecosystem. In particular, Allesina and Bodini
(2004) have shown that the most important species for the integrity of the system
are the dominant species, that is those that pass energy to other species along the
food chain. It is precisely the removal of these species that causes a greater number
of secondary extinctions. The dominant species, although probably having a high
out-degree value, are not necessarily the ones most interconnected if ingoing links
are also considered. For this reason, in this study, the criterion for the removal of
species in targeted attacks is the elimination of those nodes with a high closeness
centrality value (for the same values of the closeness centrality it has been chosen
to remove the species that is most abundant).
I proceeded in the following way: starting from the undisturbed system, the close-
ness centrality is calculated for all nodes and the one with the highest value is
selected and removed. The dynamics of the system and the possible occurrence of
secondary extinctions are therefore observed. Once the system has reached a con-
dition of stability, the closeness centrality values are recalculated for all nodes and
once again the one with the highest value is selected and removed. This process
ends when half of the species have disappeared from the ecosystem (both because
of removals and because of secondary extinctions). The robustness values for the
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three networks in the case of targeted attacks and in the case of random attacks
(averaged over 10 different simulations) together with the alteration index values
are shown in Figure 4.27.

From the results obtained, some observations can be made. The first concerns
the comparison between networks. Network 247 proves to be the most robust both
in the case of targeted attacks and in the case of random attacks, confirming what
already suggested by the values of the clustering coefficient and of the connectance;
network 225 follows and finally network 230. The second observation concerns a
comparison between types of attacks: all three networks are more robust against
random attacks rather than targeted attacks. The last consideration concerns the
relation between the alteration index and the robustness of the system. The al-
teration suffered by the ecosystem depends on the robustness of the network. The
alteration index, once again, proves to be a good parameter for measuring the dis-
gregation of the system. As expected, in the tests carried out, when robustness is
greater, the alteration index is smaller, with the only exception of the case in wich
network 247 is subject to targeted attack. Below I try to explain this apparent
contradiction.
Figure 4.28 shows the trend of the alteration index, the connectance C, the com-
plexity c = CS and species richness S, as the nodes with the highest closeness
centrality are removed for the calculation of the robustness against targeted at-
tacks. We note that connectance and complexity have very similar trends: these
decrease much more gradually and ultimately have higher values for network 247
than for the other two networks. The most robust network (web 247) is therefore
the one that has higher values of connectance and complexity both at the begin-
ning and at the end of the simulation. From the trend of species richness we can
see the moments in which secondary extinctions occurred. Note that the major
secondary extinctions occurred earlier in the 247 network than in the other two
networks. This explains the evident increase in the alteration index in network
247 which is larger than that recorded for the other two networks: at the time of
secondary extinctions, network 247 has a greater number of nodes than webs 225
and 230 and, as a consequence, the number of species that undergo alteration is
greater (remember that the alteration index is additive with respect to the abun-
dance variations suffered by the species present in the system). This also explains
why the alteration index of networks 225 and 230 undergoes a greater increase at
the beginning, when only a small fraction of secondary extinctions occurs, and less
when secondary extinctions are more: at the time of the major secondary extinc-
tions, there are fewer species and therefore fewer species undergo an alteration.
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Figure 4.27: Above are shown the values of the alteration index as a function of
the robustness that the three networks have shown if subjected to targeted and
random attacks. The tables below show the robustness and the alteration index
for the three networks, in the case of targeted attacks and random attacks. The
values for random attacks are the average values obtained on 10 tests.
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Figure 4.28: Trend of the alteration index, the connectance, the complexity and
species richness, as the nodes with the highest closeness centrality are removed,
for the three food webs.
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4.3.5 Conclusive insights

In this study three soil ecosystems, that differ in the type of management and in
the concentration of some elements, have been compared in the attempt to under-
stand if and how anthropogenic action affects soil ecosystems.
With regard to the topology, it has been found that the structure of all three net-
works is small world. Furthermore, all three networks have a disassortative nature
as expected for food webs (Newman (2002, 2003), Stouffer et al. (2005)). Dif-
ferences were found in the values of the clustering coefficient, of the connectance
and of the complexity. These values are greater for network 247 and this sug-
gested a greater robustness of this network than the other two (Dunne et al.
(2002)). The calculation of the robustness, through a dynamic model (Conti et al.
(2020)), confirmed this hypothesis. It therefore appears that the ecosystem related
to the fallowed pastures with low pressure management is more robust than the
two ecosystems releted to organic farms subject to middle intensity management.
There are also differences between the two sites dedicated to organic agriculture,
that could be connected to the different concentration of elements present in the
soil and therefore to the anthropic action. The value of the clustering coefficient
and the calculation of robustness suggest that network 225 is more robust than
network 230, the site with high concentrations of heavy metals in the soil. This
result is in contrast with what Dunne et al. (2002) affirmed, about the positive
relationship between connectance and robusteness, but remaining available net-
works may constitute a larger sample on which to test this correspondence. It
is quite intuitive to say that the nutrients of the soil and its composition affect
the resources available to soil organisms. This affects the type and abundance
of organisms present in the soil and therefore the structure of the network from
the lowest to the highest trophic levels of the food web (Wall et al. (2015), Clay
(2004), Powell (2007)). Despite this, in order to fully ascertain the correlations
existing between the robustness of the trophic network and the type of manage-
ment to which the site is subjected as well as the type of soil composition, further
studies would be required in order to shed light on the real impact that this type
of management could have on the robustness of soil ecosystems (133 trophic net-
works, among which are also present conventional, intensive and super-intensive
farms, are still available on which to repeat the same analysis conducted on these
three networks). If the evidences suggested by this study were to be confirmed,
the robustness shown by the networks could be useful for evaluating, from an eco-
logical point of view, the sustainability of the agricultural practices to which the
ecosystem is subject.
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Conclusion

In my research I dealt with the dilemma between cooperation and competition. As
we have seen these two behavioral tendencies can manifest themselves in various
subjects and at different levels: cells in our body, individuals in a social group,
companies in the market, nations in the world, animals in an ecosystem and so
on. One can almost say that every aspect of our life is permeated by this eternal
conflict between cooperation and competition. The topic is therefore of crucial
importance: understanding the basic concepts of cooperation and competition is
fundamental to dissecting the dynamics of all these phenomena. In my own little
way, I focused on economic and ecological applications.

In the first study I address the issue of tax evasion, an age-old phenomenon that
clearly is related to cooperation and competition. I presented a simple model of
tax evasion, which augments a prisoner’s dilemma framework with an agent-based
design, in order to characterize some elements of collective dynamics when altruism
and egoism come to play with regards to the number of taxpayer of a community.
Results of simulations show that the model replicates consolidated results of basilar
game theory. The average social capital of taxpayers is always lower than the
average social capital of evaders: this is the evidence of Nash-dominance of the
non-cooperative behavior, that is, non-cooperation is the rational choice from an
individual point of view. Nevertheless, the average capital of the collectivity is a
positive function of the number of taxpayers. Community with a small fraction
of cooperator are disadvantaged. A selfish citizen who uses public goods and
services without properly contributing to the related costs causes a severe damage
to the socio-economical environment depriving governments of their fiscal resources
and reducing well-being of societies. The capital of the collectivity increases only
thanks to the contribution of altruistic players. Thus, from the collective point
of view, groups with more cooperators are favored compared to groups with few
cooperators.
In the second part of the study, the model was enriched by the introduction of the
possibility for agents to change their behavior according to imitation and economic
satisfaction. New interesting results have been obtained, showing the presence of a
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threshold, in the initial percentage of taxpayers, able to ensure an average economic
advantage to altruists. As in real systems, the percentage of citizens paying taxes
is crucial in sustaining a sufficient quality/quantity of the public good. It has
been found that reasonable policy intuitions are devoted to induce a feeling of
satisfaction in taxpayers, in order to reduce the temptation to evade, even when
the personal economic situation is bad. An educational policy spreading a tax
morale is expected to be more effective than a tax amnesty, because it operates in
such a way that individuals feel themselves rewarded by institutions. Education
can also impact on the number of taxpayers, which has been described as a key
factor in determining the average social capital. There is also evidence that the
amount of the fine should be far greater than the tax pressure, in order to induce
tax payment as a strong economic convenience while an increase in the probability
of an audit drastically reduces the value of tax evasion.

In the second study I investigate ecosystems of soil invertebrates through the
knowledge of their characteristic trophic web. In this framework, competitiveness
is not only found at the level of the trophic web (in the search for resources and in
the fight for survival between prey and predator), but, at a different level, comes
into play competitiveness between soil organisms and human action that tends to
contaminate natural habitats. Human cooperation in this case would consist of
seeking eco-sustainable solutions rather than intensive farming methods.
In the first part of the study, I create a model whose dynamics is dictated by
an extension of the Lotka-Volterra equations. In particular, I combine the Lotka-
Volterra model with the logistic equation in order to take into account intra-specific
and inter-specific competition between species in the ecosystem. It has been shown
how the removal of some species from the ecosystem, which could reproduce the
use of herbicides and pesticides in agricultural activities, can cause secondary ex-
tinctions and severe alterations in the architecture of the ecosystem.
In the second part of the study, three soil ecosystems, that differ in the extent
of anthropic action to which they are subject, were compared. The study of the
structure of the three networks, with the estimate of the clustering coefficient and
of the connectance, and the dynamical evaluation of the robustness, by simulat-
ing attacks on the ecosystems, clearly show that the ecosystem less subject to
anthropic disturbances has a structure that makes it more resistent against per-
turbations. My study seems to suggest that the robustness of the trophic network
is affected by the type of management to which the ecosystem is subject. If this
evidence were to be confirmed, in further studies carried out on other networks,
the robustness shown by food webs could be considered as an index of sustainabil-
ity of the type of agriculture to which the ecosystem is subject.
The concept of environmental sustainability has a global meaning, which takes
into account social and economic as well as environmental dimensions. It is the
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condition of a development capable of ensuring the satisfaction of the needs of the
present generation without compromising the possibility of future generations to
make their own. A balanced ecosystem is implicitly eco-sustainable. In the case
of agriculture, eco-sustainability concerns the use of methods that guarantee the
satisfaction of the needs of a growing world population and, at the same time,
guarantee a non-destructive exploitation of the soil, so that this availability is
guaranteed also in the future. Soil ecosystem is a complex system whose integrity
depends on numerous factors including the stability of its trophic web. Since the
stability of an ecosystem is closely linked to its robustness, the method proposed
here could be useful for evaluating, from an ecological point of view, the sustain-
ability of certain agricultural practices. This would make it possible to identify
agricultural methods that are not deleterious for the robustness of the trophic net-
work and, among these, through economic evaluations, choose those that allow the
needs of the whole population to be met. Note that this address, as for agriculture,
can apply to any type of anthropic disturbance, from cattle breeding to industrial
activities. Going to see the impact that these activities have on the robustness of
ecosystems, an ecological assessment of the sustainability of these practices can be
made.
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Impacts of biological invasions: what’s what and the way forward. Trends in Ecol-
ogy and Evolution, volume 28, issue 1, p58-66.

Slemrod, J. (2007). Cheating ourselves: the economics of tax evasion. Journal of
Economic Perspectives, 21 (1), 25–48.

Slemrod J. and Yitzhaki S. (2002). Tax avoidance, evasion and administration.
Handbook of Public Economics, North-Holland, Amsterdam, pp. 1425–1470.
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Appendix

Networks 225: results for different perturbative scenarios

• Simulation without interaction between species. Extinction of all
species with ri < 0, i.e. all carnivores and omnivores except species 50 and
51.

• Simulation with interaction between species. All species reach their
carrying capacity and the ecosystem is in the steady state.

• Removal of all the herbivorous species. No significant changes are
observed (AI = 8.59× 10−8).

• Removal of all the fungivorous species. No significant changes are
observed (AI = 2.38× 10−4).

• Removal of all the bacterivorous species. Extinction of all species with
ri < 0 (AI = 18.21).

• Removal of all the herbivorous and fungivorous species. No signifi-
cant changes are observed (AI = 8.59× 10−8).

• Removal of all the herbivorous and bacterivorous species. Extinction
of all species with ri < 0 (AI = 15.17).

• Removal of all the fungivorous and bacterivorous species. Extinction
of some species with ri < 0. Species 46, 48, 52, 53 and 54 recover after a
sharp decrease (AI = 104.38).

• Removal of the most abundant species (bacterivorous 34) Extinction
of carnivores 41, 42 and 43 (AI = 20.04).

• Removal of the two most abundant species (bacterivores 34 and
36). Extinction of all species with ri < 0 (AI = 17.88).
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• Removal of all the carnivorous species. There is a slight increase in the
abundance of species in the first trophic level (AI = 3.72).

• Removal of all the omnivorous species. There is a slight increase in the
abundance of species in the first trophic level (AI = 1.11).

• Removal of all the omnivorous and carnivorous species. There is a
slight increase in the abundance of species in the first trophic level (AI =
4.62).

Networks 230: results for different perturbative scenarios

• Simulation without interaction between species. Extinction of all
species with ri < 0, i.e. all carnivores and omnivores except species 58 and
59.

• Simulation with interaction between species. All species reach their
carrying capacity and the ecosystem is in the steady state.

• Removal of all the herbivorous species. No significant changes are
observed (AI = 1.22× 10−6).

• Removal of all the fungivorous species. No significant changes are
observed (AI = 2.08× 10−4).

• Removal of all the bacterivorous species. Extinction of all species with
ri < 0 (AI = 20.72).

• Removal of all the herbivorous and fungivorous species. No signifi-
cant changes are observed (AI = 1.22× 10−6).

• Removal of all the herbivorous and bacterivorous species. Extinction
of all species with ri < 0 (AI = 18.86).

• Removal of all the fungivorous and bacterivorous species. Extinction
of species 65, 47 and 48. The other species with ri < 0 recover after a sharp
decrease (AI = 71.03).

• Removal of the most abundant species (bacterivorous 42) Extinction
of all species with ri < 0 except species 65 (AI = 19.83).

• Removal of all the carnivorous species. There is a slight increase in the
abundance of species in the first trophic level (AI = 3.59).
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• Removal of all the omnivorous species. There is a slight increase in the
abundance of species in the first trophic level (AI = 2.73).

• Removal of all the omnivorous and carnivorous species. There is a
slight increase in the abundance of species in the first trophic level (AI =
6.22).

141



Figure 4.29: Network 225. Graphic representation of the simulation results
without interaction (β = 0). Above the temporal evolution of species abundances
and below the representation of the trophic web at the end of the simulation.
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Figure 4.30: Network 225. Graphic representation of the simulation results with
interaction (β = 1). Above the temporal evolution of species abundances and
below the representation of the trophic web at the end of the simulation.
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Figure 4.31: Network 225. Graphic representation of the simulation results
in the case all herbivores are removed from the ecosystem. Above the temporal
evolutions of species abundances and below the representations of the trophic web
at the end of the simulation.
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Figure 4.32: Network 225. Graphic representation of the simulation results
in the case all fungivores are removed from the ecosystem. Above the temporal
evolutions of species abundances and below the representations of the trophic web
at the end of the simulation.
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Figure 4.33: Network 225. Graphic representation of the simulation results in
the case all bacterivores are removed from the ecosystem. Above the temporal
evolutions of species abundances and below the representations of the trophic web
at the end of the simulation.
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Figure 4.34: Network 225. Graphic representations of the simulation results in
the case all herbivores and fungivores are removed from the ecosystem. Above the
temporal evolutions of species abundances and below the representations of the
trophic web at the end of the simulation.
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Figure 4.35: Network 225. Graphic representations of the simulation results in
the case all herbivores and bacterivores are removed from the ecosystem. Above
the temporal evolutions of species abundances and below the representations of
the trophic web at the end of the simulation.
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Figure 4.36: Network 225. Graphic representations of the simulation results in
the case all fungivores and bacterivores are removed from the ecosystem. Above
the temporal evolutions of species abundances and below the representations of
the trophic web at the end of the simulation.
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Figure 4.37: Network 225. Graphic representation of the simulation results in
the case only bacterivores 34 is removed from the ecosystem (see the text for the
explanation of these choices). Above the temporal evolutions of species abundances
and below the representations of the trophic web at the end of the simulation.
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Figure 4.38: Network 225. Graphic representation of the simulation results in
the case only bacterivores 34 and 36 are removed from the ecosystem (see the text
for the explanation of these choices). Above the temporal evolutions of species
abundances and below the representations of the trophic web at the end of the
simulation.
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Figure 4.39: Network 225. Graphic representation of the simulation results
in the case all carnivores are removed from the ecosystem. Above the temporal
evolutions of species abundances and below the representations of the trophic web
at the end of the simulation.
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Figure 4.40: Network 225. Graphic representation of the simulation results
in the case all omnivores are removed from the ecosystem. Above the temporal
evolutions of species abundances and below the representations of the trophic web
at the end of the simulation.
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Figure 4.41: Network 225. Graphic representation of the simulation results in
the case all omnivores and carnivores are removed from the ecosystem. Above the
temporal evolutions of species abundances and below the representations of the
trophic web at the end of the simulation.

154



Figure 4.42: Network 230. Graphic representation of the simulation results
without interaction (β = 0). Above the temporal evolution of species abundances
and below the representation of the trophic web at the end of the simulation.
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Figure 4.43: Network 230. Graphic representation of the simulation results with
interaction (β = 1). Above the temporal evolution of species abundances and
below the representation of the trophic web at the end of the simulation.
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Figure 4.44: Network 230. Graphic representation of the simulation results
in the case all herbivores are removed from the ecosystem. Above the temporal
evolutions of species abundances and below the representations of the trophic web
at the end of the simulation.
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Figure 4.45: Network 230. Graphic representation of the simulation results
in the case all fungivores are removed from the ecosystem. Above the temporal
evolutions of species abundances and below the representations of the trophic web
at the end of the simulation.
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Figure 4.46: Network 230. Graphic representation of the simulation results in
the case all bacterivores are removed from the ecosystem. Above the temporal
evolutions of species abundances and below the representations of the trophic web
at the end of the simulation.
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Figure 4.47: Network 230. Graphic representations of the simulation results in
the case all herbivores and fungivores are removed from the ecosystem. Above the
temporal evolutions of species abundances and below the representations of the
trophic web at the end of the simulation.

160



Figure 4.48: Network 230. Graphic representations of the simulation results in
the case all herbivores and bacterivores are removed from the ecosystem. Above
the temporal evolutions of species abundances and below the representations of
the trophic web at the end of the simulation.
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Figure 4.49: Network 230. Graphic representations of the simulation results in
the case all fungivores and bacterivores are removed from the ecosystem. Above
the temporal evolutions of species abundances and below the representations of
the trophic web at the end of the simulation.
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Figure 4.50: Network 230. Graphic representation of the simulation results in
the case only bacterivores 34 is removed from the ecosystem (see the text for the
explanation of these choices). Above the temporal evolutions of species abundances
and below the representations of the trophic web at the end of the simulation.
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Figure 4.51: Network 230. Graphic representation of the simulation results
in the case all carnivores are removed from the ecosystem. Above the temporal
evolutions of species abundances and below the representations of the trophic web
at the end of the simulation.

164



Figure 4.52: Network 230. Graphic representation of the simulation results
in the case all omnivores are removed from the ecosystem. Above the temporal
evolutions of species abundances and below the representations of the trophic web
at the end of the simulation.
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Figure 4.53: Network 230. Graphic representation of the simulation results in
the case all omnivores and carnivores are removed from the ecosystem. Above the
temporal evolutions of species abundances and below the representations of the
trophic web at the end of the simulation.
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