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Simple Summary: The human activin receptor type I (ACVR1) is a complex protein that regulates
production of hepcidin on hepatocytes and red blood cells. Hepcidin is a small peptide that regulates
iron metabolism and plasma iron levels. High hepcidin levels are associated with anemia, which is a
hallmark of myelofibrosis. Myelofibrosis is a cancer of the bone marrow, characterized by fibrosis and
anemia, splenomegaly, and systemic symptoms. Anemia and red blood cell transfusions negatively
impact prognosis in myelofibrosis. Ruxolitinib and fedratinib (JAK inhibitors) may exacerbate anemia
in myelofibrosis patients. Momelotinib and pacritinib are potent ACVR1 inhibitors that are preferable
to treat cytopenic patients with myelofibrosis. In September 2023, momelotinib was approved as
a treatment for anemic patients with myelofibrosis based on the phase 3 clinical trials SIMPLIFY-1
and MOMENTUM, which demonstrated the marked anemia benefits of momelotinib. Other ACVR1
inhibitors (e.g., zilurgisertib) are evaluated in early phase clinical trials as treatments for anemia in
MF patients.

Abstract: Activin receptor type I (ACVR1) is a transmembrane kinase receptor belonging to bone
morphogenic protein receptors (BMPs). ACVR1 plays an important role in hematopoiesis and anemia
via the BMP6/ACVR1/SMAD pathway, which regulates expression of hepcidin, the master regulator
of iron homeostasis. Elevated hepcidin levels are inversely associated with plasma iron levels,
and chronic hepcidin expression leads to iron-restricted anemia. Anemia is one of the hallmarks
of myelofibrosis (MF), a bone marrow (BM) malignancy characterized by BM scarring resulting
in impaired hematopoiesis, splenomegaly, and systemic symptoms. Anemia and red blood cell
transfusions negatively impact MF prognosis. Among the approved JAK inhibitors (ruxolitinib,
fedratinib, momelotinib, and pacritinib) for MF, momelotinib and pacritinib are preferably used in
cytopenic patients; both agents are potent ACVR1 inhibitors that suppress hepcidin expression via
the BMP6/ACVR1/SMAD pathway and restore iron homeostasis/erythropoiesis. In September
2023, momelotinib was approved as a treatment for patients with MF and anemia. Zilurgisertib
(ACVR1 inhibitor) and DISC-0974 (anti-hemojuvelin monoclonal antibody) are evaluated in early
phase clinical trials in patients with MF and anemia. Luspatercept (ACVR2B ligand trap) is assessed
in transfusion-dependent MF patients in a registrational phase 3 trial. Approved ACVR1 inhibitors
and novel agents in development are poised to improve the outcomes of anemic MF patients.

Keywords: ACVR1; ACVR1 inhibitor; anemia; hepcidin; JAK inhibitor; myelofibrosis; momelotinib;
myeloproliferative neoplasms; pacritinib; ruxolitinib
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1. ACVR1 Structure and Biological Significance

The human activin receptor type I (ACVR1), also known as activin receptor-like kinase-
2 (ALK2), is a member of the bone morphogenic protein (BMP) receptors that belong to
the receptors of the transforming growth factor-β (TGF-β) superfamily, which includes
activins, BMPs, and growth differentiation factors. The TGF-β superfamily is ubiquitously
expressed in human tissues, and TGF-β signaling controls a wide range of biological
processes, including hematopoietic stem cells [1]. Several studies have demonstrated the
biological significance of ACVR1 in the early stages of development and repair of the
skeletal system throughout one’s lifetime [2,3]. BMPs induce osteogenic signaling and play
a critical role in developing and repairing bone and cartilage.

ACVR1 is a transmembrane kinase receptor that consists of an extracellular N-terminal
ligand-binding domain, a transmembrane (TM) domain, an intracellular glycine–serine-rich
(GS) domain, and a protein kinase domain [4,5]. ACVR1 and the type II receptors BMPR2,
ACVR2A, and ACVR2B form hetero-tetrameric complexes comprising two type I and two
type II receptors. The type II receptors transphosphorylate the GS domain of the type I
receptors upon ligand binding, and activate the kinase domain, which phosphorylates the
small-mothers-against decapentaplegic (SMAD) 1/5/8 proteins (Figure 1) [1,6].
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Figure 1. The BMP/ACVR1/SMAD pathway. Abbreviations: ACVR1: activin receptor type I; ALK2: 
activin receptor-like kinase-2; BMPs: bone morphogenic proteins; PI3K: phosphatidyl-inositol 3-
kinase; SMAD: small-mothers-against decapentaplegic. 

SMAD intracellular signaling proteins comprise two highly conserved domains: the 
Mad homolog domain 1 (MH1), which binds DNA, and the Mad homolog domain 2 
(MH2), which is crucial in protein–protein interactions; MH1 and MH2 are located at the 
N-terminus and C-terminus, respectively [7]. Once phosphorylated, SMAD proteins form 
a complex with the common mediator SMAD4 and migrate to the nucleus, where they 
bind to different SMAD-binding elements, DNA transcription factors, transcriptional co-
activators, or co-inhibitors, ultimately modulating the expression of a plethora of target 
genes (Figure 1) [8]. SMAD activity is related to chromatin modifiers because SMAD-
containing complexes recruit the ATPase subunit of SWI-SNF chromatin remodelers, 
along with BRG1 and the histone acetyltransferases p300 and CREB binding protein [9,10]. 
MH1 and MH2 are separated by a proline-rich region, which is phosphorylated by 
mitogen-activated protein kinases, glycogen synthase kinase-3b, and cyclin-dependent 
kinases [11]. In the TGF-β family signalling, SMAD-dependent and non-SMAD signaling 
pathways have been characterized (Figure 1) [12]. 

2. ACVR1 in Human Diseases 

Figure 1. The BMP/ACVR1/SMAD pathway. Abbreviations: ACVR1: activin receptor type I;
ALK2: activin receptor-like kinase-2; BMPs: bone morphogenic proteins; PI3K: phosphatidyl-inositol
3-kinase; SMAD: small-mothers-against decapentaplegic.
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SMAD intracellular signaling proteins comprise two highly conserved domains: the
Mad homolog domain 1 (MH1), which binds DNA, and the Mad homolog domain 2
(MH2), which is crucial in protein–protein interactions; MH1 and MH2 are located at
the N-terminus and C-terminus, respectively [7]. Once phosphorylated, SMAD proteins
form a complex with the common mediator SMAD4 and migrate to the nucleus, where
they bind to different SMAD-binding elements, DNA transcription factors, transcriptional
co-activators, or co-inhibitors, ultimately modulating the expression of a plethora of target
genes (Figure 1) [8]. SMAD activity is related to chromatin modifiers because SMAD-
containing complexes recruit the ATPase subunit of SWI-SNF chromatin remodelers, along
with BRG1 and the histone acetyltransferases p300 and CREB binding protein [9,10]. MH1
and MH2 are separated by a proline-rich region, which is phosphorylated by mitogen-
activated protein kinases, glycogen synthase kinase-3b, and cyclin-dependent kinases [11].
In the TGF-β family signalling, SMAD-dependent and non-SMAD signaling pathways
have been characterized (Figure 1) [12].

2. ACVR1 in Human Diseases

The role of ACVR1 in human diseases was first described in fibrodysplasia ossificans
progressiva (FOP). FOP, often referred to as “stone man syndrome”, is a remarkably rare
(one patient in 2 million) and devastating genetic disorder that profoundly impacts one’s
life due to the progressive change of soft tissues, including muscles, ligaments, and tendons,
into bone over time, where any trauma or injury of the affected areas triggers a cascade
of events leading to heterotopic ossification (HO) [13,14]. FOP is caused by a mutation
in the ACVR1 gene and the subsequently altered BMP functions. The gain-of-function
mutation c.617G>A (Arg206His) in the ACVR1 gene was the first to be reported and is the
most common mutation in FOP patients (more than 95% of the cases). In FOP, the mutated
receptor ACVR1 is overactive, leading to an abnormal response of soft tissues to injuries
or inflammation through dysregulated BMP signaling. Recent findings demonstrated the
central role of activin A in activating ACVR1 and, thus, the development and progression
of HO. Barruet and colleagues demonstrated that the mutation ACVR1 R206H increased
human induced pluripotent stem cell-derived endothelial cells in FOP patients [15].

Furthermore, the occurrence of neurological symptoms in FOP suggests that ACVR1 is
involved in the development and regulation of the central nervous system. Diffuse intrinsic
pontine glioma, a lethal childhood brainstem tumor, is a cerebral neoplastic disease in which
25% of the patients harbor somatic mutations in ACVR1 [16]. BMP signaling is also involved
in heart and valve morphogenesis; deletion of ACVR1 leads to altered expression of genes
involved in cardiac differentiation, defective valve formation promoting cardiovascular
diseases, and congenital heart defects [17,18].

ACVR1 induces and regulates expression of Sonic Hedgehog (Shh) [19,20] besides
affecting hepcidin expression and hemoglobin (Hb) levels in myelofibrosis (MF). Shh is a
member of the hedgehog family that induces proliferation of primitive human hematopoi-
etic cells via BMP regulation; our group reported that the Shh axis drives bone marrow
fibrosis in primary MF [21]. Also, Bhardwaj and colleagues showed that Shh stimulation
enhanced primitive pluripotent human hematopoietic cell expansion and that a specific
inhibitor of BMP4 inhibited Shh-induced proliferation as hedgehog antibodies did [22].

Importantly, ACVR1 is associated with hepcidin expression, hematopoiesis and ane-
mia via the BMP/ACVR1/SMAD pathway in MF. This role of ACVR1 is also inferred by
the activity of rusfertide, a hepcidin-mimetic that sequesters iron in the reticuloendothelial
system, which restricts the availability of iron for erythropoiesis and thus, decreases Hb
levels, in patients who have polycythemia vera [23]. Pathogenic mutations in the TMPRSS6
gene encoding matriptase-2, a liver-specific transmembrane serine protease that plays a
central role in downregulating hepcidin, result in uninhibited hepcidin production in the
iron-refractory iron deficiency anemia syndrome [24].
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3. ACVR1 Inhibition

Inhibition of ACVR1/ALK2 is currently studied as a target of several agents in clinical
development. Several ACVR1/ALK2 inhibitors have demonstrated efficacy in vivo and
preclinical models and are investigated in clinical trials [25].

Importantly, in the past few years, several treatments for hepcidin dysregulation
and anemia, including ACVR1/ALK2 inhibitors, were developed [26,27]. ACVR1/ALK2
inhibitors have been of great interest in the treatment of MF (discussed below) after discov-
ering that momelotinib [28] and, more recently, pacritinib [29] inhibit ACVR1/ALK2 and
the hepcidin–ferroportin axis, resulting in notable anemia benefits.

4. Hepcidin

In mammals, iron homeostasis is strictly regulated by hepcidin, a small peptide
hormone of 25 amino acids. Hepcidin is predominantly expressed in hepatocytes, and its
expression is regulated by the BMP6/ACVR1/SMAD pathway (Figure 1) [28], but it is also
produced in other peripheral organs, likely regulating local iron levels [30]. Hepcidin freely
circulates in the plasma bound to α2-macroglobulin and is excreted by the kidneys where it
is degraded in the glomerulus and/or proximal tubules [31]. Hepcidin levels are inversely
associated with the concentration of plasma iron, which is carried by transferrin [32]. This
finding was supported by the studies of Riviera and colleagues who showed that injecting
synthetic hepcidin in mice rapidly decreased the serum iron concentration within 1 h,
in a dose-dependent manner. Furthermore, serum iron returned to the levels prior to
hepcidin injection in 96 h; the delay was attributed to the time required to resynthesize
ferroportin [33].

Ferroportin is the only known iron efflux transporter and has a central role in mediat-
ing iron export to the plasma and extracellular fluids. Ferroportin is expressed in duodenal
enterocytes (regulating dietary iron), macrophages in the spleen where erythrocytes are
recycled, and hepatocytes where iron is stored [34]. Most importantly, ferroportin is also ex-
pressed in erythroid precursors in the bone marrow [35]. Chronic hepcidin expression leads
to iron-restricted anemia (usually microcytic, hypochromic anemia). On the other hand,
hepcidin deficiency triggers the accumulation of iron in the liver and other parenchyma,
sparring the macrophage-rich spleen [36]. Hepcidin levels are also regulated by inflamma-
tory cytokines, such as IL-6; IL-6 regulates the expression of hepcidin via the JAK-STAT3
pathway, which is hyperactivated in myeloproliferative neoplasms (MPNs) [28,37] and
contributes to the increased hepcidin levels detected in primary MF patients [38].

5. Myelofibrosis and Anemia

Myelofibrosis is the most aggressive MPN, a group of bone marrow cancers that also
includes essential thrombocythemia and polycythemia vera. MF is primarily characterized
by the replacement of normal bone marrow with fibrotic scar tissue, resulting in impaired
production of blood cells [39]. These abnormal alterations in the bone marrow induce
the common clinical features in MF, namely, anemia, hepatosplenomegaly (primarily
splenomegaly), and systemic symptoms (fatigue, night sweats, bone pain, pruritus, and
weight loss, among others). In MF, the median life expectancy ranges between 2 and 6 years
from the initial diagnosis [40,41]. Several prognostic models that take into consideration
demographic, clinical, genetic, and molecular variables are available for prognostication in
primary and secondary MF [42]. MF is considered a chronic disease, primarily occurring
in the elderly. Management of MF, which is primarily achieved via treatment with JAK
inhibitors, aims to reduce spleen size, control symptoms, improve quality of life, and
prolong survival. Currently, four Janus Kinase (JAK) inhibitors (ruxolitinib, fedratinib,
pacritinib, and momelotinib) that will be discussed in the following sections have received
approval from the Federal Drug Administration (FDA) as treatments for MF in the USA.
Several new and promising targeted therapies are in advanced clinical development to treat
MF [43,44], such as inhibitors of bromodomain and extra-terminal proteins (e.g., pelabresib),
B-cell lymphoma 2 (BCL-2)/BCL extra-large proteins (e.g., navitoclax), and murine double
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minute 2 (e.g., navtemadlin) [45–49]; these inhibitors may expand the landscape of MF
treatments in the near future. Younger and fit patients with MF may be advised to undergo
hematopoietic stem cell transplant (the only potentially curative approach) if they harbor
high molecular risk mutations (TP53, ASXL1, EZH2, IDH1/2, SRSF2, and U2AF1Q157) or
have a high risk of leukemic transformation, due to other well-known risk factors (e.g.,
blast counts > 1–10%, advanced age, severe anemia, and adverse cytogenetics) [50].

Generally, anemia is one of the challenging manifestations in the management of MF,
related to multifactorial and not fully understood mechanisms, such as increase in bone
marrow fibrosis, higher hepcidin levels, ineffective erythropoiesis, and splenomegaly [51].
Ineffective erythropoiesis contributes to MF-related anemia. Treatment with ruxolitinib
can worsen anemia resulting in treatment interruption or dose reductions, which limit its
efficacy because spleen responses are dose-dependent. Red blood cell (RBC) transfusion
dependence and the administration of a lower ruxolitinib dose (<20 mg BID) at base-
line and at 3/6 months are considered negative prognostic risk factors regarding overall
survival [52,53]. Also, lower Hb levels (10 g/dL) are inversely associated with quality of
life and overall survival, and anemia is considered an adverse factor in the prognostic
models commonly used in primary MF; the necessity for RBC transfusions further impacts
the prognosis negatively [42].

Several strategies are applied to manage low Hb levels in MF patients, such as treat-
ment with lower doses of ruxolitinib or fedratinib; erythropoiesis-stimulating agents, such
as danazol; corticosteroids; and immunomodulatory agents; RBC transfusions; and more
recently, treatment with momelotinib (approved in September 2023). RBC transfusions
remain the standard approach to maintain Hb levels >7–8 g/dL. However, a heavy RBC
transfusion burden lowers the patients’ quality of life and increases medical costs [42];
furthermore, management of anemia with frequent RBC transfusions is associated with
several side effects, including iron overload. Usually, one unit of transfused blood contains
approximately 200–250 mg of iron. Transfusion-dependent (TD) patients who consecu-
tively receive more than 10–20 units of blood in a short time frame have a significant risk to
develop complications secondary to iron deposits, including liver diseases (e.g., cirrhosis
and hepatic failure), cardiac diseases (e.g., cardiomyopathies, arrhythmia, and congestive
heart failure), endocrinopathies (e.g., diabetes mellitus, hypogonadism, hypothyroidism,
and hypopituitarism), arthropathy, and alterations in skin pigmentation [54]. Transfusion-
dependent MF patients with these diseases [55] may have a higher risk of infections, as
it was reported in a real-life study wherein 45% of 106 patients experienced at least one
infection, with a markedly higher incidence in TD patients (HR = 2.13, p = 0.019) at a
median follow-up of 36 months [56].

Deferasirox, a molecule that chelates trivalent (ferric) iron with high affinity and forms
a stable complex that is eliminated by the kidneys, was evaluated in 45 MF TD patients
who had iron overload in the multicenter retrospective Italian study, IRON-M. The iron
chelation response (ICR) was defined as a stable ferritin level below 1000 µg/L or steady
reduction ≥ 50% from baseline. Treatment with deferasirox, at a median starting dose of
10 mg/kg/day (IQR 6.25–25.4), was feasible for all enrolled patients. ICR was achieved in
12 (26.7%) patients. Responders had median ferritin levels of 1390 µg/L vs. 2000 µg/L at
baseline (p = 0.0018), received a lower number of transfused RBC units prior to ICR (16 vs.
31, p = 0.032), and required transfusions for a shorter period of time prior to ICR compared
to non-responders (8.7 vs. 16.7 months) [57].

6. Concurrent ACVR1 and JAK Inhibition in Myelofibrosis

The turning point in the treatment of MF occurred with the advent of JAK inhibitors,
which was inaugurated with the FDA approval of ruxolitinib (JAK1/2 inhibitor) in 2011.
Ruxolitinib inhibits the hyperactivated JAK/STAT pathway and revolutionized manage-
ment of MF patients by significantly reducing the spleen size, controlling constitutional
symptoms, and prolonging survival; these benefits were demonstrated in the long-term
analyses of the pivotal trials COMFORT-I and COMFORT-II [58–60], and global real-life
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studies [61–64]. Despite being tolerated very well, ruxolitinib is immunosuppressive, can
precipitate opportunistic infections, alter cytokine responses [65–67], and may impair re-
sponse to normal immune stimulation (e.g., SARS-CoV-2 vaccinations) [68,69]. Anemia
is the most frequent reason leading to dose reduction/interruption of ruxolitinib in MF
patients [70]. The REALISE trial, assessing lower starting doses of ruxolitinib (10 mg
BID for the first 12 weeks uptitrated to 25 mg BID if possible) in anemic patients with
MF, evidenced that the median Hb levels and RBC transfusion requirements remained
stable throughout the study [71]. Furthermore, the RUXOREL-MF study demonstrated
the importance of dose optimization in maximizing the clinical benefit of ruxolitinib; a
dose < 20 mg BID at baseline and at 3 and 6 months was correlated with inferior overall
survival [52]. Importantly, analysis of the data from the large expanded-access JUMP study
(2233 MF patients, including patients with platelet counts < 100 × 109/L) demonstrated
that new or worsening anemia that developed after initiation of ruxolitinib treatment did
not affect the efficacy of the agent regarding spleen and symptom responses [72].

In the past few years, a few other JAK inhibitors were approved for treatment of
MF in addition to ruxolitinib [73]. Fedratinib, a JAK2 and FMS-type tyrosine kinase 3
(FLT3) inhibitor, was approved by the FDA (2019) and the European Medicines Agency
(2021). Fedratinib presents a possible option for MF patients who are refractory/intolerant
to ruxolitinib [74]. Importantly, there was a critical unmet need for MF patients with
cytopenias prior to the regulatory approval of pacritinib and momelotinib, the preferable
non-myelosuppressive JAK inhibitors to treat cytopenic patients with MF [75], because
both ruxolitinib [60,76] and fedratinib [77] may worsen cytopenias.

6.1. Pacritinib

Pacritinib (JAK2/IRAK1/ACVR1 inhibitor) was approved as a treatment for MF pa-
tients with platelets < 50 × 109/L in February 2022. In a retrospective study of the phase
3 PERSIST-2 trial (NCT02055781), with pacritinib, compared to best available therapy in
patients with MF, the blood counts remained stable and anemia benefits were noted, in-
cluding RBC transfusion independence (TI) [78]. A retrospective analysis of the PERSIST-2
trial demonstrated higher spleen responses and total symptom scores with pacritinib com-
pared to lower doses of ruxolitinib (spleen responses to ruxolitinib are dose-dependent)
in MF patients with platelet counts below 100×109/L (22% vs. 3%, p = 0.02, and 35% vs.
19%, respectively; p = 0.11); pacritinib had a similar safety profile with lower doses of
ruxolitinib [79]. The underlying mechanism of pacritinib’s anemia benefits had not been
elucidated until its inhibitory activity on the ACVR1/SMAD pathway and suppression
of hepcidin expression were demonstrated in 2023 [29]. The mean concentration required
for 50% inhibition (IC50) of ACVR1 was 16.7 nM for pacritinib and 52.5 nM for momelo-
tinib (Table 1); conversely, ruxolitinib and fedratinib did not show inhibitory activity for
ACVR1 [29]. Subgroup analysis of the data from the PERSIST-2 trial was performed to
evaluate achievement of TI by comparing the pacritinib-treated arm (200 mg BID) with the
best available therapy-treated arm through week 24. Based on the Gale criteria (absence
of RBC transfusions over a 12-week period) and the criteria of the SIMPLIFY trials that
were designed to evaluate momelotinib regarding TI (absence of RBC transfusions and no
Hb < 8 g/dL in the prior 12 weeks), a significantly greater number of pacritinib-treated TD
patients achieved TI compared to best available therapy (24% vs. 5%, p = 0.013 based on
the SIMPLIFY criteria; 37% vs. 7%, p = 0.001 based on the Gale criteria) [29].

6.2. Momelotinib

On September 15, 2023, momelotinib (JAK1/2 and ACVR1 inhibitor) received FDA
approval as a treatment for patients with intermediate- or high-risk MF and anemia
based on the findings of the phase 3 trials, MOMENTUM (NCT04173494) and SIMPLIFY-1
(NCT01969838). In preclinical studies, momelotinib inhibited ACVR1/ALK2 (IC50 = 8.4 nM;
Table 1) [80]. Momelotinib acts by inhibiting the hyperactivated BMP6/ACVR1/SMAD
pathway and suppressing hepcidin expression; thus, treatment with momelotinib results
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in higher circulating iron and Hb levels and improved erythropoiesis [28], which leads
to significant anemia benefits in MF patients [81]. The anemia benefits of momelotinib
were confirmed in the randomized phase 3 SIMPLIFY-1 and MOMENTUM clinical trials.
In the SIMPLIFY-1 trial, momelotinib was compared to ruxolitinib in JAK inhibitor-naïve
patients with MF and showed non-inferiority in spleen volume reduction ≥ 35% (SVR35;
p = 0.011) but not in reducing the total symptom score ≥ 50% (TSS50). Importantly, how-
ever, momelotinib reduced TD and the overall RBC transfusion rates. After 24 weeks,
66.5% of the MF patients in the momelotinib arm achieved or maintained TI (based on the
aforementioned SIMPLIFY-1 criteria), which was higher than the rate in the ruxolitinib arm
(49.3%; p < 0.001) [82]. Moreover, stratifying the patients according to baseline Hb levels,
for Hb < 8 g/dL, 29% of momelotinib-treated patients achieved TI (vs 18% of ruxolitinib);
for Hb < 10 g/dL, the respective proportions were 47% vs. 27%; and for Hb < 12 g/dL, the
respective proportions were 62% vs. 37% [83]. The SIMPLIFY-2 trial (NCT02101268), which
compared momelotinib to the best available therapy in previously ruxolitinib-exposed MF
patients, demonstrated the superiority of momelotinib in achieving TI compared to the
control arm (43% of 104 patients vs. 21% of 52 patients, respectively, p < 0.002) at week
24 [84]. Finally, in the MOMENTUM trial, which compared momelotinib with danazol (an-
drogen commonly used to treat anemia in MF) in symptomatic prior JAK inhibitor-exposed
MF patients with anemia, the TI rate was 30% in momelotinib-treated patients vs. 20% in
danazol-treated patients at week 24; and the TI rate increased by 17% vs. 5% in the groups
treated with momelotinib vs. danazol, respectively. Moreover, momelotinib achieved
SVR35 in 22% of the patients (vs. 3% for danazol) and TSS50 in 25% of the patients (vs. 9%
for danazol) at week 24 [85]. Safety and efficacy were also confirmed at 24 weeks, when
all the patients initially randomized to the danazol arm crossed over to the momelotinib
arm. Regarding TI, responders at any time during the open-label period by week 48 (using
the rolling response definition for TI over any 12-week period by week 24) were 52% and
56% of the evaluable patients who continued momelotinib and patients in the danazol arm
who crossed over to the momelotinib arm, respectively [85,86]. Regarding TSS improve-
ments at the same time point, 61% of the patients responded in the momelotinib arm since
enrollment, and 59% of the patients in the danazol arm who crossed over to momelotinib
were responders [86]. Further analysis of the TSS improvements in the MOMENTUM trial
demonstrated ameliorated quality of life as well as rapidity and durability of benefits with
momelotinib treatment [87]. Importantly, a recent post-hoc–time-dependent analysis of the
data from the SIMPLIFY and MOMENTUM trials demonstrated the statistically significant
associations of overall survival with TI arising from treatment with momelotinib [88]. Re-
garding the associations of RBC transfusion status with overall survival, the hazard ratio
(HR) was 5.18 (p = 0.0017) in the MOMENTUM trial, and the HR ratio was 3.32 (p < 0.0001)
and 1.87 (p = 0.0287) in the SIMPLIFY-1 and SIMPLIFY-2 trials, respectively [88]. In ad-
dition, longitudinal assessment of the RBC transfusion intensity in the SIMPLIFY-1 and
MOMENTUM trials demonstrated that superior maintenance of RBC transfusion intensity
and zero RBC transfusion status was achieved with momelotinib compared to ruxolitinib
in the SIMPLIFY-1 trial; also, momelotinib was superior in decreasing the RBC transfusion
burden compared to danazol in the MOMENTUM trial [89].

6.3. Jaktinib

Jaktinib (JAK1/2/3 and ACVR1 inhibitor), a deuterated isotope of momelotinib, was
first evaluated at a single dose (25–400 mg) and multiple ascending doses (up to 200 mg
daily) in healthy subjects and did not induce significant adverse events [90]. Subsequently,
in the phase 2 trial in JAK inhibitor-naïve MF patients, 54.8% (34/62) and 31.3% (15/48) of
the patients achieved SVR35, and 69.6% (39/56) and 57.5% (23/40) experienced TSS50, in
the jaktinib-treated cohorts with 100 mg BID and 200 mg QD jaktinib (p < 0.05), respectively.
These results were associated with an increase in Hb levels ≥2 g/dL from baseline in
35.6% (21/59) of the patients with Hb ≤ 10 g/dL [91]. In the phase 2b trial enrolling MF
patients intolerant to ruxolitinib, 13 (42%) of 31 patients with baseline Hb ≤ 10 g/dL
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reported ≥20 g/dL Hb increase, and 11 (58%) of 19 TD patients had a 50% reduction in
the frequency of RBC transfusions (1 patient became TI) [92]. An interim analysis of the
data from the phase 3 trial (NCT04617028) evidenced that 71% of the jaktinib-treated TD
patients and 40% of the hydroxyurea-treated TD patients achieved a ≥50% decrease in
RBC transfusions by week 24, and one patient achieved TI in the jaktinib arm. Overall,
39.3% of the jaktinib-treated patients and 15.4% of the hydroxyurea-treated patients with
baseline Hb ≤ 10 g/dL experienced an increase in Hb ≥ 2 g/dL [93]. Updated results on
this ongoing phase 3 trial assessing jaktinib are expected in due time.

Table 1. Approved ACVR1 inhibitors and other ACVR1 inhibitors in clinical development for the
treatment of anemia in MF patients.

Agent Study Phase Indication Inhibitory Effects

Pacritinib
Approved by the FDA based
on the phase 3 PERSIST-2 trial
(NCT02055781)

Adults with intermediate- or
high-risk MF and platelet
counts <50 × 109/L

Mean IC50 (ACVR1) = 16.7 nM [28]
Inhibitor of JAK2, ACVR1, IRAK1,
and FLT3

Momelotinib

FDA-approved based on the
phase 3 MOMENTUM
(NCT04173494) and
SIMPLIFY-1 (NCT01969838)
trials

Adults with intermediate- or
high-risk MF (primary or
secondary) and anemia

Mean IC50 (ACVR1) = 52.5 nM [28]
IC50 (ACVR1) = 8.4 nM [80]
Inhibitor of JAK1/2 and ACVR1

Jaktinib
Evaluated in a phase 3 trial in
comparison to hydroxyurea
(NCT04617028)

In clinical development for
MF treatment

IC50 (ACVR1) values were not
determined.
JAK1/2/3 and ACVR1 inhibitor [91]

Zilurgisertib

Evaluated in a phase 1/2 trial
as a monotherapy or in
combination with ruxolitinib
(NCT04455841)

In clinical development for
MF treatment

IC50 (ACVR1) = 15 nM [94]
ACVR1 inhibitor

Abbreviations: ACVR1: activin receptor type I; FDA: Federal Drug Administration; FLT3: fms-like tyrosine kinase
3; IC50: half-maximal inhibitory concentration; JAK: Janus kinase; IRAK1: interleukin 1 receptor associated kinase
1; MF: myelofibrosis.

7. ACVR1 Inhibitor in Development for Myelofibrosis

Zilurgisertib, a selective oral ACVR1/ALK2 inhibitor, is currently being studied as a
monotherapy or in combination with ruxolitinib in a phase 1/2 dose-escalation/expansion
trial in patients with MF (NCT04455841). It was recently determined that zilurgisertib had
an IC50 (ACVR1/ALK2) = 15 nM (Table 1) [94]. Enrolled patients (TD or symptomatic for
anemia) were treated with zilurgisertib alone or in combination with ruxolitinib [95,96].
Hepcidin levels (secondary endpoint) decreased in both cohorts after zilurgisertib treatment
in a dose-dependent manner, and the maximum decrease of hepcidin levels was noted
6–8 h post zilurgisertib dosing [95]. Hemoglobin increased by >1.5 g/dL from baseline
in both groups, and zilurgisertib was well tolerated. The previous findings suggest the
promising therapeutic activity of zilurgisertib regarding anemia in MF patients.

8. TGF-β Ligand Traps as Treatments for Anemia

Activin receptor type II ligand traps have also been developed to sequester members
of the TGF-β superfamily ligands, which inhibit late-stage erythropoiesis. Sotatercept is a
novel fusion protein, first-in-class ACVR2A ligand trap that was studied in a phase 2 clini-
cal trial in MF patients with anemia (NCT01712308) [97]. Luspatercept is a recombinant
fusion protein (ACVR2B ligand trap) that sequesters TGF-β superfamily members and
prevents them from binding to ACVR2B, leading to inhibition of the SMAD2/3 pathway
and promoting late-stage erythropoiesis [98]. Luspatercept, a recombinant fusion protein
that decreases SMAD2/3 signaling, promotes erythroid maturation and improves ane-
mia. Luspatercept was approved as a treatment for anemia in patients with very low- to
intermediate-risk myelodysplastic syndromes (MDS) with ring sideroblasts or MDS/MPN
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with ring sideroblasts and thrombocytosis (April 2020); lower-risk MDS and requirement
for RBC transfusions (August 2023); and β-thalassemia with necessity for RBC transfu-
sions (November 2019) [99]. Future treatments of MF patients with anemia may include
regimens combining luspatercept with JAK inhibitors. A published case report showed
that the aforementioned combinations could be a viable option for patients with MF [100].
Currently, luspatercept is being evaluated in the ongoing registrational phase 3 clinical trial,
INDEPENDENCE (NCT04717414), in anemic MF patients who are concurrently treated
with ruxolitinib and required 4–12 RBC transfusions in the 12 weeks prior to enrollment.
The results of the phase 2 clinical trial (NCT03194542) that evaluated the safety and efficacy
of luspatercept in anemic MF patients (TD or TI) showed significant improvements in
anemia and transfusion burden [101].

9. Conclusions

ACVR1 inhibition represents a viable target in the management of anemia associated
with myelofibrosis. Combining ACVR1 and JAK inhibitors is a promising strategy to target
biological pathways that are critical in MF with symptomatic anemia. Dual JAK1/2 and
ACVR1 inhibition, such as in the case of momelotinib, provides enhanced therapeutic
efficacy in MF given that the cardinal features of the disease (anemia, splenomegaly, and
systemic symptoms) are concurrently treated with a single agent. Regulatory approval
of momelotinib and pacritinib provided treatment options for the needs of MF patients
with cytopenias. Rational combinations of ACVR1 inhibitors or ACVR2B ligand traps,
such as zilurgisertib or luspatercept, respectively, with JAK1/2 inhibitors (for example,
ruxolitinib) also are promising strategies to treat anemic patients with MF. Additional
clinical trials evaluating other promising novel agents and studies reporting real-world
evidence are necessary to validate the therapeutic potential of novel ACVR1 inhibitors,
ACVR2 ligand traps, or other agents to treat anemia in MF and pave the way to broader
clinical applications and paradigm changes in the treatment of MF. For example, DISC-0974,
a first-in-class human anti-hemojuvelin (HJV) monoclonal antibody, is currently being
evaluated in a phase 1b/2a trial in patients with MF and anemia (NCT05320198). HJV
is a co-receptor of the BMP family ligands that regulates hepcidin expression and iron
metabolism. HJV demonstrated dose-dependent suppression of hepcidin and an increase in
serum iron and Hb levels in healthy volunteers [102]. Novel agents along with the recently
approved medications are poised to expand the armamentarium of treatments for anemia
associated with MF and improve the outcomes and quality of life in MF patients.
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