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The Ratio of Key Metabolic Transcripts Is a Predictive
Biomarker of Breast Cancer Metastasis to the Lung
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ABSTRACT
◥

Understanding the rewired metabolism underlying organ-
specific metastasis in breast cancer could help identify strategies
to improve the treatment and prevention of metastatic disease.
Here, we used a systems biology approach to compare metabolic
fluxes used by parental breast cancer cells and their brain- and lung-
homing derivatives. Divergent lineages had distinct, heritable met-
abolic fluxes. Lung-homing cells maintained high glycolytic flux
despite low levels of glycolytic intermediates, constitutively acti-
vating a pathway sink into lactate. This strong Warburg effect was
associated with a high ratio of lactate dehydrogenase (LDH) to
pyruvate dehydrogenase (PDH) expression, which correlated with
lung metastasis in patients with breast cancer. Although feature
classification models trained on clinical characteristics alone were
unable to predict tropism, the LDH/PDH ratio was a significant
predictor of metastasis to the lung but not to other organs, inde-
pendent of other transcriptomic signatures. High lactate efflux was
also a trait in lung-homing metastatic pancreatic cancer cells,
suggesting that lactate production may be a convergent phenotype
in lung metastasis. Together, these analyses highlight the essential
role that metabolism plays in organ-specific cancer metastasis and
identify a putative biomarker for predicting lung metastasis in
patients with breast cancer.

Significance: Lung-homingmetastatic breast cancer cells express
an elevated ratio of lactate dehydrogenase to pyruvate dehydro-
genase, indicating that ratios of specific metabolic gene transcripts

have potential as metabolic biomarkers for predicting organ-
specific metastasis.

Introduction
Breast cancer is a disease marked by cellular diversity, and cancer

cells from the same primary tumor can colonize multiple metastatic
sites. Metastasis is a rare and stochastic process, and because of that it
becomes very difficult to predict when, where, and whether a patient
diagnosedwith breast cancer will developmetastases andwhich organs
will be affected (1). Cells that metastasize to different organs can
express different levels of therapeutic targets (2, 3) and respond
differently to treatment (4, 5). Understanding the molecular processes

that drive metastatic tropism is therefore vital for the future of targeted
therapy and prevention.

When a cancer cell disseminates from a breast tumor it may already
have a propensity to metastasize to a specific organ (6–8). The
possibility that the distal tissue selects for specific features of cancer
cells was first raised by Paget, termed the “seed-and-soil hypothe-
sis” (9). However, the cell phenotypes under selection in each organ
remain unclear. Breast cancers are categorized by molecular subtypes
defined by the presence of hormone receptors; these subtypes correlate
modestly with preferential relapse sites, but still allow the possibility to
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metastasize to multiple sites (10–13). Histologic grade, defined by cell
morphology, mitosis, and cellular differentiation state, also does not
correlate well with tissue tropism (13). Oncogenic mutations found in
driver genes are also used to type breast cancers, but these mutations
remain fairly consistent between primary tumors and untreated
metastases (14). It is therefore likely that metastatic tropism is deter-
mined by factors other than those used to type breast cancers at the
clinical level.

Preclinical work has shown some of the other factors that command
tropism, including cytokines and proteins secreted from tissues and
tumor cells, the compositions of the immune microenvironment, and
oncogenic miRNAs (15). The metabolic preferences of cancer cells
may also play a role (16). Tumor cells are long known to exhibit
metabolic alterations (17), and reprogrammed metabolism is consid-
ered a “hallmark of cancer” (18). Nevertheless, the role of metabolic
alterations in metastasis tropism has arguably received less attention.

The MDA-MB-231 cell line was derived from a patient with breast
cancer and forms metastases in multiple organs in mice (19–21). The
mouse model was used to select in vivo for lineages that preferentially
home to the bone, brain, or lung (6, 22, 23). The result was a set of
parental MDA-MB-231 cells and their matched derivatives, which
home to specific organs. A recent study used these cells to find
transcriptomic alterations in micrometastases formed in the lung
compared with the parental and brain-colonizing cells (24). The study
found that mitochondrial electron transport Complex I, oxidative
stress, and counteracting antioxidant programs were induced in
pulmonary micrometastases, again suggesting a key role for metab-
olism in the adaptation of cancer cells when colonizing a distant organ.
Another study compared themetabolomic profiles of brain- and bone-
homing lineages with parental cells (25). The lineages were all cultured
in the same in vitro conditions, and the comparison revealed differ-
ences in intracellular metabolite levels, particularly in purine nucleo-
tides. This study also found increased serine metabolism in all three
metastatic lineages (brain, bone, and lung) compared with parental
cells, and concluded that these pathways were necessary for metastatic
cell growth. However, metabolite levels do not necessarily correlate
with metabolic fluxes, and it remains unclear which metabolic func-
tions are selected in organ-specific metastasis.

Here, we used theMDA-MB-231model to studymetabolic fluxes in
breast cancer cells with different tropisms. We focused on the brain-
(BrM2) and lung-homing (LM2) lineages of MDA-MB-231; the lung
and brain have distinct metabolic microenvironments that impose
unmistakably different selective pressures (26–30). Our results show
that the flux through the glycolytic pathway is increased in brain-
homing and especially in lung-homing lineages compared to parental.
Importantly, this occurs even though parental cells have higher
intracellular levels of glucose and other intermediaries of the glycolysis
pathway. We propose that an elevated ratio of lactate dehydrogenase
(LDH) to pyruvate dehydrogenase (PDH) gene expression, which
indicates a cell state of high glycolytic to lactate flux in LM2 cells, may
be a predictor for lungmetastasis in patients with breast cancer. Notably,
lung metastases in a model of pancreatic cancer had higher lactate
production than other metastases did, suggesting that this metabolic
trait could be important for lung metastasis in other cancer types.

Materials and Methods
Cell culture

All cell lines were grown in DMEM (Thermo Fisher Scientific,
11965118) supplemented with 10% FBS (made in the MSKCC media
core facility) and 1% penn/strep (Thermo Fisher Scientific, 15140122).

Cells were grown in a 37�C incubator with humidity and 5% CO2.
Authenticated breast cancer cell lines were obtained from the Massa-
gue lab and generated as described previously (6, 22). KPC cell lines
were established frompancreatic tumors and itsmatchedmetastases in
KPC mice, a mouse model of pancreatic cancer described previous-
ly (31). The in vivo protocols used to generate these cell lines were
conducted in accordance with the guidelines of the Institutional
Animal Care and Use Committee. Cell line genotypes were confirmed
by recombinant genotyping PCR, and cells were passaged at least three
times to rule out contamination from normal cells. Cells were con-
firmed to beMycoplasma free before aliquots were stored at�190�C in
low passage numbers.

Cell growth assay
Cell lines were infected with H2B-YFP or H2B-mcherry lentivirus

using 20mg/mLpolybrene.After a fewdays of passage, cells were sorted
via FACS. Cells were counted and plated in equal numbers in a 96-well
plate, and fluorescent images were taken periodically for several days
on a Zeiss microscope. A 5� objective was used in the instrument, and
images were either collected once every 24 hours, after which, the plate
was returned to the incubator, or once every hour using the custom-
made chamber surrounding the microscope that maintained temper-
ature, CO2, and humidity levels. Images were analyzed using the Zeiss
Zen blue software and our own custom-made MATLAB scripts. Data
from several independent biological replicates of the growth assaywere
pooled, and analyzed using a generalized linear mixed-effects regres-
sion model with a log function (since the cells are in exponential
growth) and random effects for which experiment and well in the plate
the data came from.Growth rateswere analyzed both for the full data as
well as excluding pre-exponential phase growth. For glucose titration:
cells were grown in glucose-free media, and full media was titrated and
six levels to generate a curve.

Metabolomics
Cells were seeded in T75 flasks, in five replicates per cell line. Two

days after plating, cells were trypsinized, counted, and spun down.
Media was aspirated from cells, which were then resuspended in PBS
and re-spun. PBS was aspirated and the cell pellet was immediately
frozen in liquid nitrogen. Samples were shipped to metabolon on dry
ice, and metabolite abundance data were normalized to total protein
content per sample. Metabolomics analysis: heatmaps, principal com-
ponent analysis, statistical analysis of abundance fold changes (two-
sample t test), and partial least squares regression analysis were done in
MATLAB using built-in features and custom-made scripts.

RNA expression analysis
mRNA expression data that were published previously (6, 22)

were downloaded from Gene Expression Omnibus (accession nos.
GSE12237: GSM307534, GSM307535, GSM307536, GSM307578,
GSM307579. GSE2603: GSM49953, GSM49954, GSM49955, GSM49956,
GSM49957, GSM50017). The Hallmark glycolysis gene set was down-
loaded from the Gene Set Enrichment Analysis Molecular Signatures
Database. Expression fold change relative to parental for each meta-
static lineage was calculated for the genes in the Hallmark glycolysis
gene set, and a heatmap was generated using MATLAB. The ratio of
(LDHAþLDHB)/(PDHA1þPDHA2þPDHB) for each lineage and sta-
tistical differences (two-sample t test) were calculated in MATLAB.

MITHrIL pathway analysis
The MITHrIL algorithm was used as described previously (32). We

used the combined Log2FC values of the differentially expressed genes
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(DEG) and altered metabolites identified from BrM2 and LM2 sam-
ples. Specifically, the DEGs for BrM2 and LM2 samples were identified
from the two public microarray projects used above whereas the
altered metabolites were identified from our metabolomics data.
Microarray data were first normalized and then the DEGs were
identified by using the LIMMA package (Bioconductor; ref. 33). Only
the genes with Log2FC > 0.6 or Log2FC < �0.6 with a statistically
significant adjusted P value (with Benjamini–Hochberg correction)
<0.05 were considered differentially expressed and selected for the
MITHrIL pathway analysis. The metabolomics data were analyzed
using the MetaboDiff package (Bioconductor; ref. 34) and only the
metabolites with Log2FC > 0.6 or Log2FC < �0.6 and a statistically
significant adjusted P value (Benjamini–Hochberg correction) <0.05
were considered as altered metabolites and included in the MITHrIL
pathway analysis. All these analyses were performed using the frame-
work Rstudio (R3.5.2). MITHrIL output for the glycolysis/gluconeo-
genesis pathway was overlaid on the Kyoto Encyclopedia of Genes and
Genomes pathway diagram. TotalMITHrIL output was imported into
MATLAB to generate waterfall plots and clustergrams.

YSI
Cells were cultured in 6-well plates. Eight hours prior to sample

collection, media was changed to 2 mL per well, and incubated as
above. 1.2 mL were collected from each sample, spun down to
remove cell debris, and then frozen until processing by the Cell
Metabolism Core Facility. The YSI analyzer in the Cell Metabolism
Core Facility detects glucose, lactate, glutamine, and glutamate
using immobilized substrate-specific enzymes, which are placed
between two selective, interfering membranes. These membranes
are coupled to a platinum electrode. The dual-reaction system
ultimately detects the rate of electron flow, which is proportional
to the metabolite concentration in the sample. Our samples were
thawed, plated in a 96-well plate, and inserted into the YSI analyzer
machine. Data were normalized to cell count. Statistical analysis of
data were done in MATLAB (two-sample t test).

Seahorse
A total of 20,000 cells/well were seeded in Seahorse XF plates. The

following day, media was changed to the Seahorse XF media with
glucose, pyruvate, and glutamine, and standard Seahorse XF protocols
were followed. For assessing mitochondrial activity, the Mito Stress
Test Kit was used, with 1 mmol/L oligomycin, 1 mmol/L FCCP, and
0.5 mmol/L rotenoneþantimycin A. Basal respiration rate correspon-
ded to oxygen consumption excluding nonmitochondrial oxygen
consumption (OCR in the presence of rotenone þ antimycin A).
ATP production corresponded to the difference in basal respiration
rate and oxygen consumption in the presence of an ATP synthase
inhibitor (oligomycin). For assessing glycolysis, the Glycolytic Rate kit
was used, with 0.5 mmol/L rotenoneþantimycin A and 50 mmol/L
2-deoxyglucose. Non-CO2 ECAR was calculated by subtracting mito-
chondrial OCR�0.6 (standard scaling factor) from the total proton
efflux rate. Compensatory glycolysis corresponded to proton efflux
rate in the presence of rotenoneþantimycin A. For assessing mito-
chondrial fuel oxidation, the Mito Fuel Flex Test Kit was used with
6 mmol/L BPTES and 4 mmol/L UK5099. Mitochondrial glutamine
utilization was calculated by subtracting OCR in the presence of
BPTES from total OCR. Mitochondrial pyruvate utilization was
calculated by subtracting OCR in the presence of UK5099 from total
OCR. All Seahorse data were normalized to cell count, and statistical
analyses of fold change differences were done in MATLAB (two-
sample t test).

Flux balance analysis
A 24-flux metabolic network model that represents glycolysis,

reduction of pyruvate to lactate, TCA cycle, glutamine/glutamate
metabolism, and oxidative phosphorylation was developed by simpli-
fying the model reported in ref. 35. Experimentally measured glucose
uptake, lactate production, glutamine uptake, glutamate production,
and oxygen consumption rates (converted to mmol/gDW/hour by
assuming averaged cell weight of 1 ng) were used to constrain the
corresponding fluxes by setting their lower and upper bounds to the
mean measured value minus and plus standard error across all
replicates, respectively. Other fluxes were unconstrained with their
lower or upper bounds set to �100 or 100, respectively. Considering
the flux-balance solutions are not unique, we quantified the uncer-
tainty of unmeasured fluxes by sampling the constrained high-
dimensional flux space. Flux sampling allows building marginal dis-
tributions of each flux and computing the averaged flux value as the
most possible solution under the constraints given by data. For the
distribution of flux ratios between metastatic derivatives and parental
cell types, we used a bootstrap method to resample the marginal
distributions with replacement and calculate the fold change of
resampled fluxes. Custom Python codes were developed with the
COBRApy package (36) to carry out all metabolic flux modeling and
simulations in the paper.

Enzymatic assays
The Hexokinase Activity Assay Kit (Abcam ab136957), Phospho-

fructokinase Activity Assay Kit (Abcam ab155898), Glyceraldehyde 3
Phosphate Dehydrogenase Activity Assay Kit (Abcam ab204732),
Pyruvate Kinase Assay Kit (Abcam ab83432), and Lactate Dehydro-
genase Assay Kit (Abcam ab102526) were used and accompanying
protocols were followed. Briefly, cells from each lineage were trypsi-
nized, counted, and 250,000 cells were collected for each assay. Cells
were washed with PBS, homogenized, and the supernatant was mixed
with substrate and probe developer. Absorbance was read at 450 nm,
and activity rate was calculated by measuring absorbance at two time
points and compared with a standard curve. Negative and positive
controls were used.

ELISA assays
The Hexokinase II ELISA Kit (Abcam ab219043), Phosphofructo-

kinase ELISA Kit (MyBioSource MBS163996), Glyceraldehyde-3-
Phosphate Dehydrogenase ELISA Kit (MyBioSource MBS701148),
Pyruvate Kinase ELISA Kit (Biomatik KC35325), Lactate Dehydro-
genase ELISA Kit (ABIN6957356), Pyruvate dehydrogenase (PDH)
Profiling ELISA Kit (Abcam ab110174), Pyruvate Dehydrogenase
Kinase Isozyme 2 (PDK2) ELISA Kit (MyBioSource MBS108891),
and Pyruvate Dehydrogenase Kinase Isozyme 1 ELISA Kit (MyBio-
Source MBS2885331) were used for protein quantification, and
accompanying protocols were followed. The Pierce 660 nm Protein
Assay Kit (Thermo Fisher Scientific, 22662) and Pierce Bovine Serum
Albumin Standard Pre-Diluted Set (Thermo Fisher Scientific, 23208)
were used to normalize to total protein content.

Isotope tracing and GC/MS
Cells were seeded in 6-well plates (300k cells/well, three replicates

per condition) in fresh DMEM þ 10% dFBS and were refreshed with
fresh media 24 hours after seeding. Fourty-eight hours after seeding,
the media was exchanged to DMEMþ 10% dFBS with 12C glucose or
13C uniformly labeled glucose (CLM-1396, Cambridge Isotopes) for 0,
2, 4, 6, 8 hours. To extract the intracellular metabolites, media was
aspirated, 1 mL/well ice-cold 80%methanol was added, and cells were
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scraped down. Cells were centrifuged at 20,000 � g for 20 minutes at
4�C. The supernatant was collected and dried in a speed vacuum
evaporator for 4 to 5 hours. Dried samples were stored in �80�C
freezer prior to derivatization. The dried pellets were resuspended in
50 mL methoxyamine (TS-45950, Thermo Fisher Scientific) and
shaken at 1,400 rpm at 30�C for 2 hours. 80 mL of MSTFA (TS-
48911, Thermo Fisher Scientific) was added to each resuspended pellet
and the solution was transferred to autosampler vials with 70 mL of
ethyl acetate (1036491000, Merck). Samples were incubated at 37�C
for 30 minutes before being run on the GC/MS. The following
analytical system was used for metabolomics analysis: Agilent
5977B GC/mass selective detector (MSD) with an Agilent 7890B GC
and an Agilent 7693A autosampler. The injection volume was 1 mL.
The temperature program was as follows: the initial oven temperature
60�C was held for 1 minute, then programmed to increase at 7.3�C/
minute to reach afinal temperature of 250�Candheld for 10.5minutes.
Helium was used as carrier gas with a constant linear velocity of 1 mL/
min. The Agilent metabolite profiling software (MassHunter Quali-
tative Analysis 10.0 and MassHunter Quantitative Analysis B.08.00),
as well as Matlab were used for targeted metabolite identification.
Correction for natural isotope abundance was performed using Iso-
CorrectoR software.

AACR project GENIE analysis
Clinical metadata and genomic data from the metastatic breast

cancer cohort within this project was downloaded from the cBio portal
(version GENIE 12.0-public). Custom MATLAB scripts were used to
calculate the most common metastatic sites and mutations in the
selected samples. The MATLAB function fscchi2 was used to deter-
mine rank and significance of predictors. General linear regression
models were used to determine which predictors were significantly
correlated with each metastatic site.

MetMap analysis
Breast cancer cell line metastatic and gene expression data were

downloaded from DepMap (https://depmap.org/portal/), a publicaly
available cell line information site developed by the Broad Institute.
Breast cancer cell lines that had any nonnegative lung tropism were
selected. The breast cancer cell line used experimentally in this paper is
a triple-negative cell line; restricting the MetMap set to only include
triple negative cell lines greatly reduced the number of cell lines andwe
therefore included allHER2negative cell lines in our analysis. The ratio
of gene expression of (LDHAþLDHB)/(PDHA1þPDHA2þPDHB)
was calculated for each cell line. Cell lines were plotted according to
their lung potential and penetrance, as well as LDH/PDH gene
expression ratio. Cell lines were grouped as to whether they had
>median potential and penetrance or <median. Means between the
two groups were compared by a two-sample t test. Parallel analysis was
done on breast cancer cell lines with any nonnegative brain tropism as
a comparison.

Metastatic breast cancer project analysis
The results included here include the use of data from The Met-

astatic Breast Cancer Project (https://www.mbcproject.org/), a project
of Count Me In (https://joincountmein.org/; ref. 37). Clinical meta-
data, genomic data, and gene expression data for the Metastatic Breast
Cancer Project was downloaded from the cBio portal (MBCproject
cBioPortal data version March 2020; refs. 38, 39). For generation of
these data, tissue biopsies were received as blocks and were not sorted
by cell type prior to RNA-seq. Custom MATLAB scripts were used to
calculate the most common metastatic sites and mutations in the

selected samples. Archetypes were generated by using non-negative
matrix factorization, with each sample having probabilistic member-
ship into each archetype. The maximum likelihood archetype was
assigned as the given archetype for each sample. Proportions of each
metastatic site for each breast cancer mutation, hormone receptor
status, and transcriptional archetype were calculated in MATLAB.
Patients were then classified according to whether they hadmetastases
to the lung (including patients who hadmetastases to other sites as well
as lung) or metastases to any location other than lung. Data from
biopsies that sampled the breast or chest wall were included, whereas
the few samples from distal sites were excluded. For patients that had
more than one biopsy, the earliest biopsy was used. The ratio of gene
expression of (LDHAþLDHB)/(PDHA1þPDHA2þPDHB) was cal-
culated for each patient; boxplot and statistical analysis of fold change
between groups (two-sample t test) was done inMATLAB.UMAP (40)
analysis of patient archetypes was done in MATLAB after z-scoring
each sample. The MATLAB function fscchi2 was used to determine
rank and significance of predictors. General linear regression models
were used to determine which predictors were significantly correlated
with eachmetastatic site. A general linear regressionmodel with LDH/
PDH from the primary tumor as the predictor variable and presence or
absence of lung metastasis (at any point in time) in the patient as the
response variable was analyzed using a ROC curve. LDH/PDH was
binarized at its natural inflection point into “high” versus “low” values
and used as the sole predictor variable in a prediction model, with
presence or absence of lung metastasis as the response. Because there
were few patients with lung compared with non-lung metastases, we
first randomly selected a subset of non-lungmetastatic patients so that
there were equal numbers between the two groups and we were
adequately powered to test a model. Because of the limited data, we
then iteratively left out a single data point, trained the model on the
remaining data, and asked themodel to predict the presence or absence
of lungmetastasis in each patient in turn.We then repeated this several
times, randomly selecting (with replacement) a subset of non-lung
metastatic samples each time.We then calculated the true positive, true
negative, false positive, false negative, and overall accuracy from the
predictions.

MEMIC assay
Glass coverslips were glued onto glass-bottom dishes (Mattek

P06G-1.0–10-F) using Norland optical adhesive 81 such that 1 mm
slit of the inner well was uncovered. A handheld UV lamp was held
over the plate for 30 seconds to cure the adhesive gel. Wells were filled
with sterile water and left under UV in biological hood overnight.
Remaining water was aspirated and replaced with media, and incu-
bated overnight at 37�C with humidity and 5% CO2. Inner wells were
plated with cells, and 300mLmedia was added to edges of outer wells to
prevent evaporation before returning plates to the incubator. After
4 hours, outer wells were filled with 2 mL media. Cells were imaged
daily.

Data availability
Metabolomics data generated in this study are publicly available

at https://zenodo.org/badge/latestdoi/648288267 (DOI: 10.5281/
zenodo.7996343 Release v1.0). Some of the data analyzed in this
study were obtained from The Metastatic Breast Cancer Project at
https://www.mbcproject.org, and AACR Project GENIE at https://
genie.cbioportal.org/login.jsp. Codes and raw data files are avail-
able on github: https://github.com/dm2791/A-high-LDH-PDH-
ratio-predicts-BC-lung-metastasis. All other raw data are available
upon request from the corresponding author.
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Results
Clinical characteristics and mutational burden are poor
predictors of breast cancer metastatic tropism

We analyzed the metastatic breast cancer cohort within the publicly
available cancer registry AACR Project GENIE (41), which includes
both mutational and clinical information. The top 5 most common
sites of metastasis were liver, lymph node, brain/central nervous
system, bone, and lung (Supplementary Fig. S1A, left). Consistent
with previous work, each hormone receptor status was distributed
across metastatic sites (Supplementary Fig. S1B, top). The most
commonly mutated genes, PIK3CA and TP53, were also present in
each of the top 5 metastatic sites, indicating that as expected these
oncogenic lesions do not determine metastasis (Supplementary
Fig. S1A, right; Supplementary Fig. S1B, bottom). To more rigorously
investigate whether clinical characteristics or mutational burden can
predict tropism, we used univariate feature ranking for classification
and found that the top ranked features associated with tropism were:
(i) disease stage at diagnosis, (ii) subtype at diagnosis, and (iii) whether
the patient received neoadjuvant or adjuvant trastuzumab therapy
(Fig. 1A). However, except for trastuzumab treatment correlating with
CNS metastases, none of these features significantly correlated with
organ-specific metastasis (Fig. 1B). It is therefore difficult to use these
features as predictors of specific tropism for any given patient. These
analyses gave further credence to our hypothesis that additional
adaptations—including metabolic alterations—contribute to organ-
specific metastasis.

Combined metabolomics and transcriptomics analysis reveals
that primary and metastatic lineages have distinct metabolic
rewiring

As we found in our analysis of AACR Project GENIE, consistent
with epidemiologic data (42), lung and brain are among the most
common sites of metastasis in breast cancer. We therefore turned to
the MDA-MB-231 breast cancer cell line model and its brain-homing
BrM2 lineage and lung-homing LM2 lineage (Fig. 1C). Metabolomics
profiling revealed that the metabolomes differed for each lineage,
indicating that the lines maintain heritable differences in their utili-
zation ofmetabolic pathways evenwhen they are cultured ex vivo in the
same condition (Fig. 1D). Principal component analysis (PCA) of the
metabolite levels showed that the largest differences occur between the
parental line and the derived lineages (Fig. 1E): all replicates of the
parental lineage scored high on PC1, which explained 84% of the
variation. A biplot analysis revealed that a single metabolite—glucose
—explained a large part of these differences (Fig. 1E, shown in gray). In
fact, the relative glucose levels in parental cells were >30� higher than
in either BrM2 or LM2 cells (Fig. 1E, inset). Most other intermediates
of glycolysis were also significantly higher in the primary lineage,
except for higher 2,3-BPG and pyruvate in BrM2 relative to parental,
and higher lactate in LM2 relative to parental (Fig. 1F; Supplementary
Fig. S1C). Overall, many metabolic alterations from parental to
metastasis correlated between BrM2 and LM2 (Fig. 1G), and the PCA
suggested that the primary metabolic divergence occurred early in the
metastatic process with further diversification in the lung and brain:
PC2, which explained�10%of the variation, distinguished BrM2 from
LM2 (Fig. 1E). The differences between BrM2 and LM2 occurred
mostly in metabolites from amino acid and fatty acid pathways,
consistent with prior investigation of brainmetastasis (Supplementary
Fig. S1D; ref. 43).

Expression of glycolytic pathway genes was also perturbed in the
brain- and lung-homing lineages (6, 22). Many of those genes were

expressed at lower levels in themetastatic cells compared with parental
cells (Supplementary Fig. S1E), confirmed by enrichment of this gene
set in parental cells using GSEA (Supplementary Fig. S1F; refs. 44, 45).

A pathway analysis (MITHrIL) integrating the transcriptomic
and metabolomic data (Supplementary Fig. S2A; refs. 32, 46)
confirmed that glycolysis was among the most significantly per-
turbed pathways in both metastatic lineages, and that components
of glycolysis were largely lower than in parental cells (Fig. 1H;
Supplementary Fig. S2B). Notably, lactate metabolism was higher
compared to parental in LM2 but not BrM2 cells (Supplementary
Fig. S2C). Comparing BrM2 to LM2 showed lower levels of brain-
associated pathways in LM2, including synapse signaling, and
higher oxidative phosphorylation and pyruvate metabolism com-
pared to BrM2 cells, consistent with previous results (Supplemen-
tary Fig. S2D; refs. 43, 47).

Glucose flux and lactate secretion increased in metastatic
lineages despite lower levels of glycolysis intermediates

The multi-omics analysis revealed differences in the metabolic
states of the three lineages. To analyze the differences in cell function,
we measured the rate of glucose uptake by the cells in balanced growth
using a YSI analyzer. Surprisingly, the glucose influx was not lower but
marginally “higher” in the brain-homing lineage and markedly higher
in the lung-homing lineage compared to parental (Fig. 2A). Lactate
secretion was approximately proportionally higher in LM2 cells
(Fig. 2A).

As measured by a Seahorse XF analyzer, LM2 cells showed the
fastest rates of overall extracellular acidification as well as acidification
from nonmitochondrial sources (Fig. 2B and C). Inhibition of the
electron transport chain with rotenone and antimycin A further
increased extracellular acidification, with LM2 cells again releasing
the highest levels of nonmitochondrial acidification among the three
lineages (Fig. 2B). After this mitochondrial inhibition, adding 2-deox-
yglucose halted glycolysis and led to a loss of extracellular acidification,
indicating that the increase in acidification was due to compensatory
glycolysis in the absence of mitochondrial function (Fig. 2C). Fur-
thermore, YSI revealed that both derived lineages consumed slightly
less glutamine than parental cells, whereas glutamate secretion
remained unchanged (Fig. 2D). It is therefore unlikely that glutamine
(to pyruvate via the TCA cycle) contributed to the higher rate of lactate
production.

We confirmed that mitochondrial function was not impaired in the
derived lineages: both lineages had higher mitochondrial respiration
rates and ATP-linked respiration (suggesting higher ATP production)
compared with the parental line, indicating that the uptake in glucose
influx was also not required for glycolysis-derived energy in these cells
(Supplementary Fig. S3A and S3B). Overall, the mitochondrial metab-
olism of LM2 differed the most from that of parental, with BrM2 at an
intermediate level (Supplementary Fig. S3C).

Mathematicalmodel and experimental validation explain higher
flux despite fewer molecular components

The data presented so far stress an important point: the levels of the
metabolic intermediates of a pathway can indicate that a pathway is
perturbed, but they do not necessarily correlate with the flux through
that pathway. Brain- and lung-homing lineages have higher glucose
consumption and lactate production than the parental lineage despite
lower levels of the molecular components—intermediary metabolites
and even the mRNAs of pathway enzymes—of the glycolytic pathway.
These differences were marginal in brain-homing cells and robust in
lung-homing cells. To understand this apparent contradiction, we
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Figure 1.

Divergent metastatic lineages maintain heritable differences from their parental lineage ex vivo. Integrated metabolomics and transcriptomics show differences in
glycolysis pathway in primary versus metastatic lineages. A, Feature selection analysis of AACR Project GENIE database: predictor rank and P value of clinical traits
and mutational burden. Three features passed a P value of <0.05. B, Individual linear regression models using the significant features from A for each of the top 5
metastatic sites (lung, n¼ 26; brain, n¼ 32; liver, n¼ 60; bone, n¼ 26; lymph node, n¼ 51). Receiving trastuzumab correlated with brain/CNSmetastases; no other
features significantly correlatedwith any of thesemetastatic sites.C,Diagram of the in vivo selection, which startedwith the parental lineageMDA-MB-231 and led to
brain-homing BrM2 and lung-homing LM2 derivatives. D, Heatmap of metabolite levels of parental and metastatic derivatives. Each cell line had five replicates that
clustered together. E, PCA of parental, BrM2, and LM2 metabolite levels, overlaid with a biplot (gray) showing the correlations of individual metabolites. The spoke
corresponding to glucose strongly associateswith PC1. Inset, bar plot of glucose levels: fold-change relative to parental: BrM2: 73-fold, P¼0.0004; LM2: 33-fold, P¼
0.001. Fold change LM2/BrM2: 2-fold, P ¼ 0.000007. � , P < 0.05 compared with parental. � , P < 0.05 between BrM2 and LM2. No asterisk, P > 0.05. Data are
represented as mean � SD. F, Heatmap of the glycolysis pathway metabolites, showing BrM2 versus parental and LM2 versus parental. G, Scatterplot of ln(fold
change) of metabolite levels in derivative lineages versus parental. Dots are colored according to significance. H,Waterfall plot of MITHrIL output comparing BrM2
with parental networks, highlighting the glycolysis/gluconeogenesis pathway (left). Waterfall plot of MITHrIL output comparing LM2 with parental networks,
highlighting the glycolysis/gluconeogenesis pathway (right). See also Figs. S1 and S2.
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Figure 2.

Glucose uptake and lactate secretion increased in metastatic lineages. Mathematical model predicts higher glycolytic flux despite lower levels of glycolysis
intermediates. A, YSI analysis of glucose uptake and lactate production. Glucose fold-change relative to parental: BrM2: 1.3-fold, P¼ 0.04; LM2: 2.0-fold, P¼ 0.001.
Fold change LM2/BrM2: 1.5-fold;P¼0.002. Lactate fold change relative to parental: BrM2: 1.1-fold,P¼0.30; LM2: 1.6-fold,P¼0.002. Fold change LM2/BrM2: 1.4-fold,
P¼ 0.001. B, Seahorse analysis of basal ECAR as well as ECAR after mitochondrial inhibition by antimycin A and rotenone. Extracellular acidification rate (right) and
quantification (left). Basal ECAR fold change relative to parental: BrM2: 2.2-fold, P ¼ 0.00002; LM2: 3.3-fold, P ¼ 0.0000004. Fold change LM2/BrM2: 1.5-fold,
P¼ 0.0003. Mitochondrial-inhibited fold change relative to parental: BrM2: 1.8-fold, P¼ 0.000009; LM2: 2.7-fold, P¼ 0.0000005. Fold change LM2/BrM2: 1.5-fold,
P ¼ 0.0002. C, Seahorse analysis of nonmitochondrial ECAR and compensatory glycolysis. Proton efflux rate (right); quantification (left). Nonmitochondrial ECAR
fold change relative to parental: BrM2: 3.1-fold, P¼ 2� 10�20; LM2: 4.5-fold, P¼ 9� 10�36. Fold change LM2/BrM2: 1.4-fold, P¼ 8� 10�12. Compensatory glycolysis
fold change relative to parental: BrM2: 2.6-fold, P¼ 4� 10�16, LM2: 3.4-fold, P¼ 1� 10�31. Fold change LM2/BrM2: 1.3-fold, P¼ 1� 10�8.D, YSI analysis of glutamine
uptake and glutamate production. Glutamine fold change relative to parental: BrM2: 0.8-fold, P¼ 0.005; LM2: 0.8-fold, P¼ 0.001. Fold change LM2/BrM2: 0.9-fold,
P ¼ 0.6. Glutamate fold-change relative to parental: BrM2: 0.9-fold, P ¼ 0.9; LM2: 0.9-fold, P ¼ 0.9. Fold change LM2/BrM2: 1-fold, P ¼ 1. For A to D, � , P < 0.05
comparedwith parental. � ,P <0.05 between BrM2 and LM2. No asterisk,P >0.05. Data are represented asmean� SD. E–G,Mathematicalmodeling of fluxes of select
metabolic pathways for parental, BrM2, and LM2 lineages, respectively. Data from Fig. 2 and Supplementary Fig. S3were used to constrain themodel, and values for
unknown fluxes were calculated. Fluxes are represented as most likely values. See also Supplementary Fig. S3.
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turned to a systems level investigation using flux balance analysis
(FBA), a mathematical method to assess utilization of metabolic
pathways in a network. We adapted a model of the flux rates in cancer
cell metabolism (35)—a 24-flux metabolic network model—and ran
simulations constrained by the external fluxes measured by YSI or
Seahorse XFwhile unknown internalfluxeswere unconstrained. Given
that the flux-balance solutions were not unique, we quantified the
uncertainty of unmeasured fluxes by sampling the constrained high-
dimensional flux space. Flux sampling allowed us to compute themost
likely solution under the constraints given by data. Our model would
therefore help distinguish between two competing hypotheses: (i) that
lactate production and glycolysis were uncoupled in LM2 cells, with
elevated glucose uptake redirected to a different pathway and lactate
production coming from other sources, or (ii) that glycolytic flux was
indeed high in LM2 cells and that the molecular components of the
pathway were truly anticorrelated with the flux.

The model predicted that glycolytic flux should indeed be the
highest in LM2 cells and lowest in parental cells (Fig. 2E–G; Supple-
mentary Fig. S3D–S3F). To experimentally validate that LM2 cells
have higher glycolytic flux, we traced 13C-labeled glucose and found
that the turnover of glucose-derived lactate was highest in LM2 cells
(Fig. 3A; Supplementary Fig. S4A and S4B). Furthermore, we directly
tested the enzymatic activity of four key steps in glycolysis as well as
lactate dehydrogenase activity. LM2 cells had the highest levels of
activity while parental cells had the lowest levels (Fig. 3B–F). Protein
levels of enzymes in early glycolysis also did not correlate with flux;
however, there were significant increases in pyruvate kinase and lactate
dehydrogenase B protein levels in LM2 cells, suggesting that these
enzymes may contribute to driving the overall increase in flux through
the pathway (Supplementary Fig. S4C–S4H).

Interestingly, the model indicated that the two metastatic lineages
can divergently modulate how nutrients are used. For example, unlike
LM2 cells, flux from pyruvate to lactate was calculated to be approx-
imately equal in parental and BrM2 cells, despite the higher glucose
uptake in BrM2 compared with parental. The FBA showed that BrM2
cells used these excess glucose-derived carbons to fuel the TCA cycle
while lowering the use of glutamine compared with parental cells,
allowing BrM2 cells to “catch up” to the level of ATP production in
LM2 cells despite lower glucose uptake than LM2 (Supplementary
Fig. S3D). These model predictions were confirmed by additional
Seahorse measurements, showing that mitochondrial pyruvate utili-
zation was higher in metastatic lineages compared with parental cells
and mitochondrial glutamate utilization was lower in metastatic
lineages compared to parental cells (Supplementary Fig. S4I and S4J).

A high LDH/PDH ratio supports constitutive lactate production
in lung metastases

Although the results of our flux-balance model predicted perhaps
the most straightforward solution, we wanted to understand the
biochemistry of how glycolytic flux can be high in LM2 cells despite
low levels of glycolysis metabolites: glycolysis is inhibited by its
products (48), and therefore low levels of metabolic intermediates
will prevent feedback inhibition and support a high flux. This can be
achieved by sustaining flow into a “sink”: for example, lactate efflux.
Therefore, although an apparent paradox, the lower levels of glycolytic
intermediates in LM2 cells relative to parental are not in conflict with
higher flux and may be required to maintain high glycolysis flux in the
absence of any other regulation. Pyruvate—the end product of gly-
colysis—can be converted either to lactate or to acetyl-coA. However,
increased flux into acetyl-coA and subsequent mitochondrial activity
increases ATP, and a high ATP/AMP ratio also allosterically inhibits

enzymes in glycolysis (48). Therefore, directing pyruvate predomi-
nately to lactate rather than acetyl-coA would better serve to maintain
a high glycolytic flux. Indeed, ourmodel predicts that although some of
the increased pyruvate in LM2 cells is directed to mitochondrial
utilization, themajority is directed to lactate (Supplementary Fig. S3F).

To determine whether this was indeed the case in our cell lines, we
compared flux rates from glucose into either lactate or TCA cycle
intermediates. 13C glucose tracing showed that the rate of glucose-
derived flux from pyruvate into lactate is higher than the rate of flux
from pyruvate into citrate in LM2 cells but not in parental or BrM2
cells (Fig. 3G; Supplementary Fig. S4K and S4L). The ratio of slopes of
lactate to citrate labeling was accordingly higher in LM2 cells com-
pared with the other lineages (Fig. 3H). Because 13C labeling plateaued
after 2 hours, we also compared the ratios of 13C lactate to citrate levels
at 2 hours of tracing, and confirmed that LM2 cells had the highest 13C
lactate/13C citrate ratio (Supplementary Fig. S4M). Pyruvate dehy-
drogenase (PDH) protein levels were lowest in LM2 cells (Fig. 3I)
whereas PDK protein levels were unchanged, indicating that regula-
tion of PDH activity is unlikely to be posttranslational (Supplementary
Fig. S4N and S4O). Together, these data indicate that the LDH–PDH
fulcrum associates with lactate production and overall glycolytic flux.

Interestingly, expression of glucose transporter SLC2A1 was higher
in LM2 compared with parental, whereas there was no change in
glucose transporter expression in BrM2 cells (Supplementary Fig. S4P
and S4Q). These suggest that although LM2 cells achieve high glucose
uptake and glycolytic flux by increasing the total number of pathway
channels, BrM2 cellsmarginally increase glycolyticflux comparedwith
parental cells by increasing turnover downstream.

Directly measuring metabolic flux can be challenging in a clinical
setting. We therefore hypothesized that although flux does not cor-
relate with metabolic gene expression in a linear pathway, ratios of
metabolic transcriptsmay better indicate cell function. Consistentwith
our above findings, LM2 cells had a significantly higher ratio of LDH/
PDH gene expression than both parental and BrM2 lineages, largely
driven by the change in LDHB (Fig. 3J; Supplementary Fig. S4R).

We were curious as to whether breast cancer cell lines, which have
the capability to form lung metastasis, have higher LDH/PDH gene
expression than non-lung metastatic breast cancer cell lines. To assess
this, we used data from the Broad Institute’s MetMap, which deter-
mined the potential and penetrance of various organ metastases in
multiple cell lines, and transcriptomic data of these cell lines from
DepMap (49–51).We find that breast cancer cell lines with high LDH/
PDHalso hadhigher lungmetastatic potential andpenetrance (Fig. 3K
and L), including MDA-MB-231 cells. This correlation did not hold
true for brain metastasis (Supplementary Fig. S4S and S4T). We
hypothesize that high LDH/PDH expression in the primary breast
tumor is indicative of future lung metastases, where the value may be
even more exacerbated (as we see in our LM2 lineage).

Clinical data show that LDH/PDH gene expression signature is
higher in breast cancers that metastasize to the lung

To test the clinical relevance of our findings, we asked whether the
ratio of LDH/PDH expression was higher in the primary tumors of
patients who developed lung metastasis. We analyzed the Metastatic
Breast Cancer Project dataset (37), which includes a diverse cohort of
>100 patients withmetastases inmultiple sites and has not only clinical
and mutational information but also transcriptional data. The most
common metastatic sites and top mutations in this cohort matched
those in the AACR Project GENIE cohort, indicating that both are
good representatives of the population (Supplementary Fig. S5A and
S5B). As with project GENIE, neither hormone receptor status nor
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Figure 3.

Experimental validation confirms higher glycolytic flux and identifies that a high ratio of LDH/PDH associateswith constitutive lactate efflux in LM2 cells.A,Glucose-
derived lactate turnovermeasured by 13C glucose tracing over 8 hours. One-wayANOVAparental versus BrM2 P¼0.005; parental versus LM2 P¼0.007; LM2/BrM2:
P¼ 0.06. B, Enzymatic activity of hexokinase. Fold change relative to parental: BrM2: 1.1-fold, P¼ 0.4; LM2: 7.4-fold, P¼ 0.00007. Fold change LM2/BrM2: 7.0-fold,
P ¼ 0.00006. C, Enzymatic activity of phosphofructokinase. Fold change relative to parental: BrM2: 1.8-fold, P ¼ 0.003; LM2: 3.3-fold, P ¼ 0.003. Fold change
LM2/BrM2: 1.7-fold, P ¼ 0.004. D, Enzymatic activity of glyceraldehyde 3-phosphate dehydrogenase. Fold change relative to parental: BrM2: 1.4-fold, P ¼ 0.002;
LM2: 2.3-fold,P¼0.00001. Fold change LM2/BrM2: 1.6-fold, P¼0.00003. E, Enzymatic activity of pyruvate kinase. Fold change relative to parental: BrM2: 0.98-fold,
P¼ 0.08; LM2: 1.2-fold, P¼ 0.04. Fold change LM2/BrM2: 1.2-fold, P¼ 0.03. F, Enzymatic activity of lactate dehydrogenase. Fold change relative to parental: BrM2:
0.7-fold, P¼0.007; LM2: 2.4-fold,P¼0.003. Fold change LM2/BrM2: 3.2-fold, P¼0.001.G,Percentage of 13C-labeled lactate, citrate, and pyruvate in LM2 cells. One-
way ANOVA pyruvate/citrate P ¼ 0.002; pyruvate/lactate P ¼ 1; citrate/lactate: P ¼ 0.003. H, Relative rates of lactate versus citrate 13C labeling. P value parental
versus BrM2 P ¼ 0.16, parental versus LM2 P ¼ 0.002, BrM2 versus LM2: P ¼ 0.001. I, Protein quantification of pyruvate dehydrogenase. Fold change relative to
parental: BrM2: 0.7-fold, P¼ 0.001; LM2: 0.5-fold, P¼ 0.02. Fold change LM2/BrM2: 0.7-fold, P¼ 0.08. For A to I, data are represented as mean� SD. J, Boxplot of
LDH/PDHgene expression ratio in all three lineages. Fold change relative to parental: BrM2: 1.2-fold,P¼0.2; LM2: 1.5-fold,P¼0.007. Fold change LM2/BrM2: 1.3-fold,
P ¼ 0.03. Data represented as mean � IQR. For all bar and boxplots, �, P < 0.05 compared with parental. � , P < 0.05 between BrM2 and LM2. No asterisk, P > 0.05.
K, Scatter plot of HER2-negative breast cancer cell lines that had lung metastasis in MetMap: lung metastatic penetrance versus potential. Cell lines are colored by
their respective LDH/PDH gene expression ratio. L, Cell lines were grouped into those that had greater than median penetrance and potential, or less than median.
Quantification of LDH/PDH in these two groups, P ¼ 0.03. See also Supplementary Fig. S4.
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oncogenic lesions correlated with organ site in the MBCP cohort
(Supplementary Fig. S5C and S5D). To determine whether metastatic
site correlated with transcriptomic state, we used nonnegative matrix
factorization to generate six archetypes from transcriptomics, and
clustered the samples using UMAP analysis (Supplementary Fig. S5E).
The top metastatic sites span several archetypes, indicating—also as
expected—that general transcriptomic signatures do not strongly
correlate with tropism (Supplementary Fig. S5F).

We then asked whether differences in the LDH/PDH ratio in the
primary tumor could predict tropism. We restricted the cohort to
patients whose biopsies were from the breast or chest wall, excluding
patients whose biopsies were only taken from distal sites. We then
classified patients according to whether they developed a lung metas-
tasis, brainmetastasis, or anymetastasis other than to the lung or brain
throughout the course of their cancer progression. Patients with lung
metastasis had a higher LDH/PDH expression ratio in their breast
biopsy than patients with other metastases, supporting our hypothesis
that a high ratio in the primary tumor is characteristic of future lung
metastasis (Fig. 4A). Patients with brain metastases did not have a
higher LDH/PDH ratio than those with other metastases. The high
LDH/PDH ratio in patients with lung metastases did not necessarily
correlate with high LDH expression (Supplementary Fig. S5G), and
there were no significant differences in the expression of LDH nor
PDH genes between patients with lung, brain, or other metastases
(Supplementary Fig. S5H). This supports our in vitro results that the
ratio between the two transcripts is a better indicator of cell function.
Similar to our in vitro results, SLC2A1 expression trended higher in
patients with lung metastasis (Supplementary Fig. S5I). Lung metas-
tases did not cluster by archetypes identified by gene expression
(Fig. 4B). Interestingly, the magnitude of the LDH/PDH ratio in
patient samples also did not cluster by archetype, indicating that the
LDH/PDH ratio is independent of the major transcriptomic cell state
in this breast cancer cohort (Fig. 4C). To see which features could be
predictors of tropism, we performed univariate feature ranking for
classification. The LDH/PDH ratio was the top ranked and only
significant feature among those tested, outranking general transcrip-
tomic archetype, mutational burden, and clinical traits (tumor stage
and subtype; Fig. 4D). General linear regression models selected the
LDH/PDH ratio as a significant correlate of lung metastasis but not
metastases to other organs (Fig. 4E). Neither LDHA, LDHB, PDHA1,
PDHA2, nor PDHB individually were significantly correlated with
tropism (Fig. 4D), suggesting that the ratio of LDH/PDH expression in
particular is a potential marker of breast cancer metastasis to the lung.

To test the predictive capability of LDH/PDH for lung metastasis,
we fit a general linear regression model with LDH/PDH from the
primary tumor as the predictor variable and presence or absence of
lung metastasis (at any point in time) in the patient as the response
variable. The area under the ROC curve was 0.78, suggesting a strong
correlation (Fig. 4F).We then binarized LDH/PDH as either “high” or
“low” based on its natural inflection point in our data (Supplementary
Fig. S5J) and trained a model on a subset of the data. We asked the
model to predict lung metastasis in test data, with only LDH/PDH as
the predictor. The LDH/PDH classification alone predicted the pres-
ence or absence of lung metastasis with an overall accuracy of 74%
(Fig. 4G).

Lactate efflux may be a convergent trait in lung metastases
Although the parental MDA-MB-231 lineage already has increased

aerobic glycolysis comparedwith noncancerous cells, our observations
suggest the lung-homing lineage has an even more augmented War-
burg effect, the most prevalent purpose of which is thought to be for

enhanced anabolism (52). Despite these differences, all three lineages
grew at similar rates, suggesting that the metabolic adaptation we
observed served a different purpose than faster biomass production
(Fig. 5A; Supplementary Fig. S6A). When we considered only cells in
the exponential phase of growth and excluded the initial lag-phase, the
brain- and lung-homing lineages grew slightly faster than the parental
lineage. These suggests that established metastatic tumors may mildly
outpace primary tumor cells in growth rate. However, the marginal
increase in exponential-phase growth rate was smaller than the
magnitude of metabolic changes observed above, supporting the
notion that the faster influx of glucose serves another function (53).

Despite different glucose uptake rates, BrM2 and LM2 cells were
equally sensitive to glucose deprivation (Supplementary Fig. S6B). We
hypothesized that increased acidification of the microenvironment
may give LM2 cells a selective advantage in certain environments.
Indeed, BrM2 cells were more susceptible to growth inhibition by low
levels of exogenous lactate than LM2 cells were (Fig. 5B).

To understand how this would affect growth in a spatially-
structured tumor, we employed the metabolic microenvironment
chamber (MEMIC): in this system, cultured cells are covered by a
glass plate such that only one edge of the well is exposed to media and
oxygen, forming a directional gradient of diffusible molecules con-
sumed or produced by the cells (54). This formation of self-generated
metabolic gradients of nutrients and waste mimics the natural gra-
dients found in a solid tumor. As expected, BrM2 cells grew more
poorly farther along the gradient, in regions with poor perfusion
(Fig. 5C; Supplementary Fig. S6C and S6D). However, LM2 cells
were mostly unaffected by the gradient (Fig. 5C; Supplementary
Fig. S6C and S6D). Taken together, our results suggest that LM2 cells
produce more lactate than BrM2 cells do and are not inhibited by an
acidic microenvironment, leading to an advantage over BrM2 cells in
certain environments.

To see if enhanced lactate production could be a feature of lung
metastasis in other cancer types, we measured fluxes in a KrasG12D/þ;
p53R172H/þ pancreatic cancer model with lineages that metastasize to
the liver and lung (31). As with our breast cancer model, the three
lineages had distinct metabolomes (Supplementary Fig. S6E). Com-
pared with both parental pancreatic cells and liver-homingmetastases,
lung-homing metastases had higher lactate efflux and extracellular
acidification (Fig. 5D and E; Supplementary Fig. S6F–S6I). Lung-
homing cells in this model trended toward higher glucose uptake than
the other lineages (Fig. 5D). 13C glucose tracing shows that lung-
homing cells had higher lactate turnover and glucose-derived 13C
lactate than the other two lineages did (Fig. 5F; Supplementary
Fig. S6J). However, lung-homing cells in the pancreatic cancer model
did not have a higher LDH/PDH gene expression ratio compared with
parental cells, and significantly but only modestly higher LDH protein
levels andmodestly lower PDHprotein levels compared with the other
lineages (Supplementary Fig. S6K–S6M). Nonetheless, LDH enzymat-
ic activity was markedly higher in the lung-homing lineage compared
with parental and liver-homing cells (Fig. 5G). Our results indicate
that lactate outputmay be a conserved feature in lungmetastasis across
more than one cancer type, but that different molecular mechanisms
can be associated with this trait in different cancers.

Discussion
Our results produced five biological insights: first, levels of mRNAs

and metabolic intermediates may anticorrelate with flux. Second,
different lineages evolved from the same line can have distinct heritable
metabolicfluxes that persist evenwhen cultured in the same conditions

A High LDH/PDH Ratio Predicts Breast Cancer Lung Metastasis

AACRJournals.org Cancer Res; 83(20) October 15, 2023 3487

D
ow

nloaded from
 http://aacrjournals.org/cancerres/article-pdf/83/20/3478/3371346/3478.pdf by U

niversity of C
atania user on 09 April 2024



ex vivo. These suggest that these metabolic adaptations in these
lineages are likely selected in different tissues, rather than plastically
changing in different environments. In our case, lung-homing cells
exhibited by far the greatest glucose uptake and lactate production
despite low levels of glycolytic intermediates. Third, this apparent
paradox can be reconciled if feedback inhibition of the glycolysis
pathway is prevented, a finding wemodeled with flux-balance analysis
and confirmed by 13C glucose tracing and measuring glycolytic
enzymatic activities directly. Fourth, this distinct metabolic behavior
in lung-homing cells was characterized by a high LDH/PDH ratio,
which also predicted lung metastasis in patients with breast cancer.
Fifth, this metabolic effect was also present in pancreatic cancer lung

(but not liver) metastasis. We can speculate that lactate production
itself may be a convergent evolutionary step for lung metastasis in
some cancers.

Gene signatures are typically sets of expression changes that may be
independent of each other. Our results support gene signatures that are
more complex (55): the LDH/PDH expression ratio may be more
important to maintain a high glycolytic flux in breast cancer rather
than the expression of either gene or both genes if their ratio does not
change (56). Interestingly, a mouse model of breast cancer metastasis
found that metastatic cells can upregulate both glucose consumption/
lactate production and oxidative phosphorylation compared with
parental cells, consistent with our results, but that liver metastases

Figure 4.

A high LDH/PDH ratio predicts lung metastases in clinical breast cancer database. A, Boxplot of ratio of LDH gene expression to PDH gene expression in patients’
primary tumors from The Metastatic Breast Cancer Project. The “Lung” classification includes patients who had lung metastases, “Brain” classification includes
patients who had brain/CNS metastases, and “Other” classification includes patients who had metastases other than to the lung or brain/CNS at any point in time.
Brain/other, P ¼ 0.9; lung/other, P ¼ 0.04; lung/brain, P ¼ 0.057. Data represented as mean � IQR. B, UMAP of transcriptomics of MBCP patients, colored by
archetype. Transcriptomes of patients who developed lungmetastasis are circled.C,UMAP of transcriptomics of MBCP patients, colored by LDH/PDH ratio. Patients
with lungmetastases are circled.D, Feature selection analysis of MBCP database: predictor rank and P value of clinical traits andmutational burden. Only one feature
(LDH/PDH expression) passed a P value of <0.05. E, Individual linear regressionmodels (lung, n¼ 8; brain, n¼ 8; liver, n¼ 25; bone, n¼ 46; lymph node, n¼ 15. Note
that these are not mutually exclusive; some patients had more than one of these metastases.) Because there was only one significant feature identified inD, we also
included the second ranked feature (mutation count). Because subtype and stage were significant features selected in Fig. 1, they were also included in our model
here. The LDH/PDH ratio correlated with lung but not other metastases. F, ROC curve of general linear regression model, with LDH/PDH ratio as predictor variable
and presence or absence of lung metastasis as response variable. G, Confusion matrix of model prediction, with absolute numbers of true positive, true negative,
false positive, and false negatives, as well as overall percent accuracy in predicting presence or absence of lung metastasis using only binarized LDH/PDH
as a predictor. � , P < 0.05; ns, nonsignificant. Data represented as mean � SD. See also Supplementary Fig. S5.
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regulate the balance between the two in a HIF-1a and PDK1-depen-
dent manner (16). These support our idea that metabolic balance is
more complex than the expression of genes taken independently, and
that expression in the context of other genes �and environmental cues
is important. Although lactate production coincided with reduced
mitochondrial metabolism in liver metastasis (16), lung metastasis in
our model increased both glucose-derived lactate and TCA cycle
intermediates, but increased lactate proportionally more. In addition,
LDH/PDH is not associated with liver metastasis in our patient
analysis, suggesting that different molecular mechanisms in liver
versus lung metastasis lead to a similar metabolic output.

The lung and brain are organs with very different metabolic
microenvironments, which may impose different selective pressures
on disseminated breast cancer cells. OurMEMIC data show that lung-
and brain-homing lineages could be selected differently depending on
the metabolic microenvironment. It remains an open question why
certain environments are favored, but there are several possibilities:

Metastatic cells have been shown to have intermediate gene expres-
sion signatures that reflect both primary tumors from their tissue of
origin and primary tumors from their disseminated site. In triple-
negative breast cancer, metastatic cells were more similar to primary
tumors from their destination site (43). Lung cells and lung tumors can
oxidize lactate as a fuel (29, 30, 57), and it is therefore possible that
metastatic cells that colonize the lung are selected for their lactate
production as a carbon source for the organ tissue ormimic features of

lung cancers that augment their ability to form macrometastases.
Secreted lactate can also lower the pH of the microenvironment and
may trigger tissue-repair responses in stromal cells that help tumor
development (58). Lactate has been shown to increase migration and
metastases by degrading the extracellular matrix (59).

Interestingly, exogenous lactate decreases glucose utilization in the
lung (60). This may increase glucose availability for colonizing cells,
leading to a feed-forward loop in lung metastases. Consistent with our
results, previous work found that pancreatic cancer cells that undergo
the epithelial–mesenchymal transition increase lactate output (61).
Lung tissues may select for metastases with the highest lactate pro-
duction regardless of their cell of origin.

On the other hand, the central carbon metabolic alterations in brain-
homing cells compared to parental cells were modest, especially when
contrasted with the strong alterations we saw in lung-homing cells. This
could indicate that the selection formetabolic adaptationwas stronger in
the lung.However, it could also indicate that allmetastatic cells originally
carried the adaptations found in LM2, but that the BrM2 lineage, in the
process of overcoming additional challenges like crossing the blood–
brain barrier, lost some of these metabolic alterations in favor of other,
more necessary, adaptations to the brain microenvironment. BrM2 cells
only exhibitedmarginally higher glucose uptake relative to parental cells,
and previous work showed that breast cancer brain metastases prolif-
erated in the absence of glucose by catabolizing amino acids for
gluconeogenesis (47). It is possible that the metabolic composition of

Figure 5.

Lactate efflux in lungmetastasesmaybe a convergent trait across cancer types.A,Growth rates of parental, BrM2, and LM2 lineages. Cell label (YFPormCherry) does
not affect growth rate. P > 0.05 for all comparisons. B, Growth rates of BrM2 and LM2 cells with exogenous lactate. C, Growth rates of BrM2 (left) and LM2 (right)
in MEMIC chambers, cells labeled with YFP. For B and C, � , P < 0.05 compared with first bar in each panel. � , P < 0.05 between other groups. No asterisk, P > 0.05.
D,YSI analysis of glucose uptake and lactate efflux in pancreatic cancer cell lines: parental, liver-homingmetastatic lineage, lung-homingmetastatic lineage. Glucose
parental versus lung-homing P ¼ 0.09. Lactate parental versus lung-homing P ¼ 0.006, liver-homing versus lung-homing P ¼ 0.02. E, Seahorse analysis of
basal ECAR aswell as ECAR after mitochondrial inhibition by antimycin A and rotenone in pancreatic cancer cell lines. ForD to E, � , P < 0.05 compared with parental.
� , P < 0.05 between liver- and lung-homing. No asterisk, P > 0.05. F, Glucose-derived lactate turnover measured by 13C glucose tracing over 8 hours. One-way
ANOVA parental versus liver-homing P ¼ 0.06, parental versus lung-homing P ¼ 0.045, liver-homing versus lung-homing P ¼ 0.039. G, Enzymatic activity
of lactate dehydrogenase. Lung-homing relative to parental: P ¼ 0.0005, lung-homing relative to liver-homing: P ¼ 0.0003. �, P < 0.05 compared with
parental. �, P < 0.05 between liver- and lung-homing. No asterisk, P > 0.05. Data represented as mean � SD. See also Supplementary Fig. S6.
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the brain, anorgan that consumes glucose at high rates, imposes selection
for cells that avoid competing with brain cells for this resource (62).

The diverse metabolic changes we observed in the three lineages
suggest that a primary tumor induced by a set of driver genes can still
have underlying diversity at the metabolic level, driven by nondriver
genetic differences. This would reinforce that metabolic rewiring in
cancer cells is more complex than single oncogenic changes (63).
However, we cannot rule out the possibility that the cells in the primary
lineage that ultimately produced BrM2 and LM2 had mutations in
driver genes that the rest of the primary lineage did not share, and were
undetected in the primary tumor due to low abundance. Another
possibility is that alterations in common driver genes occur at the
transcript, rather than genomic level, in metastatic lineages. A study in
MDA-MB-231 cell lines found c-myc overexpression in metastases,
especially in the bone-homing lineage (25). Disseminated cells may
also be plastic due to reversible epigenetic states that can be repro-
grammed depending on the distal tissue (64).

Perhaps most importantly, our work warns that metabolomic
profiling alone—or even in combination with transcriptomic profil-
ing—may help identify alterations in metabolic pathways but may not
suffice to show how cells use their metabolic fluxes. The static pictures
provided by metabolomics and transcriptomics may require a com-
bination of fluxmeasurements andmathematical models to show how
cells rewire metabolism. A recent study found that oxidative phos-
phorylation metabolites and transcripts were increased in microme-
tastases compared with primary tumor cells, and inhibition of that
pathway reduced lungmetastases inmousemodels (65). Although this
seems to contrast with our data, the study is consistent with both ours
and others’ findings that metastatic cells in general increase bioener-
getics. Although important for early steps in the metastatic cascade,
our results would indicate that establishedmacrometastases in the lung
carry adaptations that include an enhanced Warburg effect.

We focused on fluxes through central carbon metabolism, but we
acknowledge that themetastatic process, including organ-specificmetas-
tasis, likely involvesmanyother secreted and consumedmetabolites, and
we did not directlymeasure theflux for all relevant compounds (66).We
also do not yet know whether the metabolic changes we identified were
the cause of lung- or brain-specific metastasis or a byproduct of the
selection at the distal organ, a question we will explore in future studies.
Together, our in vitro, in silico, and clinical data analyses highlight that
metabolism—currency of all physiologic processes—plays an essential
role in the connection from gene to phenotype in metastatic disease.
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