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ABSTRACT

In recent times, Machine Learning algorithms have gained significant interest in the
area of infrastructureless networks. Infrastructureless wireless networks are an important
class of wireless networks that is best applicable for scenarios where there is temporary
and localized telecommunication demand. Machine Learning algorithms could play an
important role in providing reliable and energy efficient communication and resource
management; indeed it can be beneficial in handling the large volumes of computation
and communication as required by evolving wireless applications.

In this context, this thesis was realized with the aim of studying the relevant aspects
concerned with application of Machine Learning in infrastructureless networks. In par-
ticular, in the first part of this work the application of Machine Learning in the scenario
of Wireless Sensor Networks is addressed. More specifically, the application of Feder-
ated Learning is studied and combined with model gossiping to provide energy efficient
operations. Also, a software defined networking approach is introduced for wireless sen-
sor networks with data mules. A simple machine learning algorithm is implemented to
forecast the route of the data mule.

In the second part of this work, a Transfer Learning approach is introduced for detect-
ing anomalies in driving behaviour. The transfer learning approach with convolutional
neural networks based auto-encoders is applied to a specific case study in which rid-
ing data has been collected from different bicyclists riding along the same path. A
layer separation approach is also introduced to partition the Neural Network layers of
the model into some layers specific of the user behaviour and others layers specific of
the road-environment. The layer separation approach has been experimented with the
dataset.

Finally, this thesis explores also the use of ML in specific challenging infrastructureless
networks, namely underwater networks. Specifically, a hybrid acoustic/LoRa system is
designed and developed to collect data from underwater in real time. The collection of
multimedia data in real time could pave the way for utilization of Machine Learning
algorithms for evolving underwater applications.

Keywords: 5G, Machine Learning, Federated Learning, Transfer Learning, Layer Sep-

aration, Underwater Communication.

1



Chapter 1

Introduction

In the recent years, there has been a drastic growth in the number of connected
devices and in the number of Internet users. Therefore the requirement for next
generation wireless networks is huge since they should provide energy efficient,
low latency communication and intelligently control the connected devices in
real time. Sensor measurements from Wireless Sensor Networks (WSNs), sensor
readings from autonomous cars and other infrastructureless networking applica-
tions generate large volumes of data that must be collected and processed in
real time. Infrastructureless networks are wireless networks that do not rely on
an infrastructure such as base stations or access points. The communication and
computing requirements can only be achieved through the inclusion of Machine
Learning (ML) techniques in infrastructureless networks. In the recent past, ML
algorithms have gained significant attention among the wireless networking and
communication research communities. ML-based algorithms and techniques can
enable wireless network analysis and resource management and can be beneficial
in handling the large volume of communication and computation for evolving
networking applications.
Machine learning (ML) techniques can dramatically increase the effectiveness

and efficiency of wireless sensor networks (WSN) [1]. Both the academic and
industrial R&D communities are showing increasing interest in the development
of solutions for Machine Learning (ML) in Wireless Sensor Networks (WSNs).
For example, ML can be exploited to optimise networking operations [2, 3] and
locally process the data in order to extract the relevant information from the
collected measurements[4]. Therefore, it will be sufficient to send significant in-
formation only, instead of large amounts of data, thus saving communication and
energy resources. Striking evidence of the interest of companies on the use of
ML for WSNs is that Google Brain has recently released TensorFlow Lite[5], an
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CHAPTER 1. INTRODUCTION

open-source ML framework that converts pre-trained TensorFlow models. These
models can be thus executed in Android or iOS-based mobile phones, Linux-based
embedded devices, and even micro-controllers.

Nowadays, the use of TensorFlow Lite is in line with the widespread vision
regarding the use of ML in WSN: the models are executed in the sensor nodes
(inference), while training is performed in some resource-rich servers. Indeed,
model training implies heavy computations which cannot be executed by the
platforms usually employed to realize WSN nodes. However it is expected that
future generation WSN devices will be able to perform this in-network training
since embedded devices are becoming more and more powerful (e.g. new Rasp-
berry Pi platforms support the full TensorFlow 1.9 and, thus, are able to do
training). Also, under the point of view of distributed learning techniques, novel
techniques are being developed which ask for lower amount of resources in those
nodes which take part to the learning process [6]. Many communities are working
in this direction and the support for training on-device is in the TensorFlow Lite
development roadmap1. So executing the training process in the sensor nodes
will be not only possible, but will represent the ultimate horizon of the smart
dust concept, which has now reached its adulthood [7].

This thesis aims to analyze aspects related to the exploitation of ML in infras-
tructureless networks. In particular, the main objectives of the thesis are:

− Wireless Sensor Networks: In this context, the first work regards the design
and development of distributed ML algorithms in WSN. The application of
well known Federated Learning (FL) mechanism in WSN is studied. Proto-
cols were designed by combining FL and Model Gossiping to save energy and
communication resources and to overcome the funnelling effect. Addition-
ally, centrality metrics were exploited in achieving the convergence quickly.
Also, a hybrid clustering framework was considered in which nodes have dif-
ferent ML training capabilities. The learning protocols were experimented
with different ML algorithms such as auto-encoders, Long Short Term Mem-
ory (LSTM) network and Generative Adversarial Networks (GANs). The
second work is about applying Software Defined Networking (SDN) to WSN
with data mules. The movement of the data mule is forecast by the SDN
controller and the forecast positions are considered to generate the flow
table entries to be installed in the sensor nodes and schedule their appli-
cations. To this purpose, it is expected that the drone will move to the
locations where abnormal conditions are observed by the sensors. A simple

1http://www.tensorflow.org/lite/guide/roadmap
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CHAPTER 1. INTRODUCTION

and efficient decision tree algorithm is implemented, which takes the values
measured by the sensors as inputs, to forecast the route of the data mule.

− Vehicular Networks: In this context, the first work is about monitoring and
analysing the driving behaviour in real time. This can be helpful in detect-
ing anomalies and warning the driver and nearby road users. Convolutional
Neural Networks (CNN) based auto-encoders were applied for this task.
Additionally, the transfer learning approach was incorporated to consider-
ably reduce the data and time required for training the ML models. The
transfer learning approach was applied to a specific case study in which
data was collected from different bicyclists riding along the same path in
the city of Catania. The second work is about achieving layer separation in
deep neural networks for road-user interaction analysis in smart road envi-
ronments. ML can play an effective role in analysing the driving behaviour,
which could be helpful in detecting anomalies and thus, warning the driver
timely. However, it is very demanding and crucial to build models for all
the users which would be effective in all kinds of road conditions. In fact,
it is obvious that every driver has her own driving style which would vary
depending on the road-environment. To address this issue efficiently, a V2I
framework is designed based on a training technique that partitions the
Neural Network (NN) layers of the model into some layers specific of the
user behaviour and others layers specific the road-environment. specific of
the road-environment where the vehicle is currently located.

− Internet of Underwater Things: This work is about real time monitoring
of underwater historical sites and the marine life. One of the most critical
issues is indeed associated to the need for developing a network of devices
which can connect and remotely deliver data to a front-end elaboration cen-
ter. To this purpose, the need for increasing network lifetime and improving
the quality of the monitored parameters, while guaranteeing real time con-
trol of the network, calls for the design of tools for remotisation, actuation
and control. In this work, an integrated acoustic/LoRa system has been
designed and developed for transmission of multimedia sensor data over the
Internet of Underwater Things. The developed real time monitoring sys-
tem paves way for the application of ML algorithms to various intelligent
underwater applications.

This thesis work is structured as shown in Fig. 1.1. Chapter 2 will discuss the
application of ML solutions in WSN scenarios. More specifically, the chapter ad-

4



CHAPTER 1. INTRODUCTION

Figure 1.1: Structure of this thesis

dresses the challenges and solutions in the design of distributed and centralized
ML in WSNs. Similarly chapter 3 will discuss the application of ML solutions in
vehicular scenarios. In chapter 4, the underwater communication scenario is pre-
sented where ML can play an important role in the communication of multimedia
data. Finally, in Chapter 5 the conclusions of this thesis will be drawn.

5



Chapter 2

Wireless Sensor Networks

2.1 Introduction

This chapter discusses the application of ML in the WSNs. In this context, the
first set of works carried out were focused on the design and development of dis-
tributed ML protocols for WSNs. The concept of FL in WSNs and the challenges
and issues in it were studied. To overcome the issues in applying FL in WSNs,
several gossiping based distributed ML protocols were developed. The topological
information of the network was considered in enhancing the protocols. Also, the
application of distributed ML was studied in scenarios where the nodes exhibit
different training and transmission capabilities. The developed protocols were
experiment with various ML algorithms such as the auto-encoders, GANs and
LSTM recurrent neural networks. The second work in this chapter was focused
on applying SDN to WSN with data mules. The movement of the data mule
is forecast by the SDN controller and the forecast positions are considered to
generate the flow table entries to be installed in the sensor nodes and schedule
their applications. To this purpose, it is expected that the drone will move to
the locations where abnormal conditions are observed by the sensors. The well
known decision tree algorithm was exploited which takes the values measured by
the sensors as inputs, to forecast the route of the data mule.

2.2 Federated Learning (FL)

Conventional centralized ML approaches require to have data delivered to a cen-
tral entity where such data is used for training a ML model. This may not be
feasible in several scenarios because of the consequent privacy issues (e.g. in case
of biomedical applications or chemical monitoring applications), as well as due

6



CHAPTER 2. WIRELESS SENSOR NETWORKS

to the resulting communication overhead and cost implied by the transmission of
large data-sets [8], [9].

Deep Neural Networks are an example of ML application in a centralized net-
work. Here the internal parameters of the neural network, i.e. the weights, are
optimized to minimize a loss function, which measures the difference between the
prediction done by the neural network and the real data [10]. An iterative pro-
cedure called training is executed to minimize the loss; indeed at each step, the
system computes the gradient of the loss function w.r.t. the system weights and
the training data set, and the result is used to update the weights correspondingly.
This basic procedure is called Stochastic Gradient Descent (SGD) [11] which is
so far the standard technique employed in Neural Networks.

However in real wireless network settings, nodes capabilities are limited and
distributed decentralized approaches are more suitable. In fact, in distributed
approaches the result of the local training is sent to a central server instead of
the data. This methodology allows to split the computational load among multiple
devices and reduce the amount of information transmitted by individual devices.

The most popular decentralized ML approach is Federated Learning (FL), which
has been proposed by Google [12], and is experiencing a huge success especially
in the framework of edge computing and caching. FL overcomes the limitations
of traditional ML approaches that require centralizing the training data on one
single machine. FL has indeed been proposed originally by Google [12, 13] as
a decentralized mechanism using the on-device processing capabilities and
the collected data to train the model in a distributed manner [12]. FL enables
the involved nodes to collaboratively learn a shared model while keeping all the
training data on device.In FL, each member of a group of federated learners
trains its model locally, using its data only and sends it to some entities, called
aggregation points, which are able to aggregate local models in a unique one. Then
this aggregated model can be sent back to the distributed federated learners for
further training and use.

Federated Learning has been proficuously used also in the framework of medical
healthcare. For example, in [14] a survey on application of FL to healthcare
is presented. Indeed the use of AI would imply centralized data collection and
processing. This can be impossible due to relevant scalability issues associated to
current healthcare networks and because of increasing data privacy concerns. FL
exhibits in general also the advantage that data is kept where it was generated,
so improving privacy.

Use of FL for smart healthcare was also addressed in [15] where it allows to co-

7



CHAPTER 2. WIRELESS SENSOR NETWORKS

Figure 2.1: Federated Learning mechanism.

ordinate multiple clients (e.g., hospitals) to perform AI training without requiring
data dissemination and sharing. In [15] the application of FL to study tumor seg-
mentation is discussed. Also in [16] differentially private FL is applied for analysis
of histopathology images, which represents the most complex and largest type of
medical images. As compared to traditional techniques, this distributed training
achieves comparable performance to conventional training, but with good privacy
guarantees. FL offers also the advantage that models can be exchanged instead
of large data-sets and this improves the communication resources efficiency.

To overcome the limitations of standard implementations of FL [8, 17, 18],
while exploiting the advantageous features of multihop communications typical
of WSNs, solutions have been recently proposed that further distribute learning.
This is possible by enabling model aggregation at all network nodes (and not only
in the aggregation point) that, therefore, exchange their models with their one
hop neighbors.

In FL there are several federated learners that maintain a local part of the data-
set and use it to train their models locally. Local data-sets can be different in size
and features.

As sketched in Fig. 2.1, the locally elaborated models are sent to a server, called
aggregation point, which aggregates them; the aggregated model is then sent to
the learners again that might train it further, using the local data.

Let us assume to have a large population of wireless sensor nodes that possess
raw data and have to use it to train their ML model. In order to avoid privacy
issues and reduce bandwidth and energy consumption, these nodes do not disclose
their raw data to the aggregation point. Indeed, at each iteration t, FL aims at

8
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solving a distributed optimization problem in the form [19]:

min
w

F (w) (2.1)

being

F (w) =
K∑
k=1

pkFk(w) (2.2)

where F (w) is the objective function, i.e., the global loss function, w is the vector
containing the model parameters, K is the number of network nodes, pk is the
weight of the k-th learner such that

∑K
k=1 pk=1 and Fk(w) is the loss function

for the k-th node when the model is w.
As an example, if we assume to weight in the same way all training data samples

and denote the number of training data samples of the k-th federated learner as
nk and the number of training samples across the K federated learners in the
network as n, i.e., n =

∑K
k=1 nk, then pk is defined as pk = nk

n
. The local loss

function for each learner k, Fk(·), needed in eq. (2.2), can be calculated as:

Fk(w) =
1

nk

nk∑
j=1

f(w;Xk,j) (2.3)

where Xk=(Xk,1 . . .Xk,nk
) represent the nk data samples available at the k-th

learner and f(·, ·) is the per sample loss function using the trained model param-
eter w estimated for example in terms of mean square error or cross entropy. This
function is obtained upon applying the model w and input data Xk where it is
assumed to have non IID data.

At the generic epoch t, the k-th federated learner tries to minimize Fk(·) given
in eq. (2.3) and sends the resulting model parameters wk at each iteration to the
aggregation point where the global model w is built as

w =
K∑
k=1

pk ·wk (2.4)

Note that at each learner the process can be repeated for t ∈ E epochs locally
before sharing the models with the aggregation point in R iterations. The aggre-
gation point sends the global model to the federated learners that will execute
for another set of epochs the inference and then at next iteration send their w

till the global loss converges as desired.
The FL mechanism is efficient in terms of accuracy and convergence of the

model, although many researchers have recently focused on the associated cost

9
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for executing the different iterations [19].
Federated learning has been deployed in practice by major companies. Examples

taken from [8] are:

• Google is applying FL in the Gboard mobile keyboard as well as in Pixel
phones [20] and in Android Messages.

• Apple is using cross-device FL in iOS 13 for applications like the vocal
classifier for “Hey Siri”.

• doc.ai is developing cross-device FL solutions for medical research [21]

• Snips has explored cross-device FL for hotword detection [22].

Other relevant applications of FL have recently emerged in the field of smart
city sensing [23]. In contexts relevant to our scenario, Liu et al. in [24] proposed
a hybrid aerial-ground air quality sensing framework that exploits FL among
Unmanned Aerial Vehicles (UAVs). The central server sends the copy of the global
model to all the UAVs and each UAV improves the global model by learning on
the local data-set.

Federated learning has been also recently proposed for privacy-preserving mo-
bile scenarios. As an example, in [25], in order to limit privacy leakage in federated
learning for mobile systems, authors proposed to use Trusted Execution Environ-
ments (TEE). Specifically the latter were employed in clients for local training
as well as on servers for secure aggregation. Each model was trained inside the
trusted area until convergence, while preserving privacy and not leading to seri-
ous system overhead. Another novel application of FL is presented in [26]. Here
collaborative modeling is addressed by presenting the Federated Learning as a
Service (FLaaS) paradigm while also providing a proof of concept by implement-
ing it on a mobile phone setting.

2.2.1 Federated learning in WSN

In this section, the reason for why FL cannot be applied as it is in WSN is
discussed.

A WSN is considered consisting of 8 nodes as sketched in Fig. 2.2, and let us
assume that FL is applied and that node A is the aggregation point, whereas all
other nodes denoted as L1, L2,..., L7 are the federated learners.

Models generated by the federated learners will traverse several hops before
arriving at the aggregation point A. For example, the model generated by learner

10
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Figure 2.2: Wireless network scenario

L7 will pass through L6 and L3 before reaching A. This will require a large number
of transmissions by wireless sensor nodes. More specifically, if we consider the tree
spanning all network nodes, whose root is node A, we can calculate the number
of model transmissions needed at each learning iteration as

N =
H∑
l=1

NDl
· l (2.5)

where H is the maximum depth of the aforementioned tree and NDl
is the number

of nodes with depth l in the spanning tree. In the example in Fig. 2.37, the number
of model transmissions will be N =

∑3
l=1NDl

· l = 2 · 1 + 4 · 2 + 1 · 3 = 13

Furthermore, it is clear that the nodes that are close to the root, A, will be
involved in several relaying operations. For example in Fig. 2.37, node L3 is
responsible for forwarding models w3, w5, w6, and w7 whereas nodes L2, L4, L5
and L7 will be responsible for the transmission of their models only. This is the
well known funneling effect problem which is the reason for unfairness and may
result in a rapid exhaustion of batteries in nodes close to the aggregation point A
and, thus, as a consequence, can lead to a significant reduction in network lifetime.
Funnelling effect refers to the intense utilization of communication resources and
energy by the nodes located at close proximity to the aggregator node, due to the
delivery of packets from the other nodes. Hence the nodes closer to the aggregator
node consume the resources at a faster rate than the rest of the nodes [27],[28].

One obvious way to overcome this funneling effect is to exploit the multihop
communication paradigm by aggregating models at intermediate nodes. For ex-
ample, learner L7 sends its model parameters to its parent node L6. Instead of
forwarding model w7 to its parent L3, node L6 performs an average of its own
model parameters w6 and those sent by L7, w7, thus issuing w

(A)
6 . Only the re-
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sulting aggregated model will be forwarded up-words in the spanning tree towards
the aggregation point A. In other terms, a node will wait for the models coming
from all its clients in the routing tree. The node will aggregate them with its own
model and will send only the result of such operation to its parent node. In our
example, L3 will wait for the models coming from L5 and L6 and will send the
aggregation of w3, w5 and w(A)

6 to the aggregation point.
Such an approach would reduce the transmission significantly. However, it in-

volves that the aggregated model is built in the aggregation point and then flooded
in the network. Furthermore, it relies on knowledge of a route towards the ag-
gregation point in each node, which is not always the case. To solve such issues,
gossiping has been proposed as explained in the next Section 2.2.2.

2.2.2 Gossiping for FL

In this section, the major relevant research contributions and highlight how
MGM-4-FL goes beyond the state of art is discussed.
Gossiping was initially conceived to solve the -so called- consensus problem by

exploiting the computing resources at each node to reduce the amount of data
that needs to be transmitted in the network. Therefore, gossiping can be used
to save energy and communication resources, so extending network lifetime, and
reducing latency [29–31].

Gossiping thus captures the condition where a set of network agents must
achieve a shared opinion through exchanges of local information with neighbors.
In WSN, gossiping has applications in distributed inference and detection [32,
33].

Recently, the use of gossiping has been investigated in the context of FL as
well, where consensus has to be achieved regarding the ML model. Therefore it
is assumed that each node has a value or set of values, which in our case are the
model weights. The objective of gossiping is to allow all nodes to achieve shared
estimation on the average of all models, which is what FL tries to do at each
iteration.

Early examples of such schemes are presented in [34], [35], [36]. Nodes exploit the
locally observed data and collaborate with their one hop neighbors to collectively
learn a model that best fits the data collected by the entire network.

One of such schemes is proposed in [37] which is supported by theoretical re-
sults regarding its performance. In [38], a fully distributed scheme is proposed
that adapts the transmission rates of individual nodes to control network density
while keeping communication time required to exchange the models below appro-
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priate thresholds. Significant step towards the practical applicability of gossiping
is achieved in [39] where the network constraints are taken into account. A novel
class of FL algorithms are introduced to improve convergence and a prototype
implementation is presented. In [40], a thorough comparison of FL and Gossip
Learning is provided and the authors examine the aggregated cost of machine
learning in both the cases. Experiments are performed with different distribu-
tions of training data and the authors show that Gossip learning performs better
than FL in all the scenarios where the training data is uniformly distributed over
the devices. Similarly in [41], a segmented gossip approach is proposed which
fully utilizes node to node bandwidth. The proposed segmented approach also
has good training convergence. Experiment results show that the training time is
considerably reduced when compared to the standard FL approach

Table 2.1 summarizes the relevant literature on Gossiping for FL discussed
above.

2.3 MGM-4-FL: Combining Federated Learning

(FL) and Model Gossiping

In this section, the MGM-4-FL (Model Gossiping Method for Federated Learning)
protocol is introduced which is based on combining FL and model gossiping.

More specifically in Section 2.3.1, the design objectives and rationale of MGM-
4-FL are discussed. Then in Section 2.3.2,the operations of MGM-4-FL are illus-
trated.

2.3.1 Objectives and rationale

Objective of MGM-4-FL is to support distributed learning by applying gossip-
ing in energy constrained WSN, based on the multihop wireless communication
paradigm. Therefore, under certain circumstances that will be described later,
a given node will transmit its model parameters to its one hop neighbors. Such
neighbors will use the received parameters to update their own model and will
further train it. Once said j the node that has transmitted its model parameters,
wj, its generic neighbor k will update its model as

wk = α ·wj + (1− α) ·wk (2.6)

where α is a weight parameter that we set larger than 0.5 as discussed later.
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Relevant Related work
Ref. Year ML Algorithm Theoretical

Analysis
Description

[36] 2021 Auto-Encoders No Gossiping combined with
FL to improve the efficiency
of communication resources
use in WSNs. Simulation re-
sults show that gossiping
can help in improving signif-
icantly the performance in
terms of resource efficiency

[37] 2019 Deep Neural
Network and
Linear Regres-
sion

Yes Fully decentralized frame-
work in which nodes com-
municate only with their
one-hop neighbours to learn
the shared model. The pro-
posed work is supported by
theoretical results.

[38] 2020 Convolutional
Neural Networks

Yes Decentralized learning ap-
proach that adapts the
transmission rates of indi-
vidual nodes to control net-
work density while keep-
ing communication time re-
quired to exchange the
models below appropriate
thresholds.

[39] 2020 Convolutional
Neural Networks
and 2 Layers
Neural Network

Yes Consensus-Based fully Fed-
erated averaging approach
to improve convergence
with a prototype implemen-
tation.

[40] 2019 Logistic Regres-
sion

No Comparison of Federated
Learning and Gossip learn-
ing algorithms. Simulations
results show that gossip
learning is a suitable decen-
tralized alternative for Fed-
erated Learning.

[41] 2019 Convolutional
Neural Networks

No A segmented gossiping ap-
proach that fully utilizes
node-to-node bandwidth for
good training convergence.

Table 2.1: Summary of relevant papers.
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Note that if the loss function Fk(w) is convex, the operation in eq. (2.16) is
performed only in the case Fk(wj) < Fk(wk). When the loss function Fk(w)

is not convex, we will update wk with a probability which decreases when the
difference between Fk(wj) and Fk(wk) increases.

Such sequence of actions are denoted as protocol iteration or iteration, in short.
A further constraint of MGM-4-FL is that each node should exploit local infor-

mation only, i.e., information produced by the node itself and the one hop neigh-
boring nodes. As a consequence, MGM-4-FL operations must be asynchronous
and uncoordinated.

Given the energy limitations characterizing WSNs, MGM-4-FL operations must
be as effective as possible; thus, model transmissions and consequent training
iterations, should be executed when the resulting expected reduction in the overall
loss, F (w) in eq. (2.2), is significant. To this goal,

• at the end of a protocol iteration, each involved node will broadcast its
updated loss value;

• nodes store the values of loss broadcast by their neighbors. Therefore, each
node, k, maintains updated values of Fj(wj), for all j ∈ Φk, where Φk

represents the set of neighbors of k;

• each node, k, schedules the transmission of its model parameters after a
time interval of duration proportional to Fk(wk)/maxj∈Φk

Fj(wj).

As a result, iterations are expected to be triggered by nodes that have a high
value of the ratio maxj∈Φk

Fj(wj)/Fk(wk) and thus the MGM-4-FL scheme is
expected to avoid iterations that are likely to bring low loss reductions.

Furthermore, the communication and computing load must be distributed be-
tween all network nodes as fairly as possible. This is necessary to avoid that a few
nodes are overloaded and, thus, their batteries are exhausted rapidly, so reducing
the lifetime of the entire network. To achieve this goal, the MGM-4-FL scheme
exploits the boost factor which has a high value for nodes that have received the
model parameters sent by one of their neighbors, say k, and is reset to one for
node k. As a result, the boost factor is expected to be high for nodes that did
not transmit their model parameters in the recent past and low for the nodes
that, instead, did transmit their model parameters recently. Each node schedules
the transmission of its model parameters after a time interval of duration recip-
rocal to its boost factor. Note that since the boost factor is increased by nodes
that have just received the model parameters by one of their neighbors, its use
facilitates the spread of fitting models.
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2.3.2 MGM-4-FL Protocol Details

In this section more details regarding the MGM-4-FL operations and how they
work in a simple scenario is discussed. More specifically, a network of four nodes
deployed according to a linear topology is considered as shown in Fig. 2.3 (leftmost
corner).

Algorithm 1 represents the pseudocode for the protocol run by the generic node
k. In the pseudocode LLk represents the maximum loss of the neighboring nodes
of k, that is LLk = maxj∈Φk

Fj(wj)

At the startup, the MGM-4-FL node initializes the boost factor and the maxi-
mum loss of the neighboring nodes to one, i.e., Bk = 1 and LLk = 1; furthermore,
the model is trained using the local data Xk and starting from random initial con-
ditions, RND. The training operation is executed for a given number of epochs,
locally, at each learner. Therefore, at the end of the initialization phase, which
is sketched in lines 1-5 of Algorithm 1, node k will get a local model wk and an
estimate of its current loss Fk(wk). Using such initial parameters the node sets a
timeout at time t(next)k = t+T ·Fk(wk)/(Bk ·LLk), where t represents the current
time and T is a constant value which is set in such a way that protocol operations
are sparse in time1.

For example, in Fig. 2.3 the loss values for the four nodes at the end of the
initialization phases are F1(w1) = 312.76, F2(w2) = 52.20, F3(w3) = 29.16, and
F4(w4) = 48.57 and therefore, the four nodes will set their timeouts at times
t
(next)
1 = 312.76 · T , t(next)2 = 52.20 · T , t(next)3 = 29.16 · T , and t

(next)
4 = 48.57 · T ,

respectively. Note that Fig. 2.3 was obtained assuming that the startup time is
t = 0 for all nodes.

When the initialization phase is completed, MGM-4-FL executes the regular
operations, sketched in lines 6-34 of the Algorithm 1, which are event based.
More specifically, three types of events can occur:

1. The local timeout elapses, i.e., current time is t(next)k : in this case, the node
executes the operations sketched in lines 9-16 of Algorithm 1.

2. The model parameters, wj, of the neighboring node j are received: in this
case the node will execute the operations sketched in lines 17-28 of Algo-
rithm 1, including retraining of the model for a given number of epochs.

3. The new loss value, Fj(wj) of the neighboring node j is received: in this case
the node will execute the operations sketched in lines 29-34 of Algorithm 1.

1In our experiment, we have set T equal to a constant proportional to the average time
required to train the model local data.
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Algorithm 1 MGM-4-FL protocol
1: /* Protocol initialization */
2: Initialize Bk=1
3: Initialize LLk=1
4: Initialize wk=train_model(Xk,RND)
5: t(next)k = t+ T · Fk(wk)/(Bk · LLk)
6: /* Regular operations */
7: while Protocol initialization do
8: Wait for Event
9: if Event.Type==time-out then

10: /* Node k will send its model parameters wk */
11: Broadcast(wk, Fk(wk))
12: Wait for the updated loss values
13: LLk = maxj∈Φk

Fj(wj)
14: Bk = 1
15: t

(next)
k = t+ T · Fk(wk)/(Bk · LLk)

16: end if
17: if Event.Type == received wj then
18: /* Node k is receiving the model parameters wj from neighbor node j

*/
19: Bk = Bk + 1
20: LLk = maxj∈Φk

Fj(wj)

21: t
(next)
k = min{t(next)k , t+ T · Fk(wk)/(Bk · LLk)}

22: Evaluate Fk(wj)
23: if Fk(wj) ≤ Fk(wk) then
24: wk = α ·wj + (1− α) ·wk

25: wk = train_model(Xk,wk)
26: Evaluate and Broadcast Fk(wk)
27: end if
28: end if
29: if Event.Type == F (wj) received then
30: /* Node k is receiving the updated loss value F (wj) from node j */
31: LLk = maxj∈Φk

Fj(wj)

32: t
(next)
k = min{t(next)k , t+ T · Fk(wk)/(Bk · LLk)}

33: end if
34: end while
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As reported in lines 9-16 of Algorithm 1, when the timeout elapses, the node will
broadcast its model parameters wj and then will wait for receiving the new values
of loss estimated by the neighboring nodes. In fact, the neighboring nodes upon
receiving the model parameters, under certain circumstances, will send updated
values of their loss. This will be explained later and is sketched in line 26 of
Algorithm 1.

In the case shown in Fig. 2.3, node 3 has the lowest value of the timeout pa-
rameter, i.e. t(next)3 = 29.16 · T . Therefore, as reported in line 9, it will broadcast
a message containing its model parameters w3. Such message will be received
by nodes 2 and 4 which will execute the operations sketched in lines 17-27 of
Algorithm 1. More specifically, each of them will first increase the boost factor
by one, i.e., Bk = Bk +1, and update the LLk as well as the corresponding t(next)k

value as shown in lines 19-21. Then it will evaluate the loss it would achieve by
exploiting the model w3 (see line 22). In other words, nodes 2 and 4 will evaluate
F2(w3) and F4(w3), respectively.

If the estimated value of loss is higher than the current one, no other actions
will be executed and the node will wait for a new event. This is the case for node
4 which sets B4 = 2, LL4 = 29.16, and updates the t(next)4 value accordingly, i.e.,

t
(next)
4 = t+ T · F4(w4)/(B4 · LL4) =

= T29.16 + T · 48.57/(2 · 29.16) = 29.99 · T (2.7)

Instead, if the estimated value of loss, Fk(wj), is lower than or equal to the
current one, Fk(wk), the node executes the operations in lines 23-27. This is
the case of node 2, instead, which updates its model parameters w2 as w2 =

α · w3 + (1 − α) · w2 and then trains the model using local data, evaluates the
new value of the loss F2(w2) and broadcasts this.

In the example shown in Fig. 2.3, the resulting value of F2(w2) is 16.42. Since
LL2 = 29.16 and B2 = 2, the timeout is set at time t(next)2 = 29.44 · T .

Note that the message broadcast by node 2 containing the new value of F2(w2)

is received by node 1. The operations that node 1 executes as a consequence of
such event are sketched in lines 29-34 of Algorithm 1. More specifically, node 1
will only update LL1 = 16.42 and set the timeout accordingly, t(next)1 = 48.21 · T .

Note that the next node that will send its own model parameter is node 2 that
at time t(next)2 = 29.44 · T will broadcast its model parameters, w2, which will
be received by nodes 1 and 3. Then it will be the turn of node 3 that, at time
t
(next)
3 = 29.61 · T , will transmit its new model parameters, w3.
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Figure 2.3: MGM-4-FL protocol in action

Note that with just three transmissions of model parameters, the values of the
loss in the four nodes become F1(w1) = 11.79, F2(w2) = 8.11, F3(w3) = 16.52,
and F4(w4) = 1.36. Such values are much lower than the initial ones and, as a
result, the average loss, which was equal to (312.76+52.2+29.16+48.57)/4=110.67
at time 0, rapidly decreases to (11.79+8.11+16.52+1.36)/4=9.44 at time 29.61
T .

2.3.3 Experimentation Scenario

In this section, the MGM-4-FL is applied to a specific case study. Then, in Section
4.7, the numerical results are presented.

For the experiments, the data-set considered contained the values of tempera-
ture, humidity, and concentrations of several pollutants (i.e., PM1, PM2.5, PM10)
measured by 56 low cost sensors deployed in the city of Krakow (Poland) in 20172.

Since, some of the sensors do not have complete data, among these 25 sensors
were selected which provide a complete dataset. The topology of the sensor net-
work is shown in Fig. 2.4. The above topology has been constructed considering
the real position of the sensors and assuming that each of them is equipped with
a wireless interface giving a radio coverage of 4 km.

2https://www.kaggle.com/datascienceairly/air-quality-data-from-extensive-network-of-
sensors
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Figure 2.4: Wireless network scenario for the simulation.

Figure 2.5: Illustration of the WSN scenario in the form of Tree Topology for
standard FL
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Figure 2.6: Training Data Characterization

In Fig. 2.5, the WSN scenario is shown in the form of a tree topology. If standard
FL is employed, and assuming that node 2, which is the most central, performs
the aggregation of the model parameters, nodes 24 and 7 will experience the
funnelling effect as the model parameters from nodes 20, 21, 22, 23, and 25 have
to pass through 24 and model parameters from nodes 3, 4, 9, 10,13,14, 16, 17, and
18 have to pass through node 7. On the other hand, nodes 1, 5, 6, 8, 11, 12 and
15 will send just one packet to the sink per each iteration. Thus the nodes 24 and
7 will consume their resources at a a faster rate than the rest of the nodes. As a
result fairness in energy consumption is violated and this leads to a reduction in
network lifetime.

In Fig. 2.6 the data features are characterized through some scatter plots. Specif-
ically, in this figure we represent the values of temperature, humidity, PM1, PM2.5
and PM10 in different combinations.

MGM-4-FL can be applied whatever is the ML approach utilized. Neverthe-
less, in the experiments conducted, an assumption was made that each sensor
node executes an autoencoder [42] which represents a traditional methodology
for anomaly detection [43].

An autoencoder is a type of artificial neural network that operates in an unsu-
pervised way to learn efficient data encoding. In fact, backpropagation is used to
achieve a set of target values as close as possible to the input ones.
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Figure 2.7: Model of an autoencoder.

In Fig. 2.7 we present the architecture of an autoencoder. Besides learning an
efficient representation of data, autoencoders can denoise and decorrelate data.

The focus was not on the specific ML approach, therefore, in the experiments
conducted, the simplest type of autoencoder was employed, the - so called -
Vanilla autoencoder which consists of one hidden layer, only. Accordingly, in
the experiments, the autoencoder consists of a three layer neural network, thus
having one input, one hidden and one output layer. In the encoding process, the
autoencoder first converts the input vector X into a hidden representation Z using
an appropriate weight matrix w′. During the decoding, instead, the autoencoder
maps the hidden representation back to obtain the original format and obtains X′

through another weight matrix w′′. The model parameter optimization is aimed
at minimizing a loss measure which is proportional to the average reconstruction
error, i.e., the difference between X and X, given the input distribution. More
specifically, we have that L = ψ(X,X′). Often Mean Square Errors (MSE) is
utilized to provide an estimation of the reconstruction accuracy [43], i.e. ψ(·, ·) =
MSE(·, ·).

Since the sensors collect one value for each parameter every hour, the data-set
for one month (i.e. 30 days) considered for each of the 25 sensors consists of nk =

24 ·30 = 720 entries of 7 values, with k = 1, 2, ..., 25. These 7 values represent the
day, time,temperature, humidity, and PM1, PM2.5 PM10 parameters measured
in the time period July 1-30, 2017.

The u− th entry in the data-set of the k − th sensor, denoted as Xk,u, is:

Xk,u = (X
(0)
k,u, X

(1)
k,u, , ....., X

(4)
k,u) (2.8)

Note that the input size of the auto-encoder used in the experiments is 5, i.e.,
the values of temperature, humidity, PM1, PM2.5 and PM10. The intermediate
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size is 3 which is also known as code or compressed dimension.

2.3.4 Numerical results

In this section, the numerical results are reported that are obtained in the scenario
setting described in the previous Section by applying the MGM-4-FL protocol.
Several simulation campaigns were conducted to estimate the average loss, how
many times any node has been trained, and how many times a node has broadcast
its model parameters to its one hop neighbors. Note that the average loss is
obtained by the average of the mean square loss of the sensor nodes. The mean
square loss is evaluated from the data reconstructed by the autoencoder and the
input data fed into the autoencoder according to the eq. (3.5), i.e.,

MSE(y, ŷ) =
1

N

N∑
i=0

(y − ŷi)2 (2.9)

where y is the input data fed into the autoencoder, ŷ is the reconstructed output
data and N is the length of the input data.

A number of 10 simulations were executed for different values of α (i.e. α =0.5,
0.7, 0.9 and 1), and different number of epochs (i.e., 10, 15 and 20). Note that
epochs denote the number of passes the machine learning algorithm will work
through the entire local data-set every time training is triggered.

The average loss with respect to the number of iterations for the MGM-4-FL
mechanism when α is 0.7, is shown in Fig. 2.8. We explicitly observe that in MGM-
4-FL each iteration involves the broadcast of the model parameters of one node.
In Fig. 2.8, we observe that, as soon as we increase the number of iterations, the
average loss significantly decreases and starting from approximately 20 iterations,
the impact of a different choice in epochs is minimal. This means that we can
easily keep minimum the number of times the machine learning algorithm works
through the complete data-set while preserving accuracy.

Fig. 2.9 shows the average loss with respect to the number of iterations for
different values of α and 15 epochs. Once fixed the value of the epochs, we note
that the impact of the parameter α is minimal which witnesses the good stability
of the algorithm independently of how much we trust into neighbor models.

Also the standard deviation of the loss is reported with respect to the number of
iterations for the MGM-4-FL mechanism when α is 0.5 and when α is 0.9, in Figs.
2.10a and 2.10b, respectively, and for different numbers of iterations. Note that,
as soon as we increase the weight α in eq. (2.16) we increase the relevance given
to neighbor model parameters. Specifically observe that an increase in α leads
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Figure 2.8: Average Loss vs. No. of Iterations for different values of epochs (MGM-
4-FL)

Figure 2.9: Average Loss vs. No. of Iterations for different values of α (MGM-4-
FL)

24



CHAPTER 2. WIRELESS SENSOR NETWORKS

(a) α = 0.5

(b) α = 0.9

Figure 2.10: Standard deviation of the Loss vs. No. of Iterations (MGM-4-FL)

Figure 2.11: Number of times each node has broadcast its model parameters
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to a faster convergence for a lower number of iterations. Also, higher values of α
imply more coherence in the standard deviation, independently of the number of
epochs.

Similarly, the number of times(H) each node broadcasts its model parameters
is reported in Fig. 2.11. Note that in this plot nodes are not sorted out in terms
of how many times they have been selected but based on their IDs as reported in
Fig. 2.4. Observe how central nodes, like Node 3, 5, 7, 12, 18 and 25 broadcast
their model parameters more often than the others. This is because, due to their
centrality, they rapidly obtain models with good performance. On the other hand,
nodes like 6, 8, 15, 17, 22 and 24 which are placed at the periphery of the network,
obtain good models later.

In order to assess fairness, the Jain’s Fairness index was calculated for both the
number of times the nodes have been trained and the number of times they have
broadcast their model parameters.

The Jain’s Fairness index is calculated as [44]:

F(x1, x2, ....xn) =
(
∑n

i=n xi)
2

n ·
∑n

i=n x
2
i

(2.10)

for n = 25 sensors. In Table I we report the Jain’s Fairness index for different
values of α and the number of epochs.

Observe that the main fluctuations in terms of fairness are obtained upon vary-
ing the α parameter. Upon changing the number of epochs, however, we note
that the number of times a node is trained or broadcasts its model parameters
remains basically stable because the algorithm is reliable and quickly converges.

A comparison was made between MGM-4-FL with plain model gossiping in
which each node periodically broadcast its model parameters ( Standard Gossip-
ing). In Fig. 2.12 the average loss versus the number of times a node broadcasts
its model parameters is reported. The performance improvement given by MGM-
4-FL when compared to Standard Gossiping is evident. For example, after 55
model parameters broadcasting events the loss achieved by MGM-4-FL is 5.313,
whereas applying standard gossiping the loss would be 57.680 at 55, so more than
10 times higher. This assesses the good learning features of the methodology.

2.3.5 MGM-4-FL with GANs

: In this section, the MGM-4-FL algorithm is experimented with the ML algo-
rithm "Generative Adversarial Networks (GANs)". GANs is a generative mod-
eling ML algorithm unlike the Auto-encoders. Generative modeling is an unsu-
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Figure 2.12: Average Loss vs. the Number of Packets Transmitted

pervised learning algorithm that learns the patters in the input data, so that the
model can be used to generate output data that is very similar to the original
input data. GANs basically comprises of two neural networks that compete with
each other to analyse the replicate the patterns in the dataset [45, 46].

As shown in the figure 2.13, there is a Generator and Discriminator in GANs.
The task of the Generator is to generate fake samples of data to fool the Discrim-
inator and the data can be image, audio or numerical data. Whereas, the task of
the Discriminator is to distinguish between the real and fake data.

The experiments were conducted with the same setup as mentioned in section
2.3.3. The average loss with respect to the the number of iterations is shown in
figure 2.14. As shown in the figure, the average loss of all the 25 nodes reduces
from 1.4 to 0.7 in 50 iterations by exploiting the MGM-4-FL protocol.

2.4 CGL: Centrality aware Gossiping

In recent times, federated learning learning solutions have emerged to enable
collaborative synthesis of neural network models. These approaches cannot be
applied in wireless sensor networks (WSNs) as they are because they involve a
large volumes of network traffic to reach convergence, which is costly in terms of
communication and computing resources that are particularly scarce resources in
WSNs. Gossiping, which naturally fits with the multihop communication paradigm
featured in most WSN scenarios, can reduce the amount of traffic significantly
and therefore, quite a few solutions have been recently proposed that exploit it.
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Figure 2.13: Generative Adversarial Networks

Figure 2.14: Average Loss vs Iterations
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α Epochs Fairness in Train. Events Fairness Broadc. Events

0.5 10 0.71379 0.77949
0.5 15 0.71909 0.76911
0.5 20 0.72692 0.77998
0.7 10 0.70785 0.81575
0.7 15 0.71143 0.80103
0.7 20 0.70974 0.80482
0.9 10 0.69520 0.81388
0.9 15 0.687528 0.80684
0.9 20 0.674327 0.82902
1 10 0.675843 0.80486
1 15 0.66990 0.80329
1 20 0.673902 0.80471

Table 2.2: Fairness Index for the number of training events and the number of
times a node is chosen as best node for different values of α and epochs.

It is known that gossiping can be executed more efficiently if the characteristics
of network topology are taken into account. Accordingly, this work investigates to
what extent and in which conditions the exploitation of topological information
can improve the convergence of the learning process so making it more efficient
in terms of network resource consumption.

More specifically, a gossiping-based distributed learning protocol which exploits
the centrality information to reduce the consumption of network resources is in-
troduced. The proposed centrality-aware gossiping-based learning protocol (CGL)
is assessed considering different centrality measures and machine learning tech-
niques.

2.4.1 Centrality in WSN

Centrality characterizes the topological importance of a node in a network and
its relationship with its neighbouring nodes. More specifically, it measures how a
node impacts on other network nodes. In this section, we illustrate some of the
most well known centrality metrics typically proposed in WSNs [47],[48].

The most commonly used centrality metrics are:

• Betweennes Centrality: It assesses the number of times a node lies on the
shortest path between other pairs of nodes. It is calculated by identifying
all the shortest paths in a network and then counting how many times each
node falls on one of these shortest paths. Therefore the node with the highest
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betweennes centrality measure is the node that is located in the maximum
number of shortest paths in the network. Hence, more information passes
through the node with the maximum betweenness. Betweennes centrality
is largely used for analysing communication dynamics and plays a crucial
role in characterizing the network connectivity.

Formally, betweenness centrality of a node x, denoted as CEb(x), can be
calculated as:

CEb(x) =
∑
s ̸=x ̸=t

τst(x)

τst
(2.11)

where τst is the total number of shortest paths from node s to node t and
τst(x) is the number of paths that pass through the node x.

• Eigen Centrality: It assesses a node impact by considering the importance
of its one-hop neighbours. More specifically, it measures a node influence
based on the number of links it has to the other nodes in the network.
Additionally, it also takes how well connected those other nodes are and
how many connections they have in the network into account. Thus the
eigen centrality of a node is assigned based on its connections and the
connections of connections.

Google Pagerank and Katz centrality [49] are variants of the Eigen central-
ity.

• Pagerank Centrality: As mentioned before, pagerank centrality is a vari-
ant of the eigen centrality. Similarly to the eigen centrality, pagerank assigns
a score to a node based on its connections and its connections of connec-
tions. However, Pagerank also considers the direction of the link and the
connection weight [50]. It uses the indegree as the major measure to calcu-
late the influence. Hence Pagerank is used for directed networks. Page rank
is the ranking algorithms behind the Google search engine.

• Degree centrality: Degree centrality is the simplest centrality measure
that assesses the number of links held by each node in the network. More
specifically, it denotes the one-hop connections each node has with its neigh-
bouring nodes. Degree centrality is often used for selecting a cluster head
and/or the sink node in a network. The degree centrality is calculated as:

CEcd(x) =

∑
v e(v, x)

N − 1
(2.12)
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where N is the number of nodes in the graph and e(v, x) is equal to 1 if
there is a direct connection between nodes v and x and 0 otherwise.

• Closeness Centrality: The Closeness centrality of a node is the geodesic
distance between itself and all other nodes in the network. The closeness
centrality score is assigned to a node in the network based on its closeness
to other nodes. More specifically, it assesses how short the shortest paths
are between the node and all other nodes.

The closeness centrality of a node x is calculated as follows:

CEc(x) =
N∑

v d(v, x)
(2.13)

where N is the number of nodes in the graph and d(v,x) is the distance
between nodes v and x.

Centrality metrics have been widely studied and applied in designing algorithms
for WSNs [48].

Centrality information is used in Cluster Head selection problems in WSN sce-
narios for enhancing network lifetime. This is crucial in scenarios that exploit
clustering to reduce resource consumption. For example, [51] proposes a Clus-
ter Head selection approach based on Degree centrality and Closeness centrality
metrics. As compared to approaches that do not exploit centrality metrics, the
authors show that the proposed approach performs better in terms of network
lifetime. Similarly in [52], the authors propose a Cluster Head selection approach
for large scale WSN scenarios using the Closeness centrality measure and they
observe significant reduction in energy consumption .

Another critical problem in WSNs is energy efficient routing since it is necessary
for prolonging the network life. Centrality metrics have been studied and applied
for designing efficient routing algorithms. As an example, in [53] the authors
propose a new centrality measure, called Sink Betweenness, which they use to
support a tree-based routing algorithm. In the above work simulation results
show that their routing algorithm improves routing overlap, thus facilitating data
fusion. In [54], the authors propose a connectivity-based routing algorithm in
which the connectivity factor of a node is evaluated using Betweenness centrality
measure. In that work efficient routes are found using fuzzy logic optimization.

Centrality-aware protocols have shown to be energy efficient in various scenar-
ios as mentioned in the previous paragraphs. In our work, we study and design a
centrality-aware gossiping protocol for distributed learning which enables achiev-
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ing quick convergence, thus resulting in significantly increased network lifetime.
In Section 2.4.2, the design objectives of CGL are discussed. Then, in Section

2.4.3, the protocol operations are discussed in detail.

2.4.2 CGL Design objectives

Tthe target of CGL is to support the nodes in collaboratively learning the ML
model, w, by exploiting the gossiping mechanism in a WSN. In such a scenario,
a given node will transmit its model parameters to its one-hop neighbouring
nodes that will update their own model with the received parameters and train
it further.

For instance if j is the node that has transmitted its model parameters, wj, its
generic neighbor k will update its model as

wk = α ·wj + (1− α) ·wk (2.14)

where α is a weight parameter the setting of which will be discussed later. Note
that node k performs the operation in eq. (2.16) if the model loss obtained by using
wj is lower than the loss obtained using its current model, i.e., Fk(wj) < Fk(wk).
We call this sequence of actions “communication round ” or “iteration”, in short.

Another characteristic of CGL is that, each node in the network should exploit
its local information only, i.e., the centrality information and the data generated
by the node itself. Thus, the operations of CGL should be asynchronous and
uncoordinated. Due to the energy limitations in WSNs, the operations of CGL
should be as effective as possible, with the objective to reduce the global loss
function (see eq. (2.2)) by requiring minimum number of model transmissions.

To achieve the above goals, each node, k, of the network knows and stores its
centrality metric and at each iteration schedules the transmission of its model
parameters after a time interval, τk, with average that is proportional to ratio

E{τk} = Fk(wk)/(Bk · CEk) (2.15)

where CEK is the centrality of the node and Bk is called boost factor and is
described in the following.

Furthermore, the communication and model training load must be distributed
between all network nodes as fairly as possible. This is necessary to have good
fairness among nodes and avoid overloading of a limited number of nodes. To
achieve this goal, CGL exploits the boost factor. A node k increments its boost
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factor whenever it receives the model parameters sent by one of its neighbors,
say j. Instead, the boost factor is reset to one when the node broadcasts its
model parameters in the CGL mechanism. Given that the boost factor is at the
denominator of eq. (2.15), the value of τk will be lower for nodes that did not
transmit their model parameters in the recent past and higher for nodes that
transmitted their model parameters recently.

2.4.3 CGL Protocol Details

In this section, more details regarding the operations of CGL are provided and
how it works in a toy exemplary WSN scenario is illustrated.

Let us consider a network consisting of four nodes deployed according to a linear
topology as shown in Figure 2.15.

Algorithm 2 reports the pseudo-code for the protocol operations executed by a
generic node k. In the pseudocode CEk represents the centrality measure of node
k.

At setup, any node initializes the boost factor Bk = 1. Furthermore, the model
is trained using the local data Xk. The training operation is executed for a given
number of epochs, at each node separately. Epochs denote the number of times
the machine learning algorithm will work through the entire dataset during the
training.

Also at setup, each CGL node is initialized by calculating its centrality measure
CE(k). To this purpose, observe that several distributed algorithms exist that
allow such calculation efficiently (see, for example, [55–58]).

At the end of the initialization phase which is illustrated in lines 1-5 of Algorithm
2, the CGL node k will have a local model with parameters wk and an estimate
of its current loss Fk(wk). Using these initial parameters the node sets a timeout
at time t(next)k = t + T · Fk(wk)/(Bk · CEk), where t represents the current time
and T is a constant value which is set in such a way that protocol operations are
sparse in time3.

For example in Figure 2.15, the loss values for the four nodes at the end of the
initialization phase are F1(w1) = 226.73, F2(w2) = 92.11, F3(w3) = 76.34, and
F4(w4) = 70.42, respectively.

Let us consider the Degree centrality for this example. Therefore the centrality
values for the four nodes are CE1 = 1, CE2 = 2, CE3 = 2, and CE4 = 1.
Consequently, the four nodes will set their timeouts at times t(next)1 = 226.73 · T ,

3In our experiment, we have set T equal to a constant proportional to the average time
required to train the model local data.
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t
(next)
2 = 46.05 · T , t(next)3 = 38.17 · T , and t(next)4 = 70.42 · T , respectively.
Note that Figure 2.15 was obtained assuming that the setup time is t = 0 for

all nodes.
When the initialization phase is completed, CGL executes the regular opera-

tions, sketched in lines 7-27 of the Algorithm 2. More specifically,

1. when the timeout t(next)k elapses, the node executes the operations sketched
in lines 9-15 of Algorithm 2;

2. when a given node receives the model parameters, wj, from the neighboring
node j, it executes the operations sketched in lines 17-25 of Algorithm 2,
including retraining the model for a given number of epochs.

As reported in lines 9-15 of Algorithm 2, when the timeout elapses, the node
will broadcast its model parameters wj to its neighbouring nodes. In the example
shown in Figure 2.15, node 3 has the lowest value of the timeout parameter, i.e.
t
(next)
3 = 38.17 · T .
Therefore, as reported in line 11, it will broadcast a message containing its

model parameters w3. Note that the time at which a node disseminates its model
parameters depends on the timeout value. As an example, the first dissemination
performed by node 3 occurs at time t = 38.17 · T . The disseminated message will
be received by nodes 2 and 4 which will execute the operations sketched in lines
17-25 of Algorithm 2.

Note that the nodes 2 and 4 first increase the boost factor by one, evaluate the
loss they would achieve by exploiting the model w3 (i.e. F2(w3) and F4(w3)). If
the estimated value of loss is higher than the current one, no other actions will be
executed and the node will wait for a new event. Instead, if the estimated value of
loss, Fk(wj), is lower than or equal to the current one, Fk(wk), the node executes
the operations in lines 21-24. Thus, node 2 and 4 update their model parameters
w2 and w4 as w2 = α ·w3+(1−α) ·w2 and w4 = α ·w3+(1−α) ·w4 and, then,
train the model using their local data and evaluate new loss values. Finally, they
update the t(next)k value.

In the example shown in Figure 2.15, the resulting value of F2(w2) at time
t = 38.17 · T is 86.12. Since CE2 = 2 and B2 = 2, the timeout is set at time
t
(next)
2 = 59.7 · T . Similarly, the resulting value of F4(w4) at the same time is

54.11. Since CE4 = 1 and B4 = 2, the timeout is set at time t(next)4 = 65.22 · T .
In the next round, i.e., at time t = 59.7 ·T , node 2 broadcasts its model param-

eters to nodes 1 and 3.
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Then it will be the turn of node 3 that will transmit its new model parameters,
w3.

In just three transmissions of model parameters, the values of the loss in the four
nodes become F1(w1) = 90.84, F2(w2) = 79.74, F3(w3) = 44.33, and F4(w4) =

36.44. Such values are much lower than the initial ones and, as a result, the
average loss, which was equal to (226.73+92.11+76.34+70.42)/4=116.4 at time
0, rapidly decreases to (90.84+79.74+44.33+36.44)/4=62.81.

Algorithm 2 CGL protocol
1: /* Protocol initialization */
2: Initialize Bk=1
3: Calculate Centrality metrics CEk

4: Initialize wk=train_model(Xk,RND)
5: t(next)k = t+ T · Fk(wk)/(Bk · CEk)
6: /* Regular operations */
7: while Protocol initialization do
8: Wait for Event
9: if Event.Type==time-out then

10: /* Node k will send its model parameters wk */
11: Broadcast(wk, Fk(wk))
12: Wait for the updated loss values
13: Bk = 1
14: t

(next)
k = t+ T · Fk(wk)/(Bk · CEk)

15: end if
16: if Event.Type == received wj then
17: /* Node k is receiving the model parameters wj from neighbor node j

*/
18: Bk = Bk + 1
19: Evaluate Fk(wj)
20: if Fk(wj) ≤ Fk(wk) then
21: wk = α ·wj + (1− α) ·wk

22: wk = train_model(Xk,wk)
23: Evaluate Fk(wk)

24: t
(next)
k = t+ T · Fk(wk)/(Bk · CEk)

25: end if
26: end if
27: end while

2.4.4 ML Algorithms

In this section, we apply CGL protocol to the same WSN scenario considered in
section 2.3.3.
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Figure 2.15: CGL protocol in action

CGL can be applied whatever is the ML approach utilized. For our experiments
we consider two cases with different machine learning approaches. In Case 1, we
assume that each sensor node executes an autoencoder [42] which represents a tra-
ditional methodology for dimension reduction, denoising, and anomaly detection
[43]. In Case 2, we assume each sensor node executes a LSTM (Long Short-Term
Memory) neural network for time series prediction.

For the centrality metrics, we considered betweenness, closeness, pagerank, de-
gree and eigen centrality metrics.

Autoencoders

Concerning the ML approach, in our experiments we have employed the simplest
type of autoencoder, the - so called - Vanilla autoencoder which was described in
the section 2.3.3.

LSTM Network

The LSTM neural networks are a type of recurrent neural network (RNN) ap-
proach that is trained through the back-propogation mechanism over time. LSTM
neural networks are applied for forecasting tasks [59],[60],[61].

The key difference between LSTM and other neural networks is that LSTM
do not have neurons, but they have memory blocks that are connected through
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Figure 2.16: Functioning of LSTM network

layers. Each block has gates that take care of the block state and input. The three
types of gate within a block are forget gate, input gate and output gate as shown in
figure 2.16. The forget gate decides which information should be discarded. More
specifically, it decides whether the information from the previous timestamp is to
be remembered or to be forgotten. The input gate decides the input information
to update the memory state. The output gate decides the output based on the
input and memory of the block. Each gate in a block has a sigmoid function to
control if they are activated or not.

LSTM has a hidden state where H(t−1) indicates the hidden state of the previous
timestamp amd Ht denotes the hidden state of the current time stamp. Addition
to the hidden state, LSTM also has a cell state denoted by Ct and C(t−1) for
current and previous stamp respectively. Note that cell state is known as long
term memory and hidden state is known as short term memory.

In the case study, the LSTM is utilised to predict the next hour PM1 values using
the regression approach. More specifically, the PM1 values from the dataset are
used to create two columns of data: the first column containing the PM1 values
(t) and the second column containing the next hour PM1 values (t+1), to be
predicted. Thus the LSTM model trains on the two columns to map a function
for predicting the next hour PM1 values.

2.4.5 CGL: Numerical Results

In this section, the numerical results obtained by applying the CGL protocol in
the scenarios described in previous Section 2.4.4 are discussed. We conducted a
simulation campaign to observe the average loss of the sensor nodes obtained
using different centrality metrics in both the cases, i.e. autoencoder and LSTM.

More specifically, 10 simulations were executed in both the cases for different
values of α (i.e. α =0.5, 0.7, 0.9 and 1), different number of epochs (i.e., 10, 15
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and 20) and different centrality metrics. Epochs denote the number of times the
machine learning model will work through the entire dataset during the training.

In figure 2.17, the average loss obtained for different values of α in both Auto-
encoders and LSTM network cases is reported. Note that α is the weight param-
eter in the eq. 2.16. As seen in the figures, we observed that with higher values
of α, the convergence is quicker in both the cases.

Similarly in figure 2.18, the average loss obtained for different values of epochs in
both the Auto-encoders and LSTM network cases are reported. The observation
was that with higher number of epochs in training, the convergence is achieved
quickly in both the cases. Note that, the closeness centrality metric was considered
for these plots.

In order to select which centrality measure performs better, in Figure 2.19, the
average loss obtained with respect to the overall amount of data transmitted by
network nodes in the autoencoders case when α is 0.7 and the number of epochs
is set to 15 were reported. It was observed that the average loss in case of the
Betweenness centrality converges faster when compared to the other centrality
metrics. We also observe that the cases with Degree centrality and Page rank
centrality had relatively slower convergence rates. Note that each iteration in the
CGL protocol corresponds to one packet transmission.

Similarly in Figure 2.20 the average loss obtained with respect to the amount
of data trasmitted in the LSTM prediction case when α is 0.7 and the number
of epochs is 15 were reported. Similarly to the autoencoder case, it was observed
that faster convergence when considering the Betweenness centrality metrics and
relatively slower convergence with Degree and Pagerank centrality metrics.

Since considering Betweenness centrality gives better performance in both the
cases, in the following we focus on such centrality metric to make a comparison
with the case in which distributed learning is based on a gossiping scheme which
does not consider the centrality measures of nodes.

In Figure 2.21, the average loss with respect to the amount of data transmitted in
the autoencoder case is reported. It was observed that a significant improvement
in performance in the betweeness centrality case when compared to the case
without any centrality metrics.

Also, a similar comparison was done in Case 2 and a similar behavior was
noticed as shown in Figure 2.22. This assesses that the Betweenness centrality
plays an important role in reducing the number of communication rounds required
to collaboratively learn a fitting model in a WSN.

Furthermore, in Figure 2.23 we illustrate the number of times a sensor node
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(a) Auto-encoders

(b) (LSTM network)

Figure 2.17: Average Loss vs Number of iterations for different values of α
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(a) Auto-encoders

(b) (LSTM network)

Figure 2.18: Average Loss vs Number of iterations for different values of Epochs

has been trained using CGL in Case 1, estimated until the loss converges and
stabilizes. In the figure, nodes are sorted out in decreasing order of number of
training cycles (i.e., not based on their IDs). We observed that the majority of
nodes were trained approximately 20 times or more; on the other hand, few sets
of nodes were trained less than 10 times. This implies that the training event
depends on how influential a node is in the network.

Similar observation was made in the case of LSTM-prediction (Case 2), as shown
in Figure 2.24. In this case, the majority of nodes were trained 8 times or more,
whereas a set of 7 nodes were trained 5 times or less. Similarly to case 1, nodes
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Figure 2.19: Average Loss vs. Data Transmitted for different centrality measures
(Autoencoders)

Figure 2.20: Average Loss vs. Data Transmitted for different centrality measures
(LSTM network)
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Figure 2.21: Average Loss vs. Data Transmitted (Autoencoders)

Figure 2.22: Average Loss vs. Data Transmitted (LSTM network)
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which were less trained, are those exhibiting lower Betweeness centrality. From
both these cases, we notice that the centrality metric of a node influences the
training event in both the cases.

Thus, numerical analysis assesses how the centrality metric can significantly
impact gossiping and enhance the collaborative learning approach of machine
learning models in a WSN scenario.

Figure 2.23: Number of times each node has been trained (Case 1: Autoencoder)

Figure 2.24: Number of times each node has been trained (Case 2: LSTM-
Prediction)

2.5 i-WSN: Clustered Distributed learning

The execution of machine learning (ML) algorithms into small and low power
devices has attracted the attention of researchers and has opened the path to
new use cases in the context of wireless sensor networks WSNs. The introduction
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and success of tools, like Tensorflow Lite4, represent both the evidence of the
interest of the ML community towards such scenarios and a fundamental step
towards their realization. However, performing on-device training requires energy,
memory, and computing capabilities which are not available in most hardware
platforms employed for WSNs.

Therefore, in most current solutions models are trained is some resource rich
server outside or at the edge of the WSN. Such approach, however, envisions the
transmission of the data available at the WSN nodes needed to train the ML
model to the above server, which involves two types of problems:

• such transmissions might require the use of a large amount of communica-
tion and energy resources;

• there might be security and privacy issues as the data transmitted by the
nodes can be the target of attacks in its way towards the server.

Such issues are addressed and a framework is proposed for the realization of
intelligent wireless sensor networks (i-WSN)s which minimizes the exchange of
information between WSN nodes. It is assumed that the WSN includes some
nodes that have enough resources to execute some ML model training [62]. All
network nodes are divided in clusters and in each cluster there is a resource rich
node which is in charge for the training of the ML model that will be used by all
nodes in the cluster. Such node is, thus, a Cluster Head and executes training by
using only the data which is locally available. The resulting model is sent to all
nodes in the cluster which will execute it to evaluate some fitness metric. Nodes
that obtain a low value of such fitness metric will transmit a part of their data
to the Cluster Head which will use it to re-train the model.

Clusters exchange their models in peer-to-peer manner and, thus, cooperate
forming a league. That is why we call the proposed solution i-WSN League.

In Section 2.5.1 we give an overview of the i-WSN League operations. In this
context we will also characterize the major features of the hardware platforms
that are used for head nodes and common nodes. Then, in Section 2.5.2 we will
present the i-WSN League protocol in details.

4https://www.tensorflow.org/lite
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2.5.1 Overview of operations and characteristics of the hard-

ware platforms

As mentioned earlier, a WSN is considered that consists of nodes some of which,
referred to as head nodes, have computing capabilities sufficient to perform both
on-device training and inference and others, referred to as common nodes, that
can perform inference only due to resource limitations.

Head nodes are equipped with two wireless interfaces. One of them allows con-
nection to a wide area network, e.g., LoRa [63] or IEEE 802.11, the other enables
short range communications, e.g., BLE or IEEE 802.15.4. Common nodes are
equipped with the short range wireless communication interface only.

Nodes will be divided into Clusters, each of which has a Cluster Head and
several Cluster Members. Head nodes can be Cluster Heads, common nodes are
always Cluster Members. Cluster Heads can communicate using both the wire-
less interfaces, Cluster Members can communicate using the short range wireless
communication interface, only. Thus, head nodes that are Cluster Members will
maintain their wide area network interface turned off.

Cluster Heads use their long range wireless communication interface to create
a mesh network, which we call CH-network.

Cluster Heads execute model training using their own data. The fitness of the
model will be evaluated through an appropriate loss function5. Each Cluster Head
broadcasts its loss function throughout the CH-network after it calculates it at
the end of every training execution. The Cluster Head that attains the lowest loss
will transmit its model parameters to its one-hop neighbors in the CH-network
using the long range wireless interface.

The generic k-th Cluster Head upon receiving the model by the j-th Cluster
Head will use the received parameters, wj, to update its own model, wk, as follows

wk = α ·wj + (1− α) ·wk (2.16)

where α is a weight parameter that we set larger than 0.5 as detailed later. After
updating their models, the Cluster Heads will train the model obtained applying
eq. (2.16) using the data they have available locally.

For what concerns Cluster Members, observe that in most cases ML models are
too complex to be used for inference by common nodes. Therefore, the generic j-
th Cluster Heads will create a compressed version of its model, ŵj, in such a way

5Several loss functions have been proposed for different application scenarios. Interested
reader can refer to the overview provided in [64].
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that it can be used for inference by common nodes as well. How the compressed
model, ŵj can be used for inference by common nodes is outside the scope of this
paper as it depends on the tool utilized for model compression.

The Cluster Head will broadcast the obtained model along with the correspond-
ing value of loss to all members of its Cluster. Cluster Members will not train the
received model as they do not have the capabilities required for training. Instead,
the Cluster Members will evaluate the loss they achieve with the updated model
using their own data. If the difference between the loss obtained by the Cluster
Member and the broadcasting Cluster Head is greater than a certain threshold,
that particular Cluster Member will send its data to its Cluster Head in order to
train and transmit the updated model back.

The above sequence of actions are denoted as protocol iteration or iteration, in
short.

Given the energy limitations characterizing WSNs, i-WSN League operations
must be as effective as possible and thus model transmissions and the consequent
training iterations should be executed when the resulting expected reduction in
the overall loss is significant. To this goal, at the end of each protocol iteration,
each involved Cluster Head will broadcast its updated loss value throughout the
CH-network. This value will be used by each Cluster Head to compare the fitness
of its own model to the fitness of the other Cluster Heads.

Furthermore, the communication and computing load must be distributed be-
tween all Clusters as fairly as possible. This is necessary to avoid that a few Cluster
Heads are overloaded. In fact, even if Cluster Heads are resource rich platforms,
they are powered by batteries and processing and communication overload of a few
of them might result in the exhaustion of their batteries, so reducing the lifetime
of the entire network. To achieve this goal, i-WSN League exploits a parameter
called boost factor which is updated in such a way that it is expected to be high
for Cluster Heads that did not transmit their model parameters in the recent past
and low for the Cluster Heads that, instead, did transmit their model parameters
recently. Further details will be provided in the following Section 2.5.2.

2.5.2 i-WSN Protocol Details

In this section, the details of the i-WSN League protocol are presented and, for
the sake of clarity, its operations are discussed in a the simple scenario depicted
in Figure 2.25. This comprises 8 common nodes grouped into 4 Clusters. Nodes 1,
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Figure 2.25: Clustering Scenario.

2, 3 and 4 are Cluster Heads6 equipped with two wireless interfaces. Accordingly,
the CH-network consists of 4 nodes connected according to a linear topology. All
the other nodes are Cluster Members, each of which belongs to one Cluster only.
Observe, that communication in each Cluster can happen in a multi-hop manner,
when needed.

Algorithm 3 represents the pseudocode for the protocol run by the generic Clus-
ter Head CH. The resulting actions executed by the Cluster Heads are represented
in Figure 2.26.

At the startup sketched in lines 1-6 of Algorithm 3, Cluster Head CH initializes
the boost factor BCH to 1. Furthermore, the model is trained using the local data
XCH and starting from random initial conditions, RND. The training operation
is executed for a given number of epochs. The scaled loss parameter, denoted as,
SLCH is calculated from the training loss and the boost factor as in eq. (2.17),i.e.

SLCH = FCH(wCH)/BCH (2.17)

where FCH(wCH) is the loss of the Cluster Head, CH, and BCH is its current boost
factor. Observe that the scaled loss is supposed to decrease for Cluster heads that
have fitting models and did not transmit their model parameters recently. For
example, in Figure 2.26, the loss values for the four Cluster Heads at the end
of the initialization phase are F1(w1) = 69.11, F2(w2) = 26.72, F3(w3) = 66.32,
and F4(w4) = 98.75. Therefore, given that the boost factors for all them is equal
to 1, the corresponding scaled losses are SL1(w1) = 69.11, SL2(w2) = 26.72,
SL3(w3) = 66.32, and SL4(w4) = 98.75.

At the end of the initialization phase, the Cluster Heads broadcasts their model
6the Cluster is denoted with the identifier of the corresponding Cluster Head, therefore, if

say Cluster 1 is mentioned, the Cluster for which node 1 is the Cluster Head is meant
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parameters to their own Cluster Members. Also, the Cluster Heads broadcast
their scaled loss in the Cluster Head network. In this way Cluster Heads identify
of them has the lowest scaled loss and thus will broadcast its model parameters.

When the initialization phase is completed, Cluster Heads execute the regular
operations sketched in lines 7-30 of the Algorithm 3, which are event based. More
specifically, three types of events can occur:

1. Broadcast: In this event, the Cluster Head broadcasts its model parame-
ters, i.e, the Cluster Head with the lowest scaled loss broadcasts its model
parameters to its Cluster Members and its neighboring Cluster Heads. In
this case, the node executes the operations sketched in lines 10-18 of Algo-
rithm 3.

2. Receive Model Parameters: In this event, the Cluster Head receives the
model parameters wk. When the receive, the Cluster Head executes the
operations sketched in lines 19-27 of Algorithm 3, including retraining of
the model for a given number of epochs.

3. Receive Data Chunk: In this event, the Cluster Head receives a chunk of
data from one of its Cluster Member for retraining. The Cluster Head will
execute the operations sketched in lines 28-31 of Algorithm 3.

At the end of the initialization phase t1 and at the end of each iterations,
each Cluster Head broadcasts its scaled loss to all other Cluster Heads. Thus,
each Cluster Head has a the scaled losses of other Cluster Heads to make a
comparison and realize if it has the lowest scaled loss. If this is the case, it will
perform the operations reported in lines 10-18 of the Algorithm 3. The Cluster
Head will broadcast the model parameters wCH to the one hop neighbours in
the CH-network and compresses the model to broadcast the compressed model
parameters ŵCH to its own Cluster Members. In our experiments, the Tensor-flow
model is compressed into a Tensor-flow lite model.

In the case shown in Figure 2.26, at the end of the initialization phase, Cluster
Head 2 has the lowest scaled loss which is 26.72. Hence it broadcast its model
parameters, w2 to its neighboring Cluster Heads 1 and 3, then it compresses its
model and transmits the resulting compressed parameters, ŵ2, along with the
value of the loss, FCH(ŵCH), to its Cluster Members 21 and 22. The operations
executed by the Cluster Members when they receive the compressed model pa-
rameters are sketched in Algorithm 4 and are explained later in this section. After
it broadcasts its model parameters and the loss value, CH resets the boost factor
BCH to 1.
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Lines 19-27 of the Algorithm 3 show the functions of the Cluster Head when
it receives the model parameters from another Cluster Head through the CH-
network. More specifically, the boost factor is multiplied by two and the weights
of their models are updated according to the eq. (2.16). Finally, the resulting
model is trained using the data locally available. In our exemplary case, Cluster
Heads 1 and 3 have received the model by Cluster Head 2, therefore they train the
updated model using their data. At the end of the training their losses become
64.70 and 22.10, respectively. Both their boost factors become equal to 2 and the
scaled losses is evaluated accordingly.

Similarly to the first round, the Cluster Head with the lowest scaled loss is
identified. Therefore, the Cluster Head 3, which has SL3=11.05 broadcasts its
model parameters.

As it will be explained later, it might happen that the Cluster Head receives a
chunk of data by one of its Cluster Members, say j. As reported in lines 28-31 of
Algorithm 3, where DAj represents the received chunk of data, in this case the
Cluster Head trains the model using the received data along with the rest of the
data locally available. Then, the new model is sent back to the Cluster Member
j.

Algorithm 4 illustrates the functions of the generic Cluster Member when it
receives the model parameters from its Cluster Head. Before updating its model,
the node evaluates the loss which it would obtain using the model ŵCH transmit-
ted by the Cluster Head, Fj(ŵCH) and compares it to the loss value sent by CH,
FCH(ŵCH). If the the difference between the two is larger than a given threshold
σTH , it means that the dataset available at the Cluster Head is not representative
of the data available at the Cluster Member. Accordingly, the Cluster Member
sends a chunk of its data to the Cluster Head. As explained earlier the Cluster
Head will use such data for training its model. This is the reason why there is
a change in the loss in the Cluster Head at second iteration though it has not
received model parameters (point A in figure 2.27). Since the Cluster Head has
received the data chunk and trained on it, there is a change in the loss from 98.75
to 80.33 in figure 2.27 where we detail what happens in Figure 2.26 at the second
iteration in Cluster Head 4.

2.5.3 i-WSN Performance evaluation

In this section, the performance of i-WSN League is assesed by analyzing its
behavior in the same case study considered in the previous sections.

Accordingly, in the following section, i.e., Section 2.5.4, the scenario and the
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Algorithm 3 i-WSN protocol-Cluster Head
1: /* Protocol initialization */
2: Initialize BCH=1
3: Initialize wCH=train_model(XCH ,RND)
4: Calculate SLCH = FCH(wCH)/BCH

5: Broadcast(wCH) to CM
6: Broadcast(SLCH) in CH network.
7: /* Regular operations */
8: while TRUE do
9: Wait for Event

10: if Event.Type==Broadcast then
11: /* Cluster-Head CH will send its model parameters wCH */
12: Broadcast(wCH) in CH network.
13: Reset BCH = 1
14: Calculate SLCH = FCH(wCH)/BCH

15: Broadcast(SLCH) in CH network.
16: Compress the model
17: Broadcast the modellite parameters ŵCH

18: end if
19: if Event.Type == Receive Model Parameters wK then
20: /* Node CH is receiving the model parameters wCH from neighbor

Cluster-head K */
21: BCH = BCH ∗ 2
22: Calculate SLCH = FCH(wCH)/BCH

23: wCH = α ·wK + (1− α) ·wCH

24: wCH = train_model(XCH ,wCH)
25: Broadcast(wCH) to CM
26: Broadcast(SLCH) in CH network.
27: end if
28: if Event.Type == Receive Data Chunk DAj then
29: wCH = train_model(DAj,wK)
30: Broadcast(wCH) to j
31: end if
32: end while

Algorithm 4 i-WSN protocol-Cluster Member
1: Wait for Event
2: if Event.Type == received ŵCH then
3: wj = α · ŵCH + (1− α) ·wj

4: Evaluate Fj(wj) and Fj(ŵCH)
5: if Fj(wj)− Fj(ŵCH) ≥ TH then
6: /* Sends data to Cluster Head for training */
7: Transmit DAj to CH
8: end if
9: end if
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Figure 2.26: i-WSN League protocol in action (Cluster Heads)

Figure 2.27: i-WSN League protocol in action (inside Cluster 4)

data-set considered in our experiments are discussed. Then, in Section 2.5.5, we
present and discuss the numerical results.

2.5.4 i-WSN Scenario

The same data-set and the topology in section 2.3.3 is considered here as well.
For the training in Cluster Heads, we consider the data from the first 25 days
and we consider the data from the last 5 days for the inference. Similarly, in case
of the Cluster Members, the data from the first 25 days is split in chunks, while
the last 5 days data is utilised for the inference.

For our experiments, we consider four cases with different clustering strategies
which result in the configurations shown in Figure 2.28:

• Case 1: The network in this case has 5 Cluster Heads with equal number
of cluster Members. Therefore each cluster Head has four Cluster Members.
The Cluster Heads are 1,3,14,19 and 22.
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• Case 2: The network in this case has 8 Cluster Heads. Therefore, the sizes
of the clusters are small in this case. The Cluster Heads are 1,4,6,7,9,15,21
and 25.

• Case 3: The clustering in this case is similar to Case 1. There are 5 Cluster
Heads in the network. But the Cluster Members in each cluster vary and
they are not the same as in case 1. The Cluster Heads are 1,10,15,18 and
22.

• Case 4: In this case, the network is divided into two large clusters only and
the Cluster Heads are 4 and 20.

In all the above cases, there are no nodes that belongs to more than one cluster.

(a) Clustering topology 1 (b) Clustering topology 2

(c) Clustering topology 3 (d) Clustering topology 4

Figure 2.28: Clustering cases considered in the experiments

i-WSN League can be applied whatever is the ML approach utilized. Neverthe-
less, in our experiments we assume that each Cluster Head executes an autoen-
coder [42] which is highly utilized for anomaly detection [43]. And all the nodes
can perform inference with a trained model.

We utilize the Mean Square Error (MSE) to estimate the reconstruction accu-
racy [43], i.e. ψ(X,X′) =MSE(X,X′).

We focus on the values of temperature, humidity, PM1, PM2.5 and PM10,
therefore, the input size of the auto-encoder is 5. The intermediate size, which is
also known as compressed dimension is equal to 3.
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Therefore, the u-th entry in the data-set of the k-th sensor, denoted as Xk,u, is:

Xk,u = (X
(0)
k,u, X

(1)
k,u, , ....., X

(4)
k,u) (2.18)

2.5.5 i-WSN Numerical Results

In this section, the numerical results are reported that have been obtained in the
scenario described in the previous Section 2.3.3 by applying the i-WSN League
approach in all the four cases. A large simulation campaign was conducted to
evaluate the relevant performance parameters which we have selected, i.e., the
average loss of any node, the number of times a Cluster Head is trained, the
number of times Cluster Members have sent their data to their Cluster Heads.

More specifically, 10 simulations in each case were executed for different values
of α (i.e. α =0.5, 0.7, 0.9 and 1), and different number of epochs (i.e., 10, 15 and
20). Note that epochs denote the number of passes the machine learning algorithm
will work through the entire local data-set every time training is executed. An
iteration denotes execution of the complete algorithm, that is starting from the
broadcast of model parameters by the Cluster Heads to the operations performed
by the Cluster Members as discussed in the previous section.

The average loss with respect to the number of iterations for i-WSN League
when α is 0.9, is shown in Figure 2.29.

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Figure 2.29: Average Loss vs Number of Iteration for different values of epochs
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It is explicitily observed that in i-WSN League each iteration involves the broad-
cast of the model parameters of one Cluster Head. In Figures 2.29, we report the
average loss with respect to the number of iterations for different values of epochs
in each case. It is observed that, as soon as we increase the number of iterations
in each case, the average loss significantly decreases. The loss convergence in Case
1 and Case 3 are quite similar as the clustering is also similar in both the cases.
Both Case 1 and Case 3 have 5 clusters each and also it was observed that not
only the the loss convergence was similar, but also they were quicker with respect
to the iterations. In Case 2, which has 8 clusters, the average loss does not de-
crease as quickly as in Cases 1 and 3. In Case 4, it was observed that the average
loss did not decrease further after 5 iterations. Note that the network in Case 4
has two clusters only, hence there are only two Cluster Heads available to perform
training. Thus the performance does not improve after few iterations. In Figures
2.29 we observe how clustering influences the i-WSN League.

Similarly in Figures 2.30, the average loss is reported with respect to the number
of iterations for different values of α and 15 epochs . It was observed that with
higher values of α, the convergence is faster in all cases. Also in Figures 2.30, it
was observed that the loss convergence for different values of α is quite similar in
Cases 1 and 3.

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Figure 2.30: Average Loss vs Number of Iteration for different values of α

In figure 2.31, the average loss is reported with respect to the number of iter-
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ations in each case for 20 epochs and when α is 0.9. As mentioned before, the
curves in case 1 and case 3 are similar which also shows that the convergence is
faster in case 1 and case 3.

In figure 2.32, the standard deviation of the loss is reported with respect to the
number of iterations when α is 0.9 and for 15 epochs.

Figure 2.31: Average Loss vs Number of Iterations in each case.

Figure 2.32: Standard Deviation Loss vs Number of Iterations in each case.

The average number of times a Cluster Head gets trained in the 20 iterations
has also been reported. Note that, a Cluster Head does not perform training only
at the beginning of an iteration, but it also trains on the data chunks sent by its
Cluster Members. Figure 2.33 shows the average number of times Cluster Heads
get trained in each case for various values of epochs and when α is 0.9. We observe
that the average number of times a Cluster Head gets trained is higher in Case 4
and lower in Case 2 and it is quite similar in cases 1 and 3. It is higher in Case
4 because the Cluster Heads have to train on the data chunk sent by its Cluster
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Figure 2.33: Average Train count vs Number of Epochs

Figure 2.34: Average Data chunk transmissions vs Number of Epochs

Members. Therefore, the two Cluster Heads which have more than 10 Cluster
Members will go through a large number of training cycles.

The training count in cases 1 and 3 are similar because the number of clusters
in each case is same. Thus, the training load of the Cluster Heads is not as
high as case 4 and not as low as case 2. Similarly, Case 2 has the lowest count
because each Cluster Head has more or less two Cluster Members and therefore,
the training load will be low. However, changing the number of epochs we note
that the number of times a Cluster Head is trained is stable because the loss
convergence is fast.

Analogously, in Figure 2.34 the average number of times Cluster Members have
transmitted their data chunks to the corresponding Cluster Heads when α is 0.9
is reported. Similar observations to those regarding Figure 2.33 can be drawn.

For the sake of completeness, in Figure 2.35 the average number of times each
Cluster Head has been trained in Case 1 when the number of epochs is 15 and
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Figure 2.35: Average number of times each Cluster Head has been trained

Figure 2.36: Average number of times each Cluster Member has transmitted data
chunks

the value of α is 0.9 is reported. The Cluster Heads in Case 1 are nodes 1, 3, 14,
19, and 22.

In Figure 2.36, the average number of times each Cluster Member has sent data
chunks to its Cluster Head in Case 1 when the number of epochs is 15 and the
value of α is 0.9 is reported.

To assess fairness we calculated the Jain’s Fairness index regarding the number
of times the Cluster Heads have been trained in Case 1.

The Jain’s Fairness index is calculated as [44]:

F(x1, x2, ....xn) =
(
∑n

i=n xi)
2

n ·
∑n

i=n x
2
i

(2.19)

for n = 25 sensors. In Table I we report the Jain’s Fairness index for different
values of α and the number of epochs in cases 1 and 2. we observed good fairness
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α Epochs Train. Events (Case 1) Train Events(Case 2)

0.5 10 0.97660 0.90735
0.5 15 0.96661 0.92125
0.5 20 0.97696 0.91307
0.7 10 0.95835 0.91007
0.7 15 0.96343 0.91550
0.7 20 0.96176 0.88494
0.9 10 0.93305 0.90062
0.9 15 0.90417 0.89184
0.9 20 0.90105 0.89360
1 10 0.92991 0.89283
1 15 0.89929 0.89084
1 20 0.91732 0.88954

Table 2.3: Fairness Index for regarding the number of times Cluster Heads have
been trained for different values of α and epochs in Case 1 and Case 2

among the Cluster Heads in both cases.

2.6 Applying SDN to WSN with Data Mules

Wireless sensor networks (WSN)s play a fundamental role in environmental moni-
toring and have been the subject of extensive research effort for two decades [65].
Recently, several environmental monitoring solutions have been proposed that
exploit unmanned air vehicles (UAV) in combination with WSNs [66, 67]. This
is because from the sensing point of view, drones have features that complement
those of WSNs nodes nicely. In fact, while WSNs nodes are usually deployed
in large numbers in the monitored environment and are equipped with few low
cost sensors, drones are way less numerous due to their higher cost but can be
equipped with several expensive sensors. Therefore, in most application scenarios,
the WSN nodes are deployed pervasively to monitor basic physical parameters
and the drone flies throughout the monitored environment to take more sophis-
ticated measures in areas where the WSNs nodes detect the occurrence of some
critical event.

From a communication and networking point of view, the drone can also in-
terplay with WSNs nodes effectively. In fact, by flying at a convenient altitude,
drones can establish low attenuation, high data rate communication links with
the network infrastructure and therefore are the perfect candidates for acting as
the gateways (and thus the sinks) of the WSN [68], [69], [70]. Furthermore, since
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the drones usually fly in the proximity of WSN nodes, detecting the occurrence
of critical events with the aid of drones can yield the following two advantages:

• Firstly, drones can immediately forward the data related to the detection
of the occurrence of the critical event generated by the WSN nodes to
the network infrastructure,hence, resulting in reduced delay and increased
reliability;

• Secondly, if the WSN nodes increase the sampling rate to improve the mon-
itoring of the critical event, the consequent packets are gathered by the
drones right away without the need to be forwarded by several interme-
diate nodes. This results in increased energy and communication resource
efficiency for the whole WSN.

In this work, a networking solution is desugned, called SDN-(UAV)ISE, for
the integration of WSNs and UAVs that exploits the software defined networking
(SDN) approach. SDN-(UAV)ISE extends a recent solution which applies the
SDN approach to WSNs, named SDN-WISE [71, 72], to integrate UAVs in light
of the specific features of their mobility patterns. In fact, we observe that most of
the time drones fly according to a linear trajectory on the short term, therefore,
it is possible for the SDN controller to predict the resulting topology changes
and calculate packet routing paths in advance. Furthermore, since drones are
expected to fly in the areas where a critical event is occurring, by observing the
data generated by the WSN nodes, it is possible to forecast the medium-long
term mobility pattern of the drones and infer the expected topology changes.
Accordingly, in this work the two main contributions are:

• The architecture and protocol modifications in the SDN Controller as well
as in the nodes, needed to exploit the prediction of the drone mobility are
introduced;

• The advantages are assessed that are achieved by exploiting a simple arti-
ficial intelligence solution based on decision tree learning that exploits the
data generated by the sensors to predict the medium-long term mobility of
the drone.

In recent years, the application of Artificial Intelligence in the area of UAVs
has gained popularity due to their autonomous moving capability and applica-
tions in various domains. some of the recent applications of Machine learning
algorithms in the area of UAVs are the detection of drones for public safety ap-
plications[73], Field Data analysis and Modeling for drone communications [74],
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Wireless Connectivity and Security of Cellular-Connected UAVs [75]. Whereas,
we predict the mobility of the drone in our work using the decision tree machine
learning algorithm. And we exploit those predictions to create routes in advance.

2.6.1 SDN-(UAV)ISE Scenario and Overview

Figure 2.37: Proposed scenario.
The aim of this section is to illustrate step by step the SDN-(UAV)ISE func-

tionalities. All the elements composing the SDN-(UAV)ISE architecture and how
they are connected to each other is discussed. Then, in Section 2.6.2, details of
all the new features introduced in the proposed approach are explained. Finally,
in the Section 2.6.3, how the above components work together is shown.

The scenario depicted in Fig. 2.37 is considered. WSN nodes are equipped with
two radio interfaces. The first one exploits a long range, low data rate wireless
technology, such as LoRa or Sigfox. Such radio interface, which we denote as long
range wireless interface is utilized by the nodes to send a few samples of the
sensed parameters per day to the back-end server through an access point. The
other, instead, exploits a short range, high data rate wireless technology. For such
radio interface, which we refer to short range wireless interface there are several
candidate technologies. The most popular are IEEE 802.15 and IEEE 802.11, but
many other solutions exist. WSN nodes exploit the short range wireless inter-
face to establish a multihop wireless network. Such network is connected to the
network infrastructure through the drone which acts as a mobile sink.

Accordingly, the most important elements of the proposed scenario are the sen-
sors, the sink deployed on the drone, and the SDN-WISE controller.

• Sensor: Sensor nodes, as shown in Fig. 2.38, implement physical and MAC
layers which depend on the specific transceiver and micro-control unit (MCU)
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Figure 2.38: Sensors protocol stack.

utilised. The MCU executes the application layer which retrieves the sensor
measurements and the Flow Entries Scheduler application. The Forward-
ing layer that handles the arriving packets as specified in the flow table is
directly linked to scheduler.

• Sink: The UAV sink is the gateway between the sensor nodes running the
Data plane and the Controller implementing the Control plane.

• SDN-WISE Controller: The network management logic is dictated by one
or several Controller(s). The standard version of SDN-WISE includes a
Topology Management (TM) layer which abstracts the network resources
so that different logical networks with different management policies set by
different Controllers can run over the same set of physical devices. More
specifically, the TM layer collects local information from the nodes and
provides the Controller(s) with this information in the form of a graph of the
network (reporting information related to topology, residual energy level,
SNR on the links, etc). In the proposed approach, the Controller runs in its
Application Layer, the implemented algorithms and uses the information
generated by the nodes to forecast the future UAV’s positions in order to
reduce the number of destinations based on the WSN topology.

2.6.2 New Features of SDN-(UAV)ISE

In this section, all the policies and mechanisms used by the proposed SDN-
(UAV)ISE approach to create back-up routes, to reduce the number of desti-
nations inside the topology as well as to schedule the flow table entries within
the sensors are described:
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Figure 2.39: Controller Application Layer block diagram.

• Destinations reduction: When working with UAVs, energy and saving time
are certainly the two most important pressing issues. Misuse of the resources
can drastically reduce the operating time of the UAV. For this reason, in
scenarios, where a plethora of sensors are deployed, reducing the number of
destinations to be reached by the UAV while maintaining the radio visibility
with all the sensors is crucial. To achieve this goal, we apply a scheme that
identifies a set of positions such that the area surrounding any of the sensors
is inside the radio and sensing coverage of the drone, when the drone is in
one of the positions identified by our scheme. We will now describe such
procedure.

Starting from the set U of all the GPS coordinates of the deployed sensors,
consider all possible subsets of U which we denote S1, S2, ..., Sk, such that
for any i ≤ k, there is a position, pi, such that all coordinates in Si are
within the radio and sensing coverage of the drone when this is visiting
position pi. We defined C as a collection of subsets taken from S1, S2, ..., Sk

whose union is U .

We want to find the optimal collection Copt with the minimum number
of subsets. This problem is a well known problem in the literature and is
known as "The Set Cover Problem" and is one of the Karp’s 21 NP-complete
problems. In general, the problem of determining the optimal C,ie., Copt is
NP-complete and an optimal solution can be found using a greedy algorthm,
like in [76] or in [77]. In most WSN scenarios, this optimal solution reduces
considerably the number of destinations the UAV needs to visit to collect
data from the deployed sensors, thus saving time and energy.

Note that, the set cover greedy algorithm is constantly informed by the TM
layer about any topology change. Therefore, Copt might change over time.
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Every time a change occurs in the WSN topology, the new optimal solution
will be calculated with the aid of the UAV pilot and Forecast UAV Mobility
module.

• Forecast UAV Mobility: Forecasting the movements of the drone is per-
formed using a decision tree algorithm executed in the Controller. The de-
cision tree is generated by learning the training data that consists of the
latest information from the sensors. The training dataset is updated each
stage since the data from the sensors keeps varying. The rationale behind
such approach is that the pilot will most likely fly the drone to locations
where critical events occur and therefore, our forecast scheme considers the
drone positions and the data taken from the sensors to forecast the UAV
mobility.

• Calculates Routes: Based on the predicted movements of the drone, it is
possible to forecast the topology changes for a given time window. The
Calculate Routes component will evaluate the optimal paths between all
sensors and the sink (i.e., the drone) for each predicted instance of network
topology along with the corresponding time intervals when those optimal
paths are supposed to be valid. Observe, that in our current implemen-
tation, optimization paths are selected so as to minimize the number of
hops, however, different optimization objectives can be chosen based on the
specific application requirements.

• Create Flow Table Entries: The creation of a Flow Table Entry takes as
input the current WSN topology and its predicted changes known to the TM
layer which are then shared to the Create Flow Table Entries component
as well as. In fact, the Create Flow Table Entries component will create
the flow entries that are used to reach the UAV in any possible scenario
reducing the number of packets sent into the network.

• Distribute Flow Entries: After receiving the flow entries to be distributed,
the Distribute Flow Entry component identifies the most effective and ef-
ficient way to deliver them to the intended WSN nodes depending on the
current network topology. Some of such entries may be dispatched via long
range radio interface and others via the short range wireless interface.

• Flow Entries Scheduler: The Flow Entries scheduler is a component which
manages the incoming packets from the controller and retrieves the time at
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which a specific flow rule should be applied in the sensor. This table is con-
tinuously updated by the Forwarding layer according to the configuration
commands sent by the Flow Entries Scheduler. This scheduler operation is
managed by the MCU of the WSN nodes and it interacts frequently with
the Forwarding layer. It is also responsible for the correct activation of the
correct flow table entries in the sensor. Each time a packet arrives from the
Controller, the Forwarding layer extrapolates the information as the flow
entry and retrieves the time at which the flow rule should be applied and
passes it to the scheduler. The scheduler then, applies the corresponding
flow entry at that given time. This would reduce the network overhead and
the number of control packet inside the network .

2.6.3 SDN-(UAV)ISE in action

The objective of this section is to provide an overview about how the components
described in the previous Section 2.6.2 interact with each others.

Let us start by focusing on the Controller whose architecture is shown in Fig.
2.39. Note that, it receives as inputs the updates provided by the TM regarding
the sensor network topology as well as the current position of the UAV and the
values measured by the sensors.

The sensor network topology updates are utilized by the Calculate Routes com-
ponent to find the optimal paths as we will explain in the following.

Information regarding the current position of the drone and the values measured
by the sensors, are indeed utilized by the Forecast UAV Mobility component to
predict the movements of the drone. More specifically, when the drone reaches
one of the aggregation points selected by the Destination Reduction component,
the Forecast UAV Mobility component applies Decision Tree Learning to predict
the following destinations for the drone covering a time window. Duration of
such time interval, x, is selected in such a way that the signaling produced by
the Controller to update flow tables in the sensors is minimized. We will provide
further details about such step in Section 2.6.4.

The predicted movements of the UAV are given as input to the Calculates
Routes component that uses such information along with the current topology
provided by the TM to evaluate the corresponding predicted topologies. In other
terms, as the drone moves its points of attachment with the sensor network, this
may lead to topology changes.

For example, suppose, that, according to the prediction of the Forecast UAV
Mobility component, the topology of the sensor network should be
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• T1 in the time interval (t0, t1);

• T2 in the time interval (t1, t2);

• ...

• Tn in the time interval (tn−1, tn), where tn = x.

For each of the topologies T1, T2, ..., Tn, the Calculates Routes component will
calculate the optimal path between each sensor and the sink. In other terms,
let Pi,j be the optimal path, i.e., the sequence of connected nodes, between the
sensor i and the sink when the topology is Tj. The optimal paths, along with the
time interval will be given as input to the Create Flow Table Entries component.
This component is responsible for creating the resultant Flow Table Entries along
with the time intervals when those Flow Table Entries can be considered to be
effective. This aforesaid information is given as input to the Distributes Flow
Entries component that is responsible for delivering each Flow Table Entry to
its intended destination. Observe, that, to achieve this purpose, both the WLAN
and WAN communication interfaces can be utilized.

Note, that, when a sensor receives the new Flow Table Entries, these entries
will be given to the Flow Entries Scheduler, shown in Fig. 2.38, which will insert
the correct Flow Entry in the Flow Table at the intended time instant.

2.6.4 SDN-(UAV)ISE Performance evaluation

In this section, the experimental setup considered for the assessment of SDN-
(UAV)ISE is decribed. Then, in Section 2.6.5, we will discuss the numerical re-
sults.

A scenario is considered in which sensors are deployed to measure the quality
of air in an urban area. A drone flies over such an area for two purposes:

• It acts as a gateway between the wireless sensor network and the network
infrastructure;

• It measures further physical features regarding the environment by exploit-
ing some specific sensor it is equipped with, e.g., cameras.

The dataset contains the values of temperature, humidity, pressure, and con-
centrations of several pollutants (i.e., PM1, PM2.5, PM10) measured by 56 low
cost sensors deployed in the city of Krakow (Poland) in 20177.

7https://www.kaggle.com/datascienceairly/air-quality-data-from-extensive-network-of-
sensors
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(a) 25 sensor nodes

(b) Reduced Destinations

Figure 2.40: Standard deviation of the Loss vs. No. of Iterations (MGM-4-FL)

The location of the 25 sensor nodes and their corresponding reduced destinations
is shown in Figures.2.40a and 2.40b.

The original dataset has been elaborated along two directions, i.e., we thicken
the data and add the position of the drone, as described below.

Thickening of the data is carried out in our work because, we note that the
original dataset contains one sample per hour. However, we wanted to have more
frequent updates about the air quality. Therefore, for each sample, we have gen-
erated 100 more samples through linear interpolation and therefore, we have one
sample for every 36 seconds.

Similarly, regarding the position of the drone, we observe that there is no exper-
imental data providing information about the movements of a drone in an area
covered by a WSN.

Therefore, a mobility model has been developed to generate a synthetic trace
of the drone position over time denoted as v0(t). The i-th reduced destination of
sensors is denoted as pi. The drone will keep moving from one reduced destination
to another one. More specifically, at a given time t, the next destination is selected
randomly from the reduced destinations, say the i-th with a probability Pi(t)
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which is proportional to a weight function, Wi(t), that is,

Pi(t) = Wi(t)/
∑
j ̸=j∗

Wj(t) (2.20)

where j∗ denotes the calculated reduced destination that the drone has just
reached.

The weight Wi(t) is assigned according to the following rationale [78]:

• At each step, any of the other calculated reduced destination can be selected
as next destination;

• It is likely that the drone will visit the reduced destination of sensors that
are measuring critical values and that have not been visited for some time;

• It is likely that the drone will visit the reduced destinations that are close
by instead of wandering from one end of the operation area to the opposite
end.

Accordingly, W (i) is evaluated as follows:

Wi(t) = α ·Destcritici(t) + (1− α) · proximityi(t) (2.21)

where α is a parameter that lies in the range [0,1] which is used to model the
pilot attitude to consider the values measured by the sensors to decide the next
destination for the drone. The function Destcritici(t) is the Destination critical-
ity function that calculates the maximum of the criticality values of the sensors
corresponding to the i-th destination. The criticality value of the sensor is calcu-
lated by the function critici(t) that measures how abnormal have been the values
measured by the i-th sensor, since the last time, the drone has visited the cor-
responding reduced destination and the proximityi(t) is a function that decays
with the distance between the current position of the drone and the i-th reduced
destination.

More in detail, the criticality parameter of the i-th sensor is evaluated as follows:
critici(t) =

=

{
critici(t− 1) + 1 if xi(t)) > σ

critici(t− 1) if xi(t)) ≤ σ
(2.22)

where xi(t) denotes the air quality measured by the i-th sensor at that moment
and σ is the threshold value which is set to be 25. The threshold is obtained
by calculating the sum of the standard deviation and the mean of the measured
sensor values. The rationale of eq. (2.22) is that the criticality of the sensors
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increases as long as the drone is not in the range of the reduced destination and
is set to 0 otherwise.

The proximityi(t) is calculated by the formula suggested in [78], i.e.,

proximityi(t) =
1

1 + κd(v0(t), pi)
(2.23)

where, κ is a constant value which we set to κ = 0.05.

2.6.5 SDN-(UAV)ISE Numerical results

The criticality is compared between the two cases. In the first case, the drone ran-
domly moves from one observation point to another. The Controller reactively
updates the flow tables when it detects a topology modification. In case 2, the
drone moves according to the algorithm and the Controller reactively updates the
flow tables when it detects a topology modification. Fig. 2.41a shows the varia-
tion of criticality when a drone moves randomly and for different values of the
parameter α needed in eq. (2.21). As shown in Figures. 2.41a2.41b and 2.41c, the
criticality is considerably higher for the case in which the drone moves randomly
when compared to the case in which the drone moves according to the algorithm.
We highlight that the mobility model is not known to the proposed algorithm.

The forecasting of routes is performed for every 12 minutes using the Decision
tree algorithm. The training data-set (Xi,Yi) offered to the decision tree model,
where Xi represents the input attribute set. Xi contains the attributes: tempera-
ture, pressure, humidity and pollutants concentrations (PM1, PM2.5, PM10). Yi
represents the objective attribute which is the drone position.

Performance of SDN-(UAV)ISE has been assessed in terms of a utility function
defined as

u(x) = ζ(x)/∆(x) (2.24)

where x is the duration of the forecast window, ζ(x) is the time interval between
two transmissions of flow table updates, and ∆(x) is the packet size.

Note. that. ζ(x) is given by

ζ(x) =

{
T if T < x
x if T > x

(2.25)

where, T is the time when the first estimation error occurs. In fact, given that
the duration of the forecast window is x, the maximum interval between a trans-
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(a) Drone moving randomly

(b) α = 0.5

(c) α = 1

Figure 2.41: Variation of criticality when drone moves randomly and for different
values of α
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mission and the following one is x. However, if the forecast drone position turns
wrong after a time interval T , new flow table entries must be sent.

For what concerns the size of the packets containing the flow table entries,
observe that their average size increases linearly with x. In fact, the longer the
forecast window duration, the higher the number of flow entries that must be
carried by each signaling packet. Note, that, the average packet size is not pro-
portional to x because each packet should include a header.

Accordingly, the average utility function can be calculated as follows

E[U(x)] = E[ζ(x)]/(x+ k) (2.26)

where k is a constant which weights the contribution of the packet header in the
overall packet size.

Note, that, x should be set in such a way that E[U(x)] is maximized. Fig. 2.42
shows the expected utility variation with respect to x. In Fig. 2.42, we report the

Figure 2.42: Expected Utility with respect to the duration of the forecast window.

utility for different values of α. In the same figure, we show the utility function
which would be obtained without exploiting SDN-(UAV)ISE mechanisms. Note
that for a wide range of x values, the utility function achieved by SDN-(UAV)ISE
is higher, which means it improves resource efficiency.
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Chapter 3

Vehicular Networks

3.1 Introduction

This chapter focuses on the exploitation of ML in vehicular safety applications.
The first part of the chapter focuses on the application of ML to detect anomalies
in driving behaviour. More specifically, a CNN based auto-encoders algorithm was
applied to detect the anomalies in real time and warn the vehicle driver. The well
known transfer learning approach was applied to a case study in which driving
data was collected from different different bicyclists riding along the same path
in the city of Catania. The second part of the chapter focused on achieving layer
separation in deep neural networks for road-user interaction analysis in smart
road environments. For vehicular safety applications, it is not idea to build a
common ML model for all the users which would be effective in all kind of road
scenarios. The driving behaviour would change with person to person and it
would also change depending on the road environments. To address this issue
efficiently, a V2I framework was designed based on a training technique that
partitions the Neural Network (NN) layers of the model into some layers specific
of the user behaviour and others layers specific the road-environment. specific of
the road-environment where the vehicle is currently located. This approach was
experimented with the same bicycle data-set obtained from different bicyclists.

3.2 ML for Vehicular Safety Applications

The safety of vehicle users is an important consideration while designing and
developing intelligent transportation systems. According to the World Health or-
ganization, approximately 1.3 million people die each year as a result of road
traffic crashes [79]. Monitoring and analysing the driving behaviour in real time
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can be helpful in detecting anomalies and warning the driver and nearby road
users. Generally, the data required for analysing the behaviour of the driver are
collected through various on-board sensors installed in the vehicle. Indeed, vehi-
cles manufactured in the last two decades are equipped with variety of sensors
installed in the vehicle to monitor speed, temperature, fuel consumption, engine
RPM, steering wheel angle and break pedal pressure and more. Note, in fact, that
the corresponding values are related to the driver action and reflect the attitude
and behaviour of the vehicle. In the recent times, usage of such data has become
easier thanks to the introduction of the OBD II protocol which gives access to
such sensor values and the vehicle diagnostics [80].

Due to variety of sensor data generated from the vehicles, ML algorithms
have been exploited for driving behaviour analysis and other safety applications
[81],[82] and anomaly detection [83], [84].

3.2.1 ML for driving behaviour analysis

In this section, the most relevant literature on the application of machine learning
scenarios where the road-user interactions are relevant, especially in the area
of driving behaviour analysis. Driving behaviour describes the intentional and
unintentional characteristics and actions a driver carry out while operating a
vehicle. They include driver hand and body movements, foot dynamics, eye gaze
dynamics, head rotation and more.

ML algorithms have been widely used in analysing and studying the driving
behaviour.

In [81], the authors propose tools based on support vector machines and feed
forward neural networks to classify whether the driving behaviour is safe or unsafe.
The authors trained the ML model on a publicly available data-set comprising of
in-vehicle data collected from 26 hours of driving time. Parameters such as engine
speed, vehicle speed, break pedal position are considered for the model training.

In [82], the focus is on the analysis of driving behaviour of truck drivers. A
classification framework is proposed consisting of four different machine learning
algorithms to classify unsafe driving behaviours such as drunk driving, fatigue
driving, speeding and more. Similarly in [85], the objective is the detection of the
driving behaviour using GPS sensor data. More specifically, deep neural networks
such as recurrent neural networks and long short term memory networks are
exploited to characterize the driving behaviours. In [86], the authors utilized the
distance to the car in front and also the lane position apart from the commonly
used parameters such as speed and steering positions. The authors compared two
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linear and non-linear ML algorithms for identifying drug induced behaviours.
Apart analysing the driving behaviour of an user, the ability to detect anomalies

in the driving behaviour and in the road has the potential to limit the number of
traffic accidents and save human lives. In fact, ML techniques have been proved
to be effective in detecting anomalies and abnormal driving behaviours.

In [87], the authors propose a ML based method to detect road anomalies by
analysing driving behaviours. The ML algorithm is applied on the data collected
from smartphone inertial sensors. The proposed approach was able to detect 70
percentage of the swerves and more than 90 percentage of the turns on the road.

In [88], the Online Sequential Extreme Learning Machine (OS-ELM) was applied
to detect anomalies in driving behaviour. The OS-ELM is a an efficient neural
network model that has high memory efficiency and can perform quick sequential
learning with streaming data. Authors compared the application of OS-ELM to
hidden Markov model and the traditional Long short term memory (LSTM)-
based neural networks and found that OS-ELM has better accuracy and higher
learning rate.

Apart from classical ML approaches such as K-Nearest Neighbor (k-NN), De-
cission Tree and support vector machine, deep neural networks such as auto-
encoders, LSTM, and transformers have also been applied for anomaly detection
[89–91].

In Section 3.3, a Transfer Learning (Tl) approach with CNN based auto-encoders
is proposed for the detection of anomalies in cycling behaviour. The proposed ap-
proach is applied to a specific case study and experimental results are obtained.
In section 3.4,

3.2.2 ML for Autonomous Vehicles

Ml has been widely used in automotive industry for various applications, thus
making self-driving cars a reality. According to the U.S National Highway Traffic
Safety Administration (NHTSA), 94 percentage of the road accidents were caused
due to human error. Therefore the use of autonomous vehicles could reduce the
errors that humans make and a large number of road crashes could be avoided.
In case of commercial sector, autonomous vehicles have the benefit of lowering
costs. Driver-less delivery will result in reduced labor costs for truck drivers and
other delivery drivers.

Though autonomous vehicles are in testing and early prototyping stages, ML is
being used in various features of the technology in Advanced Driver-Assistance
Systems (ADAS). And ML seems to play a major role in the future developments
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as well. Some of the aspects of autonomous vehicles in which ML is applied are
discussed below.

Perception is an important aspect of autonomous vehicles as they need to per-
ceive the surrounding environment. The perception approach that exploits deep
learning for autonomous driving systems that uses Light Detection and Ranging
(LIDAR) point cloud information is known as Simultaneous Segmentation and
Detection Network (SSADNET) [92]. The SSADNET technique can detect and
differentiate both driviable areas and obstacles which are very critical for the
point of view of autonomous driving. Deep learning techniques are also used for
driving environment perception and localization [93]. Since CNN is a powerful ML
algorithm for image processing, it has been used for object recognition, distance
estimation and classification of vehicles and pedestrians. In [94], a CNN based
multi-task method is proposed to jointly model object detection and distance
prediction.

Another important aspect of autonomous driving is motion planning. It is very
essential to understand the driving behaviour of nearby vehicles driven by humans
and to evaluate and estimate the lane shifting of the autonomous vehicle. The
main inputs to the motion planner are lateral acceleration, longitudinal speed
and yaw rate.In [95], a deep neural network technique known as Light Gated
Recurrent Unit (Li-GRU) is exploited for trajectory estimation in autonomous
vehicles. Reinforcement and deep reinforcement learning techniques play a major
role in advance forecasting for autonomous vehicles [96].

Pedestrian detection is a crucial task of autonomous driving. However the issue
in the exploitation of pedestrian detection techniques for autonomous vehicles
is is the extreme amount of data processing. The ML techniques for pedestrian
detection includes feature extraction and classifiers and also deep CNN is a widely
used technique for this task. The Aggregate Channel Feature (ACF) is a widely
recognized pedestrian detection algorithm [97]. However this algorithm fails to
detect targets when they are occluded or very small. To overcome this issue, a
pedestrian detection algorithm is proposed which is based on a combination of
five layer CNN structure and an AdaBoost classifier (CNN–AdaBoost) [98]. The
error detection rate of this algorithm was considerably reduced when compared
to the well known ACF algorithm

Another important aspect of autonomous driving in ML algorithms are ex-
ploited is vehicle cyber-security. The chances of cyber-attacks in autonomous
vehicles increases with the application of embedded technologies in connected
vehicles and vehicular communication systems. The advancement and success of
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autonomous vehicle systems depends on the usefulness of sensors being used and
the strength of communication technologies deployed. However, the sensors and
the communication systems deployed have high security concerns as an attacker
could take control of the autonomous of the vehicle by feeding wrong data to
the autonomous vehicle systems. In [99], a deep reinforcement learning technique
using LSTM-GAN is introduced for autonomous vehicle systems for maintain-
ing safety and security. In this GAN based approach, the adversary tries to feed
defective data to the sensor readings or tries to make sure that there is no opti-
mal distance between the autonomous vehicles. On the contrary, the autonomous
vehicle will try to deafened itself from such attacks.

Other aspects of autonomous driving in which ML algorithms can be utilized
are self-localization, motion-control and automated-parking. While it may not
initially be more accurate than vision-based systems, ML algorithms can achieve
greater accuracy over time.

3.3 A Case Study: Detection of anomalies in cy-

cling behavior with CNN

Cycling has always been taken as sustainable and healthy transportation mode.
With the increasing rate of population, transportation gases and pollution in
urban areas, policy makers are pushing bicycle as fare mode of transportation.
Even, during Covid-19 period cycling was more encouraging transportation mode
by citizens for mobility. Unfortunately, with the growing number of bicyclists the
rate of bicycle related road crashes is also increased. Therefore, bicycle safety
assessment and management has become a challenge due to the limited avail-
ability of crash data and their reactive nature. In this field, artificial intelligence
and availability of new data sources in smart cities and Communities offer new
opportunities.

Almost 2000 cyclist deaths are caused by road accidents every year in Europe
with an increasing trend in urban areas. Traffic Conflict is an alternative proac-
tive approach to the crash data collection and global navigation satellite systems
(GNSS) makes easy to track detailed cycling path. In our work, we focus on mod-
eling the cycling behavior of bicyclists to detect anomalies, that can be associated
to critical situations requiring an evasive maneuver. ML solutions could play an
effective role in handling large amount of heterogeneous data, which could be
helpful in applications such as anomaly detection. However, training the model
requires large amount of data and different users may need tailored models to
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Figure 3.1: Bicycle Path

account for different cycling behaviors. Hence, a CNN based Transfer Learning
approach is introduced detect anomalies in cycling behavior.

3.3.1 Bicycle Dataset

In this section, a specific case study is considered to which the Transfer Learning
approach can be applied. A bicycle was equipped with sensors to collect video
recording and GPS data 10 Hz. Speed and heading have been collected from the
NMEA string (standard data format supported by the GNSS), as well as location
coordinates. The data was collected by 8 bicyclists riding along the same path in
the city of Catania in Italy. After data collection, various python functions were
implemented to 1) clean and smooth dataset 2) compute derived parameters
3) create training testing sets for the model. Speed and heading are the basic
recoded time series data while we derived longitudinal acceleration, heading rate,
transversal acceleration and combined acceleration.

As shown in figure 3.1, the data was collected by 8 bicyclists riding from point
1 to point 3. We mark the path from point 1 to point 2 as scenario 1 and this
path has busy traffic. We mark the path from point 2 to point 1 as scenario 2
and this path is along the sea side.

Since the data is time-series, the Convolutional auto-encoder is an ideal choice
for the anomaly detection task.
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3.3.2 Transfer Learning with CNN based Auto-encoders

The objective is to detect anomalies in real time and warn the bicyclists. Hence the
Auto-encoders ML algorithm was considered for the case study. Auto-encoders is
an unsupervised ML algorithm that is used for learning the data representation
[100–102]. The auto-encoders compress the input into a low dimensional code
and then reconstruct the input from this compressed representation. Therefore,
an auto-encoder basically comprises of three components: encoder, code and de-
coder. Auto encoders are used for dimensionality reduction, feature extraction
and anomaly detection. In our experimentation, we use auto-encoder for the pur-
pose of learning the representation of the bicycle data and detecting anomalies.
There are various types of auto-encoders such as vanilla auto-encoder, stacked
auto-encoder, denoising auto-encoder, variational auto-encoder and convolutional
auto-encoder.

In our experiments with the bicycle data, we use the convolutional auto-encoder
(CAE). CAE combine the advantage of convolutional filtering in convolutional
neural networks with unsupervised pretraining of Auto-encoders [103, 104]. The
encoder in CAE contains convolutional layers and the decoder contains deconvo-
lutional layers.

The performance of the auto-encoder model is evaluated in terms of mean square
loss. The mean square loss is evaluated from the data reconstructed by the au-
toencoder and the input data fed into the autoencoder according to the eq. (3.5),
i.e.,

MSE(y, ŷ) =
1

N

N∑
i=0

(y − ŷi)2 (3.1)

where y is the input data fed into the autoencoder, ŷ is the reconstructed output
data and N is the length of the input data.

Therefore, in order to detect the anomalies, a threshold value is set. If the loss of
the auto-encoder model on the data is greater than the threshold, then it means
the data is anomalous and if the loss is lesser than the threshold, then the data
is not anomalous.

However, training the model requires large amount of data and different users
may need tailored models to account for different cycling behaviors. Hence, the
the Transfer Learning approach is used with the auto-encoder model to reduce
the computation time and eliminate the requirement of large amount of data for
training.

Transfer Learning (TL) is a research solution in Ml in which a model developed
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for an application or a task is reused as the starting point for a model on a
second task. TL has become quite popular in the area of machine learning and
deep learning in the recent times. In TL, the pre-trained models are used as the
starting point on computer vision and natural language processing applications
given the high computation load and time resources required to Ml models [105,
106].

Since, a CNN based auto-ecnoder algorithm is used in this case study for
anomaly detection and CNN requires large amount of data for training and high
computation time, TL is considered as an ideal solution for learning in applica-
tions where CNN is utilised. TL has been used with CNN for computer vision
application such as image classification for improved efficiency and saving the
training learning time [107–110].

TL has also been used in vehicular safety applications such as driver anomaly
detection similar to our case study [111, 112].

3.3.3 Numerical Results

In this section, the numerical results obtained by evaluating the Transfer Learning
approach on the bicycle dataset is discussed. For the experimentation, 4 different
cases were considered as follows:

• Case 1: Case 1 is similar to the standard ML approach. The training is done
on each user/bicyclist data and the models were tested on their respective
user data. More specifically, 50 percentage of the data in each user was
considered for training and the remaining 50 percentage was considered for
testing.

• Case 2: In case 2, the training was done only on the user 1 data and the
trained model was tested on the testing data of all the other 7 users. This
case is referred as the benchmark case.

• Case 3: Case 3 is the standard Transfer learning case. The model trained on
user 1 data was utilised for Transfer learning. More specifically, the trained
model was trained again on each user’s data before testing on each user’s
testing data.

• Case 4: Case 4 is again a Transfer learning approach like case 3. However
in case 4, the inner layers of the Ml model are frozen.
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Figure 3.2: Training Loss vs Epochs

Several simulations were conducted to estimate the Training Loss, Recall, F-
score and Precision in all the four cases. In figure 3.2, the training loss in case 1
and case 3 are compared to show how transfer learning can prove to be efficient.

As shown in figure 3.2, the convergence is quicker in case 3 (Transfer Learning)
when compared to case 1 (Standard case). Note that, in case 3, the loss shown in
the graph is the training loss of the pre-trained model. Therefore, by the use of
transfer learning, the training time and the cost can be considerably reduced.

Setting the threshold is an important parameter in detecting anomalies using
auto-encoders. Generally, the threshold is set as the sum of the average and the
standard deviation of the ML loss. The threshold was varied and the Recall,
Precision and F-score were compared between the four cases. Note that, it is
required to calculate the number of True positives (TP), False positives (FP)
and False negatives (FN) to evaluate the Recall, Precision and F-score. They are
calculated according to confusion matrix as shown in figure 3.3

The Recall, Precision and F-score are evaluated according the equations 3.2, 3.3
and 3.4. Recall measures the number of positive class predictions made out of all
positive data examples in the dataset. Precision measures the number of positive
class predictions that actually belong to the positive class. F-Measure denotes a
single score that balances both the concerns of precision and recall in one value.
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Figure 3.3: Confusion matrix

Recall =
TP

TP + FN
(3.2)

Precision =
TP

TP + FP
(3.3)

Fscore =
(1 + β2) ∗ (Precision ∗Recall)
β2 ∗ (Precision+Recall)

(3.4)

Two commonly used values for β are 2 and 0.5. The value 2 weighs recall higher
than precision and the value 0.5 weighs recall lower than precision.

The variation of the Recall with respect to the threshold values for all the four
cases is shown in figure 3.4. As seen in the figure, the recall values for case 3 and 4
(Transfer learning approaches) are significantly higher than the benchmark case
2. The recall values for case 1 is also higher. However in case one, there were 8
models unlike the transfer learning cases or case 1 in which there was a common
model for all the users.

Similarly, the variation of Precision with respect to the threshold values is shown
in figure 3.5. Similar to the Recall variation, the case 2 exhibited lower values of
Precision when compared to the other cases. The transfer learning cases exhibited
better values of precision for different values of threshold.

Similar observation was made also in the case of F-score as shown in figure 3.6.
Note that F-score is a single score that balances both the concerns of precision
and recall in one value. The benchmark case exhibited lower values of F-score
when compared to the Transfer Learning cases.

Note that all the recall, Precision and F-score values shown in the graphs are
the average values of all the 8 users. As seen in the figures, Transfer Learning can
be very efficient in terms of computation and data required for training.
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Figure 3.4: Recall vs Threshold

Figure 3.5: Precision vs Threshold
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Figure 3.6: F-score vs Threshold

3.4 Achieving Layer Separation by Sequential train-

ing

Analysing the road-user interaction in real time can dramatically improve safety
in smart-road environments. In the recent times this has become possible as new
vehicles are being equipped with plenty of sensors that can provide real time in-
formation about the vehicle operations and diagnostics. This data is very helpful
in assessing the driving behaviour and detecting anomalies which is an essen-
tial part of Intelligent transport systems. Given the fact that vehicle sensors can
collect a variety of heterogeneous parameters such as speed, acceleration, fuel
consumption, heading, etc, Machine Learning (ML) can play an effective role in
analysing the driving behaviour, which could be helpful in detecting anomalies
and thus, warning the driver timely. However, it is very demanding and crucial
to build models for all the users which would be effective in all kinds of road
conditions. In fact, it is obvious that every driver has her own driving style which
would vary depending on the road-environment. Therefore, a novel Vehicle to In-
frastructure (V2I)-based scheme to address the above issue efficiently is discussed
in this section. This scheme is based on a training technique that partitions the
Neural Network (NN) layers of the model into some layers specific of the user be-
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haviour and others layers specific the road-environment. Therefore, in real time
the vehicle user can just obtain the NN layers specific of the road-environment
where the vehicle is currently located. More specifically, when a vehicle enters the
communication range of a Road Side Unit (RSU), the vehicle will automatically
download the specific road-environment layers and plug it with the user-specific
NN layers.

3.4.1 V2I Scenario

A V2I scenario is considered in which the communication between the vehicles and
the infrastructure is established by the well known IEEE 802.11p protocol. The
IEEE 802.11p protocol is defined for wireless access in vehicular environments
(WAVE) [113–115]. The WAVE systems basically comprises of two fundamental
types of elements: the Road Side Units (RSU)s that are installed on traffic light
posts or other road infrastructure elements and the On-Board Units (OBU)s
mounted on the vehicles to establish communication with other vehicles and with
the road infrastructure [116, 117].

The data for the ML training in vehicular applications is collected from smart-
phones’ embedded sensors and On-Board Diagnostics (OBD) II units [118, 119].
The OBD II is a standard which led to the development of OBD II scanning tools
that can interface to any vehicle via a 16 pin port [80]. The OBD II uses two dif-
ferent kinds of codes to request sensor data from the Electronic Control Unit
(ECU). They are Parameter Identifiers (PIDs) and Diagnostic Trouble Codes
(DTCs). PIDs are used to measure real time parameters such as Engine RPM,
Vehicle speed, Fuel pressure, Throttle position and more. Whereas DTCs are used
to diagnose malfunctions in the vehicle systems.

The On-Board unit receives the data from the OBD II for processing and ML
training.

The IEEE 802.11p protocol aims to provide V2I communication in ranges up
to 1 Km and supports data rate from 3 to 27 Mb/s [120]. Therefore, as shown
in Figure 3.7, a vehicle communicates with a specific RSU when this is in the
communication range of its OBU. Basically, RSUs are set up for broadcasting
alert and other types of messages to vehicle users [121]. As we will see later, in
our case the RSUs broadcast the scenario layers to the vehicle drivers. We denote
the layers of the i-th RSU as Si. Therefore, in the scenario shown in the Figure
3.7 there are two RSUs, denoted as RSU 1 and RSU 2 serving two areas and the
corresponding layers are S1 and S2.

Any vehicle driver, say the j-th, has her own specific layers denoted as Uj.
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Figure 3.7: V2I scenario

Suppose she enters within the radio range of the i-th RSU, she will receive the
layers Si and thus can construct a neural network specific of the context as the
concatenation of the layers Si and Uj, i.e., [Uj, Si].

If the application is anomaly detection, the model [Uj, Si] is used by the vehicle
user to detect anomalies. When the same vehicle enters a new area with different
road conditions, for instance the area covered by RSU k, the vehicle user receives
the layers Sk and plugs them with the user layers Uj to build the model [Uj, Sk].

Training ML models in real time is always crucial as ML training can lead to
significant delays. However in our case, there is no model training in real time.
The scenario layers are just concatenated with the user layers to build the model.
All the training is done in the start up phase and not in real time. We term the
training at the start up phase as sequential training which is described in detail in
Section ??. The sequential training enables creation of NN layers that are specific
to a scenario.

3.4.2 Sequential Training Algorithm

In the cases in which users interact with the environment, the environment gives
input to the user who is expected to react with an appropriate action. Such
action and the way in which it is executed depend on the user. For example, in
the application domain of our interest, a curve in the road requires the driver to
steer. The way in which the steering will be executed depends on the driver (and
her current physical/mental conditions). The specific execution of the steering will
result in patterns of values measured by the sensors deployed in the environment.

In Figure 3.8, we sketch the architecture for the neural network model that
we envision. The collected data are provided as inputs to a set of layers which
is specific for the user. The output of these layers will be a representation of
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Figure 3.8: Neural network architecture.

the action taken by the user. Indeed, the output contains information going well
beyond the mere action taken by the user and therefore, we refer to it as meta-
action. The meta-action is given as input for the set of layers which are specific of
the scenario. Therefore, the final output will be specific of the user in the current
particular scenario.

The ultimate objective of the proposed scheme is to enable separate training of
the user- and scenario-dependent layers so that it is possible to train:

• the user-dependent layers using the data collected for that user, say the
j-th, in any scenario, and

• the scenario-dependent layers using the data collected for any user in that
specific scenario, say the i-th.

In this way when user j visits the scenario i the corresponding neural network
model will be constructed as the concatenation of the layers specific for user j,
which we denoted as Uj, and the layers specific for scenario i, which we denoted
as Si. We explicitly observe that the scheme works even if it is the first time that
user j visits the scenario i.

In order to achieve such a result, a procedure is required that automatically
builds the interface between the user- and scenario-dependent layers. In other
terms, it is necessary to build an appropriate vocabulary for the meta-action
recognized by all users- and scenarios-layers. Once such an interface, called meta-
action interface, has been built adding a new user requires the training of the
user-dependent layers in one existing scenario only1 and, consequently, the con-
struction of the relevant dataset. Once trained, such layers can be used in any
scenario.

The viceversa, obviously, applies, i.e., when a new scenario is defined the corre-
sponding layers can be trained considering one existing user only.

We propose Sequential Training as the realization of the procedure that builds
the interface between the user- and the scenario-specific layers.

1and the use of the corresponding scenario-specific layers
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Sequential Training is an iterative process which is executed at the start up
of the system and assumes that data have been collected for a certain number,
say n, of users in a certain number, say m, of scenarios. We denote the dataset
collected for user j in scenario i as Dj,i.

The basic idea of Sequential Training is to build the meta-action interface as
follows. The layers specific for user j∗, with j∗ ≤ n, are trained by using the
datasets Dj∗,i for all i ≤ m and the corresponding scenario-specific layers, Si,
which are set as non trainable, we will say frozen in the following of the paper.
Observe, that when the layers for user j∗, Uj∗ , are concatenated with the layers
for scenario i, which are set as non trainable, we are forcing Uj∗ to learn the
vocabulary utilized by Si. Viceversa, the layers specific for scenario i∗, with i∗ ≤
m, are trained using the datasets Dj,i∗ for all j ≤ n and the corresponding user-
specific layers, Uj, which are frozen.

For simple understanding, the example shown in the figure 3.9 is considered.
Assume that the sensor data was collected from 5 users in two scenarios: D1,1,
D2,1, ...D5,1 from Scenario 1 and D1,2, D2,2, ...D5,2 from Scenario 2. As mentioned
earlier and as shown in Figure 3.9, the user layers and scenario layers are frozen
and trained on the respective data sequentially and in an iterative manner. The
goal is to have a separate set of layers for each scenario. That is, to obtain trained
scenario 1 layers S1 and trained scenario 2 layers S2. The sequential training for
two scenarios is comprises of the following operations:

• Freeze the scenario layers in [U1 S1] and train on data D1,1

• Freeze the user layers in [U1 S2] and train on data D1,2

• Freeze the scenario layers in [U1 S2] and train on data D1,2

• Freeze the user layers in [U1 S1] and train on data D1,1

The above cycle is done for all the users. Doing this sequential process will result
in trained set of layers specific to the scenarios. That is, we will obtain scenario 1
layers S1 and scenario 2 layers S2 and also the 5 user layers: U1, U2. U3,U4 and
U5. However only the scenario layers are required to be deployed in the RSUs.

3.4.3 Numerical Results

The dataset and the ML algorithm for the experiments are the same mentioned
in sections 3.3.2 and 3.3.1.
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Algorithm 5 Sequential Training algorithm
1: /* Protocol initialization */
2: Load data-set Di,j where i=1,2,3...n users and j=1,2..m scenarios
3: while True do
4: if i ≤ n then
5: while j ≤ m do
6: Freeze Sj layers in [UiSj]
7: Train [UiSj] on data Di,j

8: j=j+1
9: Freeze Ui layers in [UiSj]

10: Train [UiSj] on data Di,j

11: end while
12: while j > 0 do
13: Freeze Sj layers in [UiSj]
14: Train [UiSj] on data Di,j

15: j=j-1
16: Freeze Ui layers in [UiSj]
17: Train [UiSj] on data Di,j

18: end while
19: i=i+1
20: end if
21: end while

Figure 3.9: Start-up Training
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In this section, we the numerical results are reported that are obtained by
applying sequential training with the data of six users and testing the model on
two users. The performance of the auto-encoder model is evaluated in terms of
mean square loss. The mean square loss is evaluated from the data reconstructed
by the autoencoder and the input data fed into the autoencoder according to the
eq. (3.5), i.e.,

MSE(y, ŷ) =
1

N

N∑
i=0

(y − ŷi)2 (3.5)

where y is the input data fed into the autoencoder, ŷ is the reconstructed output
data and N is the length of the input data.

The Sequential training was performed with 6 users in an interactive manner to
obtain the scenario layers of scenario 1 S1 and scenario 2 S2.

The following 5 cases are considered for the evaluation

• Case 1: This case is our proposed approach. Assuming that vehicle user 7
is driving in the scenario 2, user will receive the scenario 2 layers S2 from
the RSU. The received S2 layers will be plugged in with the user layers U7
to build the model [U7, S2].

• Case 2: Case 2 is the approach in which the vehicle user plugs in the wrong
scenario layers instead of the right one. That is, if the vehicle user plugs the
scenario 1 layers S1 with the user layers when the vehicle is in scenario 2.

• Case 3: Case 3 is supposed to give the best results among all the other
cases since the model is trained and tested on the same data. Though it
might give best results, it is a wrong approach of evaluation a ML model.

• Case 4: Case 4 is an approach in which the wrong set of layers is plugged
in with the scenario layers. That is, vehicle user 3 in scenario 2 using the
model [U1 S2] instead of [U3 S2]

• Case 5: Case 5 is similar to case 4 except the fact that the scenario layers
are also the wrong ones. To simplify, both the user layers and the scenario
layers are not the correct ones. That is, vehicle user 3 in scenario 2 having
the layer combination [U1,S1] when it is supposed to be having [U3 S2].

Therefore, Case 1 is the proposed approach and also the ideal one. Firstly, We
report the testing loss obtained in both Case 1 and Case 2 in figure 3.10. As
seen in the figure, the test loss is lower for the Case 1 when compared to the
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(a) User 7

(b) User 8

Figure 3.10: Average Loss vs Number of iterations for different values of Epochs
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Figure 3.11: Average Loss vs Input-Time Stamp

Case 2. That is, the loss is lower when the correct scenario layers is plugged in
with the user layers. Instead, the loss is higher when the wrong scenario layers is
plugged in with the user layers. The evaluation was done in both user 7 and 8,
that is evaluating the model [U7, S2] on D7Y and evaluating the model [U8, S2]
on D8Y . We observed similar performance in both the cases.

A similar evaluation was made between the right Case 1 and Case 2 by tuning
the size of the input data fed into the auto-encoder. Since the data collected by
the bicyclists is time series data, we varied the time interval and measured the
average loss . Note that 10 samples correspond to one second. We report this
comparison in figure 3.11 and as shown in the figure, the test loss decreases with
increase in the time interval. However, the test loss for the right scenario is well
below the wrong scenario case.

Finally, all the 5 cases were compared. We report the test loss obtained in all
the 5 cases in figure 3.12. The average loss in the following table was reported.
As seen in the table, the average loss of Case 3 is the lowest among all and it
was expected to be the lowest since the training and testing is done on the same
data. However, training and testing on the same data is not an ideal approach
of evaluating a ML model. Case 1 which is our proposed approach has the next
lowest loss. The average loss of case 1 is lower than case 2 because case 2 involves
plugging in wrong scenario layers. Cases 4 and 5 have the highest average loss
since they involve the usage of wrong user layers.

Therefore from the simulation results, it cab be inferred that the sequential
training approach is able to achieve layer separation with satisfactory results.
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Figure 3.12: Average Loss vs Number of Samples

Cases Average Test Loss

Case 1 0.20703
Case 2 0.25519
Case 3 0.19732
Case 4 0.764707
Case 5 0.765562

As it is not an ideal approach to use a common ML model for all kind of
environment scenarios by every users, the objective was to partition the ML
model into separate layers for the users and separate layers for the scenario. In
this work, a sequential training approach has been introduced for achieving layer
separation in deep neural networks. More specifically, a layer separation approach
that can be beneficial in exploiting ML in road-user interaction applications in
smart road-environments. This approach was applied on a specific case study
in which data was collected from several bicyclists riding along the same path.
Numerical results shows that the proposed approach is efficient in achieving layer
separation in ML models.
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Internet of Underwater Things

4.1 Introduction to Underwater Test-beds

This chapter discusses the design and development of a hybrid underwater/LoRa
testbed. The Internet of Things (IoT) paradigm is nowadays pervasively inte-
grated in our life, while its underwater counterpart, the so called Internet of
Underwater Things (IoUT), is still at its infancy and the idea of monitoring and
interacting with underwater devices in the ocean is yet to flourish [122]. An ex-
pected boost in the underwater research is foreseen and motivated by the fact
that more than 90% of the ocean seabed is unexplored. This kind of exploration
can have a relevant impact on the sea economy, which approximately contributes
as $1.5 trillions annually to the overall world economy. Therefore, it is evident
how the success and development of underwater research can play a key role in
the evolution of human society. In spite of the architectural similarities exhibited
by an underwater communication system as compared to a terrestrial one, nu-
merous criticalities emerge when we move from a "dry" scenario to a "wet" and
significantly variable one, where attenuation can be extremely high and radio fre-
quency waves result not the best choice to support communications. In this case,
the channel model is highly time varying and unsufficiently modeled as compared
to a terrestrial one; high propagation delay, far longer than the one experienced in
the terrestrial network, fading, narrow bandwidth and Doppler effect make com-
munications much more complex in these settings. Numerous are the application
scenarios where the use of underwater communications can result of paramount
importance: just to mention a few, seabed analysis, coral evaluation, marine plant
identification, fish recognition, plankton and lobster tracking, fish farming moni-
toring, tsunami and flood warning systems, as well as submersed cultural heritage
preservation [123, 124]. However the possibility to set up a robust communication
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system which allows to monitor a given sea interest area, relies on the ability to
develop an underwater network to successfully deliver the collected information
remotely to a sink or collection center which can be located on-shore. On the
other hand, devices in the network should be tunable and addressable by means
of a two-way communication protocol which allows to contact and actuate remote
underwater devices.

Recently, some efforts in the direction of developing underwater networks have
emerged. In [125], design, development, and testing of a Smart Buoy system are
presented with a specific focus on the support of real-time remote access to under-
water devices, with an interest in the use of energy harvesting mechanisms which
exploit solar panels to cope with energy constraints. Similar activities have been
carried out in the framework of the SEANet project, where high-speed acous-
tic modems are deployed for supporting short range underwater communications
[126]. Many companies also provide commercial products, like monitoring buoys,
which are somehow envisioned to be deployed in controlled areas where the col-
lected data can be delivered via radio connections (GPRS, 3G) to a web-based
software. This makes, however, their use unfeasible in open ocean areas. Among
the providers of floating equipment, Axis Technologies offers products for envi-
ronmental applications, equipped with air temperature, barometric pressure, or
wave height sensors. Another buoy provider is [127], which produces different het-
erogeneous types of devices, but again interaction with these proprietary devices
is not trivial and no flexibility or interoperability among different producers can
be provided. Examples of data buoys not developed by product providers but,
instead, by universities and research centers are The “Meduza buoy” [128] and
the above mentioned "Smart Buoys", [125] developed at Northeastern University
in the framework of relevant research projects. Each of these systems focuses on
a specific task like, for example, the development of the chassis equipped with
solar panels for devices recharging.

In the following a hybrid underwater-terrestrial testbed is described that have
been developed and tested in both the premises of University of Catania (aquar-
ium) and in the Catania harbor area, and which implements an Underwater
IoT (UIoT). More in detail, the developed system consists of two sub-systems,
a pure underwater sub-system, and a terrestrial sub-system. In the underwater
sub-system, multiple underwater sensors collect measurements on the marine en-
vironment and send this information by means of underwater acoustic modems
through an underwater marine link to a receiving edge underwater modem. The
terrestrial suub-system consists of the edge underwater modem attached to a buoy
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Figure 4.1: The IoUT System

Figure 4.2: Functional View of the System

where a surface LoRa node is connected by way of a LoRaWAN connection [129,
130] to a terrestrial remote LoRa Gateway, which, in turn, remotely interacts with
the cloud by means of an Internet connection. In the cloud, this marine data can
be saved and analyzed for further processing and/or usage. Data can be retrieved
from the cloud by means of an Android app which has been properly designed for
the purpose of this project. Also, a Web App has been designed and developed
for similar purposes, while also allowing a historical query of data. Note that
the IoUT system is highly configurable since the transmission power and other
sensing parameters can be remotely tuned (e.g. image and video quality tuning,
camera rotation angle, modem transmission power, etc.). This makes the system
the first example of a really dynamic and reconfigurable IoUT network.

Numerical results have assessed the effectiveness of using the developed equip-
ment to proficuously send data, images and video with low data rate.

4.2 System Description

In this section, a functional description is provided about the overall system which
implements the proof of concept for an Internet of Underwater Things. As shown
in Figure 4.1, it consists of two sub-parts: The system has been specifically
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designed to implement the vision of an Internet of Underwater Things. In this
respect, two sub-parts of the system can be identified (see Figure 4.1):

• An underwater sub-system, which includes multiple heterogeneous units,
such as those performing sensing activities (i.e. the sensors), those execut-
ing data transmission (i.e. the underwater acoustic modems), as well as the
equipment for power provisioning and control. All this equipment is safely
sealed inside a hermetic enclosure. A control board takes care of control-
ling data collection from the sensor devices; also, it performs collection and
sends the collected data by way of the underwater transmission equipment,
possibly employing multihop communication among the relay nodes. Data
are directed to an edge underwater modem placed under a buoy. This un-
derwater sub-system is fully independent and does not need any cable to
connect to the terrestrial section of the system. As regards the sensing ac-
tivities, different types of data can be collected, thanks to the availability
of multiple types of sensors:

– A Depth/Pressure Sensor, which allows to estimate the depth at which,
for example, either a marine wildlife or a shipwreck are located;

– A camera, which allows to collect visual information, for example, on
submarine wildlife environment or on the degree of deterioration of a
shipwreck, possibly covered by sediments;

– A Light Sensor, which estimates the illumination level at a specific
depth, so as to get useful information for the support, for example, of
recovery campaigns for shipwrecks.

• A Low Power WAN (LPWAN) sub-system, which includes two sub-units,
i.e. a long range communication node (LoRa End Node) with an embedded
control board positioned on a buoy, and a LoRa Gateway which takes care
of forwarding the data received from the underwater network section to
a remote IoT platform and/or a network server by exploiting terrestrial
connections.

Several functionalities have been included in the overall system, as shown in
Figure 4.2. Among those, the most relevant ones are:

1. Gathering, relaying and processing of data: The control boards man-
age the available sensors and are able to activate the measurement opera-
tions, either periodically or upon reception of a proper command sent re-
motely. The control boards can also provide a service of data relaying when
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needed, in case of multi-hop routing. Moreover, the boards can be requested
to process the gathered data (e.g. compressing or scaling the images and
videos).

2. Link Layer data fragmentation and reassembly: In case data gener-
ated by sensors have to be converted and made suitable for transmission over
the underwater channel, a data-link fragmentation function, which splits
packets into several small frames, is used. For instance, the length of frames
may be varied according to the underwater channel state (short data link
frames are recommended when the channel is in a bad state and the channel
response varies rapidly);

3. Physical layer adaptation: Once data are properly fragmented and for-
matted, they are ready for transmission on the physical channel. To this
purpose, signal processing and transduction are needed to transmit/receive
the frames as acoustic waves traveling on the underwater channel. Like-
wise, data format adaptation is required at the gateway node to allow data
transmission over the LPWAN sub-system.

4.3 Experimental Setup: Underwater Sub-System

The underwater sub-system consists of three main components:

• The sensing and actuation components include the sensors and actu-
ators aimed at monitoring the underwater environment and the operational
system conditions. In our setup, the sensing devices are:

1. A Blue Robotics [BR] Bar30 High-Resolution Depth/Pressure Sensor,
used to monitor the operating depth of the modems;

2. A Blue Robotics [BR] Low-Light HD USB Camera, used to record
pictures and videos of the underwater environment.

3. A UUGear [UUGEAR] Light Sensor Module, used to measure the
light intensity in the surrounding environment, e.g. to test if the illu-
mination conditions are suitable to capture images and videos.

The actuation part, instead, includes a servo motor, to control the orien-
tation of the USB Camera up to a maximum rotation angle of 180°. This
feature introduces a high degree of freedom in the acquisition of videos and
images under the sea.
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• The control component handles the sensing and actuation part, either
autonomously or in response to remote commands, and is also responsible
for the management of the data transmission and forwarding operations.
Among the functionalities supported by the control component, there is
the capability to reset the devices, to control the transmission power, and
to tune the frame length.

The control part also manages the tuning of several parameters in the sensor
devices, such as the camera resolution, the compression ratio of collected
pictures, the frame rate of acquired videos, and the light sensor sensitivity.

The employed hardware consists of a Raspberry Pi board, and a battery
pack to power the sensors and the board itself.

• The transmission component consists of two Underwater Evologics Modems
S2C 18/34 [evologics]. These devices represent the core of the underwater
network, and are used to convey the sensed data towards the edge underwa-
ter modem, and to eventually forward the received information to the cloud
platform through the LPWAN sub-system. From an operational point of
view, the modems employ acoustic waves for communication across the un-
derwater channel, and are powered by 24 volts supply batteries. Figures
4.3 and 4.4 show pictures of the acoustic modem together with the control
equipment inside an underwater hermetic enclosure, taken on the pier and
during tests, respectively. The enclosure safely stores the control compo-
nent, the sensing and actuation components, and the power supply.

Figure 4.3: The Underwater sub-system components.
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Figure 4.4: The Underwater components during marine tests.

Architecture of the Underwater System

In the following, the protocol architecture of the underwater sub-system is thor-
oughly.

Physical layer The physical layer of the underwater sub-system is based on
a patented S2C (Sweep Spread Carrier) protocol [kebkal]. The basic idea of the
protocol is using a series of frequency sweeps as a carrier signal to convey infor-
mation over a communication medium. The transmitted signal is first encoded as
a PSK signal, and, then, modulated on the sweep spread carrier. The main advan-
tage of using the S2C protocol consists in the frequency split of signal multi-paths.
Hence, it is possible to heavily reduce the multi-path effect, and, consequently,
to easily counteract the inter-symbol interference.

Link layer Operation and functionalities of the data link layer rely on a propri-
etary protocol, namely D-MAC [kebkal]. D-MAC is specifically designed to take
into account the long propagation delay in the underwater channel. Indeed, in
case of large data volumes (the so-called burst data), the system employs an effi-
cient mechanism that interleaves confirmation acknowledgments and data packet
transmissions. Also, an adaptive transmission mode allows to tune transmission
parameters to support the maximum feasible bit rate, depending on the cur-
rent channel conditions. In case of short messages (denoted as instant messages),
whose size is limited to 64 bytes, a constant transmission bit rate is employed.
Note that these short message can be sent either individually, or together with
an ongoing burst data transmission.

The transmission of burst data starts with an initial handshaking procedure to
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estimate the channel conditions based on the calculation of the round trip time.
Accordingly, the protocol automatically improves the transmission performance
by choosing a suitable frame size.

Moreover, while in burst mode, data frames are grouped into clusters of variable
size (tunable by the user) to support the usage of a cumulative acknowledgement
mechanism. Frames are eventually reassembled into the original data and finally
forwarded to the input/output receiver interface.

Instant messages can instead be employed for different purposes: regular in-
stant messages are transmitted immediately and can be used to optionally request
packet acknowledgements; synchronous instant messages are time-triggered mes-
sages; piggyback messages are transmitted together with other data, such as in-
stant messages or burst data. No procedure of connection establishment is needed
to transmit instant messages.

Network layer The main role of the network layer is to support device address-
ing functionalities. More specifically, every device has its own address, which can
be controlled by the user[kebkal] and employed for transmitting both burst data
and instant messages. Furthermore, the network layer implements an efficient
Backoff mechanism to handle conflicting simultaneous transmission: when the
device detects a collision, the node enters the so-called Backoff State, and a
Backoff Timeout is activated.

The network layer supports various transmission modes. Besides unicast, a
broadcast modality is available for instant messages, and allows a device to reach
all the nodes present in a given coverage area. Moreover, a device can overhear
messages intended for other nodes thanks to the so-called Promiscuous Mode.
Finally, the network layer implements the mechanism of Extended notifica-
tions, to provide extra information about transmissions and receptions, as well
as changes in the device settings. Thanks to the above functionalities, it is possi-
ble to configure several aspects related to data forwarding and delivery, for both
single-hop or multi-hop transmissions.

Since the underwater network deployed for our experimental work consists of
only two nodes, no routing protocol has been used. However, in case of extension
of the network to multiple nodes, it is possible to design and employ one or more
underwater routing protocols to select the best path for data delivery to the edge
underwater modem [routingUW1, routingUW2, routingUW3].

Application layer The application layer has been specifically designed to sup-
port the gathering and processing of the heterogeneous sensor data collected in
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the underwater sub-system. As already anticipated, the different types of data
collected include images, videos, temperature, light intensity, and pressure val-
ues. Data collection can take place either in a fully-automated fashion, at specific
time intervals, or upon receiving an appropriate data_collection (type, pa-
rameters) command sent by an end user. The user, by means of an Android
and/or a web application, is also able to control every functionality of the under-
water network. To this purpose, we have implemented several specific commands,
such as the restart (sensor) command, and the tuning (sensor, parameter,
new_value) command, to allow access to the sensor parameter settings. These
commands trigger the activation of a set of procedures to control the sensing
devices. In case of images and video transmission, the images and videos are con-
verted into Base64 strings and then transmitted remotely by using a LoRaWAN
communication link. The Base64 strings are split into smaller payload packets
with the size of 222 bytes. This choice is motivated by the high packet losses that
we experienced for larger payload size. As an example, the pseudo-code reported
in Procedure 6 illustrates the procedural steps for requesting the transmission of
an image and appropriately encoding and compressing it.

Algorithm 6 Procedure 1: Image Transmission
1: procedure Image Transmission
2: Open serial connection to the modem
3: photo← Take_Picture()
4: Scale_Picture(photo)
5: Apply_Compression(photo, compression_factor)
6: photo← base64encoding(photo)
7: photolen← length of photo
8: startCode← 0x11
9: endCode← 0x10

10: message← startCode+ photolen+ photo+ endCode
11: Write message on the serial connection to the modem
12: end procedure

Concerning the procedure for data sensing and transmission, the control boards
can control each individual sensing device through a Take_measurement(sensor)
command and, accordingly, acquire one or more measurements. Additionally,
to cope with the low data rates due to the variable underwater channel con-
ditions, proper compression techniques for large sized data, e.g. pictures and
videos, have been implemented. In the specific case of pictures, the function
Scale_Picture(photo) is first applied to scale the data to an arbitrary resolu-
tion, followed by the function Apply_Compression(photo, compression_factor),
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Algorithm 7 Procedure 2: Image Reception
1: procedure Image Reception
2: Open serial connection to the modem
3: Wait for messages on the serial port
4: message← serial.readMessage() 0x11 not in message
5: initialize photo to an empty string
6: Extract and save framelen from the message
7: Wait for messages on the serial port
8: message← serial.readMessage()
9: photo← photo+message 0x10 not in message

10: photo← base64decoding(photo)
11: save photo to local drive
12: end procedure

to provide proper data compression.
Once the sensing procedure is completed, the actual communication phase can

start. Hence, the control board sends a message to the intended underwater mo-
dem through a dedicated serial connection. The message includes:

1. The start code 0x11, to help the receiver detect the beginning of the
message;

2. The data length, a useful information to track the number of remaining
bytes to be received;

3. The encoded data, which is the actual measured or collected data;

4. The end code 0x10, which marks the end of the message.

Conversely, once the transmission is over, the receiver has to reconstruct the
original packet from the received frames. As an example, let us analyze the pro-
cedural steps executed for image reception, as shown in Procedure 2.

The first step is to open a serial connection with the underwater modem. In the
second step, the device remains in a listening state and waits for the start code
0x11. Then, the node can start gathering the frames received until the end code
0x10 is found. The next steps are to decode the received data and save them in
the local storage.

4.4 Experimental Setup: LoRa Sub-System

This section illustrates the functionalities implemented in the LoRa sub-system.
We first provide some basic information on LoRa technology and, then, the main
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features and characteristics of the LoRa sub-system are detailed.
LoRaWAN (Long Range Wide Area Network) is a low-power network protocol

stack developed by the LoRa Alliance, and built on top of the LoRa physical layer
developed by Semtech. The LoRa technology is designed as an energy-efficient,
long-range and secure solution for Low-Power Wide-Area Networks. LoRa can
drastically increase the network lifetime by transmitting only few data at a low
data rate, and by employing a very low transceiver duty cycle, in the order of
1% [129, 130]. It employs a non-licensed frequency range and limits the TX/RX
power to 25 mW.

The physical layer of the LoRa technology relies on a spread spectrum modu-
lation technique to enable long range data transmission at low data rates. More
specifically, LoRa is a radio modulation technique derived from the Chirp Spread
Spectrum (CSS) methodology, and relying on linear frequency-modulated chirp
pulses to encode information. The raw information signal is multiplied by the
chirp pulses, and generates the actual widespread signal. LoRa supports different
modulation Spreading Factors (SFs), ranging from SF7 to SF12. The Spreading
Factor is a relevant parameter in LoRa, as it is possible to tune this parameter
to impact on the maximum communication range and transmission data-rate.
The SF influences the number of chirp pulses per symbol, Nc, according to the
relationship

Nc = 2SF (4.1)

Hence, the largest the SF, the higher the symbol time or, equivalently, the smaller
the transmission bit rate. At the same time, a higher number of chirps per symbol
increases the so-called processing gain, resulting in an improved receiver sensitiv-
ity and robustness to noise, and, therefore, in a longer transmission range. Hence,
the performance of the system can be properly tuned to extend the coverage
range at the expense of the transmission data rate (bigger SFs), or, vice-versa, to
increase the throughput at the cost of lowering the transmission distance (smaller
SFs). Conveniently, the SF setting, together with the node transmission power,
can be adaptively tuned according to the current channel conditions.

LoRaWAN sits on the LoRa physical layer and defines the upper layers to allow
bi-directional communication among the LoRa nodes and the LoRa gateways in
the communication range. The LoRaWAN architecture includes a back-end and
a front-end. The former is embodied by the remote cloud server in the cloud,
and stores the data received from the LoRa end-nodes. The front-end, instead,
includes both the LoRa end-nodes, and the Gateway(s). The latter relies (rely)
on an IP connection to act as a bridge between the network server and the end
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device. The LoRa data packets exchange between the LoRa end devices and
the Gateways is instead based on a wireless transmission in the unlicensed ISM
frequency band. The specific operating band depends on the geographical area.
For instance, LoRaWAN communications in Europe are based on the 863-870
MHz ISM Band, with 3 main channels centered respectively around 868.10 MHz,
868.30 MHz, and 868.50 MHz. The LoRaWAN technology supports a transmission
data-rate between 0.3 and 50 kbps, and also implements an adaptive data rate
mechanism to trade energy consumption and data-rate.

In our experimental setup, the LoRa sub-system consists of: i) a LoRa End Node
(Figure 4.5) composed of an Arduino Due board with a Dragino LoRa shield on
top, connected to the edge underwater modem through a serial connection, and
placed on a buoy floating above the water surface; ii) a Dragino LG02 LoRa
Gateway (Figure 4.6) which forwards the data received from the LoRa End Node
to an MQTT broker.

The interaction of the LoRa subsystem with the cloud platform is realized by
means of the MQTT messaging protocol. MQTT is a lightweight publish/sub-
scribe messaging protocol that provides a scalable and reliable way to connect
devices over the Internet. In just a few years, it has become the de-facto standard
for IoT messaging. The MQTT protocol is based on the coexistence of three en-
tities: the broker, the publishers, and the subscribers. An MQTT broker receives
data messages from the publishers, and dispatches those messages to specific
MQTT clients, according to a topic-based mechanism: when a client is interested
in a specific type of messages, it can subscribe to the corresponding topic. Hence,
every message sent by a publisher on that same topic will be delivered to the
client accordingly. An MQTT message consists of several fields, other than the
payload, such as:

• Client ID: a unique identifier for each client;

• Topic: a UTF-8 string used by the broker to filter and dispatch the received
messages;

• Message: the actual payload data;

• Username and Password: the authentication credentials for the MQTT bro-
ker. The credentials are sent in plain text, and can be protected by way of
the TLS protocol.

In our scenario, the publishers are the underwater modems, while end users act
as subscribers to retrieve data.
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To allow the users to access the received data, we have developed an Android
application and a Web application, as detailed in the following sections. Both
the applications can subscribe to the MQTT broker and receive all the data sent
from the underwater sub-system. Moreover, the applications offer the possibility
to send specific commands in order to either request sensor data or tune some
parameters in the underwater monitoring system, such as image and video quality,
transmission rate, transmission power levels, or camera rotation angle.

The LoRa Gateway, located on the terrestrial area few hundreds of meters apart,
receives the sensor data, images and videos, and, in our setup, forwards this data
through the MQTT protocol by employing a 4G cellular network. More in detail,
the data are forwarded to an MQTT broker hosted in a virtual machine on a
server located in the premises of the underwater laboratory at the University of
Catania. On the end users side, the above mentioned Android and Web appli-
cations subscribe to the MQTT broker through appropriate topics in order to
request and get the data, or send commands in downlink.

We have also developed an SQL database to store the sensor data received by
the MQTT broker. Hence, when the applications request an update from the
underwater sensors, the most recent data in the database are forwarded to the
application by the server. If there is no recent data in the database, a request
command will be forwarded to the underwater system, and the data will be
collected in real time. This approach reduces the transmission time in the system.
The request commands and the broker topics are discussed in detail in the next
sections.

Furthermore, for the sake of reliability and data persistence, a Digital Twin
(DT) of the underwater devices has been implemented in JavaScript.

The DT is hosted together with the MQTT broker and SQL database, and,
thanks to the support of both, manages the different data requests coming from
the users.

4.5 Android application

As mentioned in the previous section, in order to support the remote control of
underwater sensors and actuators, an Android application has been developed to
exchange data and commands from/to the underwater system through the MQTT
protocol. The application has been implemented in Java through the Android
Studio development environment. Each button on the application interface allows
the end users to request several types of sensor data, such as pressure, temperature
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Figure 4.5: LoRa End Node

Figure 4.6: LoRa Gateway
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and light sensor measurements, together with videos and pictures.
In the initialization phase, the Application interacts with the MQTT broker, and

subscribes to a public upstream topic defined as: dragino-1bc658/ChannelID1/
data. Data associated to this topic are periodically updated by the underwater
sensors. In order to distinguish between each specific user connected to the MQTT
broker, the application assigns a unique client_id to each user. All requests and
responses are managed by the Digital Twin hosted in the Server together with
the Database and the MQTT broker. These requests will be sent by the applica-
tion to a downstream topic of the type: downlink, and directly addressed to the
Digital Twin.

Data can be sent in two possible ways:

• Proactive methodology: Periodically, the data from the underwater sys-
tem are sent to the appropriate topic, in order to allow the application to
update the data stored in the database. Thanks to an identification tag, it
is possible to distinguish which underwater device has generated what type
of data, according to the format (data type identifier)_(device iden-
tifier)(data value). Once the data have been received, both the source
modem and type of data are shown through the usage of a TextView box
in the application.

• Reactive methodology: The user explicitly requests data through the An-
droid application interface. Accordingly, the application sends a command
to the downstream topic, and the Digital Twin answers with the requested
data. The issued command identifies the destination device, and the type of
requested data, according to the format (device identifier)_(data type
identifier). This methodology relies on the usage of a temporary upstream
topic of type dragino-1bc658/Channel_ID2/data. After the requested
data have been received, the application unsubscribes from the temporary
topic. This mechanism is adopted for a simple reason: since the downlink
topic is shared among the end users, the requested data are broadcast to
all the users associated to that topic. Hence, unsubscribing is necessary to
avoid receiving unwanted/unrequested information.

In case of multimedia data requests, such as pictures and videos, the procedure
works in a slightly different way. Users are able to request this type of data
according to two possible quality levels: low quality, and high quality. Accordingly,
the corresponding command identifies i) the destination device ii) the data type,
iii) the requested quality level, through the format (device identifier)_(data
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type identifier),(quality).
As thoroughly described in the previous sections, multimedia data are converted

into Base64 strings, split into several smaller data packets, and finally sent in the
public uplink topic by the LoRa End Node. The first string reports the special
tag START(modem identifier), to identify the source device and to signal the
beginning of the process of data reception. The tag is followed by a parameter
indicating the total number of data blocks to be received. Hence, the application
can continuously track the status of the ongoing procedure through a visual Pro-
gressBar. A further delimiter, DELIM, precedes the actual data block. Once
the delimiter tag DELIM has been received, the application starts gathering the
actual data packets. The end of this acquisition phase is identified by a further
tag of type END(modem identifier). Finally, the application reassembles the
received packet into the original Base64 string, decodes the data, and saves it in
the local multimedia gallery of the smartphone device.

The Android application also allows to perform actuation. For instance, it is pos-
sible to specifically manage the device transmission power level i.e. low, medium
and high power levels (buttons L, M and H in the application interface). The cor-
responding alphanumeric command is in the format (device identifier)_(data
type identifier),(transmission power). Moreover, the application offers the
possibility to control the rotation of the underwater camera devices, by means
of a SeekBar. Thanks to the bar cursor, the user can tune the camera rotation
angle at steps of 5°. Figure 4.7 illustrates the Android application interface with
all the buttons available to request data from the different underwater modems,
as well as an example of camera rotation setting. The alphanumeric command
associated to this action identifies the destination device, the type of data, and
the requested camera angle, according to the format (device identifier)_(data
type identifier),(angle).
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Figure 4.7: Setting camera angle using the Android application.

4.6 Web application

As a way to offer a complementary alternative to the Android app, a web ap-
plication has been developed to extend and integrate the set of functionalities
provided by the app.

The web application has been implemented in HTML and CSS languages for
the front-end part, and in PHP for the back-end part. Two different databases
were used: one for user management and one for data storage. At the startup, the
web application displays a proper login page. From here, new users can access a
registration page to create a new account by choosing a username and a password.
The login process is managed via MySQL queries to the user database, and allows
to enter credentials on the login page and access the dashboard (see Figure 4.8).
The latter is basically divided into two equal-sized columns, one filled in with
data about Modem 1, and the other with data regarding Modem 2.

The web application implements several features, as detailed in the following:

• Collection of temperature, pressure and light sensor data: These
features allow the user to request the most recent temperature, pressure or
light sensor data from the database. Every time a measurement is requested,
the web application sends a SQL query to the database with a specific
format, according to the type of data requested. When a query is issued,
the system searches the database for the most recent data in a time interval
of 20 minutes. If no recent data is available, a new data request is sent via
the MQTT protocol to the underwater devices. The Digital Twin is then
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Figure 4.8: Dashboard of the web application

able to retrieve the new data, insert them in the database, and make it
available to the web application.

• All data request: This functionality implements a simultaneous request of
temperature, pressure and light sensor data for a given underwater device. A
time constraint of 20 minutes is still considered to establish the freshness of
sensor data. If even one type of data in the database is not recent enough, a
re-send request for all the three data types is issued via the MQTT protocol.

• Images and Videos request: Similarly to the Android application, the
Web Application implements the possibility to request videos and images
from the underwater system, either in low or high quality. Using one of
the four modem buttons (see Figure 4.8), it is possible to visualize the
latest data from the database in chronological order. When the requested
data is found in the database, it is first converted from Base64 to jpeg (or
mp4, depending on the type of requested data). Then, the user is invited
to download a copy of the file. In case the image or video is not available
in the database or the available data does not satisfy the 20 minutes time
constraint, the web application issues a new data request to the underwater
system through the MQTT broker.

• Transmission Power setting: The web application includes, for each un-
derwater modem, three buttons to remotely control the transmission power
level. The levels are “Low”, “Mid” and “High”, and can be set by publish-
ing the corresponding command on the downlink topic through the MQTT
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protocol.

• Camera rotation setting: This functionality controls the rotation angle
of the underwater cameras. This function has been implemented using an
HTML slider. and supports angular values in the range from 0° to 180°, in
steps of 5°.

• Time span search: Through this option, it is possible to choose a start
date and an end date and visualize all data available for that specific time
interval. Then, it is sufficient to select the type of data to be searched (tem-
perature, pressure, low definition image etc. . . ). Hence, a search is carried
out in the database according to the type of data selected and the time
interval chosen by the user. If the query finds one or more appropriate re-
sults, the retrieved data are immediately printed in a proper table, together
with the respective acquisition date and time. In case the request includes
images or videos in a given time frame, the user is also able to download
the retrieved data to the local storage.

4.7 Numerical analysis

In this section, the results are illustrated that are obtained by testing different
data type transmissions through both the underwater sub-system and the LoRa
sub-system. Although executing the tests employing the overall system includ-
ing the two composing sub-systems, to avoid accounting for the impact of data
serialization and format adaptation at the LoRa end node, as required by the
use of acoustic devices connected to LoRa shields, we have preferred to split the
analysis by investigating separately the two sub-systems. In this way the perfor-
mance achievable in the two isolated sub-systems can be quantified and analysed
to have a detailed evidence about the overall potential system behavior. Indeed
the currently developed Proof-of-Concept is intended to represent a preliminary
step towards the realization of a real Internet of Underwater Things where more
sophisticated boards which solve the above mentioned limitations can be utilized,
so reducing the required conversion delay.

4.7.1 Underwater sub-system

In this section, the performance obtained by transmitting different types of data
across the underwater sub-system is investigated. Our tests have been carried out
in two different scenarios, i.e. an Aquarium setting in the underwater laboratory
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Figure 4.9: Catania Port setting

in the premises of the University of Catania (nodes are located 120 cm apart
from each other), and the city port of Catania. Figure 4.9 shows a map of the
Catania port setting, where blue dots denote the different placements of the
underwater devices during the experiments. In particular, the edge underwater
device connected to the LoRa End Node is kept at a fixed position (Point 0),
while the other underwater device (or remote device) is moved across positions
from Point 1 to 6. The red dots denote the different placements of the LoRa
Gateway, namely G1, G2 and G3. The LoRa Gateway device has been connected
to the Digital Twin and the MQTT broker by means of a mobile 4G connection.

Figure 4.10 depicts the transmission time vs. the image quality indicator in the
aquarium setting, and for two different image formats, i.e. WEBP and JPEG. As
soon as the image quality increases, the transmission time accordingly increases
from 40s to more than 160s in the case of JPEG images, and from 20s to 110s
in the case of WEBP images. Note how the supported bit rate in this setting is
lower than approximately 10-13 kbps, and strongly depends on both the relative
positioning between the underwater modems, and the reflections on the borders of
the aquarium. Due to the lower transmission time, the WEBP format is preferable
since it can reduce the file size with minimal quality loss due to its aggressive and
more optimized compression, as compared to JPEG and PNG.

Figure 4.11 and Figure 4.12 illustrate the same performance metrics in the
case of the Port setting, respectively for WEBP images and JPEG images. In
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Location Net bit rate [bps]
Point 1 2481
Point 2 1480
Point 3 1460
Point 4 658
Point 5 1379
Point 6 3097

Table 4.1: Achieved Bit Rate depending on the Location in Catania Port setting

both cases, the experiment has been repeated for several positions of the remote
underwater device.

Considering the case of WEBP images Point 1 and Point 6 exhibit a similar
behavior in terms of transmission time, in spite of the huge difference in the
distancing between the edge underwater modem, and the remote modem (The
two devices are 25m apart from each other in the first case, and 175m apart in the
second case). Indeed, in both settings, communication can happen in line of sight,
with no relevant obstacles in between. In this case, observe how the transmission
time is lower, as compared to the aquarium case. This is due to the highly impaired
scenario tested in the aquarium, where numerous reflections and serious multi-
path is met. On the contrary, Points 2, 3 and 5 exhibit comparable transmission
times, and similar to the values experienced in the aquarium setting. Even if the
distance from the fixed node is different (50m, 80m and 130m, respectively), the
main delay contribution comes from the multi-path reflections and noise. Indeed,
Point 2, 3 and 5 are closer to the pier area, where multiple boats are attached
and powered, thus causing significant noise and interference. However, the worst
performance has been registered in Point 4, located at a distance of 140m from
the fixed device, but located in a crowded noisy area. In this case, the delay
rises to approximately 250s, depending on the requested image quality. Similar
considerations apply to the JPEG case, apart for the delay which, as in the case of
the aquarium setting, takes larger values as compared to the case of transmission
of a WEBP image. The achieved transmission bit rates for each positioning setting
are reported in Table 4.1. An example of a JPEG image transmitted is shown in
Figure 4.13.

4.7.2 LoRa Sub-System

In this section, the performance obtained by transmitting different types of data
in the LoRa sub-system is investigated.
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Figure 4.10: Transmission Time (s) Vs. Image Quality-Aquarium setting

Figure 4.11: Transmission Time (s) Vs. Image Quality (WEBP)- Catania Port
setting

Data size (kbits) Transmission delay (s)
50 8.44
100 15.36
200 29.48

Table 4.2: Transmission Delay using the LoRa/LoRaWAN technology for a SF=7,
Bandwidth 250 kHz and a LoRa Gateway located G1.
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Figure 4.12: Transmission Time (s) Vs. Image Quality (JPEG)- Catania Port
setting

Figure 4.13: Sample image collected during the marine tests.
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Gateway Location PDR (s)
G1 99.71%
G2 99.1%
G3 98.86%

Table 4.3: Packet Delivery Rate as a function of the LoRa Gateway position for
SF=11.

Table 4.2 reports the transmission delay as a function of the image size for a
fixed spreading factor SF=7, and a bandwidth of 250 kHz. Note that, as expected,
an increase in the data size implies a corresponding increase in the transmission
time. Also, the measured transmission times are slightly larger than the theo-
retical expected values. This is due to the delay introduced by a real system
implementation.

Figure 4.14: Packet Delivery Rate (PDR) as a function of the SF being used.

In Figure 4.14, how different spreading factors influence the Packet Delivery
Rate of the LoRa link is analysed when the Gateway node is located in position
G1. Note that, upon increasing the SF, a higher PDR is met, at the cost of a
lower transmission rate.

To estimate the possible impact of Gateway positioning, we have also measured
the Packet Delivery Rate for different positions of the LoRa Gateway, and for
SF=11. Table 4.3 illustrates the results of the experiment. Note that, as the Gate-
way distance from the LoRa End Node increases, the PDR obviously decreases
although not exhibiting significant variations, thus proving that the designed and
deployed system is robust and reliable.

In this work, an integrated acoustic/LoRa underwater system have been de-
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signed and developed that can be used to perform multimedia transmission and
actuation over an Internet of Underwater Things. This work represents the first
effort in deploying a real system which implements the IoUT vision. Numerous
application scenarios for marine monitoring systems have emerged in the last
years, including historical sites preservation and wildlife protection. Real field
tests assess the reliability and feasibility of the designed system and open up new
perspectives in the direction of underwater transmission optimization for large
scale monitoring.

4.8 ML in Internet of Underwater Things

In the recent times, more attention has been given to the research on Marine
Resources, leading to the development of IoUT. ML algorithms could play a major
role in IoUT applications such as earthquake forecasting, underwater navigation
and development of underwater monitoring and surveillance systems [131]. Some
of the well known underwater monitoring applications are: Coral-reef monitoring,
marine Fish monitoring, water quality monitoring and marine plant monitoring
[132]. Due to the recent developments in ML and deep neural networks, image
recognition systems can achieve significant performances. Especially, Computer
vision has been enhanced in the field of image recognition and plays an important
role in the above mentioned applications. Computer Vision enables computer
systems to automatically derive meaningful information from visual inputs.

As mentioned in the previous sections, many criticalities arise in the case of
underwater communication such as high attenuation and high propagation de-
lay. Fading, narrow bandwidth and Doppler effect make communications much
more complex in the underwater settings. Therefore transmitting images can be
challenging and especially videos can be extremely challenging. Poor channel con-
ditions can result in missing frames in the transmitted video. The application of
GANs could address this issue by reconstructing the missing frames.

As discussed in chapter 2, GANs are generative modeling based deep learning
algorithms. GANs are exciting and intelligent ML algorithms that have the ability
to generate realistic data across various problem domains. In GANs, the genera-
tive mode is trained by framing the problem as a supervised learning approach
with two sub-models: the Generator for generating new data and the discrimi-
nator for differentiating the real data from the dataset and the fake generated
data.

GANs have been used to generate missing frames, especially generating the miss-
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ing frames in CCTV footage. In [133], a conditional GAN approach is proposed
to to learn the spatio-temporal representation of the missing frame in a video.
The input to the conditional GAN model will be either the previous frames or
the following frames recorded in the same camera or other cameras. However, the
representations learned from frames within the camera are given more weightage
when compared to the frames from other cameras. This apporach can also be
utilized in the transmission of videos in the hybrid underwater/LoRa system for
obtaining video data.

Apart from monitoring applications, ML algorithms can also be utilized in de-
veloping fault-tolerant IoUT deployment strategies and data fusion strategies.
[131].
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Conclusion

The thesis is aimed to analyse the aspects related to the exploitation of ML in
infrastructureless networks. In particular, the exploitation of ML was addressed
in three areas.

The first one was about the exploitation of ML in the area of WSN. In this
context, the application of the well known FL algorithm in WSN and its chal-
lenges were discussed. To address those challenges and issues, a novel algorithm
called MGM-4-FL was introduced by combining FL and Gossiping in WSNs. By
jointly considering Gossiping with FL, the energy and communication resources
are saved and the funneling effect is eliminated in WSNs. The MGM-4-FL was
experimented with the auto-encoder ML algorithm and simulation campaigns
were conducted. The results obtained indicated that combining FL and Gossip-
ing could be energy efficient and can save the use of communication resources.
Another work in the context of WSN was about the use of centrality measures
to enhance the collaborative learning of a model by gossiping. A centrality based
gossiping protocol CGL was introduced and experimented with ML algorithms.
Results showed that centrality can influence the gossiping and can help in achiev-
ing the convergence at a faster rate, thus being energy efficient. The third work in
this direction was about designing and developing a hybrid framework in which
nodes have different ML capabilities. A clustering algorithm called i-WSN was
designed and experimented with different clustering strategies. Simulation cam-
paigns were conducted and experimental results were shown. Finally a SDN ap-
proach was proposed in which SDN is applied to WSN with Data mules. The
movement of the data mule is forecast by the SDN controller and the forecast
positions are considered to generate the flow table entries to be installed in the
sensor nodes and schedule their applications. A simple and efficient decision tree
algorithm was implemented, which takes the values measured by the sensors as
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inputs, to forecast the route of the data mule.
The Second area investigated in this thesis was about the exploitation of ML in

Vehicular Networks. In this context, two works were carried out. The first one was
about monitoring the driving behaviour in real time and warning the driver. A TL
approach was introduced to be used with CNN auto-encoders. The TL approach
was applied to a specific case study in which various sensor data is collected
from different bicyclists riding along the same path. The other work was about
achieving layer separation in neural networks. A sequential training algorithm
was introduced for partitioning a set of layers for the user and a set of layers
for the scenario in a V2I environment. The algorithm was experimented in the
same bicycle case study. Results indicated that sequential training is efficient in
partitioning the neural network for users and the scenario in a V2I environment.

The third research area dealt with in this thesis was about designing and de-
veloping a hybrid underwater/LoRa system that can collect marine data and
transmit over real data. Such data can be used through the application of ML
algorithms in Internet of Underwater Things applications. The developed sys-
tem consists of two sub-systems, a pure underwater sub-system, and a terrestrial
sub-system. In the underwater sub-system, multiple underwater sensors collect
measurements on the underwater environment and transmit this information by
means of underwater acoustic modems through an underwater marine link to a
receiving edge underwater modem. The terrestrial sub-system consists of the edge
underwater modem attached to a buoy where a surface LoRa node is connected
by way of a LoRaWAN connection to a terrestrial remote LoRa Gateway, which,
in turn, remotely interacts with the cloud by means of an Internet connection. In
the cloud, this marine data can be saved and analyzed for further processing and
for ML applications.
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