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Abstract: Oral cancer is one of the most common malignancies worldwide, accounting for 2% of
all cases annually and 1.8% of all cancer deaths. To date, tissue biopsy and histopathological
analyses are the gold standard methods for the diagnosis of oral cancers. However, oral cancer is
generally diagnosed at advanced stages with a consequent poor 5-year survival (~50%) due to limited
screening programs and inefficient physical examination strategies. To address these limitations,
liquid biopsy is recently emerging as a novel minimally invasive tool for the early identification
of tumors as well as for the evaluation of tumor heterogeneity and prognosis of patients. Several
studies have demonstrated that liquid biopsy in oral cancer could be useful for the detection of
circulating biomarkers including circulating tumor DNA (ctDNA), microRNAs (miRNAs), proteins,
and exosomes, thus improving diagnostic strategies and paving the way to personalized medicine.
However, the application of liquid biopsy in oral cancer is still limited and further studies are needed
to better clarify its clinical impact. The present manuscript aims to provide an updated overview
of the potential use of liquid biopsy as an additional tool for the management of oral lesions by
describing the available methodologies and the most promising biomarkers.

Keywords: liquid biopsy; oral cancer; circulating biomarkers; qPCR; ddPCR; NGS; ctDNA; epigenetics;
miRNAs; Exosomes

1. Introduction

According to the Globocan Cancer Observatory (International Agency for Research
on Cancer—IARC, Lyon, France), the number of new cases of oral cancer in 2020 for both
sexes and all ages was about 377,000 cases, and about 177,700 deaths were recorded in the
same year, highlighting how oral cancer represents a growing public health problem. Oral
cancer is most frequently diagnosed in Asia (65.8%), followed by Europe (17.3%), North
America (7.3%), Latin America and the Caribbean (4.7%), and Africa (3.8%). Similarly, the
mortality rate is higher in Asia (74%), followed by Europe (13.8%), Africa (4.6%), Latin
America and the Caribbean (4.2%), and North America (2.8%) [1]. Both the incidence and
mortality rates are higher in males than in females with a 2:1 ratio [2].

Of note, oral cancer affects different areas of the oral cavity including the lips, tongue,
hard and soft palate as well as the buccal mucosa and gums [3]. It is defined as a subgroup of
head and neck cancer (HNSC) and the most common form is oral squamous cell carcinoma
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(OSCC), which accounts for 90% of all oral cancer cases [4]. Importantly, OSCC often
arises from pre-existing oral disorders such as leukoplakia and oral lichen planus, and it is
generally characterized by a poor prognosis and a high mortality rate [5]. In addition, OSCC
shows complex pathogenesis due to the involvement of multiple molecular mechanisms,
gene mutations, and altered levels of proteins and metabolites [6].

An increasing number of risk factors have been associated with the development of
oral cancer. As widely documented in the literature, there is a strong correlation between
tobacco use and alcohol consumption and the incidence of oral cancer [7–9]. Additional
risk factors include pre-cancerous oral lesions, Human papillomavirus (HPV) infection,
pesticide exposure, genetic background, nutritional deficiencies caused by a poor diet and
a weakened immune system, and chronic inflammation [10–15].

Despite the advancement of surgical and pharmacological treatments [16–18], oral
cancer still represents one of the most impairing and deadly tumors, with an overall 5-year
survival rate of ~50%. This poor survival rate is mainly due to the late diagnosis of oral
cancer and the lack of effective diagnostic and prognostic biomarkers [19]. Therefore,
there is an urgent need to identify novel effective proteins, genetic and epigenetic factors
associated with oral cancer development, and patient prognosis [20].

At present, tissue biopsy and histopathological analyses are the gold standard methods
for the diagnosis of oral cancer. However, these procedures have several limitations mainly
related to their invasiveness and the need for sophisticated procedures performed by
specialized professionals [21]. Tissue biopsies in the oral cavity are also not well tolerated
by patients due to physical and functional distress. In addition, tissue biopsies are often not
representative of the whole tumor bulk and histological examinations are time-consuming
and expensive [22].

All of these limitations have prompted researchers to focus on the development of
new tailored diagnostic and therapeutic approaches that could have a positive impact on
patient survival. In this field, liquid biopsy is emerging as a novel tool potentially useful
for the early detection and real-time monitoring of cancer patients in a minimally invasive
manner [23,24]. Specifically, liquid biopsy could be used for the effective evaluation of cir-
culating tumor cells (CTCs), circulating tumor DNA (ctDNA), and circulating microRNAs
(miRNAs) as well as proteins and tumor-derived exosomes associated with the presence of
tumor cells [25]. Although blood is the most commonly collected clinical specimen, other
biological fluids can also be used including saliva, urine, cerebrospinal and synovial fluid,
sputum, bronchoalveolar lavage fluid, exhaled breath condensate, amniotic fluid, seminal
fluid, breast milk, nipple aspirate fluid, cervicovaginal fluid, pancreatic juice, tear fluid,
and pleural effusions [26–28].

Aside from the non-invasive nature of liquid biopsy, other advantages compared to
tissue biopsy are related to the possibility of providing a personalized snapshot of primary
and metastatic tumors at different time points, performing a constant monitoring of tumor
progression [29,30]. Second, liquid biopsy could be used to obtain relevant information
for therapeutic decisions. Other advantages include the low cost, repeatability, reliability,
and reproducibility of the analysis. In addition, it requires a shorter processing time than
tissue biopsy [31].

Despite recent advances in this field, the impact of liquid biopsy on oral cancer diag-
nosis is still limited compared with other cancers and further studies should be undertaken
to better clarify its clinical application [32]. As above-mentioned, the gold standard for the
diagnosis of oral cancer is currently represented by tissue biopsy and histopathological
analyses. Aside from these invasive methods, liquid biopsy could be used as an additional
tool for the detection of tumor-related markers potentially being applied for the develop-
ment of screening programs for the individual at risk for this tumor or for the monitoring
of patient prognosis and response to treatments [29].

On these bases, the present review article aims to provide an update on the use of liquid
biopsy as a diagnostic tool for oral cancer by describing the new available technologies and
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focusing on potential genetic, epigenetic, and protein biomarkers for the early diagnosis
and better management of this malignancy.

2. Liquid Biopsy

As already mentioned, liquid biopsy has recently attracted strong interest in the
scientific community as an alternative diagnostic method to tissue biopsy. This non-invasive
approach allows clinicians to display the tumor heterogeneity as well as the prognosis
of cancer patients and the efficacy of anticancer treatments, thus improving the clinical
assessment of various tumors including oral cancer [33,34]. In addition, it provides a better
understanding of prognosis, resistance mechanisms, and disease recurrence, representing
a valuable starting point for personalized medicine [35,36]. Although liquid biopsy was
originally based on the detection of CTCs, in the last few years, it has been also extended to
the analysis of ctDNA and miRNAs as well as proteins and extracellular vesicles such as
exosomes (Figure 1) [37–40].
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Of note, during the formation and growth of the primary tumor, cancer cells can
migrate into the bloodstream and release several tumor-derived components that can be
isolated from blood-based liquid biopsy and used as promising circulating biomarkers
for the early detection of oral malignancies [41]. Peripheral blood is the major source
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of non-solid biological tissue used to obtain key information about tumorigenesis and
metastasis. In addition, blood samples can be used to differentiate early- and advanced-
stage cancer patients as well as to establish the patients’ response to treatment and disease
progression [42]. Interestingly, although ctDNA can be detected in serum, the use of plasma
is preferred to avoid contamination caused by leukocyte lysis and its adhesion to blood
clots [43]. Peripheral blood samples (15–20 mL) can be obtained with a minimally invasive
venipuncture. Generally, the specimen is collected into tubes containing anticoagulants
such as ethylenediaminetetraacetic acid (EDTA), or tubes with specific reagents to prevent
leukocyte lysis and ctDNA contamination [44,45]. After collection, the sample should be
processed within six hours. Specifically, peripheral blood must be centrifuged at 2000× g
(10 min) to separate plasma from whole blood. Then, the supernatant is centrifuged at
16,000× g (10 min) to remove cellular debris and the obtained plasma can be frozen into
2.0 mL tubes at −20 ◦C for up to three months. Alternatively, it is possible to store the
samples at −80 ◦C for longer periods [46]. Aside from peripheral blood, other body fluids
such as saliva can be used to detect circulating biomarkers [47].

Saliva is an acidic biological fluid (pH 6–7) secreted by the major salivary glands such
as parotid, submandibular, and sublingual ones, and several minor glands including labial,
lingual, buccal, and palatal [48]. Under physiological conditions, the daily production
of saliva ranges from 500 to 1500 mL [49]. It is composed of 99% water, 0.3% proteins,
0.2% electrolytes (potassium, calcium, and magnesium), and organic substances (amylase,
lysozyme, peroxidase, lipase, and mucins) [50]. It is well-known that saliva plays a critical
role in several biological functions including lubrification, mastication, tasting, swallow-
ing, digestion, perception of temperature, and touch. At the same time, it ensures the
maintenance of oral cavity homeostasis, showing antibacterial, antifungal, and antiviral
properties [51,52]. Similar to blood, saliva can be considered “a mirror of the body” as it
reflects the physiological conditions and pathological changes occurring in the oral cavity
and even in the entire body [53]. The collection of salivary samples, obtained after stimula-
tion or not, is a fast, cost-effective, and non-invasive procedure because it does not require
needles and specialized personnel. In fact, it can easily be obtained even from children
and anxious subjects [54,55]. In addition, it is possible to collect a large volume of samples
that are useful for different analyses and their repetition. Specifically, salivary samples
should be collected in the morning after 12 h of fasting and immediately packed on ice or
with protein stabilizing agents to protect the transcriptome and proteome [56,57]. Then, the
sample must be centrifuged at 10,000–14,000× g (10–25 min) to remove the cellular debris
and mucus. Finally, the obtained supernatant can be fractionated into cryotubes and frozen
at −80 ◦C until further analysis or at 4 ◦C for processing within 3–6 h after collection [58].

Recently, an increasing number of studies have focused their attention on peripheral
blood and salivary biomarkers as potential diagnostic tools for the early detection of
oral cancer, highlighting the advantages of liquid biopsy compared to post-operative
solid samples [54,58,59]. However, liquid biopsy-based biomarkers have not yet been
validated in clinical practice due to some issues related to the sensitivity, specificity, and
lack of standardized methods [60]. In this field, the future challenges will be to combine
the analyses of peripheral blood and salivary biomarkers to ensure higher sensitivity
and specificity.

3. Diagnostic Platforms for the Analysis of Liquid Biopsy Samples

Over the past few years, technological advances have provided new avenues for
the early diagnosis of human diseases [61,62]. These advances have also improved the
early diagnosis of cancer including that of oral cancer [63]. To date, several diagnostic
techniques are available for the detection and discovery of circulating biomarkers (Figure 2).
Among the most adopted technologies, real-time quantitative polymerase chain reaction
(qPCR) is widely used in routine clinical practice and research settings [64]. Although
qPCR represents the conventional method for the analysis of liquid biopsy samples, digital
PCR (dPCR), droplet digital PCR (ddPCR), mass spectrometry (MS), and next generation
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sequencing (NGS) have recently emerged as more sensitive and specific techniques for
the analysis of circulating biomarkers in cancer [59,65,66]. Aside from these technologies,
other platforms with high diagnostic accuracy for the analysis of liquid biopsies have been
proposed such as microarray, enzyme-linked immunosorbent assay (ELISA), biosensors,
and lab-on-a-chip (LOC) [67–69].
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3.1. qPCR

qPCR is the most widely used technique for the amplification and real-time quan-
tification of nucleic acids. It can be used to quantify the expression of specific mRNAs
and microRNAs (miRNAs) through their reverse transcription into complementary DNA
(cDNA) and subsequent amplification in a procedure known as real-time reverse tran-
scription quantitative PCR [70]. qPCR is based on the use of primers and fluorescent dyes
or reporters such as SYBR green or TaqMan probes, respectively, which hybridize with
the targets emitting a fluorescent signal [71]. Of note, the quantification of the expression
level of genes can be relative or absolute. Specifically, relative quantification is based on
the comparison between the concentration of the target gene and the concentration of the
standard gene, while absolute quantification is performed using a calibration curve with
known concentrations of the target [72].

Currently, qPCR represents the conventional method for the analysis of liquid biopsy sam-
ples and the discovery of novel oral cancer biomarkers. Using RT-qPCR, Maclellan SA et al.
(2012) demonstrated that five miRNAs (miRNA-16, miRNA-let-7b, miRNA-338-3p, miRNA-
223, and miRNA-29a) were differentially expressed in the serum of patients with pre-
cancerous oral lesions compared to the healthy controls, however, the preliminary results
obtained by Maclellan SA and colleagues need further validations on a wider cohort of
samples [73]. Similarly, Oh SY and colleagues (2020) noted that the mRNA levels of six
candidate genes including NGFI-A Binding Protein 2 (NAB2), cytochrome P450 family
27 subfamily A member 1 (CYP27A1), Nuclear Pore Complex Interacting Protein Family
Member B4 (NPIPB4), Monoamine Oxidase B (MAOB), Sialic acid Acetyltransferase (SIAE),
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and Collagen Type III Alpha 1 (COL3A1), were significantly lower in salivary samples of
OSCC patients compared to that of the control group [74]. Taken together, these findings
highlight how qPCR can be used for the detection of circulating biomarkers potentially
related to oral cancer. However, low-expressed biomarkers or a slight variation in their
expression may not be correctly detected by qPCR [75].

3.2. ddPCR

ddPCR has recently emerged as one of the most powerful methodologies with high
sensitivity and specificity, which can be used for the detection of cancer-associated biomark-
ers using liquid biopsy samples [76]. Compared to qPCR, this innovative tool has a
higher sensitivity (0.01%) for absolute allele quantification, ctDNA somatic mutations,
DNA methylation, and gene rearrangements [77]. Briefly, the ddPCR system is based on a
water–oil emulsion of the reaction mix, in which the nucleic acid sample is fractionated
into thousands of droplets (~20,000). Then, PCR amplification is performed within each
portion and positive/negative fluorescent signals emitted by specific probes or dyes are
detected from each droplet [61].

In recent years, several studies have proven the clinical application of ddPCR for
the analysis of liquid biopsy samples and the discovery of circulating biomarkers related
to oral cancer. Interestingly, van Ginkel JH and colleagues (2017) used ddPCR to detect
ctDNA from the plasma samples of patients with head and neck squamous cell carcinoma
(HNSCC). Specifically, the authors effectively detected the presence of a circulating TP53
mutation in all of the tested samples, demonstrating the accuracy of ddPCR technology
in detecting potential ctDNA blood-based biomarkers [78]. Recently, Crimi S et al. (2020)
verified the diagnostic and prognostic role of miRNAs using plasma samples from oral
cancer patients and healthy controls. Notably, the researchers observed that two miRNAs
(hsa-miR-133a-3p and hsa-miR-375-3p) were significantly downregulated in cancer patients
compared to the healthy controls, providing an innovative ddPCR-based protocol for the
effective detection of new potential biomarkers from liquid biopsy samples [59].

3.3. NGS

NGS is a powerful technology based on sequencing by the synthesis of millions of
DNA fragments in a short amount of time. In addition, this technique can also be used for
RNA sequencing (RNA-Seq) to analyze small and non-coding RNAs, post-transcriptional
modifications as well as changes in gene expression [79]. The most common platforms are
Illumina and Ion Torrent, which use different specific sequencing approaches and signal
detection methods [80]. NGS technology has provided a remarkable improvement in cancer
diagnosis and management due to its high sensitivity in the detection of a wide board of
known and unknown cancer-related mutations by analyzing the whole sequence of target
genes (mutant allele fraction <1%) [81].

To date, NGS, along with ddPCR, is considered the most promising technique for the
analysis of liquid biopsy samples and the detection of potential circulating biomarkers. In
this field, Chang YA et al. (2018) applied RNA-Seq technology to plasma samples from oral
leukoplakia/OSCC patients and healthy controls. Interestingly, the authors identified a
group of three differentially expressed miRNAs (miR-222-3p, miR-150-5p, and miR-423-5p),
which may represent potential biomarkers that are predictive for the malignant progression
of oral lesions [82]. Subsequently, Cui Y and colleagues (2021) evaluated the efficacy of
NGS for the surveillance of OSCC. Specifically, using plasma and saliva samples collected
before and after surgery, the authors detected ctDNA in patients with recurrent cancer,
highlighting the potential application of NGS technology for the prognosis of patients with
oral cancer [83].

3.4. Microarray

Microarray represents a valuable biomedical platform with several applications, rang-
ing from the evaluation of gene expression to DNA methylation and non-coding RNA
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expression profiles [84]. DNA microarrays are based on the principle of complementar-
ity and in situ hybridization, which allows for the evaluation of thousands of genes in
a single assay. Notably, the DNA fragments are collected on a solid surface where they
can bind with probes, resulting in the emission of a fluorescence signal. Regarding RNA,
reverse-transcription into cDNA is mandatory to detect and quantify the targets [85]. Gen-
erally, microarrays are used for the identification of single-nucleotide polymorphisms, gene
mutations, and genes related to drug resistance in tissue biopsies [86].

Interestingly, microarrays have also been applied to liquid biopsy samples for the
detection of oral cancer-related biomarkers. For example, Salazar C et al. (2014) analyzed
salivary samples using microarray technology and identified three differentially expressed
miRNAs (miR-9, miR-134, and miR-191) in HNSCC patients and healthy subjects [87].
Similarly, He L et al. (2020) found that the expression profile of miR-24-3p was altered in
the saliva-derived exosomes from OSCC patients compared to the controls, indicating that
microarray technology could be useful for the discovery of new circulating biomarkers [88].

3.5. ELISA

ELISA is an immunoenzymatic assay widely used in both research and clinical set-
tings. It is based on antigen-antibody binding, which allows for the detection and quan-
tification of antibodies, antigens, proteins, and other peptides such as glycoproteins and
hormones [89]. Of note, it is possible to distinguish several types of detection methods
including direct, indirect, sandwich, and competitive ELISA, which are characterized by
different steps depending on the molecule of interest [90]. Due to their high throughput
and sensitivity, ELISA assays represent the gold standard for the detection of various
circulating tumor markers such as prostate-specific antigens (PSAs) and carcinoembryonic
antigen (CEAs) [91].

Interestingly, ELISA may also be used to identify potential oral cancer biomarkers.
Notably, Sivadasan P and colleagues (2020) focused their attention on the salivary proteomic
profile of patients with dysplastic leukoplakia and OSCC. In particular, the ELISA assay
showed that the protein levels of Cluster of Differentiation 44 (CD44), S100 Calcium Binding
Protein A7 (S100A7), and S100 Calcium Binding Protein P (S100P) were significantly
altered compared to the saliva samples from healthy subjects [92]. Similarly, Lotfi A
and colleagues (2015) observed that the Matrix Metalloproteinase 2 (MMP2) and Matrix
Metalloproteinase 9 (MMP9) expression levels were higher in the serum of OSCC patients
than in the controls [93]. Overall, these results suggest that the ELISA assay is an effective
tool for the detection of new oral cancer-associated biomarkers, which could improve the
early diagnosis and management of this malignancy.

3.6. Biosensors

Biosensors are analytical tools used to detect several biological molecules including
nucleic acids, enzymes as well as antibodies and antigens. Specifically, this device consists
of a receptor able to bind the target and a transducer, which allows the conversion of
the biochemical signal into an electrical signal [94]. Depending on the detection method,
biosensors can be classified into six main types: electrochemical biosensors, surface plasmon
resonance (SPR) biosensors, colorimetric biosensors, surface-enhanced Raman scattering
(SERS) biosensors, immunofluorescence biosensors, and nuclear magnetic resonance (NMR)
biosensors [95]. It is well-known that biosensors, thanks to their specificity and cost-
effectiveness, are a valuable tool for the diagnosis of various diseases such as diabetes
mellitus, cardiovascular diseases, and viral infections [61,96].

Of note, biosensors can also find application for the early diagnosis of oral cancers. As
reported by Dong T and Pires NMM (2017), optical microfluidic biosensors show a high
sensitivity for the detection of interleukin-8 (IL-8) in saliva samples, a pro-inflammatory
cytokine involved in the onset of oral cancer [97]. Moreover, Tofighi FB and colleagues
(2021) demonstrated that electrochemical biosensors were capable of detecting salivary
levels of the cytokeratin-19 fragment (CYFRA 21.1), a tumor biomarker for HNSCC [98].
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Taken together, these results suggest that biosensor technology could represent a promising
tool for the diagnosis of oral cancer using liquid biopsies.

3.7. LOC

LOC technology integrates several analytical laboratory procedures on a single chip,
providing a miniaturized and automated system for the detection of cellular and molecular
elements. Among the various devices developed, the microfluidic-based system represents
the most used, as characterized by the easy manipulation and suitability of cell separa-
tion [99]. LOC has recently attracted growing interest for its potential application in cancer
diagnosis. In fact, this microfluidic engineering technology allows for the detection of
CTCs, ctDNA, miRNAs, and proteins in a short time using small amounts of biological
fluid samples. Moreover, these low-cost devices guarantee a high sensitivity and specificity
in clinical settings [100].

In the last decade, LOC platforms have also been tested for the screening and diagnosis
of oral cancer. For example, Gau V and Wong D (2007) developed the Oral Fluid Nano-
Sensor Test (OFNASET) technology for the detection of liquid biopsy-based biomarkers. In
particular, the authors have demonstrated that this microfluidic-based LOC system showed
high sensitivity and specificity for several circulating biomarkers (miRNAs and proteins),
paving the way for the development of an effective technology for the early diagnosis of
oral malignancies [101].

3.8. Other Analytical Techniques

Besides the aforementioned methods, other analytical techniques could also represent
a valuable alternative for the discovery of new circulating biomarkers in oral cancer. Among
these, electric field-induced release and measurement (EFIRM) is an electrochemical sensing
technology that can be used to analyze several body fluids. The most important advantages
of this technique are represented by the capability to disrupt and release the content of
extracellular vesicles (mRNA, miRNA, and proteins) and the short detection time (~10 min)
of circulating biomarkers [102,103]. Another technique is 2-dimensional gel electrophoresis
(2DGE), a top–down platform that allows for the visualization of complex protein mixtures.
2DGE could be applied for the analysis of liquid biopsy samples including saliva, urine,
plasma, and serum [104]. Another useful technique for the evaluation of protein biomarkers
is mass spectrometry (MS). Generally, MS is associated with SELDI-TOF (surface-enhanced
laser desorption ionization-time of flight) and LC-MS (liquid chromatography-mass spec-
trometry), which play a key role in the desorption/ionization and measurement of proteins
extracted from body fluids [105]. In addition, iTRAQ (isobaric tags for relative and absolute
quantification reagents) could represent a valuable approach for the analysis of the plasma
proteome [106]. However, despite recent technological advances, further studies are needed
to develop standardized methods for the detection of liquid biopsy-based biomarkers.

4. Molecular Biomarkers

Although histological investigations on tissue biopsies still represent the gold standard
for the diagnosis of oral cancer, the clinical relevance of circulating tumor biomarkers for the
early detection of cancer as well as for the monitoring of treatments and patient prognosis
was widely demonstrated in the last few years [107,108]. The detection of circulating
biomarkers in liquid biopsy samples reflects the genetic and epigenetic alterations of both
the tumor and its microenvironment, providing new information for the identification of
novel biomarkers and therapeutic targets in the era of precision medicine. Specifically,
the analysis of ctDNA levels, DNA methylation, and point mutations may improve the
clinical assessment of cancer and the choice of therapeutic strategies [109]. At the same
time, the detection of altered miRNA levels in body fluids such as blood and saliva could
represent a promising tool for the diagnosis and prognosis of several malignancies including
oral cancer [110].
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4.1. ctDNA

Circulating free DNA (cfDNA) refers to the extracellular DNA released into the
bloodstream by apoptotic and necrotic cells under both physiological and pathological
conditions. Usually, cfDNA has a limited half-time (~15 min) because it is rapidly degraded
by circulating endonucleases or phagocytosed by macrophages. In tumors, the rapid
turnover of cancer cells causes a constant release and accumulation of cfDNA and ctDNA
in the tumor microenvironment and in body fluids [111,112]. Of note, ctDNA can be a
single- or double-stranded DNA fragments (130–140 bp), representing 0.1–10% of the total
cfDNA. ctDNA is released by apoptotic and necrotic tumor cells, but also by living and
circulating tumor cells [113,114]. Moreover, ctDNA is distinguished from cfDNA due to
cancer-related modifications such as somatic mutations, alterations of the methylation
status, and copy-number variations [115].

It is known that ctDNA can be found into the bloodstream and other body fluids
including saliva, urine, and cerebrospinal fluid [116]. As widely described in the literature,
the detection of ctDNA in liquid biopsy can reflect the genetic and epigenetic alterations in
tumor tissue samples [117]. Moreover, many cancer characteristics (size, stage, location, vas-
cularity, and treatment response) are correlated with the ctDNA concentrations [118,119].
Although the ctDNA levels are lower than cfDNA, several technologies have been de-
veloped to identify only the ctDNA. To date, qPCR and fluorescent assays represent the
standard methods for the detection of ctDNA. On the other hand, ddPCR and NGS have
recently been proposed as more sensitive and specific technologies for the analysis of
ctDNA in liquid biopsy samples [120].

Over the years, body fluid-derived ctDNA has attracted strong interest as a diagnostic
biomarker for several malignancies including lung, breast, pancreatic, colorectal, and ovar-
ian cancers [121–125]. Furthermore, the analysis of ctDNA could be useful as a predictive
factor in managing cancer treatment, post-treatment surveillance, and the development of
personalized medicine [126].

In this field, many studies have also investigated ctDNA as a novel biomarker for
oral cancer. Wang Y and colleagues (2015) conducted a study on oral cancer patients (with
tumor affecting larynx, oropharynx, and hypopharynx) to measure the ctDNA levels in
saliva and plasma samples. Specifically, ctDNA was detected in both early- and late-stage
patients, showing higher specificity for saliva than plasma (100% and 80%, respectively).
The same group also demonstrated that post-surgical detection of ctDNA was strictly
related to disease recurrence, suggesting the utility of ctDNA for oral cancer follow-up
and surveillance [127]. Similarly, Sukhija H et al. (2015) showed that the identification
of circulating mutations in ctDNA obtained from liquid biopsy could represent an adju-
vant diagnostic tool in OSCC. Notably, the researchers found that salivary samples from
OSCC patients were positive for a C-deletion in exon 4 codon 63 of the TP53 gene, while
no mutation was observed in the healthy volunteers [128]. Interestingly, Perdomo S and
collaborators (2017) focused on ctDNA mutations previously identified in tumor tissues.
Using plasma and oral rinse samples, the authors detected ctDNA mutations affecting
TP53, Notch Homolog 1 (NOTCH1), Cyclin-Dependent Kinase Inhibitor 2A (CDKN2A),
Caspase 8 (CASP8), and Phosphatase and Tensin Homolog (PTEN) genes in 42% of HNC
patients [129]. In another study by Mes SW et al. (2020), somatic mutations and copy
number variations were detected in the plasma of HNSCC patients (67% and 52%, respec-
tively), while HPV-DNA was detected in all cancer patients with HPV-positive tumors.
Specifically, the authors demonstrated that the detection rate of ctDNA was increased (78%)
by combining the analysis of somatic mutations, copy number variations, and HPV-DNA,
indicating that multiparameter molecular analyses could improve the early diagnosis of
oral malignancies [130].

Taken together, these findings highlight the potential application of ctDNA as a novel
diagnostic biomarker for oral cancer detection. Although several methods have been pro-
posed in the last few years, the major challenge will be to develop cost-effective and highly
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sensitive technologies to detect ctDNA levels at early cancer stages and simultaneously
analyze different mutations.

4.2. miRNAs

miRNAs are a large group of small endogenous single-stranded RNAs (18–24 nucleotides
in length) that control the expression of target genes at the post-transcriptional level [131].
Binding to 3′-untranslated regions (3′-UTR) of the target mRNA, these non-coding RNAs
could promote mRNA degradation or inhibit mRNA translation into proteins [132]. Inter-
estingly, a single miRNA can target several mRNAs and a specific mRNA can be targeted
by different miRNAs depending on the complementary existing between the miRNA “seed
region” and the 3′-UTR of the targeted mRNA [133].

miRNAs play crucial roles in several biological processes including cell cycle regula-
tion, differentiation, apoptosis, immune response, and homeostasis. However, the aberrant
expression of these small ncRNA molecules has been associated with various pathological
conditions including cancer development and progression [134,135]. Of note, miRNAs can
regulate the expression of target genes involved in cancer biology by acting as oncogenes or
tumor suppressors [136]. Over the years, miRNAs have been widely associated with cancer
cell proliferation, invasion, metastasis, and angiogenesis, suggesting that they may serve
as therapeutic targets for novel effective anti-cancer treatments [137,138]. Since miRNAs
are highly stable in different biological fluids (serum, plasma, and saliva), they have also
emerged as potential circulating biomarkers [139].

The expression levels of miRNAs in the peripheral blood and saliva samples obtained
from oral cancer patients have been investigated, highlighting that miRNAs could be used
for both diagnostic and prognostic purposes [59,140,141]. In this field, Mazumder S et al.
(2019) reviewed the most recent studies on circulating miRNAs as liquid biopsy-based
biomarkers and reported that miRNA-134, miRNA-146a, and miRNA-338 were strictly
related to oral cancer progression, while miRNA-7d, miRNA-21, miRNA-150, and miRNA-
371 showed potential prognostic value [142]. In addition, as described by Patil S and
Warnakulasuriya S (2020), several miRNAs including miRNA-9, miRNA-29c, miRNA-223,
and miRNA-187 were downregulated in the blood of HNC patients, while miRNA-let-7c,
miRNA-17, miRNA-20a, miRNA-22, miRNA-29a, miRNA-24-3p, miRNA-29b, miRNA-103,
miRNA-191-5p, miRNA-196a, miRNA-200b-3p, miRNA-374b-5p, miRNA-375, miRNA-425-
5p, miRNA-483-5p, miRNA-572, miRNA-638, and miRNA-1234 were upregulated [143].
Another systematic review on the expression levels of salivary miRNAs conducted by
Al Rawi N et al. (2021) revealed that several miRNAs were overexpressed (miRNA-21,
miRNA-31, miRNA-122, miRNA-134, miRNA-184, miRNA-191, miRNA-196a, miRNA-196b,
miRNA-412, miRNA-512, and miRNA-8392) or downregulated (miRNA-let-7a, miRNA-27,
miRNA-34, miRNA-92, miRNA-124, miRNA-125a, miRNA-136, miRNA-139, miRNA-145,
miRNA-200a, and miRNA-205) in OSCC patients compared to healthy subjects [144].

In the last year, a growing number of studies have further investigated the potential
clinical application of miRNAs as circulating biomarkers for the early diagnosis of oral
cancer. Baber S et al. (2021) focused on miRNA-153 and miRNA-455-5p, which have been
described to play a critical role in oral cancer development. Interestingly, the authors
observed that the expression levels of miRNA-153 were decreased in the blood samples
of OSCC patients than in healthy individuals (−1.97-fold), while the expression levels
of miRNA-455-5p were increased (2.5-fold), suggesting that the detection of these liq-
uid biopsy-based miRNAs could represent an adjuvant diagnostic tool [145]. Similarly,
Nakamura K and colleagues (2021) evaluated the expression levels of cancer-associated
miRNAs in the serum samples from OSCC patients. Notably, the microarray and qRT-PCR
assays showed that miR-5100 expression was significantly reduced in the OSCC group
compared to the controls, while miRNA-19a and miRNA-20a were increased [146]. Another
case-control study was conducted on a group of OSCC patients and healthy volunteers by
Bolandparva F and colleagues (2021). The authors found that miRNA-138 and miRNA-
424-5p were differentially expressed between the two groups. Specifically, the blood levels
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of miRNA-138 were lower in the OSCC patients than in the healthy controls (−3.05-fold),
while miRNA-424-5p was upregulated in the disease group (1.96-fold) [147].

Aside from peripheral blood, saliva is another promising liquid biopsy sample for the
detection of new potential biomarkers. In this regard, Mehterov N and colleagues (2021)
evaluated the expression levels of miRNAs in the saliva supernatant of OSCC patients.
Notably, qRT-PCR showed that miRNA-30c-5p was significantly downregulated in the
OSCC group compared to the controls with a sensitivity of 86% and specificity of 74% [148].
Moreover, Romani C and colleagues (2021) performed a genome-wide analysis of salivary
miRNAs in a cohort of OSCC patients and healthy subjects, identifying a panel of three
miRNAs (miRNA-106b-5p, miRNA-423-5p, and miRNA-193b-3p) with higher expression
levels in the OSCC group than in the controls. At the same time, miRNA-423-5p was
inversely correlated to disease-free survival (DFS) and its salivary levels were significantly
reduced after surgery, indicating that this miRNA could represent a promising circulating
biomarker for oral cancer diagnosis and follow-up [149]. Of note, Cheng AJ et al. (2021)
analyzed a panel of cancer-associated miRNAs in the saliva samples of HNSCC patients,
oral precancerous lesion patients, and healthy individuals. The differentially expressed
miRNAs were also investigated in cancer and normal tissues by using two independent
cohorts, The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets.
Specifically, the integrated analysis showed that miRNA-196b was upregulated both in the
saliva of HNSCC/oral precancerous lesion patients and tumoral tissues [150]. Similarly,
Falzone L and collaborators (2019) performed a broad computational analysis of all existing
miRNA expression datasets for oral cancer patients, highlighting a panel of 11 upregulated
or downregulated miRNAs for the early diagnosis of oral cancer and the prediction of
patient prognosis [151].

Table 1 summarizes the liquid biopsy-based miRNAs as potential circulating biomark-
ers of oral cancer. Overall, the use of liquid biopsy to detect deregulated miRNAs may
represent a promising avenue for the early diagnosis of oral cancer. However, further
multicenter clinical trials with a large sample size should be performed to validate its
application in routine clinical practice.

Table 1. The circulating miRNAs for the early diagnosis and surveillance of oral cancer.

Sample Methodology Biomarker Ref.

Serum qRT-PCR miRNA-16, miRNA-let-7b (↑)
miRNA-338-3p, miRNA-29a, miRNA-223 (↓) [73]

Plasma ddPCR hsa-miRNA-133a-3p, hsa-miRNA-375-3p (↓) [59]

Plasma RNA-Seq, qRT-PCR miRNA-150-5p, miRNA-423-5p (↑)
miRNA-222-3p (↓) [82]

Saliva Microarray, qRT-PCR miRNA-9 (↑)
miRNA-134, miRNA-191 (↓) [87]

Blood qRT-PCR miRNA-455-5p (↑)
miRNA-153 (↓) [145]

Serum Microarray, qRT-PCR miRNA-19a, miRNA-20a (↑)
miRNa-5100 (↓) [146]

Blood qRT-PCR miRNA-424-5p (↑)
miRNA-138 (↓) [147]

Saliva qRT-PCR miRNA-30c-5p (↓) [148]

Saliva Microarray, qRT-PCR miRNA-106b-5p, miRNA-423-5p,
miRNA-193b-3p (↑) [149]

Saliva qRT-PCR miRNA-196b (↑) [150]
Abbreviations: ddPCR—digital droplet PCR; qRT-PCR—quantitative real-time reverse transcription PCR; RNA-
Seq—RNA sequencing; ↑—upregulated; ↓—downregulated.

5. Protein-Based Biomarkers

Protein biomarkers have significantly improved the management of different tumors,
ameliorating both the diagnostic and follow-up strategies. Despite the identification of
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several protein biomarkers such as carbohydrate antigen 19-9 (CA19.9), cancer antigen 125
(CA125), carcinoembryonic antigen (CEA), etc., no effective biomarkers for the early diagno-
sis of oral cancer have been validated yet. Over the years, a growing number of studies have
focused on the proteomic analysis of several body fluids (peripheral blood, serum, plasma,
saliva, sputum, and urine) to provide a better understanding of the molecular mechanisms
associated with oral cancer and discover new potential protein biomarkers [152,153]. In
this field, inflammation-related proteins including cytokines and C-reactive protein (CRP)
and proteases such as matrix metalloproteinases (MMPs) have recently been proposed as
potential salivary biomarkers for oral cancer [154]. Other studies have focused the attention
on Cluster of Differentiation 44 (CD44) and Cancer Antigen 125 (CA-125), cytoskeleton
fragments including CYFRA-21-1 and Tissue Polyoeotide-Specific Antigen (TPS) as well
as intracellular proteins such as Mac-2 Binding Protein (M2BP), demonstrating how these
proteins could represent interesting biomarkers for the early detection of oral malignan-
cies [155]. A careful review of the studies on protein biomarkers for the diagnosis and
management of oral cancer is provided in the following subsections.

5.1. Cytokines

Cytokines are small soluble glycoproteins (<30 kDa molecular weight) with a short
half-life usually released in response to a stimulus such as infection or inflammation.
Cytokines are important regulators of the immune response, controlling the differentiation,
proliferation, migration, and apoptosis of target cells [156]. The relationship between
chronic inflammation and cancer has been widely documented over the years (157). Pro-
inflammatory cytokines such as interleukin 1 (IL-1), interleukin 6 (IL-6), interleukin 8 (IL-8),
interleukin 10 (IL-10) as well as transforming growth factor β (TGF-β), and tumor necrosis
factor α (TNF-α) are produced by the cells of the tumor microenvironment, playing a
key role in cancer initiation, growth, progression, and metastasis [157–160]. Conversely,
interleukin 2 (IL-2) and interferon α (IFN-α) show anti-tumor properties including anti-
proliferative and pro-apoptotic activities [161].

Cytokines have recently been investigated as new circulating biomarkers for the early
diagnosis of oral cancer. Panneer Selvam N et al. (2015) observed that salivary IL-6 levels
were significantly higher in OSCC and oral leukoplakia patients compared to the controls
(132.88 ± 59.09 pg/mL, 52.14 ± 43.00 pg/mL, and 12.84 ± 9.68 pg/mL, respectively) [162].
Similarly, Aziz S et al. (2015) noted that the levels of IL-10 and interleukin 13 (IL-13)
were enhanced in the saliva samples of OSCC patients [163]. Subsequently, Singh P and
colleagues (2020) evaluated the clinical utility of other pro-inflammatory cytokines. The
authors found that the concentrations of IL-8 and IL-1β were significantly increased in the
saliva samples from OSCC patients than the healthy controls [164]. A recent study also
highlighted that the salivary levels of interleukin 17A (IL-17), interleukin 17B (IL-17B), and
TNF-α were strictly related to oral cancer progression [165]. These results suggest that the
detection of salivary cytokine levels represents a valuable strategy for the development of
novel non-invasive diagnostic tools for the identification of oral pre-cancerous lesions and
to predict the development of advanced form oral squamous cell carcinoma.

5.2. CRP

CRP is a plasma protein encoded by the CRP gene, which is located on the short arm
of chromosome 1. This conserved protein is secreted by hepatocytes, and it is composed
of a cyclic structure of five identical subunits (~30 kDa) [166]. CRP is a protein involved
in innate immunity and host defense against pathogens. Interestingly, serum CRP levels
can increase rapidly (1000-fold within 48 h) in response to tissue damage or infection [167].
Over the years, the detection of circulating CRP level has attracted strong interest as a
useful tool in clinical practice. Notably, it has been proposed as a diagnostic and prognostic
biomarker for cardiovascular diseases and malignancies [168,169].

In this field, several studies have demonstrated the potential utility of CRP for the
diagnosis of oral diseases. Metgud R and Bajaj S (2016) reported that salivary and serum con-
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centrations of CRP were higher in OSCC and oral premalignant lesion patients compared
to healthy individuals, highlighting how the increase in the CRP levels was strictly related
to disease progression [170]. A similar result was obtained by Vankadara S et al. (2018),
who observed higher serum levels of CRP in the OSCC patients (from 3.3 to 96 mg/L) than
the oral premalignant lesion patients (from 0.8 to 53.9 mg/L) and the controls (from 0.1 to
18.3 mg/L) [171]. In line with these results, Knittelfelder O and co-workers (2020) recently
showed that the CRP levels were inversely correlated with overall survival and cancer-
specific survival, suggesting the clinical utility of this circulating protein as a prognostic
marker for oral cancer [172].

5.3. Matrix Metalloproteinases

Matrix metalloproteinases (MMPs) are a family of 24 zinc-dependent endopeptidases
involved in the degradation and remodeling of several components of the extracellular
matrix [173]. MMPs are characterized by a pro-peptide sequence (~80 amino acids), a
catalytic domain (~170 amino acids), a peptide linker, and a hemopexin domain (~200 amino
acids) [174]. These proteolytic enzymes are secreted by different cell types (fibroblasts,
osteoblasts, macrophages, neutrophils, and lymphocytes) and can be classified into several
groups according to their substrates and structural domains [175]. MMPs are involved in
different biological processes including angiogenesis, embryogenesis, morphogenesis, and
tissue repair. However, the aberrant expression of MMPs seems to be strictly related to
cardiovascular diseases as well as solid tumor progression and aggressiveness [176].

High levels of MMPs have been associated with poor overall survival in cancer patients.
Therefore, a growing number of studies have focused their attention on the detection of
these enzymes in liquid biopsies to investigate their clinical application as diagnostic and
prognostic biomarkers for oral cancer. Hsin CH et al. (2014) performed a study on OSCC
patients, analyzing the MMP levels. Using an ELISA assay, the authors revealed a positive
correlation between MMP11 and disease progression [177]. Peisker A and colleagues (2017)
performed a case-control study on the MMP9 protein levels, demonstrating that the salivary
concentration of MMP9 was higher (+19.2%) in the OSCC patients compared to the healthy
controls (healthy subjects) [178]. Similarly, another study showed that the OSCC patients
had increased salivary levels of MMP1 compared to patients with premalignant disorders
and to the control group, suggesting that this proteolytic enzyme was strictly associated
with cancer progression [179]. Recently, Saleem Z et al. (2021) also highlighted that MMP12
was differentially expressed among the OSCC patients (mean value 14.92 ng/mL), oral
mucous fibrosis patients (mean value12.53 ng/mL), and controls (mean value 0.82 ng/mL)
with a specificity and sensitivity of 100% [180].

5.4. CD44

CD44 is a complex transmembrane adhesion glycoprotein (85–95 kDa) encoded by the
CD44 gene, which is located on chromosome 11 [181]. During the transcription process, ex-
ons 1–5 and 16–20 are spliced together, producing the standard isoform CD44s, while exons
6–15 are alternatively spliced to form the variant CD44 isoforms (CD44v). Of note, CD44s is
characterized by three regions (extracellular, transmembrane, and cytoplasmatic domains),
while the CD44v isoforms are composed of an additional membrane proximal domain [182].
As reported in the literature, CD44 plays a key role in many physiological processes such
as cell–cell and cell–matrix adhesion, organ development, and hematopoiesis. The aber-
rant expression of this cell-surface glycoprotein seems to be involved in the growth and
development of several tumor types [183].

In oral cancer, the detection of circulating CD44 levels has recently been proposed as
a non-invasive prognostic method. In this field, Sawant S et al. (2018) showed that the
serum CD44 levels were significantly increased in oral cancer patients than in the controls
(251 ± 69.3 ng/mL and 178± 29 ng/mL, respectively). In addition, the aberrant expression
of CD44 was inversely correlated to the overall survival of cancer patients [184]. Similarly,
Shah K et al. (2018) observed that the expression of CD44v6 and CD44v10 was higher in the
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salivary samples from the OSCC patients compared to the healthy subjects, highlighting
the potential utility of CD44v as a protein biomarker for the early detection of cancer [185].

5.5. CA-125

CA-125, also known as mucin 16 (MUC16), is a tumor-associated mucin glycopro-
tein with a high molecular weight, which is characterized by a tandem repeat region
(~60 repeats) between the N-terminal and C-terminal domains [186]. Under physiological
conditions, this cell-surface glycoprotein is expressed by the epithelial cells of several or-
gans such as bronchial, tracheal, ocular, endometrial, and ovarian epithelial cells. However,
CA-125 overexpression is also associated with the inhibition of natural killer cells and
immune response, cancer cell proliferation, metastatic invasion, and poor prognosis [187].

Although CA-125 is mainly considered as a serum biomarker for the diagnosis of
ovarian cancer, some studies have suggested that the detection of salivary CA-125 levels
could be indicative for oral cancer lesions. For example, Nagler R and colleagues (2006) per-
formed a case-control study to evaluate the salivary concentration of CA-125. Interestingly,
the researchers observed a significant increase (400%) in the CA-125 levels in the OSCC
group compared to the control group [188]. Similarly, Balan JJ and collaborators (2012)
found that the mean salivary concentration of CA-125 in OSCC patients and the controls
was 320.25 U/mL and 33.14 U/mL, respectively [189]. Taken together, these data support
the potential role of salivary CA-125 evaluation in predicting the presence of oral cancer.

5.6. CYFRA 21-1

CYFRA 21-1 is a soluble proteolytic fragment of cytokeratin 19 (CK-19), a protein of
40 kDa that is expressed by epithelial cells. During cell apoptosis, CK-19 fragments are
released into circulation due to caspase-3 activation. These soluble fragments can also be
released during the proliferation of malignant cells [190]. Over the years, the detection of
CYFRA 21-1 levels in different body fluids has been described as a promising diagnostic
tool for several solid tumors, especially for lung, bladder, and stomach cancer [191–193].

Interestingly, CYFRA 21-1 could represent an interesting protein biomarker for the
diagnosis of oral cancer. In particular, the serum CYFRA 21-1 levels showed a positive
correlation with tumor depth, skin and bone invasion as well as the risk of metastasis in oral
cancer patients [194]. Malhotra R and colleagues (2016) observed that serum and salivary
levels of CYFRA 21-1 were significantly increased in the OSCC patients than in the controls
(2.75-fold). The results highlight the high sensitivity (91%) of electro-chemiluminescent
immunoassay (ECLIA) in the detection of CYFRA 21-1 as a cancer biomarker [195].

5.7. Tissue Polypeptide-Specific Antigen

Tissue polypeptide-specific antigen (TPS) is a soluble fragment of cytokeratin 18
(CK-18), an intermediate filament protein of the cytoskeleton. It is released during both
apoptosis and neoplastic transformation processes [196]. Of note, TPS is a well-documented
marker for the diagnosis and prognosis of several epithelial malignancies. In fact, it has
been demonstrated that high TPS serum levels are associated with lung, ovarian, breast,
and colorectal cancers [197–200].

The increase in the TPS levels in the saliva and serum samples seems to be associated
with oral malignancies. Geng XF and colleagues (2013) evaluated the salivary levels of TPS
in the OSCC patients and healthy controls, detecting a significant difference between the
two groups (272.28 U/mL and 86.6 U/mL, respectively). These data demonstrate that the
detection of TPS has high sensitivity (82.1%) and specificity (74.0%) for the diagnosis of oral
cancer [201]. Subsequently, Barak V et al. (2015) investigated the serum levels of different
tumor markers in HNC patients including TPS. Specifically, the authors observed that the
TPS levels were increased before therapy, while a significant decrement in the TPS levels
was observed after surgery or chemotherapy, suggesting that the lowering of TPS levels
could be used as a prognostic biomarker for therapeutic efficacy in HNC patients [202].



Non-Coding RNA 2022, 8, 60 15 of 26

5.8. M2BP

M2BP, also known as Lectin Galactoside-binding Soluble 3 Binding Protein (LGALS3BP),
is a glycosylated protein of ~90 kDa. M2BP is characterized by seven N-glycosylation
sites and it is mainly involved in cell adhesion and host defense [203]. Since M2BP can
induce cytokine production in inflammatory processes, this glycoprotein and its glycan
isomer have been proposed as serum biomarkers for the clinical evaluation of several
pathologies [204–206]. Notably, M2PB expression levels are increased in lung and breast
cancer [207,208].

Some studies have also evaluated the serum and salivary concentrations of M2BP in
oral cancer patients. In particular, Weng LP et al. (2008) observed that the serum M2BP
levels were significantly higher in the OSCC group than in the controls (8.06 ± 5.76 and
5.54 ± 5.1 µg/mL, respectively) [209] while Brinkmann O and colleagues (2011) found that
the M2BP levels were increased in the saliva samples from OSCC patients, suggesting that
M2BP could be an effective circulating biomarker for the early diagnosis of oral cancer [210].

5.9. Other Protein Biomarkers

Recently, proteomic analyses have been applied to discover novel reliable biomarkers
for the early diagnosis of tumors [66]. Such analyses performed on liquid biopsy samples
are effective in identifying new potential protein biomarkers for oral malignancies. Specifi-
cally, proteomics analyses have revealed that Zinc Finger Protein 510 (ZNF-510), Fibrinogen
β chain (FGB), S100 calcium binding protein (S100), Transferrin (TF), Immunoglobulin
Heavy Chain Constant Region γ (IGHG), Cofilin 1 (CFL1), S100 Calcium-Binding Protein
A9 (S100A9), MAC-inhibitory protein (MAC-IP), Profilin (PFN), Catalase (CAT), Resistin
(RETN), Gelsolin (GSN), Fibronectin (FBN), Angiotensinogen (AGT), Haptoglobin (HP),
Complement Factor H (CFH), Fibrinogen α chain (FGA), α -1-antitrypsin (SERPINA1),
and Heat Shock Protein α (HSP90α) showed higher expression levels in the saliva and
serum samples of oral cancer patients compared to the controls [211–217]. Although these
circulating proteins represent promising biomarkers for the diagnosis of oral cancer, further
studies are needed to validate their sensitivity and specificity rates.

6. Exosome-Derived Biomarkers

Exosomes are small extracellular vesicles of endocytic origin with a diameter of
30–150 nm. These nanovesicles can be released by almost all cell types including epithelial
cells, adipocytes, and fibroblasts. In addition, exosomes can be found in several body
fluids such as saliva, blood, tears, amniotic fluid, breast milk, urine, and cerebrospinal
fluid [218,219]. Of note, ultracentrifugation currently represents the standard method for
the isolation of exosomes from cell culture supernatants or biological fluids [220].

The biogenesis of the exosome is a multi-step process that begins with the retraction of
the endosomal membrane. Briefly, early endosomes are enriched with intraluminal vesicles
(ILVs) which are transformed into late endosomes, also known as multivesicular bodies
(MVBs). Then, MVBs fuse with the cell membrane to release ILVs or migrate to lysosomes
and autophagosomes for degradation. When the ILVs reach the extracellular space, they
take the name of exosomes [221]. Interestingly, several proteins and molecules are involved
in the formation and secretion of exosomes including the Endosomal Sorting Complex
Required for Transport (ESCRT-0, -I, -II, -III) and the Rab family of GTPases (Rab11, Rab27a,
Rab27b, and Rab35). Moreover, tetraspanins and heat shock proteins (HSPs) have been
described as part of the ESCRT-independent mechanism for the content assembly and
release of exosomes [222,223].

The molecular content of exosomes is strictly related to the parental cells from which
they originated and includes a variety of proteins, lipids, DNA fragments, long non-coding
RNAs (lncRNAs), mRNAs, and miRNAs, which are transported to proximal cells or distant
sites via the bloodstream [224]. Under physiological conditions, exosomes act as mediators
of intercellular communication, signal transduction, and cell homeostasis. However, these
nanovesicles have been also associated with tumorigenesis. Indeed, cancer-derived exo-
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somes are released by cancer cells and promote cancer development, progression, invasion,
and metastasis by interacting with the cells of the tumor microenvironment [225,226]. Since
exosomes can be isolated from several body fluids, they have attracted growing interest as
potential diagnostic and prognostic biomarkers in cancer [227–229].

In this field, recent studies have focused attention on the detection of exosome-derived
miRNAs in liquid biopsy samples from oral cancer patients (Table 2). Gai C and colleagues
(2018) used saliva samples from OSCC patients and healthy controls to evaluate the dif-
ferential expression of extracellular vesicle-derived miRNAs. Specifically, the authors
observed that the expression levels of miR-512-3p and miR-412-3p were higher in the
cases compared to the controls. In addition, miR-302b-3p and miR-517-3p were found
exclusively in OSCC patients [230]. Extracellular vesicle-derived miRNAs have been also
investigated in HNSCC patients. Specifically, miR-491-5p, miR-630, and miR-1910-5p were
significantly overexpressed in the plasma samples of cancer patients compared with those
of the control group, while miR-27b-3p was downregulated. Interestingly, the expres-
sion levels of miR-491-5p were associated with the HNSCC patients’ overall survival and
disease-free survival [231]. Recently, He T et al. (2021) showed that the evaluation of
exosome-derived miR-130a expression levels could improve oral cancer diagnosis and
prognosis. The researchers found that the miR-130a expression levels were higher in the
plasma and tissue samples from the OSCC patients than in the controls. In addition, the
expression of miR-130a was inversely correlated with the patients’ overall survival and
recurrence-free survival [232].

Aside from miRNAs, proteomic analyses on extracellular vesicles obtained from
liquid biopsy samples could represent an additional diagnostic tool for oral malignancies
(Table 2). In this regard, Zlotogorski-Hurvitz A and colleagues (2016) conducted a case-
control study on oral cancer patients and healthy controls using saliva samples for the
isolation of exosomes and the evaluation of protein expression. Specifically, the authors
observed that the expression of Cluster of Differentiation 63 (CD63) was increased in oral
cancer patients compared to the controls. Conversely, the protein expression of Cluster
of Differentiation 9 (CD9) and Cluster of Differentiation 81 (CD81) in the exosomes was
downregulated in cancer patients [233]. Another study evaluated the expression levels
of exosome-derived Lysyl Oxidase Like 2 (LOXL2) protein, demonstrating that LOXL2
was significantly overexpressed in serum samples of the HNSCC patients compared to
healthy individuals [234]. In addition, Nakamichi E and colleagues (2021) investigated
the exosomal expression levels of ALG-2-interacting protein X (Alix), a protein that has
been detected in tumor tissues. Compared to the controls, the researchers found that
Alix was overexpressed in both the saliva and serum samples from the OSCC patients,
suggesting that this exosome-derived protein could be used as a potential biomarker for
the early diagnosis of OSCC [235]. Interestingly, Guo H et al. (2021) recently performed
the proteomic analysis of serum exosomes to measure the protein content and identify
cancer-associated biomarkers. Notably, the researchers observed that CRP, von Willebrand
factor (VWF), and Leucine-Rich α-2-Glycoprotein (LRG) were significantly increased in
OSCC patients compared to the controls [236].

Overall, the results here presented demonstrate that the evaluation of the molecu-
lar cargo of liquid biopsy-derived exosomes could be useful to identify novel effective
biomarkers for oral cancer. However, future studies will be necessary to further investigate
the clinical relevance of exosome-derived miRNAs and proteins for the diagnosis and
prognosis of this tumor.
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Table 2. The exosome-derived biomarkers for oral cancer diagnosis.

Sample Methodology Exosome-Derived Biomarker Ref.

Saliva Microarray, qRT-PCR miRNA-24-3p (↑) [88]

Saliva qRT-PCR

miRNA-512-3p,
miRNA-412-3p,

miRNA-302b-3p,
miRNA-517-3p (↑)

[230]

Plasma qRT-PCR
miRNA-491-5p, miRNA-630,

miRNA-1910-5p (↑)
miRNA-27b-3p (↓)

[231]

Plasma qRT-PCR miRNA-130a (↑) [232]

Oral fluids AFM, ELISA, WB CD63 (↑)
CD9, CD81 (↓) [233]

Serum WB LOXL2 (↑) [234]

Serum, Saliva ELISA Alix (↑) [235]

Serum ELISA, IHC, qPCR CRP, VWF, LRG (↑) [236]
Abbreviations: AFM—atomic force microscopy; Alix—ALG-2-interacting protein X; CD9—Cluster of Differ-
entiation 9; CD6—Cluster of Differentiation 63; CD81—Cluster of Differentiation 81; CRP—C-reactive pro-
tein; ELISA—enzyme-linked immunosorbent assay; IHC—immunohistochemistry; LRG—leucine-rich α-2-
glycoprotein; LOXL2—lysyl oxidase like 2; qPCR—quantitative real-time polymerase chain reaction; qRT-
PCR—quantitative real-time reverse transcription PCR; VWF—von Willebrand factor; WB—Western blot;
↑—upregulated; ↓—downregulated.

7. Conclusions

Liquid biopsy has demonstrated a great potential as a non-invasive, rapid, and repeat-
able approach for the diagnosis and surveillance of oral cancer. According to the studies
described in the present review article, the detection and analysis of biomarkers from
peripheral blood and saliva (ctDNA, miRNAs, proteins, and exosomes) could significantly
improve the current screening programs and diagnostic strategies, improving the early
diagnosis and real-time monitoring of disease in the era of precision and personalized
medicine. Although several technologies have been proposed over the years, the applica-
tion of liquid biopsy in routine clinical practice is still limited due to some issues related to
the sensitivity, specificity, and lack of standardized protocols. Overall, a future challenge
will be to develop cost-effective and highly sensitive technologies for the detection of
circulating biomarkers that are predictive for precancerous lesions or early-stage tumors.
In addition, further clinical studies should be performed on a larger cohort of patients
and controls in order to confirm the diagnostic and prognostic accuracy of circulating
biomarkers and liquid biopsy in oral cancer.
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