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A B S T R A C T   

The spread of e-commerce has driven a major growth in the parcel delivery market, bringing a negative impact 
on sustainability, especially due to last-mile deliveries in urban areas. It is crucial to appropriately tackle this 
issue to foster consolidation of deliveries, possibly by using collection and delivery points (CDPs), where cus
tomers might receive their parcels. This paper proposes a new spatial agent-based modelling approach to explore 
different scenarios of last-mile logistics referred to e-commerce deliveries, comparing fragmented door-to-door 
deliveries with consolidation-based strategies. The case study is the central urban area of Catania, a medium 
sized city in Southern Italy. The Agent-Based Model (ABM) reproduces feasible operations considering real-world 
spatial constraints and demand data, including the possible matching of customers’ systematic trips and parcel 
delivery via CDPs with small detours from the scheduled trip. Key performance indicators consider both 
customer and logistics operator perspectives. Main results of the simulation show that the scenario without CDPs 
is the costliest and least efficient, implying a high number of failed deliveries. Using cargo bikes instead of vans to 
perform the delivery implies high costs, but much higher benefits in terms of reduced energy consumption. The 
highest logistics efficiency is achieved in the scenario with a doubled demand, implying a better use of the CDPs. 
The results suggest that it is advisable to incentive the use of CDPs instead of increasing their number. The ABM 
can provide useful information to decision-makers on how to manage growing on-demand urban deliveries and 
plan last-mile logistics using a delivery-oriented development approach.   

Introduction 

Last-mile logistics is a recent but rapidly growing phenomenon due 
to e-commerce spreading and the increase in the number of business-to- 
consumer deliveries. The growth of this phenomenon can mainly be 
attributed to the worldwide spread of digital technologies - in particular 
the Internet - which, thanks to online purchasing, make remote shopping 
easier. This has been further exacerbated during COVID-19 outbreak, 
bringing people to adapt to e-purchasing and e-groceries habits due to 
mobility restrictions imposed by governments (Le Pira et al., 2021b) and 
in response to concerns related to social distance and untypical demand 
needs (Melo and de Jesus Ferreira, 2022). 

Fragmented door-to-door deliveries performed by different private 
companies generate negative externalities, hampering sustainability. 

Their economic efficiency is affected by failed deliveries, low vehicle 
load factors and long travelled distances. From an environmental 
perspective, logistics vehicles contribute up to 50% of Particulate matter 
(PM and Nitrogen Oxide (NOx) emissions in cities and they are also 
responsible for 40% of transport related CO2 emissions (Iclei, 2021). 
Social sustainability is also affected by last-mile deliveries: different 
logistics companies usually operate in the same city with an overlapping 
delivery network, generating additional congestion with respect to the 
one caused by individual shopping trips (WEF, 2020). Road safety is 
another issue, with logistics vehicles highly involved in fatal collisions 
(Interreg Europe, 2020). 

All these challenges should be duly taken into account by policy- 
makers (Le Pira et al., 2017; Allen et al. 2018). Last-mile logistics 
needs to be included in transport planning processes by considering city 
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constraints and operation costs, while keeping customers demand 
satisfied. 

Innovative logistics solutions might come into help to this purpose. 
According to WEF (2020), they can be related to innovative vehicles (e. 
g. electric vehicles), secure deliveries, customer movement (e.g. with the 
use of parcel lockers), consolidation strategies, last-leg change (e.g. 
micro-hubs), or to the delivery environment (e.g. dynamic re-routing). A 
promising solution is crowdshipping, implying deliveries performed via 
the crowd, i.e. by travellers carrying the parcels during their scheduled 
trips (Marcucci et al., 2017). In this respect, Giuffrida et al. (2021) used a 
GIS-based approach to evaluate the spatial feasibility of crowdshipping 
performed by University students using public transport or active modes 
considering their proximity to collection and delivery points (CDPs) 
where the parcels could be consolidated. This example shows how a 
combination of different solutions is desirable to maximize the proba
bility of success and the positive impacts of such a policy. 

Consolidation strategies with customer involvement via the use of 
CDPs like parcel lockers, but also brick-and-mortar stores, seem a 
promising and ready solution to be deployed in many cities. These are 
usually private and customer-oriented initiatives: private companies 
decide the location of CDPs where parcels can be stored and directly 
picked up by the final customers. However, it could also be a public 
initiative to be included in transport and land-use planning agendas, 
towards a “delivery-oriented development”. This concept is here pro
posed and explored, by taking into account different and conflicting 
issues: CDPs need to be diffused and easily reachable by consumers, thus 
discouraging additional individual car trips; at the same time, they 
should not be too pervasive, jeopardizing the consolidation of deliveries 
and its positive impacts. The spatial distribution of both parcel demand 
and CDPs is thus fundamental to appropriately plan consolidation 
strategies aimed at increasing logistics efficiency while reducing its 
negative impact on city sustainability and liveability. 

This paper presents a spatial Agent-Based Model (ABM) to explore 
different scenarios of last-mile logistics induced by e-commerce, 
comparing door-to-door deliveries with consolidation-based strategies, 
by taking into account demand and transport network data based on a 
real-world case study. In this study, an already implemented ABM 
(Calabrò et al., 2022) is integrated with a Geographic Information Sys
tem (GIS), where the results of a spatial analysis are used as context 
input for the simulations. The novelty of the ABM is the simultaneous 
dynamic simulation of customer mobility and freight movements to 
explore the possibility of coupling customers picking up their parcels at 
CDPs with a small detour from their daily trip route, considering 
different trip purposes. In the previous study, the ABM has been applied 
to a synthetic case study to explore the variables that make consolidated 
deliveries more attractive than fragmented door-to-door ones. In this 
paper, the ABM is further improved, and it is integrated with GIS to 
reproduce a real-world environment using spatial open data related to 
the transport network and to potential demand at a census zone level. 
This is particularly relevant if one considers the importance of demand 
analysis and the difficulty to find official and reliable data. Thanks to the 
data regarding the transport network, it is possible to simulate different 
routing options for the deliveries at the level of detail of census zones, 
given that information on routes taken by private logistics companies 
are not easily accessible. 

The ABM integrated with GIS considers important variables both 
related to the supply and the demand, like: (1) depot location; (2) spatial 
density of CDPs; (3) OD shortest-path matrix (4) vehicle fleet size; (5) 
vehicle type and capacity; (6) customer mobility patterns, (7) parcel 
demand, and (8) willingness to accept deliveries performed via CDPs. 

The flexibility of the modelling environment allows the exploration 
of different scenarios that can be useful to both policy-makers and pri
vate companies to understand how to optimize parcel deliveries in urban 
areas. 

The remainder of the paper is organized as follows. Section 2 (“State 
of the Art”) analyses the main literature endeavours related to 

consolidation strategies and agent-based modelling of last mile logistics, 
so to set the scene and present the gap of knowledge covered by this 
paper. Section 3 (“Methodological approach”) describes the methods 
used, namely the GIS approach and the ABM. Section 4 (“Case study”) 
introduces the case study and reports the findings of the first set of 
simulations, paving the way for further research that is discussed in 
Section 5 (“Discussion and Conclusion”), which concludes the paper. 

State of the Art 

Fragmented vs. consolidated deliveries 

Consolidation strategies to improve the efficiency of urban deliveries 
have been investigated since the early 2000s with the concept of Urban 
Consolidation Centers (UCC) (Browne et al., 2005). UCC are logistics 
facilities used by different logistics providers located close to the served 
area (usually the city center) from which consolidated deliveries are 
made with small vans, avoiding the presence of heavy vehicles in urban 
context. Although its attractiveness, this type of initiative showed to be 
difficult to implement, due to their operational models which need high 
reliance on government support (Marcucci and Danielis, 2008). An in
termediate solution for freight consolidation is constituted by the so- 
called micro-hubs, smaller transport provider-owned consolidation 
centers located at the border of the city center (Janjevic and Ndiaye, 
2014); their location should facilitate the use of environmentally- 
friendly modes, such as light-duty electric vehicles, electric cargo bi
cycles and/or by foot or handcarts. Solutions to further improve the last- 
mile deliveries consolidation are the CDPs and, in particular, parcel 
lockers. CDPs are facilities located in the city centers where the customer 
can pick up its parcel at a convenient time; they can be automated or 
equipped with staff and can also be located in existing brick-and-mortar 
stores. They can have a 24/7 policy or opening hours. A particular case is 
the one constituted by the parcel lockers, which are automated CDPs 
where customers can redeem their parcel using a code and/or a form of 
identification (Schnieder et al., 2021). The efficiency of such capillary 
solutions in urban areas in comparison to home-deliveries is of current 
debate and it is one the core topic investigated in our study. 

Besides, as shown in the review conducted by Lagorio and Pinto 
(2020), literature related to the location and usage of CDPs is quite new 
and the topic is still under study. However, some recent works of interest 
can be reported. 

The feasibility of parcel lockers solution has been assessed by Van 
Duin et al. (2020). The authors simulated different scenarios using 
multicriteria analysis to identify the factors affecting the choice of each 
alternative and calculating delivery costs through a cost effectiveness 
analysis. The location of the facilities resulted the main factor, requiring 
a detailed analysis to provide great benefits from the parcel lockers 
strategy when compared with traditional solutions. 

A survey of Mitrea et al. (2020) showed that the willingness to accept 
parcel lockers deliveries is highly affected by their proximity to daily 
origin/destination, in such a way that customers can easily combine the 
parcel collection with their systematic trips, with two third of the pur
chasers allowing a detour up to 10 min. More recently, the topic has 
been studied by Iannaccone et al. (2021) who compared consumer 
preferences for home delivery vs. parcel locker use, forecasting their 
future market shares. The study shows an overall high propensity to use 
parcel lockers, and that the main choice determinants are distance and 
accessibility. Accessibility and equity metrics for parcel lockers have 
also been investigated by Schaefer and Figliozzi (2021), using 
geographical tools and cluster analysis; they analysed the case of Port
land (Oregon, US) and showed that although the facilities are located in 
mixed-use areas the equity metrics indicate that the current distribution 
of lockers could be improved to allow the access to the current unserved 
population. 

Parcel lockers and home deliveries have been compared by 
Schnieder and West (2020) through the innovative concept of Time- 
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Area requirements, i.e. the product of the space usage and the time 
needed for the delivery process, considering both couriers and cus
tomer’s trips. Results show that, for high parcel demand, parcel lockers 
are efficient only when used at high capacity. Later in 2021, Schnieder 
et al. (2021) tested two options to increase the utilization of parcel 
lockers: modular lockers (which can be adjusted periodically depending 
on demand) and combining parcel lockers with staffed CDPs. They used 
real world data for the case of London, considering seasonal and daily 
changes in parcel demand, missing picking up by customers, return 
deliveries and the net present value of the investment. Findings high
light that combining parcel lockers with staffed CDPs offers better 
financial performance for the case study. Leung et al. (2022) proposed a 
dynamic delivery strategy in order to manage and update delivery plans 
in real time. On the basis of a given parcel network, the authors simu
lated different demand scenarios in order to evaluate the suitability of 
such service by varying the requests in time and space. In addition, the 
authors underlined the importance of implementing the service with 
consolidated deliveries. Comi and Savchenko (2021) assessed the ad
vantages of performing parcel deliveries with different modes of trans
port: car, motorcycle, bicycle and on foot by using public transport. The 
authors calculated a cost for each alternative considering both internal 
(such as fuel consumption, cost for maintenance and repair) and 
external (air pollution, congestion, road accidents) parameters. From 
the analysis carried out, it emerged that the use of public transport is 
certainly the most convenient, but it involves issues related to the 
transport of voluminous goods and delays of the delivery. This result 
highlights the importance of finding a trade-off between the quality of 
the parcel delivery service, the costs of the logistic operators and the 
impact in the urban context. Similarly, Kou et al. (2022) evaluated de
livery strategies in a rural area by considering different modes of 
transport towards a multimodal transport design for last mile delivery. 
Results show that a combination of public transport and crowdsourcing 
logistica can be very effective in satisfying the e-commerce demand in a 
rural area. 

Finally, Schwerdfeger and Boysen (2020) and Liu et al. (2021) ana
lysed the innovative concept of mobile parcel lockers (usually consti
tuted by vans that change their locations during the day). The former 
compared the performances with stationary lockers, showing that mo
bile lockers might considerably reduce the locker fleet size. The latter 
proposed a machine learning method to solve the dynamic location 
routing problem, showing that such type of algorithms performs better 
than the traditional heuristic counterpart. 

This brief but recent literature review shows that many topics related 
to e-commerce and the use of CDPs are still an open issue. There is no 
structured approach for the planning of CDPs locations and their density 
in urban areas, based on e-commerce demand distribution, although 
being a crucial factor for the economic, environmental and social sus
tainability of such delivery solutions. Moreover, it is also important to 
analyse customer involvement in the delivery process, i.e. the impacts 
incurred in the users’ trip to reach CDPs and their willingness to use 
them. Our paper contributes to fill these literature gaps, by proposing a 
spatial modelling framework to explore different scenarios in a real case 
study. 

Agent-based modelling of last-mile logistics 

ABMs are quite powerful tools to reproduce systems to a very dis
aggregated scale with high spatial resolution, simulate interactions 
among individual agents with the ability to capture complex individual 
behaviour dynamics and emergent collective phenomena (Bankes, 2002; 
Le Pira et al., 2021a). The use of ABM to simulate last mile logistics is 
still quite new. This is mainly due to the novelty of the problem and the 
fact that freight models are in general used to simulate different decision 
levels (i.e. strategic, tactical and operational) in relation to their refer
ence market (Tavasszy and de Jong, 2014). The MASS-GT model (de Bok 
and Tavasszy, 2018; de Bok et al., 2020) and SimMobility Freight (Alho 

et al., 2017) are recent examples that go in the direction of a compre
hensive model for freight transport. However, existing models usually 
do not consider individual actor behaviour and dynamic interactions at 
a microscale. 

Specific ABMs dealing with last-mile logistics have been proposed in 
the last years. Anand et al. (2021) used an ABM to simulate the 
consolidation of freight in urban areas via the use of a UCC, introducing 
a cap on freight deliveries to reduce carbon emissions for last-mile 
logistics. 

The operation of urban deliveries has been studied by Chen and 
Chankov (2017) who investigated the performance of the crowdsourced 
last-mile logistics; two main parameters are studied, i.e. the supply/ 
demand ratio and the maximum detour time accepted by couriers. Later 
on, Wise et al. (2018, 2019), developed an ABM to simulate the move
ments of individual delivery personnel and their vehicles throughout the 
day. They calibrated the model with real data for the case study of 
London, taking into account different vehicles and including parking 
behaviour. However, they did not explore alternative scenarios to test 
the potential improvement of the current situation. In 2019, Alves et al. 
(2019) explored the CDP option, analysing different scenarios by 
changing their numbers. They developed an ABM integrated with GIS, 
showing that parcel lockers can reduce the missed delivery phenomenon 
and improve the cost effectiveness for delivery companies. A sophisti
cated model is the one presented in Reiffer et al. (2021) which simulates 
both private trips and last-mile deliveries, thus considering realistic 
traffic conditions and including the possibility of missing deliveries. 

Other recent studies specifically focused on e-commerce deliveries 
through ABMs, like Sakai et al. (2020) who use the SimMobility Freight 
platform. Le Pira et al. (2020) dealt with e-grocery, proposing an 
approach based on the integration of discrete choice models and ABMs 
to simulate users’ propensity towards different grocery/e-grocery al
ternatives (i.e. home delivery, click-and-pick and the traditional shop
ping). Always remaining in the grocery delivery field, Utomo et al. 
(2022) evaluated the feasibility of such delivery solutions by using 
autonomous vehicles (AVs); they investigated the benefits of mixed- 
fleets over homogeneous designs. Results show that AVs reduce opera
tional costs and the total distance travelled. More recently, Kant & Gupta 
(2023) proposed an ABM to evaluating the impacts of freight consoli
dation centers for last-mile solutions; they studied the impact of 
consolidation strategies across commodities and proved differences in 
the impacts across commodity distribution in last-mile deliveries of 
goods. 

Our paper contributes to the existing literature by proposing a GIS- 
based ABM to explore different scenarios of last mile logistics, specif
ically focusing on e-commerce deliveries, and considering consolidation 
via CDPs and customer involvement. The ABM is based on the one 
proposed by Calabrò et al. (2022) to dynamically simulate customer and 
freight movements in a parametric environment with the possibility for 
customers to pick up their parcels at CDPs along their daily mobility 
paths, considering different trip purposes and bridging freight and 
passenger mobility in urban areas. In this paper, the ABM is used to 
reproduce a real case study with spatial constraints, by integrating it 
with a GIS using the results of GIS analyses as input for the simulations. 

Next section describes the details of the proposed methodological 
approach. 

Methodological approach 

The spatial ABM is designed to address the issue of last-mile logistics. 
In this paper, the GIS analysis output becomes one of the ABM inputs to 
simulate last-mile e-commerce delivery operations, modelling the in
teractions between the different “agents” of the system, i.e. the delivery 
vehicles (with their scheduled routes), the customers (with their 
scheduled trips), the parcels to be delivered, and the physical locations 
where parcels are delivered (or picked-up). The latter can be distin
guished in customer’s domicile (home delivery) and CDPs (CDP 
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delivery). 

GIS analysis 

A GIS analysis is conducted according with the following steps:  

(1) Definition of the study area and zoning.  
(2) Import of demographic data.  
(3) CDPs allocation.  
(4) Calculation of the OD shortest path matrix. 

The outputs of this spatial analysis are used to provide the ABM with 
the required inputs for the simulation of different scenarios of last-mile 
logistics strategies. The spatial analysis is performed using QGIS soft
ware, a GIS desktop open-source able to process and manage spatial data 
in a geographic environment. 

More in detail, in the first step, the study area is selected and zoned, 
and a corresponding centroid is associated to each zone. Then, de
mographic information (i.e. number of residents and employees) is 
retrieved from the national statistics website; residents are classified in 
terms of age and e-commerce purchasing frequency, based on statistics 
reports (step 2), and are spatially assigned to the zones. 

The third step involves the allocation of CDPs in the study area. To do 
this, the addresses of CDPs are collected from the websites of the lo
gistics companies operating in the study area and imported into a GIS 
environment thanks to the use of the geocode web-service of the 
MMQGIS plugin. 

The last step consists in the OD shortest-path matrix calculation for 
the centroids associated to each zone. The calculation is done for all the 
possible couples of centroids, using the OpenRouteService (ORS) plugin, 
which allows to perform routing analysis based on OpenStreetMap 
(OSM) road network, considering “car” as travel mode. The ORS tool 
calculates the travel time for each segment by using speed-limits for 
different OSM waytypes and adjusting them for different grades or 
surfaces of the road and some other factors (such as in case of residential 
roads). The tool provides a “shortest route” and a “fastest route” module 
where the “fastest route” chooses the route with high-speed roads. 
However, this can be considered of little interest in our case study, set in 
an urban environment, with similar network speeds. For this reason, it 
was preferred to opt for the “shortest route” option. Finally, ORS per
forms its calculation in the case of uncongested networks: more 
advanced tools and models might be used to consider traffic in the 
analysis. 

The Agent-Based Model 

The proposed ABM is built in the NetLogo programming environ
ment (Wilensky, 1999) and the framework is based on the study of 
Calabrò et al. (2022). The description of the ABM is provided in the 
following sub-sections. 

Main input parameters 
The input parameters of the model are the demand characterization, 

the type of delivery vehicle, the service-related and simulation-related 
parameters. 

As regards the characterization of the demand, the main input 
parameter is the number of customers (NCi) per day of operations 
generated in each zone i ∈ Z (where Z is the set of zones) calculated as a 

function of the number of residents (Ril), the percentage of customers 
belonging to age group l ∈ A (i.e. 18–24, 25–54 and > 54 years) which is 
an exogenous variable that characterizes the different propensity to
wards e-commerce (plk) and the e-commerce purchase rate (rlk) of the 
customer k ∈ C where C is the category of purchaser belonging to 
“habitual” (i.e. 1 e-commerce purchase a week), “occasional” (i.e. 1 
purchase every 3 weeks) and “rare” (i.e. 1 purchase every 2 months). 
The computation of NCi also considers the percentage of returned parcels 
(KR) and the percentage of failed deliveries (KF), which depends on the 
previous days’ delivery operations (Eq. (1). 

NCi =

(
∑

l∈A
Ril⋅
∑

k∈C
plk⋅rlk

)

⋅(1+KR)⋅(1 + KF) (1) 

As mentioned before, the percentage plk is related to the customer’s 
age group. For the sake of simplicity, we assume that each customer 
orders one parcel. Another customer-related parameter is the maximum 
allowed detour time (Δtmax), considering the customers’ willingness to 
deviate from their daily routes to pick-up their parcels at a CDP. 

Regarding the vehicle fleet, different types of commercial vehicles 
can be modelled (e.g. delivery vans, cargo bikes, etc.). The input pa
rameters related to the supply-side are the vehicle capacity (Q), the 
cruise speed (v), and the average energy consumption (E). We assume 
that the delivery operations are carried out by electric vehicles. To 
compute the operating cost, we do not consider the capital costs of the 
fleet size, but we include the distance-related cost (in €/km) and driver- 
related cost (in €/h), by means of the coefficients €km and €h, 
respectively. 

Another input parameter is the type of service TS ∈ {HD, CDP}
provided to the customers, namely, whether delivery operations are 
carried out at the doorstep (home delivery, HD) or can occur at CDPs. 

Customer behaviour 
Once customers “agents” have been generated according to socio- 

demographic data, each of them is characterized by a different “activ
ity profile”, based on their daily schedule and travel pattern. In partic
ular, four activity profiles are modelled, namely “employee” (home-to- 
work trips), “student” (home-to-school trips), “leisure” (shopping trips) 
and “no displacements”. The start and the end time of the customer 
travel depend on the activity profile, as well as the distance between 
origin (O) and destination (D) of the trip in the simulated day. In this 
paper, we assume that shopping trips take place with random destina
tions within the service area (i.e. thanks to the high density of facilities 
such as stores, shops, etc.), while student trips also include external 
destinations. Instead, the destination of home-to-work trips is chosen 
according to a gravity model (also considering external-internal 
commuting trips). The probability for a customer originating in the 
zone i to have destination in j is expressed as a function of the number of 
workplaces in j (Wj) and the distance dij between the two zones, as 
shown in Eq. (2): 

pij =
Wje− γdij

∑
j∈ZWje− γdij

(2)  

where γ is the deterrence function parameter (Ortúzar and Willumsen, 
2011). 

Finally, the customers characterized by the “no displacement” ac
tivity profile stay at home, except for picking up (or returning) their 
parcel at the CDPs, as explained later on. 

Table 1 
Customer-related parameters.  

Activity profile Home-to-work (Employee) Home-to-school (Student) Shopping (Leisure) No displacement 

Mode of transport Car Bike Walk  
Utility function (V) βt,car tOD,car +

βc,car dOD,car + β0,car 

βt,bike tOD,bike +

β0,bike 

βt, tOD,walk   
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Customers choose between different modes of transport belonging to 
the set M = {private car, bike, walk}, available to them; public trans
port is not considered among the options for the sake of simplicity. The 
mode choice is modelled as a random choice weighted by the probability 
Smr of selecting the transport mode m by customer r, which is calculated 
via a multinomial logit model as shown in Eq. (3): 

Smr =
eVmr

∑
h∈MeVhr

(3)  

where Vmk is the systematic utility calculated as a linear function (see 
Table 1) of generic alternative attributes (travel time tOD and/or distance 
dOD,) and specific alternative attributes. We took as reference the utility 
functions found in Cascetta (2006). 

As an alternative to home delivery, customers can choose a CDP 
where it is possible to collect (or return) their own parcels. We assume 
that the “target” CDP for a customer r is the one which minimizes the 
detour time to reach it, with the constraint of not exceeding Δtmax, i.e. 
the maximum allowed detour time (input parameter). The way the 
target CDP is chosen differs depending on the mode of transport used, 
with riders and drivers allowed to choose a CDP “close” to their route 
between origin and destination, while pedestrians only consider those 
located within the maximum detour time from their origin. 

Customers’ orders consist of parcels of various sizes, which we dis
cretized into different categories. CDPs are able to “serve” multiple 
customers, thus consolidating the delivery operations. The capacity of 
each CDP is limited in terms of number of parcels that can be stored. 

We model the probability PCDP,r for customer r to choose the target 
CDP as the delivery option according to a quadratic impedance function 
ηCDP,r. It is a function of the ratio between the detour time tCDP,r needed to 
reach k and Δtmax. To compute such a probability (see Eq. (4)), one 
should consider the availability of lockers for the parcel of customer r; 
this is done through a Boolean variable xCDP,r assuming the value 1 if 
there are available lockers for the parcel and 0 otherwise. 

PCDP,r = ηCDP,r⋅xCDP,r =

(

1 −
tCDP,r

Δtmax

)2

⋅xCDP,r (4) 

Fig. 1 reproduces the state charts of the simulated behaviour of the 
delivery vehicles (Fig. 1a) and the customers (Fig. 1b). As already 
mentioned, the customers that are not intended to perform any trip 
(activity profile = “no displacements”) can choose the option to pick-up 
or return their parcels at the CDP. The model also simulates the option of 

customers who might not be at home during the delivery of their parcels, 
possibly causing a failed delivery (which can be considered an in
efficiency of the system). In this respect, customers have their own ac
tivity schedule (with a random distribution) and they are not aware of 
the expected arrival time of the parcel. This also applies to deliveries via 
CDP. However, in this case there are no failed deliveries since there is a 
decoupling between parcel arrival and pick up by customers, which can 
also occur some days after parcel arrivals at the CDP. To be more real
istic, we include another parameter φ, i.e. the probability for each 
customer to have another person who collects the parcel (e.g. a family 
member, a neighbour, a doorman, etc.). Finally, customers who opted to 
collect the parcel at a CDP behave differently depending on whether the 
parcel is a delivery or a return. In the first case (the most common one), 
customers travel to their target CDP before returning home at the end of 
their daily routine, while in the latter customers go to the CDP at the 
beginning of their trip from the origin (see Fig. 1b). 

The vehicle routing problem 
In real-world scenarios, the vehicle routing problem (VRP), i.e. the 

optimal choice of the delivery routes that minimizes the cost for the 
logistics operator, should be addressed by ad-hoc optimization algo
rithms (Calabrò et al., 2020), allowing the operator to obtain significant 
time and cost savings. In this application, we use a greedy insertion 
heuristic to assign vehicles to customers. This is because the primary 
interest is to compare different delivery strategies under diverse demand 
characteristics, so there is no need to push on the optimality of the so
lution to the VRP. 

Once the demand is generated, before the simulation starts, the 
parcels are assigned to the delivery vehicles. In our model, there are 
potential delivery locations (stop-node) along the road network, where 
the delivery vehicle can park to serve a home delivery request or a CDP. 
The vehicle routing and dispatching algorithm consists of the following 
steps:  

(1) Determine the order in which the zones of the service area should 
be visited. This is done by starting from the zone centroid i and 
sequentially choosing the next centroid j based on the shortest 
path between i and j, for each i ∈ Z. The chosen solution Z is the 
one minimizing the travel distance connecting all the zone 
centroids.  

(2) Solve the travelling salesperson problem, finding a single route 
aimed at minimizing the total distance connecting all the stop- 

Fig. 1. (a) Delivery vehicles state chart; (b) Customer state chart. They are based on Calabrò et al. (2022).  
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nodes where the delivery vehicles stop to delivery or pick-up 
parcels. This problem is solved by a nearest insertion heuristic, 
including the following sub-steps:  
a. Create the initial Cycle C = {depot}, only containing the 

depot.  
b. For each zone i ∈ Z , pick the closest stop-node to the last 

inserted one and insert it between two stop-nodes in C such 
that the increase in the total route length is minimal. When all 
the stop-nodes in the zone i are inserted, consider the stop- 
nodes in i+1 and repeat the procedure.  

c. End when all the delivery locations to be visited are inserted in 
C .  

(3) Compute the number of needed vehicles and assign them to the 
stop-nodes. At the beginning, the set of vehicles V includes one 
vehicle. It visits the stop-nodes following the order of C . A new 
vehicle is added in V when one of the following constraints 
cannot be met:  
a. The number of loaded parcels must not exceed the vehicle 

capacity.  
b. The vehicle travel time should be limited to a maximum value 

(according to the rules on drivers’ hours and working time). 
The travel time is estimated including the idle time during 
delivery operations, when the vehicle is parked, which con
sists of the additional time lost at each stop-node τs, including 
the time of acceleration and deceleration, and the delivery 
times per parcel τc (home delivery) and τCDP (CDP), depending 
on the type of delivery.  

c. The vehicle travel distance must be less than the vehicle range 
on a full charge. 

At the end of the procedure, a fleet of NV vehicles is created at the 
depot. However, when simulating the delivery operations by means of 
cargo bikes, we assume that they start travelling from a micro-hub close 
to the service area, once high-capacity commercial vehicles have carried 
the parcels from the depot to the micro-hub. 

Case study 

The methodology has been applied to the case of Catania, a medium- 
sized city located in Sicily, in the south of Italy (Fig. 2a). E-commerce has 
become a wide developed sector in Italy.1 This growth has led logistics 
and transport companies to improve their parcel delivery services. Also, 
in the city of Catania, in line with world and national trends, logistics 
operators are trying to adapt their services to the increasing demand in 
the online shopping sector. In this respect, a new logistics centre 
belonging to one of the main international e-commerce companies was 
recently opened in Catania, and many private companies and stores 
have decided to offer CDPs services. 

In this study, the simulation environment is focused on the central 
urban area of Catania (Fig. 2b), of about 6 km2, characterized by a high 
concentration of CDPs (i.e. 46), points of interests and residents. 

Fig. 3a shows the zoning of the study area and the associated cen
troids. The remaining external zones have been aggregated into macro- 
areas, based on the official municipality boundaries. Each zone is 
characterized by the number of residents and employees, based on 
census data provided by the Italian Statistic Institute ISTAT. In Fig. 3b, 
the location of CDPs is depicted. For each couple of centroids, an OD 
shortest-path matrix is calculated, considering car as the travel mode 
(Fig. 3c). The same procedure is carried out from external to internal 
centroids (Fig. 3d). 

All the output data obtained from the spatial analysis are used as 
input for the ABM. The road network is built on NetLogo environment, 
including the location of the depot and CDPs (Fig. 4a). Fig. 4b shows the 
road network and the geolocation of the agents characterized according 
to the associated activity-profile. 

Fig. 2. (a) Territorial framework of the case study; (b) Study area definition.  

1 https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-2021 
0217–1. 
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Scenario simulations and results 

The ABM integrated with GIS considers important variables both 
related to the supply and the demand, like depot location, spatial density 
of CDPs, OD shortest-path matrix, vehicle fleet capacity and type, 
customer demand patterns, and willingness to accept deliveries per
formed via CDPs. 

Scenario analysis is performed by varying model parameters so to 
reproduce different delivery strategies and levels of interaction between 
customer trips and deliveries. 

We set as fixed input parameters for our analysis the percentage of 

different customers attitudes towards online purchase2 (i.e. habitual, 
occasional, rare and never) by age group (Table 2). 

Tables 3 to 5 show the input parameters related to the different ac
tivity profiles of customers. The characterization of each customer (ac
tivity profile, mode of transport, type of parcel and delivery option) is 
made in the “setup” phase before the simulation starts. 

We recall that, for the sake of simplicity, we do not consider the 
customer trips done by public transport, and thus we limit the mode 

Fig. 3. (a) Zoning and centroids of the study area; (b) CDPs location; (c) OD shortest-path within the study area; (d) OD shortest-path from external zones to the 
study area. 

2 https://dati.istat.it/Index.aspx?QueryId=23002. 
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choice to three alternative modes of transport (i.e. car, bike and walk). 
Also, note that all the input parameters reported in Tables 2, 4 and 5 

are assumed to be deterministic, while those related to the activity 
profiles of customers have a lower and/or an upper bound, as reported in 
Table 3. 

The percentages related to different parcel sizes reported in Table 5 
are hypothesized considering that a standard delivery vehicle with a 
capacity of 10 m3 could be fully loaded with about 200 parcels (based on 
Llorca and Moeckel, 2021). 

The ABM allows monitoring of several key performance indicators, 
related to both customers’ and operators’ points of view (Calabrò et al., 

2022). This is fundamental to assess the impact of different scenarios by 
considering different perspectives and objectives. 

To test the potential of the model, we performed two sets of simu
lations, focusing on operator-oriented strategies and customer-oriented 
strategies. 

Five scenarios have been simulated, i.e.:  

(1) Base case scenario (BASE), considering the current number of 
CDPs in the study area and delivery performed by electric vans;  

– operator-driven scenarios:  
(2) Home delivery (HD), considering only door-to-door deliveries 

without consolidations at CDPs; 

Fig. 4. (a) Road network, depot and CDPs; (b) road network and geolocated agents classified in: employee (blue agents), student (green agents), leisure (orange 
agents) and no displacements (black agents). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Table 2 
Activity profiles of customers and related input parameters (percentage of 
different customers attitudes towards online purchase).  

Age group Type of costumer 

Habitual [%] Occasional [%] Rare [%] Never [%] 

18–24  0.47  0.18  0.17  0.18 
24–54  0.44  0.17  0.19  0.20 
>54  0.26  0.12  0.30  0.32  

Table 3 
Activity profiles of customers and related input parameters.  

Activity profile Home-to-work (Employee) Home-to-university (Student) Shopping (Leisure) No displacement 

Start travel time 6:00 ÷ 8:30 7:00 ÷ 10:30 9:00 ÷ 17:00 – 
Travel duration [h] 6 ÷ 10 3 ÷ 9 1 ÷ 3 – 
O-D distance [km] based on Eq. (2) dOD > 0.2 0.2 < dOD < 2 –  

Table 4 
Mode of transport of customers and related input parameters.  

Mode of transport Car Bike Walk 

Average speed 
[km/h] 

20 12.5 5 

Utility function − 5 tOD,car − 0.3 dOD,car − 2 − 12 tOD,bike − 1 − 10 tOD,walk  
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(3) Cargo bike delivery (CB), by substituting vans with cargo bikes, 
starting their deliveries from a micro-hub close to the study area 
both to CDPs and to customer homes;  

– customer-driven scenarios:  
(4) Customer willingness-to-deviate (WTD), by considering a 

different (minor) willingness-to-deviate threshold to pick up the 
parcel at the CDP. 

(5) Customer demand (2D), by varying (doubling) e-commerce pur
chases and related parcel deliveries. 

The BASE scenario is used to set the status quo against which the 
other scenarios are compared. 

The CB scenario is simulated to evaluate the impact of an alternative 
delivery solution via cargo bike and a new micro-hub. The two 
customer-driven scenarios are simulated to consider a lower propensity 
towards the use of CDPs and a doubling in the e-commerce demand that 
could occur in specific situations (e.g. a stay-at-home order or sales 
period). 

All input parameters and key performance indicators are reported in 
Table 6 and Table 7. 

Each scenario is simulated 5 times by varying the seed, since a first 
test showed that results do not significantly change, in terms of standard 
deviations, after five repetitions. Extending the work of Calabrò et al. 
(2022), which simulated customers’ activities during an entire working 
day and delivery operations during 8 working hours (from 9 A.M. to 6P. 
M., including a 1-hour lunch break), we simulated a working week (from 
Monday to Saturday). The percentage of failed deliveries (KF) is set to 
zero the first day, and then it is updated with the results obtained from 
the previous day. 

An indicator that encompasses both the customer and operator point 
of view is the so-called Total Transport Intensity (TTI). It considers the 
total distance per parcel driven using motorized vehicles, both by de
livery vehicles and car customers who make a detour to/from the CDP. It 
is therefore equal to the sum of the Customer Transport Intensity (CTI) 
and the Operator Transport Intensity (OTI): 

TTI(km/parcel) = CTI +OTI (5)  

where 

CTI(km/parcel) = distdetour,car/NC (6)  

OTI(km/parcel) = TDD/NC (7) 

With distdetour,car (km) we indicate the additional distance travelled by 
the customers with the mode of transport M = car to pick-up or drop-off 
their parcels at the CDP, while NC is the number of customers, which is 
equal to the number of parcels. 

The operation cost (OC) is evaluated by considering a distance- 
related cost €km which we set to 0.15 €/km for electric vans and 0.02 
€/km for electric cargo bikes,3 and a hourly driver cost €h which we set 

to 15 €/h. 

OC(€) = €km⋅TDD+ €h⋅ATT⋅NV (8) 

The main results are summarized in Figs. 5-7. All results are reported 
in Appendix A. 

Fig. 5 reports the percentage of users choosing CDPs and the related 
failed deliveries. As visible, if many users choose CDPs, as in the BASE 
scenario, the percentage of failed deliveries drops (12.11%). The same 
occurs in the CB scenario, which is very similar to the BASE one, since 
deliveries performed by cargo bikes (instead of vans) do not affect 
customer choice about CDPs. 

Vice versa, as expected, the HD scenario (with CDP density = 0) is 
the one with the highest rate of failed deliveries (22.12%). The WTD 
scenario, with a reduced customer willingness to deviate to reach the 
CDP (from 6 to 3 min), implies that fewer people choose CDPs. However, 
the trend is not linear, since halving the willingness to deviate implies a 
10.64% variation (from 46.92% to 36.29%) of the percentage of users 
choosing CDPs, and an increase of only 2.05% (from 12.04% to 14.16%) 
of failed deliveries with respect to the BASE scenario. 

The 2D scenario, where customer demand is doubled, shows similar 
results with respect to the previous scenario. In this case, a higher de
mand implies some CDPs to reach capacity and, thus, their unavail
ability for customers that would have been willing to use them. 

Fig. 6 describes some operator-related outputs for the different sce
narios in terms of total driven distances, total energy consumption, and 
unit operation cost. The scenario implying higher travelled distances is 
clearly the CB one (344 km with respect to 148 km of the BASE sce
nario), since cargo bikes globally travel more than vans, given the lower 
capacity and the need of more return trips to the micro-hub. The unit 
operation costs are also higher than in the BASE scenario due to the 
driver costs (0.58 €/parcel instead of 0.48 €/parcel), since the number of 
cargo bikes and related drivers are higher than the number of vans, al
ways due to their lower capacity. However, the total energy consump
tion is clearly lower (10.33 kWh) than all the other scenarios where the 
vans are used, and the unit operation cost is lower than the HD scenario 
(64.52 kWh), which is the less cost efficient, and comparable to the other 
scenarios. The WTD scenario implies higher costs than the BASE sce
nario, even if the distances are comparable. This is because of the 
reduced consolidation opportunities (less customers choose the CDP 
delivery), implying higher stopping time by delivery vehicles and, thus, 
increased average travel time (and costs) (see Appendix A). 

Table 6 
Input parameters for scenario simulation.   

base HD CB WTD 2D 

Customer parameters 
Total Demand [customers/day]4 1885 1885 1885 1885 3770 
Number of CDPs 46 0 46 46 46 
Percentage of Returned Parcels [%] 10 10 10 10 10 
Walking Speed [km/h] 5 5 5 5 5 
Max Detour Time [min] 6 6 6 3 6 
Operator parameters 
Vehicle Capacity [pax] 10 10 2 10 10 
Vehicle Cruising speed [Km/h] 30 30 15 30 30 
Simulation parameters 
Total Simulation Time [days] 6 6 6 6 6 
Seed 1–5 1–5 1–5 1–5 1–5  

Table 5 
Input parameters related to parcels.  

Parcel size Small (S) Medium (M) Large (L) Extra-Large (XL) 

Percentage 40 % 45 % 10 % 5 % 
Size [m3] 0.005 m3 (0.4 × 0.25 × 0.05) 0.04 m3 (0.5 × 0.4 × 0.2) 0.12 m3 (0.8 × 0.5 × 0.3) 0.36 m3 (1 × 0.6 × 0.6) 
no. of reserved lockers in a CDP 20 26 4 0  

3 Considering an electricity price of 0.3 €/kWh, an energy consumption of 0.4 
kWh/km for electric vans (https://www.mercedes-benz.it/vans/it/sprint 
er/e-sprinter-panel-van/technical-data) and to 0.03 kWh/km for electric 
cargo bikes (Llorca and Moeckel, 2021), and a maintenance cost of 0.03 €/km 
for electric vans and 0.01 €/km for electric cargo bikes. 

G. Calabrò et al.                                                                                                                                                                                                                                

https://www.mercedes-benz.it/vans/it/sprinter/e-sprinter-panel-van/technical-data
https://www.mercedes-benz.it/vans/it/sprinter/e-sprinter-panel-van/technical-data


Transportation Research Interdisciplinary Perspectives 21 (2023) 100895

10

The 2D scenario implies higher travelled distances (and energy 
consumption) than the BASE one, given the lower percentage of 
consolidated deliveries by users, as already presented in Fig. 5. An 
interesting result is related to the unit cost of the 2D scenario, which is 
very similar to the BASE one (0,49 €/parcel instead of 0,48 €/parcel). 
This means that travelled distances increase with a slower pace than the 
number of parcels, which can be ascribed to the compact study area with 
concentrated demand. 

Fig. 7 shows some outputs that can be related to the overall logistics 
efficiency, i.e. Operator Transport Intensity, Total Transport Intensity 
and the percentage of use of CDPs (black dots). 

It is interesting to monitor the gap between TTI and OTI, since it 
gives an idea of the impact of customer involvement in the delivery 
process (i.e. CTI). In this respect, if one excludes the HD scenario where 
the CDP is not available, it turns that the lowest gap is in scenario WTD, 
since few people choose the CDP option. However, this also leads to the 
lowest use of the available CDPs (33.6%). Vice versa, the highest gaps 
and, therefore, the highest impacts of customer involvement, is visible in 

the BASE scenario (and CB as well), and in the 2D scenario. While for the 
former this is ascribable to the highest number of customers choosing 
CDPs, for the latter this is due to the possibility of consolidating more 
deliveries, given the higher demand density. This implies a better use of 
the available capacity of CDPs, which reaches the 70.43%. This result 
points to the need to focus on CDP location and density in relation to the 
customer demand density. In other words, when the demand is high, the 
risk of fragmented door-to-door deliveries increases and the use of CDPs 
can be an effective solution to reduce the impact of delivery vehicles, 
even if it implies a higher impact of customer involvement. In terms of 
practical implications, this justifies the investment on proximity-based 
logistics facilities, like parcel lockers. 

To summarize, the home delivery strategy is the costliest and least 
efficient if one looks at the failed deliveries it generates. The strategy of 
using cargo bikes in combination with a micro-hub is costly for the 
operator but more sustainable from an energy consumption point of 
view. Besides, one should consider the cost of building (and operating) a 

Fig. 6. Total Driven distance, Total energy consumption and Operator Cost 
per Parcel. 

Table 7 
Key performance indicators.  

Output Abbreviation Description 

Service-related 
% of used CDP %CDP Usage of CDPs w.r.t. their overall capacity 
Total Transp. Intensity [km/parcel] TTI Sum of the average distance travelled both by car customers (detour distance to reach the CDP) and delivery vehicles per 

transported parcels (Eq. (5) 
Customer-related 
% Customers choosing CDP (w.r.t. 

TOT) 
%C_CDP % of customers that choose CDP 

% Customers choosing CDP (car) %C_CDPcar % of customers that choose CDP and travel by car 
% Customers choosing CDP (bike) %C_CDPbike % of customers that choose CDP and travel by bike 
% Customers choosing CDP (walk) %C_CDPwalk % of customers that choose CDP and travel on foot 
Avg Customer Detour (TOT) [min] ACD Average detour time to pick a parcel in a CDP 
Avg Customer Detour (car) [min] ACD_car Average detour time to pick a parcel in a CDP by car 
Avg Customer Detour (bike) [min] ACD_bike Average detour time to pick a parcel in a CDP by bike 
Avg Customer Detour (walk) [min] ACD_walk Average detour time to pick a parcel in a CDP on foot 
Customer Transport Intensity [km/ 

parcel] 
CTI Average distance travelled by the car customers to pick up a parcel from a CDP (Eq. (6) 

Operator-related 
% failed deliveries %failed % of failed deliveries per day 
Total Driven Distance [km] TDD Total distance travelled by the delivery vehicles during the simulation time 
Total Energy Consumption [kWh] TEC Total energy used by the delivery vehicles during the simulation time 
Avg Vehicle Travel Time (TV) [h] ATT Average total travel time of the delivery vehicles, including the parcel delivery time 
Operator Transport Intensity [km/ 

parcel] 
OTI Average distance travelled by the delivery vehicles per transported parcels (Eq. (7) 

Operation Costs [€] OC Sum of distance-related and driver-related costs (Eq. (8) 
Unit Operation Cost [€/parcel] UOC OC computed per parcel  

Fig. 5. Percentages of CDP users and failed deliveries.  
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new micro-hub and the costs related to the additional transfer from the 
depot to the micro-hub. However, this is a feasible and promising so
lution that is particularly interesting for small parcels to cover the last 
mile in a sustainable way, perhaps with a public intervention. 

For the specific case study analysed, it seems that CDP deliveries are 
particularly efficient when the demand is high, implying an efficient use 
of the current CDPs capacity. This is confirmed by the overall impact of 
parcel delivery considering both travelled distances driven by delivery 
vehicles and customer cars. Besides, from an operator point of view, 
increasing the demand does not change the unit cost per parcel. How
ever, this result could be affected by the actual density and location of 
CDPs considered in the specific case study, which could be optimized to 
adequately satisfy the current demand. 

Discussion and Conclusion 

This paper presented a new spatial agent-based modelling (ABM) 
approach to explore different scenarios of last-mile logistics referred to 
e-commerce deliveries, comparing door-to-door deliveries with 
consolidation-based strategies, by taking into account demand and 
transport network data based on a real-world case study. 

The case study is Catania, a medium sized city in Southern Italy and, 
in particular, its central urban area with a high concentration of CDPs, 
points of interests and residents. A spatial analysis is performed to 
characterize the study area in terms of transport network, CDP location, 
and customer demand. All the output data obtained from the spatial 
analysis are used as input for the simulation model. Five scenarios are 
simulated to explore possible delivery strategies and by varying pa
rameters related both to the demand and the supply. Key performance 
indicators resulting from the model consider both customer and logistics 
operator perspectives and suggest that a trade-off between freight 
vehicle travelled distance, customer distance to reach the CDP and lo
gistics costs can be found while proposing a solution to last mile parcel 
deliveries based on consolidation via CDPs. 

Main results show that if the CDP option is not available and all the 
deliveries are door-to-door deliveries, this implies the highest cost and 
percentage of failed deliveries with respect to scenarios where the CDP 
option is available to customers. Cargo bikes (instead of vans) are a 
sustainable option even if they imply higher costs. This suggests the need 
to provide incentives to perform deliveries using these types of vehicles. 
If one looks at the use of CDP available space and the overall impact of 
the delivery by considering customer and delivery vehicle movements, 
then the best scenario is the one where the demand is doubled. This 
suggests that specific policies and investments in CDPs are useful espe
cially in cases of high demand, where the risk of fragmented door-to- 

door deliveries (and related failed deliveries) increases. 
In general, for the specific case study analysed, the density of 

collection and delivery points (CDPs) in the study area seems to be 
adequate, also in scenarios of increased demand; this suggests that an 
incentivization for customers in the use of CDPs might be more effective 
than increasing their number in order to improve the operation of last- 
mile deliveries. 

The flexibility of the modelling environment allows the exploration 
of different scenarios that can be useful to both decision-makers and 
private companies to understand how to optimize parcel deliveries in 
urban areas. As next steps of the research, different sets of simulations 
might be performed as well as sensitivity analyses, also in the logic of a 
comparison with the results obtained in the ideal case study (Calabrò et 
al, 2022) and other case studies with real data, in order to provide useful 
information for policy-making. 

Another interesting advance would be the simulation of 
consolidation-based and customer-driven scenarios based on crowd
shipping and the use of other sustainable transport modes like public 
transport (Giuffrida et al., 2021). Finally, vehicle traffic data associated 
with the real case study could be included in the simulation, allowing for 
a better evaluation of the efficiency of the freight consolidation 
solutions. 

In conclusion, the study shows that the spatial distribution of both 
parcel demand and delivery points is fundamental to appropriately plan 
consolidation strategies aimed at increasing logistics efficiency while 
reducing its negative impact on city sustainability and liveability. The 
proposed model can provide useful information to decision-makers to 
understand how to manage growing on-demand urban deliveries and to 
plan by using a delivery-oriented development approach. 
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Fig. 7. Percentage of use of CDPs, failed deliveries, Operator Transport In
tensity, Total Transport Intensity. 

Table A1 
Results in terms of key performance indicators for the different scenarios.  

Output Results 

SCENARIO BASE HD CB WTD 2D 

Service-related 
% CDP  42.35  0.00  42.61  33.58  70.43 
TTI [km/parcel]  0.17  0.08  0.28  0.13  0.13 
Customer-related 
%C_CDP  46.56  0.00  46.92  36.29  38.06 
%C_CDPcar  31.82  0.00  32.50  26.17  26.14 
%C_CDPbike  10.76  0.00  10.87  7.51  8.93 
%C_CDPwalk  3.97  0.00  3.56  2.61  3.00 
ACD [min]  0.88  0.00  0.89  0.47  0.88 
ACD_car [min]  0.81  0.00  0.82  0.50  0.83 
ACD_bike [min]  1.08  0.00  1.09  0.47  1.06 
ACD_walk [min]  0.88  0.00  0.92  0.21  0.80 
CTI [km/parcel]  0.09  0.00  0.10  0.05  0.08 
Operator-related 
%failed  12.11  22.12  12.04  14.16  14.03 
TDD [km]  147.81  161.30  344.40  148.71  208.13 
TEC [kWh]  59.13  64.52  10.33  59.48  83.25 
ATT [h]  5.66  7.44  5.94  6.34  6.09 
OTI [km/parcel]  0.08  0.08  0.18  0.08  0.05 
OC [€]  908.46  1409.22  1097.86  1007.58  1865.14 
UOC [€/parcel]  0.48  0.72  0.58  0.53  0.49  
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Appendix A 

The average values of the main outputs and key performance in
dicators of the five simulated scenarios are summarized in Table A1. 
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