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“Data is a precious thing and will last longer than the systems themselves.”

Tim Berners-Lee
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Abstract

Acquisition and analysis of extensive datasets is, today, a central tool in most re-

search fields. Machine learning provides powerful methods to obtain descriptive

and predictive models for the data in many applications. The acquisition of quality

information is fundamental for the reliability and accuracy of predictive and classifi-

cation models increasingly used in various applications. A correct and adequate use

of A.I. models integrated with modern visual analytics techniques allows to extend

and overcome the classical statistical methods, thus helping experts and profession-

als of different fields in decisions and policy-making. A key element for the success

of machine learning models, beyond the continuous comparison with the experts in

the field of application, is represented by the quality and the completeness of the

data included in the analysis. The research reported in this Thesis focuses on the

analysis, visualization and balancing of data collected in medical studies in the area

of healthcare-associated infections (HAIs) to obtain useful classifier models. The

results of this interdisciplinary work improve patient risk stratification and lead to

targeted infection prevention and control interventions.

This Thesis addresses these two issues with two main contributions: analytics

technique designed to display pathways and common patterns in a sequence of events

connected to associated outcome and a data augmentation method based on data

imputation and oversampling of the minority classes to generate new records for

training machine learning models and improve the visual analytics tools. The effec-

tiveness of these methods is proved in selected real-world case studies, allowing to

meet the performance requirements of Public Health, in particular with applications

of visual analytics methods and machine learning models on medical datasets.
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Chapter 1

Introduction

In recent years, large amounts of routinely or automatically collected datasets -

which are electronically captured and stored - represent a key component and core

element for public health policy-making. In this context, the fusion and connection

of existing databases might help to monitor and to evaluate the impact of risk

and/or policy changes at population level. Particularly, analysis of big data may

contribute to widen information for the prevention of diseases by the identification

of risk factors, to improve the effectiveness of interventions, and to predict outcomes

[1].

Among the threats to global health, Healthcare-Associated Infections (HAIs)

affect millions of patients worldwide, representing one of the main adverse events,

especially in Intensive Care Units (ICUs). Since HAIs are an increasing public health

problem, surveillance is considered a strategy to ensure health quality [2].

Traditional public health surveillance relies mainly on statistical techniques and

it can be improved today with modern visual analytics and A.I. techniques. This

poses unique technical challenges such as data sparsity and lack of positive training

samples.

This research focuses primarily on the analysis of biomedical and epidemiological

data. The aim is to apply and to integrate machine learning and data augmentation

methods within state-of-the-art analytical and visual analytics techniques in order

to discover and prove new relationships in data. The interdisciplinary Data Science

and Public Health approach is a promising way to exceed the limits of traditional

statistics and to apply new methods for the analysis of structured and unstructured



Chapter 1. Introduction 2

data. Finally, transferral of data analysis results to physicians and medical per-

sonnel is a crucial issue. The communication gap between data analysts and these

professionals may benefit by the application of adequate visual analytics techniques.

1.1 Motivation

In biology and medicine, data analysis is an important tool to acquire a better

knowledge of the health status of the population and to monitor the efficiency of

health services. It is hence of great relevance to provide physicians with user-friendly

IT tools and comply with the efficiency standards required by Public Health. For

this reason the developing of visual analytics tools integrated with machine learning

models is a key element to automate the entire data analysis workflow for providing

deeper and more comprehensive insights. The correct and adequate use of A.I.

becomes an extension of the common data analysis that helps medical personnel in

decisions and policy-making.

HAIs are the most frequent adverse outcome occurring when patients stay in

hospital wards, especially in intensive care units (ICUs) and patients admitted to

ICUs generally had a worse clinical prognosis, including prolonged hospital stays,

sepsis and mortality [3]. Particularly, mortality in ICUs is two times higher among

infected patients than those not infected [4, 5].

Nowadays, several early warning scores (EWS) have been proposed as a helpful

way to monitor patients clinical deterioration and disease severity during their stay

in ICUs [6–9]. In clinical practice, the Simplified Acute Physiology Score (SAPS) II

represents the most commonly used score. Specifically, it is able to predict patients

prognosis and to estimate their risk of HAIs, sepsis and dying, according to seventeen

physiological variables at ICU admission [2, 10–16]. EWS combined with large

amount of patients’ history data can be used to train machine learning models to

obtain a better outcome predictive ability. Unfortunately, real world data are in

most cases incomplete and/or imbalanced and it is one of the main causes for the

decrease of generalization in machine learning algorithms. This is typical of medical

datasets where data acquisition procedures can cause a lot of missing records and

high risk patients tend to be the minority class. Therefore, there is a need for
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good data augmentation techniques for medical datasets to improve the efficiency

of predictive models and visual analytics tools.

With this in mind, the complexity of HAI burden suggested the need of novel

approaches aimed at early identifying patients at higher risk of adverse events in

ICU [1]. Indeed, the prediction of patients at higher risk of mortality in ICU play

a key role in improving patients survival and in implementing their management

[17]. Although several traditional statistical approaches are widely used in clinical

practice, modern machine learning models have shown more accurate results in the

early identification of patients who are more likely to be infected or die during their

stay in ICU, considering different sets of risk factors [17–22].

1.2 Research outline

The outline of the project follows a quite straightforward paths for this kind of stud-

ies: data acquisition, storage, security, anonymisation, warehousing and cleaning.

It is completed with the development of data augmentation and visual tools to ease

the analysis and reading of information.

Data comes from the SPIN-UTI Network, as described in section 6.1. The SPIN-

UTI Network has surveyed approximately 20,000 patients, more than 4300 infections

and 5300 micro-organisms. A preliminary work has been hence to integrate all the

data into a single dataset.

Once data are gathered into a single large dataset, it was possible to select the

interested features for the case studies. The unified dataset, however, contained

missing data and it was strongly imbalanced in terms of outcomes of interest. A

preliminary study has been performed including the theory of G-computation and

Causal Graphs, but the implementation of G-computation for longitudinal data is

more complex than in the point treatment setting [23]. The nature of the data un-

der investigation led to implement well-suited methods for parametric visualization,

based on Outflow graphs and Sankey diagrams, and data augmentation for replacing

missing data and for oversampling the minority classes to generate new records for

training machine learning models.
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The principal aim for this research is to achieve innovative results at the inter-

disciplinary confluence between Scientific and Information Visualization, Advanced

Data Analysis and Public Health Science. Indeed, some of the very powerful tech-

niques arising in Data Analysis (Bayesian networks and G-computation) have not

yet been exploited by the biomedical research for lack of a common language and

know-how. I am confident that new graphical and visual techniques way strongly

contribute to fill in the gap and lead to a new set of useful tools.

1.3 Thesis organisation

The Thesis is structured as follows:

• Chapter 2 shows an overview on Big Data and the quality of information with

a focus on Public Health field.

• Chapter 3 introduces the G-computation method and the use of Causal graphs

in the epidemiologic research

• Chapter 4 introduces the Outflow graphs and describes a visualization encod-

ing including case studies

• Chapter 5 describes the Imputation and Data Augmentation methods opti-

mized for medical data

• Chapter 6 exposes the case studies with the applications of different models

and results

1.4 Publications

List of publications

G. Favara, P. M. Riela, A. Maugeri, M. Barchitta, G. Gallo, and A. Agodi.

“Risk of Pneumonia and Associated Outcomes in Intensive Care Unit: An

Integrated Approach of Visual and Cluster Analysis”. In: 2019 IEEE World

Congress on Services (SERVICES). Vol. 2642-939X. 2019, pp. 289–294. doi:

10.1109/SERVICES.2019.00083.

https://doi.org/10.1109/SERVICES.2019.00083
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La Rosa, R. M. San Lio, G. Gallo, I. Mura, A. Agodi, and SPIN-UTI Net-

work. “Cluster analysis identifies patients at risk of catheter-associated uri-

nary tract infections in intensive care units: findings from the SPIN-UTI

Network”. In: Journal of Hospital Infection 107 (2021), pp. 57–63. issn: 0195-

6701. doi: https://doi.org/10.1016/j.jhin.2020.09.030. url: https:

//www.sciencedirect.com/science/article/pii/S0195670120304552.

M. Barchitta, A. Maugeri, G. Favara, P. M. Riela, G. Gallo, I. Mura, and A.

Agodi. “A machine learning approach to predict healthcare-associated infec-
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doi: https://doi.org/10.1016/j.jhin.2021.02.025. url: https:
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M. Barchitta, A. Maugeri, G. Favara, P. M. Riela, G. Gallo, I. Mura, and
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Using a Machine Learning Model: Results from the SPIN-UTI Project”. In:

Journal of Clinical Medicine 10.5 (2021). issn: 2077-0383. doi: 10.3390/

jcm10050992. url: https://www.mdpi.com/2077-0383/10/5/992.
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Vezzani. Cham: Springer International Publishing, 2021, pp. 215–222. isbn:

978-3-030-68787-8.
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using a mEMA approach: protocol of the HEALTHY-UNICT study”. In:
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Chapter 2

Dealing with data

The total amount of data created, captured, copied, and consumed directly by the

users or routinely generated and collected by machines is forecast to increase rapidly

in next years. The fast development of digitalization contributes to the ever-growing

global data sphere.

The term Big Data was used, since the 90s, to indicate large datasets of un-

structured, semi-structured and structured data with sizes beyond the ability of

commonly used software tools to capture, curate, manage, and process data within

a tolerable elapsed time [24].

To manage big data we need to deal with several challenges related to acquisition,

storage, cleaning, analysis and visualization. In the last years, data analysis became

the main tool to discover hidden value of data. Concepts like predictive analytics and

advanced machine learning methods could help to find new relationship in available

data.

2.1 The Big Data paradigm

Coined in 1997 by two NASA scientists that found difficult to visualize and memorize

a huge dataset [25], the term Big Data in 2001 was defined through the model of

3 Vs. For Big Data we mean those data that have one or more of the following

features [26]:

• Variety, in terms of format, source and structure (or lack of a real structure)
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• Volume, ie large amounts of data (generated automatically by machines, sen-

sors, DCS, scientific instruments or relating to banking transactions and move-

ments on the financial markets)

• Velocity, ie the speed with which data is produced

Different Vs was added in these years: they represented the qualities of big data

in volume, variety, velocity, veracity, and value. Variability is often included as an

additional quality of big data:

• Veracity, which refers to the data quality and value [27]. It can affect the

accuracy of the analysis

• Value: it can be achieved by the analysis and the processing of large datasets

• Variability: formats, structure or sources of data. Big data can include struc-

tured, unstructured or semi-structured data.

In 2018 a new definition asserts ”Big data is where parallel computing tools are

needed to handle data” [28].

2.2 Quality and completeness

There are several definitions of data quality that depend on the contexts which data

are used in. Defining it in a sentence is not simple, but we can assert that data

quality depends on the state of qualitative or quantitative information. Moreover,

the data is considered of high quality if they correctly represent the real world to

which they refer.

A common problem encountered by machine learning professionals when ana-

lyzing real-world information regards the missing data. As many statistical models

and machine learning algorithms rely on complete datasets, it is key to handle the

missing data appropriately. Moreover, machine learning algorithms generally require

large datasets to be trained [29].
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2.2.1 Data quality in Public Health

The large amounts of information acquired in recent years, especially in the biomed-

ical field both in terms of research and public health (eg. electronic medical records -

EMRs), and the different nature of the collected data, of a quantitative type (as test

results of laboratory), qualitative (eg. documents and textual demographic data)

and transactional (eg. records relating to drugs), have brought more and more

significant implications in the epidemiological and public health fields.

However, much of this rich dataset is currently perceived as a byproduct of

healthcare delivery, rather than a central asset to improve its efficiency [30].

In this context, the fusion and connection of existing databases might help to

monitor and to evaluate the impact of risk and/or policy changes at population

level. Particularly, analysis of big data may contribute to widen information for the

prevention of diseases by the identification of risk factors, to improve the effectiveness

of interventions, and to predict outcomes [31].

As in other fields, missing data are a pervasive problem in many public health

investigations. The standard approach is to restrict the analysis to subjects with

complete data on the variables involved in the analysis. Estimates from such anal-

ysis can be biased, especially if the subjects who are included in the analysis are

systematically different from those who were excluded in terms of one or more key

variables [32].

In this research we will face different approaches, from the most theoretical to the

most applicative ones, for the reconstruction and generation of data in the medical

and epidemiological fields. In the case studies dealt with during the course of PhD,

the most relevant problems related to data quality concerned a massive lack of data

for the selected features and a strong imbalance of the classes for the outcomes of

interest. G-computation was explored to obtain parameters from observational data

(section 3.1), but a machine learning approach based on k-NN was implemented for

data imputation (subsection 5.1.3) and balancing, excluding undersampling tech-

niques, (section 5.2) to generate new data for training models. The original records

with a complete set of features was used for testing the models.
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Chapter 3

G-computation

Often in causal inference literature different statistical methods are used to estimate

causal effect from epidemiological observational data.

Causal inference is the process of determining the independent, actual effect of

a particular phenomenon that is a component of a larger system. The main differ-

ence between causal inference and inference of association is that causal inference

analyzes the response of an effect variable when a cause of the effect variable is

changed [33, 34], while inference of association is a statistical relationship between

two variables, like a specified health outcome more likely in people with a particular

exposure (figure 3.1). In this case two variables may be associated without a causal

relationship (the classic example of correlation not equaling causation can be found

with ice cream and murder: the rates of violent crime and murder have been known

to jump when ice cream sales do).

Figure 3.1: Example of association

3.1 Overview

G-computations (G stays for general) was introduced by James Robins in 1986. It

is one instance of the so called Marginal Structural Models (MSM). Several works
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focused on G-computation are present in the epidemiology literature including the-

oretical explanation of the method. This paragraph describes an overview of this

approach.

The G-computation is a method that allows investigators to use observational

data to estimate parameters that in ideal situation should be obtained in a perfectly

randomized controlled trial. Under certain assumptions, these estimates can be

interpreted causally. G-computation, a maximum likelihood substitution estimator

of the G-formula, is one such approach to causal-effect estimation [35].

Let Y (1) and Y (0) be the two potential outcomes under the exposure and the

non-exposure, respectively [36]. Let (Z,X) denote the random variables related to

the exposure statuses of individuals (Z = 1 for exposed individuals and 0 otherwise)

and the k covariates (X = X1, ..., Xk) measured before exposure, respectively. The

average causal effect is ACE = E[Y (1) − Y (0)]. It represents the mean difference

between the outcomes of individuals if they had been exposed or unexposed [37].

G-computation is a natural extension of the traditional regression techniques;

in fact, the first step of G-computation is a traditional regression. As with other

causal inference techniques, the G-computation approach decouples the estimation

of effects of interest from the estimation of parameters that are not directly related

to the research question (e.g., effects of confounders). Additionally, when the effect

of exposure on the outcome varies by strata of a third covariate -in other words,

interaction exists for the treatment variable- G-computation permits the estimation

of a single, marginal effect estimate averaged across the observed distribution of

that third variable. The estimation of a single effect may simplify interpretation

of exposure effects as compared with multiple effect estimates, depending on the

research question [38].

Unfortunately G-computation is not well-suited to every data structure and the

implementation of the method for longitudinal studies is more complex than in

the point treatment setting. For this reason in the next chapters will be described

machine learning approaches useful to obtain missing or additional information from

longitudinal datasets.
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3.2 Causal graphs

Causal graphs in the form of path diagrams are an integral component of path

analysis [39] and structural equations modeling [40]. The theory of causal graphs is

equivalent to the G-computation theory of Robins [41, 42]. It has a benefit, however,

of providing a compact graphical as well as algebraic formulation of assumptions

and results, which may be easier for the general reader and for the specialized

field practitioner to comprehend. In addition, it provides a novel perspective on

traditional epidemiologic criteria for confounder identification [43].

A causal graph is a direct acyclic graph (DAG) and it consists of vertices and

edges, with each edge directed from one vertex to another, such that following those

directions will never form a closed loop.

Fig. 3.2 describes a simple scenario where Y represents the outcome, Z the

exposure and X a covariate and potential confounder that distorts the perceived

causal relationship between Z and Y if unaccounted for. Confounder is defined as a

situation in which the study exposure groups differ in their probability distribution

for the outcome for reasons other than effects of exposure [43]. So the marginal

association between Z and Y may be partly causal and partly confounded.

Figure 3.2: A simple causal graph

Z Y

X

Causal graphs have a long history of formal and informal use and the theory is

widely described in the literature. They can provide a starting point for identify-

ing variables that must be measured and controlled to obtain unconfounded effect

estimates. They also provide a method for critical evaluation of traditional epidemi-

ologic criteria for confounding [43].

The graphical assumptions of causal graphs are qualitative and nonparametric,

in that they imply nothing about the specific functional form of the relations or dis-

tributions among the variables. Like in G-computation, this method it is not readily
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suitable and easy to implement in studies with a continuous treatment and/or in

longitudinal studies with long follow-up with or without time-dependent outcomes.

The data analyzed during the doctoral research concerned hospitalized patients

and patients staying in ICU for more than two days (section 6.1). Hospitalization

and ICU stay can be described as a series of temporal events. Some events con-

tain significant information that, if put together into event sequences, can reveal

insightful facts in patient’s history or lead to new relationships in data.

Collections of event sequences are growing rapidly throughout many areas such

as electronic medical records (EMRs), sports events, call centers, transportation

incident logs, and student progress reports. In addition, many event sequences

have associated outcomes. [44]. For example, outcomes for ICU stay data could be

measured by mortality or discharge rates.

Chapter 4 describes a well-suited DAGs method for time events series and the

original contribution for its visualization development.
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Chapter 4

Quantitative visualization method

for Outflow graphs

A first part of the research work has focused on the deepening and use of state-of-

the-art scientific visualization methods. In particular, we focused on visualization

methods that have been classified under the name of ”Visual analytics”. Among

the many methods available, particular attention was given to the Outflow graphs

method and its quantitative graphic coding discussed below.

4.1 Outflow graphs

Figure 4.1: Outflow graph

An Outflow graph is a DAG used to vi-

sualize event sequences. Collections of

discrete events can be aggregated to-

gether to form pathways for observing

progressive sequences over time. Thus,

alternative chains of events may lead to

different outcomes.

Fig. 4.1 describes a portion of a

simple Outflow graph. The first node

(starting point) represents a state with-

out events. It points to nodes with a

single event (A, B or C) and after this

the edges lead to nodes with a set of ag-

gregated events.
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The aggregation of data is a fundamental factor in this type of approach and

can be formally defined through the following elements: Entities, States , Events

and Outcomes .

The entity E can be defined as a path that passes through different states Si

ranging from Sm to Sn in the time Tm→n. Each state is defined as a set of zero or

more events that an entity has encountered before or during time ti (Fig. 4.2). Each

entity ends its path with an Outcome. Different entities can have equal or distinct

Outcomes [44].

Figure 4.2: Example of a single Entity

Aggregation of multiple entities occurs under the following assumptions:

1. events are persistent

2. the order of events does not matter

One of the strengths of this method is the independence of the graph dimension

from the number of records of a dataset. The only element that weighs in this sense

is the number of considered states.

4.2 Visual encoding

Amore comprehensive visual encoding has been implemented to include quantitative

information to the outflow graphs model. The starting idea was inspired by the

Outflow Visualization [44] and adapted using the more well-known Sankey diagrams

[45].
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Sankey diagrams are a type of flow diagram in which the width of the arrows is

proportional to the flow rate. They are named after Irish Captain Matthew Henry

Phineas Riall Sankey, who used this type of diagram in 1898 showing the energy

efficiency of a steam engine [45] (Fig. 4.3).

Figure 4.3: Sankey Diagram drawn by M. H. Sankey, extracted from ”The Thermal Effi-
ciency Of Steam Engines”, showing energy efficiency of a steam engine [46]
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One of the most famous Sankey diagrams is Charles Minard’s Map of Napoleon’s

Russian Campaign of 1812. It is a flow map, overlaying a Sankey diagram onto a

geographical map. It was created in 1869, predating first Sankey diagram of 1898

(Fig. 4.4).

Over time, Sankey diagrams have become a standard model used in science and

engineering for representing heat balance, energy flows, material flows, and since the

1990s this visual model has been used in product life cycle assessment [47].

Figure 4.4: Minard’s classic diagram of Napoleon’s invasion of Russia

A modern version of them is represented by rectangular blocks (nodes) and

flows (edges). Each block represents a set, with dimensions proportional to the

cardinality of the set, and the flows show the portion of elements that pass from a

block to another. The example in figure 4.5 shows a diagram that represents data

collected into ICU by the SPIN-UTI network related to a cohort of patients from

the moment of admission to the two possible outcomes, discharge from ICU (alive)

or death, considering, in order, the application of two different invasive devices to

the patients during the stay.
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Figure 4.5: Sankey diagram of a cohort of patients admitted in ICU. The blocks represent
the status of the patients, from Admission (device free), passing through the application
of one and two different invasive devices (ET: endotracheal tube - BD: bladder catheter -
CVC: central venous catheter), to reach one of two possible outcomes (Dead or Alive)

The diagram starts with the admission (device free) state and ends with one of

the two possible outcomes (dead/alive). The several subsets of invasive device used

on a patient are intermediate nodes of the diagram (ET: endotracheal tube - BD:

bladder catheter - CVC: central venous catheter). The width of each edge represents

the average number of patients passing from a state to another (eg. from one to two

devices) or from a state to the outcome.

These kinds of diagram are interactive and provide information, like the number

of elements, about nodes and edges. The application was written in Python + SciPy

stack and Plotly library.

The Sankey diagram in Figure 4.5 is the result of an Outflow graph where the

application on a patient of an invasive device is considered as discrete and persistent

event. The states are hence defined as subsets of the invasive device used to several

stage of ICU stay (Fig. 4.6).
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Figure 4.6: A pathway (entity E) of patients’ ICU stay from state S0 to outcome S3

A different, non-medical, application of this method of visual analytics is shown

in the diagram in figure 4.7 which describes a report on the progress of a cohort of

students enrolled in a specified academic year (University of Catania - Computer

Science, a.y. 2012-2013) in relation to an university exam (Discrete Mathematics).

Figure 4.7: Diagram of student career on single university exam

The diagram analyzes the progression of academic studies for a three-year de-

gree within a time range of 5 years. From the Matriculation state the diagram flows

through the different years and show how many students pass a selected exam or not,

to reach the three possible outcomes. The outcomes are represented by the Grad-

uation (success), the Abandonment of the degree course (fail) or the continuation

outside prescribed time.



Chapter 4. Quantitative visualization method for Outflow graphs 20

From this point of view it is possible to observe which exams are more difficult for

students. In this example, about half of the enrolled students pass the specific exam

in the first year, while a small part of those who do not pass it, probably discouraged,

abandons the studies (first orange block, edge directed to abandonment). Instead,

it can be easily seen how a small part of students pass the exam before graduation

outside prescribed time: this means that a small percentage of students ”drag” the

exam to the end of degree course taking longer than expected to graduate.

In conclusion, patient history or student career, and in general ”life”, can often

be described as a series of temporal events. This visual analytics method explores

pathways and common patterns in a sequence of aggregated events. Connecting

the pathways to the associated outcomes can help data analysts and professionals

to better understand the meaning or behavior in the visualized information and to

discover how certain paths may lead to different results.

4.2.1 Applications

Among the threats to global health, Healthcare-Associated Infections (HAIs) affect

millions of patients worldwide, representing one of the main adverse events, espe-

cially in Intensive Care Units (ICUs). In Europe, approximately 90.000 hospitalized

patients have at least one HAI on a given day [48], which determines a significant

increase in mortality and morbidity rates, contributing to the raise in hospital as-

sistance costs. Since HAIs are an increasing public health problem, surveillance is

considered a strategy to ensure health quality [49].

The data used in the following case studies comes from the SPIN-UTI network,

described in section 6.1.

Risk of Pneumonia in ICU

Pneumonia is the most frequent HAI, especially in ICU, where a significant per-

centage of patients is exposed to mechanical ventilation [50]. In Europe, pneumonia

occurs in 7% of patients hospitalized for at least two days in the ICU, among these

91% are associated with mechanical ventilation. Except for the intrinsic patient

characteristics, several factors - i.e. the management of intubation procedures and
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intubated patients- have been proposed as a potential target to control IAP incidence

and associated outcomes [51].

The use of Outflow-like approach to these studies is naturally suggested by the

nature of the phenomena under investigation: a patient is considered in an initial

state that evolves through the hospitalisation into other states because new events

are occurred.

Unfortunately the direct usage of Sankey diagram does not give information

about the average time to go from a state to the next in addiction to the non-

persistence of some events. For example, the endotracheal tube can be applied

several times during a patients stay. This means that the patient passes from the

intubated to the non-intubated state and then goes back to the intubated state.

To bypass these issues we have considered the total time of an invasive device

applied to 9656 patients enrolled in 92 ICUs of 62 hospitals.

In this study we distinguish three clusters of patients with similar characteristics

(Table 4.1). In order to identify them, the following variables were standardized and

imputed in the cluster analysis: age, SAPS II score at admission, patient origin and

administration of antibiotics within 48 hours of admission [1]. The cluster analysis

was conducted in SPSS, using the TwoStep Clustering method (optimal number

of clusters selected automatically by the clustering algorithm based on Schwarz’s

Bayesian Information Criterion), an exploratory tool designed to reveal natural clus-

ters within a dataset that would otherwise not be apparent [52]. The software of

choice was useful for medical personnel to visualize and easily handle large datasets

thanks to its GUI.

The current analysis was performed on patients staying in ICU for more than 2

days, without missing values in information related to patient characteristics (e.g.,

age, sex, Simplified Acute Physiology Score II - SAPS II - at admission, origin of

patient, admission type), dates of insertion and removal of intubation, and outcomes

(e.g., pneumonia, sepsis, death).
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Table 4.1: Comparison of population characteristics by clusters

Characteristics Cluster 1 Cluster 2 Cluster 3 p-value

(N=2143) (N=5854) (N=1659)

Age, years 69.0 (24.0) 70.0 (20.0) 70.0 (20.0) 0.028

Sex (% men) 62.8% 61.0% 60.5% 0.263

Origin

Other ward of this/other hospital 39.6% 82.0% 82.2% <0.001

Other ICU 1.1% 3.7% 2.7%

Community (home) 58.5% 12.7% 13.2%

Long-term care facility 0.7% 1.5% 1.9%

SAPS II score at admission 40.0(27.0) 38.0 (26.0) 37.0 (23.0) <0.001

Type of ICU admission

Medical 63.2% 47.8% 52.8% <0.001

Scheduled surgery 18.8% 35.6% 36.6%

Unscheduled surgery 18.0% 16.7% 10.6%

Trauma 5.7% 4.4% 4.4% 0.043

Impaired immunity 5.8% 7.4% 3.6% <0.001

Administration of antibiotics

within 48 hours of admission
67.9% 87.0% 32.9% <0.001

Length of stay in ICU, days 5.0 (10.0) 5.0 (9.0) 4.0 (8.0) 0.134

Results are reported as median (interquartile range) for continuous variables, or

percentage for bivariate or categorical variables. Statistical analyses were performed

using the Kruskal-Wallis or the Chi-squared test.

Let us consider as initial states, in a case, the three patients’ clusters (Fig. 4.8)

and, in the other case, the three most observed micro-organisms in the patients with

pneumonia (Fig. 4.9). Eventually an outcome is reached.

Sankey diagram reported in Figure 4.8 provides the flow of patients from their

admission to ICU and visualizes how each cluster and duration of intubation con-

tribute to the diagnosis of pneumonia. Using statistical analysis, we first observed

that patients belonging to cluster 1 and 2 had higher duration of intubation in days

(median = 3, IQR = 9 and median = 3, IQR = 8, respectively) and in days/100

days of ICU stay (median = 66.7, IQR = 102.7 and median = 70.0, IQR = 75.0,

respectively) than those in cluster 3 (median = 2, IQR = 7, p-trend < 0.001 and
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median = 60.1 on 100 days of ICU stay, IQR = 100.0 on 100 days of ICU stay,

p-trend = 0.001, respectively). This was in line with information displayed in Fig-

ure 4.8, which showed that a higher percentage of patients belonging to cluster 1

(49.0%) or cluster 2 (50.4%) were intubated for more than 66 days/100 days of ICU

stay, compared to cluster 3 (45.0%; p-trend < 0.001). Figure 4.8 also help us to

graphically report that patients who were intubated for more than 66 days/100 days

of ICU stay had higher incidence of pneumonia (11.4%) than those who were intu-

bated for 34-66 or 0-33 days /100 days of ICU stay (5.6% and 2.9%, respectively;

p-trend < 0.001).

Figure 4.8: Outflow of three clusters of patients from ICU admission to diagnosis of
pneumonia. Clusters defined in table 4.1 (TwoStep Clustering method, optimal number
of clusters by Schwarzs Bayesian Information Criterion)

Sankey diagrams are useful for representing this type of data because they allow a

visual approach to examine the evolution of patients’ sub-sets maintaining the total

anonymity of the information. The focus on a specific infection is useful for selecting

the fundamental factors and reducing the variables to obtain as result easy-to-read

diagrams.

An additional aim of our study was to evaluate risk of sepsis and death asso-

ciated with pneumonia caused by Acinetobacter baumannii, Klebsiella pneumoniae
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and Pseudomonas aeruginosa, the three major causes of pneumonia in our study.

Thus, we report a Sankey diagram (Fig. 4.9) illustrating how Acinetobacter bau-

mannii, Klebsiella pneumoniae and Pseudomonas aeruginosa-associated pneumo-

nia contribute to sepsis and mortality. This graphical representation highlighted

that patients with Acinetobacter baumannii or Klebsiella pneumoniae-associated

pneumonia were more prone to exhibit sepsis than those infected by Pseudomonas

aeruginosa. This finding was further confirmed by statistical analysis, which found

a higher incidence of sepsis in patients with Acinetobacter baumannii or Klebsiella

pneumoniae-associated pneumonia (38.9% and 38.8%, respectively) than in those

infected by Pseudomonas aeruginosa (29.1%; p = 0.025). Figure 4.9 also shows that

sepsis, in turn, was associated with higher mortality (45.6%) than infection (32.2%;

p < 0.001). In line with these findings, mortality was higher in patients with Acine-

tobacter baumannii and Klebsiella pneumoniae-associated pneumonia (20.6% and

29.1%, respectively) than in those infected by Pseudomonas aeruginosa (13.4%;

p < 0.001).

Figure 4.9: Association of Acinetobacter baumannii, Klebsiella pneumoniae and Pseu-
domonas aeruginosa to pneumonia and sepsis, and contribution of individual pathogens
to death (colored edges directed to ”Dead” outcome)

This kind of visual analytics of data, supported by traditional statistical methods,

represents a useful instrument to identify and to describe significant determinants

associated with adverse outcomes in healthcare. Particularly, our study indicates
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that Sankey diagrams are useful tools to visualise flows of patients from their ad-

mission to ICU and how each cluster and duration of intubation contribute to the

diagnosis of pneumonia. Moreover, they enabled us to graphically represent the

contributions of Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas

aeruginosa-associated pneumonia to the risk of sepsis and death.

Risk of catheter-associated urinary tract infections in ICU

Urinary tract infections (UTIs) are among the most common HAIs, representing

up to 40% of all HAIs [53]. The presence of a urinary catheter and the duration

of exposure allowing continuous access of organisms into the urinary bladder are

the main risk factors for development of a catheter-associated UTI (CAUTI) [54].

Indeed, as reported by ECDC, the urinary catheter utilization rate was 78 per 100

patient-days in ICUs, and nearly 98% of UTIs were associated with the presence of

a urinary catheter [53]. However, other host factors (i.e. anatomical or functional

abnormalities, female sex, older age, diabetes mellitus, genetic predisposition), and

bacterial (i.e. pathogen virulence characteristics) and healthcare (i.e. poor quality

of catheter care, lack of antimicrobial therapy) characteristics may affect the risk of

CAUTIs [55]. The burden of CAUTIs is associated with increased morbidity and

mortality, longer length of stay and higher healthcare costs [56]. For instance, in the

USA, it has been estimated that CAUTIs cause approximately US$131 million in

annual excess medical costs [57]. In addition, urinary catheters are often reservoirs

for multi-drug-resistant bacteria and a source of transmission to other patients [58].

CAUTIs are also associated with severe health outcomes including sepsis, a systemic

inflammatory condition that occurs when bacteria infecting the urinary tract infect

the bloodstream [56]. Surveillance data indicated that sepsis was associated with in-

creased mortality and morbidity in patients of all ages [13, 59]. Although preventive

strategies, such as educational initiatives, catheter avoidance and limiting catheter

days, have been proposed [60], more efforts are needed to control the incidence of

CAUTIs and to improve patient outcomes. In fact, it has been estimated that up to

70% of CAUTIs may be preventable with recommended infection control measures

[54, 61–66].

Also in this study we used cluster analysis to distinguish patients according to

their characteristics at ICU admission, and to identify clusters of patients at higher
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risk for CAUTIs and associated sepsis. Accordingly, variability across clusters in

terms of duration of urinary catheterization, and incidence of CAUTIs and asso-

ciated sepsis was explored [31]. In particular, the two-step clustering method was

performed to identify different clusters of patients based on age, sex, SAPS II score

at admission, patient origin, type of admission, trauma, and administration of an-

tibiotics in 48 h before or after ICU admission [1]. The clustering algorithm, based

on Schwarz’s Bayesian Information Criterion (SBIC), allowed sets of clustered vari-

ables to be categorized.

The cluster solution obtained was tested by excluding variables with predictive

importance < 0.2.

The original dataset was built by recording data related to ICU characteristics

(type, percentage of mortality, proportion of intubated patients, proportion of pa-

tients with a urinary catheter), patient characteristics at admission (e.g. age, sex,

SAPS II score, patient origin, admission type), dates of insertion and removal of in-

vasive devices (e.g. urinary catheter), infection status (i.e. infection date, infection

site, associated micro-organisms) and micro-organisms (i.e. antimicrobial resistance

data).

Table 4.2 shows the characteristics of participants with relative within-cluster

homogeneity and between-cluster variability in terms of age,sex, SAPS II score at

admission, patient origin, type of admission, trauma, and administration of antibi-

otics in 48 h before or after ICU admission. In particular, Cluster 1 (N = 2143)

comprised more patients with a medical type of ICU admission who came from

the community. This cluster was also characterized by an intermediate percentage

of patients who received antibiotics in 48 h before or after ICU admission, higher

proportion of trauma patients, lower median age and higher SAPS II score. Clus-

ter 2 (N = 5854) consisted of patients who were more likely to come from other

wards/hospitals, and to report administration of antibiotics 48 h before or after

ICU admission. This cluster included older patients with an intermediate SAPS II

score, and approximately half of them reported a surgical type of ICU admission (i.e.

52.2%, the highest percentage across clusters). Patients in Cluster 3 (N = 1659)

were similar to those in Cluster 2 in terms of patient origin, type of admission and

age. However, Cluster 3 was characterized by a lower percentage of patients with
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administration of antibiotics 48 h before or after ICU admission, and lower SAPS II

score. No difference in terms of sex distribution across clusters was evident [31].

Table 4.2: Characteristics of clusters of patients at intensive care unit (ICU) admission
and urinary catheter utilization

Characteristics Cluster 1 Cluster 2 Cluster 3 p-value

(N=2143) (N=5854) (N=1659)

Age, years 69 (24) 70 (20) 70 (20) 0.028

Sex (% men) 62.8% 61.0% 60.5% 0.263

Patient origin

Other ward/healthcare facility 41.5% 87.3% 86.8% <0.001

Community 58.5% 12.7% 13.2%

SAPS II score at admission 40 (27) 38 (26) 37 (23) <0.001

Type of ICU admission

Medical 63.2% 47.8% 52.8% <0.001

Surgical 36.8% 52.2% 47.2%

Trauma 5.7% 4.4% 4.4% 0.043

Impaired immunity 5.8% 7.4% 3.6% <0.001

Antibiotic treatment in 48 h

before or after ICU admission
67.9% 87.0% 32.9% <0.001

Length of ICU stay, days 5 (10) 5 (9) 4 (8) 0.134

Presence of urinary catheter

during ICU stay
82.9% 84.1% 85.6% <0.001

Duration of urinary

catheterization, days
7 (12) 7 (11) 6 (8) <0.001

Results are reported as median (interquartile range) for continuous variables, or

percentage for categorical variables. Statistical analyses were performed using the

KruskalWallis or the Chi-squared test.

Although length of ICU stay was similar across clusters, visual inspection through

Outflow-like approach and Sankey diagrams encoding (Fig. 4.10) revealed differences

in terms of urinary catherization and its duration. In fact,participants belonging to

Clusters 1 or 2 were less likely to be catheterized (82.9% and 84.1%, respectively)

than patients in Cluster 3 (85.6%; p < 0.001). However, patients in Clusters 1 or 2

had a longer duration of urinary catheterization (median 7 days, IQR 12 days for
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Cluster 1; median 7 days, IQR 11 days for Cluster 2) compared with patients in

Cluster 3 (median 6 days, IQR 8 days; p < 0.001).

This visual encoding results useful again to visualize the the flow of patients

during their ICU stay, without detailed temporal information, helping researchers

and medical personnel to reveal and to describe significant factors associated to the

averse outcomes.

In general, patients with urinary catheterization exhibited a higher incidence of

UTIs than patients who were not catheterized (3.0 per 100 patients vs 1.2 per 100

patients; P = 0.004). The rate of CAUTIs was 3.2 per 1000 catheter-days, with

an incidence that increased with increasing duration of catheterization: 0.4 per 100

patients in those catheterized for < 5 days, 0.8 per 100 patients in those catheterized

for ⩾ 5 days and ⩽ 10 days, and 7.2 per 100 patients in those catheterized for > 10

days (P < 0.001). Interestingly, patients in Cluster 1 showed a higher incidence of

CAUTIs (3.5 per 100 patients) than those in Clusters 2 or 3 (2.5 per 100 patients

in both clusters; P = 0.033).

Finally, this study found that 37.0% of patients with CAUTIs developed sepsis,

but no difference was evident in the incidence of sepsis across clusters (P=0.238).

However, the percentage of sepsis among patients with CAUTIs increased with in-

creasing duration of catheterization: 30.0% in participants catheterized for < 5

days, 35.0% in those catheterized for > 5 days and < 10 days, and 45.6% in those

catheterized for > 10 days (P = 0.010).

Figure 4.10: Outflow of three clusters of patients during ICU stay to diagnosis of CAUTI
and sepsi. Clusters defined in table 4.2 (TwoStep Clustering method, optimal number of
clusters by Schwarzs Bayesian Information Criterion)
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Chapter 5

Synthetic data generation with

Machine Learning

Fragmented datasets can have a major impact on performance and quality of ma-

chine learning algorithms. A small number of missing values (NA) within a large

dataset can be bypassed by deleting incomplete records: in most cases this does

not lead to a serious loss of information. If the missing data represent a large slice

of the dataset, dropping incomplete records involves a heavy loss of information,

impacting considerably on statistical and machine learning models.

Furthermore, most classification algorithms, in general, require a balanced dataset

in terms of the outcome of interest. An unbalanced dataset often provides acceptable

levels of accuracy, but with poor results in terms of f1-score.

5.1 Imputation techniques

There are different techniques in literature to approach the missing data issue. A

common way is to ignore it, but this is not suitable when the data are too fragmented.

A widely used approach is imputation. Imputation simply means replacing the

missing values with an estimate, then analyzing the full dataset as if the imputed

values were actual observed values.

Common techniques consist in the replace of NA values with 0, mean, median

or mode values. These methods are simple and easy to implement but are often a

potential cause of data bias.

Another commonly used method is the regression imputation. In this kind of im-

putation the predicted value is obtained by regressing the missing variable on other
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variables. This preserves relationships among variables involved in the imputation

model, but not variability around predicted values.

5.1.1 Types of missing data

The missing data issue can be very complex since it is necessary to distinguish the

univariate from the multivariate missing data and the forms of missingness that

take different types, with different impacts on the validity of the results of research:

missing completely at random (MCAR), missing at random (MAR), and missing

not at random (MNAR) [67].

To formally define missingness, lets consider, for simplicity, the univariate case.

A dataset X can be divided in two parts:

X = {Xo, Xm}

where Xo corresponds to the observed data, and Xm to the missing data in the

dataset.

For each observation we define a binary response whether or not that observation

is missing:

R =

{︄
1 if X observed

0 if X missing

The missing value mechanism can be understood in terms of the probability that

an observation is missing Pr(R) given the observed and missing observations, in the

form:

Pr(R|xo, xm) [68]

The three mechanisms are subject to whether the probability of response R

depends or not on the observed and/or missing values:

Values are MCAR if the events that lead to any particular data-item being

missing are independent both of observable variables and of unobservable parameters

of interest, and occur entirely at random [69]. In this case the probability of an
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observation being missing depends only on itself, and reduces to Pr (R|xo, xm) =

Pr(R). As an example, imagine that a doctor forgets to record the gender of every

six patients that enter the ICU. There is no hidden mechanism related to any variable

and it does not depend on any characteristic of the patients [68]. When data are

MCAR, the analysis performed on the data is unbiased; however, data are rarely

MCAR.

MAR occurs when the missingness is not random, but where missingness can be

fully accounted for by variables where there is complete information. When data are

MAR, the missingness of data is systematically related to the observed but not the

unobserved data [70]. This case is not completely random, but it is the most general

case where we can ignore the missing mechanism, as we control the information upon

which the missingness depends, the observed data. Said otherwise, the probability

that some data is missing for a particular variable does not depend on the values of

that variable, after adjusting for observed values. Mathematically the probability of

missing reduces to Pr (R|xo, xm) = Pr(R|xo). Imagine that if elderly people are less

likely to inform the doctor that they had a pneumonia before, the response rate of

the variable pneumonia will depend on the variable age [68]. Analyses of datasets

containing MAR data may or may not result in bias.

MNAR is data that is neither MAR nor MCAR (i.e. the value of the variable

that’s missing is related to the reason it’s missing) [69]. When data are MNAR, the

missingness of data is systematically related to the unobserved data: it depends on

events or factors which are not measured by the researcher. Determining the missing

mechanism is usually impossible, as it depends on unseen data. For example, we can

imagine that patients with low blood pressure are more likely to have their blood

pressure measured less frequently (the missing data for the variable blood pressure

partially depends on the values of the blood pressure) [68]. As with MAR data,

complete case analysis of a dataset containing MNAR data may or may not result

in bias.

Variables with different types of missing data should be treated separately.
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5.1.2 Choice of imputation method

Different imputation methods are expected to perform differently on various datasets.

There are generic methods in literature to evaluate the performance of various im-

putation methods on incomplete datasets, in order to help selecting the most ap-

propriate method.

In this research, the imputation method is also linked to the responsiveness of

the balancing method that will be described below and to the performance of the

machine learning model chosen for the prediction of the outcomes.

The approach is described in the case studies in the next chapter in which the

performance of a predictive model is tested on the datasets completed by imputation

and balancing methods.

5.1.3 k-NN imputation

The nature of the information examined during this research, data with different

types of missing values, rich in continuous and categorical variables, in particular

dichotomous ones, which do not follow known distributions or probabilistic models,

led us to the use of a k-NN imputation method to reconstruct part of the missing

values, according to Malarvizhi and Thanamani [71], and adapted to our needs.

The k-NN is a non-parametric and lazy learning algorithm which means there is no

assumption for underlying data distribution.

The k-NN method is useful for matching points with their closest k-neighbors

in a multi-dimensional space and it can be applied on continuous, discrete, ordinal

and categorical data which makes it particularly useful for dealing with all kind of

missing values. The k-NN method is based on the assumption that a point value

can be approximated by the values of the points that are closest to it, based on the

other variables. The similarity of two points is determined using a distance function

which can be Euclidean, Manhattan, Mahalanobis, etc.

In particular, in our data, we found very effective the use of Jaccard distance

in reconstructing the missing dichotomous data in a coherent way. The Jaccard
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distance dj is complementary to the Jaccard coefficient J , defined as the size of the

intersection divided by the size of the union of the sample sets:

J(A,B) =
|A ∩B|
|A ∪B|

0 ⩽ J(A,B) ⩽ 1

dj(A,B) = 1− J(A,B)

The advantages of the k-NN algorithm are that it considers the correlation struc-

ture of the data and predicts with a good accuracy the conditional probability dis-

tribution around an observation making properly informed estimations.

In the k-NN algorithm, a higher value of k would include attributes which are

significantly different from our target observation, while lower value of k can implies

overfitting and increase the variance, and an high variance can increase the influence

of random noise in the data. But with a lower k the bias is low: fitting a model

to the 1-nearest point means that the model will be close to the data. In the data

imputation point of view, the objective is to reconstruct the missing data as much

as similar to the real ones. High bias can cause the algorithm to miss the relations

between features and target variables.

In the case studies described in the next chapter, to reconstruct part of the

incomplete records, we have used a 1-NN imputation to fill the missing values on

each variable. We have applied the algorithm to the dataset divided by outcomes of

interest for every different target variable, considering Euclidean distance for non-

binary variables and Jaccard distance for dichotomic variables.

The algorithm 1 describes the process of data imputation on a dataset Ds with

missing values considering the binary outcome O. At the end of the procedure it

returns the reconstructed data for class 0 and 1. The process can be repeated on

the entire dataset with the reconstructed data.



Chapter 5. Synthetic data generation with Machine Learning 34

Algorithm 1 Multiple data imputation

1: DS: the dataset with missing data

2: O: the outcome variable in DS

3: kNN : the k-NN imputer with k = 1 and metrics = (Euclidean, Jaccard)

4: procedure DataImputation(DS, O)

5: mO0 ← list of variables for class 0

6: mO1 ← list of variables for class 1

7: for each variable v0 in mO0 do

8: I0 ← kNN(DS[v0])

9: end for each

10: for each variable v1 in mO1 do

11: I1 ← kNN(DS[v1])

12: end for each

13: return (I0, I1)

14: end procedure

5.2 Data balancing methods

In general, classification algorithms require a balanced dataset in terms of the out-

come of interest. Several techniques (i.e. undersampling, and oversampling) are

currently used to balance the dataset by replicating data or by generating synthetic

data.

The undersampling method consists to reduce the majority class, keeping only

a part of its records. Generally, some observations are randomly eliminated from

the majority class in order to match the numbers with the minority class (Fig. 5.1).

More advanced undersampling techniques have been used in the past (e.g. under-

sampling specific samples like the ones further away from the decision boundary

[72]), but they did not bring any improvement than simply selecting samples at

random. The end result is the same: a smaller number of rows in the dataset. Un-

dersampling is not recommended when the minority class it too small because it

heavily reduce the dataset, with a loss of potentially useful information, thus giving

the model less data for training so the model is more prone to error.
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The oversampling method, instead, is used to increase the cardinality of the

minority class. The easiest way to oversample is to re-sample the minority class

duplicating the observations (Fig. 5.1). Thus, the resampled data are exactly the

same already present in the dataset. Training a model with too much duplicated

data can lead to overfitting problems: for this reason, it is appropriate to oversample

the dataset with synthetic data.

Figure 5.1: Undersampling and oversampling

Over sampling by generating synthetic data is useful to increase the minority

class to balance the dataset through the generation of new synthetic observations

based upon the minority ones. There are different methods to oversample, in this

way, an imbalanced dataset for a typical classification problem. One of the most

common technique is called SMOTE (Synthetic Minority Over-sampling Technique),

the one used in this research, and it looks at the feature space for the minority class

data points and considers its k-nearest neighbors to create new synthetic points and

increase the cardinality of the class itself (Fig. 5.2). The minority class is over-

sampled by taking each minority class sample and introducing synthetic examples

along the line segments joining any/all of the k minority class nearest neighbors [73].

First it finds the nearest neighbors in the minority class for each of the samples in

the class and then it consider a segment between the neighbors to generate random

points on the segments. The SMOTE algorithm was applied on the real and complete

records to create extra training data.
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Figure 5.2: SMOTE visual representation

5.3 Composition and comparison of training and

test set

After the data imputation and balancing stages we are able to compose a training

set with enough data and balanced outcome. Figure 5.3 shows the main steps of

the method for composing training and test set for the classification model. The

training set is partly reconstructed and partly synthetic and the test set contains

only the complete records or real data.
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Figure 5.3: Training and test composition scheme

To verify the goodness of the training set records, we compare the distributions

of each single variable with those of the test set. We observe if the training data are

compliant with the real data. In the example in figures 5.4 and 5.5 we compare the

distribution of a reconstructed continuous variable used in the training set with the

real one used in the test set. The example in figure 5.6 shows the comparison be-

tween reconstructed and real binary variable, instead fig. 5.7 compare a categorical

variable.
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Figure 5.4: Distributions comparison
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Figure 5.5: Continuous variables comparison

Figure 5.6: Dichotomous variables comparison
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Figure 5.7: Categorical variables comparison

A further check to assess that the training data are compliant with the real data

was performed by comparing the reconstructed and synthetic records with the real

ones through the Andrews curve, considering 100 random observation (50 per class)

per dataset in order to make the diagram more readable (eg. Fig. 5.8).

In data visualization, an Andrews plot or Andrews curve is a way to visualize

structure in high-dimensional data. It is basically a smoothed version of a parallel

coordinate plot.

If we consider d dimensions record x = x1, x2, ..., xd, the Andrews plot defines a

finite Fourier series

fx(t) =
x1√
2
+ x2 sin(t) + x3 cos(t) + x4 sin(2t) + x5 cos(2t) + . . .

and plot the curves for −π < t < π. In this way each data point may be

represented as a line between −π and π. This function can be seen as the projection

of the data point onto the vector:(︃
1√
2
, sin(t), cos(t), sin(2t), cos(2t), . . .

)︃
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Figure 5.8: Andrews plot of training and test samples

Once the compliance of the data obtained has been verified, we can proceed with

the training of our classification model with the augmented data.
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Chapter 6

Case studies

For some real-world applications, regressions and correlations are sufficient: if we

want to know the general trend of a variable against another, for example, a simple

correlation will determine the coefficient related to the trend, but if we want to

classify non-linear separable data, Artificial Intelligence and Machine Learning can

provide models and functions representing the closest possible match to the behavior

of the data.

In the fields of bio-medicine and epidemiology, Machine Learning can be a pow-

erful tool for finding correlations and patterns in data and it might represents a

key component and a core element for Public Health policy-making. In the era

of precision medicine, identifying patients at risk of HAIs by coupling established

clinicalpathological features might be fundamental for developing novel preventive

strategies tailored to each patients requirements [74, 75].

6.1 The SPIN-UTI network

In 2005, the Italian Study Group of Hospital Hygiene (GISIO) of the Italian Society

of Hygiene, Preventive Medicine and Public Health (SItI) established the Italian

Nosocomial Infections Surveillance in Intensive Care Units (SPIN-UTI) project [13,

76–81]. To date, the SPIN-UTI Network has surveyed approximately 20,000 pa-

tients, more than 4300 infections and 5300 micro-organisms [31] using the ECDC

protocol [82].

Data has been initially stored in several different formats (SPSS spreadsheets,

CSV, etc.). A preliminary work was therefore to clean, make uniform and merge

the data of the different SPIN-UTI editions.
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In general, the SPIN-UTI project prospectively surveys patients staying in ICU

for more than two days and collects data at hospital, ICU and patient level. By

contrast, patients who stay in ICU less than two days are excluded a priori. The

reason for their exclusion is because the primary outcome of the SPIN-UTI project

is the incidence of HAIs, which by definition develop after two days of ICU stay. The

study was approved by the Ethics Committee Catania 1, Catania, Italy (protocol

numbers 111/2018/PO and 295/2019/EMPO).

6.2 Models and subsets

6.2.1 Prediction of Healthcare-Associated Infections at ICU

admission

Study design and data augmentation

For this case study the original dataset contained only 39% of patients (n=7827)

with a complete assessment of variables considered in this study (figure 6.1).

Figure 6.1: Matrix of missing values
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Since machine learning approaches require large data sets for training, we built a

novel training data set made of recovered and synthetics data to tune the learning al-

gorithms, together with a test set composed only by real data of patients with a com-

plete assessment of the following variables at ICU admission: sex (dichotomous), pa-

tients origin (categorical: other ward/healthcare facility, community), non-surgical

treatment for acute coronary disease (dichotomous), surgical intervention (dichoto-

mous), SAPS II score at admission (continuous), presence of invasive devices at

ICU admission (three dichotomous variables for urinary catheter, intubation and

central venous catheter, respectively), trauma (dichotomous), impaired immunity

(dichotomous), antibiotic therapy in 48 hours before ICU admission (dichotomous)

[83].

Methods for data imputation, balancing and comparison were described in the

previous chapter.

Starting from the most incomplete variable, with 2 cycles of 1-NN imputation

applied separately to the two classes of data, infected patients or not, we have

reconstructed 7758 records, approximately the 63% of the incomplete ones. After

imputation, all available data was included in the analysis.

The dataset was, also, strongly imbalanced especially in terms of infected and

not-infected classes. To avoid a low performance in recall score, on the 7827 complete

record we applied SMOTE algorithm which provided a total of 2544 new synthetic

records for the minority class (infected patients), also discarding the duplicated data

generated by the algorithm.

Training and Test Set composition and comparison

The training set is made by recovered (N = 7758) and synthetics records (N =

2544), while the test set includes 7827 real data. The distribution of infected (class

1) and non-infected (class 0) patients between the training and test sets is sum-

marized in table 6.1. To evaluate the goodness of the training set, we compared

the distributions of each single variable and the Andrews curves of the records with

those of the test set to assess that the training data are compliant with the real

data.
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Table 6.1: Training and Test datasets composition

Training Set Test set

Class 0

(non-infected

patients)

6702 reconstructed 6602

Class 1

(infected

patients)

3600 total

1056 reconstructed

2544 synthetics

1225

Total 10302 7827

Statistical Analysis

The Kolmogorov- Smirnov test was used to check the normal distribution of continu-

ous variables. Patients characteristics were described using median and interquartile

range (IQR) or percentage.

Comparisons between variables were analyzed by the Chi-squared test for cat-

egorical variables, while the Mann-Whitney U test was used for continuous vari-

ables with skewed distribution. To test the accuracy of the SAPS II score in HAIs

risk prediction along the range of possible values, we used the Receiver Operating

Characteristics (ROC) curve analysis. In particular, discrimination was assessed by

calculating the area under the curve (AUC), with values ranging from 0.5 for no pre-

diction to 1.0 for perfect prediction [11, 84, 85]. All statistical tests were two-sided,

and p− values < 0.05 were considered statistically significant.

Statistical analyses were performed using SPSS software (version 26.0, SPSS,

Chicago, IL)

Learning model generation

To improve the predicting performance of the model, a machine learning algorithm

combining the SAPS II with additional variables collected at ICU admission (i.e.

sex, patients origin, non-surgical treatment for acute coronary disease, surgical in-

tervention, presence of intubation, presence of urinary catheter, presence of central

vascular catheter; trauma, impaired immunity, antibiotic therapy in 48 hours before

ICU admission) was applied. Specifically, we chosen the SVM with Gaussian Kernel



Chapter 6. Case studies 46

(RBF) as modeling tool. This model has been successfully used in several regression

and classification studies, especially for binary classification problems. Our model

classifies data finding the best hyperplane separating the points of the classes. The

separating hyperplane found by the algorithm provides the largest margin between

the two classes. The selection of a non-linear kernel function, in our case the Gaus-

sian kernel, is useful to map data that are not originally linearly separable into a

higher dimensional feature space trying to make them more linearly separable. It is

worth mentioning that linear kernels are less time consuming than non-linear ones,

but they provides less accuracy.

Several datasets are not linearly separable even in a feature space, not allowing

all of the constraints in the minimization problem of SVM to be satisfied [86]. To fill

this gap, slack variables are introduced to allow certain constraints to be violated. By

choosing very large slack variable values, we could find a degenerate solution which

would lead to the model overfitting. To penalize the assignment of slack variables

that were too large, the penalty is introduced in the classification objective:

C
N∑︂
i=1

εi

• εi, indicates slack variables, one for each datapoint i, to allow certain con-

straints to be violated;

• C, indicates a tuning parameter that controls the trade-off between the penalty

of slack variables εi and the optimization of the margin. High values of C

penalize slack variables leading to a hard margin, whereas low values of C

lead to a soft margin, which is a bigger corridor which allows certain training

points inside at the expense of misclassifying some of them. In particular, the

C parameter sets the confidence interval range of the learning model.

The RBF kernel function expression on two sample, x and x′ , is defined as

K(x, x′) = exp(−γ∥x − x′∥2) where ∥x − x′∥2 is the squared Euclidean distance

between the two feature vectors and γ a is a free parameter. The RBF can be

applied to a dataset through the choice of two parameters, C and γ. The classifier

performance of SVM depends on the choice of these two parameters. A grid search

method was used to find the optimal parameters of RBF for SVM. This method
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considered m values in C and n values in γ, according to the M × N combination

of C and γ [87] by training different SVM using a K-fold cross validation. Here,

to optimize the f1 score of the positive class, we used a grid search on a 5-fold

cross-validation.

Data analyses were performed through Python and the SciPy stack.

Results

Study population On a total of 20060 SPIN-UTI participants, the current anal-

ysis was performed on a subsample of 7827 patients (median age = 69 years; 60.6%

males) enrolled from 2006 to 2019. The remaining 12233 participants (61%) were

excluded because of missing data on the assessment at ICU admission. In this sub-

sample, patients coming from other wards/hospitals and reporting a surgical type

of ICU admission were 73.9% and 52.4%, respectively. In general, median SAPS II

score at admission was 40 (IQR = 28) and length of ICU stay was 5 days (IQR =

10). Patients who reported trauma and impaired immunity were 3.4% and 8.6%,

respectively. With respect to medical treatments, 10.2% and 40.9% of patients un-

derwent to non-surgical treatment for acute coronary disease or surgical intervention,

while e 59% patients were on antibiotic therapy. In particular, the presence of uri-

nary catheter, intubation and central venous catheter was 77.5%, 59.8% and 41%,

respectively. Finally, we observed that percentage of ICU-acquired sepsis among

patients enrolled was 6.1%, whereas ICU mortality was 23.2%.

Characteristics of infected patients Overall, table 6.2 also shows the compar-

ison between infected (N = 1225; 15.7%) and non-infected patients (N = 6602;

84.3%) for characteristics at ICU admission. Infected patients were more likely to

come from the community and to report a medical type of ICU admission than

those non-infected. In particular, infected group consisted of patients who were

more likely to report impaired immunity, also including more patients with trauma.

This translated into higher SAPS II score among infected patients if compared with

non-infected.

With respect to the presence of invasive devices, infected patients were also more

likely to be intubated at ICU admission and less likely to be catheterized than those

non-infected. As expected, infected patients exhibited higher length of ICU stay
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(20.0 days vs. 4.0 days; p < 0.001) compared to non-infected patients. In line with

these findings, also mortality was higher in infected patients (35.1%) than in those

non-infected (21.0%; p < 0.001). No differences were evident for age, sex, non-

surgical treatment for acute coronary disease, antibiotic therapy in 48 hours before

ICU admission and presence of central venous catheter at ICU admission.

Table 6.2: Characteristics of patients according to their infectious status

Characteristics
Patients

(N=7827)

Infected patients

(N=1225)

Non-infected

(N=6602)
p-value

Age, years 69.0 (21.0) 69.0 (21.0) 69.0 (21.0) 0.064

Sex (% male) 60.6% 62.8% 60.1% 0.084

Patient origin

Other ward/healthcare facility 73.9% 67.7% 75.1% <0.001

Community 26.1% 32.3% 24.9%

SAPS II at admission 40.0 (28.0) 47.0 (27.0) 38.0 (27.0) <0.001

Type of ICU admission

Medical 47.6% 53.6% 46.5% <0.001

Surgical 52.4% 46.4% 53.5%

Trauma 3.4% 5.0% 3.2% 0.001

Impaired immunity 8.6% 10.4% 8.2% 0.015

Non-surgical treatment

for acute coronary disease
10.2% 8.9% 10.4% 0.109

Surgical intervention 40.9% 36.7% 41.7% <0.001

Antibiotic therapy in 48h

preceding ICU admission
59% 59.8% 58.9% 0.579

Presence of urinary

catheter at ICU admission
77.5% 74.4% 78.0% 0.006

Presence of intubation

at ICU admission
59.8% 63.8% 59.1% 0.002

Presence of central venous

catheter at ICU admission
41% 39.7% 41.3% 0.295

ICU-acquired sepsis (% yes) 6.1% 37.6% - -

Outcome (% death) 23.2% 35.1% 21.0% <0.001

Length of ICU stay (days) 5.0 (10.0) 20.0 (20.0) 4.0 (6.0) <0.001

Results are reported as median (IQR) for continuous variables, or percentage for categorical

variables. Statistical analyses were performed using MannWhitney test or Chi-squared test.
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ROC Curve Analysis using traditional statistical approach Using tradi-

tional statistical analysis, we aimed to evaluate the performance of SAPS II score

at ICU admission in predicting HAIs for all patients staying in ICU for more than

two days. The Receiver operating characteristic (ROC) curve in figure 6.2 shows

the ability of SAPS II to identify patients who developed at least one HAI dur-

ing their stay in an intensive care unit. The curve plots the true-positive rate (i.e.

sensitivity) vs the false-positive rate (i.e. 1 - specificity) at different classification

thresholds. The blue curve represents the ability of SAPS II to distinguish between

patients who developed at least one HAI and those who did not (AUC 0.612, 95%

confidence interval [0.60, 0.63]; p < 0.001). The black dotted line is the reference for

no predictive ability (AUC 0.500). Although this test was statistically significant,

the accuracy of SAPS II score for predicting the risk of HAIs was of 56%.

Figure 6.2: ROC curve of the SAPS II for predicting HAIs
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ROC Curve Analysis using SVM model To improve the accuracy for pre-

dicting the risk of HAIs, we employed the SVM algorithm, working on SAPS II

score along with other characteristics at ICU admission. Figure 6.3 shows the ROC

curve of SVM prediction model for the test set. We report that the accuracy of

the SVM classifier was 88% on the test set. Specifically, precision and recall were

0.95 and 0.91 for non-infected patients and 0.60 and 0.73 for those who were diag-

nosed with at least one HAIs during their ICU stay. In line, the predictivity was

assessed using ROC curve, which provided an AUC of 0.90 (95% Confidence Interval

= [0.88, 0.91]; p < 0.001). Our results indicated the reliability of our SVM- model

against overfitting.

Figure 6.3: ROC curve of the SVM algorithm for predicting HAIs

Finally, we aimed to compare our prediction performance with those obtained

on the same SVM model, without accounting for the SAPS II score variable in the
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test set. Figure 6.4 shows the ROC curve of SVM prediction model for the test

set, reporting an accuracy of 78%. Accordingly, precision and recall were 0.87 and

0.87 for non-infected patients and 0.31 and 0.32 for those infected, respectively. As

expected, the AUC value provided by the ROC curve was 0.66 (95% Confidence

Interval = [0.65, 0.68]; p < 0.001), indicating a lower predictive ability.

Figure 6.4: ROC curve of the SVM algorithm for predicting HAIs excluding the SAPS II

Discussion

Identifying patients at higher risk of HAIs still represents a major challenge for

public health, suggesting the need for novel tools that can guide patient management

in ICUs [88–90]. Machine learning systems have been developed in many fields

of medicine including infectious diseases control and clinical decision support [91].

Particularly, machine learning technique has been applied in patients with sepsis [92],

to predict candidemia [93] or complications related to Clostridium difficile infection
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[94], to improve the prediction of antimicrobial resistance [95], and for surveillance

purpose [96].

To the best of our knowledge, the present study is the first one employing ma-

chine learning methods to identify patients at higher risk of HAIs, according to

their individual characteristics at ICU admission. Indeed, there is current consensus

that machine learning algorithms could support and enrich conventional statistical

approaches, especially in terms of prediction of ICU prognosis, clinical deteriora-

tion and risk assessment [97–99]. Several modifiable and non-modifiable risk factors

might affect the risk of HAIs and related adverse outcomes [100]. For instance, the

prolonged use of invasive devices, patients impaired immunity, surgical intervention

and comorbidity represent the major risk factors for HAIs in ICU [100, 101].

In clinical practice, several prognostic scores are routinely used to evaluate the

complex clinical-pathological conditions of ICU patients, in order to develop novel

and more suitable preventive strategies tailored to each patients requirements [102],

[75]. For instance, the SAPS II score represents the most useful tool for the predic-

tion of prognosis, HAIs risk, sepsis and mortality 9-11, 13, [11–13, 84, 102].

To this aim, we first evaluated the ability of SAPS II score at ICU admission

for predicting HAIs risk of 7827 patients staying in ICU for more than two days.

Interestingly, our ROC curve analysis, which provides an AUC value of 0.612, does

not suggest the use of SAPS II score in the end-of-life decision-making. Indeed,

although the test was statistically significant, the accuracy of SAPS II score for

predicting the risk of HAIs was of 56%.

In this scenario, machine learning approaches represent a possible strategy for

healthcare facilities, making possible to build a specific prediction model targeted to

demographics and clinical characteristics of patients [97, 98]. In line, several studies

suggested SVM technique as being an excellent and powerful algorithm to predict

common complex diseases with many risk factors, having a better discrimination

than conventional statistical approaches [22].

Accordingly, we employed the SVM algorithm, considering SAPS II score along

with other characteristics at ICU admission (i.e. age, sex, SAPS II score at admis-

sion, patients origin, type of admission, trauma, impaired immunity, non-surgical
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treatment for acute coronary disease, surgical intervention, presence of invasive de-

vices, and antibiotic therapy), in order to improve the accuracy for predicting the

risk of HAIs. Our findings demonstrated that the accuracy of the SVM classifier

was 88% on the test set, reporting precision and recall values of 0.95 and 0.91 for

non-infected patients and 0.60 and 0.73 for those who were diagnosed with at least

one HAIs during their ICU stay. In line, the predictive ability assessed by the ROC

curve provided an AUC of 0.90.

To assess the relevance of patients characteristic at ICU admission in our SVM

model, we compared the prediction performance with those obtained by same SVM

model, without accounting for the SAPS II score. We found a ROC curve reporting

an accuracy of 78%, with precision and recall values of 0.87 and 0.87 for non-infected

patients and 0.31 and 0.32 for those infected, respectively. Notably, the AUC value

provided by the ROC curve was of 0.66, indicating a lower predictive ability. Due

to its low predictive ability, our findings not warrant clinical usefulness of SAPS II

score when considered alone, suggesting the need of an integrated approach with

patients personal and clinical characteristics, which are crucial in determining the

risk of HAIs and adverse outcomes in ICU.

Our findings provide a promising evaluation of a better predictive performance

of the SVM algorithm than conventional statistical approaches, suggesting the SVM

as a possible tool to identify and predict patients at higher risk of HAIs at ICU

admission, providing clinicians sufficient time to potentially prevent HAI and miti-

gate its severity, targeting specific infection prevention and control interventions to

high-risk groups in order to improve quality of care. Although further efforts are

needed, predictive models in healthcare systems represent a useful strategy for bet-

ter diagnosis, prognosis and personalized patients management, including preventive

strategies against HAIs.

6.2.2 Early prediction of 7-days mortality in ICU using a

machine learning model

In the present study, we aimed to identify and predict patients at higher risk of

dying, considering their clinical and pathological characteristics at ICU admission

using the data collected during the seven editions of the SPIN-UTI project. The
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primary purpose of this study is to evaluate the ability of the SAPS II to predict the

risk of death after 7 days from their admission to ICU. The secondary purpose is to

develop and test a machine learning algorithm, which combines the SAPS II with

additional patients characteristics, to further improve the predicting performance.

The data augmentation methods used previously were applied in this case study

for a specific subset of the SPIN-UTI dataset.

Definition of SAPS II and other predictors

SAPS II at ICU admission was initially used as the main predictor and its com-

putation included the following components: age; heart rate; systolic blood pres-

sure; temperature; Glasgow Coma Scale; continuous positive airway pressure; PaO2;

FiO2; urine output; blood urea nitrogen; sodium; potassium; bicarbonate; bilirubin;

white Blood Cell; chronic diseases; type of admission. Each component was assessed

within 24 hours from ICU admission and the worst value was recorded. The total

SAPS II was finally computed as the sum of weighted values for each component

[19]. The SPIN-UTI project also collected information on patients who underwent

non-surgical treatment for signs and symptoms related to the acute coronary syn-

drome. Moreover, we defined admission with trauma those resulting from blunt or

penetrating traumatic injury to the patient, with or without surgical intervention.

Instead, impaired immunity was defined as an impairment due to treatment, dis-

eases or < 500PMN/mm3. Finally, we also collected if any antibiotic therapy was

administered in the 48 hours preceding ICU admission and/or during the first two

days of ICU stay. The occurrence of HAI was defined according to a set of clinical

and laboratory criteria that are fully described in the ECDC protocol [103].

Dataset of real records

We first worked only on patients with a complete assessment of the following in-

formation: sex, patients origin, type of ICU admission, non-surgical treatment for

acute coronary disease, surgical intervention, SAPS II, presence of invasive devices

at ICU admission, trauma, impaired immunity, antibiotic therapy in 48 hours before

or after ICU admission and onset of HAI. The primary outcome of the current anal-

ysis was mortality within seven days from ICU admission. Accordingly, the current

analysis included:
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1. patients who stayed in ICU for at least seven days;

2. those who died within two to seven days after ICU admission.

By contrast, patients who stayed in ICU for less than two days and those who

died with the first two days were excluded. Figure 6.5 shows the scheme of the

selection of real records. Specifically, this dataset of real records consisted on a total

of 3782 patients with complete data and meeting the inclusion criteria. The dataset

described above was used for traditional statistical analyses and as test set for the

machine learning algorithm.

Figure 6.5: Selection of records with complete data satisfying inclusion criteria

Dataset of synthetic records

In the current subset of the SPIN-UTI dataset there were 61% (N = 12237) of

records with missing data. As many statistical models and machine learning al-

gorithms rely on complete datasets, it is key to handle the missing data appropri-

ately. Moreover, machine learning algorithms generally requires large datasets to be

trained. For these reasons, we created a dataset of synthetic records that was used

as training set for the machine learning algorithm. Accordingly, we first imputed
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missing data from incomplete records of the original dataset, using the K-Nearest

Neighbor (K-NN) imputation method.

Two cycles of K-NN imputation to the two classes of data (i.e. alive or died

patients) reconstructed 3258 records that satisfied inclusion criteria [29]. Moreover,

synthetic data were generated to balance the two classes of died and alive patients,

using the Synthetic Minority Over-sampling Technique (SMOTE).

The SMOTE alghoritm on 3782 real records, obtained 1131 synthetic records for

the class of died patients. Given that, the dataset of synthetic records, which was

used as the training set, included a total of 4389 records (table 6.3). To confirm the

goodness of the training set, we compared the distributions of primary outcome and

exposure variables with those obtained from the test set (figs. 6.6 to 6.9) and the

Andrews plot of the observations (fig. 5.8).

Methods used for data augmentation are reported in the previous chapter.

Table 6.3: Training set and Test set composition

Training Set Test set

Class 0

(alive

patients)

2596 recovered 2907

Class 1

(dead

patients)

1193 total

662 reconstructed

1131 synthetics

875

Total 4589 3782
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Figure 6.6: Age distribution of training and test set

Figure 6.7: SAPS II distribution of training and test set
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Figure 6.8: Binary variables comparison
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Figure 6.9: Categorical variables of training and test set
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Statistical analysis

All variables of the real dataset were described according to their type and skew-

ness using descriptive statistics (frequencies and percentages [%] or median and

interquartile range [IQR]). In an epidemiological and descriptive point of view, we

compared these variables between dead and alive patients using the Mann-Whitney

U test for quantitative variables and the Chi-Squared test and Chi-Squared for trend

test for qualitative variables. We first used a logistic regression model to evaluate

the association of SAPS II (continuous) with death. Next, we applied a logistic re-

gression model, also including sex (dichotomous), patients origin (categorical: other

ward/healthcare facility, community), type of ICU admission (categorical: medical,

surgical), non-surgical treatment for acute coronary disease (dichotomous), surgical

intervention (dichotomous), presence of invasive devices at ICU admission (three

dichotomous variables for urinary catheter, intubation and central venous catheter,

respectively), trauma (dichotomous), impaired immunity (dichotomous), antibiotic

therapy in 48 hours before or after ICU admission (dichotomous). We also used

Receiver Operating Characteristic (ROC) curves to assess the ability of the logistic

regression models to accurately identify patients who dead from those who did not.

Results were reported in terms of Area Under the Curve (AUC) and 95% Confidence

Interval (95%CI). With respect to the model on SAPS II alone, we identified the

best cut-off value which maximized the Youden Index. For the best cut-off value,

sensitivity and specificity with their 95%CI were calculated. All tests will be per-

formed at a significance level α = 0.05 and statistical analysis will be conducted

using SPSS v.25.

Machine Learning Algorithm

We next compared the predictive performance of 7-day mortality between logis-

tic regression model and a machine learning algorithm. Specifically, the algorithm

combined SAPS II with the following variables collected at ICU admission: sex,

patients origin, type of ICU admission, non-surgical treatment for acute coronary

disease, surgical intervention, presence of intubation, presence of urinary catheter,

presence of central vascular catheter; trauma, impaired immunity, antibiotic therapy

in 48 hours before or after ICU admission. For the current analysis, we chosen the

supervised SVM algorithm as modelling tool, which can be used for classification -
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especially for binary classification - and regression problems. However, our dataset

was not linearly separable, not allowing to satisfy all the constraints of SVM. For

this reason, we used a non-linear Kernel function (i.e., the Gaussian Kernel, also

called as Radial basis function Kernel, RBF). Slack variables with penalty were also

introduced to satisfy all the constraints in the minimization problem of SVM [86].

The SVM model was trained on the training set composed by synthetic records, and

then tested on the test set made of real records. Since patients who developed HAIs

during their ICU stay are generally at higher risk of death, we also tested the SVM

model on those who did not acquire HAIs within seven days from ICU admission.

We also assessed the predictive performance of a SVM model, which included all

variables collected at ICU admission except of SAPS II. Results are reported in

terms of AUC, accuracy, sensitivity, and specificity with their 95%CI. The analyses

were performed using Python and Support Vector Classification (SVC) from Sklearn

0.22.1.

Results

Characteristics of the dataset of real records The current analysis included

3,782 SPIN-UTI participants without missing data (60.2% males), surveyed from

2006 to 2019. In this subsample, the median age was 70.0 years (IQR=20) and

median SAPS II score at admission was 49 (IQR=27). Overall, 70.9% came from

other wards/hospitals and 56.9%, reported a medical type of ICU admission. In

particular, 4.7% and 11.4% of patients reported trauma and/or impaired immunity,

respectively. Patients who underwent antibiotic therapy, surgical intervention or

non-surgical treatment for acute coronary disease were 62.6%, 34.8% and 9.0%,

respectively. With respect to invasive devices, the presence of urinary catheter,

intubation and central venous catheter was reported in 77.0%, 62.4% and 40.5%

patients, respectively. Table 6.4 compares characteristics of patients who died (N =

875; 23.1%) within seven day from ICU admission with those who were still alive

(N = 2907; 76.9%). Specifically, patients who died were older, more likely men, and

with a higher SAPS II than those who did not die. Moreover, they were also more

likely to come from other ward/ healthcare facility and to report a medical type of

ICU admission than those alive. The first group also consisted more of patients who

reported impaired immunity and less traumatic events. Instead, no differences were
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evident for surgical intervention, non-surgical treatment for acute coronary disease,

antibiotic therapy on admission and presence of invasive devices at ICU admission.

Table 6.4: Characteristics of patients with complete data according to their outcome status

Characteristics
Patients

(N=3782)

Dead patients

(N=875)

Alive patients

(N=2907)
p-value

Age, years 70.0 (20.0) 74.0 (17.0) 69.0 (21.0) <0.001

Sex (% male) 60.2% 55.0% 61.7% <0.001

Patient origin

Other ward/healthcare facility 70.9% 70.1% 71.1% <0.001

Community 29.1% 29.9% 28.9%

SAPS II at admission 49.0 (27.0) 59.0 (27.0) 46.0 (25.0) <0.001

Type of ICU admission

Medical 56.9% 59.3% 56.1% <0.001

Surgical 43.1% 40.7% 43.9%

Trauma 4.7% 2.4% 5.4% <0.001

Impaired immunity 11.4% 15.0% 10.3% <0.001

Non-surgical treatment

for acute coronary disease
9.0% 10.2% 8.7% 0.174

Surgical intervention 34.8% 32.5% 35.5% 0.306

Antibiotic therapy in 48h

preceding ICU admission
62.6% 62.2% 62.8% 0.744

Presence of urinary

catheter at ICU admission
77.0% 75.9% 77.4% 0.351

Presence of intubation

at ICU admission
62.4% 61.7% 62.6% 0.646

Presence of central venous

catheter at ICU admission
40.5% 38.5% 41.0% 0.182

Results are reported as median (IQR) for continuous variables, or percentage for categorical

variables. Statistical analyses were performed using MannWhitney test or Chi-squared test.

Applying logistic regression models to predict the risk of 7-day mortality

We first applied a logistic regression model on the dataset of real records, using

SAPS II as the independent and 7-day mortality as the dependent variable. Ac-

cordingly, Figure 6.10 illustrates the accuracy of SAPS II for predicting the risk of

7-day mortality for all patients admitted in ICU. We noted that SAPS II was able to
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discriminate patients who died from those who did not, with AUC of 0.678 (95%CI

= [0.657, 0.700]; p < 0.001) and accuracy of 69.3% (95%CI = [67.8%, 70.8%]). The

coordinates of the ROC curve are reported in table 6.5. Specifically, the best cut-off

value of SAPS II, which maximized the Youden index, was 54.5. The application

of this value resulted in sensitivity of 61.9% (95%CI = [60.4%, 63.4%]) and speci-

ficity of 67.1% (95%CI = [65.6%, 68.7%]). We further applied a logistic regression

model, which combined SAPS II with additional patients characteristics collected

at ICU admission. However, as indicated in figure 6.11, both AUC and accuracy of

this model remained moderate (AUC = 0.637; 95%CI = [0.616, 0.659]; Accuracy =

65.2%; 95%CI = [63.7%, 66.7%]). In line, sensitivity (true positive rate) and speci-

ficity (true negative rate) for death were 49.0% (95%CI = [47.5%, 50.5%]) and 70.0%

(95%CI = [68.5%, 71.5%]), respectively.

Figure 6.10: ROC curves of logistic regression models to predict 7-day mortality using
SAPS alone
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Table 6.5: Coordinates of the ROC curve of logistic regression model with SAPS II alone

SAPS II

values
TPR FPR

SAPS II

values
TPR FPR

SAPS II

values
TPR FPR

1 0.997 0.998 34 0.899 0.751 67 0.333 0.148

2 0.995 0.998 35 0.895 0.729 68 0.318 0.135

3 0.995 0.997 36 0.879 0.708 69 0.303 0.125

4 0.994 0.997 37 0.869 0.688 70 0.293 0.115

5 0.994 0.996 38 0.857 0.672 71 0.272 0.108

6 0.993 0.994 39 0.848 0.649 72 0.258 0.099

7 0.993 0.992 40 0.839 0.628 73 0.247 0.092

8 0.992 0.990 41 0.827 0.604 74 0.224 0.085

9 0.992 0.987 42 0.814 0.582 75 0.211 0.079

10 0.992 0.986 43 0.806 0.561 76 0.197 0.073

11 0.990 0.984 44 0.779 0.539 77 0.178 0.065

12 0.990 0.982 45 0.765 0.521 78 0.161 0.057

13 0.987 0.980 46 0.750 0.501 79 0.152 0.052

14 0.985 0.973 47 0.731 0.479 80 0.144 0.048

15 0.983 0.971 48 0.718 0.461 81 0.131 0.042

16 0.981 0.967 49 0.704 0.440 82 0.121 0.035

17 0.976 0.961 50 0.693 0.422 83 0.104 0.030

18 0.975 0.958 51 0.678 0.404 84 0.095 0.025

19 0.971 0.952 52 0.667 0.387 85 0.087 0.024

20 0.969 0.946 53 0.649 0.369 86 0.072 0.021

21 0.967 0.941 54 0.634 0.347 87 0.064 0.017

22 0.965 0.933 55 0.619 0.329 88 0.055 0.015

23 0.962 0.924 56 0.583 0.306 89 0.050 0.014

24 0.958 0.915 57 0.563 0.289 90 0.048 0.011

25 0.955 0.899 58 0.541 0.272 91 0.039 0.010

26 0.953 0.890 59 0.512 0.258 92 0.035 0.009

27 0.950 0.875 60 0.486 0.245 93 0.031 0.008

28 0.947 0.859 61 0.471 0.231 94 0.025 0.007

29 0.937 0.845 62 0.446 0.212 95 0.025 0.006

30 0.934 0.829 63 0.413 0.200 96 0.023 0.004

31 0.927 0.810 64 0.394 0.187 97 0.018 0.003

32 0.919 0.791 65 0.377 0.172 98 0.016 0.003

33 0.909 0.772 66 0.353 0.159 99 0.011 0.002
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Figure 6.11: ROC curves of logistic regression models to predict 7-day mortality including
sex, patients origin, type of ICU admission, non-surgical treatment for acute coronary
disease, surgical intervention, presence of invasive devices at ICU admission, trauma, im-
paired immunity, antibiotic therapy in 48 hours before or after ICU admission

The SVM algorithm improved the prediction of patients who died Next,

we aimed to develop a machine learning algorithm, which could improve the predic-

tion of 7-day mortality in ICU. To do that, we used the SVM algorithm by combin-

ing SAPS II with other characteristics collected at ICU admission. Interestingly, the

ROC curve of SVM predictive model (figure 6.12) achieved an AUC of 0.896 (95%CI

= [0.881, 0.910]; p < 0.001), with an accuracy of 83.5% (95%CI = [82.4%, 84.7%]).

In line, sensitivity and specificity were 81.0% (95%CI = [79.9%, 82.1%]) and 84.0%

(95%CI = [82.9%, 85.1%]), respectively.
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Figure 6.12: ROC curve of the SVM algorithm to predict 7-day mortality

The SVM algorithm maintained its predictive ability among patients who

did not develop HAIs We also tested the predictive ability of the SVM classifier

among patients who did not develop HAIs within 7 days from ICU admission. To

do that, we removed 520 patients with at least one HAIs from the test set. Inter-

estingly, the model did not depend on the onset of HAI, since both AUC (0.903;

95%CI = [0.881, 0.912]; p < 0.001) and accuracy (83.8%; 95%CI = [82.6%, 85.0%])

remained stable (Figure 3). In line, sensitivity and specificity were comparable to

those obtained in the overall analysis (82.0%; 95%CI = [80.8%, 83.2%]; and 84.0%;

95%CI = [82.8%, 85.2%], respectively).



Chapter 6. Case studies 67

Figure 6.13: ROC curve of the SVM algorithm to predict 7-day mortality, by excluding
infected patients

The predictivie performance of the SVM model by removing SAPS II

The Shapley plot reported in figure 6.14 shows the contribution of each predictors

to the SVM model output in terms of SHAP value. SHAP, which stands for Shap-

ley Additive exPlanations, is an interpretability method based on Shapley values, a

solution concept in cooperative game theory named in honor of Lloyd Shapley, who

introduced it in 1951 [104] and won the Nobel Prize in Economics for it in 2012.

SHAP was introduced by Lundberg and Lee (2017) [105] to explain individual pre-

dictions of any machine learning model. The explanation model is represented by a

linear model — an additive feature attribution method — or just the summation of

present features in the coalition game.

Since SAPS II was the predictor with the highest importance, we finally evaluated

the predictive performance of the classifier after removing SAPS II. Interestingly,

the SVM model without SAPS II led to an AUC of 0.653 (95%CI = [0.632, 0.675];
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p < 0.001), with an accuracy of 68.4% (95%CI = [66.9%, 69.8%]) on the test set

(figure 6.15). Accordingly, sensitivity and specificity decreased to 32.0% (95%CI =

[30.5%, 33.5%]) and 74.0% (95%CI = [72.5%, 75.5%]), respectively.

Figure 6.14: Shapley plot showing the contribution of each predictor to the SVM model
output

Figure 6.15: ROC curve of SVM algorithm predicting 7-day mortality, by excluding SAPS
II score
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Discussion

In past years, numerous early warning scores were developed and employed to mon-

itor and predict patients conditions and severity, as well as their adverse events in

healthcare facilities [6–9]. Among these, SAPS II still represents one of the most

widely used tool to estimate patients risk of death and other adverse outcomes [2,

10–16, 84, 106]. In view of these considerations, we first aimed to evaluate the ac-

curacy of SAPS II alone to identify patients who died within seven days from their

admission in ICUs, using a large dataset from the SPIN-UTI project. Although

AUC obtained was statistically significant, however, the low accuracy of nearly 69%

discouraged the routinely application of SAPS II to achieve this purpose.

Applying novel predictive algorithms, however, could be important to ameliorate

patients safety and management in clinical practice, especially in the ICU setting.

Thus, we hypothesized that combining SAPS II with other variables collected at ICU

admission could improve the prediction of 7-day mortality [97, 98, 103, 107, 108].

Indeed, its now well-established that machine learning algorithms could overcome

the limitations of traditional existing tools, also allowing early prediction of mortal-

ity [6–9, 18–21, 107, 109]. To do that, we developed a SVM model, which combined

SAPS II with the following patients characteristics at ICU admission: sex, patients

origin, type of ICU admission, non-surgical treatment for acute coronary disease,

surgical intervention, presence of invasive devices at ICU admission, trauma, im-

paired immunity, antibiotic therapy in 48 hours before or after ICU admission and

presence of infection in seven days of ICU stay. The model exhibited an AUC of

0.90 with an accuracy of 83.5% on the test set. Interestingly, its predictive perfor-

mance was higher than SAPS II alone and even than a logistic regression model

including additional patients characteristics collected at ICU admission. We also

demonstrated that the performance in predicting 7-day mortality was also similar

in only patients who did not acquired HAIs during their hospitalization.

Overall, our findings underlined the potentially crucial role of machine learning

algorithms in many public health issues, providing clinicians with better diagnos-

tic tools and improving medical care in the next future. The promising benefits of

applying machine learning on healthcare quality rely on the opportunity of making

prevention and diagnosis as early as possible, in a context of precision medicine ap-

plicable to all settings. Indeed, these algorithms if properly applied could overcome
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limitations of existing traditional early warning scores 43-46, 54-60. For instance, a

previous study developed a machine learning algorithm based on vital signs of ICU

patients, such as heart and respiration rate, oxygen saturation and blood pressure.

In particular, the algorithm was able to predict mortality in ICU with an accuracy

of 91.6% REF. Our findings - together with those from other research groups lay

the foundations to develop automated and real-time tools able to identify patients

who need more attention because of their high risk of death.

Our model had several strengths, including the better ability of predicting 7-day

mortality if compared with an early warning score as SAPS II. Moreover, our model

was trained and tested on large datasets obtained through patient-based surveil-

lance, structured and standardized according to ECDC protocol. This should allow

validation and comparison with other European countries. On the other hand, how-

ever, we cannot completely exclude historical bias due to a 14-year period of data

collection. Beyond that, there were other considerations to keep in mind when in-

terpreting our results. The first one was that our findings confirmed the importance

of developing and validating early warning scores to predict the risk of death and

other adverse outcomes in ICUs and other wards. Indeed, although we used several

variables collected at ICU admission, the removal of SAPS II from the model sig-

nificantly reduced the predictive performance. The second consideration was that

machine learning requires a lot of variables and records, which are not always avail-

able in each healthcare settings. Although we used variables that can be easily

collectible at ICU admission (e.g., patients demographic, origin and type of admis-

sion, medical history, and disease severity), a lot of patients had both structural

missing and missing at random data. While the first type of missing data could be

easily managed by improving their collection in the next SPIN-UTI editions (e.g.,

making them mandatory), those that miss at random will continue to exist. This

still remains a common issue encountered when analyzing real-world data. For this

reason, we cannot completely exclude potential bias related to the high proportion

of missing data. To partially manage missing data, we adopted a dual approach to

generate synthetic records from those incomplete. Indeed, we created a dataset of

synthetic records that was used as the training set for our machine learning algo-

rithm. However, while it remains preferable using real data to train the algorithms,
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the comparison between training and test sets showed no significant differences. Fi-

nally, we recognize that our model did not take into account the time component.

Indeed, we used non-temporal variables related to patients characteristics at ICU

admission and 7-day mortality as the main outcome. Thus, it will be our task to

consider a time-series approach (e.g., survival analysis) for improving our model.

With these considerations in mind, to the best of our knowledge, our study is the

first employing the SVM algorithm to discriminate patients who died within seven

days from their ICU admission from those who did not. The model showed good

predictive performance, even though improvable. For this reason, further studies

should be encouraged to develop and validate risk prediction models, which could

help to predict adverse outcome as early as possible, and to improve patient care

globally.
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Chapter 7

Conclusions

It is known that machine learning and visual analytics techniques have been widely

used in the healthcare area, including disease and risk prediction. It is also known

that decision-making responses suffer, in the first place, from the class imbalance

issue and, in the second place, from the general quality of the data in terms of miss-

ingness, bias and significance. These problems have received much attention from

researchers in the fields of medical, fraud detection [110] and bankruptcy prediction

[111]. To deal with these problems, advanced data-driven and machine learning

techniques have been developed constantly.

The data collected in the field of public health over the years, as in the SPIN-UTI

project, suffer particularly from the problems of completeness and balancing. This

work proposes a series of methods to deal the problems of unbalanced and incomplete

datasets together, as well as a tool for visualizing the data in question, as the re-

sult of longitudinal observational studies. The developed visual analytics techniques

prove that the quantitative visualization of data in the form of sequences of related

events leads to a better understanding of the results. In addition, the described data

augmentation methods are effective to improve machine learning calssifiers. In par-

ticular, the 1-NN algorithm for a multivariate data imputation, applied to subsets

divided by outcome of interest, with different metrics and considering the amount of

missing values of each feature of the dataset, results very useful to recover otherwise

unusable data. Furthermore, this method used in conjunction with one of the best

known synthetic oversampling algorithms, represents an application strategy that

allow to generate data in line with real ones, as demonstrated by the case studies,

with the presence of a few duplicate records, which were eliminated without signif-

icantly affecting the total number of reconstructed observations, avoiding bias and
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overfitting issues.

The results of this work show the applicability of the proposed solutions useful

for further improving the public health risk prediction with particular attention to

the risk assessment of HAIs (which as reported by the WHO, the global burden

of HAIs raises up to 15% among all hospitalized patients, with a proportion that

achieves more than 30% in those who stay in ICUs [112–114]). These solutions can

enhance research, surveillance, and intervention levels in public health, thus allowing

to implement more effective evidence-based policies. Furthermore, the described

methods can be used outside of public health and health surveillance domains, since

the problems addressed in the course of the research are common to other fields and

thus provide new insights for future works.
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(Aug. 2018), pp. 38–47. issn: 1120-9135. doi: 10.7416/ai.2018.2233. url:

https://doi.org/10.7416/ai.2018.2233.

[82] “European surveillance of healthcare-associated infections in intensive care

units- HAI-Net ICU protocol- Protocol version 1.02. .” In: (). url: https:

//www.ecdc.europa.eu/sites/default/files/media/en/publications/

Publications/healthcare-associated-infections-HAI-ICU-protocol.

pdf.

[83] M. Barchitta, A. Maugeri, G. Favara, P. M. Riela, G. Gallo, I. Mura, and A.

Agodi. “A machine learning approach to predict healthcare-associated infec-

tions at intensive care unit admission: findings from the SPIN-UTI project”.

In: Journal of Hospital Infection 112 (2021), pp. 77–86. issn: 0195-6701.

doi: https://doi.org/10.1016/j.jhin.2021.02.025. url: https:

//www.sciencedirect.com/science/article/pii/S0195670121000840.
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