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Preface

Decision has inspired reflection of many thinkers since the ancient times.

Often decision is strongly related to the comparison of different points of

view, some in favor and some against a certain decision. This means that

decision is intrinsically related to a plurality of points of view, which tech-

nically are defined criteria. Contrary to this very natural observation, for

many years the only way to state a decision problem was considered to be

the definition of a single criterion, which amalgamates the multidimensional

aspects of the decision situation into a single scale of measure. For exam-

ple, even today this approach can be found in any textbooks of Operations

Research. This is a very reductive, and in some sense also unnatural, way

to look at a decision problem. Thus, for at least thirty years, a new way

to look at decision problems has more and more gained the attention of

researchers and practitioners. This approach explicitly takes into account

the pros and the cons of a plurality of points of view, in other words the

domain of Multiple Criteria Decision Analysis (MCDA). Therefore, MCDA

intuition is closely related to the way humans have always been making de-

cisions. Consequently, despite the diversity of MCDA approaches, methods

and techniques, the basic ingredients of MCDA are very simple: a finite or
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infinite set of actions (alternatives, solutions, courses of action, ...), at least

two criteria, and, obviously, at least one decision-maker (DM). Given these

basic elements, MCDA is an activity which helps making decisions mainly in

terms of choosing, ranking or sorting the actions.

MCDA is not just a collection of theories, methodologies, and techniques, but

a specific perspective to deal with decision problems. Losing this perspective,

even the most rigorous theoretical developments and applications of the most

refined methodologies are at risk of being meaningless, because they miss an

adequate consideration of the aims and of the role of MCDA. A fundamen-

tal problem of MCDA is the representation of preferences. Classically, for

example in economics, it is supposed that preference can be represented by

a utility function assigning a numerical value to each action such that the

more preferable an action, the larger its numerical value. Moreover, it is very

often assumed that the comprehensive evaluation of an action can be seen as

the sum of its numerical values for the considered criteria. Let us call this

the classical model. It is very simple but not too realistic. Indeed, there is

a lot of research studying under which conditions the classical model holds.

These conditions are very often quite strict and it is not reasonable to assume

that they are satisfied in all real world situations. In the last years many

non-classical approaches have been proposed in MCDA. This thesis focuses

on MCDA methods based on fuzzy integrals. These methods are known in

MCDA for the last two decades. In very simple words this methodology

permits a flexible modeling of the importance of criteria. Indeed, fuzzy in-

tegrals are based on a capacity which assigns an importance to each subset

of criteria and not only to each single criterion. Thus, the importance of a
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given set of criteria is not necessarily equal to the sum of the importance of

the criteria from the considered subset. Consequently, if the importance of

the whole subset of criteria is smaller than the sum of the importances of its

individual criteria, then we observe an average redundancy between criteria,

which in some way represents overlapping points of view. On the other hand,

if the importance of the whole subset of criteria is larger than the sum of the

importances of its members, then we observe an average synergy between

criteria, the evaluations of which reinforce one another. On the basis of the

importance of criteria measured by means of a capacity, the criteria are ag-

gregated by means of specific fuzzy integrals, the most important of which

are the Choquet integral (for cardinal evaluations) and the Sugeno integral

(for ordinal evaluations).

The proposal and the axiomatization of new fuzzy integrals has a central

role in modern MCDA. In this thesis we propose some generalizations of well

known fuzzy integrals (Choquet, Shilkret and Sugeno). This thesis is thought

to make each chapter independent of the others, so they can be read in any

order or selected to suit different interests. No general conclusion are given

since any chapter contains proper conclusions.

Chapter 1 is a brief survey of the methodology based on fuzzy integrals in

MCDA. In chapter 2 we propose and characterize bipolar fuzzy integrals,

which are generalization of the most famous fuzzy integrals to the case of

bipolar scale, i.e. those symmetric scale where it is possible for each value to

find the opposite. Cardinal bipolar scales are intervals [−a, a], ] − ∞,+∞[,
while an example of an ordinal bipolar scale is: very bad, bad, neutral, good,

very good. In chapter 3 we deal with the generalization of the concept of
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universal integral (recently proposed to generalize several fuzzy integrals) to

the case of bipolar scales. We also provide the characterization of the bipo-

lar universal integral with respect to a level dependent bi-capacity. Finally,

in chapter 4 we consider the problem to adapt classical definitions of fuzzy

integrals to the case of imprecise interval evaluations. More precisely, stan-

dard fuzzy integrals used in MCDA request that the starting evaluations of

a choice on various criteria must be expressed in terms of exact-evaluations.

In this last chapter we present the robust Choquet, Shilkret and Sugeno

integrals, computed with respect to an interval capacity. These are quite

natural generalizations of the Choquet, Shilkret and Sugeno integrals, useful

to aggregate interval-evaluations of choice alternatives into a single over-

all evaluation. We show that, when the interval-evaluations collapse into

exact-evaluations, our definitions of robust integrals collapse into the previ-

ous definitions. We also provide an axiomatic characterization of the robust

Choquet integral. The approach of robust integral promises interesting de-

velopments for future researches, this further improvement is based to the

generalization of the concept of interval to h−interval. We shall close the

thesis by briefly discussing this last approach.
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Chapter 1

Fuzzy measures and integrals in

MCDA

Grabisch and Labreuche have exhaustively discussed the use of fuzzy

measures and integrals in MCDA in literature [16, 17], to which we refer for

this chapter.

The aim of MCDA is to model the preferences of a Decision Maker (DM) over

a set of possible alternatives X = {x ,y ,z , . . .} described by several points of

view, called criteria N = {1,2, . . . , n}. Thus, an alternative x is characterized

by an evaluation xi ∈ Xi, i = 1, . . . , n (not necessarily numerical) w.r.t. each

point of view and can be identified with a score vector x = (x1, . . . , xn). We

denote by ⪰ the preference relation of the DM over alternatives, then x ⪰ y

means that the DM prefers the alternative x to y . In order to come up

with the knowledge of ⪰ on X ×X, some informations must be elicited from

the DM. This elicitation process should request a relatively small amount

of questions asked to the DM. The DM provides informations by means of
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examples of comparisons between alternatives, as well as more qualitative

judgments. A numerical representation [33] of the preference ⪰ is obtained

whenever there exists a function u ∶ X → R such that

∀x ,y ∈X, x ⪰ y iff u(x) ≥ u(y). (1.1)

We focus on a special model of (1.1) called decomposable [29] given by:

u(x) = F (u1(x1), . . . , un(xn)), (1.2)

where the ui are the utility functions and F ∶ Rn
→ R is an aggregation func-

tion. Krantz et al. [33] (see also [23]) gave the axioms that characterize the

representation of ⪰ by (1.2). The weighted sums F (u1, . . . , un) = ∑n
1 αiui are

the most classical functions used to aggregate the criteria. These family of

aggregation operators are characterized by an independence axiom [29, 49].

This property implies some limitations in the way the weighted sum can

model typical decision behaviors. To make this more precise, we shall provide

an example. The construction of the utility functions and the determination

of the parameters of the aggregation function are often carried out in two

separate steps.

The determination of the utility function is also concerned with commen-

surateness between criteria, i.e. the possibility to compare any element of

one point of view with any element of any other point of view. This is

inter-criteria comparability:

For xi ∈Xi and xj ∈Xj, we have ui(xi) ≥ uj(xj) iff xi is considered
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at least as good as xj by the DM.

This assumption is very strong. By the way of an example, assuming as

criteria to buy a car consumption and maximal speed, the DM should be

able to say if she prefers a consumption of 5 liters/100km to a maximum

speed of 200 km/h. This does not generally make sense to the DM, so that

he or she is not generally able to make this comparison directly.

1.1 Notion of Interaction – A Motivating Ex-

ample

In [16] the authors provide the following example to explain the importance

of interaction of criteria and to show some flaws of the weighted sum. The

director of a university decides on students who are applying for graduate

studies in management where some prerequisites from school are required.

Students are indeed evaluated according to mathematics, statistics and lan-

guage skills. All the marks with respect to the scores are given on the same

scale from 0 to 20. These three criteria serve as a basis for a preselection

of the candidates. The applicants have generally speaking a strong scientific

background so that mathematics and statistics have a big importance to the

director. However, he does not wish to favor too much students that have

a scientific profile with some flaws in languages. Besides, mathematics and

statistics are in some sense redundant, since, usually, students good at math-

ematics are also good at statistics. As a consequence, for students good in

mathematics, the director prefers a student good at languages to one good
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at statistics. Consider the following four students

Mathematics Statistics Language

student A 16 13 7

student B 16 11 9

student C 6 13 7

student D 6 11 9

Student A is highly penalized by his performance in languages. Henceforth,

the director would prefer the student B which has the same mark in mathe-

matics but is a little bit better in languages even if he is a little bit worse in

statistics. Consider now students C and D. Both of them have a weakness in

mathematics. In this case, since the applicants are supposed to have strong

scientific skills, the student C which is good in statistics is now preferred

to the student D, good in languages. The director preferences, B ⪰ A and

C ⪰D, lead to the following requirement

F (16,13,7) < F (16,11,9) and F (6,13,7) > F (6,11,9).

No weighted sum can model such preferences, since the preference of B over

A implies that languages is more important than statistics whereas the pref-

erence of C over D tells exactly the contrary.

1.2 Capacities and Choquet Integral

The above example suggests that to explain the director preferences we

should assign weights not only to the single criteria, but also to the coalitions
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(i.e. groups, subsets) of criteria. This can be achieved by introducing partic-

ular functions on P(N), called fuzzy measures [47] or capacities [43]. A fuzzy

measure or capacity is a set function µ ∶ 2N → R such that µ(∅) = 0, µ(N) = 1

and satisfying the monotonicity condition: if A ⊆ B, then µ(A) ≤ µ(B), for
all A,B ∈ P(N). The capacity is said to be additive if µ(A∪B) = µ(A)+µ(B),
whenever A ∩B = ∅. The Choquet integral [7] of x = (x1, . . . , xn) ∈ Rn w.r.t.

a capacity µ has the following expression :

Ch(x , µ) = ∫ 0

−∞

[µ{i ∣ xi ≥ t} − 1]dt +∫
∞

0

µ{i ∣ xi ≥ t}. (1.3)

Note that when the capacity is additive, the Choquet integral reduces to

a weighted sum. The preference of the DM are modeled via the Choquet

integral if

∀x ,y ∈X, x ⪰ y iff Ch(x , µ) ≥ Ch(y , µ). (1.4)

Obviously in the (1.4) and according with the (1.2) we have supposed that

the component xi of the vector x are expressed n terms of utility. It is easy

to see that the use of the (1.4) applied to the above example of student evalu-

ation allows for a simple explanation. Indeed, the preferences of the director

correspond to 2µ(Mat,Sta)> µ(Mat)+1 and 2µ(Stat) > µ(Stat,Lang). There
is no contradiction between previous two inequalities, hence the Choquet

integral can model the preferences of the DM. For other properties and char-

acterizations of the Choquet integral, we refer the reader to survey papers

[35].
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1.3 Conclusions

In the last thirty years several non-additive fuzzy integrals have been

developed in MCDA. We recall the Choquet and Shilkret integral (for the

cardinal case) and the Sugeno integral (for the ordinal case) among others.

In this chapter we have described the Choquet integral in order to show its

potentiality in the context of MCDA. In the next chapters we shall present

other fuzzy integrals together with their relevant, old and new, generaliza-

tions.
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Chapter 2

Bipolar Fuzzy Integrals

2.1 Introduction

The basic reference for this chapter is [25]. In decision analysis and espe-

cially in multiple criteria decision analysis, several non additive integrals have

been introduced in the last sixty years [8, 10, 16]. Among them, we remember

the Choquet integral [7], the Shilkret integral [45] and the Sugeno integral

[47]. Recently the bipolar Choquet integral [14, 15, 22] has been proposed

for the case in which the underlying scale is bipolar. A further generalization

is that of level dependent integrals, which has lead to the definition of the

level dependent Choquet integral [21], the level dependent Shilkret integral

[4], the level dependent Sugeno integral [37] and the bipolar level dependent

Choquet integral [21]. Very recently, on the basis of a minimal set of axioms,

one concept of universal integral giving a common framework to many of the

above integrals have been proposed [32]. In this chapter we aim to provide a

general framework for the case of bipolar fuzzy integrals, i.e. those integrals

14



whose underlying scale is bipolar. For this purpose we propose the definition

of bipolar Shilkret integral and bipolar Sugeno integral. Then, in order to

provide a mathematical characterization of the three mentioned bipolar inte-

grals, we give necessary and sufficient conditions for an aggregation function

to be the bipolar Choquet integral or the bipolar Shilkret integral or the

bipolar Sugeno integral. As we said, the bipolar fuzzy integrals admit a fur-

ther generalization if the fuzzy measure (capacity) with respect to which the

integrals are calculated can change from a level to another [21, 20]. For the

sake of clarity, we shall remind the characterization of the bipolar Shilkret

and Sugeno integral with respect to a level dependent capacity in a forth-

coming paper (we wish to remember as such results have just been presented

in [20]). The chapter is organized as follows. In section 2.2 we give the

preliminaries and list some properties of an aggregation function useful to

the characterization of the bipolar fuzzy integrals we shall propose in this

chapter. In section 2.3 we review the definitions and characterizations of

the classical Choquet integral, Shilkret integral, Sugeno integral and some

of their symmetric extensions on a bipolar scale. In section 2.4 we give our

main results: first we propose the bipolar version of the Shilkret integral and

of the Sugeno integral; next we characterize the bipolar Choquet, Shilkret

and Sugeno integrals. All the proofs are presented in section 2.5. Section 2.6

contains conclusions.
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2.2 Preliminaries

Let us consider a set of criteria N = {1, . . . , n} and let us suppose that

the range of evaluation of given criteria is a real numbers interval I. We

denote α = inf I and β = supI. An alternative can be identified with a score

vector x = (x1, . . . , xn) ∈ In, being xi the evaluation of such an alternative x

with respect to the ith criterion. An alternative x dominates another y if on

each criterion the evaluation of x is not smaller than the evaluation of y , i.e.

for all i ∈ N , xi ≥ yi and in this case we simply write x ≥ y . The indicator

function of any A ⊆ N is the function which attains 1 on A and 0 on N ∖A

and can be identified with the vector 1A whose ith component is equal to 1

if i ∈ A and 0 otherwise.

In general, an aggregation function is a function G ∶ In
→ I such that

1. G(α, . . . , α) = α if α ∈ I and limx→α+G(x, . . . , x) = α if α ∉ I;
2. G(β, . . . , β) = β if β ∈ I and limx→β−G(x, . . . , x) = β if β ∉ I;
3. for all x ,y ∈ In such that x ≥ y , G(x) ≥ G(y).

In this chapter we often denote the maximum and the minimum of a set

X respectively with ⋁X and ⋀X. For any two alternatives x ,y ∈ In, the

following definitions hold

• x ∧ y is the vector whose ith component is (x ∧ y)i = ⋀{xi, yi} for all

i = 1, . . . , n (in case y = (h, . . . , h) is a constant, then we can write

x ∧ h);

• x ∨ y is the vector whose ith component is (x ∨ y)i = ⋁{xi, yi} for all
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i = 1, . . . , n (in case y = (h, . . . , h) is a constant, then we can write

x ∨ h);

• x and y are comonotone (or comonotonic) if (xi − xj)(yi − yj) ≥ 0 for

all i, j ∈ N ;

• x and y are bipolar comonotone if (∣xi∣−∣xj ∣)(∣yi∣−∣yj ∣) ≥ 0 and xiyi ≥ 0,

for all i, j ∈ N .

The following properties of an aggregation function G ∶ In
→ I are useful to

characterize several integrals:

• idempotency: for all a ∈ In such that a = (a, . . . , a), G(a) = a;

• homogeneity: for all x ∈ In and c > 0 such that c ⋅ x ∈ In, G(c ⋅ x) =
c ⋅ G(x);

• stability w.r.t. the minimum: for all x ∈ In and γ ∈ I, G(x ∧ γ) =
⋀{G(x), γ};

• additivity: for all x ,y ∈ In such that x+y ∈ In, G(x+y) = G(x)+G(y);
• maxitivity: for all x ,y ∈ In, with α ≥ 0, G(x ∨ y) = ⋁{G(x),G(y)};
• minitivity: for all x ,y ∈ In, with β ≤ 0, G(x ∧ y) = ⋀{G(x),G(y)};
• comonotonic additivity: for all comonotone x ,y ∈ In, G(x + y) =
G(x) + G(y);

• comonotonic maxitivity: for all comonotone x ,y ∈ In, G(x ∨ y) =
⋁{G(x),G(y)};
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• comonotonic minitivity: for all comonotone x ,y ∈ In, G(x ∧ y) =
⋀{G(x),G(y)};

2.3 Fuzzy integrals

In this section we briefly review the three most famous fuzzy integrals,

i.e. the Choquet, Shilkret and Sugeno integrals and some of their symmetric

extensions. For each of them we shall discuss the restrictions to be imposed

on the scale I.

2.3.1 The Choquet integral

Definition 1. A capacity (or fuzzy measure) is function µ ∶ 2N → [0,1]
satisfying the following properties:

1. µ(∅) = 0, µ(N) = 1,

2. for all A ⊆ B ⊆ N, µ(A) ≤ µ(B).

Definition 2. The Choquet integral [7] of a vector x = (x1, . . . , xn) ∈ In ⊆
[0,+∞ [n with respect to the capacity µ is given by

Ch(x, µ) = ∫ ∞

0

µ ({i ∈ N ∶ xi ≥ t})dt. (2.1)

Schmeidler [43] extended the above definition to negative values too, more-

over he characterized the Choquet integral in terms of comonotonic additivity

and idempotency.
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Definition 3. [43] The Choquet integral of a vector x = (x1, . . . , xn) ∈ In with

respect to the capacity µ is given by

Ch(x, µ) = ∫ 0

−∞

(µ ({i ∈ N ∶ xi ≥ t}) − 1)dt + ∫
∞

0

µ ({i ∈ N ∶ xi ≥ t})dt. (2.2)

Alternatively (2.2) can be written as [21]

Ch(x , µ) = ∫ maxi xi

mini xi

µ ({i ∈ N ∶ xi ≥ t})dt + min
i

xi. (2.3)

Another formulation of (2.2) can be obtained, by using the summation, as

Ch(x , µ) = n

∑
i=2

(xσ(i) − xσ(i−1)) ⋅ µ ({j ∈ N ∶ xj ≥ xσ(i)}) + xσ(1), (2.4)

being σ ∶ N → N any permutation of indexes such that xσ(1) ≤ . . . ≤ xσ(n).

Theorem 1. [43] An aggregation function G ∶ In
→ I is idempotent and

comonotone additive if and only if there exists a capacity µ such that, for all

x ∈ In,

G(x) = Ch(x, µ).
The Šipoš integral [46] (or symmetric Choquet integral) of x ∈ In with respect

to the capacity µ is defined by

Čh (x , µ) = Ch(x ∨ 0, µ) − Ch(−(x ∧ 0), µ). (2.5)

More in general, a functional L ∶ In
→ I is a rank and sign-dependent func-
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tional [39] if there exist two fuzzy measures µ+ and µ− such that for all x ∈ In

L(x) = Ch(x ∨ 0, µ+) − Ch(−(x ∧ 0), µ−).

This functional is used in the cumulative prospect theory [48]. Clearly when

µ+ = µ−, the rank and sign-dependent functional L is exactly the symmet-

ric Choquet integral. For further details on the rank and sign-dependent

functional and its use in cumulative prospect theory, we refer the reader to

[48, 39]. We wish also to remember that Choquet integral is generalized and

characterized in [2, 3].

2.3.2 The Shilkret integral

Definition 4. The Shilkret integral [45] of a vector x = (x1, . . . , xn) ∈ In ⊆
[0,+∞ [n with respect to the capacity µ is given by

Sh(x, µ) = ⋁
i∈N

{xi ⋅ µ({j ∈ N ∶ xj ≥ xi})} . (2.6)

A generalization of the Shilkret integral is introduced and characterized in

[2, 3]. From the cited papers we can get a characterization of the Shilkret

integral in terms of idempotency, comonotonic maxitivity and homogeneity.

For the sake of completeness we report the proof of such a characterization

(Theorem 2) in section 2.5.

Theorem 2. Suppose that α = inf I ≥ 0, then an aggregation function G ∶

In
→ I is idempotent, comonotone maxitive and homogeneous if and only if
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there exists a capacity µ on N such that, for all x ∈ In,

G(x) = Sh(x, µ).

Although in [45] the Shilkret integral was formulated for nonnegative func-

tions, however (2.6) works also for a generic x ∈ In ⊆ Rn. But, in our opinion,

if we allow for negative values too, the essence of the Shilkret integral is lost.

Let us stress this point with some examples. Suppose that an alternative

is strongly negatively evaluated on each criterion except on the last, where

it has a low nonnegative evaluation, e.g. x = (−100,−100,−100,1). By ap-

plying (2.6), Sh (x , µ) = µ ({4}), for every capacity µ. Thus, the negative

evaluations and the weights that the capacity assigns to the relative criteria

with respect to which these negative evaluations are given, are ininfluent on

the evaluation of x . In general, if for a given alternative x we have simulta-

neously negative and positive evaluations on the various criteria, the negative

ones are ininfluent and the Shilkret integral of x coincides with the Shilkret

integral of x ∨ 0. In the case of x ∈ ] − ∞,0[n it is straightforward noting

that Sh (x , µ) = (maxi∈N xi) ⋅ µ ({j ∈ N ∣ xj ≥maxi∈N xi}). Again, we note

how for all capacities only the maximum evaluation of x matters. For vec-

tors with non-positive evaluation on each criterion, the logic of the Shilkret

integral can be recovered if in the (2.6) we substitute the maximum with the

minimum and ≥ with ≤.

Definition 5. The negative Shilkret integral of a vector x = (x1, . . . , xn) ∈
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In ⊆ ] − ∞,0]n with respect to the capacity µ is given by

Sh−(x, µ) = ⋀
i∈N

{xi ⋅ µ({j ∈ N ∶ xj ≤ xi})} =

− ⋁
i∈N

{−xi ⋅ µ({j ∈ N ∶ −xj ≥ −xi})} = −Sh(−x, µ). (2.7)

Obviously, from theorem 2, the characterization of the negative Shilkret in-

tegral is in terms of idempotency, comonotonic minitivity and homogeneity.

Corollary 1. Suppose that β = supI ≤ 0, then an aggregation function G ∶

In
→ I is idempotent, comonotone minitive and homogeneous if and only if

there exists a capacity µ on N such that, for all x ∈ In,

G(x) = Sh−(x, µ).

So far, we have a Shilkret integral for alternatives with all non-negative

evaluations and one for alternatives with all non-positive evaluations. To

obtain a suitable definition of the Shilkret integral for the mixed case we

propose two different approaches. In the first approach we define a symmetric

Shilkret integral by applying a logic à la Šipoš [46], i.e. for all x ∈ I

Šh (x , µ) = Sh(x ∨ 0, µ) + Sh−(x ∧ 0, µ). (2.8)

Note that the (2.8) is called symmetric since Šh (x , µ) = −Šh (−x , µ). A

second, more general, approach will be to define a bipolar Shilkret integral

(see next section). This would be used directly for the bipolar scale, while
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restricted on R+ and on R− it would coincide respectively with the Shilkret

integral and the negative Shilkret integral.

2.3.3 The Sugeno integral

Definition 6. A measure on N with a scale I is any function ν ∶ 2N → I
such that:

1. ν(∅) = α = inf I, ν(N) = β = supI,
2. for all A ⊆ B ⊆ N, ν(A) ≤ ν(B).

Definition 7. The Sugeno integral [47] of a vector x = (x1, . . . , xn) ∈ In with

respect to the measure ν on N with scale I is given by

Su(x, ν) = ⋁
i∈N

⋀{xi, ν ({j ∈ N ∣ xj ≥ xi})} . (2.9)

Alternatively the Sugeno integral can be written as

Su(x , ν) = ⋁
A⊆N

⋀{ν(A),⋀
i∈A

xi} . (2.10)

Next theorem gives necessary and sufficient conditions for an aggregation

function to be the Sugeno integral.

Theorem 3. [36] An aggregation function G ∶ In
→ I is idempotent, comono-

tone maxitive and stable with respect to the minimum if and only if there

23



exists a measure ν on N with a scale I such that, for all x ∈ In,

G(x) = Su(x, ν).

Let us observe that the definition of the Sugeno integral only imposes that

the xi and the ν(A) are measured on the same (possible only ordinal) scale

I. For further generalization and characterization of the Sugeno integral see

[2, 3].

Let us consider the symmetric scale [−1,1]. The symmetric maximum of two

elements a, b ∈ [−1,1] - introduced and discussed in [11, 12] - is defined by

the following binary operation:

a6 b =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

− (∣a∣ ∨ ∣b∣) if b ≠ −a and either ∣a∣ ∨ ∣b∣ = −a or = −b

0 if b = −a

∣a∣ ∨ ∣b∣ else.

Alternatively the symmetric maximum can be written as

a6 b = sign(a + b)(∣a∣ ∨ ∣b∣).

The symmetric minimum of two elements [11, 12] is defined as:

a7 b =
⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

− (∣a∣ ∧ ∣b∣) if sign(b) ≠ sign(a)

∣a∣ ∧ ∣b∣ else.

Alternatively the symmetric minimum of a, b ∈ R can be written as
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a7 b = sign(a ⋅ b)(∣a∣ ∧ ∣b∣).

Suppose that µ ∶ 2N → [0,1] is a capacity and x ∈ [−1,1]n is a vector

evaluated on each criterion on the symmetric scale [−1,1]. The symmetric

Sugeno integral [11] of x is defined as

Šu (x , µ) = (Su(x ∨ 0, µ)) 6 (−Su((−x) ∨ 0, µ)) . (2.11)

In (2.11), as before in (2.8), symmetric means that Šu (x , µ) = −Šu (−x , µ).
Clearly if xi ≥ 0 for all i ∈ N , Šu (x , µ) = Su(x , µ), while if xi ≤ 0 for all i ∈ N ,

Šu (x , µ) = ⋀
i∈N

⋁{xi,−ν ({j ∈ N ∣ xj ≤ xi})} . (2.12)

(2.12) can be considered as a definition of a negative Sugeno integral, for the

case in which x is negatively evaluated on each criterion.

In [41] the notion of symmetric Sugeno integral has been extended.

Definition 8. A functional L ∶ [−1,1]n → [−1,1] is a fuzzy rank and sign-

dependent functional if there exist two fuzzy measures µ+ and µ− such that

for all x ∈ [−1,1]n

L(x) = (Su(x ∨ 0, µ+)) 6 (−Su((−x) ∨ 0, µ−)) . (2.13)

Clearly when µ+ = µ−, the fuzzy rank and sign-dependent functional L is

exactly the symmetric Sugeno integral. For further details on the fuzzy rank

and sign-dependent functional and on the symmetric Sugeno integral we refer
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the reader to [11, 41].

In the next section we shall propose a more general approach, defining a bipo-

lar Sugeno integral, which restricted on R+ and on R− coincides respectively

with the (7) and the (2.12).

2.4 Bipolar fuzzy integrals on the scale [-1,1]

The present work is devoted to the study of bipolar fuzzy integrals, i.e.

those integrals useful when the scale underlying the alternatives evaluation

is bipolar. For the sake of simplicity, trough this section we shall adopt the

bipolar scale [−1,1] to present our results. However, without loss of the gen-

erality, they can be extended to every other symmetric interval of R, i.e. any

of [−α,α], ] − α,α[, ] − ∞,+∞[, where α ∈ R+.
Let us consider the set Q = {(A,B) ∈ 2N × 2N ∶ A ∩ B = ∅} of all disjoint

pairs of subsets of N . With respect to the binary relation (A,B) ≾ (C,D) iff

A ⊆ C and B ⊇ D, Q is a lattice, i.e. a partial ordered set in which any two

elements have a unique supremum, (A,B) ∨ (C,D) = (A ∪ C,B ∩ D) , and a

unique infimum, (A,B)∧(C,D) = (A ∩ C,B ∪ D). For all (A,B), (C,D) ∈ Q
if A ⊆ C and B ⊆D, we simply write (A,B) ⊆ (C,D). For all (A,B) ∈ Q the

indicator function 1(A,B) ∶ N → {−1,0,1} is the function which attains 1 on

A, -1 on B and 0 on (A ∪ B)c. Such a function can be identified with the

vector 1(A,B) whose ith component is equal to 1 if i ∈ A, is equal to −1 if i ∈ B
and is equal to 0 otherwise.

In [38] it has been shown that the symmetric maximum 6 ∶ [−1,1]×[−1,1]→
[−1,1] coincides with two recent symmetric extensions of the Choquet inte-
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gral, the balancing Choquet integral and the fusion Choquet integral, when

they are computed with respect to the strongest capacity (i.e. the capac-

ity ν ∶ 2N → [0,1] which attains zero on the empty set and one elsewhere).

However, the symmetric maximum of a set X cannot be defined, being >

non associative; e.g, suppose that X = {3,−3,2}, then (36 −3) 6 2 = 2 or

36 (−36 2) = 0, depending on the order. Several possible extensions of the

symmetric maximum for dimension n,n > 2 have been proposed (see [12, 18]

and also the related discussion in [38]). One of these extensions is based on

the splitting rule applied to the maximum and to the minimum as described

in the following. Given X = {x1, . . . , xm} ⊆ R, the bipolar maximum of X,

shortly ⋁bX, is defined as:

⋁b
X =

m

⋁
i

bxi = (m

⋁
i

xi) > (m

⋀
i

xi) . (2.14)

The following definitions are closely related to the above discussion.

Definition 9. Given X = {x1, . . . , xm} ⊆ R, the positive bipolar maximum

of X, shortly ⋁b+X, is the element with the greatest absolute value, with

the convention that, in the case of two different opposite elements with this

property, we choose the non-negative.

Definition 10. Given X = {x1, . . . , xm} ⊆ R, the negative bipolar maximum

of X, shortly ⋁b−X, is the element with the greatest absolute value, with

the convention that, in the case of two different opposite elements with this

property, we choose the non-positive.

Following these definitions, if X = {9,−9,7,−3} thus, ⋁bX = 0, ⋁b+X = 9 and

⋁b−X = −9. Clearly the three operators just defined are linked by means of
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the relation: ⋁bX = ⋁b {⋁b+X,⋁b−X}.
Given the vectors x 1, . . . ,x k ∈ [−1.1]n withK = {1, . . . , k}, ⋁b

j∈K
x j is the vector

whose ith component is ⋁b{x1

i , . . . , x
k
i } for all i = 1, . . . , n.

The following properties of an aggregation function G ∶ [−1,1]n → [−1,1] are
useful to characterize several bipolar integrals.

• bipolar comonotonic additivity: for all bipolar comonotone x , y ∈
[−1,1]n,

G(x + y) = G(x) + G(y);

• bipolar stability of the sign: for all r, s ∈]0,1] and for all (A,B) ∈ Q,

G(r1A,B)G(s1A,B) > 0 or G(r1A,B) = G(s1A,B) = 0,

i.e., in simple words, G(r1(A,B)) and G(s1(A,B)) have the same sign;

• bipolar stability with respect to the minimum: for all r, s ∈]0,1] such

that r > s, and for all (A,B) ∈ Q, ∣G(r1(A,B))∣ ≥ ∣G(s1(A,B))∣ and,
moreover,

if ∣G(r1(A,B))∣ > ∣G(s1(A,B))∣ then ∣G(s1(A,B))∣ = s.

2.4.1 A specific property: bipolar comonotone maxi-

tivity

With a slight abuse of notation we extend the relation of set inclusion

to Q, by defining (A,B) ⊆ (C,D) if and only if A ⊆ C and B ⊆ D, for all
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(A,B), (C,D) ∈ Q. Let us suppose to have k different levels l1, . . . , lk ∈ R with

0 < l1 < l2 < . . . < lk ≤ 1 and a sequence {(Ai,Bi)}i=1,...,k such that (Ai,Bi) ∈ Q
for all i = 1, . . . , k and (Ai+1,Bi+1) ⊆ (Ai,Bi) for all i = 1, . . . , k − 1. The

vectors li ⋅ 1(Ai,Bi), i = 1, . . . , k are bipolar comonotonic and, moreover, by

ordering them with respect to the level li, then in the vector li ⋅ 1(Ai,Bi), for

each component the elements under the level li are the opposite of that under

the level −li. See for example the four vectors

x = (7,−7, 0, 0)
y = (5,−5, 5, 0)
w = (3,−3, 3,−3)
z = (2,−2, 2,−2).

An aggregation function G is said to be bipolar comonotone maxitive if it

is maxitive on such a type of bipolar comonotonic bi-constants, i.e. if fixed

K = {1, . . . , k} it holds:

G(⋁
i∈K

b
li ⋅ 1(Ai,Bi)) = ⋁

i∈K

b
G (li ⋅ 1(Ai,Bi)). (2.15)

G is said to be right bipolar comonotone maxitive if

G(⋁
i∈K

b+

li ⋅ 1(Ai,Bi)) = ⋁
i∈K

b+

G (li ⋅ 1(Ai,Bi)). (2.16)

G is said to be left bipolar comonotone maxitive if

G(⋁
i∈K

b−

li ⋅ 1(Ai,Bi)) = ⋁
i∈K

b−

G (li ⋅ 1(Ai,Bi)). (2.17)
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Clearly, due to bipolar comonotonicity, in equations (2.15)-(2.17):

⋁
i∈K

b
li ⋅ 1(Ai,Bi) = ⋁

i∈K

b+

li ⋅ 1(Ai,Bi) = ⋁
i∈K

b−

li ⋅ 1(Ai,Bi).

2.4.2 The bipolar Choquet integral

Definition 11. A function µb ∶ Q → [−1,1] is a bi-capacity [14, 15, 22] on

N if

• µb(∅,∅) = 0, µb(N,∅) = 1 and µb(∅,N) = −1;

• µb(A,B) ≤ µb(C,D) ∀ (A,B), (C,D) ∈ Q such that (A,B) ≾ (C,D).

Definition 12. The bipolar Choquet integral of x = (x1, . . . , xn) ∈ [−1,1]n
with respect to the bi-capacity µb is given by [14, 15, 22, 21]:

Chb(x, µb) = ∫ ∞

0

µb({i ∈ N ∶ xi > t},{i ∈ N ∶ xi < −t})dt. (2.18)

The bipolar Choquet integral of x = (x1, . . . , xn) ∈ [−1,1]n with respect to

the bi-capacity µb can be rewritten as

Chb(x , µb) = n

∑
i=1

(∣xσ(i)∣ − ∣xσ(i−1)∣)µb({j ∣ xj ≥ ∣xσ(i)∣},{j ∣ xj ≤ −∣xσ(i)∣}),
(2.19)

being σ ∶ N → N any permutation of index such that 0 = ∣xσ(0)∣ ≤ ∣xσ(1)∣ ≤ . . . ≤
∣xσ(n)∣. Note that to ensure that the pair ({j ∈ N ∶ xj ≥ ∣t∣},{j ∈ N ∶ xj ≤ −∣t∣})
is an element of Q for all t ∈ R, we adopt the convention - which will be
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maintained trough all the chapter - that in the case of t = 0 the inequality

xj ≤ 0 is to be understood as xj < 0. The formulation (2.19) will be useful in

proving some results, like that exposed in the next representation theorem.

Theorem 4. [22] An aggregation function G ∶ [−1,1]n → [−1,1] is idempotent

and bipolar comonotonic additive if and only if there exists a bi-capacity µb

such that, for all x ∈ [−1,1]n,

G(x) = Chb(x, µb).

Remark 1. Although the bipolar Choquet integral is trivially homogeneous,

this condition does not appear in the theorem, since an aggregation function

which is idempotent and bipolar comonotone additive is also homogeneous.

Observe also that we could relax idempotency with the conditions G(1(N,∅)) =
1 and G(1(∅,N)) = −1.

2.4.3 The bipolar Shilkret integral

Definition 13. The bipolar Shilkret integral of x = (x1, . . . , xn) ∈ [−1,1]n
with respect to the bi-capacity µb is given by:

Shb(x, µb) = ⋁
i∈N

b {∣xi∣ ⋅ µb({j ∈ N ∶ xj ≥ ∣xi∣},{j ∈ N ∶ xj ≤ −∣xi∣})} . (2.20)

Definition 14. The right bipolar Shilkret integral of

x = (x1, . . . , xn) ∈ [−1,1]n
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with respect to the bi-capacity µb is given by:

Sh+b (x, µb) = ⋁
i∈N

b+ {∣xi∣ ⋅ µb({j ∈ N ∶ xj ≥ ∣xi∣},{j ∈ N ∶ xj ≤ −∣xi∣})} . (2.21)

Definition 15. The left bipolar Shilkret integral of x = (x1, . . . , xn) ∈ [−1,1]n
with respect to the bi-capacity µb is given by:

Sh−b (x, µb) = ⋁
i∈N

b− {∣xi∣ ⋅ µb({j ∈ N ∶ xj ≥ ∣xi∣},{j ∈ N ∶ xj ≤ −∣xi∣})} . (2.22)

Clearly the three definitions are linked via the

Shb(x , µb) = ⋁b {Sh+b (x , µb), Sh−b (x , µb)} .

The condition Shb(x , µb) = 0 is equivalent to the Sh+b (x , µb) = −Sh−b (x , µb)
and, in this case, either the three integrals are all zero or they give three

different results, one zero, one positive and one negative. We can think

about them in terms of a neutral, an optimistic and a pessimistic aggregate

evaluation of x . The condition Shb(x , µb) ≠ 0 implies that Sh+b (x , µb) =
Sh−b (x , µb) = Shb(x , µb).
The following theorems characterize the bipolar Shilkret integral.

Theorem 5. An aggregation function G ∶ [−1,1]n → [−1,1] is idempotent,

bipolar comonotone maxitive and homogeneous if and only if there exists a

bi-capacity µb on N such that, for all x ∈ [−1,1]n,

G(x) = Shb(x, µb).
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Remark 2. Let us note that theorem 5 implies, as corollary, theorem 2

since bipolar comonotone maxitivity restricted on R+ implies comonotone

maxitivity.

Theorem 6. An aggregation function G ∶ [−1,1]n → [−1,1] is idempotent,

positive bipolar comonotone maxitive and homogeneous if and only if there

exists a bi-capacity µb on N such that, for all x ∈ [−1,1]n,

G(x) = Sh+b (x, µb).

Theorem 7. An aggregation function G ∶ [−1,1]n → [−1,1] is idempotent,

negative bipolar comonotone maxitive and homogeneous if and only if there

exists a bi-capacity µb on N such that, for all x ∈ [−1,1]n,

G(x) = Sh−b (x, µb).

Remark 3. Idempotency could be relaxed with the conditions G(1(N,∅)) = 1

and G(1(∅,N)) = −1, in fact from these and from homogeneity idempotency

can be elicited.
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2.4.4 The bipolar Sugeno integral

Definition 16. The bipolar Sugeno integral of a vector x = (x1, . . . , xn) ∈
[−1,1]n with respect to the bi-capacity µb on N is given by:

Sub(x, µb) = ⋁
i∈N

b{∣xi∣ 7 µb({j ∈ N ∶ xj ≥ ∣xi∣},{j ∈ N ∶ xj ≤ −∣xi∣})}. (2.23)

Definition 17. The right bipolar Sugeno integral of x = (x1, . . . , xn) ∈ [−1,1]n
with respect to the bi-capacity µb on N is given by:

Su+b (x, µb) = ⋁
i∈N

b+{∣xi∣ 7 µb({j ∈ N ∶ xj ≥ ∣xi∣},{j ∈ N ∶ xj ≤ −∣xi∣})}. (2.24)

Definition 18. The left bipolar Sugeno integral of a vector x = (x1, . . . , xn) ∈
[−1,1]n with respect to the bi-capacity µb on N is given by:

Su−b (x, µb) = ⋁
i∈N

b−{∣xi∣ 7 µb({j ∈ N ∶ xj ≥ ∣xi∣},{j ∈ N ∶ xj ≤ −∣xi∣})}. (2.25)

Clearly the three definitions are linked via the

Sub(x , µb) = ⋁b {Su+b (x , µb), Su−b (x , µb)} .

The condition Sub(x , µb) = 0 is equivalent to the Su+b (x , µb) = −Su−b (x , µb)
and, in this case, either the three integrals are all zero or they give three

different results, one zero (neutral), one positive (optimistic) and one neg-

ative (pessimistic). The condition Sub(x , µb) ≠ 0 implies that Su+b (x , µb) =
Su−b (x , µb) = Sub(x , µb).
The following theorems characterize the bipolar Sugeno integral.
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Theorem 8. An aggregation function G ∶ [−1,1]n → [−1,1] is idempotent,

bipolar comonotone maxitive, bipolar stable with respect to the sign and bipo-

lar stable with respect to the minimum if and only if there exists a bi-capacity

µb on N such that, for all x ∈ [−1,1]n,

G(x) = Sub(x, µb).

Theorem 9. An aggregation function G ∶ [−1,1]n → [−1,1] is idempotent,

positive bipolar comonotone maxitive, bipolar stable with respect to the sign

and bipolar stable with respect to the minimum if and only if there exists a

bi-capacity µb on N such that, for all x ∈ [−1,1]n,

G(x) = Su+b (x, µb).

Theorem 10. An aggregation function G ∶ [−1,1]n → [−1,1] is idempotent,

negative bipolar comonotone maxitive, bipolar stable with respect to the sign

and bipolar stable with respect to the minimum if and only if there exists a

bi-capacity µb on N such that, for all x ∈ [−1,1]n,

G(x) = Su−b (x, µb).
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2.5 Proofs of theorems

Proof of Theorem 2.

First we prove the necessary part. Let us suppose there exists a capacity µ

on N such that, for all x ∈ In, G(x) = Sh(x , µ). In this case it is trivial

to prove that the Shilkret integral is idempotent, comonotone maxitive and

homogeneous by definition and we leave the proof to the reader. Now we

prove the sufficient part of the theorem. Let us define

µ(A) = G(1A), for all A ∈ 2N . (2.26)

Because G is an idempotent aggregation function, we get µ(∅) = 0, µ(N) = 1

and µ(A) ≤ µ(B) whenever A ⊆ B. Thus µ is a capacity on N . Every

x = (x1, . . . , xn) ∈ In can be written as

x = ⋁
i∈N

xσ(i) ⋅ 1{j∈N ∣ xj≥xσ(i)}

being σ ∶ N → N any permutation of index such that xσ(1) ≤ . . . ≤ xσ(n).

Because vectors xσ(i) ⋅ 1{j∈N ∣ xj≥xσ(i)} are comonotonic, we get the thesis by

applying comonotonic maxitivity, homogeneity of G and the definition of µ

according to (2.26):

G(x) = G(⋁
i∈N

xσ(i) ⋅ 1{j∈N ∣ xj≥xσ(i)}) = ⋁
i∈N

G (xσ(i) ⋅ 1{j∈N ∣ xj≥xσ(i)}) =

= ⋁
i∈N

xσ(i) ⋅ G (1{j∈N ∣ xj≥xσ(i)}) = ⋁
i∈N

xσ(i) ⋅ µ ({j ∈ N ∣ xj ≥ xσ(i)}) = Sh(x , µ)
◻
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Proof of Theorem 4.

First we prove the necessary part. Let us suppose that there exists a bi-

capacity µb such that, for all x ∈ [−1,1]n, G(x) = Chb(x , µb). Idempo-

tency of the bipolar Choquet integral follows from definition, because if

λ ≥ 0, then Chb (λ ⋅ 1(N,∅), µb) = ∫ λ

0
µb (N,∅)dt = λ, while if λ < 0, then

Chb (λ ⋅ 1(N,∅), µb) = ∫ −λ0
µb (∅,N)dt = λ. If x , y ∈ [−1,1]n are bipolar

comonotone, then there exists a permutation of indexes σ ∶ N → N such

that 0 = ∣xσ(0)∣ ≤ ∣xσ(1)∣ ≤ . . . ≤ ∣xσ(n)∣ and 0 = ∣yσ(0)∣ ≤ ∣yσ(1)∣ ≤ . . . ≤ ∣yσ(n)∣, and
then

Chb (x , µb) = n

∑
i=1

(∣xσ(i)∣ − ∣xσ(i−1)∣) ⋅ µb ({j ∣ xj ≥ ∣xσ(i)∣},{j ∣ xj ≤ −∣xσ(i)∣}),

and

Chb (y , µb) = n

∑
i=1

(∣yσ(i)∣ − ∣yσ(i−1)∣) ⋅ µb ({j ∣ yj ≥ ∣yσ(i)∣},{j ∣ yj ≤ −∣yσ(i)∣}).

Since x and y are absolutely comonotonic an cosigned, for every i = 1, . . . , n

µb ({j ∈ N ∶ xj ≥ ∣xσ(i)∣},{j ∈ N ∶ xj ≤ −∣xσ(i)∣}) =

µb ({j ∈ N ∶ yj ≥ ∣yσ(i)∣},{j ∈ N ∶ yj ≤ −∣yσ(i)∣}) . (2.27)
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Moreover, again because x and y are absolutely comonotonic and cosigned,

for every i = 1, . . . , n, ∣xσ(i) + yσ(i)∣ = ∣xσ(i)∣ + ∣yσ(i)∣ and consequently

0 = ∣xσ(0) + yσ(0)∣ ≤ ∣xσ(1) + yσ(i)∣ ≤ . . . ≤ ∣xσ(n) + yσ(n)∣ for every i = 1, . . . , n.

(2.28)

By (2.27) and (2.28) we get Chb (x , µb) + Chb (y , µb) = Chb (x + y , µb).
Now we prove the sufficient part of the theorem. Let us define

µb(A,B) = G (1(A,B)) , for all (A,B) ∈ Q. (2.29)

µb represents a bi-capacity, since by idempotency of G we get that µb(N,∅) =
G (1(N,∅)) = 1, µb(∅,N) = G (1(∅,N)) = −1, µb(∅,∅) = G (1(∅,∅)) = 0. More-

over, if (A,B) ≾ (A′,B′), being for all i ∈ N , the ith component of the vector

1(A,B) not greater than the ith component of the vector 1(A′,B′) and being G

an aggregation function (then monotone), thus µb(A,B) ≤ µb(A′,B′). Ob-

serve now that any vector x = (x1, . . . , xn) ∈ [−1,1]n can be rewritten as

x =
n

∑
i=1

(∣xσ(i)∣ − ∣xσ(i−1)∣) ⋅ 1({j∈N ∶xj≥∣xσ(i)∣},{j∈N ∶xj≤−∣xσ(i)∣}), (2.30)

being σ ∶ N → N any permutation of indexes such that 0 = ∣xσ(0)∣ ≤ ∣xσ(1)∣ ≤
. . . ≤ ∣xσ(n)∣. Let us note that for all (A,B), (A′,B′) ∈ Q such that (A,B) ⊆
(A′,B′) and for all a, b ∈ [0,1], vectors a ⋅ 1(A,B) and b ⋅ 1(A′,B′) are bipolar

comonotone. Consequently, (2.30) shows that any vector x ∈ [−1,1]n can be

decomposed as a sum of bipolar comonotonic vectors. Remembering that an

aggregation function which is idempotent and bipolar comonotone additive is

also homogeneous, thus to get the thesis it is sufficient to apply, respectively,
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bipolar comonotone additivity, homogeneity ofG and definition of bi-capacity

µb according to (2.29):

G(x) = G( n

∑
i=1

(∣xσ(i)∣ − ∣xσ(i−1)∣) ⋅ 1({j∈N ∶xj≥∣xσ(i)∣},{j∈N ∶xj≤−∣xσ(i)∣})) =

=
n

∑
i=1

(∣xσ(i)∣ − ∣xσ(i−1)∣) ⋅ G (1({j∈N ∶xj≥∣xσ(i)∣},{j∈N ∶xj≤−∣xσ(i)∣})) = Chb(x , µb).
◻

Proof of Theorem 5.

First we prove the necessary part. Let us suppose there exists a bi-capacity

µb such that, for all x ∈ [−1,1]n, G(x) = Shb(x , µb). The bipolar Shilkret in-
tegral is, trivially, idempotent and homogeneous and we only need to demon-

strate the bipolar comonotonic maxitivity. Let us consider a set of indexes

K = {1, . . . , k}, k increasing levels l1, . . . , lk ∈ R with 0 < l1 < l2 < . . . < lk ≤
1 and a sequence {(Ai,Bi)}i∈K such that (Ai,Bi) ∈ Q and (Ai+1,Bi+1) ⊆
(Ai,Bi) for all i ∈ K. The jth component of the vector ⋁b

i∈K{li ⋅ 1(Ai,Bi)} is

equal to li if j ∈ Ai ∖ Ai+1, is equal to −li if j ∈ Bi ∖ Bi+1 and is equal to zero

if j ∈ N ∖ (A1 ∪ B1) for all i ∈ K and taking Ak+1 = Bk+1 = ∅. Clearly, such

a vector has a component greater or equal to li for indexes in Ai and has

component smaller or equal to −li for indexes in Bi. Thus, by definition

Shb (⋁
i∈K

b{li ⋅ 1(Ai,Bi)}, µb) = ⋁
i∈K

b {li ⋅ µb ((Ai,Bi))} = ⋁
i∈K

b{Shb (li ⋅ 1(Ai,Bi), µb)}.
(2.31)

39



Now we prove the sufficient part of the theorem. Let us define

µb(A,B) = G (1(A,B)) , for all (A,B) ∈ Q. (2.32)

µb represents a bi-capacity (see proof of theorem 4). Notice that each x ∈
[−1,1]n can be rewritten as

x = ⋁
i∈N

b∣xi∣ ⋅ 1({j ∣ xj≥∣xi∣},{j ∣ xj≤−∣xi∣}) (2.33)

and observe that vectors ∣xi∣⋅1({j∈N ∣ xj≥∣xi∣},{j∈N ∣ xj≤−∣xi∣}), i = 1 . . . , n are bipo-

lar comonotone. Consequently, for any x ∈ [−1,1]n by bipolar comonotone

maxitivity, homogeneity and definition of bi-capacity µb according to the

(2.32) we get

G(x) = G(⋁
i∈N

b∣xi∣ ⋅ 1({j ∣ xj≥∣xi∣},{j ∣ xj≤−∣xi∣}))

= ⋁
i∈N

b
G (∣xi∣ ⋅ 1({j ∣ xj≥∣xi∣},{j ∣ xj≤−∣xi∣})) =

= ⋁
i∈N

b∣xi∣ ⋅ G (1({j ∣ xj≥∣xi∣},{j ∣ xj≤−∣xi∣}))
= ⋁

i∈N

b∣xi∣ ⋅ µb ({j ∣ xj ≥ ∣xi∣} ,{j ∣ xj ≤ −∣xi∣}) = Shb(x , µb)
◻

Proof of Theorems 6 and 7. They are analogous to the proof of previous

Theorem 5.

◻
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Proof of Theorem 8. First we prove the necessary part. Let us suppose there

exists a bi-capacity µb such that, for all x ∈ [−1,1]n, G(x) = Sub(x , µb). The
Sugeno integral is idempotent by definition. Bipolar stability with respect

to the sign and with respect to the minimum are trivially verified once we

consider that for all r > 0 and for all (A,B) ∈ Q

Sub (r ⋅ 1(A,B), µb) = sign (µb(A,B))⋀{r, ∣µb(A,B)∣} .

Let us consider a set of indexes K = {1, . . . , k}, k increasing levels l1, . . . , lk ∈
R with 0 < l1 < l2 < . . . < lk ≤ 1 and a sequence {(Ai,Bi)}i∈K such that

(Ai,Bi) ∈ Q and (Ai+1,Bi+1) ⊆ (Ai,Bi) for all i ∈K. Thus, by definition

Sub ( ⋁
i∈K

b{li ⋅ 1(Ai,Bi)}, µb) = ⋁
i∈K

b {sign [µb ((Ai,Bi))]⋀{li, ∣µb ((Ai,Bi)) ∣}} =
= ⋁

i∈K

b{Sub (li ⋅ 1(Ai,Bi), µb)}. (2.34)

Now we prove the sufficient part of the theorem. Let us define µb(A,B) =

G (1(A,B)) for all (A,B) ∈ Q. µb represents a bi-capacity (see proof of theo-

rem 4). Let us note that using bipolar stability with respect to the minimum and

idempotency of G we have that for all r > 0 and for all (A,B) ∈ Q,

∣G (r ⋅ 1(A,B))∣ = ⋀{r, ∣G (1(A,B))∣} . (2.35)

The (2.35) is obvious if r = 0 or r = 1. If 0 < r < 1 and ∣G (1(A,B))∣ > ∣G (r ⋅ 1(A,B))∣,
then using stability w.r.t. the minimum, ∣G (r ⋅ 1(A,B))∣ = r and the (2.35) is

true again. If ∣G (1(A,B))∣ = ∣G (r ⋅ 1(A,B))∣ observe that by monotonicity and

idempotency of G, ∣G (r ⋅ 1(A,B))∣ ≤ ∣G (r ⋅ 1(N,∅))∣ = r, which means that also in

this last case the (2.35) is true. Finally, notice that each x ∈ [−1,1]n can be
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rewritten as

x = ⋁
i∈N

b∣xi∣ ⋅ 1({j ∣ xj≥∣xi∣},{j ∣ xj≤−∣xi∣}) (2.36)

and observe that vectors ∣xi∣ ⋅ 1({j∈N ∣ xj≥∣xi∣},{j∈N ∣ xj≤−∣xi∣}), i = 1 . . . , n are bipolar

comonotone.

Consequently, for any x ∈ [−1,1]n by bipolar comonotone maxitivity

G(x) = G( ⋁
i∈N

b∣xi∣ ⋅ 1({j ∣ xj≥∣xi∣},{j ∣ xj≤−∣xi∣})) = ⋁
i∈N

b
G (∣xi∣ ⋅ 1({j ∣ xj≥∣xi∣},{j ∣ xj≤−∣xi∣})) =

( by bipolar stability with respect to the sign )

= ⋁
i∈N

b {sign [G (1({j ∣ xj≥∣xi∣},{j ∣ xj≤−∣xi∣}))] ∣G (∣xi∣ ⋅ 1({j ∣ xj≥∣xi∣},{j ∣ xj≤−∣xi∣}))∣} =

= ⋁
i∈N

b {sign [µb ({j ∣ xj ≥ ∣xi∣} ,{j ∣ xj ≤ −∣xi∣})] ∣G (∣xi∣ ⋅ 1({j ∣ xj≥∣xi∣},{j ∣ xj≤−∣xi∣}))∣} =
( by bipolar stability with respect to the minimum )

= ⋁
i∈N

b {sign [µb ({j ∣ xj ≥ ∣xi∣} ,{j ∣ xj ≤ −∣xi∣})]⋀{∣xi∣, ∣G (1({j ∣ xj≥∣xi∣},{j ∣ xj≤−∣xi∣}))∣}} =

= ⋁
i∈N

b {sign [µb ({j ∣ xj ≥ ∣xi∣} ,{j ∣ xj ≤ −∣xi∣})]⋀{∣xi∣, ∣µb ({j ∣ xj ≥ ∣xi∣} ,{j ∣ xj ≤ −∣xi∣})∣}}
that is the Sugeno integral Sub(x , µb).

◻
Proof of Theorems 9 and 10. They are analogous to the proof of previous Theorem

8.

◻
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2.6 Concluding remarks

In recent years there has been an increasing interest in development of new

integrals useful in decision analysis process or in modeling engineering problems.

An interesting line of research is that of bipolar fuzzy integrals, that considers

the case in which the underling scale is bipolar. For an exhaustive presentation

of bipolarity and its possible applications, a recent survey is [9]. In this chapter

we have axiomatically characterized the bipolar Choquet integral and defined and

axiomatically characterized the bipolar Shilkret integral and the bipolar Sugeno

integral. Thus, the scenario of bipolar fuzzy integrals appears clearer and richer.

A further direction of research in this field is that of level dependent bipolar fuzzy

integrals. In this case, the fuzzy measure with respect to which the bipolar integrals

are calculated can change from a level to another [21, 20]. Observe also that in [24]

it has been introduced the concept of bipolar universal integral, which generalizes

the Choquet, Shilkret and Sugeno bipolar integrals presented in this chapter.
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Chapter 3

The bipolar universal integral

3.1 Introduction

The basic reference for this chapter is [24]. Recently a concept of universal

integral has been proposed [32]. The universal integral generalizes the Choquet

integral [7], the Sugeno integral [47] and the Shilkret integral [45]. Moreover, in

[30], [31] a formulation of the universal integral with respect to a level dependent

capacity has been proposed, in order to generalize the level-dependent Choquet in-

tegral [21], the level-dependent Shilkret integral [4] and the level-dependent Sugeno

integral [37]. The Choquet, Shilkret and Sugeno integrals admit a bipolar formu-

lation, useful in those situations where the underlying scale is bipolar ([14], [15],

[22], [20]). In this chapter we introduce and characterize the bipolar universal

integral, which generalizes the Choquet, Shilkret and Sugeno bipolar integrals.

The chapter is organized as follows. In section 3.2 we introduce the basic con-

cepts. In section 3.3 we define and characterize the bipolar universal integral. In

section 3.4 we give an illustrative example of a bipolar universal integral which

is neither the Choquet nor Sugeno or Shilkret type. Finally, in section 3.6, we
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present conclusions.

3.2 Basic concepts

Given a set of criteria N = {1, . . . , n}, an alternative x can be identified with

a score vector x = (x1, . . . , xn) ∈ [−∞,+∞]n, being xi the evaluation of x with

respect to the ith criterion. For the sake of simplicity, without loss of generality,

in the following we consider the bipolar scale [−1,1] to expose our results, so that

x ∈ [−1,1]n. Let us consider the set of all disjoint pairs of subsets of N , i.e.

Q = {(A,B) ∈ 2N × 2N ∶ A ∩ B = ∅}. With respect to the binary relation ≾ on

Q defined as (A,B) ≾ (C,D) iff A ⊆ C and B ⊇ D, Q is a lattice, i.e. a partial

ordered set in which any two elements have a unique supremum (A,B) ∨ (C,D) =
(A ∪ C,B ∩ D) and a unique infimum (A,B) ∧ (C,D) = (A ∩ C,B ∪ D). For all

(A,B) ∈ Q the indicator function 1(A,B) ∶ N → {−1,0,1} is the function which

attains 1 on A, -1 on B and 0 on (A ∪ B)c.
Definition 19. A function µb ∶ Q→ [−1,1] is a normalized bi-capacity ([14], [15],

[22]) on N if

• µb(∅,∅) = 0, µb(N,∅) = 1 and µb(∅,N) = −1;

• µb(A,B) ≤ µb(C,D) ∀ (A,B), (C,D) ∈ Q ∶ (A,B) ≾ (C,D).
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Definition 20. The bipolar Choquet integral of x = (x1, . . . , xn) ∈ [−1,1]n with

respect to a bi-capacity µb is given by ([14], [15], [22], [21]):

Chb(x, µb) = ∫ ∞

0

µb({i ∈ N ∶ xi > t},{i ∈ N ∶ xi < −t})dt. (3.1)

The bipolar Choquet integral of x = (x1, . . . , xn) ∈ [−1,1]n with respect to the

bi-capacity µb can be rewritten as

Chb(x , µb) = n∑
i=1

(∣xσ(i)∣ − ∣xσ(i−1)∣)µb({j ∈ N ∶ xj ≥ ∣xσ(i)∣},{j ∈ N ∶ xj ≤ −∣xσ(i)∣}),
(3.2)

being σ ∶ N → N any permutation of indexes such that 0 = ∣xσ(0)∣ ≤ ∣xσ(1)∣ ≤ . . . ≤

∣xσ(n)∣. Let us note that to ensure that ({j ∈ N ∶ xj ≥ ∣t∣},{j ∈ N ∶ xj ≤ −∣t∣}) ∈ Q

for all t ∈ R, we adopt the convention - which will be maintained trough all the

chapter - that in the case of t = 0 the inequality xj ≤ 0 is to be understood as

xj < 0.

In this chapter we use the symbol ⋁ to indicate the maximum and ⋀ to indicate the

minimum. The symmetric maximum of two elements - introduced and discussed

in [11], [12] - is defined by the following binary operation:

a6 b =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

− (∣a∣ ∨ ∣b∣) if b ≠ −a and either ∣a∣ ∨ ∣b∣ = −a or = −b
0 if b = −a
∣a∣ ∨ ∣b∣ else.

Alternatively the symmetric maximum of a, b ∈ R can be written as

a6 b = sign(a + b)(∣a∣ ∨ ∣b∣).
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The symmetric minimum of two elements [11, 12] is defined as:

a7 b =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− (∣a∣ ∧ ∣b∣) if sign(b) ≠ sign(a)
∣a∣ ∧ ∣b∣ else.

Alternatively the symmetric minimum of a, b ∈ R can be written as

a7 b = sign(a ⋅ b)(∣a∣ ∧ ∣b∣).
In [38] it has been showed as on the domain [−1,1] the symmetric maximum coin-

cides with two recent symmetric extensions of the Choquet integral, the balancing

Choquet integral and the fusion Choquet integral, when they are computed with

respect to the strongest capacity (i.e. the capacity which attains zero on the empty

set and one elsewhere). However, the symmetric maximum of a set X cannot be

defined, being > non associative. Suppose that X = {3,−3,2}, then (3 6 −3)62 = 2

or 36(−3 6 2) = 0, depending on the order. Several possible extensions of the sym-

metric maximum for dimension n,n > 2 have been proposed (see [12], [18] and also

the relative discussion in [38]). One of these extensions is based on the splitting

rule applied to the maximum and to the minimum as described in the following.

Given X = {x1, . . . , xm} ⊆ R, the bipolar maximum of X, shortly ⋁bX, is defined

as

⋁b
X = (⋁X) > (⋀X) . (3.3)

In the same way and for an infinite set X, it is possible to define the concept of

supbipX as the symmetric maximum applied to the supremum and the infimum

of X, with the convention that ⋁b {±∞, l} = ±∞ and ⋁b {+∞,−∞} = 0.

Definition 21. The bipolar Shilkret integral of x = (x1, . . . , xn) ∈ [−1,1]n with
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respect to a bi-capacity µb is given by [20]:

Shb(x, µb) = ⋁
i∈N

b {∣xi∣ ⋅ µb({j ∈ N ∶ xj ≥ ∣xi∣},{j ∈ N ∶ xj ≤ −∣xi∣})} . (3.4)

Definition 22. A bipolar measure on N with a scale (−α,α), α > 0, is any function

νb ∶ Q→ (−α,α) satisfying the following properties:

1. νb(∅,∅) = 0;

2. νb(N,∅) = α, νb(∅,N) = −α;
3. νb(A,B) ≤ νb(C,D) ∀ (A,B), (C,D) ∈ Q ∶ (A,B) ≾ (C,D).

Definition 23. The bipolar Sugeno integral of x = (x1, . . . , xn) ∈ (−α,α)n with

respect to the bipolar measure νb on N with scale (−α,α) is given by [20]:

Sub(x, νb) = ⋁
i∈N

b{sign (νb ({j ∈ N ∶ xj ≥ ∣xi∣},{j ∈ N ∶ xj ≤ −∣xi∣})) ⋅
⋅ ⋀{∣νb({j ∈ N ∶ xj ≥ ∣xi∣},{j ∈ N ∶ xj ≤ −∣xi∣})∣ , ∣xi∣}}. (3.5)

The bipolar Sugeno integral can be written using the symmetric minimum as

Sub(x , νb) = ⋁
i∈N

b{∣xi∣ 7 νb({j ∈ N ∶ xj ≥ ∣xi∣},{j ∈ N ∶ xj ≤ −∣xi∣})}. (3.6)

3.3 The universal integral and the bipolar

universal integral

In order to define the universal integral it is necessary to introduce the concept

of pseudomultiplication. This is a function ⊗ ∶ [0,1] × [0,1] → [0,1], which is
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nondecreasing in each component (i.e. for all a1, a2, b1, b2 ∈ [0,1] with a1 ≤ a2 and

b1 ≤ b2, a1 ⊗b1 ≤ a2 ⊗b2), has 0 as annihilator (i.e. for all a ∈ [0,1], a⊗0 = 0⊗a = 0)

and has a neutral element e ∈]0,1] (i.e. for all a ∈ [0,1], a ⊗ e = e ⊗ a = a). If

e = 1 then ⊗ is a semicopula, i.e. a binary operation ⊗ ∶ [0,1]2 → [0,1] that

is nondecreasing in both components and has 1 as neutral element (thus 0 is a

annihilator).

A semicopula ⊗ ∶ [0,1]2 → [0,1] which is associative and commutative is called a

triangular norm.

The concept of semicopula can be generalized to the symmetric interval [−1,1]

Definition 24. A bipolar semicopula is a function

⊗b ∶ [−1,1]2 → [−1,1]

that is “absolute-nondecreasing”, has 1 as neutral element and −1 as opposite-

neutral element, and preserves the sign rule, i.e

(A1) if ∣a1∣ ≤ ∣a2∣ and ∣b1∣ ≤ ∣b2∣ then ∣a1 ⊗b b1∣ ≤ ∣a2 ⊗b b2∣;
(A2) a ⊗b ±1 = ±1 ⊗b a = ±a; and
(A3) sign (a ⊗b b) = sign(a) ⊗b sign(b).

Let us note that a bipolar semicopula also satisfies the following additional

properties

(A4) a ⊗b 0 = 0 ⊗b a = 0; and

(A5) sign(a) ⊗b sign(b) = sign(a ⋅ b).

Indeed, 0 ≤ ∣a ⊗b 0∣ ≤ ∣ ± 1 ⊗b 0∣ = ∣ ± 0∣ = 0 and 0 ≤ ∣0 ⊗b a∣ ≤ ∣0 ⊗b ±1∣ = ∣ ± 0∣ = 0.

(A5) is true by (A4) if a = sign(a) = 0 or b = sign(b) = 0, while is true by (A2)
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and (A3) if a = sign(a), b = sign(b) ∈ {−1,1}.

Let us consider the binary operation ∗ on [−1,1] given by

a ∗ b =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−ab if (a, b) ∈] − 1,1[2
ab else.

This satisfies axioms (A1) and(A2), but not (A3) (think to a = −1/3 = b), then

the additional axiom (A3) is necessary in order to consider bipolar semicopulas as

symmetric extensions of standard semicopulas in the sense of product. Note that

this approach preserves commutativity and associativity.

Notable examples of bipolar semicopulas are the standard product, a ⋅ b and the

symmetric minimum [11],[12]

a7 b = sign(a ⋅ b)(∣a∣ ∧ ∣b∣).

Proposition 1. ⊗b ∶ [−1,1]2 → [−1,1] is a bipolar semicopula if and only if there

exists a semicopula ⊗ ∶ [0,1]2 → [0,1] such that for all a, b ∈ [−1,1]

a ⊗b b = sign(a ⋅ b) (∣a∣ ⊗ ∣b∣) . (3.7)

We call ⊗b the bipolar semicopula induced by the semicopula ⊗ whenever the

(3.7) holds. For example, the semicopula product induces the bipolar semicopula

product, the semicopula minimum induces the bipolar semicopula symmetric min-

imum. Finally let us note that the concept of bipolar semicopula is closely related

to that of symmetric pseudo-multiplication in [13]

A capacity [7] or fuzzy measure [47] on N is a non decreasing set function m ∶
2N → [0,1] such that m(∅) = 0 and m(N) = 1.
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Definition 25. [32] Let F be the set of functions f ∶ N → [0,1] and M the set of

capacities on N . A function I ∶ M × F → [0,1] is a universal integral on the scale

[0,1] (or fuzzy integral) if the following axioms hold:

(I1) I(m,f) is nondecreasing with respect to m and with respect to f ;

(I2) there exists a semicopula ⊗ such that for any m ∈ M , c ∈ [0,1] and A ⊆ N ,

I(m,c ⋅ 1A) = c ⊗ m(A);
(I3) for all pairs (m1, f1), (m2, f2) ∈M × F , such that for all t ∈ [0,1],

m1 ({i ∈ N ∶ f1(i) ≥ t}) =m2 ({i ∈ N ∶ f2(i) ≥ t}), I(m1, f1) = I(m2, f2).

We can generalize the concept of universal integral from the scale [0,1] to the

symmetric scale [−1,1] by extending definition 25.

Definition 26. Let Fb be the set of functions f ∶ N → [−1,1] and Mb the set of

bi-capacities on Q. A function Ib ∶ Mb ×Fb → [−1,1] is a bipolar universal integral

on the scale [−1,1] (or bipolar fuzzy integral) if the following axioms hold:

(I1) Ib(mb, f) is nondecreasing with respect to mb and with respect to f ;

(I2) there exists a semicopula ⊗ such that for any mb ∈Mb, c ∈ [0,1] and (A,B) ∈
Q, I(mb, c ⋅ 1(A,B)) = sign(mb(A,B)) (c ⊗ ∣mb(A,B)∣);

(I3) for all pairs (mb1 , f1), (mb2 , f2) ∈Mb × Fb, such that for all t ∈ [0,1],
mb1 ({i ∈ N ∶ f1(i) ≥ t} ,{i ∈ N ∶ f1(i) ≤ −t}) =
=mb2 ({i ∈ N ∶ f2(i) ≥ t} ,{i ∈ N ∶ f2(i) ≤ −t}), I(mb1 , f1) = I(mb2 , f2).

Clearly, in definition 25, F can be identified with [0,1]n and in definition 26, Fb can

be identified with [−1,1]n, such that a function f ∶ N → [−1,1] can be regarded

as a vector x ∈ [−1,1]n. Note that the bipolar Choquet, Shilkret and Sugeno
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integrals are bipolar universal integrals in the sense of Definition 26. Observe that

the underlying semicopula ⊗ is the standard product in the case of the bipolar

Choquet and Shilkret integrals, while ⊗ is the minimum (with neutral element

β = 1) for the bipolar Sugeno integral.

The concept of bipolar universal integral can also be defined using the concept of

bipolar semicopula. To this extent, in definition 26 axioms (I2) must be replaced

with the following axioms

(I2’) There exists a bipolar semicopula ⊗b such that for any mb ∈ Mb, c ∈ [0,1]
and (A,B) ∈ Q, I(mb, c ⋅ 1(A,B)) = c ⊗b mb(A,B).

Again we observe that the underlying bipolar semicopula ⊗b is the standard prod-

uct in the case of the bipolar Choquet and Shilkret integrals, while ⊗b is the

symmetric minimum for the bipolar Sugeno integral.

3.3.1 Representation Theorem

Now we turn our attention to the characterization of the bipolar universal

integral. Due to axiom (I3) for each universal integral Ib and for each pair (mb,x) ∈
Mb × Fb, the value Ib (mb,x) depends only on the function

h(mb,x) ∶ [0,1]→ [−1,1],

defined for all t ∈ [0,1] by

h(m,x)(t) =mb ({i ∈ N ∶ xi ≥ t} ,{i ∈ N ∶ xi ≤ −t}) . (3.8)

Note that for each (mb,x) ∈Mb×Fb such a function is not in general monotone but

it is Borel measurable, since it is a step function, i.e. a finite linear combination

52



of indicator functions of intervals. To see this, suppose that σ ∶ N → N is a

permutation of criteria such that ∣xσ(1)∣ ≤ . . . ≤ ∣xσ(n)∣ and let us consider the

following intervals decomposition of [0,1]: A1 = [0, ∣xσ(1)∣], Aj+1 =]∣xσ(j)∣, ∣xσ(j+1)∣]
for all j = 1, . . . , n − 1 and An+1 =]∣xσ(n)∣,1]. Thus, we can rewrite the function h

as

h(m,x)(t) = n∑
j=1

mb ({i ∈ N ∶ xi ≥ ∣xσ(j)∣} ,{i ∈ N ∶ xi ≤ −∣xσ(j)∣}) ⋅ 1Aj
(t). (3.9)

Let Hn be the subset of all step functions in F
([0,1],B([0,1]))
[−1,1] with no more than

n-values.

Proposition 2. A function Ib ∶ Mb × Fb → [−1,1] is a bipolar universal integral

on the scale [−1,1] related to some semicopula ⊗ if and only if there is a function

J ∶ Hn → R satisfying the following conditions:

(J1) J is nondecreasing;

(J2) J(d ⋅1[x,x+c]) = sign(d)(c⊗ ∣d∣) for all [x, x+c] ⊆ [0,1] and for all d ∈ [−1,1];
(J3) I(mb, f) = J (h(mb,f)) for all (mb, f) ∈Mb × Fb.

3.4 An illustrative example

The following is an example of a bipolar universal integral (which is neither

the Choquet nor Sugeno or Shilkret type), and illustrates the interrelationship

between the functions I, J and the semicopula ⊗. Let Ib ∶ Mb × Fb → R be given

by

I(mb, f) = supbip { t ⋅ mb ({f ≥ t} ,{f ≤ −t})
1 − (1 − t) (1 − ∣mb ({f ≥ t} ,{f ≤ −t}) ∣) ∣ t ∈]0,1]} . (3.10)
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Note that (3.10) defines a bipolar universal integral, indeed if mb ≥m′b and f ≥ f ′

then h(mb,f) ≥ h(m′
b
,f ′) and being the function t⋅h/[1−(1−t)(1−∣h∣)] non decreasing

in h ∈ R, we conclude that I(mb, f) ≥ I(m′b, f ′) using the monotonicity of the

bipolar supremum. Moreover

I(mb, c ⋅ 1(A,B)) = sign(mb(A,B)) t ⋅ ∣mb ({f ≥ t} ,{f ≤ −t}) ∣
1 − (1 − t) (1 − ∣mb ({f ≥ t} ,{f ≤ −t}) ∣) =

= sign(mb(A,B))(c ⊗ ∣mb(A,B)∣). (3.11)

This means that the semicopula underlying the bipolar universal integral (3.11) is

the Hamacher product

a ⊗ b =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if a = b = 0

a⋅b
1−(1−a)(1−b) if ∣a∣ + ∣b∣ ≠ 0.

Now let us compute this integral in the simple situation of N = {1,2}. In this case

the functions we have to integrate can be identified with two dimensional vectors

x = (x1, x2) ∈ [−1,1]2 and we should define a bi-capacity on Q. For example

mb ({1} ,∅) = 0.6, mb ({2} ,∅) = 0.2, mb ({1} ,{2}) = 0.1,

mb ({2} ,{1}) = −0.3, mb (∅,{1}) = −0.1 and mb (∅,{2}) = −0.5.

First let us consider the four cases ∣x1∣ = ∣x2∣. If x ≥ 0:

I (mb, (x, x)) = x, I (mb, (x,−x)) = 0.1x

0.1 + 0.9x
,

I (mb, (−x, x)) = −0.3x

0.3 + 0.7x
and I (mb, (−x,−x)) = −x.
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For all the other possible cases, we have the following formula

I (mb, (x, y)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⋁b {y , 0.6x
0.6+0.4x

} x > y ≥ 0

⋁b { 0.1∣y∣
0.1+0.9∣y∣ ,

0.6x
0.6+0.4x

} x ≥ 0 > y > −x

⋁b { 0.1x
0.1+0.9x

,
−0.5∣y∣

0.5+0.5∣y∣} x ≥ 0 ≥ −x > y

⋁b {x ,
−0.5∣y∣

0.5+0.5∣y∣} 0 > x > y

⋁b {x , 0.2y
0.2+0.8y

} y > x ≥ 0

⋁b { −0.3∣x∣
0.3+0.7∣x∣ ,

0.2y
0.2+0.8y

} y ≥ 0 > x > −y

⋁b { −0.3y
0.3+0.7y

,
−0.1∣x∣

0.1+0.9∣x∣} y ≥ 0 ≥ −y > x

⋁b {y ,
−0.1∣x∣

0.1+0.9∣x∣} 0 > y > x.

(3.12)

3.5 The bipolar universal integral with re-

spect to a level dependent bi-capacity

All the bipolar fuzzy integrals (3.1), (3.4) and (3.5) as well as the universal

integral, admit a further generalization with respect to a level dependent capacity

([21], [20], [31]). Next, after remembering previous definitions, we will give the

concept of bipolar universal integral with respect to a level dependent capacity.

Definition 27. [21] A bipolar level dependent bi-capacity is a function µbLD ∶
Q × [0,1]→ [−1,1] satisfying the following properties:
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1. for all t ∈ [0,1], µbLD(∅,∅, t) = 0, µbLD(N,∅, t) = 1, µbLD(∅,N, t) = −1;

2. for all (A,B, t), (C,D, t) ∈ Q × [0,1] such that (A,B) ≾ (C,D),
µbLD(A,B, t) ≤ µbLD(C,D, t);

3. for all (A,B) ∈ Q, µbLD(A,B, t) considered as a function with respect to t

is Borel measurable.

Definition 28. [21] The bipolar Choquet integral of a vector x = (x1, . . . , xn) ∈

[−1,1]n with respect to the level dependent bi-capacity µbLD is given by

ChbLD(x) = ∫ maxi∣xi∣

0

µbLD({i ∈ N ∶ xi ≥ t},{i ∈ N ∶ xi ≤ −t}, t)dt. (3.13)

A level dependent bi-capacity µbLD is said Shilkret compatible if for for all t, r ∈

[−1,1] such that t ≤ r, and (A,B), (C,D) ∈ Q with (A,B) ≾ (C,D),

tµbLD((A,B), t) ≤ rµbLD((C,D), r).

Definition 29. [20] The bipolar level dependent Shilkret integral of

x = (x1, . . . , xn) ∈ [−1,1]n

with respect to a Shilkret compatible bi-capacity level dependent, µbLD, is given by

ShbLD(x, µbLD) = ⋁
i∈N

b
⎧⎪⎪⎨⎪⎪⎩ sup
t∈ ]0,∣xi∣ ]

{t ⋅ µbLD({j ∈ N ∶ xj ≥ t},{j ∈ N ∶ xj ≤ −t}, t)}⎫⎪⎪⎬⎪⎪⎭ .

(3.14)
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Definition 30. [20] A bipolar level dependent measure on N with a scale [−α,α]
with α > 0, is any function νbLD ∶ Q × [−α,α] → [−α,α] satisfying the following

properties:

1. νbLD(∅,∅, t) = 0 for all t ∈ [−α,α];
2. νbLD(N,∅, t) = α, νbLD(∅,N, t) = −α for all t ∈ (α,β);
3. for all (A,B), (C,D) ∈ Q such that (A,B) ≾ (C,D), and for all t ∈ [−α,α],

νbLD(A,B, t) ≤ νbLD(C,D, t).

Definition 31. [20] The bipolar level dependent Sugeno integral of

x = (x1, . . . , xn) ∈ [−α,α]n

with respect to the bipolar measure νbLD is given by

⋁
i∈N

b{supbip

t∈ ]0,∣xi∣ ]
{sign [νbLD({j ∈ N ∶ xj ≥ t},{j ∈ N ∶ xj ≤ −t}, t)]

⋅ min{∣νbLD({j ∈ N ∶ xj ≥ t},{j ∈ N ∶ xj ≤ −t}, t)∣ , t}}} =

SubLD(x, νbLD). (3.15)

A level dependent bi-capacity can be, also, indicated as M t
b = (mb,t)t∈]0,1] where

mb,t is a bi-capacity. Given a level dependent bi-capacity M t
b = (mb,t)t∈]0,1] for

each alternative x ∈ [−1,1]n we can define the function hMt
b
,f ∶ [0,1] → [−1,1],

which accumulates all the information contained in M t
b and f , by:

hMt
b
,f(t) =mb,t ({j ∈ N ∶ xj ≥ t},{j ∈ N ∶ xj ≤ −t}) (3.16)
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In general, the function hMt
b
,f is neither monotone nor Borel measurable. Following

the ideas of inner and outer measures in Caratheodory’s approach [27], we intro-

duce the two functions (hMt
b
,f)∗ ∶ [0,1] → [−1,1] and (hMt

b
,f)

∗

∶ [0,1] → [−1,1]
defined by

(hMt
b
,f)∗

= inf {h ∈ H ∣ h ≥ hMt
b
,f} ,

(hMt
b
,f)

∗

= sup{h ∈ H ∣ h ≥ hMt
b
,f} . (3.17)

Clearly, both functions (3.17) are non increasing and, therefore, belong to H. If

the level dependent bi-capacity M t
b is constant, then the three functions considered

in (3.16), (3.17) coincide.

Let Mb the set of all level dependent bi-capacities on Q, for a fixed M t
b ∈ Mb a

function f ∶ N → [−1,1] is M t
b -measurable if the function hMt

b
,f is Borel measurable.

Let F
Mt

b

[−1,1] be the set of all M t
b measurable functions. Let us consider

L[−1,1] = ⋃
Mt

b
∈Mb

M t
b × F

Mt
b

[−1,1]

Definition 32. A function Lb ∶ L[−1,1] → [−1,1] is a level-dependent bipolar uni-

versal integral on the scale [−1,1] if the following axioms hold:

(I1) Ib(m,f) is nondecreasing in each component;

(I2) there is a bipolar universal integral Ib ∶ Mb×Fb → R such that for each bipolar

capacity mb ∈ Mb, for each x ∈ [−1,1]n and for each level dependent bipolar

capacity M t
b ∈ Mb, satisfying mb,t =mb for all t ∈]0,1], we have

Lb (M t
b ,x) = Ib (mb,x) ;
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(I3) for all pairs (Mb1 , f1), (Mb2 , f2) ∈ L[−1,1] with hMb1
,f1 = hMb2

,f2 we have

Lb (Mb1 , f1) = Lb (Mb2 , f2) .

Obviously the bipolar Choquet, Shilkret and Sugeno integrals with respect to a

level dependent capacity are level-dependent bipolar universal integrals in the sense

of Definition 32.

Finally, we present the representation theorem which gives necessary and sufficient

conditions to be a function Lb ∶ L[−1,1] → [−1,1] a level-dependent bipolar universal

integral.

Proposition 3. A function Lb ∶ L[−1,1] → [−1,1] is a level-dependent bipolar

universal integral if and only if there exist a semicopula ⊗ ∶ [0,1]2 → [0,1] and a

function J ∶ H → R satisfying the following conditions:

(J1) J is nondecreasing;

(J2) J(d ⋅ 1]0,c]) = sign(d)(c ⊗ ∣d∣) for all [x, x + c] ⊆ [0,1] and for all d ∈ [−1,1];
(J3) Lb (Mb, f) = J (hMb,f) for all (M t

b , f) ∈ L[−1,1].

3.6 Conclusions

The concept of universal integral generalizes, over all, the Choquet, Shilkret

and Sugeno integrals. Those integrals admit a bipolar formulation, helpful for

the case in which the underlying scale is bipolar. In this chapter we have defined

and characterized the bipolar universal integral, thus providing a common frame

including the bipolar Choquet, Shilkret and Sugeno integrals. Moreover, we have

also defined and characterized the bipolar universal integral with respect to a
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level dependent bi-capacity, which includes, as notable examples, the bipolar level

dependent Choquet, Shilkret and Sugeno integrals.
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Chapter 4

Robust Integrals

4.1 Introduction

In many decision problems a set of alternatives is evaluated with respect to

a set of points of view, called criteria. For example, in evaluating a car one can

consider criteria such as maximum speed, price, acceleration, fuel consumption. In

evaluating a set of students one can consider as criteria the notes in examinations

with respect to different subjects such as Mathematics, Physics, Literature and

so on. In general, evaluations of an alternative with respect to different criteria

can be conflicting with respect to preferences. For example, very often when a car

has a good maximum speed, it has also a high price and a high fuel consumption,

or if a student is very good in Mathematics, may be not so good in Literature.

then, in order to express a decision such as a choice from a given set of cars or a

ranking of a set of students, it is necessary to aggregate the evaluations on consid-

ered criteria, taking into account the possible interactions. This is the domain of

multiple-criteria decision analysis and in this context several methodologies have

been proposed (for a collection of extensive state-of-art surveys see [8]). Suppose
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to have n criteria N = {1, . . . , n} and that on each of them the evaluation of a given

alternative x is expressed by a single number (on the same scale). then, such an

alternative can be identified with a score vector x = (x1, . . . , xn), where xi ∈ R

represents the evaluation of x with respect to the ith criterion. If the criteria

are independent, a natural way to aggregate the score xi, i = 1, . . . , n is using the

weighted arithmetic means Ew(x) = ∑n
1 wixi with ∑n

1 wi = 1 and wi ≥ 0. When the

criteria are interacting the weighted arithmetic means must be substituted with

non additive operators. In the last years, several non additive integrals have been

developed in order to obtain an aggregated evaluation of x , say E(x) (for a com-

prehensive survey see [16]). These include the Choquet integral [7], the Shilkret

integral [45] and the Sugeno integral [47], among others. All these integrals are

computed with respect to a capacity [7] or fuzzy measure [47] allowing the impor-

tance of a set of criteria to be not necessarily the sum of the importance of each

criterion in the set. It can be smaller or greater, due respectively to redundancy

or synergy among criteria. These integrals can be used if the starting evaluations

are exactly expressed (on a numerical or ordinal scale). However, in the real life it

is very simple to image situations where we have only partial informations about

the possible evaluations on each criterion. Specifically, on this chapter we face

the case of interval-evaluations. For example, suppose a situation where, consid-

ering only two criteria, an alternative x is evaluated between 5 and 10 on the first

criterion and between 7 and 20 on the second. Again x can be represented as a

score vector x = ([5,10] , [7,20]). Using a generic aggregation operator E, it seems

natural to aggregate separately the x ”pessimistic” evaluations x∗ = (5,7) and the

”optimistic” ones, x∗ = (10,20), in order to obtain an interval [E(x∗),E(x∗)]
containing the global evaluation of x . If we wish to obtain such a global evalu-

ation, we should furthermore aggregate E(x∗) and E(x∗) into a single number.
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then, the aggregation of interval-evaluations into an exact evaluation should nec-

essarily request two steps. In this chapter we aim to synthesize these two processes

into one single aggregating process. To this purpose we provide a quite natural

generalization of the classical Choquet, Shilkret and Sugeno integrals, which we

call the robust Choquet, Shilkret and Sugeno integrals computed wit respect to

an interval-capacity. Roughly speaking, our integrals are special case of integrals

of set valued functions [1]. Another question we face is that of order on the set of

intervals. It is well known that the philosophy of the Choquet integral applied to

a given alternative is based on the ranking of the alternative evaluations on the

various criteria. Being these evaluations single numbers, their ranking agrees with

the natural order of R. In the case of interval-evaluations, we have not a “natural

order” to be preserved, like in R. On the other hand we want that an evaluation

on the range [5,10] is considered better than an evaluation on the range [1,4]
and, then, some assumption about a primitive ordering on intervals must be done.

One choice could be to assume the lexicographic order: [a, b] ≺ [a′, b′] iff a < a′

or a = a′ and b < b′. The lexicographic order has the advantage to be a complete

order on the set of intervals, but it leads to the conclusion that [2.99,100] ≺ [3,4],
which we do not consider a suitable conclusion in the case of interval-evaluations.

Instead, throughout this chapter we shall assume as desirable order on intervals to

be preserved that defined by considering an evaluation on the range [a, b] better

or equal than an evaluation on the range [a′, b′] iff a ≥ a′ and b ≥ b′.

Finally, we wish to recall as, in contrast to the fact that in real life decisions we of-

ten face imprecise evaluations, in multiple-criteria decision analysis little has been

developed in order to provide appropriate tools to aggregate such evaluations. In

the best of our knowledge this question has been only partially treated in literature

[28, 5].
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The chapter is organized as follows. Section 2 contains the basic concepts. In

Section 3 we give the definition of Robust Choquet Integral (RCI) computed with

respect to an interval-capacity. In section 4 we give an illustrative application of

the RCI, while in Section 5 we provide a full axiomatic characterization of this

integral. In Section 6 we explore the possibility of rewriting the RCI by means

of its Möbius inverse. In Section 7 we give the definitions of robust Sugeno and

Shilkret integrals and in Section 8 we apply our generalization to other fuzzy inte-

grals, among them to the concave integral of Lehrer [34]. In Section 9 we extend

our discussion to the case of m-point intervals [40]. Section 10 concludes.

4.2 Basic concepts

Let us consider a set of alternative A = {x ,y, z, . . .} to be evaluated with

respect to a set of criteria N = {1,⋯, n}. Suppose that for every x ∈ A, we have,

on each criterion, a numerical imprecise evaluation. Specifically, suppose that for

each i ∈ N we know a range [xi, xi] containing the exact evaluation of x with

respect to i. then, being I = {[a, b] ∣ a, b ∈ R, a ≤ b} the set of bounded and closed

intervals of R, any alternative x can be identified with a score vector

x = ([x
1
, x1] , . . . , [xi, xi] , . . . , [xn, xn]) ∈ In (4.1)

whose ith component, [xi, xi], is the interval containing the evaluation of x with

respect to the ith criterion. Vectors of Rn are considered elements of In by

identifying each x ∈ R with the degenerate interval (or singleton) [x, x] = {x}.

then, with a slight abuse of notation, we write [x, x] = x. We associate to every

x = ([x
1
, x1] , . . . , [xn, xn]) ∈ In the vector x = (x

1
, . . . , xn) of all the worst (or

pessimistic) evaluations of x on each criterion and the vector x = (x1, . . . , xn) of
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all the best (or optimistic) evaluations of x on each criterion. Throughout this

chapter, the elements of In will be, indifferently, called alternatives or vectors.

Let us consider the set Q = {(A,B) ∣ A ⊆ B ⊆ N} of all pairs of subsets of N in

which the first component is included in the second. With a slight abuse of nota-

tion we extend to Q the relation of set inclusion and the operations of union and

intersection by defining for all (A,B), (C,D) ∈ Q

(A,B) ⊆ (C,D) if and only if A ⊆ C and B ⊆D;

(A,B) ∪ (C,D) = (A ∪C,B ∪D) ;

(A,B) ∩ (C,D) = (A ∩C,B ∩D) .
Regarding the algebraic structure of Q, we can observe that with respect to the

relation ⊆, Q is a lattice, i.e. a partial ordered set in which every two elements have

a unique supremum and a unique infimum. Those are given, for all (A,B), (C,D) ∈
Q, respectively, by

sup{(A,B) , (C,D)} = (A,B) ∪ (C,D) ;

inf {(A,B) , (C,D)} = (A,B) ∩ (C,D) .
Moreover the lattice (Q,⊆) is also distributive. Indeed, due to the distributive

property of set union over intersection (and vice versa) we have that

(A,B) ∪ [(C,D) ∩ (E,F )] = [(A,B) ∪ (C,D)] ∩ [(A,B) ∪ (E,F )] ;

(A,B) ∩ [(C,D) ∪ (E,F )] = [(A,B) ∩ (C,D)] ∪ [(A,B) ∩ (E,F )] .
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Regarding the significance of Q in this work, let us consider

x = ([x
1
, x1] , . . . , [xn, xn]) ∈ In

and a fixed evaluation level t ∈ R. We define

(A (x , t) ,B (x , t)) = ({i ∈ N ∣ xi ≥ t},{i ∈ N ∣ xi ≥ t}). (4.2)

In (4.2) the set A (x , t) aggregates the criteria whose pessimistic evaluation of x

is at least t, while B (x , t) aggregates the criteria whose optimistic evaluation of x

is at least t. Clearly, A (x , t) ⊆ B (x , t) ⊆ N and then ((A (x , t) ,B (x , t)) ∈ Q for

all t ∈ R and for all x ∈ In. We aim to define a tool allowing for the assignment of

a “weight” to such elements of Q.

4.3 The robust Choquet integral

Definition 33. A function µr ∶ Q→ [0,1] is an interval-capacity on Q if

• µr ((∅,∅)) = 0 and µr ((N,N)) = 1; and

• µr ((A,B)) ≤ µr ((C,D)) for all (A,B), (C,D) ∈ Q such that (A,B) ⊆

(C,D).

By the sake of simplicity, in the sequel we shall indicate µr ((A,B)) with

µr (A,B).

Definition 34. The Robust Choquet Integral (RCI) of

x = ([x
1
, x1] , . . . , [xn, xn]) ∈ In
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with respect to an interval-capacity µr ∶ Q→ [0,1] is given by

Chr (x, µr) =∶ ∫ max{x1,...,xn}

min{x
1
,...,xn}

µr({i ∈ N ∣ xi ≥ t},{i ∈ N ∣ xi ≥ t})dt + min{x
1
, . . . , xn} .

(4.3)

Note that, being in (4.3) the integrand bounded and not increasing, the integral

is the standard Riemann integral.

An alternative formulation of the RCI implies some additional notations. We

identify every vector x = ([x
1
, x1] , . . . , [xn, xn]) ∈ In with x∗ = (x1, . . . , x2n) ∈ R2n

defined by setting for all i = 1, . . . ,2n

xi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
xi i ≤ n

xi−n i > n.

(4.4)

This corresponds to identify x ∈ In with

x∗
= (x1, . . . , x2n) = (x

1
, . . . , xn, x1, . . . , xn) ∈ R2n.

Let (⋅) ∶ {1, . . . ,2n} → {1, . . . ,2n} be a permutation of indices such that x(1) ≤

x(2) ≤ . . . ≤ x(2n) and for all i = 1, . . . ,2n consider (A (x , x(i)) ,B (x , x(i))) =

({j ∈ N ∣ xj ≥ x(i)} ,{j ∈ N ∣ xj ≥ x(i)}). Then, two alternative formulations of

(4.3) are:

Chr (x , µr) = 2n∑
i=2

(x(i) − x(i−1))µr (A (x , x(i)) ,B (x , x(i))) + x(1) (4.5)

and

Chr (x , µr) = 2n∑
i=1

x(i) [µr (A (x , x(i)) ,B (x , x(i))) − µr (A (x , x(i+1)) ,B (x , x(i+1)))].
(4.6)
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4.3.1 Interpretation

The indicator function of a set A ⊆ N is the function 1A ∶ N → {0,1} which

takes the value of 1 on A and 0 elsewhere. Such a function can be identified with

the vector 1A ∈ Rn whose ith component equals 1 if i ∈ A and equals 0 if i ∉ A.

For all (A,B) ∈ Q the generalized indicator function 1(A,B) ∶ N → {0,1, [0,1]} is

defined by setting for all i ∈ N

1(A,B)(i) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[1,1] = 1 i ∈ A

[0,1] i ∈ B ∖ A

[0,0] = 0 i ∈ N ∖ B.

(4.7)

The (4.7) can be thought as the function indicating “A for sure and, possibly,

B ∖ A.” Clearly, if A = B, 1(A,A) = 1A. The function 1(A,B) can be identified with

the vector 1(A,B) ∈ I
n whose ith component equals [1,1] = 1 if i ∈ A, equals [0,1]

if i ∈ B ∖ A and equals 0 if i ∉ B.

It follows by the definition of RCI that for any interval-capacity µr,

Chr(1(A,B), µr) = µr (A,B) . (4.8)

This relation offers an appropriate definition of the weights µr (A,B). Indeed,

provided that the partial score [xi, xi] are contained in [0,1], the (4.8) suggests

that the weight of importance of any couple (A,B) ∈ Q is defined as the global

evaluation of the alternative that

• completely satisfies the criteria from A,

• has an unknown degree of satisfaction (on the scale [0,1]) about the criteria

from B ∖ A, and
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• totally fails to satisfy the criteria from N ∖ B.

4.3.2 Relation with the Choquet Integral

A capacity [7] or fuzzy measure [47] on N is a non decreasing set function

ν ∶ 2N → [0,1] such that ν(∅) = 0 and ν(N) = 1.

Definition 35. The Choquet integral [7] of a vector

x = (x1, . . . , xn) ∈ [0,+∞ [n

with respect to the capacity ν is given by

Ch(x, ν) = ∫ ∞

0

ν ({i ∈ N ∶ xi ≥ t})dt. (4.9)

Schmeidler [43] extended the above definition to negative values too.

Definition 36. The Choquet integral of a vector x = (x1, . . . , xn) ∈ Rn with respect

to the capacity ν is given by

Ch(x, ν) = ∫ maxi xi

mini xi

ν ({i ∈ N ∶ xi ≥ t})dt + min
i

xi. (4.10)

Alternatively (4.10) can be written as

Ch(x , ν) = n∑
i=2

(x(i) − x(i−1)) ⋅ ν ({j ∈ N ∶ xj ≥ x(i)}) + x(1), (4.11)

being (⋅) ∶ N → N any permutation of indexes such that x(1) ≤ . . . ≤ x(n).

Now, suppose to have x = ([x
1
, x1] , . . . , [xn, xn]) ∈ In such that xi = xi for all

i ∈ N , then x ∈ Rn. Let be given an interval-capacity µr ∶ Q → [0,1]. It is

straightforward to note that ν(A) = µr(A,A) ∶ 2N → [0,1] defines a capacity. In
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this case the RCI of x with respect to µr collapses on the Choquet integral of x

with respect to ν, i.e. Chr(x , µr) = Ch(x , ν).

Moreover, the RCI is a monotonic functional (see section 4.5) and then for all

x ∈ In,

Chr(x , µr) = Ch(x , ν) ≤ Chr(x , µr) ≤ Ch(x , ν) = Chr(x , µr). (4.12)

If µr(∅,N) ∉ {0,1}, other two capacities can be elicited from µr by setting for all

A ⊆ N

ν(A) = µr(A,N) − µr(∅,N)
1 − µr(∅,N) and ν(A) = µr(∅,A)

µr(∅,N) .
These two capacities naturally arise in the proof of proposition 4.

Now let us examine the relation between the Choquet integral and the RCI in the

other verse. Starting from two capacities ν ∶ 2N → [0,1] and ν ∶ 2N → [0,1], we

can define an interval-capacity for every α ∈ (0,1) by means of

µr(A,B) = αν(A) + (1 − α)ν(B), for all (A,B) ∈ Q. (4.13)

Definition 37. An interval-capacity µr(A,B) ∶ Q→ [0,1] is said separable if there

exist an α ∈ (0,1) and two capacities, ν ∶ 2N → [0,1] and ν ∶ 2N → [0,1], such that

(4.13) holds.

Proposition 4. An interval-capacity µr(A,B) ∶ Q→ [0,1] is separable if and only

if for every A,A′,B,B′ ∈ 2N with A ∪ A′ ⊆ B ∩ B′, the following condition holds

µr(A,B) − µr(A′,B) = µr(A,B′) − µr(A′,B′). (4.14)
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Proof. Let us note that the (4.14) can be rewritten as

µr(A′,B′) − µr(A′,B) = µr(A,B′) − µr(A,B). (4.15)

then the condition (4.14) means that the difference between two interval-capacities

is independent from common coalitions of criteria in the first or in the second

argument. The necessary part of the theorem is trivial, let us prove the sufficient

part. Suppose that µr is an interval-capacity satisfying the (4.14). then if A′ = ∅
and B′ = N and if µr(∅,N) ∉ {0,1} we get

µr(A,B) = µr(A,N) − µr(∅,N) + µr(∅,B) =
µr(A,N) − µr(∅,N)

1 − µr(∅,N) (1 − µr(∅,N)) + µr(∅,B)
µr(∅,N)µr(∅,N).

In this case µr is separable taking for all A,B ∈ 2N ,

α = 1 − µr(∅,B), ν(A) = µr(A,N) − µr(∅,N)
1 − µr(∅,N) and ν(B) = µr(∅,B)

µr(∅,N) .

If µr(∅,N) = 0 we take α = 1 and ν(A) = µr(A,N). Finally, if µr(∅,N) = 1 we

take α = 0 and ν(B) = µr(∅,B).

It is easy to verify that if µr is a separable interval-capacity defined according

to (4.13), the RCI of every x ∈ In is the mixture of the two Choquet integrals of

x ,x ∈ Rn computed with respect to ν and ν:

Chr(x , µr) = αCh(x , ν) + (1 − α)Ch(x , ν). (4.16)

In the case of a single capacity ν = ν = ν, one could think to obtain a lower, an

intermediate and an upper aggregate evaluation of an alternative x ∈ In by means
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of

Ch(x , ν) ≤ αCh(x , ν) + (1 − α)Ch(x , ν) ≤ Ch(x , ν). (4.17)

The mixture αCh(x , ν)+(1−α)Ch(x , ν) is the RCI of x with respect to a separable

interval-capacity µr. Clearly, our approach is more general since it does not impose

the separability of µr.

4.4 An illustrative example

Taking inspiration from an example very well known in the specialized litera-

ture [10] let us consider a case of evaluation of students. A typical situation, which

can arise in the middle of a school year, is that when some teachers, being not sure

about the evaluation of a student, express it in terms of an interval. Perhaps it is

not a great lack of information to know that a student is evaluated in Mathemat-

ics between 5 and 6. But the problems can arise when we must compare several

students having imprecise evaluations and, to this scope, we need an aggregated

evaluation of each student.

We suppose that the students are evaluated on each subject on a 10 point scale.

Let us suppose that we globally evaluate students with respect to evaluations in

Mathematics, Physics and Literature. Let us consider three students having the

evaluations presented in Table 4.1. As can be seen, some evaluations are imprecise.

Suppose also that the dean of the school ranks the students as follows:

S2 ≻ S1 ≻ S3.

The rationale of this ranking is that:

• S1 ≻ S3 since the better evaluations of S3 in scientific subjects, i.e. Mathe-
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Mathematics Physics Literature

S1 8 8 7

S2 [7,8] 8 [6,8]

S3 9 9 [5,6]

Table 4.1: Students’ evaluations

matics and Physics are redundant, and the dean retains relevant the better

evaluation of S1 in Literature, where S3 risks an insufficiency. In other

words, when the scientific evaluation is fairly high, Literature becomes very

important;

• S2 ≻ S1 since the conjoint evaluation in Mathematics and Physics is very

similar, also considering the redundancy of the two subjects. However S2

has the same average in Literature and, then, a greater potential;

• S2 ≻ S3 by transitivity of preferences.

Let us note that, if we consider separately the three averages given by the mini-

mum, central and maximum evaluations of each student for each subject, see Table

4.2, we cannot explain the (rational) preferences of the dean. On the contrary, the

evidence of such average evaluations shows how we should consider S3 the best

student. Next we show how the RCI permits to represent the preferences of the

dean. Let N = {M, Ph, L} be the set of criteria and let us identify the three
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students (alternative) S1, S2 and S3, respectively with the three vectors:

x 1 = ([8,8], [8,8], [7,7]) ,
x 2 = ([7,8], [8,8], [6,8]) ,
x 3 = ([9,9], [9,9], [5,6]) .

The RCI represents the preferences of the dean if there exists an interval-capacity

µr such that

Chr(x 2, µr) > Chr(x 1, µr) > Chr(x 3, µr),
that is

6 + µr ({M,Ph} ,N) + µr ({Ph} ,N) > 7 + µr ({M,Ph} ,{M,Ph}) >

> 5 + µr ({M,Ph} ,N) + 3µr ({M,Ph} ,{M,Ph}) .
Which can be explained, for example, by setting

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

µr ({M,Ph} ,N) = 0.9

µr ({Ph} ,N) = 0.7

µr ({M,Ph} ,{M,Ph}) = 0.5.

4.5 Axiomatic characterization of the RCI

Let us recall some well known definitions. Consider two vectors (alternatives)

of Rn, x = (x1, . . . , xn) and y = (y1, . . . , yn). We say that x dominates y if for

all i ∈ N xi ≥ yi and in this case we simply write x ≥ y . We say that x and

y are comonotone if (xi − xj)(yi − yj) ≥ 0 for all i, j ∈ N . A monotone function

74



minimum medium maximum

S1 7.67 7.67 7.67

S2 7 7.5 8

S3 7.67 7.83 8

Table 4.2: Average evaluations

G ∶ Rn
→ R is a function such that G(x) ≥ G(y) whenever x ≥ y . In the context of

multiple-criteria decision analysis, a monotone function G ∶ Rn
→ R which fulfills

the boundary conditions infx∈Rn G(x) = −∞ and supx∈Rn G(x) = +∞ is called an

aggregation function [19]. Aggregation functions are useful tools to aggregate n

evaluations of an alternative into a single overall evaluation. A function G ∶ Rn
→ R

is:

• idempotent, if for all constant vector a = (a, . . . , a) ∈ Rn, G(a) = a;

• homogeneous, if for all x ∈ Rn and c > 0, G(c ⋅ x) = c ⋅ G(x);

• comonotone additive, if for all comonotone x ,y ∈ Rn,

G(x + y) = G(x) + G(y).

In [43] it has been showed that the Choquet integral is an idempotent, homoge-

neous and comonotone additive aggregation function. Moreover, these properties

are also characterizing the Choquet integral, as showed by the following theorem.
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Theorem 11. [43] A monotone function G ∶ Rn
→ R satisfying G(1N) = 1 is

comonotone additive if and only if there exists a capacity ν such that, for all

x ∈ Rn,

G(x) = Ch(x, ν).
Note that homogeneity is not among the hypotheses of the theorem since it can

be elicited from monotonicity and comonotone additivity. Moreover from homo-

geneity and the condition G(1N) = 1 we also elicit idempotency of G.

Now we turn our attention to the RCI. As we shall soon see, the RCI with respect

to an interval-capacity µr, can be considered a generalized aggregation function.

In order to provide an axiomatic characterization of the RCI we need to extend the

notions of monotonicity, idempotency, homogeneity and comonotone additivity for

a generic function G ∶ In
→ R. To this purpose we introduce on I and on In, a

mixture operation and a preference relation.

Definition 38. For every a ∈ R+ and [x1, x2] ∈ I we define: a⋅[x1, x2] = [ax1, ax2].
Moreover, for every x = ([x

1
, x1] , . . . , [xn, xn]) ∈ In we define a ⋅ x as the element

of In whose ith component is a ⋅ [xi, xi], for all i = 1, . . . , n.

Definition 39. For every [x1, x2], [y1, y2] ∈ I we define:

[x1, x2] + [y1, y2] = [x1 + y1, x2 + y2].

Moreover, for every pair of vectors of In, x = ([x
1
, x1] , . . . , [xn, xn]) and y =

([y
1
, y1], . . . , [yn, yn]), we define x + y as the element of In whose ith component

is [xi, xi] + [y
i
, yi], for all i = 1, . . . , n.
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Let us note that the two previous definitions can be summarized as follows. For

every a, b ∈ R+ and [x1, x2], [y1, y2] ∈ I we have the “mixture operation”

a ⋅ [x1, x2] + b ⋅ [y1, y2] = [ax1 + by1, ax2 + by2].

Moreover, for every pair of vectors of In, x = ([x
1
, x1] , . . . , [xn, xn]) and y =

([y
1
, y1], . . . , [yn, yn]) and for all a, b ∈ R+, we have that ax + by is the element of

In whose ith component is a ⋅ [xi, xi] + b ⋅ [y
i
, yi], for all i = 1, . . . , n.

Definition 40. For all [α,β], [α1, β1] ∈ I, we define [α,β] ≤I [α1, β1] whenever

α ≤ α1 and β ≤ β1. The symmetric and asymmetric part of ≤ on I are denoted by

=I and <I . Moreover, for every pair of vectors of In, x = ([x
1
, x1] , . . . , [xn, xn])

and y = ([y
1
, y1], . . . , [yn, yn]) we write x ≤I y whenever [xi, xi] ≤I [y

i
, yi] for all

i ∈ N .

For the sake of simplicity in the remaining part of the chapter the relations

≤I , =I and <I shall be simply denoted by ≤, = and <.

Remark 4. Alternatively, for all x,y ∈ In we can say that x ≤ y iff x ≤ y and

x ≤ y.

Let us note that (I,≤) is a partial ordered set, i.e. ≤ is reflexive, antisymmetric

and transitive. However, this relation is not complete, e.g. we are not able to

establish the preference between [2,5] and [3,4]. Then, generally, the evaluations

of an alternative on the various criteria, cannot be ranked.

The notion of comonotonicity can be easily extended to elements of In identifying

every vector x = ([x
1
, x1] , . . . , [xn, xn]) ∈ In with the vector x∗ = (x1, . . . , x2n) =

(x
1
, . . . , xn, x1, . . . , xn) ∈ R2n, according to (4.4).
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Definition 41. The two vectors of In,

x = ([x
1
, x1] , . . . , [xn, xn]) and y = ([y

1
, y1], . . . , [yn, yn])

are comonotone if are comonotone in R2n, the two vectors

x∗
= (x

1
, . . . , xn, . . . , x1, . . . , xn) and y∗

= (y
i
, . . . , y

n
, . . . , y1, . . . , yn).

Clearly a constant vector k = (k, k, . . . , k) ∈ Rn with k ∈ R, is comonotone with ev-

ery x ∈ In. Suppose that x = ([x
1
, x1] , . . . , [xn, xn]) and y = ([y

1
, y1], . . . , [yn, yn])

are two comonotone vectors of In and consider the correspondent vectors of R2n,

x∗
= (x1, . . . , x2n) = (x

1
, . . . , xn, x1, . . . , xn)

and

y∗
= (y1, . . . , y2n) = (y

1
, . . . , y

n
, . . . , y1, . . . , yn)−

According to Schmeidler [43] if x and y are comonotone, then there exists a

permutation of indices (⋅) ∶ {1, . . . ,2n} → {1, . . . ,2n} such that x(1) ≤ x(2) ≤ . . . ≤

x(2n) and y(1) ≤ y(2) ≤ . . . ≤ y(2n)

Remark 5. If x and y are comonotone, then both x and y are comonotone as

well as x and y. The reverse is generally false. For example x = ([1,3] , [2,4]) and

y = ([1,3] , [4,5]) are non comonotone, although x is comonotone with y and x is

comonotone with y.

Let us note that for all (A,B), (A′,B′) ∈ Q, the relation (A,B) ⊆ (A′,B′),

ensures that 1(A,B) and 1(A′,B′) are comonotone. Note that also the sum 1(A,B) +
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1(A′,B′) is comonotone with 1(A,B) and 1(A′,B′) (see Tab 4.3).

1(A,B) 1(A′,B′) 1(A,B) + 1(A′,B′)

A [1,1] [1,1] [2,2]

(A′ ∩ B) ∖ A [0,1] [1,1] [1,2]
B ∖ A′ [0,1] [0,1] [0,2]
A′ ∖ B [0,0] [1,1] [1,1]

B′ ∖ (A′ ∪ B) [0,0] [0,1] [0,1]

Table 4.3: comonotone indicator functions.

Now we are able to study the properties of the RCI and to give the character-

ization Theorem.

Proposition 5. Let µr be an interval-capacity, then Chr(⋅, µr) satisfies the fol-

lowing properties.

(P1) Idempotency. For all k = (k, k, . . . , k) with k ∈ R, Chr(k, µr) = k.

(P2) Positive homogeneity. For all a > 0 and x ∈ In, Chr(a ⋅ x, µr) = a ⋅
Chr(x, µr).

(P3) Monotonicity. For all x,y ∈ In with x ≤ y, Chr (x, µr) ≤ Chr (y, µr).
(P4) Comonotone additivity. For all comonotone x,y ∈ In,

Chr (x + y, µr) = Chr (x, µr) + Chr (y, µr) .

Proof. (P1) follows trivially by definition of RCI. Let us prove (P2). Fixed a > 0
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and x ∈ In, by definition

Chr (a ⋅ x , µr) = ∫ max{ax1,...,axn}

min{ax
1
,...,axn}

µr({i ∈ N ∣ axi ≥ t},{i ∈ N ∣ axi ≥ t})dt +

+ min{ax
1
, ax

2
, . . . , axn} =

= a ⋅ ∫ a⋅max{x1,...,xn}

a⋅min{x
1
,...,xn}

µr({i ∈ N ∣ xi ≥ t

a
},{i ∈ N ∣ xi ≥ t

a
})d(t/a) +

a ⋅ min{x
1
, x

2
, . . . , xn} = a ⋅ Chr (x , µr) .

In the last passage we change the variable in the integral from y = t/a to z = y ⋅ a.

To prove (P3) let us note that for all t ∈ R and for all x ,y ∈ In with x ≤ y, we

get that {i ∈ N ∶ xi ≥ t} ⊆ {i ∈ N ∶ y
i
≥ t} and {i ∈ N ∶ xi ≥ t} ⊆ {i ∈ N ∶ yi ≥ t}.

We conclude that the RCI is a monotonic function by definition and invoking the

monotonicity of µr and of the Riemann integral.

To prove (P4), suppose that

x = ([x
1
, x1] , . . . , [xn, xn]) and y = ([y

1
, y1], . . . , [yn, yn])

are two comonotone vectors of In and consider the correspondent vectors of R2n,

x∗ = (x1, . . . , x2n) and y∗ = (y1, . . . , y2n), defined according to (4.4). then, there

exists a permutation of indexes (⋅) ∶ {1, . . . ,2n} → {1, . . . ,2n} such that x(1) ≤

. . . ≤ x(2n) and y(1) ≤ . . . ≤ y(2n) or equivalently (being x∗ and y∗ comonotone),

x(1) + y(1) ≤ . . . ≤ x(2n) + y(2n). By setting for all i = 1, . . . ,2n

A(i) = {j ∈ N ∣ xj ≥ x(i)} ⋂ {j ∈ N ∣ y
j
≥ y(i)},

B(i) = {j ∈ N ∣ xj ≥ x(i)} ⋂ {j ∈ N ∣ yj ≥ y(i)}, (4.18)

we have that
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Chr (x , µr) = 2n∑
i=2

(x(i) − x(i−1))µr (A(i),B(i)) + x(1),

Chr (y , µr) = 2n∑
i=2

(y(i) − y(i−1))µr (A(i),B(i)) + y(1), (4.19)

and also

Chr (x + y , µr) = 2n∑
i=2

(x(i) + y(i) − x(i−1) − y(i−1))µr (A(i),B(i)) +x(1)+y(1). (4.20)

From (4.19) and (4.20), comonotone additivity is obtained.

Remark 6. Since the RCI is additive on comonotone vectors and being a constant

vector comonotone with all vectors, it follows that the RCI is translational invari-

ant. This means that for all x ∈ In and for all k = (k, . . . , k) ∈ Rn, Chr(x+k, µr) =
k + Chr(x, µr).
The next theorem gives a characterization of the RCI.

Theorem 12. A function G ∶ In
→ R satisfies the properties

• G(1(N,N)) = 1,

• (P3) Monotonicity, and

• (P4) Comonotone additivity

if and only if there exists an interval capacity µr ∶ Q→ [0,1] such that

G(x) = Chr(x, µr), for all x ∈ In.

Proof. The necessary part is a direct consequence of Proposition 5, let us sufficient

part. First let us note that the properties (P1) and (P2), are not among the
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hypotheses of Theorem 12 since they are implied by comonotone additivity (P4),

monotonicity (P3) and the condition G(1(N,N)) = 1. The proof of this claim is

obtained by adapting that in [43]. Regarding the homogeneity, if n ∈ N is a positive

integer, by comonotone additivity we get

G(n ⋅ x) = G(
n times³¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹µ
x , . . . ,x) = n ⋅ G(x), for every x ∈ I

n.

If a = n/m ∈ Q+ is a positive razional number, with n,m ∈ N we get

n ⋅ G(x) = G(n ⋅ x) = G(nm
m

⋅ x) =m ⋅ G( n
m

⋅ x), for every x ∈ I
n.

Finally, for a ∈ R+ ∖Q+ it is sufficient to consider two sequences of rational numbers

convergent to a, {a−

i } and {a+

i } such that a−

1
< a−

2
. . . < a < . . . a+

2
< a+

1
and using

monotonicity of G we get that G(a ⋅ x) = a ⋅ G(x) for every x ∈ In.

Regarding idempotency, if a ∈ R+ we get G(a ⋅ 1(N,N)) = a ⋅ G(1(N,N)) = a. By

comonotone additivity 0 = G(0 ⋅1(N,N)) and 0 = G((a−a)1(N,N)) = G(a ⋅1(N,N))+
G(−a ⋅ 1(N,N)) = a + G(−a ⋅ 1(N,N)), then G(−a ⋅ 1(N,N)) = −a.

The hypotheses of theorem ensure that the

µr(A,B) = G (1(A,B)) ∀(A,B) ∈ Q (4.21)

defines an interval-capacity. Indeed: µr(N,N) = G(1(N,N)) = 1; µr(∅,∅) =

G(1(∅,∅)) = 0, since by comonotone additivity G(1(∅,∅)) = G(1(∅,∅) + 1(∅,∅)) =

G(1(∅,∅)) + G(1(∅,∅)) and then G(1(∅,∅)) = 0; for all (A,B), (C,D) ∈ Q such

that (A,B) ⊆ (C,D), µr(A,B) ≤ µr(C,D) follows by monotonicity of G. Let

x = ([x
1
, x1] , . . . , [xn, xn]) be a vector and (⋅) ∶ {1, . . . ,2n}→ {1, . . . ,2n} be a per-

mutation such that x(1) ≤ x(2) ≤ . . . ≤ x(2n). Since (A (x , x(i+1)) ,B (x , x(i+1))) ⊆
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(A (x , x(i)) ,B (x , x(i))) for all i = 1, . . . ,2n−1, then the vectors 1(A(x ,x(i)),B(x ,x(i)))

are comonotone for all i = 1, . . . ,2n. The vector x can be rewritten as sum of

comonotone vectors (take x(0) = 0):

x =
2n∑
i=1

[x(i) − x(i−1)] ⋅ 1(A(x ,x(i)),B(x ,x(i)))
. (4.22)

Finally, the proof follows from (4.22) by using, respectively, comonotone additivity,

homogeneity of G and definition of the interval-capacity µr according to (4.21):

G(x) = G(2n∑
i=1

[x(i) − x(i−1)] ⋅ 1(A(x ,x(i)),B(x ,x(i)))
) =

2n∑
i=1

G ([x(i) − x(i−1)] ⋅ 1(A(x ,x(i)),B(x ,x(i)))
) =

=
2n∑
i=1

[x(i) − x(i−1)] ⋅ G (1(A(x ,x(i)),B(x ,x(i)))
)

=
2n∑
i=1

[x(i) − x(i−1)] ⋅ µr (A (x , x(i)) ,B (x , x(i))) =
= Chr(x , µr).

4.6 The RCI and Möbius inverse

The following proposition gives the closed formula of the Möbius inverse [42]

of a function on Q.
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Proposition 6. Suppose f, g ∶ Q→ R are two real valued functions on Q. Then

f(A,B) = ∑
(C,D)∈Q

(C,D)⊆(A,B)

g(C,D) for all (A,B) ∈ Q (4.23)

if and only if

g(A,B) = ∑
∅⊆X⊆A

(−1)∣X ∣ ∑
(C,D)∈Q

(C,D)⊆(A∖X,B∖X)

(−1)∣B∖A∣−∣D∖C ∣
f(C,D) for all (A,B) ∈ Q.

(4.24)

Proof. See Appendix

Remark 7. By setting for all X ⊆ A ⊆ N and for all (A,B) ∈ Q

g∗(A ∖ X,B ∖ X) = ∑
(C,D)⊆(A∖X,B∖X)

(−1)∣B∖A∣−∣D∖C ∣
f(C,D),

then equation (4.24) can be rewritten as

g(A,B) = ∑
∅⊆X⊆A

(−1)∣X ∣
g∗(A ∖ X,B ∖ X).

Remark 8. Let us apply proposition 6 to Q0 = {(∅,B)) ∣ B ⊆ N} ⊆ Q which

we identify with 2N . then we obtain the well known result, applied to functions

f, g ∶ 2N → R,

f(B) = ∑
D⊆B

g(D) for all B ∈ 2N (4.25)

if and only if

g(B) = ∑
D⊆B

(−1)∣B∖D∣
f(D) for all B ∈ 2N . (4.26)
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The first of the two following propositions characterizes an interval-capacity by

means of its Möbius inverse. The second one allows the RCI with respect to an

interval-capacity to be rewritten using the Möbius inverse of such an interval-

capacity.

Proposition 7. µr ∶ Q→ R is an interval-capacity if and only if its Möbius inverse

m ∶ Q→ R satisfies:

1. m (∅,∅) = 0;

2. ∑(A,B)∈Qm(A,B) = 1;

3. ∑{a}⊆C⊆A ∑C⊆D⊆Bm(C,D) ≥ 0, ∀a ∈ A ⊆ B ∈ 2N ;

4. ∑{b}⊆D⊆B ∑C⊆A∩Dm(C,D) ≥ 0, ∀b ∈ B ⊇ A ∈ 2N .

Proof. See Appendix

Proposition 8. Let µr ∶ Q → [0,1] be an interval-capacity and let m ∶ Q → [0,1]
be its Möbius inverse, then for all x ∈ In

Chr(x, µr) = ∑
(A,B)∈Q

m(A,B) ⋅ ⎛⎝min

⎧⎪⎪⎨⎪⎪⎩⋀
i∈A

xi, ⋀
j∈B

xj

⎫⎪⎪⎬⎪⎪⎭
⎞
⎠ . (4.27)

Proof. For all x ∈ In,

Chr(x , µr) = ∑2n
i=1 x(i) [µr (A(i),B(i)) − µr (A(i+1),B(i+1))] =

= ∑2n
i=1 x(i) ∑(A,B)⊆(A(i),B(i))∖(A(i+1),B(i+1))

m(A,B) =
= ∑(A,B)∈Qm(A,B) ⋅ (min{ ⋀

i∈A
xi, ⋀

i∈B
xi}) . (4.28)
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Remark 9. Note that the term ⋀
i∈B

xi can also be written ⋀
i∈B∖A

xi and can have

an influence. See, e.g., the following example: N = {1,2}, (A,B) = ({1},{1,2}),
x = ([3,4], [1,2]). In this case, by applying the (4.27) the term m ({1},{1,2})
must be multiplied by 2 = min{3,4,2} = min{3,2}.
Using previous proposition the RCI assumes a linear expression with respect to

the interval-measure.

Corollary 2. There exist functions f(A,B) ∶ Rn
→ R, (A,B) ∈ Q such that

Chr(x, µr) = ∑
(A,B)∈Q

µr(A,B)f(A,B)(x). (4.29)

Proof. Indeed, using the (4.24)

m(A,B) = ∑
∅⊆X⊆A

(−1)∣X ∣ ∑
(C,D)∈Q

(C,D)⊆(A∖X,B∖X)

(−1)∣B∖A∣−∣D∖C ∣
µr(C,D) for all (A,B) ∈ Q.

(4.30)

in the (4.27), the (4.29) is verified with

f(A,B)(x) = ∑
∅⊆X⊆N∖A

(−1)∣X ∣ ∑
(A∪X,B∪X)

(−1)∣B∖A∣ ⋀{ ⋀
i∈A∪X

xi, ⋀
i∈B∪X

xi} (4.31)

4.7 The robust Sugeno and Shilkret integrals

Let us consider a set of criteria N = {1,2, . . . , n} and a set of alternatives

A = {x ,y , z , . . .} to be evaluated, on each criterion, on the scale [0,1]. then each
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x ∈ A can be identified with a score vector x = (x1, . . . , xn) ∈ [0,1]n, whose ith

component, xi, represents the evaluation of x with respect to the ith criterion.

Definition 42. The Sugeno Integral [47] of x = (x1, . . . , xn) ∈ [0,1]n with respect

to the capacity ν ∶ 2[0,1]
→ [0,1] is

S (x, ν) = ⋁
i∈N

⋀{x(i), ν (A(i))} , (4.32)

being (⋅) ∶ N → N an indexes permutation such that x(1) ≤ . . . ≤ x(n) and A(i) =

{(i), . . . , (n)}, i = 1, . . . , n.

It follows from the definition that S (x , ν) ∈ {x1, . . . , xn}⋃{ν(A) ∣ A ⊆ N}. More-

over the Sugeno integral can also be computed if the elements of the set

{x1, . . . , xn}⋃{ν(A) ∣ A ⊆ N}

are just ranked on an ordinal scale.

The (4.32) involves n terms but requests a permutation. An equivalent formulation

(see [36]) involves 2n terms but does not request a permutation.

S (x , ν) = ⋁
A⊆N

⋀{ν (A) , ⋀
i∈A

xi} . (4.33)

Now, suppose that for every x ∈ A, we have, on each criterion, a numerical im-

precise evaluation on the scale [0,1]. Specifically, suppose that for each i ∈ N we

know a range [xi, xi] ⊆ [0,1] containing the exact evaluation of x with respect

to i. then, being I[0,1] = {[a, b] ∣ a, b ∈ [0,1], a ≤ b} the set of bounded and closed

subintervals of [0,1], any alternative x can be identified with a score vector

x = ([x
1
, x1] , . . . , [xi, xi] , . . . , [xn, xn]) ∈ In

[0,1], (4.34)
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whose ith component, xi = [xi, xi], is the interval containing the evaluation of

x with respect to the ith criterion. Vectors of [0,1]n are considered elements of

In
[0,1] by identifying each x ∈ [0,1] with the degenerate interval [x, x] = {x}. We

associate to every x = ([x
1
, x1] , . . . , [xn, xn]) ∈ In the vector x = (x

1
, . . . , xn) of

all the worst (or pessimistic) evaluations and the vector x = (x1, . . . , xn) of all the

best (or optimistic) evaluations on each criterion.

Definition 43. The Robust Sugeno Integral (RSI) of x with respect to the interval-

capacity µr is

Sr (x, µr) = ⋁
(A,B)∈Q

⋀{⋀
i∈A

xi, ⋀
i∈B−A

xi , µr (A,B)} . (4.35)

It follows from the definition that

Sr (x , µr) ∈ {x
1
, . . . , xn}⋃{x1, . . . , xn}⋃{µr(A,B) ∣ (A,B) ∈ Q}

Moreover the RSI can also be computed if the elements of this set are just ranked

on an ordinal scale.

The (4.35) involves ∣Q∣ = 3n terms. An alternative formulation of the RSI implies

some additional notations. We identify every vector

x = ([x
1
, x1] , . . . , [xn, xn]) ∈ In

[0,1]

with the vector

x∗
= (x1, . . . , x2n) ∈ [0,1]2n

defined according to (4.4). Let (⋅) ∶ {1, . . . ,2n} → {1, . . . ,2n} be a permutation

of indices such that x(1) ≤ x(2) ≤ . . . ≤ x(2n) and for all i = 1, . . . ,2n let us define

A(i) = {j ∈ N ∣ xj ≥ x(i)} and B(i) = {j ∈ N ∣ xj ≥ x(i)}. then, the RSI of x with
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respect to the interval-capacity µr is:

Sr (x , µr) = ⋁
i∈{1,...,2n}

⋀{x(i), µr (A(i),B(i))} . (4.36)

This requests 2n terms and a permutation of indices.

We now give two illustrative examples. The first just shows the equivalence of

formulation (4.36) and (4.35), with the scale [0,1] substituted by the scale [0,10].
The second is applied to a student evaluation problem with the scale [0,1] substi-

tuted by the scale [0,30].
Example 1

Let us suppose that N = {1,2} and consider x = ([5,9] , [2,4]). Let be given the

following interval-capacity on Q:

µr (∅,∅) = 0, µr (∅,{1}) = 3, µr (∅,{2}) = 2, µr (∅,N) = 5, µr ({1} ,{1}) = 4,

µr ({1} ,N) = 6, µr ({2} ,{2}) = 4, µr ({2} ,N) = 7, µr (N,N) = 10.

It follows that

µr (A (x ,2) ,B (x ,2)) = µr (N,N) = 10, µr (A (x ,4) ,B (x ,4)) = µr ({1} ,N) = 6,

µr (A (x ,5) ,B (x ,5)) = µr ({1} ,{1}) = 4, µr (A (x ,9) ,B (x ,9)) = µr (∅,{1}) = 3.

By using the (4.36) we get

Sr (x , µr) = max{min{2,10} ,min{4,6} ,min{5,4} ,min{9,3}} =

max{2,4,4,3} = 4.
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Alternatively, we can use the (4.35)

Sr (x , µr) = max{0,min{3,9} ,min{2,4} ,min{5,4} ,min{4,5,9} ,

min{6,5,4} ,min{4,2,4} ,min{7,2,4} ,min{10,2,4}} = 4.

Example 2

Suppose we need to evaluate a university student in four economic subjects,

N = {m1,m2,m3,m4} of which {m1,m2} belong to the subcategory of microe-

conomic. We suppose that the student is evaluated on each subject by a 30 point

scale, allowing interval-evaluations. Let us consider the vector E(Student) = E(S)
containing the single evaluation in each subject E(mi):

E(S) = (E(m1),E(m2)E(m3),E(m4)) = ([26,30] , [28,30] , [24,27] , [23,27])
(4.37)

In order to compute the RSI of E(S) we have to specify some values of an interval-

capacity defined on Q. For example the following:

µr (N,N) = 30, µr ({m1,m2,m3} ,N) = 29, µr ({m1,m2} ,N) = 28,

µr ({m2} ,N) = 24, µr ({m2} ,{m1,m2}) = 23µr (∅,{m1,m2}) = 20. (4.38)

These weights reflect the fact that we retain the microeconomic subcategory {m1,

m2} particularly important. Indeed when {m1,m2} is not included on A the

weight assigned to (A,B) is small. The question is: how much should be globally

evaluated the student in accordance with the partials evaluations (4.37) and (4.38)?

Using the RSI, equation (4.35), such a student should be evaluated

Sr (S,µr) = ⋁{⋀{23,30} , ⋀{24,29} ,⋀{26,28} ,
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⋀{27,24} ⋀{28,23} ⋀{30,20}} = 26.

In this case we cannot assign a greater evaluation, due to the pessimistic evaluation

of the student in the relevant subject m1.

For nonnegative valued alternative, another famous integral useful to aggregate

criteria evaluations is the Shilkret integral [45].

Definition 44. The Shilkret integral [45] of a vector x = (x1, . . . , xn) ∈ [0,1]n with

respect to the capacity ν is given by

Sh(x, ν) = ⋁
i∈N

{xi ⋅ ν({j ∈ N ∶ xj ≥ xi}} . (4.39)

For interval-evaluations on the criteria, the Shilkret integral can be computed with

respect to an interval-capacity. Let us define

I[0,1]n = {[a, b] ∣ a, b ∈ R, 0 ≤ a ≤ b ≤ 1}

then we have the following

Definition 45. The robust Shilkret integral of x ∈ In
[0,1] with respect to the interval-

capacity µr is

Shr(x,µr) = ⋁
(A,B)∈Q

{⋀{⋀
i∈A

xi, ⋀
i∈B

xi} ⋅ µr(A,B)} .

4.8 Other robust integrals

What we have done regarding the Choquet, Shilkret and the Sugeno integrals

can be extended to other integrals. Recently, in the context of multiple-criteria

decision analysis, the literature on fuzzy integrals has increased very fast. An
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interesting line of research is that of bipolar fuzzy integrals: the bipolar Choquet

integral has been proposed in [14, 15, 22] and the bipolar Shilkret and Sugeno

integrals have been proposed in [25]. Here we propose the generalization of the

bipolar Choquet integral to the case of interval-evaluations. Let us consider the

set

Qb = {(A+,B+,A−,B−) ∣ A+
⊆ B+

⊆ N, N ⊇ A−
⊇ B− and B+ ∩ A−

= ∅} .

Definition 46. A function µb
r ∶ Qb → [−1,1] is a bipolar interval-capacity on Qb

if

• µb
r(∅,∅,∅,∅) = 0, µb

r(N,N,∅,∅) = 1 and µb
r(∅,∅,N,N) = −1;

• µb
r (A+

1
,B+

1
,A−

1
,B−

1
) ≤ µb

r (A+

2
,B ∶+

2
,A−

2
,B−

2
) for all

(A+

1 ,B
+

1 ,A
−

1 ,B
−

1 ) , (A+

2 ,B ∶+2 ,A−

2 ,B
−

2 ) ∈ Qb

such that A+

1
⊆ A+

2
, B+

1
⊆ B+

2
, A−

1
⊇ A−

2
and B−

1
⊇ B−

2
.

Definition 47. The bipolar Robust Choquet Integral (bRCI) of

x = ([x
1
, x1] , . . . , [xn, xn]) ∈ In

with respect to a bipolar interval-capacity µb
r ∶ 2N → [0,1] is given by:

Chbr (x, µrb) =∶ ∫ ∞

−∞

µG
r ({i ∣ xi > t},{i ∣ xi > t},{i ∣ xi < −t},{i ∣ xi < −t})dt. (4.40)

A further generalization in the field of fuzzy integrals is that of level dependent

integrals. This line of research has lead to the definition of the level dependent

Choquet integral and the bipolar level dependent Choquet integral [21], the level
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dependent Shilkret integral [4], the level dependent Sugeno integral [37]. In [21] the

generalized Choquet integral is defined with respect to a level dependent capacity.

Also the RCI can be generalized in this sense.

Definition 48. Let (α,β) ⊆ R be any possible interval of the real line. A level

dependent interval-capacity is a function µG
r ∶ Q × (α,β)→ [0,1] such that

1. for all t ∈ (α,β) and (A,B) ⊆ (C,D) ∈ Q,

µG
r ((A,B) , t) ≤ µG

r ((C,D) , t)

2. for all t ∈ (α,β), µG
r ((∅,∅) , t) = 0 and µG

r ((N,N) , t) = 1

3. for all (A,B) ∈ Q, µG
r ((A,B) , t) considered as a function with respect to t

is Lebesgue measurable.

Definition 49. The Robust Choquet Integral (RCIg) of x ∈ (I(α,β))n with respect

to the level dependent interval-capacity µG
r ∶ Q × (α,β)→ [0,1] is given by:

ChGr (x, µr) =∶ ∫ ∞

min{x
1
,...,xn}

(µG
r ({i ∈ N ∣ xi ≥ t},{i ∈ N ∣ xi ≥ t}), t)dt

+ min{x
1
, . . . , xn} . (4.41)

Definition 50. The Robust Concave Integral of a non-negative interval-valued

alternative x ∈ In
+
with respect to the interval-capacity µr is

∫ cav

xdµr = ⋁
⎧⎪⎪⎨⎪⎪⎩ ∑

(A,B)∈Q
α(A,B)µr(A,B) ∣ ∑

(A,B)∈Q
α(A,B)1(A,B) = x, α(A,B) ≥ 0

⎫⎪⎪⎬⎪⎪⎭ .

(4.42)
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Obviously, if on every criterion x receives an exact evaluation, then the (4.42)

reduces to the Concave Integral of x ∈ Rn
+

with respect to the capacity ν(A) =

µr(A,A).

4.9 Generalizing the concept of interval to

m−points interval

In [40] the concept of interval has been generalized (allowing the presence of

more than two points).

We can image that on every of the n criteria an alternative x is evaluated m

times, so that this alternative can be identified with a vector of score vectors

x = (x1, . . . , xn) being for all i = 1, . . . , n

xi = (f1(xi), . . . fm(xi)) with fj(xi) ≤ fj+1(xi) for all j = 1, . . . ,m − 1.

For example, the case m = 3 corresponds to have on each criterion a pessimistic, a

realistic and an optimistic evaluation.

The idea to extend the RCI to the case of m−interval based evaluation is simple.

Let us define

Qm = {(A1, . . . ,Am) ∣ A1 ⊆ A2 . . . ⊆ Am ⊆ N} .
Definition 51. An m−interval-capacity is a function µm ∶ Qm → [0,1] such that

• µm(∅, . . . ,∅) = 0,

• µm(N, . . . ,N) = 1,

• µm(A1, . . . ,Am) ≤ µm(B1, . . . ,Bm), whenever
Ai ⊆ Bi ⊆ N, ∀i = 1, . . . ,m.
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Definition 52. The Robust Choquet Integral of x (m−points interval-valued) w.r.t.
the m−interval-capacity µm is

Chr(x, µm) = ∫ maxi fm(xi)

mini f1(xi)
µm ({j∣f1(xj) ≥ t}, . . . ,{j∣fm(xj) ≥ t}dt) + min

i
f1(xi).

(4.43)

4.10 Future researches

We consider h−intervals [a1, . . . , ah], a1, . . . , ah ∈ R such that a1 ≤ . . . ≤ ah

that express evaluations with respect to a considered point of view by means of

the h values a1, . . . , ah. For example, if h = 2, then evaluations w.r.t. each cri-

terion are 2-intervals assigning to each alternative two evaluations corresponding

to a pessimistic and an optimistic evaluation. If h = 3, then evaluations are 3-

intervals [a1, a2, a3] assigning to each alternative three evaluations such that a1

corresponds to a pessimistic evaluation, a2 corresponds to an average evaluation

and a3 corresponds to an optimistic evaluation. If h = 4, then evaluations are

4-intervals [a1, a2, a3, a4] assigning to each alternative four evaluations such that

a1 corresponds to a pessimistic evaluation, a2 and a3 to two evaluations defin-

ing an interval [a2, a3] of average evaluation and a4 corresponds to an optimistic

evaluation. Observe that 2-interval evaluations can be seen as usual intervals of

evaluations, 3-interval evaluations can be seen as triangular fuzzy numbers and 4-

intervals evaluations can be seen as trapezoidal fuzzy numbers. Similar situations

we have with h ≥ 5. Let us denote by Ih the set of all h-intervals, i.e.

Ih = {[a1, . . . , ah] ∣ a1, . . . , ah ∈ R , a1 ≤ . . . ≤ ah}.
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A general framework for the comparison of h−intervals has been presented in [40].

Here we introduce h − k−aggregation functions that assigns to vectors

x = ([x11, . . . , x1h] , . . . , [xn1 . . . , xnh]) ∈ In
h

of h−interval evaluations with respect to a set N = {1, . . . , n} of considered criteria

an overall evaluation in terms of a k−interval. Formally an h − k−aggregation

function is a function g ∶ In
h → Ik satisfying the following properties:

• monotonicity: for all x, y ∈ In
h , if xi,j ≥ yi,j for all i ∈ N and for all j = 1, . . . , h,

then gr(x) ≥ gr(y) for all r = 1, . . . , k;

• left boundary condition: if xi,h → −∞ for all i = 1, . . . , n, then gr(x) → −∞
for all r = 1, . . . , k;

• right boundary condition if xi,1 → +∞ for all i = 1, . . . , n, then gr(x) → +∞
for all r = 1, . . . , k;

4.11 The h − k−weighted average

Let us consider a vector a = [ai,j,r],a ∈ [0,1]n×h×k such that

(i) ∑h
j=h−t ai,j,r1 ≥ ∑h

j=h−t ai,j,r2 , for all i = 1, . . . , n, t = 1, . . . h − 1 and r1, r2 =

1, . . . , k, such that r1 ≥ r2;

(ii) ∑n
i=1 ∑h

j=1 ai,j,r = 1, for all r = 1, . . . , k.

The h − k−weighted average w.r.t. weights a = [ai,j,r] is the h − k−aggregation

function WAa ∶ In
h → Ik defined as follows: for all x ∈ In

h and r = 1, . . . , k,

WAa,r(x) = n∑
i=1

h∑
j=1

ai,j,rxi,j . (4.44)
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The h − k−weighted average can be formulated also as follows. Let us consider a

vector a′ = [a′

i,j,r],a′ ∈ [0,1]n×h×k such that

(i)’ a′

i,1,r ≥ a′

i,2,r ≥ . . . ≥ a′

i,h,r ≥ 0, for all i = 1, . . . , n and r = 1, . . . , k;

(ii)’ a′

i,j,1 ≥ a′

i,j,2 ≥ . . . ≥ a′

i,j,k ≥ 0, for all i = 1, . . . , n and j = 1, . . . , h;

(iii)’ ∑n
i=1 a

′

i,1,r = 1, for all i = 1, . . . , n and r = 1, . . . , k.

The h − k−weighted average with respect to weights a′ = [a′

i,j,r] is the h −
k−aggregation function WAa ∶ In

h → Ik defined as follows: for all x ∈ In
h and

r = 1, . . . , k,

WAa,r(x) = n∑
i=1

a′

i,1,rxi,1 + n∑
i=1

h∑
j=2

a′

i,j,r(xi,j − xi,j−1). (4.45)

There is the following relation between weights a′

ij,r and ai,j,r: for all i = 1, . . . , n;

j = 1, . . . , h − 1; and r = 1, . . . , k it holds the

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ai,j,r = a′

i,j,r − a′

i,j+1,r

ai,h,r = a′

i,h,r.

(4.46)

Two very natural conditions for h − k−aggregation functions are the following

• additivity: for all x ,y ∈ In
h , g(x + y) = g(x) + g(y), where x + y = z with

zi,j = xi,j + yi,j for all i ∈ N and for all j = 1, . . . , h;

• idempotency: for all a ∈ R, g(a) = a, where a ∈ In
h is a = [a, . . . , a].

Theorem 13. An h − k−aggregation function is additive and idempotent if and

only if it is the h − k−weighed average.

Proof. The h − k−weighed average is additive and idempotent by definition. Let

f ∶ In
h → Ik be an additive and idempotent h − k−aggregation function and let
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us consider a generic element x = ([x11, . . . , x1h] , . . . , [xn1 . . . , xnh]) ∈ In
h . Let us

consider the following n ⋅ h vectors of In
h

x 1,1 = ((1,1, . . . ,1) , . . . , (0, . . . ,0)) ,
x 1,2 = ((0,1, . . . ,1) , . . . , (0, . . . ,0)) ,

. . .

x 1,h = ((0, . . . ,0,1) , . . . , (0, . . . ,0)) ,
. . .

xn,1 = ((0, . . . ,0) , . . . , (1,1, . . . ,1)) ,
xn,2 = ((0, . . . ,0) , . . . , (0,1, . . . ,1)) ,

. . .

xn,h = ((0, . . . ,0) , . . . , (0, . . . ,0,1)) .

Consider the following decomposition of x

x = x1,1x 1,1 + (x1,2 − x1,1)x 1,2 + . . . + (x1,h − x1,h−1)x 1,h +
. . .

+ xn,1xn,1 + (xn,2 − xn,1)xn,2 + . . . + (xn,h − xn,h−1)xn,h .

By additivity and idempotency of f we get

f(x) = (x1,1f(x 1,1) + (x1,2 − x1,1)f(x 1,2) + . . . + (x1,h − x1,h−1)f(x 1,h) +
. . .

+ xn,1f(xn,1) + (xn,2 − xn,1)f(xn,2) + . . . + (xn,h − xn,h−1)f(xn,h) .
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Finally, let us consider the following n ⋅ h vectors of Ik

a′

1,1 = f(x 1,1) = (a′

1,1,1, . . . , a
′

1,1,r),
a′

1,2 = f(x 1,2) = (a′

1,2,1, . . . , a
′

1,2,r),
. . .

a′

1,h = f(x 1,h) = (a′

1,h,1, . . . , a
′

1,h,r),
. . .

a′

n,1 = f(xn,1) = (a′

n,1,1, . . . , a
′

n,1,r),
a′

n,2 = f(xn,2) = (a′

n,2,1, . . . , a
′

n,2,r),
. . .

a′

n,n = f(xn,n) = (a′

n,n,1, . . . , a
′

n,n,r).

These a′

i,j,r (with i = 1, . . . , n; j = 1, . . . , h; r = 1, . . . , r) satisfy the (i)′, (ii)′, (iii)′

and equation (4.45) is also satisfied for all r = 1, . . . , k

f(x)r = n∑
i=1

a′

i,1,rxi,1 + n∑
i=1

h∑
j=2

a′

i,j,r(xi,j − xi,j−1).

4.12 Non-additive h−k−aggregation functions

Let us consider the set Q = {(A1, . . . ,Ah) ∣ A1 ⊆ A2 ⊆ . . . ⊆ Ah ⊆ N}. With a

slight abuse of notation we extend to Q the relation of set inclusion and the oper-

ations of union and intersection by defining for all (A1, . . . ,Ah) and (B1, . . . ,Bh) ∈
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Q,

(A1, . . . ,Ah) ⊆ (B1, . . . ,Bh) if and only if Ai ⊆ Bi for all i = 1, . . . , h;

(A1, . . . ,Ah) ∪ (B1, . . . ,Bh) = (A1 ∪ B1, . . . ,Ah ∪ Bh) ;

(A1, . . . ,Ah) ∩ (B1, . . . ,Bh) = (A1 ∩ B1, . . . ,Ah ∩ Bh) .
Regarding the algebraic structure of Q, we can observe that with respect to the

relation ⊆, Q is a lattice.

Definition 53. A function µh ∶ Q→ [0,1] is an h-interval-capacity on Q if

• µr(∅, . . .∅) = 0, and µh(N, . . . ,N) = 1; and

• µh (A1, . . . ,Ah) ≤ µh (B1, . . . ,Bh) for all (A1, . . . ,Ah) , (B1, . . . ,Bh) ∈ Q such

that Ai ⊆ Bi for all i = . . . , h.

Definition 54. A h − k−capacity is a vector (µh1
, . . . , µhk

) such that

• for every i = 1, . . . , k, µhi
∶ Q→ [0,1] is an h-interval capacity; and

• for all (A1, . . . ,Ah) ∈ Q, µhi
(A1, . . . ,Ah) ≤ µhi+1

(A1, . . . ,Ah), for all i =

1, . . . , k − 1.

Moreover, we say that the h − k−capacity (µh1
, . . . , µhk

) is additive if every

capacity µhi
i = 1, . . . , k is additive.

Definition 55. The h − k−Choquet Integral of

x = ([x1,1, . . . , x1,h] , . . . , [xn,1 . . . , xn,h])
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with respect to the h − k−capacity (µh1
, . . . , µhk

) is given by

Chh−k (x, (µh1
, . . . , µhk

)) =∶ [Chh (x, µh1
) , . . . , Chh (x, µhk

)] , (4.47)

being for all r = 1, . . . , k

Chh (x, µhr
) = ∫ max

i∈N
xi,h

min
i∈N

x1,i

µhr
({i ∈ N ∣x1,i ≥ t}, . . . ,{i ∈ N ∣xn,i ≥ t})dt + min

i∈N
x1,i.

(4.48)

Let us note that the 2 − 1−Choquet integral is the Robust Choquet integral pre-

sented in [26]. Moreover a h − k−Choquet integral computed with respect to an

additive h − k−capacity becomes an h − k−weighting average.

Definition 56. The two vectors of In
h

x = ([x1,1, . . . , x1,h] , . . . , [xn,1 . . . , xn,h]) ,y = ([y1,1, . . . , y1,h] , . . . , [yn,1 . . . , yn,h])

are comonotone if the two vectors of Rnh x∗ = (x1,1, . . . , x1,h, . . . , xn,1, . . . , xn,h)
and y∗ = (y1,1, . . . , y1,h, . . . , yn,1 . . . , yn,h) are comonotone.

We extend the property of comonotone additivity for a standard aggregation

function to an h−k−aggregation function: an h−k−aggregation function is comono-

tone additive if it is additive for comonotone vectors.

Theorem 14. An h − k−aggregation function is comonotone additive and idem-

potent if and only if it is the h − k−Choquet integral.
In [26] the robust Shilkret and Sugeno integrals have been presented. These are

2−1−aggregation functions which can be generalized to the case of h−k−aggregation

functions.
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Definition 57. Given

x = ([x1,1, . . . , x1,h] , . . . , [xn,1 . . . , xn,h]) ∈ In
h

the h−k−Shilkret integral of x with respect to the the h−k−capacity (µh1
, . . . , µhk

)
is given by

Shh−k (x, (µh1
, . . . , µhk

)) =∶ [Shh (x, µh1
) , . . . , Shh (x, µhk

)] , (4.49)

being for all r = 1, . . . , k

Shh (x, µhr
) = ⋁

(A1,...,Ah)∈Q

⎧⎪⎪⎨⎪⎪⎩⋀
⎧⎪⎪⎨⎪⎪⎩ ⋀
i∈A1

x1,i, . . . , ⋀
i∈Ah

xh,i

⎫⎪⎪⎬⎪⎪⎭ ⋅ µh,r(A1, . . . ,Ah)
⎫⎪⎪⎬⎪⎪⎭ . (4.50)

Definition 58. Given

x = ([x1,1, . . . , x1,h] , . . . , [xn,1 . . . , xn,h]) ∈ In
h

the h−k−Sugeno integral of x with respect to the the h−k−capacity (µh1
, . . . , µhk

)
is given by

Suh−k (x, (µh1
, . . . , µhk

)) =∶ [Suh (x, µh1
) , . . . , Suh (x, µhk

)] , (4.51)

being for all r = 1, . . . , k

Suh (x, µhr
) = ⋁

(A1,...,Ah)∈Q
⋀

⎧⎪⎪⎨⎪⎪⎩µh,r(A1, . . . ,Ah), ⋀
i∈A1

x1,i, . . . , ⋀
i∈Ah

xh,i

⎫⎪⎪⎬⎪⎪⎭ . (4.52)

Finally, in [26] several non-additive 2 − 1−aggregation functions have been pre-

sented, i.e. the robust Choquet integral with respect to a bipolar interval-capacity,

the robust Choquet integral with respect to an interval capacity level dependent,
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the robust concave integral and the robust universal integral. All these integrals

admit a natural generalization to the case of h−k−aggregation functions presented

here.

4.13 Conclusions

In this chapter we have faced the question regarding the aggregation of interval-

evaluations of an alternative on various criteria into a single overall evaluation. To

this scope we have introduced the concept of interval-capacity which allows for

a quite natural generalizations of the classical Choquet Shilkret and Sugeno in-

tegrals to the case of interval-evaluations. We called these generalizations robust

integrals. Our analysis shows that, when the interval-evaluations collapse into

exact evaluations, our definitions of robust integrals collapse into the original def-

initions. Situations where we meet imprecise evaluations are very common in the

real life (we have provided realistic examples), so the aim of this chapter is to cover

the existing gap in the literature for the aggregations of such data.

4.14 Appendix

In order to prove proposition 6, we need some preliminary lemmas.

The following two lemmas have been proved in [44] (see also [6])

Lemma 1. If A is a finite set then

∑
B⊆A

(−1)∣B∣
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if A = ∅
0 otherwise.

(4.53)
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Lemma 2. If A is a finite set and B ⊆ A then

∑
B⊆C⊆A

(−1)∣C ∣
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(−1)∣A∣ if A = B

0 otherwise.
(4.54)

With these results we are able to prove the following additional lemmas

Lemma 3. For all (A,B) ∈ Q

∑
(C,D)∈Q

(C,D)⊆(A,B)

(−1)∣D∣
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(−1)∣B∣ if A = B

0 otherwise.
(4.55)

Proof.

∑
(C,D)∈Q

(C,D)⊆(A,B)

(−1)∣D∣
= ∑

X⊆A
∑

Y ⊆B∖X

(−1)∣Y ∣
= (−1)∣A∣ ∑

Y ⊆B∖X

(−1)∣Y ∣+ ∑
X⊆A

∑
Y ⊂B∖X

(−1)∣Y ∣
=

= (−1)∣A∣ ∑
Y ⊆B∖X

(−1)∣Y ∣
= lemma 1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(−1)∣B∣ if A = B

0 otherwise.

Remark 10. If A = ∅ then lemma 3 coincides with lemma 1.

Corollary 3. For all (A,B) ∈ Q

∑
(C,D)∈Q

(C,D)⊆(A,B)

(−1)∣B∖D∣
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if A = B

0 otherwise.
(4.56)
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Proof. For all (A,B) ∈ Q

∑
(C,D)∈Q

(C,D)⊆(A,B)

(−1)∣B∖D∣
= (−1)∣B∣ ∑

(C,D)∈Q
(C,D)⊆(A,B)

(−1)∣D∣
= lemma 3 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if A = B

0 otherwise.

Lemma 4. Suppose that (C,D), (A,B) ∈ Q with (C,D) ⊆ (A,B), then

∑
(X,Y )∈Q

(C,D)⊆(X,Y )⊆(A,B)

(−1)∣Y ∣
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(−1)∣B∣ ∣2(A∩D)∖C ∣ if A ∪ D = B

0 if A ∪ D ⊂ B

(4.57)

Remark 11. If A = ∅ and considering that ∣2∅∣ = 1, lemma 4 reduces to l

Proof. For all (C,D), (A,B) ∈ Q with (C,D) ⊆ (A,B),

∑
(X,Y )∈Q

(C,D)⊆(X,Y )⊆(A,B)

(−1)∣Y ∣
= ∑

C⊆X⊆A
∑

(X∪D)⊆Y ⊆B
(−1)∣Y ∣

= lemma 2 = ∑
C⊆X⊆A
X∪D=B

(−1)∣B∣
=

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(−1)∣B∣ ∣2(A∩D)∖C ∣ if A ∪ D = B

0 if A ∪ D ⊂ B.

Lemma 5. For all (A,B) ∈ Q

∑
(C,D)∈Q

(C,D)⊆(A,B)

(−1)∣D∣+∣C ∣
= ∑

(C,D)∈Q
(C,D)⊆(A,B)

(−1)∣D∖C ∣
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if A ≠ B i.e. B ∖ A ≠ ∅
1 if A = B i.e. B ∖ A = ∅.

(4.58)
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Remark 12. Note that if A = ∅ lemma 5 states that for all (∅,B) ∈ Q

∑
(∅,D)⊆(∅,B)

(−1)∣D∣
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if B ∖ ∅ ≠ ∅
1 if A = B = ∅.

(4.59)

that is lemma 1.

Proof. For all (A,B) ∈ Q,

∑
(C,D)∈Q

(C,D)⊆(A,B)

(−1)∣D∣+∣C ∣
= ∑

C⊆A
(−1)∣C ∣ ∑

C⊆D⊆B
(−1)∣D∣

= lemma 2 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if C ⊆ A ⊂ B

1 if A = B.

(4.60)

Note that if A = B

∑
C⊆B

(−1)∣C ∣ ∑
C⊆D⊆B

(−1)∣D∣
= (−1)∣B∣ (−1)∣B∣

= 1.

Lemma 6. Suppose that (C,D), (A,B) ∈ Q with (C,D) ⊆ (A,B), then

∑
(X,Y )∈Q

(C,D)⊆(X,Y )⊆(A,B)

(−1)∣X ∣+∣Y ∣
= ∑

(X,Y )∈Q
(C,D)⊆(X,Y )⊆(A,B)

(−1)∣Y ∖X ∣
=

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(−1)∣B∖A∣

= (−1)∣D∖C ∣ if B ∖ A =D ∖ C

0 otherwise.
(4.61)

Proof. Let us suppose that (C,D), (A,B) ∈ Q with (C,D) ⊆ (A,B), then
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∑
(X,Y )∈Q

(C,D)⊆(X,Y )⊆(A,B)

(−1)∣X ∣+∣Y ∣
= ∑

C⊆X⊆A
(−1)∣X ∣ ∑

D∪X⊆Y ⊆B
(−1)∣Y ∣

= lemma 2 =

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if A ∪ D ⊂ B ( and then D ∪ X ⊂ B for all X ⊆ A)
(−1)∣B∣ ∑

C⊆X⊆A
D∪X=B

(−1)∣X ∣ if A ∪ D = B.

Now we further examine the case A ∪ D = B.

∑
(X,Y )∈Q

(C,D)⊆(X,Y )⊆(A,B)

(−1)∣X ∣+∣Y ∣
= (−1)∣B∣ ∑

C⊆X⊆A
D∪X=B

(−1)∣X ∣
=

= (−1)∣B∣ ∑
X′⊆(A∩D)∖C

(−1)∣C∪(A∖D)∣ (−1)∣X′∣ =

= (−1)∣B∣+∣C ∣+∣A∖D∣ ∑
X′⊆(A∩D)∖C

(−1)∣X′∣ = (lemma 1) =

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(−1)∣B∣+∣C ∣+∣A∖D∣ if C = A ∩ D

0 if C ≠ A ∩ D.

then we have proved that

∑
(X,Y )∈Q

(C,D)⊆(X,Y )⊆(A,B)

(−1)∣X ∣+∣Y ∣
=

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(−1)∣B∣+∣C ∣+∣A∖D∣

= (−1)∣B∖A∣
= (−1)∣D∖C ∣ if D ∪ A = B and D ∩ A = C

0 otherwise.

To complete the proof we show that B ∖A =D ∖C iff (A∩B = C and A∪D = B).

Indeed if (A∩B = C and A∪D = B) then B∖A = (D∪A)∖A =D∖A =D∖(D∩A) =
D ∖ C. Now suppose that B ∖ A =D ∖ C. If D ∪ A ≠ B, it exists x∗ ∈ B ∖ (A ∪ D)
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then x∗ ∈ B ∖ A and x∗ ∉D ∖ C and we get the contradiction that B ∖ A ≠D ∖ C.

If A ∩ D ≠ C it exists y∗ ∈ (A ∩ D) ∖ C and in this case y∗ ∈D ∖ C and y∗ ∉ B ∖ A

contradicting the hypothesis that B ∖ A =D ∖ C.

Proof. of proposition 6.

(4.23) → (4.24). For all (A,B) ∈ Q,

∑
∅⊆X⊆A

⎡⎢⎢⎢⎢⎢⎢⎢⎣
(−1)∣X ∣ ∑

(C,D)∈Q
(C,D)⊆(A∖X,B∖X)

((−1)∣B∖A∣−∣D∖C ∣
f(C,D))

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

= (−1)∣B∖A∣ ∑
∅⊆X⊆A

⎡⎢⎢⎢⎢⎢⎢⎢⎣
(−1)∣X ∣ ∑

(C,D)∈Q
(C,D)⊆(A∖X,B∖X)

((−1)∣D∖C ∣
f(C,D))

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= (4.23)

= (−1)∣B∖A∣ ∑
∅⊆X⊆A

⎡⎢⎢⎢⎢⎢⎢⎢⎣
(−1)∣X ∣ ∑

(C,D)∈Q
(C,D)⊆(A∖X,B∖X)

⎛⎜⎜⎜⎝
(−1)∣D∖C ∣ ∑

(T,Z)∈Q
(T,Z)⊆(C,D)

g(T,Z)
⎞⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

= (−1)∣B∖A∣ ∑
∅⊆X⊆A

⎡⎢⎢⎢⎢⎢⎢⎢⎣
(−1)∣X ∣ ∑

(C,D)∈Q
(C,D)⊆(A∖X,B∖X)

⎛⎜⎜⎜⎝
g(C,D) ∑

(T,Z)∈Q
(C,D)⊆(T,Z)⊆(A∖X,B∖X)

(−1)∣Z∖T ∣
⎞⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

= lemma 6 = (−1)∣B∖A∣ ∑
∅⊆X⊆A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(−1)∣X ∣ ∑

(C,D)∈Q
(C,D)⊆(A∖X,B∖X)

D∖C=(B∖X)∖(A∖X)=B∖A

(g(C,D) (−1)∣B∖A∣)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

= ∑
∅⊆X⊆A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(−1)∣X ∣ ∑

(C,D)∈Q
(C,D)⊆(A∖X,B∖X)

D∖C=(B∖X)∖(A∖X)=B∖A

g(C,D)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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= ∑
∅⊆X⊆A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(−1)∣X ∣ ∑
(C,D)∈Q

(C,D)⊆(A∖X,B∖X)
D∩(A∖X)=C

D∪(A∖X)=B∖X

g(C,D)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ∑
∅⊆X⊆A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(−1)∣X ∣ ∑

(C,D)∈Q
(C,D)⊆(A∖X,B∖X)

D∖C=B∖A

g(C,D)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= ∑

∅⊆X⊆A
[(−1)∣X ∣ ∑

C⊆A∖X

g(C,C ∪ (B ∖ A))] =

= (second inversion) = ∑
∅⊆X⊆A

[g(X,X ∪ (B ∖ A)) ∑
Y ⊆A∖X

(−1)∣Y ∣] =
(1) = g(A,A ∪ (B ∖ A)) = g(A,B).

(4.24) → (4.23). For all (A,B) ∈ Q,

∑
(C,D)∈Q

(C,D)⊆(A,B)

g(C,D) = ∑
(C,D)∈Q

(C,D)⊆(A,B)

[ ∑
∅⊆X⊆C

(−1)∣X ∣
g∗(C ∖ X,D ∖ X)] =

= ∑
(C,D)∈Q

(C,D)⊆(A,B)

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑

∅⊆X⊆C

⎛⎜⎜⎜⎝
(−1)∣X ∣ ∑

(T,Z)∈Q
(T,Z)⊆(C∖X,D∖X)

(−1)∣(D∖X)∖(C∖X)∣−∣Z∖T ∣
f(T,Z)

⎞⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

= ∑
(C,D)∈Q

(C,D)⊆(A,B)

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑

∅⊆X⊆C

⎛⎜⎜⎜⎝
(−1)∣X ∣ ∑

(T,Z)∈Q
(T,Z)⊆(C∖X,D∖X)

(−1)∣D∖C ∣−∣Z∖T ∣
f(T,Z)

⎞⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

= ∑
(C,D)∈Q

(C,D)⊆(A,B)

⎡⎢⎢⎢⎢⎢⎢⎢⎣
(−1)∣D∖C ∣ ∑

∅⊆X⊆C

⎛⎜⎜⎜⎝
(−1)∣X ∣ ∑

(T,Z)∈Q
(T,Z)⊆(C∖X,D∖X)

(−1)∣Z∖T ∣
f(T,Z)

⎞⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

= ∑
(C,D)∈Q

(C,D)⊆(A,B)

⎡⎢⎢⎢⎢⎢⎢⎢⎣
(−1)∣D∖C ∣ ∑

(T,Z)∈Q
(T,Z)⊆(C,D)

((−1)∣Z∖T ∣
f(T,Z) ∑

∅⊆X⊆C∖Z

(−1)∣X ∣)
⎤⎥⎥⎥⎥⎥⎥⎥⎦
=
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(lemma 1) = ∑
(C,D)∈Q

(C,D)⊆(A,B)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
(−1)∣D∖C ∣ ∑

(T,Z)∈Q
(T,Z)⊆(C,D)

C∖Z=∅

(−1)∣Z∖T ∣
f(T,Z)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

= ∑
(C,D)∈Q

(C,D)⊆(A,B)

[(−1)∣D∖C ∣ ∑
∅⊆X⊆C

( ∑
C⊆Y ⊆D

(−1)∣Y ∖X ∣
f(X,Y ))] =

= ∑
(C,D)∈Q

(C,D)⊆(A,B)

[(−1)∣D∖C ∣
f(C,D) ∑

C⊆X⊆D∩A

( ∑
D⊆Y ⊆B

(−1)∣Y ∖X ∣)] =

(being X ⊆D ∩ A ⊆D ⊆ Y )

= ∑
(C,D)∈Q

(C,D)⊆(A,B)

[(−1)∣D∖C ∣
f(C,D) ∑

C⊆X⊆D∩A

((−1)∣X ∣ ∑
D⊆Y ⊆B

(−1)∣Y ∣)] =

= (lemma 1) = ∑
(C,B)∈Q

(C,B)⊆(A,B)

[(−1)∣B∖C ∣
f(C,B) ∑

C⊆X⊆A
(−1)∣X ∣ (−1)∣B∣] =

= [(−1)∣B∣]2 ∑
C⊆A

[(−1)∣C ∣
f(C,B) ∑

C⊆X⊆A
(−1)∣X ∣] = (lemma 1) =

= (−1)∣A∣
f(A,B) (−1)∣A∣

= f(A,B).

Proof. of proposition 7.

1) and 2) follow directly by the conditions

µr(∅,∅) = 0, µr(N,N) = 1, and µr(A,B) = ∑
(C,D)⊆(A,B)

m(C,D).

To prove 3) and 4) it is sufficient to note that for any function f ∶ Q → R and for
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all (A,B), (C,D) ∈ Q, the monotonicity condition

f(C,D) ≤ f(A,B) whenever (C,D) ⊆ (A,B) (4.62)

is equivalent to the following two statements

f(A ∖ {a},B) ≤ f(A,B) for all a ∈ A (4.63)

and

f(A ∖ {b},B ∖ {b}) ≤ f(A,B) for all b ∈ B. (4.64)

(4.62) trivially imply (4.63) and (4.64). Suppose that (C,D) ⊆ (A,B) and note

that C ⊆ A ∩ D. By using respectively (4.63) and (4.64), we get:

f(C,D) ≤ f(A ∩ D,D) = f(A ∖ (B ∖ D),B ∖ (B ∖ D)) ≤ f(A,B).
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