2111.11732v1 [cs.CR] 23 Nov 2021

arxXiv

Towards an Integrated Penetration Testing
Environment for the CAN Protocol

Giampaolo Bella! and Pietro Biondi?

! Dipartimento di Matematica e Informatica, Universita di Catania, Italy
giamp@dmi.unict.it
2 Dipartimento di Matematica e Informatica, Universita di Catania, Italy
pietro.biondi94@gmail.com

Abstract. The Controller Area Network (CAN) is the most common
protocol interconnecting the various control units of modern cars. Its
vulnerabilities are somewhat known but we argue they are not yet fully
explored — although the protocol is obviously not secure by design, it
remains to be thoroughly assessed how and to what extent it can be
maliciously exploited. This manuscript describes the early steps towards
a larger goal, that of integrating the various CAN pentesting activities
together and carry them out holistically within an established pentesting
environment such as the Metasploit Framework. In particular, we shall
see how to build an exploit that upsets a simulated tachymeter running
on a minimal Linux machine. While both portions are freely available
from the authors’ Github shares, the exploit is currently subject to a
Metasploit pull request.

1 Introduction

When traditional security vulnerabilities are ported to and exploited in the au-
tomotive environment, they bear a clear potential to compromise passengers’
safety; therefore, modern automotive technology intertwines security and safety
requirements tightly and is, as such, worth of considerable attention.

The most widespread protocol that connects the various control units found
in modern cards is the Controller Area Network (CAN) protocol, which appears
to be highly vulnerable at least because it is not meant to be secure by design.
However, a full understanding of the technicalities of this protocol and its vul-
nerabilities is still out of reach for a variety of reasons, such as the scattered and
mostly unofficial documentation, the large customisation operated by each car
manufacturer, and the lack of an integrated pentesting environment to investi-
gate vulnerabilities and attempt to exploit them.

The CAN protocol is standardised by ISO 11898-1:2015 [I], though without
any reference to security issues, perhaps in the assumption that a car forms a
secluded, protected network environment. The question arises on what would
happen should the CAN bus be used in an unprotected environment instead,
namely with potentially malicious activity running through its wires.

The security protocol literature is full of examples of protocols or systems de-
vised to stand a threat model but, implicitly, not a stronger one. The best known
example is the public-key Needham-Schroeder protocol [2] and Lowe’s attack on
it [3]. The attack originated from an initiator who started with the attacker, but
Needham commented that their protocol was not meant to withstand insider
threats [4].

It is clear that the mentioned assumption that a car hosts an isolated network
falters at present, as the control and infotainment systems are often combined
and interfaced with the external world through the Internet. For example, one
can check the pressure of the tyres or switch on the engine remotely through
an app running on their smartphone. In this socio-technical context, attacks are
starting to appear. For example, a Jeep Cherokee was hacked via bluetooth, with
the attacker being able to remotely operate the brake system and the steering
wheel [5]; a Toyota Prius was hacked via the JTAG port and the entire CAN bus
traffic hijacked, even letting the attacker flash the firmware of a control unit[6].

This manuscript aims at contributing to the definition of an integrated en-
vironment to conduct simulation experiments on the CAN bus. In short, it con-
tributes a lightweight Linux machine running a tachymeter simulator, and the
machine itself is made vulnerable to simulate an in-vehicle network that is ac-
cessed, for example, via bluetooth or the JTAG port. It also brings a Metasploit
post exploitation module as a Ruby file crazytachymeter.rb, which causes the
tachymeter to jump without continuity to random speeds, also outside the pro-
grammed range.

More precisely, these contributions derive from the following research method-
ology. The Instrument Cluster Simulator (ICSim) [7] is installed on the Linux ma-
chine and operated; the generated traffic is sniffed and interpreted using Kayak
[8]. Potentially meaningful values for the data frames are then conjectured and
verified manually. After that, the findings are used to program the script in
the Ruby file, which is then tested in the Metasploit framework [9] and, at the
same time, submitted for consideration and inclusion in future releases of the
framework.

The structure of the paper follows the methodology just outlined. A primer
on the CAN bus supports the developments (§2)). The tachimeter simulator is
introduced (, along with Kayak (Then, the exploitation of the conjectured
vulnerabilities is carried out manually (Finally, the integrated pentesing
environment is described and made publicly available (, and the manuscript
draws its conclusions (§7).

2 A primer on the Controller Area Network protocol

Modern cars are full of electronics. Components such as airbags, power doors,
electric mirrors need to be interconnected and communicate among each other
to ensure the smooth and synergistic functioning of all. This was the aim for the
inception of the Can protocol [I0], also known as CAN bus, which dates back to
1983 at Bosch.

The CAN bus is conceptually simple from a hardware standpoint, as it consits
of two wires, CAN high (CANH) and CAN low (CANL). It is equally simple
from a software standpoint, as it sees a body computer read environmental data
such as brake pedal pressure and air conditioning temperature, and then send
appropriate commands on the CAN bus to the dedicated control units; this is
done in a multicast style, namely commands are sent to all but filtered by the
intended recipients. The body computer must use two CAN wires ensuring fault
tolerance, which can be done by means of differential signaling: to send a signal,
it must raise the voltage on one line and equally drop the other line.

As mentioned above, the CAN frames are standardised as ISO 11898-1:2015
[1] to contain various fields. These include an Arbitration field carrying the frame
ID, also used for arbitration, a Control field for control signals and a Data field
for the payload. More precisely, the fields are:

— Start Of Frame: a dominant bit indicating the beginning of a frame;

— Data: up to 8 bytes of data;

— Arbitration field: 11 bits identifying the intended recipient from the frame;
one bit is the Remote Transmission Request (RTR) bit, which is low for a
Data Frame and 1 for a Remote Frame (one whose Data Field is empty);

— Control: 6 bits, with 4 bits called Data Length Code (DLC) indicating the
length of the Data Field and 2 reserved bits;

— CRC: 15 bits for a cyclic redundancy check code and a recessive bit as a
delimiter;

— Ack: 2 bits, with the first one being recessive, hence overwritten with a
dominant bit by every node that receives it, and the second bit working as
a delimiter;

— End Of Frame: 7 recessive bits.

However, it must be noted that car manufacturers interpret the standard
freely, for example using padding at will, raising a general issue of how to inter-
pret CAN bus traffic on various cars.

3 Instrument Cluster Simulator

Instrument Cluster Simulator (ICSim) [7] is a simulator for some of the main
car functions, namely blinkers, power doors and tachymeter, operated through
the CAN bus. It runs on Linux following the setup of a virtual CAN interface
through the following simple commands:

sudo apt install can-utils

sudo modprobe can

sudo modprobe vcan

sudo ip link add dev vcan0O type vcan
sudo ip link set up vcanO

The control panel of the simulator is in Figure [Il Accelerations can be trig-
gered by pushing the Accelerate button; everytime the button is pressed, a spe-
cific frame is sent to the control unit of the tachymeter. The simulator supports

speed up to 100MPH, as we realise that pressing the button additionally when
speed is at 100MPH produces no effect.

> . /icsin vcane > ./controls -1 6 -X vcan®
using CAN interface vcane Warning: No joysticks connected
@ CANBus Control Panel

Fig. 1. The control panel of the Instrument Cluster Simulator

4 Kayak

Kayak is an application that sniffs CAN bus traffic [§]. It is written in Java,
hence easily portable, and features an intuitive user interface. We set out to
interpret the CAN traffic generated through ICSim using Kayak. The aim is to
understand which frame IDs are associated to which device of the car, whether
blinkers, doors or tachymeter, and what values the Data field accepts for each
device.

The graphical interface of Kayak can be seen from Figure [2| It features the
following fields:

Timestamp (seconds): when the frame is intercepted;

Interval (milliseconds): interval between two statistics transmissions;
Identifier (hexadecimal): corresponding to the frame ID;

Data Length Code: length of the Data field

— Data (hexadecimal): actual payload.

rrrrrr ts 9 [StartPage | Raw view - vcano (vcano) x Je)@E
Colorize| Clear Filter for selection

Filter IDs: Filter

Description: None Timestamp [s] Interval [ms] Identifier [hex] DLC Data [hex]
68.500516|

3[00 00 00
300 00 00

5[00 00 00 01 5D

Fig. 2. Packet sniffing on ICSim traffic through Kayak

Various interactions with the control panel of ICSim can be orchestrated
and closely observed through the sniffer. It was easy to derive the information

summarised in Table [I The Table shows the IDs associated to which device,
in particular with 5 bytes devoted to data for the tachymeter. The third col-
umn emphasises in red positions of the hexadecimal numbers that are observed
to change for each device, for example the last four in case of frames for the
tachymeter.

l 1D [DLC[Data [Device [Values ‘
19b| 3 00 00 00 doors 1/2/4/8
188 3 00 00 00 blinkers 1/2

2441 5 |00 00 00 00 00|tachymeter|00 00 ...01 5D

Table 1. Interpretation of ICSim traffic through Kayak

It can also be seen that there are four possible values transmitted to operate
the doors, one per door and, likewise, two for the blinkers. As for the tachymeter,
the allowed speed range of 0-100MPH was found to be triggered by hexadecimal
data values ranging from 00 00 to 01 5D.

5 Pentesting the Tachymeter of ICSim

We carry out a few penetration testing experiments on the tachymeter of ICSim
by conjecturing that it would accept arbitrary frames. The suite of commands
previously installed through can-utils (turns out useful to explore the con-
jectures. One of the first meaningful conjectures is to send the highest possible
hexadecimal value 99 99 to the tachymeter and observe whether the highest
possible speed is reached. This can be verified by sending command:

cansend vcanO 244#0000009999

The tachymeter reacts by reaching its top speed, of 240MPH. It is then possible
to send arbitrary values and observe the corresponding speeds each time.

A similar conjecture is about exploiting the blinkers. Coherently with the
lessons learned using Kayak (Tabldl] §4)), we can try out command:

cansend vcanO 188#030000

As a result, both blinkers would turn on.

Even though in a simulated environment, these experiments reconfirm what
we already knew: no security measures whatsoever are implemented, not even
an out-of-range check.

6 Towards the Integrated Pentesting Environment

Our aim of an integrated pentesting environment can be pursued by taking two
main steps. The first step is the preparation of a machine to simulate the victim
system, and this requires a few sub-steps in turn.

We build a machine running Bodhi Linux, a minimal distribution based on
Ubuntu 16.04 LTS, and implement a vulnerable python server to run on it.
The core of the server receives data off a socket and executes it, as stated by
line data=c.recv(5120) subprocess.call(data,shell=True). This is meant
to simulate a successful malicious access to the network laid within the car. We
then install ICSim on the machine, and our simulated victim is ready. It can be
downloaded from our GitHub share [IT].

The second step is the automation of the pentesting experiments outlined
above (through an actual exploit executable on the Metasploit Framework
[9]. We wrote such an exploit in Ruby and submitted file crazytachymeter.rb
to Metasploit for consideration; as a possible location to host the exploit, our
pull request [I2] pinpointed path modules/exploits/unix/misc/.

The pull request is currently ongoing, and the interaction has been fruitful
for us. We have been advised to treat our program as a post-exploitation script,
rather than as an actual exploit, due to the fact that it targets a tailored machine
and follows a successful malicious access to have occurred beforehand. The new
path therefore is modules/post/hardware/automotive/. This already contains
five scripts, which, incidentally, are worth of consideration here:

canprobe.rb allows the analyst to scan for given frame IDs and set their
data fields;

getinfo.rb returns engine and vehicle information;

identifymodules.rb searches for devices responding to Diagnostic Session
Control (DSC) queries;

malibu_overheat.rb controls the temperature gauge of a 2006 Chevrolet
Malibu;

— pdt.rb: discovers the Pyrotechnic Control Units (PCU) units and sets them
ready to be deployed.

The gist of our script is pictured in Figure [3] It can be seen that it takes
as a parameter a file containing a specific mapping of the frames; the mapping
represents the interpretation of the frame by a control unit, and therefore, the
script is general and not bound to a single mapping. The script then loops forever
while it sends frames to the virtual CAN interface. Also the script is available
from GitHub [I1].

While the pull request is being processed, our script can be manually down-
loaded and run over Metasploit, as shown in Figure It exposes the three
intended module options: FILEMAP, INTERFACE and SESSION.

Once the options are set, the script can be run. Figure [5|shows that it returns
the Flooding message, which means that the tachymeter is being flooded with
frames corresponding to various speeds.

The visible outcome of running the script is that the tachymeter goes crazy
by jumping up or down without continuity over the range 0-240MPH. Of course,
this cannot be portrayed in a picture, and Figure[6] provides the single screenshot
of the top speed.

run
print_status(' -- OPENING CONTROL UNIT MAP --')

re['FILEMAP'], "rb")

lines.push(line.strip)

f.close
print_status(' -- Flooding -- ')
1

lines.each{

"cansend #{datastore['INTERFACE']} #{e}"
cmd_exec(cmd)

Name
FILEMAP /u
INTERFACE vcan®
S TON

Fig. 4. Our script: the options

7 Conclusions

Investigations into the cybersecurity limitations of the CAN protocol have only
just began, with the most significant findings dating back to a bunch of years ago.
The fact that the protocol never meant to be secure by design cannot decrease
our surprise at how easy it turns out to be to exploit nodes that run it, as shown
above.

This paper described how to send a tachymeter crazy. Starting from a tachy-
meter simulator, it was possible to decode the frame data values that would
trigger specific events, and hence to try out additional data values at will. Doing
so revealed the possibility of inducing anomalous scenarios, such as the blinkers
turning on on both sides and the tachymeter jumping from one speed to another
— and beyond the programmed range of 0-100MPH. The tachimeter runs on
a Bodhi Linux machine made vulnerable, and the attacks are implemented as
Metasploit post-exploitation modules.

Although our experiments only took place on a simulated environment, they
highlight that no security measure is in place against malicious activity on the
CAN bus. This finding may not be surprising by itself. However, it required the
gathering of a number of tools and their combined use, and these activities were
more time consuming than expected.

Where do we go from here? On one hand, it is all the more clear that the
CAN protocol ought to be amended to incorporate even simple security measures
that would control and qualify the frames. Such measures are currently being
studied, and their deployment would subvert the finding that, once an attacker

] SESSION may not be compatible with this
OPENING CONTROL UNIT MAP --
oding --

Fig. 6. Our script: a snapshot of its consequences

penetrates the in-vehicle network, they can then command and control all nodes
on the CAN bus.

On the other hand, we realise that, if it is arguably complicated and some-
what expensive to setup a real laboratory to experiment on the CAN bus, it
should really be made simple to conduct the experiments in a simulated envi-
ronment. This manuscript contributed in such a direction by showing that a
Linux machine (or a network of machines) can be tailored to simulate the nodes
and network laid within a car. It then suggested to write the potential attacks in
Ruby so that they could be simulated using Metasploit. If the machine-exploit
pair is easy do download (such as ours [I1]), then simulations on the CAN bus
could finally fall within effortless reach.

References

1. International Organization for Standardization: Road vehicles — Controller area
network (CAN) — Part 1: Data link layer and physical signalling. https://www.
iso.org/standard/63648.html (2015)

2. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large
networks of computers. Communications of the ACM 21 (1978) 993-999

3. Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using
CSP and FDR. In Margaria, T., Steffen, B., eds.: Proc. of the 2nd Workshop
on Tools and Algorithms for Construction and Analysis of Systems (TACAS’96).
LNCS 1055, Springer (1996) 147-166

4. Needham, R.M.: Keynote address: The changing environment. In Christianson, B.,
Crispo, B., Malcolm, J.A., Michael, R., eds.: Proc. of the Tth Security Protocols
Workshop (SPW’99). LNCS 1796, Springer (2000) 1-5

5. Valasek, C., Miller, C.: Remote Exploitation of an Unaltered Passenger Vehicle.
http://illmatics.com/Remote%20Car20Hacking. pdf (2015)

6. Valasek, C., Miller, C..: CAN Message Injection. http://illmatics.com/can
20message20injection.pdf (2016)

https://www.iso.org/standard/63648.html
https://www.iso.org/standard/63648.html
http://illmatics.com/Remote%20Car%20Hacking.pdf
http://illmatics.com/can%20message%20injection.pdf
http://illmatics.com/can%20message%20injection.pdf

10.

11.

12.

Smith, C.: The Car Hacker’s Handbook: A Guide for the Penetration Tester. 1st
edn. No Starch Press, San Francisco, CA, USA (2016)

Meier, J.N.: Kayak. https://github.com/dschanoeh/Kayak (2014)

RapidT: Metasploit framework. (https://github.com/rapid7/
metasploit-framework)

Chris Valasek, C.M.: Adventures in Automotive Networks and Control Units.
http://illmatics.com/car_hacking.pdf| (2014)

Biondi, P.: Crazy-tachymeter. https://github.com/pietrobiondi/
Crazy-Tachymeter| (2018)

Biondi, P.: Crazytachymeter, exploit for can-bus. https://github.com/rapid7/
metasploit-framework/pull/10127| (2018)

https://github.com/dschanoeh/Kayak
https://github.com/rapid7/metasploit-framework
https://github.com/rapid7/metasploit-framework
http://illmatics.com/car_hacking.pdf
https://github.com/pietrobiondi/Crazy-Tachymeter
https://github.com/pietrobiondi/Crazy-Tachymeter
https://github.com/rapid7/metasploit-framework/pull/10127
https://github.com/rapid7/metasploit-framework/pull/10127

	Towards an Integrated Penetration Testing Environment for the CAN Protocol

