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P R E L I M I N A RY D E F I N I T I O N S A N D
N OTAT I O N S

X denotes a non empty topological space. We say that a subset A of X
is regular open (regular closed) if A = int(A) (A = int(A)). The family
B = {U : U is regular open in X} is a base for X. X equipped with the
topology generated by the base B is called the semiregularization of X and it
is denoted by Xs. If X = Xs, then X is called semiregular. A clopen subset of a
space X is a subset of X that is both open and closed in X. Let B(X) be the
family of all clopen subsets of X. A space X is zero-dimensional if B(X) is an
open base for X. A space X is said to be extremally disconnected if the closure
of each open subset of X is also open.

X is called: T1 if for every distinct points x, y ∈ X there exist two open subsets
U and V of X such that x ∈ U, y /∈ U and y ∈ V, x /∈ V; Hausdorff if for every
distinct points x, y ∈ X there exist disjoint open sets U and V with x ∈ U and
y ∈ V; Urysohn if for every distinct points x, y ∈ X there exist open sets U
and V with x ∈ U and y ∈ V suchthat U ∩V = ∅; Regular if X is T1 and for
every closed subset F of X and every x ∈ X \ F, there exist two disjoint open
subsets U and V of X such that x ∈ U and F ⊆ V; Tychonoff if X is T1 and
for every closed subset F of X and every x ∈ X \ F, there exists a continuous
function f : X → [0, 1] such that f (x) = 0 and f (F) = {1}.

The cardinality of a set A is denoted by |A|. λ, κ denote infinite cardinals. ℵ0

and ω denote the smallest infinite cardinal and the smallest infinite ordinal.
The cardinal successor of κ will be denoted by k+. We will denote by [A]≤λ

the family of all subsets of A of cardinality ≤ λ.

In the following we recall the cardinal functions that we will use in this thesis.
The cellularity of a space X, denoted by c(X), is the smallest cardinal number
m ≥ ℵ0 such that every family of pairwise disjoint non empty open subsets of
X has cardinality ≤ m. If c(X) = ℵ0, X is called c.c.c.. The Urysohn-cellularity
of a space X, denoted by Uc(X), is the smallest cardinal number m ≥ ℵ0

such that every family of non empty open subsets of X having pairwise
disjoint closure has cardinality ≤ m [61]. A family B(x) of neighbourhoods
of x is called a base for a space X at the point x if for any neighborhood V
of x there exists a U ∈ B(x) such that x ∈ U ⊂ V. The character of a
point x in the space X, denoted by χ(x, X), is the smallest cardinality of a
base at the point x. The character of the space X is sup{χ(x, X) : x ∈ X}.
The pseudocharacter of a point x in a T1-space X, denoted by ψ(x, X), is the
smallest cardinality of a family of open sets U of X such that

⋂U = {x}.
The pseudocharacter of a T1-space X is ψ(X) = sup{ψ(x, X) : x ∈ X}. The
weight of X, denoted by w(X), is the smallest cardinality of a base for X.
A family B(x) of open subsets of X is called a local π-base at x if for each
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neoghborhood R of p, there exists V ∈ U such that V ⊆ R. The π-character of
a point x in the space X, denoted by πχ(x, X), is the smallest cardinality of a
π-base at the point x. The π-character of the space X is sup{πχ(x, X) : x ∈ X}.
If X is a Hausdorff space, the closed pseudocharacter of a point x in X is
ψc(x, X) = min{|U | : U is a family of open neighborhoods of x and {x} is
the intersection of the closure of elements of U}; the closed pseudocharacter
of X is ψc(X) = sup{ψc(x, X) : x ∈ X} (see [62] where it is called Sψ(X)).
The tightness of X at x ∈ X is t(x, X) = min{κ : for every A ⊆ X with
x ∈ A there exists B ⊆ A such that |B| ≤ κ and x ∈ B; the tightness of X
is t(X) = sup{t(x, X) : x ∈ X}. The θ-closure of a set A in a space X is
the set clθ(A) = {x ∈ X : for every neighborhood U 3 x, U ∩ A 6= ∅}; A
is said to be θ-closed if A = clθ(A) [65]. The θ-tightness of X at x ∈ X is
tθ(x, X) = min{κ : for every A ⊆ X with x ∈ clθ(A) there exists B ⊆ A such
that |B| ≤ κ and x ∈ clθ(B); the θ-tightness of X is tθ(X) = sup{tθ(x, X) :
x ∈ X} [25]. We have that tightness and θ-tightness are independent, but
if X is a regular space then t(X) = tθ(X). The density, denoted by d(X)

is the smallest cardinality of a dense subset of X. The θ-density of X is
dθ(X) = min{κ : A ⊆ X , A is a θ dense subset of Xand |A| ≤ κ}. Recall
that a subset A of X is θ-dense in X if clθ(A) = X. Recall that a family U of
open subsets of X is a cover for X if X =

⋃U . If U is an open cover of X,
a subfamily V ⊆ U is called a subcover of X if X =

⋃ V . A family of sets
A refines a family of sets B if for every A ∈ A there is B ∈ B such that
A ⊂ B. For the families of sets A and B, we will write A ≈ B if both A
refines B and B refines A. The Lindelöf degree of a space X, denoted by L(X)

is the smallest cardinal κ such that for every open cover U of X there exists
V ∈ [U ]≤κ such that X =

⋃U . The almost Lindelöf degree, denoted by wL(X),
of a space X is the least cardinal κ such that for every open cover U of X
there exists V ∈ [U ]≤κ such that X =

⋃
V∈V V [67]. The weak Lindelöf degree,

denoted by wL(X), of a space X is the least cardinal κ such that for every
open cover U of X there exists V ∈ [U ]≤κ such that X = cl(

⋃ V). We have
wL(X) ≤ aL(X) ≤ L(X).

Recall that a space X is: compact (resp. Lindelöf ) if for every open cover U
of X there exists a finite (countable) subfamily V of U such that X =

⋃ V ;
countably compact if for every countable open cover U of X there exists a
finite subfamily V of U such that X =

⋃ V ; σ-compact if it is the union of
countably many compact subsets; paracompact if every open cover has a locally
finite open refinement; metacompact if every open cover has a point-finite
open refinement; metaLindelöf if every open cover has a point-countable open
refinement; linearly Lindelöf if for every linearly ordered open cover U of
X there exists a countable subfamily V of U such that X =

⋃ V ; Menger
if for every sequence (U (n) : n ∈ ω) of open covers of X, one can pick
finite subfamilies F (n) ⊂ U (n), n ∈ ω, so that

⋃{F (n) : n ∈ ω} covers
X; Hurewicz if for every sequence (U (n) : n ∈ ω) of open covers of X,
one can pick finite subfamilies F (n) ⊂ U (n), n ∈ ω, so that every x ∈ X
is contained in

⋃F (n) for all but finitely many n; Rothberger if for every
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sequence (U (n) : n ∈ ω) of open covers of X, one can pick U(n) ∈ U (n),
n ∈ ω, so that {U(n) : n ∈ ω} covers X.

Let U be a cover of a space X and M be a subset of X; the star of M with
respect to U is the set St(M,U ) = ⋃{U : U ∈ U and U ∩M 6= ∅}. The star
of a one-point set {x} with respect to a cover U is called the star of the point x
with respect to U and it is denoted by St(x,U ). A cover U is a star-refinement
of a cover V if for every U ∈ U there is V ∈ V such that St(U,U ) ⊂ V. A
space X is called star-compact if for every open cover U of X there is a finite
subset F of X such that St(F,U ) = X.

For definitions of cardinal invariants and other notions not defined in this
thesis, we refer the reader to [34], [47] and [58].



I N T R O D U C T I O N

In this study we consider cardinal functions in topology with a primary focus
on cardinality bounds, and covering properties.

In the first chapter of this thesis we present results on bounds for the car-
dinality of a topological space using cardinal functions. In particular, we
give variations and improvements of the most known cardinality bounds
for topological spaces. Popularly speaking, the cardinality of a given set
is the “number” of points in it. Restricting the cardinality of a given topo-
logical space by continuum (i.e. 2ω), which is the “number of points” in
every Euclidean space, allows us to think about that space as real line, real
plane or higher dimensional Euclidean spaces endowed with some specific
richer topological structure. The area of cardinality restrictions of topological
spaces began with a problem posed by the father of General Topology – P.S.
Alexandroff, who asked: Is the cardinality of a Hausdorff, first countable,
compact topological spaces less than or equal to continuum? It seemed sim-
ple and natural to ask but it remained unsolved for 50 years when a positive
solution was given by the famous Russian topologist A.V. Arhangel’skiĭ [7]
who proved that if X is a Hausdorff space, then |X| ≤ 2L(X)χ(X) (note that
since in a Lindelöf first countable space we have L(X)χ(X) = ℵ0, using the
Arhangel’skiĭ theorem we have a positive answer the previous question).
This was a milestone question since it drew the attention of topologists to
investigate what kind of topological properties lead to restriction of the car-
dinality of a given topological space. It gave rise to a completely new area
combining ideas, methods and questions from both topology and set-theory
– the theory of cardinal invariants of topological spaces which is an active
and important part of topology even nowadays and leads to unexpected and
beautiful results and recent interactions with model theory, forcing method
and the very new approach of proofs and research (for example using the
game theory). Even before Arhangel’skiĭ’s solution, various results were
obtained by other famous mathematicians. In [39], De Groot proved that
if X is a Hausdorff space, then |X| ≤ 2hL(X). In [40] and [41], Hajnal and
Juhász proved, resp., that if X is a Hausdorff space, then |X| ≤ 2c(X)χ(X)

and that if X is a T1 space, then |X| ≤ 2s(X)ψ(X). With the above theorems
we have a link between the cardinality of a space and other covering and
local properties of spaces such hereditary Lindelof number hL(X), cellularity
c(X), spread s(X), character χ(X) and pseudocharacter ψ(X) of a space. The
general theory was developed by Juhász (see [47]). After Arhangel’skiĭ’s
solution, a series of results in that direction were proved by Hodel, Porter,
Ponomarev, Stavrova, Dissanayeke and Willard, S̆apirovskiĭ, Gryzlov, Pol,
Bell, Ginsburg and Woods. To prove cardinality restriction of a topological
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space, firstly Gryzlov in his PhD thesis (1973) and then Pol, S̆apirovskiĭ and
Arhangel’skiĭ developed the “closure method” using topological properties
that are extendable for general cardinality restrictions.

In Section 1.1 we pose our attention on cardinality bounds for Urysohn spaces.
Schröder [61] proved that if X is a Urysohn space, then |X| ≤ 2Uc(X)χ(X),
and S̆apirovskiĭ proved that if X is a regular space, then |X| ≤ πχ(X)c(X)ψ(X).
We define, in the class of Urysohn spaces, the cardinal function called θ-
pseudocharacter of X in the following way ψθ(X) = sup{ψθ(x, X) : x ∈ X},
where ψθ(x, X) is min{κ : there is a family B of open neighborhoods
of x such that |B| ≤ κ and {x} = ⋂

U∈B clθ(U)}. Recall that if A is a subest
of a space X, the θ-closure of X, denoted by clθ(A), is the set of all x ∈ X
such that U ∩ A 6= ∅ for every open subset U of X containing x. Using the
θ-pseudocharacter of the space X we establish in Theorem 1.1.1 the following:

Theorem. If X is a Urysohn space, then |X| ≤ πχ(X)Uc(X)ψθ(X).

Note that the previous theorem is a common generalization of both the
Schröder’s inequality and S̆apirovskiĭ’s inequality mentioned above.

The Arhangel’skiĭ’s inequality, mentioned in the beginning of the introduction,
has been widely generalize for Hausdorff spaces using “better” cardinal
functions (i.e. cardinal functions strictly smaller then the Lindelöf degree
or than the character of the space). Furthermore, many authors proved
variations of the Arhangel’skiĭ’s inequality for other classes of spaces stronger
than Hausdorff using cardinal functions related respectively to the character
and to the Lindelöf degree of the space (for example, Bella and Cammaroto
[14] proved that if X is a Urysohn space, then |X| ≤ 2aL(X)χ(X)). In Section
1.1.3, using a filter argument which represents another technique of proving
cardinality bounds for topological spaces, we improve the Bella-Cammaroto
inequality mentioned above. Also our result represents a variation of the
Arhangel’skiĭ’s inequality. In particular we prove the following (Theorem
1.1.4).

Theorem. If X is a Urysohn space, then |X| ≤ 2θ-aL′(X)tc̃(X)ψθ(X).

The cardinal invariant θ-aL′(X) is related to θ-aL(X) and is defined in Def-
inition 1.1.11. As θ-aL′(X) ≤ aL(X), and tc̃(X)ψθ(X) ≤ χ(X), the theorem
above represents an improvement of the Bella-Cammaroto inequality.

In Section 1.3 we prove cardinality bounds for Hausdorff spaces. To do
that, we introduce a new cardinal function called quasicellularity. Let X be
a space and A ⊆ X, we define the quasicellularity of A ⊂ X, qc(A, X), as the
least infinite cardinal κ such that if there exists a family U of open sets of
X with A =

⋃
U∈U U then there exists V ∈ [U ]≤κ such that A =

⋃ V . The
quasicellularity of X is qc(X) = qc(X, X). We have qc(X) ≤ c(X) and it is
shown that c(X) = qc(X)dot(X), decomposing c(X) into two components,
where dot(X) is defined in [38]. Relationships between qc(X) and other
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cardinal invariants are investigated. We also have that qc(X) = wL(X) for
any extremally disconnected space.

In our proofs we make use of the Pol-S̆apirovskiĭ technique.

The second chapter of this thesis is dedicated to results obtained in the field
of covering properties for topological spaces. Lots of important theorems
in general topology make use of covering properties. In particular we con-
sider covering properties defined by stars, neighborhood assignments or as
monotone versions of selection principles. Star covering properties have been
widely studied in literature (see for example [17], [33], [44], [45], [55]). The
use of stars is very important in general topology. In fact, some topological
and covering properties are characterized using stars. Recall that if A is a
subset of a space X and B is a family of subsets of X, the star of A with
respect to B, denoted by St(A,B), is the set

⋃{B ∈ B : B ∩ A 6= ∅}. The
notion of star appears, for example in the characterization of normality:
”A topological space is normal if and only if every finite open cover has a
finite open star-refinement” . We also have that countable compactness is
equivalent to star-compactness in the class of Hausdorff spaces and para-
compactness is equivalent to the following property: every open cover has
an open star refinement. It is natural to consider stars of subspaces having
particular properties. In this case we will say that a space X has the star-P
property (briefly St-P) if for every open cover U of the space X, there exists
a subset Y of X having the property P such that St(Y,U ) = X [45]. We
can also consider covering properties not only in terms of stars but also in
terms of neighborhood assignments. Recall that a neighborhood assignment in
a space X is a family {Ox : x ∈ X} of open subsets of X such that x ∈ Ox

for every x ∈ X. For example the Lindelöf property can be characterized
using neighborhood assignments in the following way: a space X is Lindelöf
if and only if for every neighborhood assignment {Ox : x ∈ X} there is a
countable subset Y of X such that {Ox : x ∈ Y} is a cover of X. If Y is closed
and discrete instead of countable we obtain the notion of D-spaces defined
by van Douwen in [31]. The idea of van Douwen have been generalized
in [56] where the authors defined a space to be neighborhood assignment P
(briefly NA-P) if for any neighborhood assignment {Ox : x ∈ X} there exists
a subspace Y of X having the property P such that {Ox : x ∈ Y} is a cover of
X. In particular the authors pose their attention on the following properties:
compactness, pseudocompactness, countable compactness and Lindelöfness
(see also [1], [3], and [5]). In Section 2.1 we study and compare ”star” and
”neighborhood assignment” versions of compactness, countable compactness,
Lindelöfness, and of the Menger property. Using expansion operators, we
give a description of the previous properties in terms of cardinal functions
and generalize known results. A map Φ : P(X)×NA(X) → P(X) , where
NA(X) is the family of all neighborhood assignments of X, such that: (i)
Y ⊆ Φ(Y, NA) for every (Y, NA) ∈ P(X)×NA(X); (ii) Z ⊆ Y ⊆ X implies
Φ(Z, NA) ⊆ Φ(Y, NA) for every NA ∈ NA(X), will be called an expansion
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operator on X. In particular, typical expansion operators are the neighborhood
assignment operator, and the star operator, defined in Definition 2.1.4.

In Section 2.2 we consider monotone versions of some selection principles.
When we add monotonicity to a covering property, we obtain a stronger
property. The idea of a covering property being monotonic has its roots in
the definition of ”monotone normality” that has nothing to do with open
covers. A space X is called monotonically normal if for each pair (H, K)
of disjoint closed subsets of X, one can assign an open set r(H, K) such
that H ⊂ r(H, K) ⊂ r(H, K) ⊂ X \ K, and if H1 ⊂ H2 and K1 ⊃ K2 then
r(H1, K1) ⊂ r(H2, K2) (see [22]). Shortly after, the style of this definition
was adapted and applied to other kinds of properties, including covering
properties. Gartside and Moody in [36] described a process for obtaining a
monotone version of any well-known covering property: “by requiring that
there is an operator, r, assigning to every open cover a refinement in such a
way that r(V) refines r(U ) whenever V refines U ”. Using this process, any
covering property can be ”upgrated” into a monotonic property. Our starting
point is the class of monotone Lindelöf spaces (see for example [50], [51]).
The monotone version of the Lindelöf property introduced by Matveev in [53]
is the following: a space X is monotonically Lindelöf if there exists an operator
r assigning to every open cover U a countable open refinement such that r(V)
refines r(U ) whenever V refines U . In Section 2.1 we consider all four different
ways of defining monotone versions of Menger, Rothberger and Hurewicz
properties, and we show that one of this monotone versions introduced
is absurd. In the next definition the letters W and S are abbreviations for
“weakly” and “strongly”.

A space X is

• SS-mM ([18], where it is called monotonically Menger, briefly mM) if
there exists an operator, called SS-mM operator, that assigns to every
sequence U = (U (n) : n ∈ ω) of open covers of X a sequence r(U ) =
(r(U )(n) : n ∈ ω) so that

1.
⋃{r(U )(n) : n ∈ ω} is an open cover of X,

2. for every n ∈ ω, r(U )(n) is a finite refinement of U (n),

3. if U = (U (n) : n ∈ ω) and V = (V(n) : n ∈ ω) are two sequences
of open covers of X and for every n ∈ ω, U (n) refines V(n), then
for every n ∈ ω, r(U )(n) refines r(V)(n).

• SW-mM if there exists an operator, called SW-mM operator, that assigns
to every sequence U = (U (n) : n ∈ ω) of open covers of X a sequence
r(U ) = (r(U )(n) : n ∈ ω) so that

1.
⋃{r(U )(n) : n ∈ ω} is an open cover of X,

2. for every n ∈ ω, r(U )(n) is a finite refinement of U (n),
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3. if U = (U (n) : n ∈ ω) and V = (V(n) : n ∈ ω) are two sequences
of open covers of X and for every n ∈ ω, U (n) refines V(n), then⋃{r(U )(n) : n ∈ ω} refines

⋃{r(V)(n) : n ∈ ω}.

• WW-mM if there exists an operator, called WW-mM operator, that assigns
to every sequence U = (U (n) : n ∈ ω) of open covers of X a sequence
r(U ) = (r(U )(n) : n ∈ ω) so that

1.
⋃{r(U )(n) : n ∈ ω} is an open cover of X,

2. for every n ∈ ω, r(U )(n) is a finite refinement of U (n),

3. if U = (U (n) : n ∈ ω) and V = (V(n) : n ∈ ω) are two sequences
of open covers of X and

⋃{U (n) : n ∈ ω} refines
⋃{V(n) : n ∈ ω},

then
⋃{r(U )(n) : n ∈ ω} refines

⋃{r(V)(n) : n ∈ ω}.

• WS-mM if there exists an operator, called SS-mM operator, that assigns
to every sequence U = (U (n) : n ∈ ω) of open covers of X a sequence
r(U ) = (r(U )(n) : n ∈ ω) so that

1.
⋃{r(U )(n) : n ∈ ω} is an open cover of X,

2. for every n ∈ ω, r(U )(n) is a finite refinement of U (n),

3. if U = (U (n) : n ∈ ω) and V = (V(n) : n ∈ ω) are two sequences
of open covers of X and

⋃{U (n) : n ∈ ω} refines
⋃{V(n) : n ∈ ω},

then for every n ∈ ω, r(U )(n) refines r(V)(n).

A specific study of the SS-mM has been done in [18] where it is called
monotone Menger property. In [18] it was proved that (within ZFC) every
separable SS-mM space is first countable. This result contrasts with the
previously known fact that under CH there exists countable mL spaces which
are not first countable.

The monotone versions of the Hurewicz and Rothberger properties are de-
fined in similar ways. For the Rothberger property, we deal with at most
one element refinements rather then with one element refinements, while for
Hurewicz property, we replace condition 2. with

2′. for every n ∈ ω, r(U )(n) is a finite refinement of U (n) such that for every
x ∈ X, x ∈ ⋃ r(U )(n), for all but finitely many n.

We prove that WS-mM spaces, in the class of Hausdorff spaces concide with
the class of dicrete and countable spaces. Also we prove that the discrete sum
of countably many convergent sequences is SS-mH (hence SS-mM) but it is
not WW-mM (hence not WW-mH), and that the one point Lindelöfication of
the discrete space ω1, L(ω1), is WW-mR and WW-mH (hence WW-mM) but
it is not SS-mM (hence neither SS-mR nor not SS-mH). Then SS- and WW-
properties are indipendent in Menger and Hurewicz cases. The following
question is open: Is there a SS-mR not WW-mR space? Furthermore, L(ω1)

permitts to distinguish SW- and SS- properties. In Section 2.2.4 we consider
the local version of the monotonic Rothberger-type properties. Recall that
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a space X is mL at the point p [50] if one can assign to every non empty
family U of neighborhoods of p a non empty countable family r(U ) of
neighborhoods of p so that r(U ) refines U , and r(U ) refines r(V) whenever
U refines V . This technical notion was used in [50], [51], [52] to disprove
monotone Lindelöfness of certain spaces. One gets the definition of mC at p
when replacing “countable” with “finite”. We consider the local versions of
SS-mR and SW-mR properties. There is one principal difference between the
new properties and monotone Lindelofness: obviously, a space X with single
non-isolated point p is mL (mC) iff X is Lindelöf (respectively, compact) and
mL (respectively, mC) at p; we show that there exists a space X with single non-
isolated point p which is Rothberger, SS-mR at p but not SS-mR (Example
2.2.5). In Section 2.2.5, using the notion of thin base of neighborhoods of a
point (see Definition 2.2.3), we contruct a monotonically paracompact SW-mH
space which is not SS-mM, and distinguish SW-mH property from the local
version of SS-mR property.



1 C A R D I N A L I TY B O U N D S F O R
TO P O LO G I C A L S PA C E S

The theory of bounds on the cardinality of a topological space is an elegant
topic with a rich history with many applications in a variety of mathematical
fields. The story of cardinality bounds for a topological space began in the
early 20th century. The following is an early result: A second countable
Hausdorff space has cardinality at most c. In 1922 (not published until 1929)
Alexandroff and Urysohn improved the previous result by proving that a
hereditary Lindelöf Hausdorff space has cardinality c. Two later important
results in this theory in the class of Hausdorff spaces are Arhangel’skiĭ’s
Theorem and Hajnal-Juhász’s Theorem. In the proofs of the previous re-
sults the ”closing-off argument” technique was developed (this technique
is still used in this branch of topology). It is important to mention that
Arhangel’skiĭ’s theorem answered a long standing problem posed by Alexan-
droff and Urysohn, who asked ”Is the cardinality of a Hausdorff first count-
able Lindelöf space at most c?”. Arhangel’skiĭ proved that if X is a Hausdorff
space, then |X| ≤ 2L(X)χ(X). Since for a Lindelöf space L(X) = ℵ0 and
for a first countable space χ(X) = ℵ0, using the Arhangel’skiĭ’s Theorem
we have an affirmative answer to the problem posed by Alexandroff and
Urysohn. Many topologists gave improvements (using ”better” cardinal
functions) and variations (using different classes of spaces and different car-
dinal functions) of Arhangel’skiĭ’s theorem (for example Bella-Cammaroto
[14], Basile-Bonanzinga-Carlson [9]) and of the Hajnal-Juhász’s Theorem (for
example Shu-Hao [62], Basile-Bonanzinga-Carlson [9]). In this chapter, we
continue this process by proving several improvements and variations of
well-known cardinality bounds. Some of the results that we discuss are
included in [9], [15] and [12].

1.1 cardinality bounds for urysohn spaces

In this section we give variations and improvements of known cardinality
inequalities in the class of Urysohn spaces.

1.1.1 A generalization of S̆apirovskĭi’s inequality for a regular space X:
|X| ≤ πχ(X)c(X)ψ(X)

S̆apirovskiĭ [60] proved that |X| ≤ πχ(X)c(X)ψ(X), for a regular space X.
Later Shu-Hao [62] proved that the previous inequality holds in the class
of Hausdorff spaces by replacing the pseudocharacter with the closed pseu-

1
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docharacter. We introduce the notion of θ-pseudocharacter of a Urysohn space
X, in order to prove a variation, in the class of Urysohn spaces, of the Shu-
Hao inequality.

The following result is trivial and gives a characterization for Urysohn spaces.

Proposition 1.1.1. X is a Urysohn space if and only if for every x ∈ X, {x} is the
intersection of the θ-closure of the closure of a family of open neighborood of x.

Proof. Let X be a Urysohn space and x ∈ X. For every y ∈ X \ {x}, there exist
Uy and Vy open disjoint subsets of X such that x ∈ Uy, y ∈ Vy and Uy ∩Vy =

∅. So, y /∈ clθ(Uy) and {x} = ⋂
y∈X\{x} clθ(Uy). For the converse, let x, y be

distinct points of X. By hypothesis there exists an open neighbourhood V
of x such that y /∈ clθ(V). Then there exists an open subset U of X such that
y ∈ U and U ∩V = ∅. So X is Urysohn.

Using Proposition 1.1.1 we can define the following cardinal function in the
class of Urysohn spaces.

Definition 1.1.1. Let X be a Urysohn space. The θ-pseudocharacter of a point
x∈ X, denoted by ψθ(x, X), is:

ψθ(x, X) = min{κ : there is a family B of open neighborhoods of x

such that |B| ≤ κ and {x} =
⋂

U∈B
clθ(U)}.

The θ-pseudocharacter of X is ψθ(X) = sup{ψθ(x, X) : x ∈ X}.

Independently, the notion of θ-pseudocharacter was given in [37] where it is
called θ2-pseudocharacter.

We have that:

ψ(X) ≤ ψc(X) ≤ ψθ(X) ≤ Uψ(X) ≤ χ(X).

Since for a regular space X, clθ(A) = A for every A ⊆ X, we have that for
a regular space X, ψc(X) = ψθ(X). In general this need not be true for non
regular spaces. Indeed if we consider R with the countable complement
topology we have that Q 6= clθ(Q).

It was proved in [14] that for Urysohn spaces, |clθ(A)| ≤ |A|χ(X) for every
A ⊆ X and further this inequality was used for the estimation of cardinality
of Lindelöf spaces. Since tθ(X)ψθ(X) ≤ χ(X), the following proposition
improves the result in [14]. (Note that if X = ω ∪ {p} (p an ultrafilter
on ω) is the space with the single ultrafilter topology, we have that ℵ0 =

tθ(X)ψθ(X) < χ(X).)
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Proposition 1.1.2. Let X be a Urysohn space such that tθ(X)ψθ(X) ≤ κ. Then for
every A ⊆ X we have that |clθ(A)| ≤ |A|κ.

Proof. Let x ∈ clθ(A), since ψθ(X) ≤ κ there exist a family {Uα(x)}α<κ of
neighborhood of x such that {x} = ⋂

α<κ clθ(Uα(x)). We want to prove that
x ∈ clθ(Uα(x) ∩ A), ∀α < κ. Let U be a neighborhood of x and α < κ. Then
∅ 6= U ∩Uα(x) ∩ A ⊆ U ∩Uα(x) ∩ A. This shows that x ∈ clθ(Uα(x) ∩ A).
Since tθ(X) ≤ κ, there exists Aα ⊂ Uα(x) ∩ A such that |Aα| ≤ κ and x ∈
clθ(Aα). Then {x} = ⋂

α<κ clθ(Aα) and {Aα}α<κ ∈ [[A]≤κ]≤κ, so |clθ(A)| ≤
|[[A]≤κ]≤κ| = |A|κ.

Corollary 1.1.1. [14] If X is a Urysohn space then for every A ⊆ X we have that
|clθ(A)| ≤ |A|χ(X).

The following result is the analogue of 2.20 in [47]: if X is a Hausdorff space
then |X| ≤ d(X)χ(X).

Corollary 1.1.2. If X is a Urysohn space then |X| ≤ dθ(X)tθ(X)ψθ(X).

Proof. Let A be a θ-dense subset of X, i.e. clθ(A) = X, with |A| = dθ(X).
From the above theorem we have that |clθ(A)| ≤ |A|tθ(X)ψθ(X), so |X| ≤
dθ(X)tθ(X)ψθ(X).

Proposition 1.1.2 and Corollary 1.1.2 have been proved independently in [37].

The following result will be used in the proof of Theorem 1.1.1

Lemma 1.1.1. Let X be a topological space, B a π-base for X and W a family of
open sets. Then there existsM a maximal Urysohn cellular subfamily of {U ∈ B :
U ⊆W f or some W ∈ W} such that clθ

(⋃M)
⊇ ⋃ W .

Proof. Using Zorn’s Lemma we can say that there exists a maximal Urysohn-
cellular subfamily M of {U ∈ B : U ⊆ W for some W ∈ W}. We want to
prove that clθ

(⋃ M)
⊇ ⋃ W . Assume, by the way of contradiction, that

clθ

(⋃ M)
6⊃ ⋃ W . Let x ∈ ⋃W such that x /∈ clθ(

⋃ M). Then there exists
an open set U such that x ∈ U such that U ∩M = ∅, ∀M ∈ M. So x /∈ M,
∀M ∈ M. Let W ∈ W such that x ∈W. M∪{U ∩W} is a Urysohn cellular
family. Since B is a π-base for X and U ∩W is an open set containing x,
there exists B ∈ B such that B ⊆ U ∩W, so M′ = M∪ {B} is a Urysohn
cellular subfamily of {U ∈ B : U ⊆ W for some W ∈ W} containingM; a
contradiction.

Shu-Hao in [62] proved that if X is Hausdorff, then |X| ≤ πχ(X)c(X)ψc(X).
This represents an improvement of the S̆apirovskiĭ’s inequality (if X is a regu-
lar space, then |X| ≤ πχ(X)c(X)ψ(X) [60]). Here we prove a Urysohn version
of the Shu-Hao inequality mentioned above that also gives an improvement
of the S̆apirovskiĭ’s inequality.
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Theorem 1.1.1. Let X be a Urysohn space. Then |X| ≤ πχ(X)Uc(X)ψθ(X).

Proof. Let πχ(X) = λ and Uc(X)ψθ(X) = κ; for each p ∈ X, let Up be a local
π-base at p such that |Up| ≤ λ.

Construct an increasing chain {Aα : α < κ+} of subsets of X and a sequence
{Uα : 0 < α < κ+} of open collections in X such that:

1. |Aα| ≤ λκ, 0 ≤ α < κ+;

2. Uα = {V ∈ Up : p ∈ ⋃β<α Aβ}, 0 < α < κ+;

3. for each γ < κ, if Vγ ∈ [Uα]≤κ and W =
⋃

γ<κ clθ(
⋃ Vγ) 6= X, then

Aα \W 6= ∅.

The construction is by transfinite induction. Let 0 < α < κ+ and assume
that {Aβ : β < α} has already been constructed. Then Uα is defined by (2),
i.e., we put Uα = {V : ∃p ∈ ⋃β<α Aβ, V ∈ Up}. It follows that |Uα| ≤ λκ.
If {Vγ}γ<κ ∈ [[Uα]≤κ]≤κ and W =

⋃
γ<κ clθ(

⋃ Vγ) 6= X, then we can choose
one point of X \W. Let Sα be the set of points chosen in this way. Note that
|[[Uα]≤κ]≤κ| ≤ λκ. Define Aα to be the set Sα ∪ (

⋃
β<α Aβ). Then Aα satisfies

(1), and (3) is also satisfied if β ≤ α. This completes the construction.

Now let S =
⋃

α<κ+ Aα; then |S| ≤ κ+λκ = λκ. The proof is complete
if S = X. Suppose not and let p ∈ X \ S; since ψθ(X) ≤ κ, there exist
open neighbourhoods {Uα}α<κ of p such that {p} = ⋂

α<κ clθ(Uα). For each
α < κ, let Vα = X \ clθ(Uα). Then S =

⋃
α<κ Vα ∩ S. Fix α < κ. For each

q ∈ Vα ∩ S, there exists Vq an open subsets of X containing q such that
Vq ∩Uα = ∅ (from the definition of Vα). We have that {V ∈ Uq : V ⊆ Vq}
is a local π-base at q. Since q ∈ ⋃{V ∈ Uq : V ⊆ Vq}, we have that S ∩
Vα ⊆

⋃
q∈S∩Vα

⋃{V ∈ Uq : V ⊆ Vq} ⊆
⋃{V : V ∈ Uq, V ⊆ Vq, q ∈ S ∩Vα}.

We put Wα = {V : V ∈ Uq, V ⊆ Vq, q ∈ S ∩ Vα}. Since Uc(X) ≤
κ, by Lemma 1.1.1 we have that ∀α < κ there exists a maximal Urysohn
cellular family W ′

α ∈ [Wα]≤κ such that clθ(
⋃W ′

α) ⊇
⋃Wα. Since clθ(

⋃W ′
α)

is closed, it follows that S ∩ Vα ⊆
⋃Wα ⊆ clθ(

⋃W ′
α) ⊆ clθ(

⋃
q∈S∩Vq

Vq).
Then, since (

⋃
q∈S∩Vα

Vq) ∩Uα = ∅ and p /∈ clθ(
⋃

q∈S∩Vα
Vq), we have that

p /∈ clθ(
⋃W ′

α). Put W =
⋃

α<κ clθ(
⋃W ′

α). Since |{V : V ∈ W ′
α for some

α < κ}| ≤ κ · κ = κ < κ+, there is an α0 < κ+ such that W ′
α ∈ [Uα0 ]

≤κ for
each α < κ. Hence, by (3), one has Aα0 \W 6= ∅. But W ⊇ ⋃α<κ(Vα ∩ S) = S
and Aα0 \W ⊆ S \W = ∅; a contradiction.

Corollary 1.1.3. [60] Let X be a regular space. Then |X| ≤ πχ(X)c(X)ψ(X).

Corollary 1.1.4. [61] Let X be a Urysohn space. Then |X| ≤ 2Uc(X)χ(X).
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1.1.2 Variation of the de Groot’s inequality for a Hausdorff space X: |X| ≤
2hL(X)

In this section, new cardinal functions are considered: UW(X), ψwθ(X),
θ-aL(X), hθ-aL(X), θ-aLc(X) and θ-aLθ(X) such that HW(X) ≤ UW(X),
ψw(X) ≤ ψwθ(X) and θ-aL(X) ≤ aL(X). Furthermore we introduce a varia-
tion of Theorem 2.23 in [21] (if X is a T1 space, then |X| ≤ HW(X)ψw(X)haL(X)).

In Proposition 1.1.1 it was shown that Urysohn axiom is equivalent to {x} =⋂{clθ(U) : U open, x ∈ U}, for every point x of the space. The following
example shows that in spaces which are not Urysohn the previous intersection
can be large.

Example 1.1.1. Any infinite space X with the cofinite topology is a T1, com-
pact, non Hausdorff space for which there is a point x such that

⋂{clθ(U) :
x ∈ U} has large cardinality.

The example above gives a motivation to introduce the following definition:

Definition 1.1.2. Let X be a T1 topological space and for all x ∈ X, let

Uw(x) =
⋂
{clθ(U) : x ∈ U, U open}.

The Urysohn width is:

UW(X) = sup{|Uw(x)| : x ∈ X}.

It is clear that if X is a Urysohn space then UW(X) = 1.

Recall that HW(X) = sup{|Hw(x)| : x ∈ X} is the Hausdorff width, where
Hw(x) =

⋂{U : x ∈ U, U open} [21]. Since the θ-closure of a set contains
its closure we have that HW(X) ≤ UW(X).

Definition 1.1.3. [21] Let X be a space and x ∈ X.

ψw(x) = min{|Ux| :
⋂
{U : U ∈ Ux} = Hw(x), Ux is a

family of open neighborhood of x};

and
ψw(X) = sup{ψw(x) : x ∈ X}.

Similarly, we introduce the following definition.

Definition 1.1.4. Let X be a space and x ∈ X.

ψwθ(x) = min{|Ux| :
⋂
{clθ(U) : U ∈ Ux} = Uw(x), Ux is a
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family of open neighborhood of x};
and

ψwθ(X) = sup{ψwθ(x) : x ∈ X}.

Of course, if X is a T1 space then ψw(X) ≤ ψwθ(X) ≤ χ(X); further if X is a
Urysohn space then we have that ψwθ(X) = ψθ(X).

The definition below is a generalization of the almost Lindelöf degree of a
space defined in [67].

Definition 1.1.5. Let Y be a subset of a space X. The θ-almost Lindelöf degree
of a subset Y of a space X is

θ-aL(Y, X) = min{κ : for every cover V of Y consisting of open subsets of X,
there exists V ′ ⊆ V such that |V ′| ≤ κ and

⋃{clθ(V) : V ∈ V ′} ⊆ Y}.

The cardinal number θ-aL(X, X) is called θ-almost Lindelöf degree of the space X
and is denoted by θ-aL(X).

The hereditary θ-almost Lindelöf degree of X, denoted by hθ-aL(X), is the cardi-
nal hθ-aL(X) = min{κ : for every family γ of open subsets of X, there exists a
family γ′ ∈ [γ]≤κ such that

⋃
γ ⊆ ⋃{U : U ∈ γ′}}.

Obviously we have θ-aL(X) ≤ aL(X) for every space X. Using a slight
modification of Example 2.3 in [13] we prove that the previous inequality can
be strict.

Example 1.1.2. A space X such that θ-aL(X) < aL(X).

Proof. Let κ be any uncountable cardinal, let Q be the set of all the rationals
and let P be the set of the irrationals. Put X = (Q× κ) ∪P. We topologized
X as follows. If q ∈ Q and α < κ then a neighborhood base at (q, α) is
U (q, α) = {Un(q, α) : n ∈ ω} where

Un(q, α) = {(r, α) : r ∈ Q and |r-q| < 1
n
}.

If p ∈ P a neighborhood base at p takes the form:

{{b ∈ P : |b-p| < 1
n
} ∪ {(q, α) : α < κ and |q-p| < 1

n
} : n ∈ ω}.

For every q ∈ Q, α < κ and n ∈ ω we have that:

Un(q, α) = Un(q, α)
⋃
{p ∈ P : |q-p| < 1

n
};

and:
clθ(Un(q, α)) = Un(q, α)

⋃
{(r, β) : |r− q| < 1

n
, β < κ}.

Let α < κ, we have that X =
⋃

q∈Q clθ(U (q, α)) and so θ-aL(X) = ℵ0 but we
have that aL(X) = 2ℵ0 .
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It is easy to show that the almost Lindelöf degree is hereditary with respect
to θ-closed subsets. We have (see Proposition 1.1.3 below) that the θ-almost
Lindelöf degree is hereditary with respect to a new class of spaces that we
call γ-closed.

Definition 1.1.6. Let X be a topological space and A ⊆ X. The γ-closure of
the set A is

clγ(A) = {x : for every open neighborhood of X, clθ(U) ∩ A 6= ∅}.

A is said to be γ-closed if A = clγ(A).

The following example shows that the γ-closure and the θ-closure of a subset
of a topological space can be different.

Example 1.1.3. A Urysohn space X having a subset Y such that clγ(Y) 6=
clθ(Y).

Proof. Let R = A∪ B∪C ∪D where A, B, C, D are pairwise disjoint and each
is dense in R. Let A′ be a topological copy of A; points in A′ are denoted as
a′ where a ∈ A.

Let a, b ∈ R. A base for X is generated by these families of open sets:
(1){(a, b) ∩ A : a, b ∈ R, a < b}
(2){(a, b) ∩ C : a, b ∈ R, a < b} ,
(3){(a, b) ∩ A′ : a, b ∈ R, a < b},
(4){(a, b) ∩ (A ∪ B ∪ C) : a, b ∈ R, a < b}, and
(5){(a, b) ∩ (C ∪ D ∪ A′) : a, b ∈ R, a < b}.

Note that for every a, b ∈ R, (a, b) ∩ A = [a, b] ∩ (A ∪ B), (a, b) ∩ A′ =
[a, b] ∩ (A′ ∪ D), (a, b) ∩ C = [a, b] ∩ (B ∪ C ∪ D), clθ((a, b) ∩ A) = [a, b] ∩
(A ∪ B ∪ C) and clθ((a, b) ∩ A′) = [a, b] ∩ (A′ ∪ D ∪ C). For these reasons
we can say that if a, b ∈ R and if we put Y = (a, b) ∩ C, we have that
clθ(Y) = [a, b] ∩ (B ∪ C ∪ D) and clγ(Y) = [a, b] ∩ (A ∪ B ∪ C ∪ D ∪ A′).

We have the following:

Proposition 1.1.3. The θ-almost Lindelöf degree is hereditary with respect to γ-
closed subsets.

Proof. Let X be a topological space such that θ-aL(X) ≤ κ and let C ⊆ X be
γ-closed set. ∀x ∈ X \ C we have that there exists an open neighborhood
Ux of x such that clθ(U) ⊆ X \ C. Let U be a cover of C consisting of open
subsets of X. Then V = U ⋃{Ux : x ∈ X \ C} is an open cover of X and
since θ-aL(X) ≤ κ, there exists V ′ ∈ [V ]≤κ such that X =

⋃{clθ(V) : V ∈ V ′}.
Then there exists V ′′ ∈ [U ]≤κ such that C ⊆ ⋃{clθ(V) : V ∈ V ′′}; this proves
that θ-aL(C) ≤ κ.
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Now, using UW(X), ψwθ(X) and hθ-aL(X), a variation of the Theorem 2.23

in [21] is proved. The proof of Theorem 1.1.2 follows step-by-step the proof
of Theorem 2.23 in [21].

Theorem 1.1.2. If X is a T1 space then |X| ≤ UW(X)ψwθ(X)hθ-aL(X).

Proof. Let UW(X) ≤ κ, hθ-aL(X) ≤ τ and ψwθ(X) ≤ λ. For all x ∈ X,
let Ux be a family of open neighborhoods of x such that |Ux| ≤ λ and
Uw(x) =

⋂{clθ(U) : U ∈ Ux}. By transfinite induction we construct two
families {Hα : α ∈ τ+} and {Bα : α ∈ τ+} such that:

1. {Hα : α ∈ τ+} is an increasing sequence of subsets of X;

2. |Hα| ≤ κλτ for all α ∈ τ+;

3. if {Hβ : β ∈ α} are defined for some α ∈ τ+, then Bα =
⋃{Ux : x ∈⋃{Uw(y) : y ∈ ⋃{Hβ : β ∈ α}}};

4. if α ∈ τ+ and W ∈ [Bα]≤τ is such that X \ (⋃{clθ(U) : U ∈ W}) 6= ∅
then Hα \ (

⋃{clθ(U) : U ∈ W}) 6= ∅.

Let α ∈ τ+ and {Hβ : β ∈ α} be already defined. For allW as in (4), choose a
point x(W) ∈ X \ (⋃{clθ(U) : U ∈ W}) and let Cα be the set of these points.

Let Hα =
⋃{Hβ : β ∈ α} ∪ Cα. Then |Hα| ≤ κ · λτ.

Let H =
⋃{Hα : α ∈ τ+} and H∗ =

⋃{Uw(x) : x ∈ H} ⊇ H. Then
|H∗| ≤ κ · λτ.

We want to prove that X = H∗. Suppose that there exists a point q ∈ X \ H∗.
Then q /∈ Uw(x), ∀x ∈ H. Hence for all x ∈ H there is U(x) ∈ Ux such
that q /∈ clθ(U(x)). From hθ-aL(X) ≤ τ choose H

′ ∈ [H]≤τ such that H ⊆⋃{clθ(U(x)) : x ∈ H
′}. Let W = {U(x) : x ∈ H

′}. We have that H
′ ⊆ Hα

for some α ∈ τ+ and W ∈ [Bα+1]
≤τ and X \ (⋃{clθ(U) : U ∈ W}) 6= ∅.

Hence we have already chosen x(W) ∈ X \ (⋃{clθ(U) : U ∈ W} ⊆ X \ H
and x(W) ∈ H a contradiction. Hence X = H∗ and |X| ≤ κλτ.

Corollary 1.1.5. If X is a Urysohn space then |X| ≤ ψθ(X)hθ-aL(X).

1.1.3 An improvement of the Bella-Cammaroto inequality for a Urysohn
space X: |X| ≤ 2aL(X)χ(X)

In this section we modify a filter construction related to that given in [27].
In that paper an operator ĉ was constructed. Here we construct a related
operator c̃.

Let X be a topological space, x ∈ X and Fx the collection of all finite
intersections C of regular closed sets such that x ∈ C. It is easy to prove that
Fx is a filter base which can be extended to a filter Cx that is maximal in the
collection of all finite intersections of regular closed sets, partially ordered by
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inclusion. It is important to note that the absolute of a space is generated by
these fixed maximal filters (see 6.6 in [58]).

The maximal filter Cx has the following properties:

Proposition 1.1.4. Let X be a topological space and x ∈ X. Every regular closed
subset of X which meets every element of Cx is an element of Cx.

Proof. Let U be an open subset of X and x ∈ X. U is regular closed. Suppose
U meets every element of Cx. Then {U} ∪ Cx is a filter base that contains Cx

which can be extended to a maximal filter M. As Cx is maximal, we have
C =M and U ∈ Cx.

Proposition 1.1.5. Let X be a Urysohn space, then for every x, y ∈ X with x 6= y
we have that Cx 6= Cy.

Proof. Let x, y ∈ X with x 6= y, since X is a Urysohn space, there exist U, V
two open subsets of X such that x ∈ U, y ∈ V and U ∩ V = ∅. We have
that U ∈ Cx and V ∈ Cy. If Cx = Cy, then V ∈ Cx and U ∩ V = ∅ ∈ Cx, a
contradiction.

We now define new operators using the maximal filter Cx.

Definition 1.1.7. For a space X and an open subset U of X, define:

Ũ = {x ∈ X : U ∈ Cx}.

In the following propositions we give several properties of Ũ.

Proposition 1.1.6. Let X be a space and U an open subset of X. Then U ⊆ Ũ ⊆
clθ(U).

Proof. If x ∈ U, then U ∈ Cx and x ∈ Ũ. Let V be an open subset of X such
that x ∈ V. By Proposition 1.1.4, V ∩U 6= ∅, then x ∈ clθ(U).

Proposition 1.1.7. If X is a topological space and V, W are open subsets of X, then
Ṽ ∪ W̃ = Ṽ ∪W. In particular this operator distributes over finite unions.

Proof. Ṽ ∪ W̃ = {x ∈ X : V ∈ Cx} ∪ {x ∈ X : W ∈ Cx} = {x ∈ X : V ∩W =

V ∪W ∈ Cx} = Ṽ ∪W.

The analogue of the following proposition in the case of Hausdorff spaces is
contained in the proof of Proposition 4.1 in [27].

Proposition 1.1.8. X is a Urysohn space if and only if for every x, y ∈ X with
x 6= y, there exist U, V open subsets of X such that Ũ ∩ Ṽ = ∅.
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Proof. Suppose that for every x, y ∈ X with x 6= y, there exists U, V open
subsets of X such that Ũ ∩ Ṽ = ∅. We have that U ⊆ Ũ and V ⊆ Ṽ, so
U ∩V = ∅. This means that X is a Urysohn space.

Conversely, suppose X is Urysohn, then for every x, y ∈ X with x 6= y, there
exists U, V open subsets of X such that U ∩V = ∅. We want to show that
Ũ ∩ Ṽ = ∅. In order to have a contradiction, suppose there exists z ∈ Ũ ∩ Ṽ.
From the definition of Ũ and Ṽ, we have U, V ∈ Cz. Cz is a filter, therefore
U ∩V = ∅ ∈ Cz, a contradiction.

For a space X and a subset A of X we define a new operator called c̃-closure
in this way:

Definition 1.1.8. Let X be a space and A a subset of X,

c̃(A) = {x ∈ X : Ũ ∩ A 6= ∅ for every open subset U of X containing x}.

We say that A ⊆ X is c̃-closed if A = c̃(A).

We have the following propositions.

Proposition 1.1.9. If X is a space and A is a subset of X, then we have clθ(A) ⊆
c̃(A) ⊆ clγ(A).

Proof. If x ∈ clθ(A), then for every open subset V of X such that x ∈ V,
V ∩ A 6= ∅. Therefore Ṽ ∩ A 6= ∅ and x ∈ c̃(A).

If x ∈ c̃(A), then for every open subset U of X such that x ∈ U we have
that Ũ ∩ A 6= ∅ and by Proposition 1.1.6 we have Ũ ⊆ clθ(U). Thus for
every open subset U of X such that x ∈ U we have that clθ(U) ∩ A 6= ∅, so
x ∈ clγ(A).

Proposition 1.1.10. If X is a space and U is an open subset of X, then clθ(U) ⊆
c̃(Ũ).

Proof. If U is an open subset of X, by definitions we have clθ(U) ⊆ c̃(U) ⊆
c̃(Ũ).

We investigate the relation between Urysohn spaces and the operator c̃(·)
and we prove the following:

Proposition 1.1.11. If X is a Urysohn space, then for all x, y ∈ X with x 6= y
there exists U open subset of X such that x ∈ U and y /∈ c̃(Ũ).

Proof. Let x, y ∈ X with x 6= y. X is a Urysohn space, so that by Proposition
1.1.8 there exist U, V open subsets of X such that x ∈ U, y ∈ V and Ṽ ∩ Ũ =

∅. We have that c̃(Ũ) = {z ∈ X : W̃ ∩ Ũ 6= ∅ for every open subset U of X}
and y ∈ V but Ṽ ∩ Ũ = ∅ so y /∈ c̃(Ũ).
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For a space X we define a new cardinal invariant tc̃(X) related to the tightness
t(X).

Definition 1.1.9. For a space X, the c̃-tightness of a point x ∈ X, denoted by
tc̃(x, X), is:

tc̃(x, X) = min{k : for every A ⊆ X, if x ∈ c̃(A) , there exists B ∈ [A]≤k

such that x ∈ c̃(B)}.
The c̃-tightness of the space X, denoted by tc̃(X), is:

tc̃(X) = supx∈Xtc̃(x, X)

Like other variations of tightness, the following proposition we prove that
tc̃(X) is bounded above by the character.

Proposition 1.1.12. If X is a space, then tc̃(X) ≤ χ(X).

Proof. Let x ∈ X, A ⊆ X such that x ∈ c̃(A) and Vx a neighborhood system of
x in X with |Vx| ≤ χ(x, X). Because x ∈ c̃(A), for every V ∈ Vx we have that
Ṽ ∩ A 6= ∅. Let yṼ ∈ Ṽ ∩ A for every V ∈ Vx. We put B = {yṼ : V ∈ Vx}, so
B ⊆ A, x ∈ c̃(B) and |B| ≤ χ(x, X). This proves that tc̃(x, X) ≤ χ(x, X).

Using the c̃-tightness and the θ-pseudocharacter we find a limitation for the
cardinality of the c̃-closure of a subset A of a space X.

Proposition 1.1.13. Let X be a Urysohn space such that tc̃(X)ψθ(X) ≤ κ. Then
for every A ⊆ X we have that |c̃(A)| ≤ |A|κ.

Proof. Let x ∈ c̃(A). Since ψθ(X) ≤ k, from Proposition 1.1.11 there exists a
family {Uα(x)}α<κ of neighborhood of x such that {x} = ⋂

α<k clθ(Uα(x)) =⋂
α<κ c̃(Ũα(x)). We want to prove that x ∈ c̃(Ũα(x) ∩ A), ∀α < k. Let U

be an open neighborhood of x and α < κ. Since x ∈ c̃(A), we have that

∅ 6= ˜U ∩Uα(x) ∩ A ⊆ Ũ ∩ Ũα(x) ∩ A. This shows that x ∈ c̃(Ũα(x) ∩ A).

Since tc̃(X) ≤ k, there exists Aα ⊂ Ũα(x) ∩ A such that |Aα| ≤ κ and x ∈
c̃(Aα) ⊆ c̃(Ũα(x)). Then {x} =

⋂
α<κ c̃(Aα) and {Aα}α<κ ∈ [[A]≤κ]≤κ, so

|c̃(A)| ≤ |[[A]≤κ]≤κ| = |A|κ.

The following represents another version of the Lindelöf degree and of the
θ-almost Lindelöf degree using these new operators.

Definition 1.1.10. Let X be a topological space and Y a subset of X. We
define L̃(Y, X) in this way:

L̃(Y, X) = min{k : for every cover U of Y by sets open in X

there exists V ∈ [U ]≤ksuch that X =
⋃
Ṽ}.

We put L̃(X, X) = L̃(X).
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We show now that if A is c̃-closed, then L̃(A, X) ≤ L̃(X).

Proposition 1.1.14. If A is c̃-closed subset of X, then L̃(A, X) ≤ L̃(X).

Proof. Suppose that L̃(X) ≤ k and let C be a c̃-closed subset of X. For every
x ∈ X \ C there exists an open subset Ux of X such that Ũx ⊆ X \ C. Let U
be an open cover of C, then V = U ∪ {Ux : x ∈ X \ C} is an open cover of
X. As L̃(X) ≤ k, then there exists V ′ ∈ [V ]≤k such that X =

⋃ Ṽ ′. Thus there
exists V ′′ ∈ [U ]≤k such that C ⊆ ⋃ Ṽ ′′. This proves that L̃(C, X) ≤ k.

Definition 1.1.11. For a space X, the θ-almost Lindelöf degree of X with
respect to ĉ-closed subsets is denoted as θ-aL′(X) (instead of θ-aLĉ(X)) and
is defined by sup{θ-aL(C, X) : C is ĉ-closed }.

Note that θ-aL(X) ≤ θ-aL′(X) ≤ L̃(X).

The main result of this section, a new cardinality bound for Urysohn spaces,
can be proved using Theorem 3.1 in [43].

Theorem 1.1.3. [Hodel] Let X be a set, k an infinite cardinal, f : P(X)→ P(X)

an operator on X and for each x ∈ X let {V(α, x) : α < k} be a collection of subsets
of X. Assume the following:

(T) (tightness condition) if x ∈ f (H), then there exists A ⊆ H with |A| ≤ k such
that x ∈ f (A);

(C) (cardinality condition) if A ⊆ X with |A| ≤ k, then | f (A)| ≤ 2k;

(C-S) (cover-separation condition) if H 6= ∅, f (H) ⊆ H and q /∈ H, then there
exists A ⊆ H with |A| ≤ k and a function f : A → k such that H ⊆⋃

x∈A V( f (x), x) and q /∈ ⋃x∈A V( f (x), x).

Then |X| ≤ 2k.

To prove next theorem we use Theorem 1.1.3 and the operator c̃(·).

Theorem 1.1.4. If X is a Urysohn space, then |X| ≤ 2θ-aL′(X)tc̃(X)ψθ(X).

Proof. Let k = θ-aL′(X)tc̃(X)ψθ(X). As ψθ(X) ≤ k, for every x ∈ X there
exists a family Wx = {W(α, x) : α < k} of open subsets of X containing x
such that {x} = ⋂

W∈Wx
clθ(W).

For every x ∈ X and α < k, we put V(α, x) = clθ(W(α, x)) and prove the
three conditions of Theorem 1.1.3.

For H ⊆ X, define f (H) = c̃(H).

• Condition (T) is true because tc̃(X) ≤ k;

• Condition (C) is true by Proposition 1.1.13;
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• We prove condition (C-S). Let ∅ 6= H ⊆ X satisfying c̃(H) ⊆ H. We
have that H ⊆ c̃(H) so H = c̃(H) and H is c̃-closed. Suppose q /∈ H. For
every a ∈ H there exists αa < k such that q /∈ clθ(W(αa, a)) = V(αa, a).
Let f : H → X such that f (a) = αa. The set {W( f (a), a) : a ∈ H} is an
open cover of H and since H is c̃-closed and θ-aL′(X) ≤ k, there exists
A ∈ [H]≤k such that H ⊆ ⋃

a∈A V( f (a), a) and q /∈ ⋃
a∈A V( f (a), a).

This proves condition (C-S).

Applying Theorem 1.1.3 we have that |X| ≤ 2k = 2θ-aL′(X)tc̃(X)ψθ(X).

We can observe that every c̃-closed set is also θ-closed. We also know that
the almost Lindelöf degree is hereditary with respect to θ-closed sets, so for
every space X we have:

θ-aL′(X) ≤ θ-aLθ(X) ≤ aLθ(X) = aL(X).

Furthermore we know that ψθ(X) ≤ χ(X) and by Proposition 1.1.12 we have
that tc̃(X) ≤ χ(X).

For these motivations we obtain the following:

Corollary 1.1.6. [14] If X is a Urysohn space, then |X| ≤ 2aL(X)χ(X).

1.2 cardinality bounds for hausdorff spaces

In the following, the definition of the quasicellularity qc(X) of a space X
is given. We have that wL(X) ≤ qc(X) ≤ c(X) for any space X. It is
shown that c(X) = qc(X)dot(X), decomposing c(X) into two components,
where dot(X) is defined in [38]. Relationships between qc(X) and other
cardinal invariants are investigated. While qc(X) = wL(X) for any extremally
disconnected space, a generalization of this fact is given in Theorem 1.2.4
having consequences for extensions of X. Cardinality bounds involving qc(X)

are given.

Definition 1.2.1. Let X be a space and A ⊆ X, we define the quasicellularity
of A ⊂ X, qc(A, X), as the least infinite cardinal κ such that if there exists
a family of open sets U with A ⊆ ⋃U∈U U then there exists V ∈ [U ]≤κ such
that A ⊆ ⋃ V . The quasicellularity of X is qc(X) = qc(X, X). A family of open
sets U of X is called a q-cover for X if

⋃
U∈U U = X.

It is straightforward to see that wL(X) ≤ qc(X) ≤ c(X) for any space X.
Examples 1.2.1 and 1.2.2 below demonstrate these inequalities can be strict.
Also, if X is extremally disconnected, then qc(X) = wL(X) as regular closed
sets are clopen in such spaces.

The following cardinal invariant was defined by Gotchev, Tkachenko, and
Tkachuk in [38].
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Definition 1.2.2. [38] Let X be a space. The dense o-tightness of X, dot(X), is
the least infinite cardinal κ such that for any family U of open sets with dense
union and every x ∈ X, there exists V ∈ [U ]≤κ such that x ∈ ⋃ V .

The following straightforward proposition was shown in [38].

Proposition 1.2.1 (Lemma 4.2 in [38]). For any space X, dot(X) ≤ t(X),
dot(X) ≤ πχ(X), and dot(X) ≤ c(X).

The next theorem shows the cardinal functions qc(X) and dot(X) have an
interesting connection with the cellularity c(X) of a space X. In fact, c(X)

can be decomposed into the product of qc(X) and dot(X), neither of which
involve cellular families.

Theorem 1.2.1. For any space X, c(X) = dot(X)qc(X).

Proof. To show c(X) ≤ dot(X)qc(X), let κ = dot(X)qc(X) and suppose
c(X) ≥ k+. Then there exists a maximal cellular family C such that |C| ≥ κ+

and
⋃ C is dense in X. Since dot(X) ≤ κ, there exists Cx ∈ [C]≤κ such that

x ∈ ⋃ Cx. We have X =
⋃

x∈X
⋃ Cx. Since qc(X) ≤ k, there exists A ∈ [X]≤k

such that X =
⋃

x∈A
⋃ Cx. There exists C ∈ C \ ⋃x∈A Cx and x ∈ A such

that C ∩ ⋃ Cx 6= ∅. Thus there is U ∈ Cx such that C ∩U 6= ∅, which is a
contradiction as the elements of C are pairwise disjoint. Therefore c(X) ≤ k.
The other inequality follows from dot(X) ≤ c(X) and qc(X) ≤ c(X).

One should regard dot(X) as a “small” cardinal invariant, which indicates
how “close” qc(X) and c(X) are in a sense. Any space X with countable
dot(X) satisfies c(X) = qc(X), including spaces with countable tightness or
countable π-character.

Corollary 1.2.1. For every space X, c(X) ≤ qc(X)t(X) and c(X) ≤ qc(X)πχ(X).

As qc(X) ≤ c(X) for every space X, we have the following.

Corollary 1.2.2. For every space X, c(X)πχ(X) = qc(X)πχ(X) and c(X)t(X) =

qc(X)t(X).

Recalling that wL(X) = qc(X) if X is extremally disconnected, we have [16]:

Corollary 1.2.3. [16] If X is extremally disconnected, then c(X) ≤ wL(X)t(X)

and c(X) ≤ wL(X)πχ(X).

The following cardinal function seems to be new in the literature.

Definition 1.2.3. Let X be a space. Define b(X) as the least infinite cardinal
κ such that X has a π-base B with |B| ≤ κ for all B ∈ B.
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Observe that if a the space X has a dense set of isolated points, then b(X)

is countable. The following result gives a connection between the cardinal
functions used above.

Theorem 1.2.2. Let X be a space. Then d(X) ≤ qc(X)dot(X)b(X).

Proof. Let κ = qc(X)dot(X)b(X). Let B be a π-base for X such that |B| ≤ κ

for all B ∈ B, and note
⋃B is dense in X. As dot(X) ≤ κ, for all x ∈ X

there exists Bx ∈ [B]≤κ such that x ∈ ⋃Bx. For all x ∈ X, set Ux =
⋃Bx

and note that x ∈ Ux, |Ux| ≤ κ · κ = κ, and {Ux : x ∈ X} is a q-cover of X.
As qc(X) ≤ κ, there exists A ∈ [X]≤κ such that

⋃
x∈A Ux is dense in X. As

|⋃x∈A Ux| ≤ κ · κ = κ, we have d(X) ≤ κ as required.

Corollary 1.2.4. For every space X, πw(X) ≤ qc(X)πχ(X)b(X).

Proof. We have that πw(X) = d(X)πχ(X) and using Theorem 1.2.2 we have
πw(X) = d(X)πχ(X) ≤ qc(X)πχ(X)b(X).

Corollary 1.2.5. Let X be a space with a dense set of isolated points, then

(a) d(X) ≤ qc(X)t(X);

(b) πw(X) ≤ qc(X)πχ(X).

Example 1.2.1. There exists a space X such that qc(X) < c(X).

Let Y be the one-point compactification of a discrete space of cardinality
ℵ1, and let X = EY, the Iliadis absolute of Y. Then X is compact and
extremally disconnected and qc(X) = wL(X) = ℵ0. But X is not c.c.c. since
c(X) = c(Y) = ℵ1. It follows that qc(X) < c(X).

Example 1.2.2. There exists a space X such that wL(X) < qc(X).

Consider the space X of Example 1.2.6. We have wL(X) = ℵ0 and qc(X) > ℵ0.

Example 1.2.3. The cardinal functions qc(X) and L(X) are incomparable.

There exists c.c.c. not Lindelöf spaces, so qc(X) < L(X). For the space of
Example 1.2.2 we have L(X) < qc(X).

It is natural to investigate the relationship between qc(X) and dot(X). We
have that:

Example 1.2.4. There exists a space X such that dot(X) < qc(X).

Let X be the space of Example 1.2.6. This space has countable π-character
since it is first countable, then dot(X) is countable since it is bounded above
with πχ(X). Furthermore qc(X) = c(X) > ℵ0.
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Example 1.2.5. There exists a space X such that dot(X) > qc(X).

Let X be the space of Example 1.2.1. X is compact e.d. with large cellularity,
then qc(X) = wL(X) = ℵ0 and by Theorem 1.2.1 dot(X) > ℵ0.

The cardinal function qc(X) is not necessarily hereditary for a space X. Let
D be a discrete space of cardinality ℵ1. Observe that X = βD is extremally
disconnected, thus qc(X) = wL(X) = ℵ0. But D is a subspace which is
not weakly Lindelöf and thus qc(D) ≥ wL(D) = ℵ1 > ℵ0. However, the
following proposition demonstrates that qc(Y, X) ≤ qc(X) if Y is a regular
closed subset of X. The proof is similar to the well-known proof that wL(X)

is hereditary on regular closed subsets of X.

Proposition 1.2.2. Let X be a space, W an open subset of X and qc(X) ≤ κ, then
qc(W, X) ≤ κ.

Proof. Let U be a family of open subsets of X such that W ⊆ ⋃
U∈U U. We

have
⋃

U∈U U ∪ (X \W) = X. Since qc(X) ≤ κ, there exists V ∈ [U ]≤κ such
that X =

⋃ V ∪ X \W. As W ∩ X \W = ∅, it follows that W ⊆ ⋃ V and
W ⊆ ⋃ V . Thus q(W, X) ≤ κ.

Example 1.2.3 shows that qc(X) and L(X) are incomparable. With the follow-
ing we have a relationship between qc(X) and L(X).

Definition 1.2.4. [13] For a space X, ψ(X) is defined as the smallest cardinal κ

such that every closed subset of X is the intersection of no more than κ-many
open sets. rψ(X) is defined as the smallest cardinal κ such that every closed
subset of X is the intersection of the closure of κ of its neighborhoods.

Proposition 1.2.3. Let X be a topological space, then qc(X) ≤ ψ(X)L(X).

Proof. Let κ = ψ(X)L(X) and U a family of open subsets of X such that
{U : U ∈ U} is a cover of X. Let C = X \ ⋃U , a closed set. There exists
a family {Vα : α ∈ κ} of κ-many open subsets of X such that C =

⋂
α<κ Vα.

For every α ∈ κ, {Vα} ∪ U is an open cover of X. Since L(X) ≤ κ, there
existsWα ∈ [U ]≤κ such that {Vα} ∪

⋃Wα = X. LetW =
⋃

α<κWα and note
|W| ≤ κ · κ = κ. We show that

⋃W = X. Suppose there exists a non-empty
open subset S of X such that S ∩ (

⋃W) = ∅. Then S ∩W = ∅ for every
W ∈ W . This means S ⊆ Vα for every α < κ and S ⊆ ⋂α<κ Vα = C = X \⋃U .
But

⋃
U∈U U = X and S must intersect an element of U , a contradiction. Thus⋃W = X and qc(X) ≤ κ.

The following represents a relation between qc(X) and wL(X) for a space X.
It follows from the fact that c(X) ≤ rψ(X)wL(X), which is Theorem 3.1 in
[13].

Proposition 1.2.4. For any space X, qc(X) ≤ rψ(X)wL(X).
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For the remainder of this section bounds involving qc(X) for the cardinality
of a topological space are proved.

It was shown in [16] that the cardinality of a Hausdorff space with a dense
set of isolated points is |X| ≤ 2wL(X)t(X)ψc(X). We give a variation of this result
below.

Theorem 1.2.3. Let X be a Hausdorff space with a dense set of isolated points, then
|X| ≤ qc(X)t(X)ψc(X).

Proof. If X is a Hausdorff space, then |X| ≤ d(X)t(X)ψc(X). Applying Corollary
1.2.5(a), we have |X| ≤ d(X)t(X)ψc(X) ≤ qc(X)t(X)t(X)ψc(X) ≤ qc(X)t(X)ψc(X).

In order to find other classes of spaces for which the Bell, Ginsburg, Woods
bound [13] holds, in light of Theorem ?? above, it is natural to ask if there
exist classes of spaces such that qc(X) ≤ wL(X)χ(X). (Recall howewer
that qc(X) = wL(X) for e.d. spaces). Example 1.2.6 gives a compact T5

space such that qc(X) > wL(X)χ(X), and Example 1.2.7 gives a compact
zero-dimensional space such that qc(X) > wL(X)χ(X).

Example 1.2.6. A compact T5 space such that qc(X) > wL(X)χ(X).

We can consider the unit square X with the lexicographic order topology [64].
This space is first countable, compact, T5 with uncountable cellularity. As
X is first countable, it follows that πχ(X) is countable. Thus, by Corollary
1.2.2, c(X) = c(X)πχ(X) = qc(X)πχ(X) = qc(X). So qc(X) is uncountable
and qc(X) > ℵ0 = wL(X)χ(X).

Example 1.2.7. (see 4.1.D pag. 225 in [8]) A compact zero-dimensional space such
that qc(X) > wL(X)χ(X) .

Let X be the Alexandroff duplicate of the Cantor set. Then X is a zero-
dimensional, first-countable non-metrizable compact Hausdorff space of
cellularity c. Then wL(X)χ(X) = ℵ0 but, by Corollary 1.2.2, qc(X) = c.

As stated above, we have qc(X) = wL(X) for an extremally disconnected
space X. The following theorem gives a larger class of spaces for which
qc(X) = wL(X) and it gives also a connection between qc(X) and the exten-
sion of a space.

Definition 1.2.5. Let X be a space and let x ∈ X. x is an extremally disconnected
point, briefly e.d. point, if x /∈ U ∩ V whenever U and V are disjoint open
subsets of X.

Recall that, for a cardinal κ, a Gc
κ-set is the κ-intersection of its closed neigh-

borhoods.
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Theorem 1.2.4. Let X be a Hausdorff space, let κ = wL(X), and let C be a θ-closed,
nowhere dense, Gc

κ-set. Suppose further that every x ∈ X \ C is an e.d. point of X.
Then qc(X) = wL(X).

Proof. Let be U a q-cover of X. Then X =
⋃

U∈U U and, for every x ∈ X, there
exists Ux ∈ U such that x ∈ Ux. Thus X =

⋃
x∈X Ux.

We show first that if W is any non-empty open subset of X such that W ⊆
X \C, then W is open. Let V = X \W. We note that V and W are two disjoint
open subsets of X. As every point in X \ C is an e.d. point, and W ⊆ X \ C,
we have ∅ = V ∩W ∩ X \ C = V ∩W. As V = X \W = X \ int(W), then
W ⊆ X \V ⊆ int(W) ⊆W. Therefore W = int(W) and W is open.

As C is θ-closed, for every x ∈ X \C there exists an open subset Vx containing
x such that Vx ∩ C = ∅. Observe that x ∈ Ux ∩Vx for every x ∈ X \ C. Also,
by what was shown above, Ux ∩Vx is open for every x ∈ X \ C.

By hypothesis, C is a Gc
κ-set with κ = wL(X). Then there exists a family

W of open subsets of X such that |W| ≤ κ and C =
⋂

W∈W W =
⋂

W∈W W.
We put V = {Ux ∩ Vx : x ∈ X \ C}. For a fixed W ∈ W , the family V ′ =
{Ux ∩Vx : x ∈ X \ C} ∪ {W} is an open cover of X. Using wL(X) ≤ κ, we
can find VW ∈ [V ]≤κ such that X =

⋃
V∈VW

V ∪W =
⋃

V∈VW
V ∪W (*). The

family B = {VW : W ∈ W} is such that |B| ≤ κ.

We show now that X =
⋃B. Suppose that there exists a non-empty open

subset T of X such that T ∩ ⋃B = ∅. Then T ∩ ⋃B∈B B = ∅ and T ∩⋃
V∈VW

V = ∅ for every W ∈ W . Using (*), we have T ⊆ ⋂W∈W W = C. This
is a contradiction as C is nowhere dense. This shows X =

⋃B. Finally, we
note that for every B ∈ B, there exists xB ∈ X \ C such that B = UxB ∩ VxB .
Then {UxB : B ∈ B} is a κ-subfamily of the q-cover U with dense union. This
shows qc(X) ≤ κ. As always wL(X) ≤ qc(X), the proof is complete.

Now we consider an application of Theorem 1.2.4. Recall the following
definition.

Definition 1.2.6. A space X is σ-compact if it is the union of countably many
compact subspaces.

The following characterizations of σ-compact spaces are well-known.

Theorem 1.2.5. Let X be a Hausdorff space. The following are equivalent:

(a) X is σ-compact;

(b) X =
⋃

n∈ω Un where, for every n ∈ ω, Un is open, Un is compact and
Un ⊆ Un+1;

(c) X is Lindelöf and locally compact.
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Proposition 1.2.5. If X is a σ-compact Hausdorff space, then Y \ X is a Gc
δ-set in

any compactification Y of X.

Proof. Let X be a σ-compact Hausdorff space space and Y be a compact-
ification of X. As X is locally compact, X is open in Y. By Theorem
1.2.5, X =

⋃
n∈ω Un where Un is open in X (and also open in Y), Un

X is
compact (and also closed in Y) and Un

X ⊆ Un+1 for every n ∈ ω. As
X =

⋃
n∈ω Un =

⋃
n∈ω Un

X, then Y \ X =
⋂

n∈ω Y \Un =
⋂

n∈ω Y \Un
X. This

demonstrates that Y \ X is a Gc
δ-set in Y.

Lemma 1.2.1. If p is an e.d. point of a locally compact Hausdorff space X, then p is
an e.d. point in any compactification of X.

Proof. Let p ∈ X be an e.d. point of X and let Y be a compactification of
X. Suppose p is not an e.d. point of Y, then there exist two open disjoint
subsets U, V of Y such that p ∈ UY ∩ VY. We show p ∈ U ∩ XY ∩ V ∩ XY.
Let W be an open set in Y containing p. As X is locally compact then
X is open in Y. It follows that W ∩ X is an open set in Y containing p.
Thus W ∩ X ∩U 6= ∅ and W ∩ X ∩ V 6= ∅, showing p ∈ U ∩ XY ∩ V ∩ XY.
Furthermore, p ∈ U ∩ XY ∩V ∩ XY ∩ X = U ∩ XX ∩V ∩ XX. Yet U ∩ X and
V ∩ X are disjoint open sets in X, contradicting that p is an e.d. point in
X.

If Y is a compactification of a σ-compact Hausdorff extremally disconnected
space X, then Y \ X is closed and, by Proposition 1.2.5, Y \ X is a Gc

δ-set. If X
is additionally extremally disconnected, then by Lemma 1.2.1 every point of
X is e.d. in Y. Thus we have the following corollary of Theorem 1.2.4.

Corollary 1.2.6. If Y is any compactification of a Hausdorff σ-compact e.d. space,
then qc(Y) is countable.



2 C OV E R I N G P R O P E RT I E S F O R
TO P O LO G I C A L S PA C E S

A cover of a topological space X is a family U of subsets of X such that
X =

⋃U . A subfamily V of a cover U of a space X is a subcover if X =
⋃ V .

Using particular families of subsets of a space satisfiyng certain conditions we
obtain several covering properties like compactness and Lindelöfness. One
important and recent branch of topology related to covers of a space is the
theory of selection principles. These properties are schemas for generating
from one sort of open cover of a topological space a second sort of open
cover. Several important topological properties have been described by these
schemas. Famous are the Menger, Hurewicz and Rothberger properties.
Recall that a space X is Menger if for every sequence (U (n) : n ∈ ω) of open
covers of X, one can pick finite subfamilies F (n) ⊂ U (n), n ∈ ω, so that⋃{F (n) : n ∈ ω} covers X; X is Hurewicz if for every sequence (U (n) : n ∈ ω)

of open covers of X, one can pick finite subfamilies F (n) ⊂ U (n), n ∈ ω,
so that every x ∈ X is contained in

⋃F (n) for all but finitely many n; X is
Rothberger if for every sequence (U (n) : n ∈ ω) of open covers of X, one can
pick U(n) ∈ U (n), n ∈ ω, so that {U(n) : n ∈ ω} covers X. Lots of important
theorems in topology make use of covering properties. In particular we
consider covering properties defined by stars, neighborhood assignments
or as monotone versions of selection principles. Star covering properties
have been widely studied in literature (see for example [17], [33], [44], [45],
[55]). The use of stars is very important in general topology. In fact, some
topological and covering properties are characterized using stars. Recall that
if A is a subset of a space X and B is a family of subsets of X, the star of A
with respect to B, denoted by St(A,B), is the set

⋃{B ∈ B : B∩ A 6= ∅}. The
notion of star appears, for example, in the characterization of normality using
stars: ”A topological space is normal if and only if every finite open cover
has a finite open star-refinement”. Also countable compactness is equivalent
to star-compactness in the class of Hausdorff spaces and paracompactness
is equivalent to the following property: every open cover has an open star
refinement. It is natural to consider stars of a space with respect to subspaces
having particular properties. In this case we will say that a space X has
the star-P property (briefly St-P) if for every open cover U of the space X,
there exists a subset Y of X having the property P such that St(Y,U ) = X
[45]. We can also define covering properties not only in terms of stars
but also in terms of neighborhood assignments. Recall that a neighborhood
assignment in a space X is a family {Ox : x ∈ X} of open subsets of X such
that x ∈ Ox for every x ∈ X. For example the Lindelöf property can be
characterized using neighborhood assignments in the following way: a space
X is Lindelöf if and only if for every neighborhood assignment {Ox : x ∈ X}

20
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there is a countable subset Y of X such that {Ox : x ∈ Y} is a cover of
X. If Y is closed and discrete instead of countable we obtain the notion
of D-spaces defined by van Douwen in [31]. The idea of van Douwen have
been generalized in [56] where the authors defined a space to be neighborhood
assignment P if for any neighborhood assignment {Ox : x ∈ X} there exists
a subspace Y of X having the property P such that {Ox : x ∈ Y} is a
cover of X. In particular the authors pose their attention on the following
properties: compactness, pseudocompactness, countable compactness and
Lindelöfness (see also [1], [3], and [5]). In the first section of this chapter we
consider and compare ”star” and ”neighborhood assignment” versions of
compactness, countable compactness, Lindelöfness, and of Menger property.
A map Φ : P(X) × NA(X) → P(X) , where NA(X) is the family of all
neighborhood assignments of X, such that: (i) Y ⊆ Φ(Y, NA) for every
(Y, NA) ∈ P(X)×NA(X); (ii) Z ⊆ Y ⊆ X implies Φ(Z, NA) ⊆ Φ(Y, NA) for
every NA ∈ NA(X), will be called an expansion operator on X. In particular,
typical expansion operators are the neighborhood assignment operator, and the
star operator, defined in Definition 2.1.4.

In the last section of this chapter we consider monotone versions of some
selection principles. Monotonic versions of classical topological properties
have been widely studied (see for example [50], [51], and [52]). When we
add monotonicity to a covering property, it becomes stronger. The idea
of a covering property being monotonic has its roots in the definition of
”monotone normality” that has nothing to do with open covers (see [22]).
Shortly after, the style of this definition was adapted and applied to other
kinds of properties, including covering properties. Gartside and Moody in
[36] described a process for obtaining a monotone version of any well-known
covering property: “by requiring that there is an operator, r, assigning to
every open cover a refinement in such a way that r(V) refines r(U ) whenever
V refines U ”. Using this process, any covering property can be ”upgrated”
into a monotonic property. Our starting point is the class of monotone
Lindelöf spaces (see for example [50], [51]). The monotone version of the
Lindelöf property described by Matveev in [53] is the following: a space X
is monotonically Lindelöf if there exists an operator r assigning to every open
cover U a countable open refinement such that r(V) refines r(U ) whenever
V refines U . The monotone version of the Menger property is defined
similarly to the monotonically Lindelöf property and has been studied in
[18]. Logically there are four different ways of defining monotone versions of
selection principles. We focus on all four monotone versions of the Menger,
Rothberger and Hurewicz properties, and we show that one of this monotone
versions introduced is absurd. We conclude the chapter with Section 2.2.5
in which we give the costruction of a space distinguishing several of the
introduced monotone properties. Some of the results that we discuss are
included in [10], [19] and [20].
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2.1 star covering properties and neighborhood as-
signments

In [56] the authors give the following definition which represents a devel-
opment of an idea of E. van Douwen used to define D-spaces [31]. Given a
topological property (or a class) P , the class P∗ dual to P (with respect to
neighbourhood assignments) consists of spaces X such that for any neighbor-
hood assignment {Ox : x ∈ X} there is Y ⊂ X with the property P such that⋃{Ox : x ∈ Y} = X; if X is a member of the class P∗, then X is called dually
P . We express the idea in [56] in the following way.

Definition 2.1.1. A space X is called neighborhood assignment P (briefly NA-P)
if for any neighbourhood assignment {Ox : x ∈ X} there is a subspace Y ⊂ X
such that Y has the property P and

⋃
x∈Y Ox = X.

Definition 2.1.2. [45] A space X has the star-P property (briefly St-P) if for
every open cover U of the space X, there exists a subset Y of X with the
property P such that St(Y,U ) = X.

It is obvious that if a space X has a dense subspace with the property P , then
it is star-P .

We study the previous classes of spaces for some covering property P . In
Section 2.1.1, we give a diagram (Diagram 1) summing up the main relations
between the considered properties and present several examples distinguish-
ing almost all of them. In Section 2.1.2, we give a description of the previous
properties in terms of cardinal functions and generalize known results.

2.1.1 Neighbourhood assignments and expansion operators

For a set X we use P(X) to denote the family of all subsets of X.

Definition 2.1.3. Let X be a topological space.

(i) A neighborhood assignment of X is a map N : X → P(X) such that
N (x) is an open neighborhood of x in X for every x.

(ii) For a topological space X, we denote by NA(X) the family of all
neighborhood assignments of X.

Definition 2.1.4. Let X be a topological space. A map Φ : P(X)×NA(X)→
P(X) satisfying properties (i) and (ii) below will be called an expansion oper-
ator on neighbourhood assignments of X, or shortly, an expansion operator
on X.

(i) Y ⊆ Φ(Y, N ) for every (Y, N ) ∈ P(X)×NA(X);

(ii) Z ⊆ Y ⊆ X implies Φ(Z, N ) ⊆ Φ(Y, N ) for every N ∈ NA(X).
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Typical expansion operators we shall consider are the neighbourhood assigne-
ment operator NA defined by

NA(Y, N ) =
⋃
{N (y) : y ∈ Y} for every (Y, N ) ∈ P(X)×NA(X). (1)

and the star operator St defined by

St(Y, N ) =
⋃
{N (x) : x ∈ X and N (x) ∩Y 6= ∅} for every

(Y, N ) ∈ P(X)×NA(X).
(2)

Definition 2.1.5. Given two expansion operators Φ : P(X)×NA(X)→ P(X)

and Ψ : P(X)×NA(X)→ P(X), we write Φ ≤ Ψ provided that

Φ(Y, N ) ⊆ Ψ(Y, N ) for every (Y, N ) ∈ P(X)×NA(X). (3)

Lemma 2.1.1. NA ≤ St.

Proof. Let X be a space and (Y, N ) ∈ P(X) × NA(X). Fix an arbitrary
x ∈ NA(Y, N ). It follows from (1) that x ∈ N (y) for some y ∈ Y. Since
y ∈ N (y) by Definition 2.1.3 (i), we have N (y)∩Y 6= ∅. Therefore, N (y) ⊆
St(Y, N ) by (2). Since x ∈ N (y), we conclude that x ∈ St(Y, N ). Since
this inclusion holds for every x ∈ NA(Y, N ), this shows that NA(Y, N ) ⊆
St(Y, N ). Since this inclusion holds for every (Y, N ) ∈ P(X)×NA(X), we
have NA ≤ St by Definition 2.1.5.

Definition 2.1.6. If X is a space, Φ is an expansion operator on X and
N ∈ NA(X), then a subset Y of X is called a Φ-core of N provided that
X = Φ(Y, N ).

Definition 2.1.7. Given a class P of topological spaces and an expansion
operator Φ on a space X, we shall say that X is a Φ-P space provided that
every N ∈ NA(X) has a Φ-core which belongs to the class P .

Notice that NA-P was first defined with a different terminology in [56] and
St-P was first defined in [45].

The proof of the following proposition is straightforward.

Proposition 2.1.1. Let Φ be an extension operator on a space X. If P , Q are classes
of spaces such that P ⊆ Q, and X is a Φ-P space, then X is an Φ-Q space.

Proposition 2.1.2. Let P be a class of topological spaces. Suppose that Φ and Ψ are
extension opearators satisfying Ψ ≤ Φ. Then every Ψ-P space is also a Φ-P space.
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Proof. Let X be a Ψ-P space. Fix N ∈ NA(X). By Definition 2.1.7, X
has a Ψ-core Y which belongs to the class P . By Definition 2.1.6, this
means that X = Ψ(Y, N ). Since Ψ ≤ Φ by our assumption, we have
Ψ(Y, N ) ⊆ Φ(Y, N ) by Defnition 2.1.5. Since Φ(Y, N ) ∈ P(X), we get
Φ(Y, N ) ⊆ X. Combining the above inclusions, we obtain X = Φ(Y, N ).
By Definition 2.1.6, this means that Y is Φ-core for N . We have proved that
every N ∈ NA(X) has a Φ-core Y which belongs to P . By Definition 2.1.7, X
is a Φ-P space.

Corollary 2.1.1. For every class P of topological spaces, each NA-P space is a St-P
space.

Proof. Indeed, NA ≤ St by Lemma 2.1.1. Now the conclusion follows from
Proposition 2.1.2.

We will use this notation for the covering properties in Diagram 1. Compact
spaces are denoted by C; σ-compact spaces are denoted by σC; Menger spaces
are denoted by M; Lindelöf spaces are denoted by L; paracompact spaces are
denoted by PC; metacompact spaces are denoted by MC; metalindelöf spaces
are denoted by ML.

The implications of the following diagram are obvious.

C -

?

6

σC -

?

M -

?

L -

?

PC -

?

MC -

?

ML

?

NA-C -

?

NA-σC -

?

NA-M

?

NA-L-

?

NA-PC-

?

NA-MC-

?

NA-ML-

?

St-C -

?

St-σC -

?

St-M

?

St-L-

?

St-PC-

?

St-MC-

?

St-ML-

?

Stω-C - Stω-σC -
?

6

Stω-M
?

6

Stω-L-
?

6

Stω-PC-
?

Stω-MC- Stω-ML-
?

Diagram 1

Recall that (see also [48] and in [49] where a different terminology is used)
a space X has the Starω-P property (briefly Stω-P) if for every sequence
(Un : n ∈ ω) of open covers of the space X, there exist subsets Yn of X, for
every n ∈ ω, having property P such that {⋃ St(Yn,Un) : n ∈ ω} is a cover
of X. It is obvious that if the property P is closed under countable unions,
then a space is St-P if and only if the space is Stω-P .
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In [54] Matveev noted that in every T1 space X for every open cover U
of the space X, there exists a closed and discrete subset Y of X such that
St(Y,U ) = X. Then, every T1 space is St-PC (hence Stω-PC), St-MC (hence
Stω-MC) and St-ML (hence Stω-ML).

Denoting by D the class of all discrete spaces and with CD the topological
property to be closed and discrete, we have the following diagram.

NA-C CC⇐==⇒ NA-CD =⇒ NA-D =⇒ NA-PC.

Note that NA-D was introduces in [1] with a different terminology and NA-D
spaces are exactely D-spaces defined in [32].

Now we give examples showing that some of the arrows of Diagram 1 can
not be reversed. Before doing it we prove some useful results.

Proposition 2.1.3. Let X be a NA-P space and C a closed and discrete subset of X,
then there exists a subset Y of X having the property P such that Y ⊃ C.

Proof. We can consider the following neighborhood assignment. For every
x ∈ C we choose an open subset Ox such that Ox ∩ C = {x} and we consider
Ox = X \ C for every x ∈ X \ C. We put O = {Ox : x ∈ X}. Since the space
is NA-P , there exists Y ⊂ X having the property P such that

⋃
x∈Y Ox = X.

We want to show that Y ⊃ C. Let x ∈ C, then ∃!Ox ∈ O such that x ∈ Ox

therefore x ∈ Y.

In particular by the proposition above we can prove the existence of non
NA-P spaces.

Corollary 2.1.2. Let X be a NA-P space. If for every subset Y of X having the
property P we have e(Y) = ℵ0, then e(X) = ℵ0.

Corollary 2.1.3. If X is NA-L, then e(X) = ℵ0.

Following step by step the proof of Theorem 2.4 in [3] we can give an
improvement of Theorem 2.4 in [3]:

Theorem 2.1.1. Let P be a property that is hereditary with respect to closed subsets
and preserved under the union of two disjoint subsets. If a space X is the union of
two subspaces Y and Z, where Y is NA-P and Z is a closed subset of X such that
for every open subset U of X containing Z, X \U is NA-P . Then X is NA-P .

In particular we have:

Example 2.1.1. Every Isbell-Mrowka space is NA-D.
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Examples

Lemma 2.1.2. The following hold for any topological space.

(i) A NA-ML, hereditarily separable space is NA-L.

(ii) A locally countable, NA-L space is countable.

(iii) A locally countable, hereditarily separable, NA-ML space is countable.

Proof. (i) Let X be an NA-ML, hereditarily separable space, and let {Ox : x ∈
X} be a neighbourhood assignment for X. Since X is NA-ML, we can find a
metaLindelöf subspace Y of X such that

X =
⋃
{Oy : y ∈ Y}. (4)

Since X is hereditarily separable, Y has countable extent. Since Y is metaLin-
delöf, it must be Lindelöf; see for example, [3, Corollary 2.8].

(ii) Let X be a locally countable, NA-L space. Since X is locally countable,
we can fix a neighbourhood assignment {Ox : x ∈ X} such that each Ox is
countable. Since X is NA-L, there exists a Lindelöf subspace Y of X satisfying
(4). Since Y is Lindelöf, the cover {Oy : y ∈ Y} of Y has a countable subcover;
that is,

Y ⊆
⋃
{Oy : y ∈ Z} (5)

for a countable subset Z of Y. Since each Oy is countable, it follows from
(5) that Y is countable. By the same reason, it follows from (4) that X is
countable.

(iii) Let X be a locally countable, hereditarily separable, NA-ML space. By
item (i), X is NA-L. By item (ii), X is countable.

Corollary 2.1.4. ω1 with the order topology is not NA-L.

Proof. ω1 is locally countable but not countable, so the conclusion follows
from item (ii) of Lemma 2.1.2.

Example 2.1.2. A St-C space which is not NA-L.

Proof. Indeed, ω1 with the order topology is countably compact,hence since
Hausdorff it is St-C. On the other hand, ω1 is not NA-L by Corollary 2.1.4.

Under Jensen’s Axiom � (see [46]), we have even an example with stronger
properties.

Example 2.1.3. (Under �). A St-C space which is not NA-ML.

Proof. The Ostaszewski space given in [57] is given a Hausdorff, count-
ably compact (hence St-C), hereditary separable space having cardinality ω1.
Therefore, X is not NA-ML by item (iii) of Lemma 2.1.2.
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A ZFC example of a non NA-ML space is constructed in Proposition 2.1(2) in
[23].

Example 2.1.4. A NA-M not NA-σC space.

Proof. Let L(ω1) be the one point Lindelöfication ω1 ∪ {p} of the discrete
space ω1. Consider the space X = L(ω1)× [0, ω]. The space X, being the
product of a Menger space and of a compact space, is Menger. This means that
X is NA-M. We want to show that X is not NA-σC. To do this, we can consider
the neighborhood assignment {Ox : x ∈ X} where for x = (l, ω) ∈ D× {ω},
Ox = {l} × [0, ω], for x = (p, α) ∈ {p} × [0, ω), Ox = L(ω1)× {α} and for
x = (p, ω), Ox = ([0, ω1] \ C) × ([0, ω] \ F) where C is a fixed countable
subset of ω1 and F is a fixed finite subset of ω. For every σ-C subset Y of X
we have Uy∈YOy 6= X. This means X is not NA-σC.

Example 2.1.5. A St-PC not St-L space.

Proof. (This is the space of Example 2.2 in [63], when c is taken instead of
ω1) Let A(ω1) be the Alexandroff (one-point) compactification of the discrete
space ω1. We may assume that ω1 is the only non-isolated point of A(ω1).
Define X = [0, ω1]× A(ω1) \ {(ω1, ω1)}.

(i) X contains a dense paracompact subspace, so X is St-PC. Indeed, the subspace
Y = [0, ω1]×ω1 of X is dense in X and homeomorphic to a disjoint sum of
ω1-many copies of the compact space [0, ω1], so Y is paracompact.

(ii) X is not St-L.1 Before proving this, we shall prove the following.

Claim 2.1.1. For every Lindelöf subspace Y of X, there exists γ ∈ ω1 such that

(0, ω1) 6∈ π((X \ ([0, γ)× A(ω1))) ∩Y), (6)

where π : [0, ω1]× A(ω1)→ A(ω1) is the projection on the second coordinate.

Proof. Since Y is Lindelöf and Z = [0, ω1)× {ω1} is a closed subpsce of X,
Y ∩ Z is Lindelöf as well. Since Z is homeomorphic to the ordinal space
[0, ω1), the Lindelöf subspace Y ∩ Z of Z must be countable. Therefore, there
exists γ ∈ ω1 such that Y ∩ Z ⊆ [0, γ) × {ω1}. Finally, note that this γ

satisfies (6).

For every α ∈ ω1, the set Uα = (α, ω1]× {α} is open in X. Furthermore, V =

[0, ω1)× A(ω1) is an open subset of X. Therefore, U = {Uα : α ∈ ω1} ∪ {V}
is an open cover of X. Suppose that Y is a Lindelöf subspace of X. We
are going to show that St(Y, U ) 6= X. Let γ ∈ ω1 be the ordinal as in the
conclusion of Claim 2.1.1. Y′ = (X \ ([0, γ)× A(ω1))) ∩Y is a closed subset
of Y, so it is Lindelöf. Since π is a continuous mapping, π(Y′) is Lindelöf
subspace of A(ω1). By the conclusion of Claim 2.1.1, ω1 6∈ π(Y′). Therefore,

1 In [63] was only proved that X is not Stω-C.
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π(Y′) is a Lindelöf subspace of the discrete space A(ω1) \ ω1, so π(Y′) is
countable. Therefore, we can find β ∈ ω1 such that π(Y′) ⊆ [0, β). Now let
α = max{β, γ}. Note that Uα ∩Y = ∅ by our construction.

We claim that (ω1, α) ∈ X \ St(Y, U ). To see this, it is sufficient to realize that
Uα is the only element of U containing (ω1, α) ∈ X. Since Uα ∩Y = ∅, this
means that (ω1, α) 6∈ St(Y, U ).

Example 2.1.6. A NA-D not St-L space.

Proof. Let S be the set of isolated points in ω1. Consider the set X = (ω1 ×
ω) ∪ (S× {ω}) with the subspace topology inherited from the product ω1 ×
(ω + 1) of two cardinals ω1 and ω + 1. This example is included as item (5)
on page 623 of [2] and attributed to anonymous referee.

(i) X is not St-L. This is proved in [2].

(ii) X is NA-D, and so NA-PC. Indeed, the subset Y = S× {ω} of X is discrete,
so NA-D, and its complement X \Y = ω1 ×ω is a disjoint sum of countably
many copies of ω1. Since the latter space is NA-D (see Example 2.3 in [56]),
so is X \Y. Now the conclusion of item (ii) follows from Theorem 2.1.1.

Example 2.1.7. In some model of ZFC, there exists a Urysohn space X which has a
dense subspace homeomorphic to the space of irrational numbers (so X is a St-L not
St-M space).

Proof. Let P be the space of irrational numbers in its usual topology. Define
X = P× (ω + 1). For (p, n) ∈ P×ω, we declare

{U × {n} : p ∈ U and U is open in P}

to be the neighbourhood base of a point (p, n). Therefore, Z = P× ω is a
disjoint sum of countably many copes of P, so it is homeomorphic to P itself.

For every p ∈ P, a basic open neighbourhood of (p, ω) in X is of the form

O(p, U, n, M) = {(p, ω)} ∪ ((U × (n, ω)) \M), (7)

where U is a clopen subset of P containing p, n ∈ ω and M is a Menger
subset of Z = P×ω.

Claim 2.1.2. Z is dense in X, so X is St-L.

Proof. Let p ∈ P be arbitrary and let O(p, U, n, M) be a basic open neigh-
bourhood of (p, ω) as in (7). Note that U × (n, ω) is a non-empty clopen
subset of Z. Since Z is homeomorphic to P, this implies that U × (n, ω) is
homeomorphic to P. In particular, U× (n, ω) is not Menger. This implies that
(U × (n, ω)) \M 6= ∅. (Indeed, otherwise (U × (n, ω)) be a closed subset of
the Menger space M, so would be Menger.) Since (U × (n, ω)) \M ⊆ Z, it
follows from (7) that O(p, U, n, M) ∩ Z 6= ∅.
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Claim 2.1.3. X is not St-M.

Proof. It was mention in [59] that in [35] was proved that in some model of
ZFC, the family of all Menger subsets of the real line has cardinality of the
continuum. Since P is a subset of the reals, the number of Menger subsets of P
is at most continuum. Since |P| = c, we can fix an enumeration {Mp : p ∈ P}
of all Menger subsets of Z such that the set PM = {p ∈ P : Mp = M} has size
c for every Menger subspace of Z.

Consider the following assignment N ∈ NA(X). For every p ∈ P define
N (p, ω) = O(p, P, 0, Mp) and N (p, n) = Z for every n ∈ ω.

Suppose that Y is a Menger subset of X. Note that D = P× {ω} is a closed
subset of X, so Y ∩ D is a Menger subspace of D, so it is Lindelöf. Since D is
a discrete subset of X, this means that |Y ∩ D| ≤ ω.

Since Z is an Fσ-subset of X, Y ∩ Z is an Fσ-subset of Y. Since Y is Menger,
so is Y ∩ Z. Clearly, Y ∩ Z is a Menger subset of Z. By the property of our
enumeration, the set PY∩Z has cardinality c. Since |Y ∩ D| ≤ ω, there exists
p ∈ PY∩Z such that (p, ω) ∈ D \ Y. Note that Mp = Y ∩ Z, as p ∈ PY∩Z. It
now follows from (7) that O(p, P, 0, Mp) ∩ Y = ∅. Thus, N (p, ω) ∩ Y = ∅
by the definition of N . Finally, note that N (p, ω) is the only member of
the family {N (x) : x ∈ X} containing (p, ω). From this fact and (2), we
conclude that (p, ω) 6∈ St(Y, N ). Therefore, Y is not a core for N .

We have shown that no Menger subset of X can be a core for N , this means
that X is not St-M.

A St-M not St-σC space is given by Example 2.1.8 in Section 2.1.2.

2.1.2 Cardinal invariants associated with an expansion operator on neigh-
bourhood assignments

Definition 2.1.8. Having a cardinal function ϕ on a class of topological
spaces, a space X, an expansion operator Φ : P(X)×NA(X) → P(X) and
N ∈ NA(X), we define

Φ-ϕN (X) = min{ϕ(Y) : Y is a Φ-core for N }, (8)

and we let
Φ-ϕ(X) = sup{Φ-ϕN (X) : N ∈ NA(X)}. (9)

Proposition 2.1.4. If ϕ is a cardinal function on a class of topological spaces,
X is a space and Φ : P(X) × NA(X) → P(X) is an expansion operator, then
Φ-ϕ(X) ≤ ϕ(X).

Proof. Let N ∈ NA(X) be arbitrary. Note that X ⊆ Φ(X, N ) by Definition
2.1.4 (i) and Φ(X, N ) ⊆ X by the definition of Φ, so X = Φ(X, N ). There-
fore, X is Φ-core of N by Definition 2.1.6. This shows that the minimum
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in (8) is well defined and Φ-ϕN (X) ≤ ϕ(X). Since this holds for every
N ∈ NA(X), from (9) we obtain that Φ-ϕ(X) ≤ ϕ(X).

Lemma 2.1.3. If Φ ≤ Ψ, then Ψ-ϕ(X) ≤ Φ-ϕ(X) for every cardinal function ϕ.

Proof. Let N ∈ NA(X) be arbitrary. Since Φ ≤ Ψ, the inequality (3) holds.
Therefore, if X = Φ(Y, N ) for some Y ⊆ X, then X = Ψ(Y, N ) holds as
well. This means that every Φ-core for N is also a Ψ-core. Applying (8), we
conclude that Ψ-ϕN (X) ≤ Φ-ϕN (X). Since this inequality holds for every
N ∈ NA(X), from (9) we conclude that Ψ-ϕ(X) ≤ Φ-ϕ(X).

Since NA ≤ St by Lemma 2.1.1, we obtain the following

Lemma 2.1.4. St-ϕ(X) ≤ NA-ϕ(X) ≤ ϕ(X) holds for every space X and each
cardinal function ϕ.

Now we can give an example of St-L not NA-L space.

Definition 2.1.9. [14] Let X be a space. The compact covering number κ(X)

of X is the least cardinal number τ such that X can be covered by τ-many
compact subsets. A space X is σ-compact if and only if κ(X) ≤ ω.

Example 2.1.8. For every uncountable cardinal κ, there exists a space X having the
following properties:

(i) e(X) = κ;

(ii) X is NA-D, so also NA-PC;

(iii) NA-L(X) = κ; in particular, X is not NA-L;

(iv) X is St-M, so also St-L;

(v) NA-κ(X) = κ; in particular, X is not St-σC.

Proof. Indeed, fix an uncountable cardinal κ. Let D be a discrete space
satisfying |D| = κ. Let L be the one-point Lindelöfication of D, let p be the
unique non-isolated point of L, so that L \ {p} = D. Define X = L× [0, ω] \
{(p, ω)}.

(i) Note that C = D× {ω} is a closed discrete subspace of X. Since |C| =
|D| = κ = |X|, this shows that the extent of X is equal to κ.

(ii) The closed subspace C of X defined in (i) is discrete, so it is trivially
NA-D. Moreover, its completement X \ C = L× [0, ω) is homeomorphic to a
disjount sum of countably many copes of L. Since L is obviously NA-D, so is
X \ C. By Theorem 2.1.1, X is NA-D.

(iii) Let us check that NA-L(X) = κ. For x = (l, ω) ∈ D × {ω}, define
Ox = {l} × [0, ω]. For x = (p, α) ∈ {p} × [0, ω), define Ox = L × {α}.
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Finally, for x = (l, α) ∈ D× [0, ω), define Ox = {x}. Then {Ox : x ∈ X} is a
neighbourhood assignment for X.

Let Y be a subspace of X such that X =
⋃

y∈Y Oy. Let x ∈ C be arbitrary.
There exists yx ∈ Y such that x ∈ Oyx . On the other hand, by the choice of
our assignment, Ox is the only elelement of the assignment {Ox : x ∈ X}
which contains x. Therefore, x = yx ∈ Y. This shows that C ⊆ Y. Since C is a
closed subset of X, it is also closed in Y, which implies L(C) ≤ L(Y). Since
C is discrete, we have L(C) = |C| = κ. Thus, L(Y) ≥ L(C) = κ. This means
that NA− L(X) ≥ κ. On the other hand, NA− L(X) ≤ L(X) ≤ |X| = κ.

(iv) X has a dense Menger subspace L× [0, ω), so X is St-M.

(v) First, we show that for every compact subset K of X, there exists an at most
countable set SK ⊆ L such that K ⊆ SK × [0, ω]. Let K be a compact subset of X.
For every n ∈ [0, ω), the set Ln = L× {n} is closed in X, so Kn = K ∩ Ln is a
closed subset of K, so it must be compact. Since Ln is homeomorphic to L
and the latter set has only finite compact subsets, each Kn is finite. Similarly,
the set Lω = D × {ω} is closed in X, so Kω = K ∩ Lω is compact as well.
Since Lω is discrete, Kω must be finite. Therefore, K =

⋃{Kn : n ∈ [0, ω]} is
an at most countable set. Therefore, we can find an at most countable subset
SK of L such that K ⊆ SK × [0, ω].

Let U = {Ox : x ∈ X} be the cover of X defined in item (iii). Let Y =
⋃{Kα :

α < τ}, where τ is a cardinal and each Kα is a compact subset of X. Suppose
that τ < κ. Note that by the property of our cover U ,

C ∩ St(Kα, U ) ⊆ SKα ,

so
C ∩ St(K, U ) ⊆

⋃
{SKα : α < τ},

which implies |C ∩ St(K, U )| ≤ max{ω, τ} < κ. Since |C| = κ, we have
C \ St(K, U ) 6= ∅, and so X 6= St(K, U ). This establishes the inequality
St− κ(X) ≥ κ. The converse inequality follows from St− κ(X) ≤ κ(X) ≤
|X| = κ.

Remark 2.1.1. The space X from Example 2.1.8 is not normal.

Remark 2.1.2. When κ = ω1, the space X from Example 2.1.8 was considered by
Ikenaga [45] who showed that it is not St-σC. When κ = c, this space was considered
in [63, Example 2.3].

In the following we focus on the cardinal functions St-L and NA-L. For a
space X:

St-L(X) = min{κ : for every open cover U of X, there is F ⊂ X such that

L(F) ≤ κ and St(F,U ) = X}(see also [26])
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and

NA-L(X) = min{τ : for every neighbourhood assignment {Ox : x ∈ X}

of X, ∃ a subspace Yof X such that X =
⋃

y∈Y

Oy and L(Y) ≤ τ}.

Note that a space X is St-L if and only if St-L(X) ≤ ω and it is NA-L if and
only if NA-L(X) ≤ ω. By Lemma 2.1.4 we have that St-L(X) ≤ NA-L(X) ≤
L(X).

In order to prove that if X is a paracompact space and A is a dense subset
of X, then L(X) ≤ St-L(A) (Theorem 2.1.3 below), we need the following.
Recall that a space X is paracompact if and only if every open cover of X has
a star refinement [34]. We introduce the following definition.

Definition 2.1.10. Let n ∈N, n ≥ 2, X be a space, U and V two families of
subsets of X. We say that V is a n-star-refinement of U and we write V ≺∗n U
if for every V ∈ V there exists U ∈ U such that Stn(V,U ) ⊆ U. If n = 1 we
have the notion of star-refinement.

Lemma 2.1.5. Let X be a topological space and U a family of sets of X. IfW ≺∗n−1
V ≺∗1 U , thenW ≺∗n U .

Proof. We prove the statement for n = 2. Take W ∈ W . Since W ≺∗1 V ,
there exists V ∈ V such that St(W,W) ⊆ V. We have to show that for every
W ∈ W , there exists U ∈ U such that St2(W,W) ⊆ U. Let y ∈ St2(W,W).
Then there exists W ′ ∈ W such that y ∈ W ′ and W ′ ∩W 6= ∅. Since
W ≺∗1 V , there exists V ′ ∈ V such that St(W ′,W) ⊆ V ′. We can notice that
W ′ ⊆ St(W ′,W) ⊆ V ′ and W ⊆ St(W,W) ⊆ V. So, ∅ 6= W ∩W ′ ⊆ V ∩V ′,
then V ∩ V ′ 6= ∅. This means V ′ ⊆ St(V,V). We also have y ∈ W ′ ⊆
V ′ ⊆ St(V,V). Therefore, St2(W,W) ⊆ St(V,V). Since V ≺∗1 U , there exists
U ∈ U such that St(V,V) ⊆ U. Thus, St2(W,W) ⊆ U This meansW ≺∗2 U .

Theorem 2.1.2. A space X is paracompact if and only if every open cover of X has
a n-star refinement.

Now we can prove the following.

Theorem 2.1.3. Let X be a paracompact space and A be a dense subset of X. Then
L(X) ≤ St-L(A).

Proof. Let A be a dense subset of X and let St-L(A) ≤ κ. Let U be an open
cover of X,W a closed locally finite refinement of U and V a 2-star refinement
of W . We consider VA = {V ∈ V : V ∩ A 6= ∅} that is a cover of A. Since
St-L(A) ≤ κ, there exists Y ⊂ A such that L(Y) ≤ κ and A = St(Y,VA) =⋃{V ∈ VA : V ∩ Y 6= ∅} =

⋃
y∈Y{V ∈ VA : y ∈ V} =

⋃
y∈Y

⋃ Vy =
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⋃
y∈Y St(y,VA), where Vy = {V ∈ VA : y ∈ V}. Since Y ⊂ A and L(Y) ≤ κ,

there exixts Z ∈ [Y]≤κ such that Y ⊆ ⋃y∈Z
⋃ Vy =

⋃
y∈Z St(y,VA)(*).

Claim 2.1.4. A ⊆ ⋃y∈Z St2(y,VA).

Proof. Take a ∈ A. Since A ⊆ ⋃y∈Y Vy, there exists y0 ∈ Y such that a ∈ ⋃ Vy0 ,
then there exists V0 ∈ VA such that a, y0 ∈ V0. Since y0 ∈ Y, by (*), there exists
y1 ∈ Z such that y0 ∈

⋃ Vy1 , then there exists V1 ∈ VA such that y0, y1 ∈ V1.
This means a ∈ St2(y1,VA).

Since VA ≺ V , then {St2(z,VA) : z ∈ Z} ≺ {St2(x,V) : x ∈ X} ≺ W ≺
U . For every z ∈ Z, take Wz such that St2(z,VA) ⊆ WZ. By Claim, A ⊆
{St2(z,VA) : z ∈ Z} ⊆ ⋃{Wz : z ∈ Z}. Now A =

⋃{A ∩Wz : z ∈ Z} and
{A ∩Wz : z ∈ Z} is locally finite, furthermore A =

⋃{A ∩Wz : z ∈ Z}.
X = A =

⋃{A ∩Wz : z ∈ Z} =
⋃{A ∩Wz : z ∈ Z} ⊆ ⋃{Wz : z ∈ Z} ⊆⋃{Uz : z ∈ Z} that is L(X) ≤ κ.

Corollary 2.1.5. Let X be a paracompat space with a dense St-L subspace, then it is
Lindelöf.

Corollary 2.1.6. [34] Let X be a paracompact space with a dense Lindelöf subspace,
then it is Lindelöf.

Remark 2.1.3. Theorem 2.1.3 does not hold replacing St-L with St-M spaces and
L with M. In fact, the space of irrational numbers is Lindelöf and separable so it
contains a countable dense subspace that is also Menger but the space is not Menger.

In order to obtain a generalization of Proposition 3.8 in [5] and Theorem 2.10

in [4],we need to define the following cardinal invariants.

Definition 2.1.11. The metacompact number of a space X is

MC(X) = min{κ : every open cover U of X such that |U | ≤ κ has a

point-finite open refinement}.

Definition 2.1.12. The linearly Lindelöf number of a space X is

LL(X) = min{κ : for every linearly ordered open cover U of X,

∃V ∈ [U ]≤κ : X =
⋃
V}.

We have the following relation:

NA-LL(X) ≤ NA-L(X) ≤ L(X).

It was proved in [56] that the properties LL and NA-LL are equivalent. More
in general, we can prove, following essentially the same proof of Proposition
2.7 in [56], that NA-LL(X) = LL(X), for every space X.
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To prove the following results, we follow step by step, respectively, the proofs
of Theorem 2.10 in [4] and of Proposition 3.8 in [5] using cardinal functions.

Theorem 2.1.4. Let X be a space, then L(X) ≤ MC(X)LL(X).

Proof. Let τ = MC(X)LL(X) and κ = min{µ : µ is a cardinal such that
there exists an open cover of cardinality µ that does not have subcovers of

cardinality τ}. For every closed subset F of X and for every family U of open
subsets of X with |U | < κ such that

⋃U ⊇ F , there is U ′ ∈ [U ]≤τ such that
F ⊂ ⋃U ′. Let V = {Vα : α ∈ κ} an open cover of X of size κ. For every
β < κ, let Wβ =

⋃
α<β Vα. The family of Wβ for every β ∈ κ is a linearly

ordered open cover of X. Since LL(X) ≤ τ, there is {βα : α ∈ τ} such that⋃{Wβα
: α ∈ τ} = X. Considering that MC(X) ≤ τ, there exists closed

subsets Fα of Wβα
such that X =

⋃
γ∈τ Fγ. The family Vγ = {Vα : α < βγ}

is an open cover of Fγ having cardinality strictly less than κ, so there is
V ′γ ∈ [Vγ]≤τ such that Fγ ⊂

⋃ Vγ
′. The family V ′ = {⋃ V ′γ : γ ∈ τ} has

cardinality at most τ and it is a subcover of V , that is a contradiction.

Corollary 2.1.7 ([3],Theorem 2.10). A linearly Lindelöf, countably metacompact
space is Lindelöf.

Proposition 2.1.5. Let X be a space, then L(X) ≤ NA-L(X)MC(X).

Proof. Let NA-L(X)MC(X) = κ, then NA-LL(X) = LL(X) ≤ κ. Using
Theorem 2.1.4 we have L(X) ≤ MC(X)LL(X) ≤ κ.

Corollary 2.1.8 ([4], Proposition 3.8). A NA-L, countably metacompact space is
Lindelöf.

2.2 monotone versions of some selection princi-
ples: ss, ws, sw, ww forms

A space X is monotonically Lindelöf (mL for short) if there is an operator r
that assigns to every open cover U a countable open cover r(U ) so that r(U )
refines U , and r(U ) refines r(V) whenever U refines V . The following spaces
are monotonically Lindelöf: all second countable spaces, L(ω1) that is the
one point Lindelöfication of the discrete space of cardinality ω1; the following
spaces are not monotonically Lindelöf: some countable spaces, L(ω2) that is
the one point Lindelöfication of the discrete space of cardinality ω2 (see [50],
[51]). In this section we consider monotone versions of some stronger forms
of the Lindelöf property defined in terms of sequences of covers: Menger,
Rothberger and Hurewicz properties. Logically, there are four ways to give
the definition of the monotone version of each of the previous properties. In
the following we introduce all four versions even if one of this monotone
versions introduced is absurd. A specific study of one of these forms of
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the Menger property (SS-mM, see below) has been done in [18] where it
is called monotone Menger property. In [18] it was proved that (within ZFC)
every separable SS-mM space is first countable. This result contrasts with the
previously known fact that under CH there exists countable mL spaces which
are not first countable. Some of the results that we discuss are included in
[19] and in [20].

In particular in Definition 2.2.1 the letters W and S are abbreviations for
“weakly” and “strongly”.

Definition 2.2.1. A space X is

• SS-mM ([18], where it is called monotonically Menger, briefly mM) if
there exists an operator, called SS-mM operator, that assigns to every
sequence U = (U (n) : n ∈ ω) of open covers of X a sequence r(U ) =
(r(U )(n) : n ∈ ω) so that

1.
⋃{r(U )(n) : n ∈ ω} is an open cover of X,

2. for every n ∈ ω, r(U )(n) is a finite refinement of U (n),

3. if U = (U (n) : n ∈ ω) and V = (V(n) : n ∈ ω) are two sequences
of open covers of X and for every n ∈ ω, U (n) refines V(n), then
for every n ∈ ω, r(U )(n) refines r(V)(n).

• SW-mM if there exists an operator, called SW-mM operator, that assigns
to every sequence U = (U (n) : n ∈ ω) of open covers of X a sequence
r(U ) = (r(U )(n) : n ∈ ω) so that

1.
⋃{r(U )(n) : n ∈ ω} is an open cover of X,

2. for every n ∈ ω, r(U )(n) is a finite refinement of U (n),

3. if U = (U (n) : n ∈ ω) and V = (V(n) : n ∈ ω) are two sequences
of open covers of X and for every n ∈ ω, U (n) refines V(n), then⋃{r(U )(n) : n ∈ ω} refines

⋃{r(V)(n) : n ∈ ω}.

• WW-mM if there exists an operator, called WW-mM operator, that assigns
to every sequence U = (U (n) : n ∈ ω) of open covers of X a sequence
r(U ) = (r(U )(n) : n ∈ ω) so that

1.
⋃{r(U )(n) : n ∈ ω} is an open cover of X,

2. for every n ∈ ω, r(U )(n) is a finite refinement of U (n),

3. if U = (U (n) : n ∈ ω) and V = (V(n) : n ∈ ω) are two sequences
of open covers of X and

⋃{U (n) : n ∈ ω} refines
⋃{V(n) : n ∈ ω},

then
⋃{r(U )(n) : n ∈ ω} refines

⋃{r(V)(n) : n ∈ ω}.

• WS-mM if there exists an operator, called SS-mM operator, that assigns
to every sequence U = (U (n) : n ∈ ω) of open covers of X a sequence
r(U ) = (r(U )(n) : n ∈ ω) so that

1.
⋃{r(U )(n) : n ∈ ω} is an open cover of X,
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2. for every n ∈ ω, r(U )(n) is a finite refinement of U (n),

3. if U = (U (n) : n ∈ ω) and V = (V(n) : n ∈ ω) are two sequences
of open covers of X and

⋃{U (n) : n ∈ ω} refines
⋃{V(n) : n ∈ ω},

then for every n ∈ ω, r(U )(n) refines r(V)(n).

The monotone versions of the Hurewicz and Rothberger properties are de-
fined in similar ways. For the Rothberger property, we deal with at most
one element refinements rather then with one element refinements, while for
Hurewicz property, we replace condition 2. with

2′. for every n ∈ ω, r(U )(n) is a finite refinement of U (n) such that for every
x ∈ X, x ∈ ⋃ r(U )(n), for all but finitely many n.

Then we obtain the definitions of SS-mR, SW-mR, WW-mR, WS-mR, SS-
mH, SW-mH, WW-mH and WS-mH spaces. The implications between the
previous forms of the monotone Rothberger, Menger and Hurewicz properties
and the monotone Lindelöf property are shown in the following diagram
(that Hausdorff WS-mM implies discrete and countable will be shown in
Proposition 2.2.5; the rest is obvious).

SS-mR - SS-mM� SS-mH

WS-mR -

?

discrete and countable

?

6

T2

WS-mM �

?

WS-mH

?
WW-mR

@
@
@R

-

?

WW-mM

@
@
@R

?

WW-mH

@
@
@R

�

?

SW-mR

@
@@R

-

mL and Menger
?

SW-mM

@
@@R

SW-mH

@
@@R

�

We study the previous properties and we consider the local version of the
monotonic Rothberger-type properties.
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2.2.1 Positive results on SS-forms

Proposition 2.2.1. Every countable, first countable space is SS-mR.

Proof. Let X = {xn : n ∈ ω} and for every n ∈ ω, let {Bm(xn) : m ∈ ω} be a
base of neighborhoods of xn such that Bm+1(xn) ⊂ Bm(xn) for each m ∈ ω.
Let U = (U (n) : n ∈ ω) be a sequence of open covers of X. For n ∈ ω, put
mU (n) = min{m ∈ ω : {Bm(xn)} refines U (n)}. Put r(U )(n) = {BmU (n)(xn)}.
Then r is a SS-mR operator.

Recall the following result.

Lemma 2.2.1. [18] Let K be a compact subspace of a metric space M. Then there
is a sequence {Cn : n ∈ ω} of finite covers of K by open sets in M such that the
following two conditions hold:

(1) Cn+1 refines Cn for every n ∈ ω.

and

(2) If C is a cover of K by open sets in M, then there is n ∈ ω such that Cn refines C.

Using the previous lemma, in [18], it is proved that every σ-compact metriz-
able space is SS-mM. Following the same proof and noting that the SS-mM
operator construced is a SS-mH operator, we prove that the following result.

Proposition 2.2.2. Every σ-compact metrizable space is SS-mH.

Proof. Let M =
⋃{Mi : i ∈ ω} be a metric space where each Mi is compact.

For i ∈ ω, put Ki =
⋃{Mj : 0 ≤ j ≤ i}. Then the sets Ki, i ∈ ω, are compact.

By Lemma 2.2.1, for every i ∈ ω there is a sequence {Ci,n : n ∈ ω} of finite
covers of Ki by open sets in M such that Ci,n+1 refines Ci,n for every n ∈ ω,
and for every cover C of Ki by open sets in M there is n ∈ ω such that Ci,n
refines C. Let U = (U (i) : i ∈ ω) be a sequence of open covers of M. For
i ∈ ω, put nU (i) = min{n : Ci,n refines U (i)}. Put r(U )(i) = Ci,nU (i). Then r is
a SS-mH operator.

Corollary 2.2.1. [18] Every σ-compact metrizable space is SS-mM.

Proposition 2.2.3. Let X be SS-mM and Y ⊂ X be a closed subset of X. Then Y is
SS-mM.

Proof. Let r be the SS-mM operator on X and letW = (W(n) : n ∈ ω) be a
sequence of open covers of Y. Then, for every n ∈ ω, W̃(n) = {W ∪ (X \Y) :
W ∈ W(n)} is an open cover of X. Put W̃ = (W̃(n) : n ∈ ω). Then
r(W̃) = (r(W̃)(n) : n ∈ ω) satisfies conditions 1-3 of the SS-mM definition.
Put s(W) = (r(W̃)(n)|Y : n ∈ ω). Then s is a SS-mM operator for Y.
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Of course, Proposition 2.2.3 can be restated for the corresponding monotone
versions of the Rothberger and Hurewicz properties.

2.2.2 Confirming the absurdness of the WS-forms

Recall that X is a P-space if every Gδ-set in X is open. We consider this special
class of spaces early because this provides both some examples and some
steps in proofs below. Recall that a space is c.c.c. if every pairwise disjoint
family of nonempty open sets is countable.

Proposition 2.2.4. If X is a Hausdorff, SS-mM, P-space, then X is discrete and
countable.

Proof. Suppose X is uncountable. Then by the previous lemma it is not ccc.
Let {Oα : α < ω1} be a family of non empty pairwise disjoint open sets.
Pick qα ∈ Oα and put Hα = {qγ : γ < α} (thus, in particular, H0 = ∅). For
β < ω1 put Oβ = {Oα : α < ω1} ∪ {X \ Hβ}. Then Oβ is an open cover of X.
Consider a “constant” sequence of open covers Uβ = (Uβ(n) : n ∈ ω) where
Uβ(n) = Oβ for all n ∈ ω. Suppose there is a SS-mM operator r. Put

S = {(n, α) ∈ ω×ω1 : there is β(n, α) such that α < β(n, α) < ω1 and for
every β with β(n, α) ≤ β < ω1 there is O ∈ r(Uβ)(n) such that qα ∈ O}.

Claim 1: For every α ∈ ω1 there is n ∈ ω such that (n, α) ∈ S.

Indeed, otherwise for every n there would be a cofinal subset An ⊂ ω1

such that for every γ ∈ An there is no O ∈ r(Uγ)(n) with qα ∈ O. Put
γn = min(An). It follows from the monotonicity of r that for every γ ≥ γn

there is no O ∈ r(Uγ)(n) with qα ∈ O. Put γ∗ = sup{γn : n ∈ ω}. Then qα is
not covered by ∪{r(Uγ∗)(n) : n ∈ ω}, a contradiction.

Claim 2: For each n ∈ ω, the set Sn = {α : (n, α) ∈ S} is finite.

Indeed, suppose Sn is infinite. Pick a countably infinite Tn ⊂ Sn. Put
β∗ = sup{β(n, α) : α ∈ Tn}. Then for each α ∈ Tn, r(Uβ∗)(n) must contain an
element Vα 3 qα. Since r(Uβ∗)(n) refines Oβ∗ , and Oα is the only element of
Oβ∗ containing qα (because β∗ ≥ β(n, α) > α), we have Vα ⊂ Oα. But the sets
Oα are pairwise disjoint, so r(Uβ∗)(n) must be infinite, a contradiction.

Finally, by Claim 1, |S| = ω1 while by Claim 2, S is at most countable, a
contradiction. So X is countable. Being T1 and P, it is discrete.

Then we have the following example.

Example 2.2.1. The one point Lindelöfication L(τ) of the discrete space of uncount-
able cardinality τ is not SS-mM.
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Lemma 2.2.2. If X is a WS-mM T1-space, then X is a P-space.

Proof. Let p ∈ X and for k ∈ ω, let Uk be a neighborhood of p. It suffices
to show that Int(

⋂{Uk : k ∈ ω}) 3 p. Let r be a WS-mM operator for X.
For a sequence of open covers U = (U (n) : n ∈ ω), and for n ∈ ω, put
s(U )(n) = {W ∈ r(U )(n) : W 3 p}. For k ∈ ω consider the open cover
Ok = {Uk, X \ {p}}. Denote by Θ the set of all permutations of ω. For π ∈ Θ,
define the sequence of open covers Uπ = (Uπ(n) : n ∈ ω) by Uπ(n) = Oπ(n).
For any π, ρ ∈ Θ,

⋃{Uπ(n) : n ∈ ω} = ⋃{Uρ(n) : n ∈ ω}, so for every n ∈ ω,
r(Uπ)(n) ≈ r(Uρ)(n) and therefore s(Uπ)(n) ≈ s(Uρ)(n). Fix π and vary ρ.
It follows that for every n, k ∈ ω, s(Uπ)(n) must refine {Uk}. So for every
n ∈ ω, s(Uπ)(n) must refine {⋂{Uk : k ∈ ω}}. For some n∗, s(Uπ)(n∗) 6= ∅,
so we have p ∈ ⋃ s(Uπ)(n∗) ⊂ Int(

⋂{Uk : k ∈ ω}).

By the previous lemma and Proposition 2.2.4 we have

Proposition 2.2.5. If X is a WS-mM Hausdorff space, then X is discrete and
countable.

2.2.3 The WW-forms are less exceptional

First, we show that a WW-mR space does not have to be discrete nor a P-space.

Example 2.2.2. Convergent sequence is WW-mR.

Proof. Let S = ω + 1 be convergent sequence, and U = (U (n) : n ∈ ω) a
sequence of open covers of S. For n ∈ ω, put l(n) = min{l : {[l, ω]} refines
U (n)}. Put l∗ = min{l(n) : n ∈ ω} and pick n∗ ∈ ω so that l(n∗) = l∗.
Further, pick n0, ..., nl∗−1 so that these numbers are distinct from each other
and from n∗. Put r(U )(n∗) = {[l∗, ω]}, r(U )(ni) = {{i}} for 0 ≤ i < l∗ − 1,
and r(U )(n) = {∅} for all other n ∈ ω. Then r is a WW-mR operator.

Proposition 2.2.6. Every metrizable compact space is WW-mH.

Proof. Let K be a compact metrizable space, and let {Ci : i ∈ ω} be like in
Lemma 2.2.1 (where M = K).

Let U = (U (n) : n ∈ ω) be a sequence of open covers of K. For n ∈ ω, put
iU (n) = min{i : Ci refines U (n)} and r(U )(n) = {C ∈ Ci : 0 ≤ i ≤ iU (n)
and {C} refines U (n)}. Then r(U )(n) is a finite cover of X, so the Hurewicz
property is satisfied. It remains to check monotonicity.

Let U = (U (n) : n ∈ ω) and V = (V(n) : n ∈ ω) be two sequences of open
covers of K such that

⋃{U (n) : n ∈ ω} refines
⋃{V(n) : n ∈ ω}. Suppose

C ∈ r(U )(n) for some n ∈ ω. Then there is U ∈ U (n) ⊂ ⋃{U (n) : n ∈ ω}
such that C ⊂ U. Since

⋃{U (n) : n ∈ ω} refines
⋃{V(n) : n ∈ ω} there is

V ∈ ⋃{V(n) : n ∈ ω} such that U ⊂ V. Then V ∈ r(V)(m) for some m ∈ ω,
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and since C ⊂ U ⊂ V, we conclude that (*) {C} refines V(m). We have C ∈ Ci
for some i ∈ ω. If i ≤ iV (m), then by (*) and the definition of the operator r,
C ∈ r(V)(m). If i > iV (m), then there is C′ ∈ CiV (m) such that C′ ⊃ C. Since
CiV (m) ⊂ r(V)(m) we conclude that in both cases (i ≤ iV (m) and i ≤ iV (m))
there is C̃ ∈ r(V)(m) ⊂ ⋃{r(V)(k) : k ∈ ω}. So

⋃{r(U )(k) : k ∈ ω} refines⋃{r(V)(k) : k ∈ ω}. 2

Example 2.2.3. L(ω1) is WW-mR and WW-mH.

Proof. For WW-mR the proof is similar to the case of convergent sequence.
To prove WW-mH, let L(ω1) = ω1 ∪ {p} where p is the single non isolated
point the basic neighorhood of which take s the form [α, ω1) ∪ {p} where
α < ω1. Let U = (U (n) : n ∈ ω) be a sequence of open covers of L(ω1).
For n ∈ ω, put l(n) = min{l : {[l, ω1) ∪ {p}} refines U (n)}. Put l∗ =

sup{l(n) : n ∈ ω} and enumerate [0, l∗] = {αk : k ∈ ω}. For n ∈ ω, put
r(U )(n) = {[l(n), ω1) ∪ {p}} ∪ {{αk} : k ≤ n}. Then r is a WW-mH operator
for L(ω1).

Remark 2.2.1. By Examples 2.2.1 and 2.2.3 we may conclude that L(ω1) is
WW-mR and WW-mH but not SS-mM.

We have the following example.

Example 2.2.4. The discrete sum of countably many convergent sequences is
not WW-mM.

Proof. We consider the space X = ω × (ω + 1). Suppose r is a WW-mM
operator for X. With a function f : ω → ω we associate a cover O f of X
defined as follows: O f = {{n} × [ f (n), ω]} : n ∈ ω} ∪ {〈n, m〉 : n ∈ ω

and m < f (n)}. Let 0 ∈ ωω denote the function constant zero and let
U = (U (k) : k ∈ ω) be the sequence of covers of X such that U (k) = O0 for all
k. For n ∈ ω, put f (n) = min{m : {n} × [m, ω] refines

⋃{r(U )(k) : k ∈ ω}}
and g(n) = f (n) + 1. Then f , g ∈ ωω. Consider the sequence of covers
V = (V(k) : k ∈ ω) where V(0) = O0 and V(k) = Og for k > 0. Then⋃{U (k) : k ∈ ω} ≈ ⋃{V(k) : k ∈ ω} (because each of these unions is
equal to O0). By definition of WW-mM we must have

⋃{r(U )(k) : k ∈
ω} ≈ ⋃{r(V)(k) : k ∈ ω}. However

⋃{r(U )(k) : k ∈ ω} does not refine⋃{r(V)(k) : k ∈ ω}. Indeed, since r(V)(0) is finite, so is the set N =

π1(
⋃

r(V)(0)) where π1 is the projection to the first factor. Pick n∗ ∈ ω \ N.
For some k ∈ ω, some element of r(U )(k) contains the set {n∗} × [ f (n∗), ω],
but no element of

⋃{r(V)(k) : k ∈ ω} can contain this set.

Remark 2.2.2. By Proposition 2.2.2 and Example 2.2.4 we have that the
discrete sum of countably many convergent sequences is SS-mH but not
WW-mM.
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2.2.4 The local versions of SS-mR and SW-mR properties

A space X is mL at the point p [50] if one can assign to every non empty
family U of neighborhoods of p a non empty countable family r(U ) of
neighborhoods of p so that r(U ) refines U , and r(U ) refines r(V) whenever
U refines V . This technical notion was used in [50], [51], [52] to disprove
monotone Lindelöfness of certain spaces. One gets the definition of mC
at p when replacing “countable” with “finite”. We also consider the local
versions of SS-mR and SW-mR properties. There is one principal difference:
obviously, a space X with single non-isolated point p is mL (mC) iff X is
Lindelöf (respectively, compact) and mL (respectively, mC) at p. We show that
there exists a space X with single non-isolated point p which is Rothberger,
SS-mR at p but not SS-mR (Example 2.2.5). The local version of SS-mM was
considered in [18] to show that (within ZFC) every separable SS-mM space is
first countable. This contrasts with the previously known fact hat under CH
there are countable mL spaces which are not first countable.

Now we consider the local versions of SS-mR and SW-mR properties. Note
that a space X with a single non-isolated point p is mL mC) iff X is Lindelöf
(respectively, compact) and mL (respectively, mC) at p. We will see that there
exists a space X with a single non-isolated point p which is Rothberger,
SS-mR at p but not SS-mR.

Definition 2.2.2. Say that X is SS-mR at p (SW-mR at p) if there is an operator
r that assigns to every sequence U = (U (n) : n ∈ ω) of non empty families
of neighborhoods of p a sequence r(U ) = (r(U )(n) : n ∈ ω) where each
r(U )(n) is an (≤ 1)-element family of neighborhoods of p so that:

1. not all families r(U )(n) are empty;

2. r(U )(n) refines U (n);

3. if U (n) refines V(n) for all n, then r(U )(n) refines r(V)(n) for all n
(respectively,

⋃{r(U )(n) : n ∈ ω} refines
⋃{r(V)(n) : n ∈ ω}).

The following proposition gives a characterization of SS-mR at p property.

Proposition 2.2.7. Let p ∈ (X, T ). The following conditions are equivalent:

(1) There is a well ordered by ⊃ base of neighborhoods of p.

(2) There is a linearly ordered by ⊃ base of neighborhoods of p.

(3) There is a monotone neighborhood assignment (abbreviated mNA) at p, that is,
an operator r that assigns to every non empty family U of neighborhoods of
p a neighborhood r(U ) of p so that {r(U )} refines U and r(U ) ⊂ r(V) if U
refines V .

(4) (X, T ) is SS-mR at p.
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Proof. (1)⇒ (2) is trivial; (2)⇒ (1) is easily proved by induction.

(1)⇒ (3) Let {Bα : α < κ} be a base of neighborhoods of p such that Bα ⊃ Bβ

whenever α < β < κ. For a non empty family U of neighborhoods of p, put
α(U ) = min{α : Bα refines U} and r(U ) = Bα(U ).

(3) ⇒ (1) Let r be a mNA operator at p. By induction on α we will define
neighborhoods Bα of p such that Bα1 ⊃ Bα2 whenever α1 < α2 and the
families Uα of neighborhoods of p such that Uβ ⊂ Uα whenever α < β. Put
U0 = {U ∈ T : p ∈ U} and B0 = r(U0). Suppose α > 0 and Bγ and Uγ have
been defined for all γ < α. Put Bα = {Bγ : γ < α}. If Bα is a base at p then
we are done. If it is not, put Uα = {U ∈ T : p ∈ U and there is no V ∈ Bα

with V ⊂ U} and Bα = r(Uα) and continue.

(3)⇒ (4) Let s be a mNA operator at p. For a sequence U = (U (n) : n ∈ ω) of
non empty families of neighborhoods of p, put r(U )(n) = {s(U )(n)}. Then r
is a SS-mR operator at p.

(4)⇒ (3) Suppose r is a SS-mR operator at p but there is no mNA at p.

We will construct by induction on m ∈ ω sequences Um = (Um(n) : n ∈ ω)

of nonempty families of neighborhoods of p, and nonempty families Om of
neighborhoods of p. Let Tp be the family of all neighborhoods of p.

Let m = 0. For a non empty family O of neighborhoods of p, put U0,O =

(U0,O(n) : n ∈ ω) where U0,O(0) = O and U0,O(n) = Tp for all n > 0. There
is O∗ such that r(U0,O∗)(0) = ∅. Indeed, otherwise O 7→ r(U0,O)(0) would
be a mNA at p. Put O0 = O∗ and define U0 by U0(0) = O0 and U0(n) = Tp

for all n > 0.

Now suppose m > 0 and Uk and Ok have been defined for 0 ≤ k < m. For a
non empty family O of neighborhoods of p, put Um,O = (Um,O(n) : n ∈ ω)

where Um,O(n) = On for 0 ≤ n < m, Um,O(m) = O and U0,O(n) = Tp for all
n > m. As in the case m = 0, there is O∗ such that r(Um,O∗)(m) = ∅. Put
Om = O∗ and define Um by Um(n) = On for 0 ≤ n ≤ m and Um(n) = Tp for
all n > m.

Now that Um and Om have been defined for all m ∈ ω. Define U = (U (n) :
n ∈ ω) by U (n) = On. Then for every m, n ∈ ω, U (n) refines Um(n). It
follows from monotonicity that for all n ∈ ω, r(U )(n) = ∅, a contradiction
with condition (1) in the definition of SS-mR.

Example 2.2.5. The one point Lindelöfication L(ω1) = ω1 ∪ {p} of a discrete space
of cardinality ω1 is SS-mR at p.

Note that L(ω1) is Rothberger, SS-mR at p but not SS-mM by Example 2.2.1
(hence not SS-mR) .

Now we introduce the following definition.
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Definition 2.2.3. Let p be a point of a space X. A thin base of neighborhoods
of p is a base of neighborhoods of p of the form B =

⋃{Bα : α < κ} where κ

is some ordinal so that the following conditions hold:

(a) Bα is non empty and finite for every α.

(b) If α < β < κ, then Bβ refines Bα.

(c) If α < β < κ, Bα ∈ Bα, and Bβ ∈ Bβ, then Bα 6⊂ Bβ.

Note that if B =
⋃{Bα : α < κ} is a thin a base of neighborhoods of p ∈ X

and γ < κ, then
⋃{Bα : α < γ} is not a base at p.

In [18] it is considered the more general notion of thin poset in which the
requirement to be a base is omitted.

Proposition 2.2.8. Let p be a point of a space X and κ be an ordinal. If B =
⋃{Bα :

α < κ} is a thin base of neighborhoods of p satisying the following condition

(d) For every neighborhood U of p, there is α < κ such that Bα refines {U},

then B is a well-ordered by inclusion base at p.

Proof. It is enough to take {⋃Bα : α < κ}.

The asymmetric V example (see Section 2.2.5) proves that the existence of
a thin base of neighborhoods of p need not imply the existence of a well
ordered base.

Theorem 2.2.1. Let p be a point of a space (X, T ). If X is mC at p, then X has a
thin base of neighborhoods of p.

Proof. Let r be a mC operator at p. By induction on α we will define the
families Bα satisfying (a)—(c) in the definition of thin base and the families
Uα of neighborhoods of p such that Uβ ⊂ Uα whenever α < β. Put U0 =

{U ∈ T : p ∈ U} and B0 = r(U0). Suppose α > 0, and Uγ and Bγ have been
defined for all γ < α. Put Uα = {U ∈ T : p ∈ U and

⋃{Bγ : γ < α} does
not refine {U}}. If Uα = ∅, then we stop and put κ = α. Otherwise we put
Bα = r(Uα) and continue.

2.2.5 The “asymmetric V” example

The following example allow us to distinguish some of the properties men-
tioned above. In particular this space is mC at p, monotonically paracompact,
SW-mH and not SS-mM (hence not SS-mH).
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Let V = ω1 ∪ {p} ∪ {an : n ∈ ω} where all points are distinct, the points of
ω1 and points an are isolated, and a basic neighborhood of the point p takes
the form

Bγ,n = {p} ∪ (γ, ω1) ∪ {am : n ≤ m < ω}.

In other words, V is the quotient space of the one-point Lindelöfication of the
discrete space of cardinality ω1 and a convergent sequence. The following is
easy to see:

Proposition 2.2.9. V does not have a well ordered by inclusion base of neighborhoods
of p.

Proposition 2.2.10. V is mC at p.

Proof. Let U be a non empty family of neighborhoods of p. For n ∈ ω, put
ΓU (n) = {γ ∈ ω1 : Bγ,n refines U} and

γU (n) =
{

min ΓU (n) if ΓU (n) 6= ∅
ω1 if ΓU (n) = ∅

Put sp(U ) = {BγU (n),n : n ∈ ω and γU (n) < ω1}. Then sp(U ) is a non empty
countable family of neighborhoods of p and sp(U ) refines U . Obviously,
the operator sp is monotonic with respect to U . Say that an integer n > 0
is U -special if γU (n) < γU (n − 1). Say that the number 0 is U -special if
γU (0) < ω1. Put NU = {n ∈ ω : n is U -special}. The function n 7→
γU (n) is non increasing, so the set NU is finite (and non empty). Then
rp(U ) = {BγU (n),n : n ∈ NU} is a finite refinement of U . It is easy to see that
rp(U ) ≈ sp(U ). Since sp is monotonic, so is rp; so rp is a mC operator at p.

Corollary 2.2.2. A space which is mC at some point does not have to have a well-
ordered base at this point.

Recall that a space X is monotonically paracompact in the sense of locally finite
refinement if there exists a function r which assigns to every open cover U a
locally finite refinement r(U ) such that if U refines V then r(U ) refines r(V).

Proposition 2.2.11. V is monotonically paracompact in the sense of locally finite
refinement, SW-mH not SS-mM (hence not SS-mH).

Proof. Let rp be the operator of monotone compactness at p from the Proposi-
tion 2.2.10.

For an open cover U of V, put r(U ) = rp(U ) ∪ {{y} : y ∈ V \⋃ rp(U )}. Then
r witness the monotone paracompactness of V.

Let U = (U (n) : n ∈ ω) be a sequence of open covers of V. Put S(U )(n) =
rp(U (n)), enumerate V \ ⋂{⋃ rp(U (n)) : n ∈ ω} = {xn : n ∈ ω} and put
R(U )(n) = S(U )(n) ∪ {{xm} : 0 ≤ m ≤ n}. Then R is a SW-mH operator for
V.
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Since L(ω1) is a closed not SS-mM subspace of V and SS-mM property is
hereditarily with respect to closed subsets (see Proposition 2.2.3), we have
that V is not SS-mM and hence it is not SS-mH.

Recall that a space X is monotonically paracompact in the sense of star refinement
if there exists a function r which assigns to every open cover U an open
star-refinement r(U ) such that if U refines V then r(U ) refines r(V) [36].

Proposition 2.2.12. V is not monotonically paracompact at p in the sense of star
refinement.

Proof. It follows from propositions 2.2.9 and 2.2.7 since obviously monotoni-
cally paracompact at p in the sense of star refinement implies mNA.

Note that the asymmetric V example distinguishes also SW-mH property and
local version of SS-mR property.

Example 2.2.6. V is SW-mH but is is not SS-mR at p.

Proof. Indeed by Proposition 2.2.11, V is SW-mH and by propositions 2.2.10

and 2.2.7, V is not SS-mR at p.

The asymmetric V example permitts also to distinguish the two local versions
of monotone paracompactness defined respectively in the sense of locally
finite refinement and in the sense of star-refinement. Note that in [29] the
space V is described in a different way and it is used to distinguish the
corresponding two global versions of monotone paracompactness.
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[7] A. Arhangel’skiĭ, The cardinality of first countable bicompacta, Soviet Math.
Dokl. 10 (1969), 951-955.
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weak Lindelöf degree, preprint.
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