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Abstract

In the past decades, many complex systems, either natural, social, or ar-
tificial, have been modeled as networks of coupled dynamical systems,
with the links describing interactions among couples of units. How-
ever, recent evidence shows that various systems are characterized by
many-body, group interactions, that cannot be captured by a network
description. In the last few years, a vast literature aimed at understand-
ing how these higher-order interactions influence the global behavior of
coupled systems has raised. Among other phenomena, the study of syn-
chronization has received a lot of interest. Yet, most of the research fo-
cuses on phase oscillators, with the synchronization of nonlinear chaotic
oscillators receiving less consideration. Additionally, these studies are
restricted to numerical simulations, or provide an analytical solution for
simplified cases only. On the other hand, little attention has been given to
the investigation of pattern formation in presence of many-body interac-
tions. Particularly, an extension of Turing’s instability theory to the case
of higher-order networks is still lacking. The objective of this thesis is to
fill the existing gaps in the literature, by developing a general theory for
studying the collective behavior of coupled dynamical systems in pres-
ence of higher-order interactions. We focus on synchronization of chaotic
oscillators and on pattern formation in reaction-diffusion systems. We
introduce a new formalism to describe coupled dynamics in a general
framework, and we demonstrate that it can be used to describe both phe-
nomena under study, enabling the derivation of the necessary conditions
for their onset. The results here presented pave the way to further studies
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of dynamical systems in presence of many-body interactions.
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Introduction

Many complex systems, either natural or artificial, can be modeled as
networks of interacting units [1]. For instance, various technological sys-
tems, like power grids [2, 3] or Internet [4], are designed as a network
of communicating elements. The human brain itself is ultimately a net-
work of neurons connected by the synapses [5]. Our society can also be
modeled as a network, as each of us is involved in a web of relation-
ships of different kinds, with acquaintances, friends, coworkers, and so
on [6, 7]. The effectiveness of networks as a tool for modeling complex
systems have attracted the scientific community, triggering the interest of
researchers across various disciplines, from physics and engineering, to
social science and ecology [8, 9, 10].

In many cases, each of the elements constituting a network can be
modeled as a dynamical system, whose evolution in time is determined
by the interactions with other units. Elucidating how the interplay be-
tween the dynamics of the single units, the structure and the form of their
interactions shapes the behavior of the system as a whole is a fundamen-
tal problem that has important applications in several research fields. In
facts, a variety of fascinating and complex phenomena in nature occurs
as a collective behavior emerging from the interactions among simple
units [11, 12]. From superconductivity [13] to ferromagnetism [14], from
bird-flocking [15] to epidemic outbreaks [16], emergence is everywhere
[17]. Among various collective phenomena, we will here concentrate on
two that are relevant in many applications, namely the synchronization of
coupled oscillators, and pattern formation in networked systems.
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Synchronization is a process wherein a system of units, either identi-
cal or not, adjust their motion, due to mutual interactions or to external
forcing, into a common dynamics [1]. Many natural, social, and artificial
systems show a synchronous behavior. A well known example comes
from a species of fireflies living in Southeast Asia, whose flashes syn-
chronize, generating a spectacular phenomenon [18]. Human activities
also tend to synchronize. From stock market exchanges [19], to pedestri-
ans walking [20], from audience clapping [21], to dancing [22] and music
playing [23], synchronization is ubiquitous in human ensembles [24]. In
power grids, all units operate at the same frequency, and synchronization
is the normal operating condition of the system [25, 26].

Though the first description of synchronization can be traced back
to Christiaan Huygens, in the seventeenth century [27], the recent inter-
est in complex networks have encouraged a vast literature on the rela-
tionship between the topological characteristics of a coupled system and
its dynamical behavior [26]. Synchronization has been investigated in
small-world [28], weighted [29], directed [30], temporal [31], multilayer
[32], and adaptive networks [33, 34]. Many of these studies focus on
the case of complete or general synchronization, which occurs when each
unit of the system asymptotically follows the exact same trajectory [26].
However, other kinds of synchronization have been analyzed, including
remote [35, 36], and cluster synchronization [37, 38]. Also, phenomena
such as the emergence of chimera [39, 40] and Bellerophon states [41, 42],
or the Benjamin–Feir instability [43, 44], have been throughly investigated
in complex networks.

In this thesis we will focus on complete synchronization of nonlin-
ear chaotic oscillators. Synchronization of chaos has triggered the in-
terest of researchers for different reasons. First, it is a rich and intrigu-
ing phenomenon, as chaotic oscillators may synchronize in various forms
[26]. Second, different applications require the synchronization between
chaotic systems, such as secure communication of signals, and chaos
anticipation [45]. For their nature, chaotic systems would seem to be
systems defying synchronization, as two identical autonomous oscillators
starting at nearly the same initial conditions will follow trajectories that
exponentially diverge in time. However, two interacting chaotic systems
can synchronize, so that their coherent dynamics is stable [46, 47]. To an-
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alyze the synchronization of a network of chaotic oscillators, a commonly
used approach is that of the Master Stability Function [48]. In a nut-
shell, this method consists in quantifying the exponential rate at which a
perturbation transverse to the so-called synchronization manifold, namely
the subspace in the phase space where the synchronous trajectory lies,
grows in time. If the growth rate is negative, i.e., the perturbation shrinks
in time, than the system can achieve synchronization, while a coherent
state can not emerge otherwise [48, 49]. This framework will be the main
mathematical tool we will rely on in this work.

Another intriguing phenomenon recurring in various natural systems
is the presence of patterns. From stripes, rosettes and the spots on the
shells and the fur of animals, to bacteria aggregates, from mammalian
territory formation, to neural firing, patterns seem to appear all over
the place [50]. Understanding how they form is, therefore, a fundamen-
tal question in various research fields. In a seminal paper [51], Alan
Turing set the mathematical basis of morphogenesis, i.e., the biological
process responsible for the development of the shape in cells, tissues,
and organisms, discussing a microscopic mechanism to explain how pat-
terns form. The impact of the theory proposed by Turing has been sub-
stantial not only in developmental biology, but also in other research
fields. Indeedm, it is nowadays considered a paradigmatic model of self-
organization [52, 53], with examples ranging from autocatalytic chemical
reactions [54, 55, 56], to biological morphogenesis [57, 58, 59, 60, 61], from
ecological systems [62, 63] to atomic monolayers [64]. At a glance, Tur-
ing’s instability mechanism consists in the combined effect of two pro-
cesses, namely a local reaction, coupled with a long-range diffusion, in-
volving two species, namely an activator and an inhibitor species [65].
Interestingly, while each process, considered separately, would drive the
system to a homogeneous state, the combination of the two allows for a
heterogeneous solution, namely for patterns.

Initially developed to study pattern formation in continuous domains,
and in 1D and 2D lattices [66], Turing’s theory has been recently extended
to the case of complex networks, paving the way for novel analyses of the
phenomenon [67, 68]. In particular, it has been shown that, whereas the
instability mechanism remains essentially the same, the properties of the
emergent patterns can be very different. For instance, due to the dis-
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crete nature of networks, the spontaneous differentiation of nodes takes
place only on a fraction of them [67]. As for synchronization, in later
years Turing pattern formation has been investigated in directed [69, 70],
non-normal [71], time-varying [72], and multiplex [73, 74] networks. In
this thesis we will generalize these results, as well as those on complete
synchronization, extending them to the case of higher-order networks.

Despite their effectiveness in modeling complex systems, networks
have an important limitation. Indeed, they are able to capture pairwise,
i.e., two-body, interactions exclusively. However, recent evidences show
that various natural and social systems are characterized by higher-order,
group interactions. For instance, in competitive ecological networks, the
effect of one competitor on another can depend on the presence of a third
species [75]. Another example comes from neuroscience, as it has been
shown that pairwise models are not sufficient to describe neuronal dy-
namics [76, 77, 78]. The co-authorship network itself is inherently higher-
order, as it is characterized by group interactions, i.e., the scientific publi-
cations, which usually involve more than two authors [79].

Over the last few years, a vast literature aimed at developing novel
mathematical frameworks that can naturally encode group interactions
has raise. In particular, an increasing research interest for more com-
plex mathematical structures, such as simplicial complexes [80] and hy-
pergraphs [81], has emerged [82, 83]. Recent studies have used these
structures to review different dynamical processes, such as epidemic [84]
and social contagion [85, 86, 87], random walks [88, 89, 90], consensus
[91, 92], in the presence of many-body interactions, finding that they may
greatly influence the global behavior of the system. For example, nonlin-
ear higher-order interactions can lead to the emergence of multi-stability
among different states, hysteresis loops, and abrupt (explosive) transi-
tions [93, 94]. These findings highlight that higher-order interactions can
be the foundational mechanism underlying many natural and social phe-
nomena, such as bistable visual perception [95], epileptic seizures in the
brain [96], and critical mass phenomena in the emergence of social con-
vention [97].

This wave of enthusiasm for higher-order interactions has also hit the
studies of synchronization and of pattern formation. Concerning the
phenomenon of synchronization, it has been shown that multi-body in-
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teractions can dramatically affect the collective dynamics of a system of
either phase oscillators or chaotic systems [82]. For instance, the Ku-
ramoto model [98] may exhibit abrupt desynchronization and multistabil-
ity when three-body interactions replace [99], or are added to [100], pair-
wise interactions in globally coupled, i.e., all-to-all, oscillators. Moreover,
the presence of many-body interactions generates explosive switches be-
tween synchronized and incoherent states in complex higher-order struc-
tures [101]. In these woks, it is assumed that the nodes represent the
phase oscillators, while links and higher-order structures encode pair-
wise and many-body interactions among them. However, a completely
different approach can be considered. In facts, an extension of the Ku-
ramoto model, in which the oscillators are placed not only on the nodes
but also on the higher-order structures, has been formulated [102, 103].
Interestingly, when the dynamics on the different structures are coupled,
the transition to synchronization is once again explosive. Most of these
studies are limited to numerical simulations only, or provide an analytical
treatment for simplified cases, such as the all-to-all configuration. A few
attempts to provide a mathematical framework for analyzing synchro-
nization in the presence of multi-body interactions have been recently
made. For instance, complete synchronization of chaotic oscillators has
been analyzed for uniform hypergraphs [104]. Moreover, an analytical
framework to study the Kuramoto model with higher-order interactions
of any order, and for any complex topology, has been also proposed [105].
Yet, a general mathematical framework for the study of synchronization
of nonlinear oscillators in presence of higher-order interactions is still
lacking. In this direction, very recently, the necessary conditions under
which global synchronization of identical topological signals, i.e., defined
on nodes, links and other higher-order structures, can occur have been
derived [106].

In contrast to the vast literature regarding the phenomenon of syn-
chronization, little attention has been given to the investigation of pattern
formation in reaction-diffusion systems with higher-order interactions.
In facts, only a few attempts aimed at extending Turing’s instability the-
ory to the case of higher-order structures have been made. For instance, it
has been show that when higher-order interactions are considered spatio-
temporal patterns can emerge, whereby they can not be observed when
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reducing all interactions to pairwise [107]. However, the proposed analyt-
ical framework is limited to the case of linear coupling functions. Hence,
the development of a more general theory for Turing pattern formation
in higher-order networks remains an open problem. Similarly to what
has been done for synchronization, reaction-diffusion processes involv-
ing topological signals have been recently examined, and the conditions
for the emergence of patterns in the case dynamics defined on nodes and
links only have been established [108].

The objective of our work is to fill the existing gaps in the literature,
developing a general mathematical theory that allows us to study the
collective behavior of coupled dynamical systems in presence of higher-
order interactions. In particular, we focus our attention on the two phe-
nomena described above, namely synchronization of chaotic oscillators
and pattern formation in reaction-diffusion systems. Crucially, we will
demonstrate that our mathematical framework can be used to describe
both. Interestingly, we will show how these two phenomena can be seem,
from a mathematical point of view, as each other’s opposite, with syn-
chronization representing a homogeneous state that is stable, while the
formation of patterns corresponding to an unstable homogeneous equi-
librium.

This thesis is organized as follows. In Chapter 1, we present the math-
ematical framework. We introduce the notions of simplicial complexes
and hypergraphs, describing the most important metrics for encoding
their structure. We then develop a general model to describe the dynam-
ics of a system of units coupled through many-body interactions, and we
show how it is possible to study its behavior via a linear stability anal-
ysis. In Chapter 2, we study the synchronization of chaotic oscillators
coupled through reciprocal higher-order interactions. We start from the
most general case, discussing an application to neural dynamics. We then
analyze a few special cases, which allow us to extend the Master Stability
Function approach to the case of higher-order structures. In Chapter 3,
we extend the results presented in the previous chapter, by discussing
how nonreciprocal interactions impact the synchronization behavior of a
system of coupled units. In Chapter 4, we analyze the phenomenon of
pattern formation in reaction-diffusion systems in presence of many-body
interactions. We extend Turing’s instability theory to the case of higher-
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order structures, by demonstrating how higher-order terms can modify
the necessary conditions for the emergence of patterns. In Conclusions,
we discuss and summarize the main results, discussing the possible fu-
ture directions of our work.
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Chapter 1
Dynamical systems with
higher-order interactions

In this chapter, we introduce the mathematical framework that will allow
us to study the dynamics of system of units coupled through higher-order
interactions. First, we will introduce the notions of higher-order struc-
tures, and in particular those of simplicial complexes and hypergraphs.
We will generalize to the higher-order case the main metrics defined for
encoding graphs, namely those of adjacency matrix, of node degree, and
of Laplacian matrix. In the first part of the section, we will consider the
case of undirected structure, modeling systems where the interactions
among the units are reciprocal. In the second part, we will discuss direc-
tionality in hypergraphs, which will turn out useful to describe systems
characterized by nonreciprocal interactions. In the following section, we
use these concepts to study dynamical systems unfolding on higher-order
structures. We begin by describing the differential equations governing
the dynamics of the system of coupled units, distinguishing between the
general case and a particular case useful for the analysis of Turing pat-
tern formation. Then, we show how it is possible to study the dynamical
behavior of the system via a linear stability analysis that extends the Mas-
ter Stability Function approach to the case of higher-order structures. In
particular, we will discuss a few special cases, relying on particular as-
sumptions either on the higher-order topology or on functional form of
the interactions, allowing us to derive the necessary conditions for the
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emergence of synchronization in networks of oscillators, and for the for-
mation of patterns in reactive-diffusive systems.

1.1 Higher-order structures: graph and tensor rep-
resentation

In this section, we present the higher-order structures we will work with,
namely simplicial complexes and hypergraphs. In particular, we will
present how their topology can be encoded in a set of adjacency ten-
sors, generalizing the concept of adjacency matrix. On the basis of this,
we will define the generalized degree of a node and that of a link, which
will allow us to construct a collection of Laplacian matrices, each one re-
lated to a different order of interaction. We will first focus on the case of
undirected higher-order structure, which can be used to model a system
where reciprocal many-body interactions are present. Then, we will ex-
tend these concepts to the case of directed topologies, so to account for
phenomena characterized by nonreciprocal higher-order interactions.

1.1.1 Undirected higher-order networks

Networks have proven to be an effective framework to model natural and
artificial systems where the constituent units interact in pairs. From a
mathematical point of view, we can represent a network as a graph G =
(V , E), where V is a set of N = |V| elements called nodes (or vertices), and
E is a set of K = |E | elements called links (or edges), each of them given by
a couple (i, j) of nodes, with i, j ∈ {1, . . . , N}. Despite their effectiveness
in modeling various natural and artificial systems, networks fall short
in capturing many-body interactions, i.e., group of more than two units
interacting together. For instance, let us consider the simple case of three
nodes, i, j, and k, interacting through a single three-body interaction.
As networks are only able to describe pairwise interactions, such a case
would be represented as a graph composed by three links, (i, j), (j, k),
and (i, k). However, this representation is indistinguishable from that
of three nodes i, j, and k, interacting through three different two-body
interactions. Hence, to differentiate between these two configurations, we
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Figure 1.1: Graphical representation of simplices of different orders.
Panel A displays a 1-simplex, which is a simple link, panel B a 2-simplex,
while panel B a 3-simplex. In the rest of this work, we will represent sim-
plices as triangles, tetrahedrons, and so on, so to emphasize the inclusion
constraint that characterizes the simplicial complex structure.

need a to account for more complex structures that allow us to naturally
capture many-body interactions.

Simplicial complexes and hypergraphs represent the proper mathe-
matical structures to describe higher-order interactions. A simplicial com-
plex is a collection of simplices, mathematical objects that extend the no-
tion of links. In particular, while a link represents a pairwise interaction,
a simplex can represent an interaction of any order. Formally, we can
define a m-simplex, or a simplex of dimension m, as a set of m + 1 nodes.
Therefore, a 0-simplex is a node, a 1-simplex is a link, a 2-simplex is
a two-dimensional object formed by three nodes, and so on. Simplices
allow us to distinguish between a a single three-body interactions, and
three pairwise interactions. In facts, while the two-body interactions can
be represented as links, i.e., as 1-simplices, a three-body interaction can
be encoded by a 2-simplex. More in general, we can represent an interac-
tion among (m + 1) nodes as a m-simplices. As a graph is a collection of
links, a simplicial complex S on a set of nodes V , with N = |V|, is a col-
lection of Q simplices, namely S = {ς1, ς2, . . . , ςQ}. We define the order
M of the simplicial complex as the dimension of the largest simplex in S ,
namely M = maxς|ς|. Differently from graphs, which have no extra re-
quirements, a simplicial complex has a further inclusion constraint, namely



22CHAPTER 1. DYNAMICAL SYSTEMS WITH HIGHER-ORDER INTERACTIONS

Figure 1.2: Graphical representation of hyperedges of different orders.
Panel A displays a 1-hyperedge, which is a simple link, panel B a 2-
hyperedge, while panel B a 3-hyperedge. In the rest of this work, we will
represent hyperedges as polygons with rounded corners, so to emphasize
the absence of the inclusion constraint, as in the case of simplicial com-
plexes.

that for any simplex ς ∈ S , all the sub-simplices ς′ ⊂ ς are also part of
the simplicial complex, i.e., ς′ ∈ S . For instance, if a 2-simplex (i, j, k) is
part of a simplicial complex S , then all the included 1-simplices, i.e., (i, j),
(j, k), and (i, k), and all the included 0-simplices, i.e., i, j, and k, are also
part of S . Though this extra requirement on the sub-simplices is in some
cases justifiable, for instance when modeling social systems [85], or the
brain functional networks [77], it may result too restrictive in others. In
particular, the inclusion constraint does not allow to model those systems
where the existence of a many-body interaction does not necessarily im-
ply the presence of all the possible sub-interactions. A classical example
is that of scientific collaboration. Indeed, the fact that three researchers
have authored a paper, which we could represent as a 2-simplex, does
not necessarily imply that the three possible pairs of authors have also
published a paper [82].

To overcome these limitations, we can rely on hypergraphs, which are
the most general mathematical structure for describing higher-order in-
teractions. Similarly to a simplicial complex, a hypergraph is a collection
of hyperedges, which, as the simplices, generalize the concept of link, al-
lowing to represent many-body interactions. From a mathematical point



1.1. HIGHER-ORDER STRUCTURES: GRAPH AND TENSOR REPRESENTATION23

of view, a m-hyperedge, or an hyperedge of dimension m, is a set of
m + 1 nodes, encoding an interaction among the same number of units.
Hence, a three-body interaction can be represented as a 2-hyperedge, a
four-body interactions as a 3-hyperedge, and so on. Let us remark that
such a notation is different from the one usually adopted for hypergraphs,
for which a m-hyperedge is a set of m nodes [107, 109]. However, as it
will become clear in what follows, we decided to use the current nota-
tion so to emphasize the similarities between simplicial complexes and
hypergraphs in their tensor representation. Finally, an hypergraph H de-
fined on a set of nodes V , with N = |V|, is a collection of Q hyperedges,
namely H = {h1, h2, . . . , hQ}. As for the simplicial complexes, we define
the order M of the hypergraph as the dimension of its largest hyperedge,
namely M = maxh|h|. Let us remark that, given the definitions of simpli-
cial complex and of hypergraph here provided, the former is a particular
case of the latter for all intents and purposes.

Given a graph G = (V , E), we can associate to it an adjacency matrix
A, which encodes the connections among the nodes. In particular, the
element aij of the matrix is equal to one if the pair (i, j) ∈ E , namely if
nodes i and j are connected, while it is equal to zero otherwise. Hence,
our aim is to generalize the notion of the adjacency matrix of a network
to simplicial complexes and hypergraphs, so to encode many-body in-
teractions. Let us observe that the following definitions hold for both
simplicial complexes and hypergraphs. For the sake of brevity, we will
always refer to the hypergraph-related terminology, though the same ap-
plies for simplicial complexes. We will point out the differences between
the two structures when required. For each dimension m, we can define
a N × N × · · · × N, with N repeated m + 1 times, adjacency tensor A(m),
whose element a(m)

i1...im+1
are given by

a(m)
i1...im+1

=

{︄
1 if (i1, . . . , im+1) ∈ H
0 otherwise

, (1.1)

Note that, as we are here considering the case of reciprocal many-body
interactions, each tensor is symmetric with respect to its m + 1 indexes,
meaning that

a(m)
i1...im+1

= 1 ⇒ a(m)
π(i1...im+1)

= 1 , (1.2)
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for any m ∈ {1, . . . , M}, and for any permutation π of the tensor in-
dexes. In the next section, we will study how these definition change as
we account for nonreciprocal higher-order interactions. Given definition
(1.1), the N × N matrix A(1), which coincides with the standard adja-
cency matrix, characterizes the structure of the two-body interactions, the
N × N × N tensor A(2) captures the three-body interactions, and so on.
Hence, given a set of M adjacency tensor A(m), with m ∈ {1, . . . , M},
we are able to encode the connectivity patterns of a higher-order struc-
ture, either a hypergraph or a simplicial complex. It is worth noting that
the inclusion constraint that characterizes the latter is reflected in the el-
ements of the adjacency tensor. In particular, if the tensor a(m)

i1...im+1
= 1,

the tensors associated to order m′ < m will have nonzero elements in
correspondence to every permutation of m′ of the indexes i1, . . . im+1.
For instance, if a(2)ijk = 1, i.e., nodes i, j, and k interact in triples, then

a(1)ij = a(1)jk = a(1)ik = 1, and a(1)ji = a(1)kj = a(1)ki = 1 i.e., the nodes also
interact in pairs.

In a graph, a node i can be characterized by its degree k(i), namely
by the number of links incident in it. The degree represents the number
of two-body interactions in which a unit is involved. In a higher-order
structure, however, this is no longer sufficient. In facts, a unit can be
involved not only in two-body interactions, but also in three-body inter-
actions, four-body interactions, and so on. Therefore, we need to gener-
alize the concept of degree of a node, so to account for the number of
m-hyperedges incident in a node. In a graph, the standard degree, k(i),
of a node i is defined as

k(i) =
N

∑
j=1

aij . (1.3)

For higher-order structure, we define the generalized m-degree, k(m)(i), of a
node i as

k(m)(i) =
1

m!

N

∑
j1=1

N

∑
j2=1

· · ·
N

∑
j=m

a(m)
ij1 j2...jm , (1.4)

with m ∈ {1, . . . , M}. In particular, k(1)(i) coincides with the standard
degree k(i), so it represents the number of links incident to node i, k(2)(i)
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counts instead the number of 2-hyperedges incident in node i, k(3)(i) the
number of 3-hyperedges, and so on.

For higher-order structure, it is also useful to define another quantity,
namely the number of m-hyperedges of which a pair of nodes (i, j) is part
of. We call this quantity the generalized m-degree, k(m)(i, j), of a node pair
(i, j). This is given by

k(m)(i, j) =
1

(m − 1)!

N

∑
l1=1

N

∑
l2=1

· · ·
N

∑
l=m−1

a(m)
ijl1l2...lm−1

, (1.5)

where m ∈ {1, . . . , M}. Straightforwardly, for m = 1 we have k(1)(i, j) =
a(1)ij , as the number of 1-hyperedges, i.e., of links, a pair of nodes is part

of can either be zero or one. Then, k(2)(i, j) counts the number of 2-
hyperedges the pair of nodes (i, j) is part of, k(3)(i, j) the number of 3-
hyperedges, and so on.

Finally, given the definition of the m-degrees of nodes and links, we
can generalize the notion of Laplacian matrix to higher-order interactions.
The Laplacian of a graph is widely used to study dynamical processes on
networks, as it is associated to diffusion [110]. In particular, the graph
Laplacian has been exploited to describe consensus [111], random walk
[112], synchronization [1], Turing pattern formation [67], among many
others. Different generalizations of the Laplacian matrix to higher-orders
interactions have been recently proposed. Among them, we can crucially
distinguish between two categories. On the one hand, we find those
generalizations used to describe hypergraph signals and topological signals,
namely coupled systems in which the dynamics is defined not only on
nodes, but also on links and higher-order structures [113, 114]. These in-
clude the Laplacians used to describe processes on uniform hypergraphs
[115, 116], i.e., structures where all hyperedges have the same size, and
Hodge Laplacians, which govern dynamics unfolding on simplicial com-
plexes [88, 102]. On the other hand, we have generalized Laplacians
governing systems where the dynamics is only defined on nodes [105],
with link and higher-order structures solely representing the interactions
among the system units. In this work, we will consider this latter case.
Hence, given Eqs. (1.4) and (1.5), we define the generalized Laplacian of



26CHAPTER 1. DYNAMICAL SYSTEMS WITH HIGHER-ORDER INTERACTIONS

order m, L(m), as the matrix whose elements are given by

L(m)
ij =

{︄
m!k(m)(i) if i = j

−(m − 1)!k(m)(i, j) if i ̸= j
, (1.6)

with m ∈ {1, . . . , M}. Let us note that L(1) recovers the standard Lapla-
cian matrix. It is here worth remarking that, in the case of undirected
higher-order structures, the Laplacians are all symmetric, real-valued,
and zero-row-sum. Therefore, they are all diagonalizable, their eigen-
values are real and nonnegative, the corresponding set of eigenvectors
constitutes a orthonormal basis of RN. Furthermore, they all share, as
the smallest of their eigenvalues, λ

(m)
1 = 0, whose associated eigenvector

is [1, 1, . . . , 1]T/
√

N. As we will see in the next sections, these properties
of the generalized Laplacian matrices will turn out useful in the analy-
sis of dynamical systems with higher-order interactions. Before that, we
will extend the concepts introduced in this section to the case of directed
structures, which will allow us to study the case of systems characterized
by nonreciprocal higher-order interactions.

1.1.2 Directed higher-order networks

In the last section, we have provided the most important concepts for de-
scribing undirected higher-order topologies, which are useful to model
systems where reciprocal many-body interactions are present. However,
different natural and artificial systems are characterized by group interac-
tions that are intrinsically asymmetric. A first example comes from social
systems. In particular group pressure has an asymmetric nature, as group
interactions that are addressed toward one or more individuals are not
necessarily reciprocated [117]. Another instance of higher-order processes
where a privileged direction is present is represented by (bio)chemical
reactions, as they can be irreversible due to thermodynamics [118, 119].
Lastly, a further example comes from the ecology of microbial commu-
nities, where the action of a species on another can be mediated by a
third species [120, 121]. To provide a mathematical framework to deal
with such cases, in this section we define directed higher-order networks,
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characterizing their adjacency tensors and the quantities that one can de-
rive from them. In what follows, we will consider directed hypergraphs
only. In facts, while for undirected structures the similarities between
hypergraphs and simplicial complexes were straightforward, i.e., the lat-
ter can be considered a constrained version of the former, this is not the
case for directed structures. In particular, a crucial aspect to discuss in
order to generalize the notion of simplices from undirected to directed
is whether and how the inclusion constraint can be extended to the di-
rected case. A first (negative) answer comes from the case of oriented
simplicial complexes [102], for which a simplex and its sub-simplices can
have either concordant or opposite orientation. However, the notions of
orientation and directionality are generally different, so the definition of
directed simplicial complexes remains disputable. Hence, in the present
work we will only focus on hypergraphs, leaving the discussion on how
to define directed simplicial complexes for future research.

It is here worth remarking that the notion of directed hypergraphs that
we will hereby discuss is different from that of oriented hypergraph pro-
posed in [122, 123, 124]. In facts, oriented hypergraphs are fundamentally
symmetric structures, while directed hypergraphs are not. In particular,
oriented hypergraphs are undirected higher-order structures, where the
nodes of each hyperedge are partitioned into two sets, namely the input
and the output set. However, these two roles are not distinguished as it
is for directed hypergraphs [122], which is the feature making the latter
an asymmetric structure.

From a mathematical point of view, we can represent a network of
nonreciprocal, pairwise interactions as a directed graph G = (V , E), where
V is a set of N = |V| nodes, and E is a set of K = |E | directed links, which
are given by an ordered couple (i, j) of nodes, with i, j ∈ {1, . . . , N}. As
for undirected graphs, we can associate to a directed graph an adjacency
matrix A. However, differently from the undirected case, the element aij
of the matrix is equal to one if the ordered pair (i, j) ∈ E , namely if it exists
a link “pointing” from node j to node i are connected, while it is equal
to zero otherwise. Crucially, we note that the elements aij and aji of the
adjacency matrix encode two different interactions. In facts, the former
describes whether unit j influences unit i, while the latter characterize the
opposite interaction, i.e., i to j. Hence, the property of symmetry in undi-
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Figure 1.3: Graphical representation the elementary decomposition of an
undirected 2-hyperedge in three directed hyperedges.

rected graphs, aij = aji, models the fact that both “directions” of interac-
tion are present, as each interaction is reciprocal. This idea of considering
a single undirected link as the combination of two directed links, which
models the fact that a reciprocal, two-body interaction can be seen as the
combination of two opposite two-body interactions, is the core feature
that allows us to generalize the notion of directionality to higher-order
structures.

We start by defining a 1-directed m-hyperedge as a set of (m + 1) nodes,
m of which, called “source nodes”, point toward the remaining one,
called “target node”. Such a mathematical object represents an interac-
tion among (m+ 1) units where m of them jointly influence a further one,
without necessarily an opposite action of the target unit. Generalizing the
concept of an undirected link as the combination of two directed links,
we can see an undirected m-hyperedge as the union of (m + 1) directed
ones. We will refer to this idea as the elementary decomposition of a m-
hyperedge. A graphical representation of the case m = 2, i.e., three-body
interactions, is represented in Fig. 1.3. For each order of interaction, m, we
can define an adjacency tensor A(m), whose element a(m)

ij1...jm represents the
1-directed m-hyperedge having j1, j2, . . . , jm as the source nodes and i as
the target node. As we are studying the case where m units of the system
act together on a further one, without necessarily a reciprocal interaction,
and with no distinction in the order in which the influencing units are
considered, the corresponding adjacency tensors are characterized by the
property

a(m)
ij1...jm = 1 ⇒ a(m)

iπ(j1...jm)
= 1 , (1.7)
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for any permutation π of the indexes j1, j2, . . . , jm. We observe that
a generic permutation involving all tensor indexes does not necessarily
imply a nonzero entry in the adjacency tensor, as it was in the case of
undirected structures (see Eq. (1.2)), encoding the fact that higher-order
interactions are not necessarily reciprocated. Moreover, we note that (m+
1)-th rank tensors obtained by fixing the first index of A(m) are symmetric,
representing the fact that there is no distinction among the influencing
units. Lastly, we call 1-directed M-hypergraph a hypergraph formed by
1-directed m-hyperedges of any size m ≤ M.

The 1-directed hyperedge defined above is able to model those inter-
actions where many source units of a system influence a single target
unit. However, this may result a strong limitation. In facts, there might
be cases for which in a group of m interacting units, t of them are jointly
influenced by the remaining s = m + 1 − t. To describe mathematically
such a scenario, we can define a t-directed m-hyperedge, with t ≤ m, as a
set of m + 1 nodes, a subset of which (formed by s units) points toward
the t remaining ones. Again, to encode such a structure, we can define an
adjacency tensor A(m), whose element a(m)

i1...it j1...js represents the t-directed
m-hyperedge having j1, . . . , js as the source nodes, and i1, . . . , it as the
target nodes. As no distinction in the order in which both the influenc-
ing and the influenced units are considered, the adjacency tensors will be
characterized by a symmetry property similar to that in Eq. (1.7), namely

a(m)
i1...it j1...js = 1 ⇒ a(m)

πt(i1...it)πs(j1...js)
= 1 , (1.8)

for any permutation πt of the indexes, i1, . . . , it, relative to the target
nodes, and for any permutation πs of the indexes, j1, . . . , js, relative to
the source nodes. Similarly to the case of 1-directed hyperedges, we note
that a permutation where one or more of the indexes associated to the
target nodes appear in a position other than the first t, may result in a
zero entry of the adjacency tensor, which once again encodes the fact
that the corresponding higher-order interaction is not necessarily recip-
rocated. Finally, by indicating with T the largest value of t, we define the
T-directed M-hypergraph.

Let us here remark that the definitions given above represent a ten-
sor representation of the directed hyperedges introduced to account for
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various problems arising in computer science and in combinatorial opti-
mization [125, 126, 127]. In particular, the notions of 1-directed hyperedge
and 1-directed hypergraph recall those of backward-hyperarc, or B-arc for
simplicity, and B-hypergraph introduced in [126]. However, most of the
literature dealing with directed hypergraphs is related to the develop-
ment of algorithms for various applications in database theory [125, 128],
propositional logic [129], and urban transportation [130], to name a few,
while our work deals with modeling higher-order interactions in system
of coupled dynamical units.

Our next step consists in generalizing the notion of m-degree to the
case of directed higher-order topologies, from now on focusing on 1-
directed hypergraphs. In facts, as we will see in the next section, the
structural properties of 1-directed hypergraphs, i.e., Eq. (1.7), will permits
to analyze the dynamical behavior of systems of units coupled through
nonreciprocal interactions. In particular, it will allows us to derive ana-
lytically the necessary conditions either for the synchronization of chaotic
systems and for the formation of Turing patterns in coupled chemical os-
cillators. Nonetheless, the definitions hereby provided for 1-directed hy-
pergraphs can be straightforwardly generalized to T-directed structures.
In a directed graph, a node i can be characterized by its in-degree kin(i),
namely by the number of links pointing toward it, as well as its out-degree
kout(i), i.e., the number of links pointing out from it. For the purpose of
our work, here we are interested only in the generalization of the former
to the case of higher-order structures. In particular, we define the general-
ized m-in-degree, k(m)(i), of a node i, namely the number of m-hyperedges
pointing toward node i as

k(m)
in (i) =

1
m!

N

∑
j1=1

N

∑
j2=1

· · ·
N

∑
j=m

a(m)
ij1 j2...jm , (1.9)

with m ∈ {1, . . . , M}. k(1)(i) coincides with the standard in-degree kin(i),
k(2)in (i) represents the number of 2-hyperedges pointing toward node i,
k(3)in (i) the number of 3-hyperedges, and so on. Then, we define the gener-
alized m-in-degree, k(m)

in (i, j), of a node pair (i, j), characterizing the number
of 1-directed m-hyperedges having i as the target node, and j as one of its
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source nodes. We define it as

k(m)
in (i, j) =

1
(m − 1)!

N

∑
l1=1

N

∑
l2=1

· · ·
N

∑
l=m−1

a(m)
ijl1l2...lm−1

, (1.10)

where m ∈ {1, . . . , M}. For m = 1 we simply have k(1)in (i, j) = a(1)ij , while

k(2)in (i, j) counts the number of 1-directed 2-hyperedges pointing toward i
and having j as one of the source nodes, k(3)in (i, j) the number of 1-directed
3-hyperedges with the same configuration, and so on. Crucially, given
property (1.7) and differently from the undirected case, we generally have
that k(m)

in (i, j) ̸= k(m)
in (j, i), which somehow extends the fact that in directed

graphs aij ̸= aji, in general.

Lastly, with the definition of the m-in-degrees of nodes and links, we
can extend the definition of the generalized Laplacians to the directed
case. In particular, we define the generalized Laplacian associated to the
(m + 1)-body interactions as the matrix whose elements are given by

L(m)
ij =

{︄
m!k(m)

in (i) if i = j

−(m − 1)!k(m)
in (i, j) if i ̸= j

, (1.11)

with m ∈ {1, . . . , M}. As for the undirected case, the Laplacians are real-
valued, and zero-row-sum. However, differently from the previous case,
L(m) is not symmetric, as in general L(m)

ij ̸= L(m)
ji , which makes definition

(1.11) a natural generalization to hypergraphs of the Laplacian matrix
associated to directed graphs [69].

In this section, we have presented the most important metrics to en-
code higher-order structures. In particular, we have extended to the case
of hypergraphs and simplicial complexes, the notions of adjacency and
Laplacian matrices, distinguishing between the cases of undirected and
directed structures. In the next section, we will use these concepts to
study the dynamics of system of units coupled through higher-order in-
teractions.
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1.2 Dynamics of a system of units coupled with
higher-order interactions

We want to study the dynamics of a system of N identical units, cou-
pled through both pairwise and higher-order interactions. We consider
a higher-order structure of order M, where two-body up (M + 1)-body
interactions are present. We write the equations governing the temporal
evolution of the system as follows:

ẋi = f(xi) + σ1

N

∑
j1=1

a(1)ij1
g(1)(xi, xj1) + σ2

N

∑
j1=1

N

∑
j2=1

a(2)ij1 j2
g(2)(xi, xj1 , xj2)

+ · · ·+ σM

N

∑
j1=1

· · ·
N

∑
jM=1

a(M)
ij1...jM

g(M)(xi, xj1 , . . . , xjM),

(1.12)

where xi is the d-dimensional vector describing the state of unit i, while f :
Rd −→ Rd is a nonlinear function describing the dynamics of the isolated
system. Notice that f is assumed to be identical for each unit i. σ1, . . . , σM

are real positive numbers representing the coupling strength, a(m)
ij1...jm are

the entries of the adjacency tensor A(m), while g(m) : R(m+1)×d −→ Rd,
with m ∈ {1, . . . , M} are coupling functions ruling the interactions at
different orders. We will assume the coupling functions to be non-invasive,
meaning that

g(m)(x, x, . . . , x) = 0, ∀x ∈ Rd, ∀m ∈ {1, . . . , M}. (1.13)

In the context of synchronization, the assumption of non-invasiveness
guarantees the existence of a synchronous state, i.e., the synchronization
manifold. Indeed, when xi = xs, ∀i ∈ {1, . . . , N}, when property (1.13)
holds we can write Eqs. (1.12) simply as ẋi = f(xs), which is equivalent
for each unit i, meaning that all units have the same dynamics. Sim-
ilarly, in the case of Turing pattern formation, assuming the existence
of a fixed point x∗ for the isolated system, i.e., f(x∗) = 0, the non-
invasiveness of the coupling functions g(m) guarantees the existence of an
homogeneous equilibrium point solution for the coupled system, namely
xi = x∗, ∀i ∈ {1, . . . , N}. An example of non-invasive couplings are
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the sinusoidal functions used in the Kuramoto model [98] and its higher-
order generalizations [105, 101], though, in this case, the oscillators are
not identical, so one can not define a synchronization manifold.

A largely examined class of non-invasive functions, especially in the
study of Turing patterns, is that of diffusive-like couplings. In particular,
a function g(m) is diffusive-like if there is a function h(m) : Rm×d −→ Rd

such that

g(m)(xi, xj1 , . . . , xjm) = h(m)(xj1 , . . . , xjm)− h(m)(xi, . . . , xi), (1.14)

for every m ∈ {1, . . . , M}. From definition (1.14) it is straightforward
to verify that diffusive-like functions are non-invasive. Let us remark
that in the context of networks the linear case of diffusive coupling, i.e.,
h(1)(x) = x has been extensively studied both in synchronization [49] and
in Turing pattern formation [67]. Moreover, although less analyzed in
networked systems, nonlinear diffusions have been vastly used to model
a large variety of physical processes [131, 132], included plasma diffu-
sion [133], melting and evaporation processes in metals [134], and Turing
pattern formation [135, 136]. In this work, we will largely rely on non-
linear diffusive-like functions, as linear higher-order interactions can be
reduced to pairwise interactions by defining a proper weighted adjacency
matrix encoding all the existing interactions among the units (see [91] for
details).

Despite relying on a similar mathematical framework, the analysis of
the synchronization stability and that of Turing pattern formation usually
account for different assumptions on the systems. As already anticipated,
the study of synchronization consists in analyzing the stability of a syn-
chronous state xs, which can be either a limit cycle or a chaotic attractor.
On the other hand, for the analysis of Turing patterns, one usually studies
the stability of a stable fixed point x∗. This is reflected in the properties
of the local dynamics function f. In particular, in the case of synchroniza-
tion one considers systems for which the maximum Lyapunov exponent
associated to f is either zero, in the case of limit cycles, or positive, in the
case of chaotic oscillators. For Turing pattern formation, however, one
accounts for systems whose associated maximum Lyapunov exponent is
negative. Note that, as we are considering the case of a fixed point, the
latter coincides with the largest eigenvalue of the Jacobian matrix of f.
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Let us observe that the study of Turing pattern formation is commonly
done in a more restrictive framework compared to the one adopted for
synchronization. In particular, one usually assumes two species activator-
inhibitor systems, i.e., xi = [ui, vi]

T coupled through diffusive-like func-
tions. Moreover, it is often assumed that no cross-diffusion occurs, namely
that the coupling functions are given by

h(1)(u, v) = [D(1)
u h(1)u (u, v), D(1)

v h(1)v (u, v)]T

= [D(1)
u h(1)u (u), D(1)

v h(1)v (v)]T ,

h(2)(u1, v1, u2, v2) = [D(2)
u h(2)u (u1, v1, u2, , v2), D(2)

v h(2)v (u1, v1, u2, v2)]
T

= [D(2)
u h(2)u (u1, u2), D(2)

v h(2)v (v1, v2)]
T ,

...

h(M)(u1, v1, . . . , uM , vM) = [D(M)
u h(M)

u (u1, . . . , uM), D(M)
v h(M)

v (v1, . . . , vM)]T ,

(1.15)

where D(m)
u , D(m)

u , with m ∈ {1, . . . , M}, are real non-negative numbers
representing the diffusion coefficients at different orders of interaction.
Though we will limit our analysis to this case, it is worth remarking that
multispecies diffusion has been thoroughly investigated [137, 138]. Under
these assumptions, Eq. (1.12) can be written as

u̇i = fu(u, v) + σ1 ∑
j1

a(1)ij1
D(1)

u

[︂
h(1)u (uj1)− h(1)u (ui)

]︂
+ σ2 ∑

j1 ,j2

a(2)ij1 j2
D(2)

u

[︂
h(2)u (uj1 , uj2)− h(2)u (ui , ui)

]︂
+ · · ·+ σM ∑

j1 ,...,jM

a(M)
ij1 ...jM

D(M)
u

[︂
h(M)

u (uj1 , . . . , ujM )− h(M)
u (ui , . . . , ui)

]︂
,

v̇i = fv(u, v) + σ1 ∑
j1

a(1)ij1
D(1)

v

[︂
h(1)v (vj1)− h(1)v (vi)

]︂
+ σ2 ∑

j1 ,j2

a(2)ij1 j2
D(2)

v

[︂
h(2)v (vj1 , vj2)− h(2)v (vi , vi)

]︂
+ · · ·+ σM ∑

j1 ,...,jM

a(M)
ij1 ...jM

D(M)
v

[︂
h(M)

v (vj1 , . . . , vjM )− h(M)
v (vi , . . . , vi)

]︂
,

(1.16)

where we have considered a more compact notation for the summations.
In the following sections, we will consider the more general mathe-

matical framework of Eq. (1.12), pointing out the most relevant differ-



1.3. LINEAR STABILITY ANALYSIS IN HIGHER-ORDER STRUCTURES35

ences between the analyses of synchronization and Turing pattern forma-
tion where needed. In Chapter 4, when studying pattern formation in
details, we will instead account for the specific case of system (1.16).

1.3 Linear stability analysis in higher-order struc-
tures

To investigate both the onset of synchronization and the formation of
Turing patterns, we here perform a linear stability analysis of Eq. (1.12).
In particular, our goal is to study how a small perturbation around the
synchronous state xs or the fixed point x∗ evolves in time. In the case of
synchronization we aim to understand the conditions under which per-
turbations transverse to xs shrink in time, i.e., the system remain on the
synchronization manifold. On the other hand, in the case of Turing pat-
terns our objective is to find when a perturbation around x∗ does not go to
zero, meaning that the system moves away from the homogeneous solu-
tion. Hence, we can analyze both phenomena in terms of the (in)stability
of a linearized system. We will use the notation x to indicate the state,
which may correspond either to the synchronous state xs and to the fixed
point x∗, around which we perform the linearization.

Let us thus consider small perturbations δxi = xi − x, whose dynamics
is governed by the system of equations
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δẋi =Jf(x)δxi + σ1 ∑
j1

a(1)ij1

[︄
∂g(1)(xi , xj1)

∂xi

⃓⃓⃓⃓
x
δxi +

∂g(1)(xi , xj1)

∂xj1

⃓⃓⃓⃓
x
δxj1

]︄

+ σ2 ∑
j1 ,j2

a(2)ij1 j2

[︄
∂g(2)(xi , xj1 , xj2)

∂xi

⃓⃓⃓⃓
x
δxi

+
∂g(2)(xi , xj1 , xj2)

∂xj1

⃓⃓⃓⃓
x
δxj1 +

∂g(2)(xi , xj1 , xj2)

∂xj2

⃓⃓⃓⃓
x
δxj2

]︄

+ · · ·+ σM ∑
j1 ,...,jM

a(M)
ij1 ...jM

[︄
∂g(M)(xi , xj1 , . . . , xjM )

∂xi

⃓⃓⃓⃓
x
δxi

+
∂g(M)(xi , xj1 , . . . , xjM )

∂xj1

⃓⃓⃓⃓
x
δxj1

+ · · ·+
∂g(M)(xi , xj1 , . . . , xjM )

∂xjM

⃓⃓⃓⃓
x
δxjM

]︄
,

(1.17)

where Jf(x) ∈ Rd×d is the Jacobian matrix of the function f evaluated
in x, while the notation ·|x indicates that all the arguments in the partial
derivatives are evaluated in x. Observe also that the derivatives do not
depend on the indexes of the summations.

Next, we can rewrite the linearized system using the property of non-
invasiveness of the coupling functions. Indeed, as their value is constant
when all their arguments are equal, it follows that their total derivative
evaluated on (x, . . . , x) vanishes, namely

∂g(1)(xi , xj1)

∂xi

⃓⃓⃓⃓
x
+

∂g(1)(xi , xj1)

∂xj1

⃓⃓⃓⃓
x
= 0,

∂g(2)(xi , xj1 , xj2)

∂xi

⃓⃓⃓⃓
x
+

∂g(2)(xi , xj1 , xj2)

∂xj1

⃓⃓⃓⃓
x
+

∂g(2)(xi , xj1 , xj2)

∂xj2

⃓⃓⃓⃓
x
= 0,

...

∂g(M)(xi , xj1 , . . . , xjM )

∂xi

⃓⃓⃓⃓
x
+

∂g(M)(xi , xj1 , . . . , xjM )

∂xj1

⃓⃓⃓⃓
x

+ · · ·+
∂g(M)(xi , xj1 , . . . , xjM )

∂xjM

⃓⃓⃓⃓
x
= 0.

(1.18)

This property allows to write Eqs. (1.17) as
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δẋi = Jf(x)δxi − σ1 ∑
j1

L(1)
ij1

J1g(1)(x)δxj1

− σ2 ∑
j1 ,j2

τ
(2)
ij1 j2

[︂
J1g(2)(x)δxj1 + J2g(2)(x)δxj2

]︂
− · · · − σM ∑

j1 ,...,jM

τ
(M)
ij1 ...jM

[︂
J1g(M)(x)δxj1 + · · ·+ JMg(M)(x)δxjM

]︂
,

(1.19)

where L(1) is the standard Laplacian matrix, and where we introduced
the tensors T(m), whose elements are given by τ

(m)
ij1...jm = m!k(i)(m)δij1...jm −

a(m)
ij1...jm , being k(i)(m) is the generalized m-degree of node i, and δij1...jm the

generalized multi-indexes Kronecker delta. Observe that in the case of
directed higher-order interactions k(i)(m) is the generalized in-d-degree
of node i. Note that we have also introduced a more compact notation for
the partial derivatives of the coupling functions, namely

J1g(1)(x) =
∂g(1)(xi , xj1)

∂xj1

⃓⃓⃓⃓
x
,

J1g(2)(x) =
∂g(2)(xi , xj1 , xj2)

∂xj1

⃓⃓⃓⃓
x
, J2g(2)(x) =

∂g(2)(xi , xj1 , xj2)

∂xj2

⃓⃓⃓⃓
x
,

...

J1g(M)(x) =
∂g(M)(xi , xj1 , . . . , xjM )

∂xj1

⃓⃓⃓⃓
x
, . . . , JMg(M)(x)

∂g(M)(xi , xj1 , . . . , xjM )

∂xjM

⃓⃓⃓⃓
x
.

(1.20)

Eqs. (1.19) can be further simplified by using the symmetry properties
of the adjacency tensors A(m). Let us consider the summation relative to
the (m + 1)-body interactions, which we can write as

∑
j1 ,...,jm

τ
(m)
ij1 ...jm

[︂
J1g(m)(x)δxj1 + · · ·+ Jmg(m)(x)δxjm

]︂
=

∑
j1

J1g(m)(x)δxj1 ∑
j2 ,...,jm

τ
(m)
ij1 ...jm + · · ·+ ∑

jm

Jmg(m)(x)δxjm ∑
j1 ,...,jm−1

τ
(m)
ij1 ...jm .

(1.21)

In the case of undirected higher-order structures, the adjacency tensors
A(m) are symmetric with respect to all their indexes, namely a(m)

ij1...jm =

a(m)
π(ij1...jm)

, with π a generic permutation of the indexes {i, j1, . . . , jm}. This
holds obviously true for the generalized multi-indexes Kronecker delta as
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well. Therefore, the tensors T(m) has the same symmetry property as the
adjacency tensors A(m). This allows to permute the indexes so to always
sum T(m) over its last (m − 1) indexes, thus yielding

∑
j2,...,jm

τ
(m)
ij...jm = · · · = ∑

j1,...,jm−1

τ
(m)
ij1...j = L(m)

ij , (1.22)

where we have denoted as j the index over which the tensor is not summed,
and where L(m)

ij is the entry (i, j) of the generalized Laplacian matrix L(m),
defined in Eq. (1.6). Hence, we can write the term relative to the (m + 1)-
body interactions as

∑
j

J1g(m)(x)δxj ∑
j2,...,jm

τ
(m)
ij...jm + · · ·+ ∑

j
Jmg(m)(x)δxj ∑

j1,...,jm−1

τ
(m)
ij1...j =

∑
j

L(m)
ij

[︂
J1g(m)(x) + · · ·+ Jmg(m)(x)

]︂
δxj.

(1.23)

Note that this holds true also for 1-directed higher-order structures. In
general, for directed structures the adjacency tensors A(m) are not sym-
metric with respect to all their indexes. However, property (1.7) of 1-
directionality still allows the derivation of generalized Laplacian matri-
ces, as T(m) is nevertheless symmetric under a permutation of its last m
indexes, i.e., τ

(m)
ij1...jm = τ

(m)
iπ(j1...jm)

.
Finally, we can rewrite Eqs. (1.19) as

δẋi = JFδxi − σ1 ∑
j

L(1)
ij JG(1)δxj − σ2 ∑

j
L(2)

ij JG(2)δxj

− · · · − σM ∑
j

L(M)
ij JG(M)δxj,

(1.24)

where we have used the notation

JF = Jf(x), JG(m) = J1g(m)(x) + · · ·+ Jmg(m)(x). (1.25)

By introducing the stack vector δx =
[︁
δxT

1 , . . . , δxT
N
]︁T, Eqs. (1.24) can

be rewritten in block form, namely

δẋ =
[︂
IN ⊗ JF − σ1L(1) ⊗ JG(1) − σ2L(2) ⊗ JG(2) − · · · − σML(M) ⊗ JG(M)

]︂
δx, (1.26)



1.3. LINEAR STABILITY ANALYSIS IN HIGHER-ORDER STRUCTURES39

where IN is the identity matrix of size N, and ⊗ denotes the Kronecker
product. Eq. (1.26) can be rewritten in a more explicit form, namely

d
dt

⎡⎢⎢⎢⎣
δx1
δx2

...
δxN

⎤⎥⎥⎥⎦ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎣

JF 0 . . . 0
0 JF . . . 0
...

...
. . .

...
0 0 . . . JF

⎤⎥⎥⎥⎦−

− σ1

⎡⎢⎢⎢⎢⎣
L(1)

11 JG(1) L(1)
12 JG(1) . . . L(1)

1NJG(1)

L(1)
21 JG(1) L(1)

22 JG(1) . . . L(1)
2NJG(1)

...
...

. . .
...

L(1)
N1JG(1) L(1)

N2JG(1) . . . L(1)
NNJG(1)

⎤⎥⎥⎥⎥⎦−

− σ2

⎡⎢⎢⎢⎢⎣
L(2)

11 JG(2) L(2)
12 JG(2) . . . L(2)

1NJG(2)

L(2)
21 JG(2) L(2)

22 JG(2) . . . L(2)
2NJG(2)

...
...

. . .
...

L(2)
N1JG(2) L(2)

N2JG(2) . . . L(2)
NNJG(2)

⎤⎥⎥⎥⎥⎦−

...

−σM

⎡⎢⎢⎢⎢⎣
L(M)

11 JG(M) L(M)
12 JG(M) . . . L(M)

1N JG(M)

L(M)
21 JG(M) L(M)

22 JG(M) . . . L(M)
2N JG(M)

...
...

. . .
...

L(M)
N1 JG(M) L(M)

N2 JG(M) . . . L(M)
NN JG(M)

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

⎡⎢⎢⎢⎣
δx1
δx2

...
δxN

⎤⎥⎥⎥⎦

(1.27)

System (1.26) is composed by N coupled equations. In analogy with
the network case, the next step would be to find a proper transformation
of variables that allows to decouple the system. In particular, this means
to find an eigenvector basis on which to project Eqs. (1.26). However,
this is not possible in general, as the generalized Laplacian matrices do
not always commute, and so the sets of eigenvectors are different from
one another. Nevertheless, given the properties of the Laplacian matri-
ces one is still able to separate the mode corresponding to the linearized
dynamics of the isolated system from the others. In the context of syn-
chronization, this means that it is possible to decouple the motion along
the synchronous state and that transverse to it, while in that of Turing
pattern formation, it means that one can decouple the space-independent
part of the system from the spatial one. In facts, assuming at least one
Laplacian matrix to be diagonalizable, since they are zero-row sum, they
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all share, as the smallest eigenvalue, λ
(m)
1 = 0, whose associated eigen-

vector [1, 1, . . . , 1]T/
√

N is parallel to the vector field defining the isolated
system. All other eigenvectors, though different from one Laplacian to
another, are associated to the transverse modes. Now, as a perturbation
δx can be written as a linear combination of any of such eigenvector sets,
we can arbitrarily choose any of them as the reference basis of the trans-
verse space, and map all other eigenvector sets to such a basis. Let us
then consider, as reference basis, the one constituted by the eigenvectors
of the standard Laplacian L(1), that we denote as {v1, v2, . . . , vN}. By
defining the new variables η = (V−1 ⊗ Id)δx, where V = [v1, . . . , vN], we
can rewrite Eq. (1.26) as

η̇ =
[︂
IN ⊗ JF − σ1Λ(1) ⊗ JG(1) − σ2˜︁L(2) ⊗ JG(2) − · · · − σM˜︁L(M) ⊗ JG(M)

]︂
ηi , (1.28)

where V−1L(1)V = Λ(1) = diag(λ(1)
1 , λ

(1)
2 , . . . , λ

(1)
N ), being 0 = λ

(1)
1 ≤

λ
(1)
2 ≤ · · · ≤ λ

(1)
N the eigenvalues of L(1), and where ˜︁L(m) = V−1L(m)V

is the transformed generalized Laplacian of order m. As the generalized
Laplacian matrices are zero-row sum, we can write Eq. (1.28) as

η̇1 =JFη1,

η̇i =
(︂

JF − σ1λ
(1)
i JG(1)

)︂
ηi − σ2

N

∑
j=2

˜︁L(2)
ij JG(2)ηj − · · · − σM

N

∑
j=2

˜︁L(M)
ij JG(M)ηj.

(1.29)

with i ∈ {2, . . . , N}. Observe that the equations governing the system dy-
namics are now split in two parts. The first equation, which is decoupled
from the others, is the linearized dynamics of the isolated system. The
remaining N − 1 coupled equations describes instead the dynamics along
the directions transverse to the vector field governing the dynamics of the
isolated system. Hence, though it is not possible in general to decouple
completely the system of equations, we are still able to study the stability
of state x numerically. Indeed, from the equation governing the dynam-
ics of the isolated system we can evaluate x, from which we can estimate
the Jacobian matrices JF and JG(m), with m ∈ {1, . . . , M}. We can then
simulate the system of N − 1 coupled linear equations, and calculate the
maximum Lyapunov exponent Λmax associated to the transverse modes

from the norm
√︂

∑N
i=2 ||ηi||2. Hence, being Λmax negative is a necessary

condition for the stability of x.
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Hence, analogously to the case of networks, also for higher-order
structures we are able to perform a separation of the mode parallel to
the vector field defining the isolated system and of those transerve to it,
which allows us to analyze the stability of state x. However, the greater
complexity of higher-order structures does not enable in general to fur-
ther decouple the system of equations and to write a single parametric
Master Stability Equation. It is worth mentioning that the inability of de-
coupling the transverse modes does not characterize higher-order struc-
tures only, but it represents an issue for the analysis of dynamical sys-
tems in temporal networks [31, 139], hypernetworks [140], and multilayer
networks [32, 141], among others. Nonetheless, as it always possible to
separate the tangent and the transverse motions, the analysis still reduces
to the (numerical) computation of a single quantity determining the sta-
bility of x. However, there are few special cases where either the topology
of the higher-order structure or the functional form of the couplings al-
low to fully decouple the equations governing the transverse modes, so to
derive a parametric variational equation whose solution, i.e., the Master
Stability Function, determines the stability of the system.

1.3.1 Commutative generalized Laplacian matrices

Since the Laplacian matrices encoding the different orders of interactions
do not commute in general, it is not possible to entirely decouple system
(1.26). As we will soon discuss, there are, however, examples of topolo-
gies for which the Laplacian matrices commute. A set of commuting (di-
agonalizable) matrices share the same set of eigenvectors, meaning that
we can simultaneously diagonalize each generalized Laplacian matrix,
namely

Λ(m) = V−1L(m)V, ∀m ∈ {1, . . . , M}, (1.30)

where Λ(m) = diag(λ(m)
1 , λ

(m)
2 , . . . , λ

(m)
N ). Note that, in the case of undi-

rected higher-order topologies, every eigenvalue λ
(m)
i is real, while for di-

rected structures the eigenvalues are in general complex. Holding Eq. (1.30),
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we can rewrite Eq. (1.29) as

η̇1 =JFη1,

η̇i =
(︂

JF − σ1λ
(1)
i JG(1) − σ2λ

(2)
i JG(2) − · · · − σMλ

(M)
i JG(M)

)︂
ηi.

(1.31)

We observe that the equations relative to the transverse modes all have
the same form. Hence, we can subsume them in a single parametric
variational equation, which is

ζ̇ = [JF − (α(1) + iβ(1))JG(1)−
− (α(2) + iβ(2))JG(2)−

− · · · − (α(M) + iβ(M))JG(M)
]︂

ζ ,

(1.32)

where α(m) + iβ(m), ∀m ∈ {1, . . . , M} are complex-valued parameters,
as in general the eigenvalues of the Laplacian matrices can be complex.
From Eq. (1.32) we can calculate the Lyapunov exponent. Compared to
the network case, where the maximum Lyapunov exponent is a function
of a single complex parameter, i.e., Λmax = Λmax(α+ iβ), for higher-order
structures of order M, the MSF is a function of M complex parameters,
namely Λmax = Λmax(α(1) + iβ(1), . . . , α(M) + iβ(M)). Hence, if Λmax < 0
in each point [σ1λ

(1)
i , . . . , σMλ

(M)
i ] in the 2M-dimensional complex space,

state x is stable. In the contest of synchronization, this is a necessary
condition for the onset of synchronization itself. On the other hand, if
Λmax > 0 for some point [σ1λ

(1)
i , . . . , σMλ

(M)
i ], then x is unstable. In the

context of Turing theory, this is a necessary and sufficient condition for
the formation of patterns.

We here illustrate some examples where the generalized Laplacian
matrices commute. Let us first consider the case of an undirected higher-
order structure with N nodes where only two and three-body interactions
are present, i.e., M = 2. If all the two-body interactions are active, i.e.,
A(1)

ij = 1, ∀i ̸= j, then no matter the structure of the three-body inter-

actions the generalized Laplacian matrices L(1) and L(2) will commute.
In facts, it is simple to prove that the Laplacian matrix of the complete
graph, i.e., L(1), commutes with any other Laplacian matrix L(m). Indeed,
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the elements of the standard Laplacian matrix in the all-to-all coupling
configuration are given by

L(1)
ij =

{︄
N − 1 for i = j,
−1 for i ̸= j.

(1.33)

Therefore, the element (i, j) of the product matrix L(1)L(m) is given by

(L(1)L(m))ij = ∑
k

L(1)
ik L(m)

kj = (N − 1)L(m)
ij − ∑

k ̸=i
L(m)

kj = NL(m)
ij − ∑

k
L(m)

kj = NL(m)
ij ,

(1.34)
where we have used the property of zero-column sum of the Laplacian
matrix of an undirected graph. Similarly, given that L(m) is zero-row sum,
we can show that the element (i, j) of L(m)L(1) is equal to NL(m)

ij , thus

proving that L(1) commutes with any other Laplacian matrix. Therefore,
noting that in the all-to-all configuration the nonzero eigenvalues of the
Laplacian matrix are λ

(1)
2 = · · · = λ

(1)
N = N, we can rewrite Eq. (1.32) in

this case as
ζ̇ =

[︂
JF − σ1NJG(1) − α(2)JG(2)

]︂
ζ, (1.35)

where β(2) = 0, as we are considering undirected three-body interactions.
Hence, when all the two-body interactions are active, we find that the de-
pendence of the MSF on the pairwise coupling is limited to the coupling
strength σ1 and the number of nodes N, i.e., Λmax = Λmax(σ1, N, α(2)).
Therefore, having fixed N and the strength of the two-body interactions,
we can study the effect of the three-body interactions on the system sta-
bility through the parameter α(2) = σ2λ

(2)
i .

The property of the complete graph Laplacian matrix to commute with
any other symmetric Laplacian matrix allows us to analyze some special
cases with M > 2. Let us for instance consider the case M = 3, where
the two-body interactions are in the all-to-all configuration. As above dis-
cussed, the matrices L(2) and L(3) do not commute in general. However,
if we consider the case where all the possible three-body interactions are
active, we find that L(2) recovers the Laplacian matrix of the complete
graph, thus allowing to decouple the equations for the dynamics of the
transverse modes. In facts, the off-diagonal terms L(2)

ij , with i ̸= j consist
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in the number of three-body interactions of which the couple of nodes
(i, j) are part of (see Eq. (1.6)) that in the three-body all-to-all configura-
tion is simply N − 2, i.e., all the nodes in the network different from i
and j. On the other hand, the diagonal terms L(2)

ii are proportional to the
number of three-body interactions in which node i participates, which is
given by

L(2)
ii =

(︃
N − 1

2

)︃
=

(N − 1)(N − 2)
2

. (1.36)

Hence, when both the two-body and the three-body are in the all-to-all
configuration we have

L(2) = (N − 2)L(1), (1.37)

from which it follows that, no matter the patterns of the four-body in-
teractions, it is always possible to write a single parametric equation to
study the stability of the system. Following this reasoning, we can show
that we can write a single MSE for a M-dimensional higher-order struc-
ture every time all but one of the orders of interactions are in the all-to-all
configuration. In facts, when all the (m + 1)-body interactions are active,
the corresponding generalized Laplacian L(m) can be written as a func-
tion of the complete graph Laplacian matrix. In facts, we can calculate the
number of (m+ 1)-body interactions in which node i partecipates and the
number of (m + 1)-body interactions of which nodes i and j are part of,
namely

k(m)
i =

(︃
N − 1

m

)︃
=

(N − 1)(N − 2) . . . (N − m)

m!
, (1.38)

and

k(m)
ij =

(︃
N − 2
m − 1

)︃
=

(N − 2)(N − 3) . . . (N − m)

(m − 1)!
, (1.39)

from which, we can write the generalized Laplacian matrix for the (m +
1)-body interactions as

L(m) = (N − 2)(N − 3) . . . (N − m)L(1). (1.40)

In particular, when all orders of interactions are in the all-to-all configu-
ration, Eq. (1.32) can be rewritten as

ζ̇ = [JF − σ1NJG(1) − σ2N(N − 2)JG(2)−

− · · · − σMN(N − 2) . . . (N − M)JG(M)
]︂

ζ.
(1.41)
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Figure 1.4: Comparison between a triangular lattice with a few three-
body interactions active (panel A) and a 2-lattice, where all three-body
interactions are present.

Once again, we have derived a single parametric equation, with the MSF
that only depends on the coupling strengths σ1, σ2, . . . , σM and the num-
ber of nodes N, i.e. Λmax = Λmax(σ1, σ2, . . . , σM, N).

Another interesting example where the generalized Laplacian matri-
ces commute is that of some regular topologies. This is the case, for
instance, of a triangular lattice with periodic boundary conditions, where
we assume the nodes forming a triangle also to interact via a three-body
coupling. For this reason we will call it triangular 2-lattice. In this struc-
ture, each node interacts with its six neighbors through six two-body in-
teractions and as many three-body interactions. From definition (1.6), we
can show that for a triangular lattice with N nodes the Laplacian matrix
L(2) is a multiple of L(1), namely

L(2) = 2L(1), (1.42)

where

L(1)
ij =

{︄
6 for i = j,

−A(1)
ij for i ̸= j.

(1.43)

Hence, for the triangular lattice case we can write the equations for the
transverse modes as

η̇i =
[︂
JF − λ

(1)
i

(︂
σ1JG(1) + 2σ2JG(2)

)︂]︂
ηi, (1.44)
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so that the MSF will be a function of the coupling strengths and of the
eigenvalues of L(1).

Though they enable an analytical treatment of the stability problem,
the cases presented so far largely restrict the range of possible topologies
one can consider. In particular, structures where the Laplacian matrices
commute are unlikely to occur in practical situations [140]. Yet, they al-
low to have a certain flexibility in the choice of the coupling functions
at different orders, as no further requirements are needed to obtain the
Master Stability Equation. In the next section, we will consider the op-
posite case, imposing certain conditions on the coupling functions, while
leaving more flexibility in the structure of interactions.

1.3.2 Natural coupling

When the Laplacian matrices for the different orders of interactions do
not commute, it is still possible to decouple the equations for the trans-
verse modes by imposing a few yet quite general conditions on the func-
tional form of the couplings. The first step is to consider coupling func-
tions g(m) that are diffusive-like (see Eq. (1.14)). Under this choice of the
couplings, one can follow the derivation presented above, again obtaining
a block-form equation for the linearized system having the same form of
Eqs. (1.26), namely

δẋ =
[︂
IN ⊗ JF − σ1L(1) ⊗ JH(1) − σ2L(2) ⊗ JH(2) − · · · − σML(M) ⊗ JH(M)

]︂
δx, (1.45)

where we have introduced the notation, similar to the one in Eqs. (1.20)
and (1.25)

JH(m) =
m

∑
ℓ=1

∂h(m)(xj1 , . . . , xjm)

∂xjℓ

⃓⃓⃓⃓
x
. (1.46)

In addition, we assume the coupling functions to respect the hypothesis
of natural coupling, namely

h(M)(y, y, . . . , y) = · · · = h(2)(y, y) = h(1)(y). (1.47)

Basically, the natural coupling hypothesis consists in assuming that the
influence that a unit experiences when interacting with a group of m
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Figure 1.5: A graphical representation of the natural coupling hypothesis
for three-body interactions. The influence that a node in a given state x
receives from a couple of nodes in the same state y is equivalent to that
the node would experience when interacting with a single node in state
y.

units, all in the same state y, is equivalent to the one it would undergo
when interacting with a single unit in state y. In other words, the influ-
enced unit does not distinguish between different orders of interactions
when affected by units in the same state. A graphical representation of the
natural coupling hypothesis is displayed in Fig. 1.5. It is worth remark-
ing that in the context of Turing pattern formation, the natural coupling
hypothesis reads

D(M)
u h(M)

u (u, u, . . . , u) = · · · = D(2)
u h(2)u (u, u) = D(1)

u h(1)u (u),

D(M)
v h(M)

v (v, v, . . . , v) = · · · = D(2)
v h(2)v (v, v) = D(1)

v h(1)v (v).
(1.48)

Hence, if we consider the case h(M)
u (u, u, . . . , u) = · · · = h(2)u (u, u) =

h(1)u (u) and h(M)
v (v, v, . . . , v) = · · · = h(2)v (v, v) = h(1)v (v), condition (1.48)

implies that the diffusion coefficients at the various order of interaction



48CHAPTER 1. DYNAMICAL SYSTEMS WITH HIGHER-ORDER INTERACTIONS

have to be equal, namely

D(M)
u = · · · = D(2)

u = D(1)
u ,

D(M)
v = · · · = D(2)

v = D(1)
v .

(1.49)

The mathematical consequence of the natural coupling hypothesis is
that the derivatives of the coupling functions h(m) evaluated in state x
satisfy the relation

JH(M) = · · · = JH(2) = JH(1). (1.50)

Crucially, Eq. (1.50) allows us to greatly simplify Eq. (1.45), which we can
write as

δẋ =
[︂
IN ⊗ JF − σ1L⊗ JH(1)

]︂
δx, (1.51)

where we have introduced the effective Laplacian matrix L, defined as

L = L(1) + r2L(2) + · · ·+ rML(M), with ri =
σi

σ1
. (1.52)

Note that, since all generalized Laplacian matrices are zero-row sum,
it follows straightforwardly that the matrix L is zero-row sum as well.
Hence, L represents the Laplacian matrix of an effective projected graph
that encodes all the different orders of interactions. In facts, once fixed
the ratios ri, the equations governing the dynamics of the perturbations
are formally equivalent to those of a system with weighted pairwise inter-
actions among the units, coupling coefficient equal to σ1, and a Laplacian
matrix given by L. In particular, from L we can evaluate the weighted
adjacency matrix of the projected graph as A = D − L, where D is a
diagonal matrix whose elements are equal to the main diagonal of L.
However, it is crucial to remark that such an analogy between the two
cases holds only in the linear regime, while no such an equivalence can
be found in the nonlinear regime. As a consequence, while the linear sta-
bility in the two cases is equivalent, as determined by Eqs. 1.51, nothing
can be said about the global stability analysis. An in-depth discussion
about this aspect will be carried out in the Perspective section.

As an equivalent formulation, we can rewrite Eq. (1.51) as

δẋ =
[︂
IN ⊗ JF − ˜︁L⊗ JH(1)

]︂
δx, (1.53)
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with ˜︁L given by

˜︁L = σ1L(1) + σ2L(2) + · · ·+ σML(M), (1.54)

Both formulations are equivalent, so we will conclude the discussion
on the linear stability analysis only referring to Eq. (1.51). Nonetheless,
Eq. (1.53) will prove to be useful in the numerical analysis.

Assuming the effective Laplacian matrix L to be diagonalizable, we
can finally project Eq. (1.45) onto its eigenvectors, thus fully decoupling
the system in N linear equations. In particular, by defining the new vari-
able η = (V−1 ⊗ Id)δx, where V is the matrix whose columns are the
eigenvectors of L, we obtain

η̇i =
[︂
JF − σ1λiJH(1)

]︂
ηi, (1.55)

where i ∈ {1, . . . , N}, and where λ1, λ2, . . . , λN are the eigenvalues of
L. Once again, the equation for i = 1 describes the linearized motion of
the isolated system, while the other equations govern the motion of the
transverse modes. As the equations for the transverse modes have the
same form, we can finally write a single Master Stability Equation

ζ̇ =
[︂
JF − (α + iβ)JH(1)

]︂
ζ. (1.56)

The case of higher-order structure with coupling functions respecting the
natural coupling hypothesis is substantially equivalent to that of net-
works. In fact, analogously to the network case, the maximum Lya-
punov exponent is here a function of a single complex parameter, i.e.,
Λmax = Λmax(α + iβ). Hence, Λmax < 0 where α + iβ is any non-zero
eigenvalue of L is a necessary condition for stability of state x.

It is here worth stressing that assuming that the effective Laplacian
matrix L is diagonalizable, which can turn out to be quite a strong as-
sumption in the case of directed higher-order interactions, is not essential
to the linear stability analysis. In fact, to study the stability of the system
dynamics one can extend the approach introduced in [142] for networks
to higher-order structures. In particular, this mathematical framework,
based on the Jordan block decomposition rather then on diagonaliza-
tion, yields the derivation of the same condition on stability for non-
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diagonalizable Laplacian matrices. Hence, the crucial aspect of the stabil-
ity analysis is the identification of a matrix whose eigenvalues ultimately
determine the robustness of the dynamics to perturbations.

As we have seen, when the natural coupling hypothesis holds, we are
able to study the problem of the stability analytically, as it is possible to
derive a single MSE with which the dynamics of the transverse modes
can be studied. By giving up some flexibility on the choice of the interac-
tion functions, the natural coupling allows us to study any higher-order
structure, thus enabling to analyze more practical situations in which the
connectivity has no restriction.



Chapter 2
Synchronization in symmetric
high-order structures

In this chapter, we study the synchronization of coupled chaotic oscilla-
tors in presence of both pairwise and higher-order interactions that are
reciprocal. We provide a series of numerical results that confirm the va-
lidity of the linear stability analysis described in the previous chapter.
First, we start from the most general case where the Laplacian matrices
associated to the different orders of interactions do not commute and
where the coupling functions do not satisfy the natural coupling hypoth-
esis. Focusing on the prototypical case of the Rössler oscillator [143],
we analyze the contribution of the higher-order interactions on the sta-
bility of the synchronous state in several of higher-order motifs. In the
same setting, we consider an example of neuron dynamics, analyzing
a system of Hindmarsh-Rose oscillators [144], interacting through non-
diffusive higher-order coupling functions. Next, we concentrate on those
scenarios where it is possible to obtain a single Master Stability Equation
for the study of synchronization. We first study a case where the Lapla-
cian matrices for the different orders of interaction commute. Then, we
concentrate on the natural coupling hypothesis, analyzing an example of
synchronization in a generic higher-order topology. In particular, we will
consider systems of coupled Rössler oscillators and of interacting Lorenz
systems [145]. Finally, we analyze the differences in the synchronization
behavior of undirected hypergraphs and simplicial complexes.

51
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2.1 General case

In this section, we consider the most general setting where the Laplacian
matrices encoding pairwise and higher-order interactions do not com-
mute and where the natural coupling hypothesis does not hold. As a first
example, we study the synchronization of a system of Rössler oscillators,
whose dynamics is described by the equations

ẋ = −y − z,
ẏ = x + ay,
ż = b + z(x − c).

(2.1)

Note that, using the notation introduced in the previous chapter, we have
x = [x, y, z]T ∈ R3, and f(x) = [−y − z, x + ay, b + z(x − c)]T. Here and in
what follows, the parameters are fixed so to have a chaotic dynamics. In
particular, we select a = b = 0.2, and c = 9 [26]. To show how the stability
of the synchronous state is affected by the topology and the coupling
functions, we concentrate on a few simple higher-order motifs, and we
limit the choice of the coupling functions to a few examples. Moreover,
for sake of clarity we limit our study to the case where only two-body
and three-body interactions are active, though the more general case of
a higher-order structure of order M can be analyzed in a similar way.
In spite of these limitations, our analysis will allow us to highlight the
variety of synchronization behaviors that can emerge from a system of
units coupled through higher-order interactions.

We analyze five different settings, defined by different higher-order
structures and coupling functions, which we label settings I to V. The
motifs considered for the stability analysis are shown in Fig. 2.1. Let us
remark that the three motifs are examples of simplicial complexes, so
given a 2-simplex, i.e., a full triangle, all the possible 1-simplices, i.e., the
links, exist. Observe that all the motifs here studied are formed by two
2-simplices connected to each other by sharing a couple of nodes (panel
A), a single node (panel B), or none, being connected through a link in the
latter case (panel C). In settings I, IV, and V, we consider the first motif, in
setting II, we study the second, while in setting III, the third. Though in
the following analysis we will focus on simplicial complexes, we remark
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Figure 2.1: Motifs considered for the stability analysis. All motifs are
formed by two 2-simplices connected to each other by sharing a couple
of nodes (panel A), a single node (panel B), or none, being connected
through a link in the latter case (panel C).

that the mathematical framework here developed is general enough to be
applicable to hypergraphs.

As regards the interaction functions, we consider the classical diffusive
coupling for the two-body interactions, while we take cubic diffusive-
like functions for the three-body interactions. We remark that, in or-
der to deal with an authentic multi-body dynamics, we need to con-
sider, at least for the three-body interactions, nonlinear coupling func-
tions, as discussed in Chapter 1. In more detail, for the two-body interac-
tions we consider either g(1)(xi, xj) = [xj − xi, 0, 0]T in settings I to IV or
g(1)(xi, xj) = [0, yj − yi, 0]T in setting V, while for the three-body interac-
tions we take either g(2)(xi, xj, xk) = [x2

j xk − x3
i , 0, 0]T in settings I to III,

and V or g(2)(xi, xj, xk) = [0, y2
j yk − y3

i , 0]T in setting IV. Tab. 2.1 summa-
rizes the choices of the topology and of the coupling functions in the five
settings considered. Note that, settings I to III deal with the same interac-
tion functions bur with different higher-order motifs, while settings I, IV,
and V, are characterized by the same topology and different couplings.
This will allow us to analyze separately the role of the structure, and that
of the form of interaction on synchronization.

As an illustrative example, let us here write in an explicit form the
equations governing the dynamics of the system of Rössler oscillators
arranged in setting (1), namely N = 4 oscillators disposed as in motif
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Setting Structure g(1)(xi, xj) g(2)(xi, xj, xk)

I Motif A [xj − xi, 0, 0]T [x2
j xk − x3

i , 0, 0]T

II Motif B [xj − xi, 0, 0]T [x2
j xk − x3

i , 0, 0]T

III Motif C [xj − xi, 0, 0]T [x2
j xk − x3

i , 0, 0]T

IV Motif A [xj − xi, 0, 0]T [0, y2
j yk − y3

i , 0]T

V Motif A [0, yj − yi, 0]T [x2
j xk − x3

i , 0, 0]T

Table 2.1: Structural and functional characteristics of the settings consid-
ered in the numerical analysis of synchronization. The letters associated
to the motifs correspond to the panel labels in Fig. 2.1.

A, interacting through the coupling functions g(1)(xi, xj) = [xj − xi, 0, 0]T

and g(2)(xi, xj, xk) = [x2
j xk − x3

i , 0, 0]T. The equations are

ẋi = − yi − zi + σ1

N

∑
j=1

a(1)ij (xj − xi) + σ2

N

∑
j,k=1

a(2)ijk (x2
j xk − x3

i ),

ẏi = xi + ayi,
żi = b + zi(xi − c).

(2.2)

For each configuration considered, we integrate the corresponding set
of dynamical equations for different values of the coupling strengths σ1
and σ2, and study whether the system of coupled oscillators synchronizes
or not. To characterize the system behavior, we monitor the average syn-
chronization error E, defined as

E =

⟨︄(︄
1

N(N − 1)

N

∑
i,j=1

∥ xj − xi∥2

)︄ 1
2
⟩︄

T

, (2.3)

where T is a sufficiently large time interval over which the synchroniza-
tion error is averaged, after having discarded a transient. For the present
analysis, we integrate the system equations using an Euler algorithm,
with integration step fixed to δt = 10−4, for a time interval of length 2T,
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Figure 2.2: Contour plots of the average synchronization error E (Eq. (2.3))
in the plane (σ1, σ2) for the higher-order motifs in Fig. 2.1. Panels A to C
display the results for settings I to III, respectively. The red continuous
lines correspond to the theoretical prediction of the boundary of the sta-
bility regions, namely the points in the plane where Λmax = 0.

where T = 500. We then compare the results obtained with the theo-
retical predictions. In particular, we evaluate the maximum Lyapunov
exponent of the transverse modes, and we verify whether the area in the
plane (σ1, σ2) for which Λmax < 0 matches that where the average syn-
chronization error goes to zero. To calculate Λmax we use the Sprott’s
algorithm [146] (pp. 116-117). This consists in evaluating the temporal
evolution of the average logarithmic separation of two trajectories start-
ing from slightly different initial conditions, moving back one close to the
other once they get too far apart. Such a procedure of letting evolve and
readjusting the trajectories is repeated C times, and the Lyapunov expo-
nent is evaluated as an average over these cycles. Here we use again an
Euler algorithm to integrate the linearized system, setting the integration
step to δt = 10−3, while for the Sprott’s algorithm we perform I = 105

iterations per cycle, and C = 5 number of cycles.
First, we study how the pattern of interactions affects synchronization

having fixed the coupling functions. The results obtained for the analysis
of settings I to III are reported in Fig. 2.2, in panels A to C, respectively.
We observe that in all cases, the numerical simulations are in accordance
with the theoretical predictions. In fact, the area of the (σ1, σ2) plane
where the average synchronization error goes to zero is in good agree-
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Figure 2.3: Contour plots of the average synchronization error E (Eq. (2.3))
in the plane (σ1, σ2) for different coupling functions. Panels A to C cor-
respond to settings I, IV, and V, respectively. We consider a set of N = 5
systems arranged according to motif A of Fig. 2.1, with coupling func-
tions reported in Tab. 2.1. The red continuous lines correspond to the
theoretical prediction of the boundary of the stability regions, namely the
points in the plane where Λmax = 0. The inset in panel C represents a
zoom of the area close to the origin.

ment with the area where the maximum Lyapunov exponent is negative,
the boundary of which, defined by Λmax = 0, is shown in the figure as
a continuous red line. Moreover, we note that for all motifs the stability
region is bounded. Therefore, according to the MSF classification usually
adopted for the analysis of complex networks, this scenario represents
the higher-order analogous of the so-called type III MSF, i.e., the MSF is
negative in a closed interval of values [26, 49]. Finally, we notice that for
motifs A and B synchronization may be achieved using either two-body
or three-body interactions only, while for motif C the system does not
synchronize for small values of σ1, i.e., for weak two-body interactions.
This is due to the structure of the higher-order motif. In fact, as the two
2-simplices do not have any node in common and they are connected by
a single link, the corresponding two-body interaction becomes essential
for the synchronization of the system, i.e., when σ1 → 0 the simplicial
complex is substantially disconnected.

We now analyze the role of the coupling functions in the synchroniza-
tion behavior of the system given a fixed higher-order structure (motif A).
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The results obtained for the analysis of settings I, IV and V are reported
in Fig. 2.3, in panels A to C, respectively. As for the previous study, the
numerical simulations are in good agreement with the theoretical predic-
tions, corroborating once again the validity of our analysis. Differently
from the previous case, however, we observe that changing the coupling
functions has dramatic effects on the shape of the stability region. In-
deed, when Rössler oscillators are coupled on the x variable, both for the
two-body and the three-body interactions, the stability region is bounded
(panel A). However, when either the two-body or the three-body cou-
pling is made on the y variable, the area of the (σ1, σ2) plane for which
synchronization is achieved becomes, at least in the range of parameters
considered, unbounded (panels B and C), a scenario that is the higher-
order analogous of the type II MSF.

2.1.1 An application to neuron dynamics

Here we discuss a possible application of our mathematical framework,
namely the study of synchronization of neuronal activities. In the context
of neuron dynamics, the study of synchronization is of great relevance.
In fact, on the one hand synchronized oscillations of neurons allow rapid
formation of neural ensembles, which may underlie cognitive flexibility
[147]. On the other hand, anomalous synchronization of neural oscilla-
tions is known to be associated to epileptic seizures [148, 149, 150]. Recent
evidences in neuroscience have highlighted the existence of higher-order
interactions in neuronal activity at both microscopic and macroscopic
levels, though their importance in respect to pairwise interactions re-
mains unclear for both the anatomical and the functional brain networks
[82, 151, 152]. In particular, modeling neuron dynamics in presence of
higher-order interactions is still an open problem. To show the poten-
tial of our mathematical framework in the study of neuronal activity, in
this section we discuss an example of synchronization in an ensemble of
neurons in presence of higher-order interactions.

In details, we study a system of coupled Hindmarsh-Rose (HR) oscil-
lators, interacting through both two-body and three-body couplings. We
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consider the system to be governed by the equations

ẋi =yi − ax3
i + bx2

i − zi + I + σ1

N

∑
j=1

a(1)ij tanh
(︃

xj − xi

0.5

)︃
+

+ σ2

N

∑
j,k=1

a(2)ijk tanh
(︃

xj + xk − 2xi

0.5

)︃
,

ẏi =c − dx2
i − yi,

żi =− rzi + rs(xi − xR),

(2.4)

where using again the notation introduced in the previous chapter, we
have x = [x, y, z]T ∈ R3, and f(x) = [y − ax3 + bx2 − z + I, c − dx2 −
y,−rz + rs(x − xR)]

T. The eight parameters of the model are here fixed
to a = c = 1, b = 3, d = 5, r = 0.006, s = 4, xR = −8/5, and I = 16/5
[49, 153]. Let us remark that we have chosen the interaction functions not
to be diffusive-like, i.e., they can not be written as in Eq. (1.14). On the
one hand, the coupling on the membrane potential, i.e., the x variable,
through hyperbolic tangents accounts for possible saturation phenomena
in the diffusion. On the other hand, this choice gives us the opportunity
to prove the validity of our theoretical framework in the case of couplings
that are not diffusive-like. We remark that this generalizes the standard
MSF approach, where only diffusive-like functions are considered.

As for the previous section, we integrate Eqs. (2.4) for different sets of
σ1 and σ2, monitoring the synchronization of the system using the average
synchronization error (2.3). To integrate the system equations we use an
Euler algorithm, with integration step δt = 10−4, for a time interval of
length 2T, with T = 500. Again, the results obtained are compared with
the theoretical predictions, by verifying if the area in the plane (σ1, σ2) for
which Λmax < 0 predicts the sets of coupling strength values for which E
goes to zero. Λmax is once again calculated using the Sprott’s algorithm,
using an Euler algorithm to integrate the linearized system, setting the
integration step to δt = 10−3, and performing I = 105 iterations per
cycle, and C = 5 number of cycles.

We study the synchronization behavior of system (2.4) by coupling
the HR oscillators according to the motifs displayed in Fig. 2.1. The re-
sults obtained for the three settings are shown in Fig. 2.4, in panels A
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Figure 2.4: Contour plots of the average synchronization error E (Eq. (2.3))
in a system of coupled HR oscillators, in the plane (σ1, σ2), for the higher-
order motifs displayed in Fig. 2.1. The red continuous lines correspond to
the theoretical prediction of the boundary of the stability regions, namely
the points in the plane where Λmax = 0.

to C, respectively. Once again, we see that our theoretical framework is
able to predict the sets (σ1, σ2) for which the synchronous state is sta-
ble. In particular, we observe that synchronization in neuronal activity is
achieved in an unbounded region of the coupling coefficients considered
(type II MSF). Additionally, we remark that three-body interactions play
a positive role in synchronization, as they lower the value of the pair-
wise coupling strength necessary to achieve it. Our results point out that
higher-order interactions may enhance the synchronization of coupled
neurons, paving the way for further studies on the topic [154].

2.2 Structures with commuting Laplacian matri-
ces

We now analyze those cases where it is possible to fully decouple the
equations governing the perturbations transverse to the synchronous state,
and so to derive a Master Stability Function for synchronization of sys-
tems with higher-order interactions. To begin with, in this section we
numerically investigate the scenario where the Laplacian matrices associ-
ated to the different orders of interactions commute. In the next section
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Figure 2.5: Stability regions of the synchronous manifold in the all-to-
all configuration for different values of N. The shaded areas correspond
to the values of the coupling coefficients σ1 and σ2 where the maximum
Lyapunov exponent associated to the transverse modes is negative.

we will instead consider the case of natural coupling.

We consider the case where both the pairwise and the higher-order
couplings are in the all-to-all configuration. We account for a system of
Rössler oscillators, coupled via diffusive-like interaction functions, with
h(1)(xj) = [xj, 0, 0]T and h(2)(xj, xk) = [x2

j xk, 0, 0]T, for the two-body and
three-body couplings, respectively. Note that these functions do not sat-
isfy the natural coupling hypothesis. In this setting, the equation govern-
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ing can be simply rewritten as

ẋi = − yi − zi + σ1

N

∑
j=1,j ̸=i

(xj − xi) + σ2

N

∑
j,k=1,j ̸=k ̸=i

(x2
j xk − x3

i ),

ẏi = xi + ayi,
żi = b + zi(xi − c).

(2.5)

As discussed in Chapter 1, in this setting the MSF only depends on the
coupling strengths σ1,σ2, and on the number of nodes N (see Eg. (1.41)).
Therefore, to analyze the synchronization behavior of the system, we eval-
uate the MSF in the plane (σ1, σ2) for three different values of N, namely
N = 10, N = 50, and N = 100. For the calculation of the MSF we use the
Wolf’s algorithm [155]. This consists in evaluating a single trajectory of
the nonlinear system, taking a reference point along it, finding its nearest
neighbor, and measuring the temporal evolution of the distance between
the two, until this exceeds a certain threshold value. Such a procedure
is repeated multiple times, each time re-choosing the nearest neighbor
of the reference point. The maximum Lyapunov exponent is computed
as the temporal average of the logarithmic separation between the two
points. For the present analysis, we use an Euler algorithm with inte-
gration step size δt = 10−5, with simulation length equal to L = 2500,
averaging over a time window of length T = 0.9L.

The results of our analysis are shown in Fig. 2.5, where the colored ar-
eas represent the values of the coupling coefficients for which Λmax < 0.
We find a type III MSF, with the stability region that moves toward the
origin as the number of nodes is increased. In other words, the bigger the
network, hence the larger the number of two-body and three-body inter-
actions, the lower the threshold values of σ1 and σ2 for which synchro-
nization emerges. Such a result clearly highlihgts the role of the system
size on synchronization. In fact, the number of nodes, as well as the av-
erage degree, can bias graph measures. Therefore, a direct comparisons
between (empirical) networks with different number of nodes or different
density may yield spurious results, thus making crucial to deal with these
and other possible sources of biases [156, 157]. A systematic analysis of
how the size of the network and the average generalized degrees affect
synchronization in presence of higher-order interactions will be carried
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out in future studies.

2.3 Natural coupling functions

To conclude the analysis of synchronization in undirected higher-order
structures, here we study the case of natural coupling. As discussed in
the previous chapter, the natural coupling hypothesis allows us to derive
a MSF that is function of a single parameter α = σ1λ(L), where σ1 is the
strength of the pairwise coupling, while λ(L) is the set of eigenvalues of
an effective Laplacian matrix encoding all orders of interactions (see defi-
nition (1.52)). We remark that, under the natural coupling hypothesis, the
Master Stability Function for synchronization in higher-order structures
is formally analogous to that obtained for complex networks.

To begin with, we calculate the MSF for the Rössler oscillator and for
the Lorenz system with different choices of the coupling functions, all
satisfying the natural coupling hypothesis. The dynamics of the former
is described by Eq. (2.1), while the Lorenz system is represented by

ẋ = σ(y − x),
ẏ = x(ρ − z)− y,
ż = xy − βz,

(2.6)

where we fix the parameters so that the dynamics is chaotic, namely
σ = 10, ρ = 28, and β = 8/3 [145]. For both models, we calculate
the MSF for nine coupling configurations. In particular, we account for
two-body and three-body interactions, coupling either the same oscilla-
tor components, e.g., the x-component of an oscillator influences the x-
component of another, or different components, e.g., the y-component
of an oscillator influences the x-component of another. Hereby, we use
the notation v → w, with v, w ∈ {x, y, z} to denote the coupling scheme
where the w-component of an oscillator is influenced by the v-component
of the others. Tab. 2.2 summarizes the form of the coupling functions
h(1) = h(1)(xj) and h(2) = h(2)(xj, xk) in the nine configurations consid-
ered. For the calculation of the MSF we use again the Wolf’s algorithm,
exploiting an Euler algorithm with integration step size δt = 10−5, with
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Influencing component

x y z

x
h(1) = [x3

j , 0, 0]T

h(2) = [x2
j xk, 0, 0]T

h(1) = [y3
j , 0, 0]T

h(2) = [y2
j yk, 0, 0]T

h(1) = [z3
j , 0, 0]T

h(2) = [z2
j zk, 0, 0]T

In
flu

en
ce

d
co

m
po

ne
nt

y
h(1) = [0, x3

j , 0]T

h(2) = [0, x2
j xk, 0]T

h(1) = [0, y3
j , 0]T

h(2) = [0, y2
j yk, 0]T

h(1) = [0, z3
j , 0]T

h(2) = [0, z2
j zk, 0]T

z
h(1) = [0, 0, x3

j ]
T

h(2) = [0, 0, x2
j xk]

T
h(1) = [0, 0, y3

j ]
T

h(2) = [0, 0, y2
j yk]

T
h(1) = [0, 0, z3

j ]
T

h(2) = [0, 0, z2
j zk]

T

Table 2.2: Coupling configurations considered for the calculation of the
MSF for the Rössler oscillator and for the Lorenz system, in the case of
natural coupling.

simulation length equal to L = 2500, averaging over a time window of
length T = 0.9L.

The MSFs for the different coupling configurations are shown in Fig. 2.6
for the Rössler oscillator, and in Fig. 2.7 for the Lorenz system. Note
that the arrangement of the panels in both figures follows the one of
Tab. 2.2, so that the coupling functions considered for the calculation of
the MSF are the ones reported in the corresponding table entry, e.g., panel
A shows the results obtained for h(1)(xj) = [x3

j , 0, 0]T and h(2)(xj, xk) =

[x2
j xk, 0, 0]T. For both systems considered, we observe different types of

MSF. In particular, for the Rössler oscillator we find that configuration
x → x yields a type III MSF (panel A), while configuration y → y a type
II MSF (panel E). Interestingly, the same behavior was observed also for
coupling functions not respecting the natural coupling hypothesis (see
Fig. 2.3 for a comparison). The remaining coupling schemes lead to type
I MSFs. As regards the Lorenz system, we again observe a variety of syn-
chronization behaviors. In particular, configurations x → x, x → y ,and
y → y yield a type II MSF (panels A, D and E, respectively), while con-
figuration y → x yields a type III MSF. Additionally, we observe that for
configuration z → z the MSF assumes negative values in two different in-
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Figure 2.6: MSFs for the Rössler oscillator using different interaction func-
tions satisfying the natural coupling hypothesis.

tervals of α, the first of which is bounded, while the second is unbounded
(panel I). All remaining coupling schemes yield type I MSFs.

Next, we prove the validity of our theoretical analysis on a real-world
complex structure. In particular, we study the synchronization of a sys-
tem of Rössler oscillators coupled through a higher-order extension of
the paradigmatic Zachary’s karate club network. The original structure
consists of N = 34 nodes connected by 78 links, forming a total of 45
triangles, here meant as a triple of fully connected nodes. Starting from
this network, we can generate a simplicial complex by “filling” a frac-
tion pH of triangles, which means to assume that a fraction of the node
triples interacting through two-body couplings also interact with three-
body couplings.

We account for diffusive-like interaction functions, with h(1)(xj) =

[x3
j , 0, 0]T and h(2)(xj, xk) = [x2

j xk, 0, 0]T, that satisfy the natural coupling
hypothesis. Under these assumptions, the dynamics of each node i is
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Figure 2.7: MSFs for the Lorenz system using different interaction func-
tions satisfying the natural coupling hypothesis.

governed by the equations

ẋi = − yi − zi + σ1

N

∑
j=1

a(1)ij (x3
j − x3

i ) + σ2

N

∑
j,k=1

a(2)ijk (x2
j xk − x3

i ),

ẏi = xi + ayi,
żi = b + zi(xi − c).

(2.7)

We integrate Eqs. (2.7) for different values of the coupling coefficients σ1
and σ2, monitoring the state of the system using the average synchroniza-
tion error E. To integrate the system equations we use an Euler algo-
rithm, with integration step δt = 10−4, for a time interval of length 2T,
with T = 500. We then compare the results obtained with the theoretical
predictions, checking whether the synchronization behavior is predicted
by the MSF. For the calculation of the MSF we again use the Wolf’s algo-
rithm, using an Euler algorithm with integration step size δt = 10−5, with
an integration length equal to L = 2500, averaging over a time window
of length T = 0.9L.
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Figure 2.8: Contour plot of the average synchronization error E (Eq. (2.3))
in a system of Rössler oscillators as a function of the coupling coefficients
σ1 and σ2. The oscillators are coupled through a simplicial complex ob-
tained from the Zachary’s karate club network where all triangles are con-
sidered as being 2-simplices. The red continuous line corresponds to the
boundary of the stability region as predicted by the MSF, i.e., Λmax = 0.

To begin with, we consider the case where all triangles are filled, i.e.,
pH = 1. The results of our analysis are shown in Fig. 2.8. In general, the
MSF is able to predict the values of σ1 and σ2 for which the synchronous
state is stable. In particular, we observe that pairwise interactions play a
crucial role in the onset of synchronization, as this is not achievable when
only three-body interactions are active. Similarly to what we have seen in
the general case (see panel C of Fig. 2.2), this is due to the structure of the
simplicial complex. In fact, if we remove the links, namely we set σ1 = 0 ,
the simplicial complex becomes disconnected, and so synchronization is
prevented. This result shows the capability of our framework of predict-
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ing the synchronization behavior of a system of coupled oscillators even
in real-world higher-order structures.

Finally, we use the theoretical framework we have developed to briefly
discuss whether higher-order interactions promote or impede synchro-
nization. In the case of natural coupling, the stability of the synchronous
state can be analyzed in two steps. First, we derive a MSF, which is in-
dependent on the specific higher-order topology considered, as this only
depends on the local dynamics on the node and on the coupling func-
tions. Second, the MSF is evaluated at the points σ1λi, where λi is any
nontrivial eigenvalue of the effective Laplacian matrix L. Therefore, in
the case of natural coupling, we can study the synchronizability of a given
higher-order structures by analyzing the spectrum of its associated matrix
L, which encodes all the different orders of interaction. In particular, we
can calculate two quantities to assess the synchronizability of the topol-
ogy, namely λ2 and λ2/λN [26, 28]. The former quantity provides the
scaling of synchronization for type II MSF. In this case Λmax(α) < 0 for
α larger than a threshold value αc = σcritical

1 λ2, therefore the larger λ2 is,
the more synchronizable the topology is, as the critical value of the cou-
pling strength for which the threshold αc is achieved is smaller. The ratio
λ2/λN is instead a proxy of synchronizability for type III MSF. In this
latter case, one has Λmax(α) < 0 in an interval [α1, α2], so synchronization
is achieved only if all σ1λi are within such an interval. This holds true if
σ1λ2 > α1 and σ1λN < α2, which yields the condition

λ2

λN
>

α1

α2
. (2.8)

Hence, also in this case the larger the value λ2/λN, the easier it is to
synchronize the system.

To study the synchronizability of higher-order structures, here we con-
sider the example of the Zachary’s karate club network, now constructing
different simplicial complexes by increasing pH, and we analyze how the
quantities λ2 and λ2/λN vary as a function of pH. Additionally, the ef-
fective Laplacian matrix L is a function of r2 = σ2/σ1, we study such a
dependence for different values of the ratio between the coupling coeffi-
cients. The results obtained are shown in Fig. 2.9. We observe two oppo-
site behaviors. On the one hand, we find that λ2 increases as a function
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Figure 2.9: Synchronizability of the higher-order Zachary’s karate club
network as a function of the fraction of active 2-simplices. Panel A repre-
sent the dependence of λ2 on pH, while panel B that of the ratio λ2/λN.
The three curves represent the results obtained for the three different val-
ues of the ratio r2 = σ2/σ1.

of pH, meaning that higher-order interactions promote synchronization
when the MSF is of type II. On the other hand, we note that an increase
in the fraction of 2-simplices reduces the value of λ2/λN, thus negatively
affecting the synchronizability of the higher-order structure for type III
MSF. Consistently, we observe that increasing the value of r2, which is
directly related to the strength of the higher-order interactions, leads to
larger values of λ2 and smaller values of λ2/λN, further confirming the
positive impact of three-body interactions on sychronizability in type II
MSF, and the negative effect on type III MSF.

These results paves the way also for the study of synchronization of
nonidentical oscillators. In such a case, the theory of MSF cannot be
applied, as it is not possible to define an invariant manifold. However, it
possible to show numerically that the ratio λ2/λN still provides a good
proxy of the propensity for synchronization of a network of nonidentical
units [29]. Hence, investigating whether this result also applies to higher-
order networks represents an interesting research question, which will be
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Figure 2.10: Comparison between the synchronization behaviors on a
simplicial complex (panel A) and on a hypergraph (panel B). The con-
tour plots show the average synchronization error E (Eq. (2.3)). The red
continuous line corresponds to the boundary of the stability region as
predicted by the MSF, i.e., Λmax = 0.

addressed in future studies.

2.3.1 A comparison between hypergraphs and simplicial
complexes

So far, all the numerical examples we have discussed have been carried
out on simplicial complexes. However, the mathematical framework here
developed is general enough to be applicable to both simplicial complexes
and hypergraphs. Yet, despite the formal similarities of the equations for
synchronization in the two higher-order structures, different dynamical
behaviors can be obtained for the two. Hence, we conclude this chapter
by presenting some numerical analysis aiming to compare the synchro-
nization behaviors in hypergraphs and simplicial complexes.

We consider a system of N Rössler oscillators, coupled through diffusive-
like interaction functions, with h(1)(xj) = [x3

j , 0, 0]T and h(2)(xj, xk) =
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[x2
j xk, 0, 0]T, which satisfy the natural coupling hypothesis. The dynamics

of the system in this configuration is governed by Eqs. (2.7). As con-
cerns the topology of the coupling, we account for an example of simpli-
cial complex and one of hypergraph. For the former, we take the motif
displayed in panel C of Fig. 2.2. For the latter we consider the same
motif where we remove the links adjacent to the 2-simplices, meaning
that the triples of nodes interact only with three-body couplings. For the
two structures, we integrate Eqs. (2.7) for different values of the coupling
strengths σ1 and σ2, and we monitor the system synchronization with the
average synchronization error E. To integrate the system equations, we
use an Euler algorithm, with integration step fixed to δt = 10−4, for a
time interval of length 2T, where T = 500. Then, we compare the results
obtained with the theoretical predictions of the MSF, that we calculate
using the Wolf’s algorithm (integration step size δt = 10−5, integration
length L = 2500, averaging time window length T = 0.9L).

The results of the analysis are shown in Fig. 2.10. Beside the good
agreement between the theoretical predictions and the numerical simula-
tions, which confirms the applicability of our approach to hypergraphs,
we observe a different synchronization behavior between the two higher-
order structures. Indeed, comparing the two panels, we note that, while
the simplicial complex can achieve synchronization even for small values
of σ2 (panel A), this is not the case for the hypergraph, which requires an
higher value of the coupling coefficient to synchronize (panel B). Hence,
given the structure of the hypergraph, both two-body and three-body
interactions are needed for the onset of synchronization, the presence
of pairwise interactions among the nodes involved in three-body interac-
tions in the simplicial complex guarantees the stability of the synchronous
state even for small values of σ2.

In conclusion, the results presented in this chapter confirm the va-
lidity of the theoretical derivation of the necessary conditions for which
the synchronous state is stable in undirected higher-order topologies. We
have numerically investigated the role of the structure of the higher-order
interactions and of the form of the coupling functions on the dynamics
of the system of coupled oscillators, finding synchronization behaviors
similar to those observed in complex networks. Additionally, we have
explored the interplay between different orders of interaction and their
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role on the system synchronizability in the special cases of commuting
Laplacian matrices and of natural coupling functions. Finally, we have
illustrated the differences in the synchronization behavior between sim-
plicial complex and in hypergraphs. In the next chapter, we will extend
the analysis of synchronization in higher-order structures by considering
directionality in the higher-order interactions.
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Chapter 3
Synchronization in directed
high-order structures

Having studied the emergence of synchronization in system of coupled
chaotic oscillators with reciprocal pairwise and higher-order interactions,
in this chapter we focus on the more general scenario where the coupling
among the units can be nonreciprocal. In particular, here we present a
few numerical analyses, all carried out using systems of Rössler oscillator
interacting through natural coupling functions, showing how the pres-
ence of privileged directions in higher-order interactions can dramatically
change the synchronization behavior of the system. We investigate how
tuning the directionality in higher-order interactions can induce either
the desynchronization of a system of synchronized units or the stabiliza-
tion of an otherwise unstable synchronized state. We then compare and
discuss the different ways in which the tuning of directionality can be per-
formed. Lastly, we accompany these studies with a few results showing
how directionality affects the eigenvalue distribution of randomly gener-
ated hypergraphs.

73
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3.1 The effect of directionality on synchroniza-
tion

We begin our analysis by considering a system of N coupled Rössler
oscillators, the dynamics of which is governed by Eq. (2.1). Again, we
set the system parameters to that its dynamics is chaotic, namely we fix
a = b = 0.2, and c = 9. For the sake of clarity, we only consider two-
body and three-body interactions. We couple the oscillators on the x-
component, using diffusive-like functions, with h(1)(xj) = [x3

j , 0, 0]T and

h(2)(xj, xk) = [x2
j xk, 0, 0]T. Note that these satisfy the natural coupling hy-

pothesis. Under these assumptions, we can write the equations governing
the dynamics of each node i, which are

ẋi = − yi − zi + σ1

N

∑
j=1

a(1)ij (x3
j − x3

i ) + σ2

N

∑
j,k=1

a(2)ijk (x2
j xk − x3

i ),

ẏi = xi + ayi,
żi = b + zi(xi − c).

(3.1)

To study how directionality affects the synchronization of the system,
we account for a weighted directed hypergraph. In particular, we con-
sider a higher-order structure of which we can tune how directed are
its hyperedges as a function of a single “symmetry parameter” p. We
will take into consideration a hypergraph that has reciprocal two-body
interactions and nonreciprocal three-body interactions, respectively, so
to assess the role of directionality in higher-order interactions only. To
construct such a structure, we start from an undirected ring network of
N nodes, where N is even. By labeling the nodes in a consecutive or-
der, each node i will be connected to nodes i − 1 and i + 1, namely we
set A(1)

i,i−1 = A(1)
i−1,i = 1 and A(1)

i,i+1 = A(1)
i+1,i = 1. Then, we add a set

of weighted 2-hyperedges among adjacent triple of nodes. In particu-
lar, we add N/2 2-hyperedges connecting nodes (1, 2, 3), (3, 4, 5), . . . ,
(N − 1, N, 1). As discussed in Chapter 1, an undirected 2-hyperedge can
be decomposed in three 1-directed hyperedges. Hence, for each triple
of nodes (i, i + 1, i + 2) where we have added an hyperedge, we set a
different weight for the three directions of the interactions so to create a
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Figure 3.1: Graphical representation of the weighted hypergraph used for
the numerical analyses of directionality in higher-order networks, with
N = 6 nodes. The arrow indicates the node to which the 1-directed
hyperedge points when p = 0.

privileged direction in the ring of nodes. In particular, we assign weight
1 to the hyperedge directed from nodes i and i + 1 to node i + 2, while
we assign weight p, with p ∈ [0, 1] to the hyperedge directed from nodes
i + 1 and i + 2 to node i and to that directed from nodes i and i + 2
to node i + 1. Formally, this means to set A(2)

i+2,i,i+1 = A(2)
i+2,i+1,i = 1,

A(2)
i,i+1,i+2 = A(2)

i,i+2,i+1 = p, and A(2)
i+1,i,i+2 = A(2)

i+1,i+2,i = p. In this way,
we can tune with continuity how directed the hyperedges are. In fact,
when p = 0, only one of the three directions of the hyperdge is active,
which means that the higher-order interactions are completely nonrecip-
rocal, as only one node is influenced by the presence of the other two and
not vice-versa. As p increases, so does the weight of the other two direc-
tions. When p = 1, we recover an undirected structure, which represent
the case of reciprocal three-body interactions, as each node in the triple is
affected by the other two in the same way. A graphical representation of
the hypergraph with N = 6 nodes is displayed in Fig. 3.1.

As an example, we now write the adjacency tensors and the Laplacian
matrices that characterize the hypergraph in the case N = 6. We start
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from the adjacency matrix A(1), encoding the pattern of the two-body
interactions. This is given by

A(1) =

⎛⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ . (3.2)

Let us remark that, as we are considering two-body interactions that are
reciprocal, A(1) is symmetric. From the adjacency matrix, we can evaluate
the Laplacian matrix relative to the pairwise interactions, namely

L(1) =

⎛⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 0 −1
−1 2 −1 0 0 0

0 −1 2 −1 0 0
0 0 −1 2 −1 0
0 0 0 −1 2 −1

−1 0 0 0 −1 2

⎞⎟⎟⎟⎟⎟⎟⎠ , (3.3)

which is symmetric as well. As regards the three-body interactions, these
are encoded by the adjacency tensor A(2)(p), which is a function of the
symmetry parameter p. This reads

A(2)(p) = ({A(2)
1jk(p)}, . . . , {A(2)

6jk(p)}) =⎛⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 p 0 0 0
0 p 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 p 0 0 0
0 0 0 0 0 0
p 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 p 0
0 0 0 p 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 p 0
0 0 0 0 0 0
0 0 p 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 p
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 0
p 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 p 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
p 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠ ,

(3.4)

where {A(2)
1jk(p)},. . . ,{A(2)

6jk(p)} are the matrices from fixing the first index
of the tensor. We observe that, since we are considering nonreciprocal
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three-body interactions, the adjacency tensor A(2)(p) is in general not
symmetric to a generic permutation of its indexes, e.g., A123(p) ̸= A312(p)
for p ̸= 1. However, when p = 1, namely when all interactions among the
nodes have the same strength, the tensor becomes symmetric, meaning
that A(2)

ijk (p = 1) = 1 ⇒ A(2)
π(ijk)(p = 1) = 1, with π a generic permutation

of indexes. Also, let us remark that the matrices resulting from fixing the
first index of the tensor are symmetric for any value of p. Given A(2)(p),
we can calculate the Laplacian matrix for the three-body interactions (see
Eq. (1.6)). This is given by

L(2)(p) =

⎛⎜⎜⎜⎜⎜⎜⎝

2(1 + p) −p −p 0 −1 −1
−p 2p −p 0 0 0
−1 −1 2(1 + p) −p −p 0

0 0 −p 2p −p 0
−p 0 −1 −1 2(1 + p) −p
−p 0 0 0 −p 2p

⎞⎟⎟⎟⎟⎟⎟⎠ . (3.5)

Consistently, since the adjacency tensor A(2)(p) is not symmetric, L(2)(p)
is not symmetric as well. Yet, when p = 1, we retrieve as expected a
symmetric Laplacian matrix.

Let us here point out a that the way in which we tune the hypergraph
from directed to undirected does not conserve the total strength of the
interactions. To explain this, let us consider the case of three nodes i,
j, and k interacting through nonreciprocal interactions. We assume the
three possible 1-directed hyperedges among the nodes to have different
weight, in particular we take A(2)

i,j,k = A(2)
i,k,j = 1, A(2)

j,k,i = A(2)
j,i,k = p, and

A(2)
k,i,j = A(2)

k,j,i = p. Hence, the strength of the hyperedge resulting from
the composition of three 1-directed hyperedges increases as a function of
p. When p = 0 only one direction is active, i.e., from j and k to i, so the
total strength of the interaction among the nodes, which remains nonre-
ciprocal, is 1. The total strength increases as we increase p, until we reach
p = 1, where all directions has the same strength, so the total strength
of the reciprocal interaction is three times the strength of the nonrecip-
rocal interactions. A graphical representation of the symmetrization is
shown in Fig. 3.2. Such a symmetrization method is motivated by the
fact that, in real-world systems, a change in the strength of an interaction
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Figure 3.2: Graphical representation of the symmetrization of a 1-directed
2-hyperedge, as a function of the symmetry parameter p. Starting from a
single 1-directed hyperedge (p = 0), the strength of the other directions
is varied until all directions of interaction have the same weight (p =
1). Note that the strength of the total interaction, which transits from
nonreciprocal to reciprocal, increases as a function of p.

does not necessarily imply a variation in the reciprocal interactions that
keeps constant the total interaction strength. However, a change in the
strength of the composed hyperedge utterly impacts the synchronization
behavior of the system. For this reason, in the next section we will study
an alternative symmetrization that conserves the total coupling strength
of the interaction.

Our analysis begins with calculating the MSF associated to system (3.1),
which means to linearize the equations governing the system dynamics,
and to evaluate the maximum Lyapunov exponent corresponding to the
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Figure 3.3: Synchronization diagram in the plane (p, σ1) for system (3.1).
The white area indicates the region of stability, while the blue one the
region where the synchronous state is unstable. The horizontal dashed
red lines evidence two generic values of σ1 for which the system transits
from a synchronized to an unsynchronized state as we increase p (σ1 =
0.02), and the other way around (σ1 = 0.007).

motion transverse to the synchronization manifold. As previously dis-
cussed, the property of stability in the case of coupling functions respect-
ing the natural coupling hypothesis will depend on the eigenvalues of
an effective Laplacian matrix L encoding the contribution of the different
orders of interaction. Compared to the case of undirected higher-order
structures, however, as L is not symmetric, its spectrum will be in general
complex. Hence, the MSF will be a function of a complex parameter, i.e.,
Λmax(α + iβ). For synchronization to be achieved, a necessary condition
is that Λmax(α + iβ) < 0, where α + iβ is any non-zero eigenvalue of L
times the coupling coefficient σ1. Conversely, if there is at least an eigen-
value of L such that Λmax > 0, then the synchronous state is unstable. To
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calculate the MSF we exploit again the Wolf’s algorithm, using an Euler
algorithm with integration step size δt = 10−5, with simulation length
equal to L = 2500, averaging over a time window of length T = 0.9L.

To illustrate the effect of directionality on synchronization, we con-
sider a directed weighted hypergraph of N = 20 nodes, built with the
algorithm described above. We calculate the eigenvalues of the associ-
ated effective Laplacian matrix L as a function of the symmetry param-
eter p. To study the interplay between directionality and strength of the
interactions, we also vary the coupling strength σ1, having fixed the ra-
tio r2 = σ2/σ1 = 10. We remark that the eigenvalues of L depends on
the structure of interactions, encoded by the Laplacian matrices L(1) and
L(2)(p), and on the ratio r2. Hence, since the latter is fixed, the spectrum
of L only depends on the symmetry parameter p. In this way, we ob-
tain a synchronization diagram in the plane (p, σ1), which is shown in
Fig. 3.3. The white area represents the values (p, σ1) for which the system
synchronizes, namely the sets for which Λmax < 0 for every eigenvalue
of L. On the contrary, the blue area shows the region of instability, i.e.,
Λmax > 0 for at least one eigenvalue of L. We find different behaviors of
the system as a function of the coupling strength σ1. First, we see that for
very small values of σ1, the system does not synchronize for any value
of the symmetry parameter p, meaning that the coupling is too weak to
win the divergence of the perturbations around the synchronous state.
Conversely, we also note an interval of values of σ1 for which the system
remains synchronized no matter the value of p. Finally, we observe that
there are two other regions where a variation in the value of the symme-
try parameter leads to a transition in the system either from synchronized
to unsynchronized or the other way around. An example of these two be-
haviors is hallmarked in the figure by the two horizontal dashed red lines.
On the one hand, for σ1 = 0.02, we see that the synchronous state is stable
for small values of p, namely when the hyperedges are strongly directed,
while it loses stability for larger values of p, i.e., when the hypergraph
is more symmetric. On the other hand, for σ1 = 0.007 we observe the
opposite behavior, with synchronization that is achieved by increasing p,
while a strongly directed hypergraph prevents the synchronization of the
chaotic oscillators.

The system of coupled oscillators is synchronized when all points
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Figure 3.4: Desynchronization induced by symmetrization. In the back-
ground, the white area represents the stability region of the synchronous
state, identified by a negative MSF, the black line its boundary, while the
light blue area the region where the synchronization manifold is unsta-
ble, namely the area of the complex plane for which the MSF is positive.
The colored lines display the locus of the eigenvalues of ˜︁L as a function
of p, for a weighted hypergraph with N = 20 nodes, pairwise coupling
coefficients fixed to σ1 = 0.02, and σ2 = 10σ1. The color coding is such
that the case p = 0 is represented in light red, while the case p = 1 in
dark red. Panel B shows a zoom of the area close to the origin.

σ1λ(L) are inside the region of the complex plane (α, β) for which Λmax is
negative, while it not synchronized when one or more points are outside
the same region. Hence, the transition of the system from a synchronized
to a desynchronized state as a function of p occurs when at least one of
the eigenvalues of ˜︁L = σ1L, which depends on p, leaves the region of
stability. On the other way around, the transition from desynchroniza-
tion to a synchronization is achieved when all the eigenvalues of ˜︁L enter
the stability region. To show this, we consider the locus of the eigenval-
ues of ˜︁L as a function of p, accounting for two values of σ1 highlighted in
Fig. 3.3, corresponding to the two possible transitions that can be induced
by directionality. Figs. 3.4 and 3.5 show the transition from synchroniza-
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Figure 3.5: Desynchronization induced by directionality. In the back-
ground, the white area represents the stability region of the synchronous
state, identified by a negative MSF, the black line its boundary, while the
light blue area the region where the synchronization manifold is unsta-
ble, namely the area of the complex plane for which the MSF is positive.
The colored lines display the locus of the eigenvalues of ˜︁L as a function
of p, for a weighted hypergraph with N = 20 nodes, pairwise coupling
coefficients fixed to σ1 = 0.007, and σ2 = 10σ1. The color coding is such
that the case p = 0 is represented in light red, while the case p = 1 in
dark red. Panel B shows a zoom of the area close to the origin.

tion to desynchronization as a function of p, and the other way around,
respectively. In both figures, the light blue area in the background rep-
resents the region where the MSF is positive, hence the area where the
synchronous state is unstable, while the white area portrays the region
of stability. The boundary value Λmax(α + iβ) = 0 is instead shown as
a continuous black line between the two regions. We observe that the
region of the complex plane (α, β) for which Λmax < 0 is bounded, both
along the real axis and the imaginary one. This shape of the stability
region, which is the complex-value equivalent of a type III MSF [48, 26],
implies that either a large value of α or a large value of β can induce the
system instability. The colored lines show the locus of the eigenvalues of
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˜︁L as a function of p, so that the case p = 0 is represented in light red,
while the case p = 1 in dark red. Note also that in both figures panel
B represents a zoom of the area close to the origin. In Fig. 3.4, which
refers to the case where the coupling coefficient is fixed to σ1 = 0.02, we
note that for large enough p the eigenvalues cross the boundary and leave
the stability region, thus inducing the desynchronization of the system.
Conversely, in Fig. 3.5, displaying the case σ1 = 0.07, we observe that the
eigenvalues of ˜︁L enter the stability region for large values of p, meaning
that more reciprocal higher-order interactions favors the synchronization
of the system of oscillators.

As clear from these results, directionality can change the dynamical
behavior of a system of coupled chaotic oscillators, either inducing the
synchronization of the system or its desynchronization. However, as
we have seen in the case of undirected higher-order structures, a dif-
ferent choice of the coupling functions leads to a different synchroniza-
tion behavior. Hence, to conclude this section, we consider as a further
example the case of a system of Rössler oscillators coupled on the y-
component. In particular, we account again for diffusive-like functions,
with h(1)(xj) = [0, y3

j , 0]T and h(2)(xj, xk) = [0, y2
j yk, 0]T, which satisfy the

natural coupling hypothesis. The equations governing the dynamics of
the system are

ẋi = − yi − zi,

ẏi = xi + ayi + σ1

N

∑
j=1

a(1)ij (y3
j − y3

i ) + σ2

N

∑
j,k=1

a(2)ijk (y
2
j yk − y3

i ),

żi = b + zi(xi − c).

(3.6)

As we have done for the previous example, we first calculate the MSF
associated to system (3.6). To do so, we account again for the Wolf’s al-
gorithm, using an Euler algorithm with integration step size δt = 10−5,
with simulation length equal to L = 2500, averaging over a time window
of length T = 0.9L. We study the effect of directionality on the syn-
chronization behavior of a system of N = 20 oscillators whose structure
of interactions is given by the directed weighted hypergraph described
above. In particular, we calculate the eigenvalues of the effective Lapla-
cian matrix ˜︁L, and study how they vary as a function of the symmetry
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Figure 3.6: Desynchronization induced by directionality for a system of
Rössler oscillators coupled on the y component. In the background, the
white area represents the stability region of the synchronous state, iden-
tified by a negative MSF, the black line its boundary, while the light blue
area the region where the synchronization manifold is unstable, namely
the area of the complex plane for which the MSF is positive. The colored
lines display the locus of the eigenvalues of ˜︁L as a function of p, for a
weighted hypergraph with N = 20 nodes, pairwise coupling coefficients
fixed to σ1 = 0.001 and σ2 = 0.12. The color coding is such that the case
p = 0 is represented in light red, while the case p = 1 in dark red. Panel
B shows a zoom of the area close to the origin.

parameter p. We do so for two sets of the coupling coefficient σ1,σ2,
namely σ1 = 0.001 and σ2 = 0.12, and σ1 = 0.01 and σ2 = 0.16. The
locus of the eigenvalues in these two case studies is shown in Figs. 3.6
and 3.6 respectively. Once again, in both figures the light blue area in the
background indicates the region where the synchronous state is unstable,
while the white area portrays the region of stability, with the boundary
between the two represented as a continuous black line. Similarly, the
colored lines show the locus of the eigenvalues of ˜︁L as a function of p,
so that the case p = 0 is represented in light red, while the case p = 1 in
dark red. Again, in both figures panel B represents a zoom of the area
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Figure 3.7: The shape of the MSF for a system of Rössler oscillators cou-
pled on the y component does not permit the loss of synchronization by
making the higher-order interactions symmetric. In the background, the
white area represents the stability region of the synchronous state, iden-
tified by a negative MSF, the black line its boundary, while the light blue
area the region where the synchronization manifold is unstable, namely
the area of the complex plane for which the MSF is positive. The colored
lines display the locus of the eigenvalues of ˜︁L as a function of p, for a
weighted hypergraph with N = 20 nodes, pairwise coupling coefficients
fixed to σ1 = 0.01, and σ2 = 0.16. The color coding is such that the case
p = 0 is represented in light red, while the case p = 1 in dark red. Panel
B shows a zoom of the area close to the origin.

close to the origin. Compared to the case where the Rössler oscillators
are coupled on the x component, we observe that the region of stability
is unbounded, both along the real axis and the imaginary one, being that
the complex-value equivalent of a type II MSF. The shape of the MSF in
this configuration ultimately determines the synchronization behavior of
the system in relation to its degree of symmetry, so that it is possible to
desynchronize the system by enhancing the directionality of the higher-
order structure but it is not possible to do so by making the interactions
among triples of nodes more symmetric. In Fig. 3.6, we observe that the
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eigenvalues of ˜︁L, some of which are in the region where Λmax > 0, enter
the stability region for large enough values of p. Hence, in this scenario it
is the presence of privileged directions in the higher-order interactions to
induce the desynchronization of the system. However, in Fig. 3.7, we note
that if we set the coupling coefficient in such a way that the synchronous
state that is stable for p = 0, we are not able to make the synchronization
manifold unstable by varying the value of p. In facts, given the shape of
the MSF, the eigenvalues of ˜︁L remain in the area of the complex plane
for which Λmax < 0, meaning that it is not possible to desynchronize the
system by making the higher-order interactions more reciprocal.

3.2 A symmetrization preserving the total cou-
pling strength

In the previous section, we have shown how directionality in higher-
order interactions can induce either the synchronization of a system of
coupled chaotic oscillators or its desynchronization. To do so, we have
accounted for a method to control the degree of symmetry in the higher-
order structure, which allowed us to study the impact of directionality on
the synchronization behavior. However, as we have remarked, the way
in which we have tuned the directionality in higher-order structures did
not conserve the total strength of the interactions. This may represent a
confounding factor, as the change in the stability of the synchronous state
may be due to a modification in the coupling strength itself, and not to
directionality. Consequently, to determine whether the variations in the
synchronization behavior of the system are actually due to directionality,
here we analyze a new symmetrization method that conserves the total
coupling strength of the higher-order interactions.

Starting from a configuration where only one direction in the hyper-
edge has a nonzero weight, the previous symmetrization method con-
sisted in gradually increasing the weight of the remaining directions until
all of them had the same weight. To keep the total coupling strength con-
stant, in this new symmetrization method we increase the strength of the
others directions, while properly decreasing the strength of the first direc-
tion considered, until they have all the same strength. Let us again con-
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Figure 3.8: Graphical representation of the alternative symmetrization of
a 1-directed 2-hyperedge, as a function of the symmetry parameter q.
Starting from a single 1-directed hyperedge (q = 0), the strength of the
other directions is varied until all directions of interaction have the same
weight (q = 1/3). Note that the strength of the total interaction, which
transits from nonreciprocal to reciprocal, is constant.

sider the case of three nodes i, j, and k interacting through nonreciprocal
interactions. We assume the three possible 1-directed hyperedges among
the nodes be characterized by the symmetry parameter q ∈ [0, 1/3], so
that A(2)

i,j,k = A(2)
i,k,j = 1 − 2q, A(2)

j,k,i = A(2)
j,i,k = q, and A(2)

k,i,j = A(2)
k,j,i = q.

In this case, when q = 0 only one direction is active, namely the one
from j and k to i, while we have that all directions have the same weight
for q = 1/3. As for the first symmetrization method, this second proce-
dure allows us to tune the directionality of the hyperedges, ranging from
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a case where only one privileged direction in the interaction is present,
to the case where the interactions are reciprocal. However, compared to
the method described in the previous section, using this alternative sym-
metrization the total coupling strength of the three-body interaction does
not change as we vary the symmetry parameter q. A graphical represen-
tation of symmetrization method is shown in Fig. 3.8.

We again consider the weighted directed hypergraph described in the
previous section, where this time we tune the directionality of the higher-
order structure using the alternative symmetrization method. Starting
from an undirected ring network of N nodes, where N is even, where
we label the nodes in a consecutive order, we add a set of weighted 2-
hyperedges among connecting nodes (1, 2, 3), (3, 4, 5), . . . , (N − 1, N, 1),
setting A(2)

i+2,i,i+1 = A(2)
i+2,i+1,i = 1 − 2q, A(2)

i,i+1,i+2 = A(2)
i,i+2,i+1 = q, and

A(2)
i+1,i,i+2 = A(2)

i+1,i+2,i = q. As an example, let us here write the adjacency
tensors and the Laplacian matrices characterizing the hypergraph in the
case N = 6. As for the first symmetrization method, the adjacency matrix
A(1) and its associated Laplacian matrix L(1), which encode the two-body
interactions, are given by Eqs. (3.2) and (3.3) respectively. As concerns
the adjacency tensor A(2)(q), encoding the structure of the three-body
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interactions, we have

A(2)(q) = ({A(2)
1jk(q)}, . . . , {A(2)

6jk(q)}) =⎛⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 q 0 0 0
0 q 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1 − 2q
0 0 0 0 1 − 2q 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 q 0 0 0
0 0 0 0 0 0
q 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎜⎝

0 1 − 2q 0 0 0 0
1 − 2q 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 q 0
0 0 0 q 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 q 0
0 0 0 0 0 0
0 0 q 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 q
0 0 0 0 0 0
0 0 0 1 − 2q 0 0
0 0 1 − 2q 0 0 0
0 0 0 0 0 0
q 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 q 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
q 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠ ,

(3.7)

where {A(2)
1jk(q)},. . . ,{A(2)

6jk(q)} are the matrices obtained by fixing the first

index of the tensor. As expected, the adjacency tensor A(2)(q) is in general
not symmetric to a generic permutation of its indexes, e.g., A123(q) ̸=
A312(q) for q ̸= 1/3, while we recover a symmetric tensor for q = 1/3,
i.e., A(2)

ijk (1/3) = 1 ⇒ A(2)
π(ijk)(1/3) = 1, with π a generic permutation

of indexes. We remark that the matrices resulting from fixing the first
index of the tensor are instead symmetric for any value of q. We can
then calculate the Laplacian matrix for the three-body interactions (see
Eq. (1.6)), which is given by

L(2)(q) =⎛⎜⎜⎜⎜⎜⎜⎝

2(1 − q) −q −q 0 −(1 − 2q) −(1 − 2q)
−q 2q −q 0 0 0

−(1 − 2q) −(1 − 2q) 2(1 − q) −q −q 0
0 0 −q 2q −q 0

−q 0 −(1 − 2q) −(1 − 2q) 2(1 − q) −q
−q 0 0 0 −q 2q

⎞⎟⎟⎟⎟⎟⎟⎠ .
(3.8)
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Figure 3.9: Synchronization diagram in the plane (q, σ1) for system (3.1).
The white area indicates the region of stability, while the blue one the
region where the synchronous state is unstable. The horizontal dashed
red lines evidence two particular values of σ1 for which the system tran-
sits from a synchronized to an unsynchronized state as we increase q
(σ1 = 0.195), and the other way around (σ1 = 0.03).

As the adjacency tensor A(2)(q) is not symmetric in general, L(2)(q) is
not symmetric as well. When q = 1/3, however, we the Laplacian matrix
becomes symmetric, as expected.

We again analyze the system of Rössler oscillators coupled on the x
component whose dynamics is described in Eq. (3.1), where this time
the terms a(2)ijk are the elements of the adjacency tensor A(2)(q) whose
expression is given in Eq. (3.7). As it is independent on the particular
topology considered, we use the MSF that we have calculated in the pre-
vious section for the first symmetrization method. To assess the impact of
directionality on synchronization, we consider again a directed weighted
hypergraph of N = 20 nodes, and we evaluate the eigenvalues of its as-
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sociated effective Laplacian matrix L as a function of the new symmetry
parameter q. Moreover, we also vary the coupling strength σ1, fixing the
ratio r2 = σ2/σ1 = 0.7. In this way, we construct a synchronization di-
agram in the plane (q, σ1), which we report in Fig. 3.9. As for the first
symmetrization method, we find four different behaviors as a function of
the coupling strength σ1. First, we see that either for very small and very
large values of σ1, the system does not synchronize for any value of q.
This means that there is an interval of values of σ1 for which the coupling
is too weak to dump out the perturbations transverse to the synchroniza-
tion manifold, and an interval of values for which the coupling is rather
too strong to allow the synchronization of the system. Then, we note an
interval of values of σ1 for which the system is synchronized no matter
the degree of symmetry of the higher-order structure. Lastly, we observe
two regions where a variation in the value of q leads to a transition in
the state of the system either from synchronized to unsynchronized or
the other way around. The presence of these two regions confirms that
directionality can change the synchronization behavior of the system by
itself, as the possible confounding factors have been here overcome. The
horizontal dashed red lines in the figure highlight an example of the two
possible transitions. First, for σ1 = 0.195, we see that the synchroniza-
tion manifold is stable for small values of q, so when the hypergraph is
more directed, while stability is lost for larger values of q, so for a more
symmetric hypergraph. On the other hand, for σ1 = 0.03 the opposite
behavior is observed, with the system synchronization that is achieved
for larger values of q, while the presence of a strong directionality in the
higher-order structure induces the loss of synchronization.

For these two values of σ1, we study the locus of the eigenvalues of˜︁L as a function of q. They are reported in Figs. 3.10 and 3.11, which
refer to the cases σ1 = 0.195 and σ1 = 0.03, respectively. In both figures,
the light blue area displays the region where the synchronous state is
unstable, determined by a positive value of the MSF Λmax, the white
area the region of stability, namely where the MSF is negative, while the
continuous black line the boundary between the two, i.e., Λmax = 0. The
colored lines show the locus of the eigenvalues of ˜︁L as a function of
q, so that the case q = 0 is displayed in light red, while the case q =
1/3 is in dark red. Panel B of both figures shows a zoom of the area
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Figure 3.10: Desynchronization induced by an alternative symmetriza-
tion. In the background, the white area represents the stability region
of the synchronous state, identified by a negative MSF, the black line its
boundary, while the light blue area the region where the synchronization
manifold is unstable, namely the area of the complex plane for which the
MSF is positive. The colored lines display the locus of the eigenvalues
of ˜︁L as a function of q, for a weighted hypergraph with N = 20 nodes,
pairwise coupling coefficients fixed to σ1 = 0.195, and σ2 = 0.7σ1. The
color coding is such that the case q = 0 is represented in light red, while
the case q = 1/3 in dark red. Panel B shows a zoom of the area close to
the origin.

close to the origin. In Fig. 3.10, we can observe that an higher degree of
symmetry in the hypergraph yields the desynchronization of the system
of oscillators. In fact, we note how the eigenvalues of ˜︁L leave the stability
region of the synchronous state for large enough q, which induces the
desynchronization of the system. Conversely, in Fig. 3.5 displays the case
where it is the directionality to destabilize the synchronization manifold.
Indeed, we see that the eigenvalues leave the stability region for smaller
values of q, which means that a more directed higher-order structure
hampers the system synchronization.

As we have done for the first method of symmetrization, here we con-
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Figure 3.11: Desynchronization induced by directionality, with the al-
ternative symmetrization method. In the background, the white area
represents the stability region of the synchronous state, identified by a
negative MSF, the black line its boundary, while the light blue area the
region where the synchronization manifold is unstable, namely the area
of the complex plane for which the MSF is positive. The colored lines dis-
play the locus of the eigenvalues of ˜︁L as a function of q, for a weighted
hypergraph with N = 20 nodes, pairwise coupling coefficients fixed to
σ1 = 0.03, and σ2 = 0.7σ1. The color coding is such that the case q = 0
is represented in light red, while the case q = 1/3 in dark red. Panel B
shows a zoom of the area close to the origin.

clude the section analyzing the case of a system of Rössler oscillators
coupled on the y-component. The dynamics of the systems is described
in Eq. (3.6), where again a(2)ijk is the element (i, j, k) of the adjacency tensor

A(2)(q) (see Eq. (3.7)). The first step would be to evaluate the MSF associ-
ated to system (3.6), but since this does not depend on the structure of the
interactions, we can use the one calculated in the previous section. We
analyze the effect of directionality in the y − y coupling configuration in
a system of N = 20 oscillators, with the structure of interactions given by
the usual directed weighted hypergraph. We calculate the eigenvalues of
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Figure 3.12: Desynchronization induced by directionality for a system
of Rössler oscillators coupled on the y component, with the alternative
symmetrization. In the background, the white area represents the sta-
bility region of the synchronous state, identified by a negative MSF, the
black line its boundary, while the light blue area the region where the
synchronization manifold is unstable, namely the area of the complex
plane for which the MSF is positive. The colored lines display the locus
of the eigenvalues of ˜︁L as a function of q, for a weighted hypergraph
with N = 20 nodes, pairwise coupling coefficients fixed to σ1 = 0.001
and σ2 = 0.12. The color coding is such that the case q = 0 is represented
in light red, while the case q = 1/3 in dark red. Panel B shows a zoom of
the area close to the origin.

the effective Laplacian matrix ˜︁L, studying how they vary as a function of
the symmetry parameter q. To better appreciate the differences between
the two symmetrization methods, we account for the same two sets of
coupling coefficient σ1 and σ2, namely σ1 = 0.001 and σ2 = 0.12, and
σ1 = 0.01 and σ2 = 0.16. The locus of the eigenvalues of in the two cases
is shown in Figs. 3.12 and 3.12, respectively. The colored lines display
the locus of the eigenvalues of ˜︁L as a function of q, so that the case q = 0
is shown in light red, while the case q = 1/3 in dark red. Panel B of
both figures portrays a zoom of the area close to the origin. Coherently
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Figure 3.13: The shape of the MSF for a system of Rössler oscillators cou-
pled on the y component does not permit the loss of synchronization by
making the higher-order interactions symmetric, even with the alterna-
tive symmetrization. In the background, the white area represents the
stability region of the synchronous state, identified by a negative MSF,
the black line its boundary, while the light blue area the region where
the synchronization manifold is unstable, namely the area of the complex
plane for which the MSF is positive. The colored lines display the locus
of the eigenvalues of ˜︁L as a function of q, for a weighted hypergraph
with N = 20 nodes, pairwise coupling coefficients fixed to σ1 = 0.01, and
σ2 = 0.16. The color coding is such that the case q = 0 is represented in
light red, while the case q = 1/3 in dark red. Panel B shows a zoom of
the area close to the origin.

with what we have observed for the first symmetrization method, we ob-
serve that the shape of the MSF permits to desynchronize the system by
increasing the directionality of the higher-order structure, but it does not
allow to do so the other way around. In particular, in Fig. 3.12, we see
that a more directed hypergraph induces the loss of synchronization in
the system. We note indeed that some of the eigenvalues of ˜︁L leave the
stability region for small values of q. On the other hand, Fig. 3.13 show
that, given the shape of the MSF, it is not possible to desynchronize the
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system by making the hypergraph structure more symmetric, even with
the alternative symmetrization described in this section. In fact, starting
from a setting for which the synchronous state that is stable for q = 0, we
observe that the eigenvalues of ˜︁L remain in the stability region for any
value of the symmetry parameter q.

3.3 Synchronization in random hypergraphs

All the case studies presented so far have been carried out on a specific di-
rected weighted hypergraph, that allowed us to tune the directionality of
the higher-order structure so to study its impact on the synchronization of
chaotic oscillators. The dynamical behavior of a system of coupled units
depends on three main features, namely the dynamics of the isolated
system, the functional form of the couplings, and the structure of the in-
teractions. Once we set the first two, i.e., once we calculate the MSF, the
determinant of the emergence of synchronization is the structure of the
pairwise and higher-order interactions. As we have seen, this reflects in
the position of the eigenvalues of the effective Laplacian matrix ˜︁L with re-
spect to the stability region, as defined by the MSF. Hence, understanding
the role of directionality on synchronization in other structures requires
a characterization of the spectrum of the associated Laplacian matrix. To
conclude this chapter, we introduce and analyze two generative models
of random hypergraphs, which allows us to briefly discuss how different
higher-order topologies affect the stability of the synchronization mani-
fold.

We account for models that are a higher-order generalization of two
well-studied random network generative models. First, we take a higher-
order topology inspired by the Newman-Watts (NW) model [158]. To
construct the hypergraph, we start from an undirected nonlocal ring of N
nodes, each connected to its m nearest neighbors. Then, for each couple of
nodes in the network, we add with probability ϕ a 1-directed 2-hyperedge
pointing to a third node, chosen at random. Second, we consider a hy-
pergraph generalization of the Erdős-Rényi (ER) model [159]. This gen-
erative model is defined by two parameters. The first, as in the classical
ER model, is the probability ρ1 of connecting two nodes via an undi-
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rected link, while the second is the probability ρ2 of adding a 1-directed
2-hyperedge among three nodes, pointing to a randomly chosen node of
the triple.

As the hypergraphs are randomly generated, the eigenvalues of the
associated Laplacian matrices ˜︁L are stochastic variables. Hence, to study
the stability of the synchronization manifold in relation to the structure
of the random hypergraphs, one needs to characterize the distribution
of the eigenvalues in the complex plane. In particular, the spectrum of
the Laplacian matrices varies as a function of the parameters of the gen-
erative models, of the coupling coefficients σ1 and σ2, and of the degree
of symmetry of the higher-order structure p (without loss of generality,
we have here accounted for the symmetrization that does not conserve
the total coupling strength of the three-body interactions). As we want to
compare how different topologies impact the synchronization behavior of
the system, we set the parameters of the generative models so that the av-
erage number of links and the average number of 2-hyperedges pointing
to each node are the same for the two algorithms. In particular, we take
structures of N = 20 connected nodes. For the higher-order NW model
we fix m = ⟨k(1)⟩ = 4 and ϕ = 0.5, which results in an average number of
hyperedges ⟨k(2)in ⟩ = 4.75. Note that this value, which varies as a function
of the symmetry parameter p, refers to the case p = 0. Consistently, we
set the values of ρ1 and ρ2 in the generalized ER model so that the average
number of links and the average number of hyperedges are the same. By
doing so, we compare structures with (on average) the same number of
links and of hyperedges, arranged in two different ways. Having fixed
the parameters of the generative models, we investigate how the distribu-
tion of the eigenvalues of ˜︁L depends on the symmetry parameter p and
on the ratio r2 = σ2/σ1, having fixed σ1 = 0.001. For the first study, we
set the value of the ratio to r2 = 30, and we account for three values of the
symmetry parameter, namely p = 0, p = 0.5, and p = 1. For the second,
we fix p = 0.5, and consider the cases r2 = 10, r2 = 30, and r2 = 50.

The results obtained for these two analyses are shown in Figs. 3.14
and 3.15, respectively. In both figures, panel A shows the eigenvalue
distribution for the higher-order Newman-Watts model, while panel B
the distribution for the higher-order Erdős-Rényi model, as a function
of p and r2 respectively. Starting from Fig. 3.14, we can observe two
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Figure 3.14: Variation of the eigenvalue distribution for the higher-order
Newman-Watts model (panel A), and for the higher-order Erdős-Rényi
model (panel B) as a function the symmetry parameter p. For both struc-
ture, we set ⟨k(1)⟩ = 4 and ⟨k(2)in (p = 0)⟩ = 4.75. We also fix set the
coupling coefficient σ1 = 0.001, σ2 = r2σ1, while we fix the symmetry
parameter to p = 0.5. Note that the distributions obtained for p = 0.5 are
the same as those displayed in Fig. 3.15, with the label r2 = 30.

aspects. First, for p = 0 we note that the eigenvalues distribution has a
nonzero imaginary part, which shrinks to the real axis for p = 1. Second,
we see that the imaginary part in the NW-like model is generally larger
compared to that of the ER-like model. Intuitively, this difference shall
be due to the fact that the NW model has a more circulant structure
compared to the ER model, thus determining a larger imaginary part
[70]. As regards, Fig. 3.15, we notice a similar behavior. In this case,
the distribution of eigenvalues remains close to the real axis for smaller
values of r2, i.e., for smaller values of σ2 compared to σ1, while it spreads
over the imaginary axis for larger values of r2. Consistently to what we
have observed for the study of p, the spectra obtained for the higher-
order NW model usually have a larger imaginary part compared to that
emerging from the higher-order ER model.

To fully characterize the impact of topology on the synchronization
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Figure 3.15: Variation of the eigenvalue distribution for the higher-order
Newman-Watts model (panel A), and for the higher-order Erdős-Rényi
model (panel B) as a function the ratio r2 = σ1/σ1. For both structure,
we set ⟨k(1)⟩ = 4 and ⟨k(2)in (p = 0)⟩ = 4.75. We also fix set the coupling
coefficient σ1 = 0.001, σ2 = r2σ1, while we fix the symmetry parameter to
p = 0.5. Note that the distributions obtained for r2 = 30 are the same as
those displayed in Fig. 3.14, with the label p = 0.5.

behavior of a system of coupled oscillators, we would need to find the
conditions for which the eigenvalues of the effective Laplacian matrix ˜︁L
are entirely contained in the stability region as defined by the MSF. Such
a problem is not entirely new, as it also appears in the context of directed
networks. However, despite a few attempts to study how the relationship
between the distribution of the eigenvalues and the shape of the MSF af-
fects the emergence of synchronization [30], the problem remains open.
Such a problem is even more articulated for higher-order structures, as
the effective Laplacian matrix ˜︁L, whose eigenvalues determine the syn-
chronization behavior of the system, encodes the contribution of multi-
ple orders of interactions. Hence, a relevant follow-up of the analyses
presented in this section would be to characterize how optimal different
higher-order topologies are for synchronization, in terms of the probabil-
ity that the associated eigenvalues distribution is contained in the stability
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region, as defined by the MSF.
The results provided in this chapter conclude the analysis of synchro-

nization in system of chaotic oscillators coupled through pairwise and
higher-order interactions. In particular, here we have explored the role of
nonreciprocal interactions on the stability of the synchronous state, show-
ing how directionality can completely change the dynamical behavior of
the system, either inducing its synchronization or its destabilization. Fur-
thermore, we have given a few results aimed at showing how the eigen-
values distribution of random hypergraphs is affected by directionality
and by the relationship between different orders of interactions.



Chapter 4
Turing pattern formation in
high-order structures

In this chapter, we study the formation of Turing patterns in systems
where both pairwise and higher-order interactions are present. We de-
rive analytically the conditions for which patterns can emerge, showing
how the presence of multi-body interactions affects the Turing instability.
We begin by studying the case of a system where only pairwise interac-
tions are active, investigating the role of nonlinear diffusion in pattern
formation. Such an analysis will be used as a benchmark for studying
the role of higher-order interactions. We begin the analysis of many-
body interactions by exploring the case of coupling functions respecting
natural coupling hypothesis. Then, we study the pattern formation in
higher-order topologies whose associated Laplacian matrices commute.
In particular, we consider two structures, namely a 2-lattice and a simpli-
cial complex where all possible interactions among the nodes are active.
Finally, we relax these constraints and we explore the most general setting
of the problem, numerically investigating how higher-order interactions
affect the formation of Turing patterns.

101
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4.1 Turing patterns with nonlinear diffusion

As the objective of this chapter is to show how the presence of higher-
order interactions affects pattern formation with respect to the classical
scenario where only pairwise interactions are considered, we begin by
studying this latter in details. From a mathematical point of view, this
corresponds to analyze system (1.16) by setting M = 1. In particular,
we aim at finding the necessary and sufficient conditions for the onset of
Turing patterns in a system of units coupled through nonlinear diffusive-
like functions. Hence, in the next sections we will investigate how higher-
order interactions modify such conditions.

We begin our discussion by briefly illustrating the linear stability anal-
ysis presented in Sec. 1.3 for the specific case of Turing pattern formation.
By setting M = 1, we can rewrite (1.16) as

u̇i = fu(u, v) + σ1

N

∑
j=1

a(1)ij D(1)
u

[︂
h(1)u (uj)− h(1)u (ui)

]︂
,

v̇i = fv(u, v) + σ1

N

∑
j=1

a(1)ij D(1)
v

[︂
h(1)v (vj)− h(1)v (vi)

]︂
.

(4.1)

We recall that in the analysis of Turing pattern formation one usually con-
sider two species activator-inhibitor systems, so we have xi = [ui, vi]

T. We
assume the isolated system to admit an equilibrium point x∗ = [u∗, v∗]T,
i.e., fu(u∗, v∗) = fv(u∗, v∗) = 0, which is also an homogeneous solution
of system (4.1). Moreover, we assume the fixed point to be stable, which
means to require

trJF < 0 and detJF > 0, (4.2)

where

JF =

⎛⎝ ∂ fu(u,v)
∂u

∂ fu(u,v)
∂v

∂ fv(u,v)
∂u

∂ fv(u,v)
∂v

⎞⎠
[u∗ ,v∗]T

. (4.3)

We perform a linear stability analysis around the equilibrium point, fol-
lowing the steps reported in Sec. 1.3. In particular, we write the equa-
tions governing the dynamics of the perturbations δxi = [δui, δvi]

T, where
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δui = ui − u∗, and δvi = vi − v∗, which are

δẋi = JFδxi − σ1 ∑
j

L(1)
ij JH(1)δxj, (4.4)

where we have used the notation

JH(1) =

⎛⎜⎝D(1)
u

∂h(1)u (u)
∂u 0

0 D(1)
v

∂h(1)v (v)
∂v

⎞⎟⎠
[u∗ ,v∗]T

. (4.5)

By introducing the stack vector δx =
[︁
δxT

1 , . . . , δxT
N
]︁T, we can rewrite

Eqs. (4.4) in block form, namely

δẋ =
[︂
IN ⊗ JF − σ1L(1) ⊗ JH(1)

]︂
δx. (4.6)

It is worth remarking a characteristic of the Laplacian matrix L(1).
Such a matrix is the discrete analogous of the continuous diffusion oper-
ator ∇2, which is the main reason why it plays a role in the formation of
Turing patterns on complex networks. In most of the literature on Turing
patterns, this is defined as L(1)

ij = a(1)ij − k(1)(i)δij, so its eigenvalues are
non-positive. However, consistently with the mathematical framework
used so far, here we consider the definition of the Laplacian matrix given
in Eq. (1.6), which has instead a non-negative spectrum.

Since the Laplacian matrix L(1) is symmetric, as we are considering
undirected networks, we can project Eqs. (4.6) onto the basis formed by
the eigenvectors {v1, . . . , vN} of L(1), thus separating the system of 2N
coupled equations in N linear decoupled 2 × 2 equations, each one de-
pending on a single eigenvalue λ

(1)
i of L(1). Formally, we have

η̇i =
[︂
JF − σ1λ

(1)
i JH(1)

]︂
ηi, (4.7)

where ηi = [δũi, δṽi]
T, being δũi and δṽi the projections of δui and δvi,

respectively, on the eigenbasis of L(1). As explained in Sec. 1.3, the equa-
tion corresponding to the eigenvalue λ

(1)
1 = 0 is the one governing the

dynamics of the space-independent part of the system, i.e., the isolated
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system, while the others are those associated to the spatial part. As the
equations for the spatial part have the same form, we can consider a sin-
gle parametric variational equation, namely

ζ̇ =
[︂
JF − αJH(1)

]︂
ζ , (4.8)

where α is a real-valued parameter. The stability of the homogeneous
solution, i.e., δx = 0, is determined by the eigenvalues of the matrix

Jα = JF − αJH(1). (4.9)

It is here crucial to remark a feature making the analysis of Turing pat-
tern formation a relevant application of our mathematical framework.
The matrix Jα is time-independent, so it is possible to derive the neces-
sary conditions for the stability of the homogeneous solution x∗ analyti-
cally. This is in contrast with the case of synchronization, where the MSF,
namely the maximum Lyapunov exponent associated to the Master Sta-
bility Equation, had to be calculated numerically. In facts, in the present
case we can calculate the eigenvalues of Jα by solving the equation

Λ2 − 2trJαΛ + detJα = 0. (4.10)

The solution with the largest real part, considered as a function of α

takes the name of dispersion relation. If there exists a value of α such
that ReΛα > 0, then the fixed point [u∗, v∗]T is unstable, and the for-
mation of Turing patterns is observed. As trJα < 0, from Eq. (4.10) we
can derive a necessary condition for Λα to be positive. In facts, assum-
ing ∂h(1)u (u)/∂u|u∗ > 0 and ∂h(1)v (v)/∂v|v∗ > 0, and being λ

(1)
i > 0 and

trJF < 0, we have trJα < 0, so a necessary condition for the formation of
Turing pattern is

detJα < 0. (4.11)

Such a condition is also sufficient if there is an eigenvalue λ
(1)
i such that

detJα̃ < 0, with α̃ = σ1λ
(1)
i . We remark that the evaluation of ReΛα

as a continuous function of α corresponds to the study of Turing pattern
formation on a continuous media, as long as α is interpreted as the square
of the wave number k, associated to a spatial Fourier mode [67].
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To substantiate the theoretical derivations presented above, let us now
focus on a specific example of reaction-diffusion system. As concerns the
reactive part, i.e., the dynamics of the isolated system, we consider the
well known Brusselator model, which finds application in the study of
oscillations in auto-catalytic chemical reactions [160, 161, 162]. In partic-
ular, the dynamics of the model is governed by the set of equations

u̇ = fu(u, v) = 1 − (b + 1)u + cu2v,

v̇ = fv(u, v) = bu − cu2v,
(4.12)

where b, c > 0. Such a model has a single equilibrium point [u∗, v∗]T =
[1, b/c]T, and the Jacobian matrix evaluated at it is given by

JF =

(︄
b − 1 c

−b −c

)︄
. (4.13)

According to condition (4.2), such a fixed point is stable if trJF = b −
c − 1 < 0, as detJF = c > 0 is verified by definition. We account for N
identical Brusselator systems, coupled via nonlinear diffusion functions.
In particular, we consider cubic diffusion-like functions, namely setting

h(1)u (u) = u3 and h(1)v (v) = v3. (4.14)

Let us stress that Turing pattern formation with nonlinear diffusion has
already been studied in the case of a continuous space [135, 136], so the
following analysis simply represents its counterpart in networked sys-
tems. Hence, the main goal of this section is to set up the study of higher-
order interactions. Under these assumptions, system (4.1) can be written
as

u̇i =1 − (b + 1)ui + cu2
i vi + σ1

N

∑
j=1

a(1)ij D(1)
u

(︂
u3

j − u3
i

)︂
,

v̇i =bui − cu2
i vi + σ1

N

∑
j=1

a(1)ij D(1)
v

(︂
v3

j − v3
i

)︂
.

(4.15)

To calculate the matrix Jα associated to the linearization of system
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(4.15), one needs to evaluate the matrix JH(1), which is given by

JH(1) = 3

⎛⎜⎝D(1)
u 0

0 D(1)
v

(︂
b
c

)︂2

⎞⎟⎠ . (4.16)

Given the matrices JF and JH(1), we can now derive condition (4.11) for
the system (4.15) explicitly, namely⎧⎨⎩(b − 1)b2D(1)

v − c3D(1)
u > 0,

4b2c3D(1)
u D(1)

v −
[︂
(b − 1)b2D(1)

v − c3D(1)
u

]︂2
< 0,

(4.17)

which guarantees that detJα < 0 for some values of α. It is crucial to
observe that these conditions do not depend on α itself. This means that,
consistently with the MSF approach, they do not depend on the particular
topology chosen. Hence, we can first derive a continuous dispersion rela-
tion that only depends on the dynamics of the non-spatial system and on
the functional form of the couplings, checking a posteriori whether detJα

is negative for some eigenvalues of the Laplacian matrix L(1).
From Eq. (4.17) we can derive a condition on the diffusion coefficients,

which is
b2D(1)

v > c2D(1)
u . (4.18)

This is an extension of the classic condition D(1)
v > D(1)

u to the case of
cubic diffusive-like coupling functions. Condition (4.18) derives from im-
posing trJF < 0, which in the case of the Brusselator model is equivalent
to the inequality b − 1 < c. In facts, from the first condition in Eq. (4.17),
we can write

(b − 1)b2D(1)
v > c3D(1)

u ⇒ (b − 1)b2D(1)
v > c3D(1)

u > (b − 1)c2D(1)
u , (4.19)

where the implication derives from the condition on the trace of JF. Con-
dition (4.18), which has been derived for a general reactive system and
for continuous support in [135], implies that patterns can emerge even
when the activators, i.e., the u species, diffuse faster than the inhibitors,
i.e., the v species, in contrast with what is predicted by the classic Turing
instability theory.
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In the next two sections we will study whether and how conditions
(4.17) are affected by the presence of higher-order interactions. First, we
will study the case where the pairwise and the higher-order interaction
functions satisfy the natural coupling hypothesis. Then, we will analyze
a broader class of interaction functions by restricting the range of possi-
ble higher-order structures to a few regular topologies. Finally, we will
provide a glimpse of the most general case, where both the structure and
the functional form of the couplings have no further limitation.

4.2 The case of natural coupling

As a first study of the role of higher-order interactions on the emergence
of Turing patterns, here we examine the case of natural coupling. As
we have done for the analysis of synchronization, for simplicity and
without loss of generality, we consider only two-body and three-body
interactions, i.e., we set M = 2. In particular, we account for a sys-
tem of N Brusselator models, coupled through cubic diffusive-like in-
teraction functions, with no cross-diffusion terms. Therefore, for two-
body interactions we take h(1)(uj, vj) = [D(1)

u h(1)u (uj), D(1)
v h(1)v (vj)]

T, with

h(1)u (uj) = u3
j and h(1)v (vj) = v3

j , while for three-body interactions we con-

sider h(2)(uj, vj, uk, vk) = [D(2)
u h(2)u (uj, uk), D(2)

v h(2)v (vj, vk)]
T, with h(2)u (uj, uk) =

u2
j uk and h(2)v (vj, vk) = v2

j vk. Note that the functions h(1) and h(2) satisfy

the natural coupling hypothesis as long as D(1)
u = D(2)

u and D(1)
v = D(2)

v ,
as explained in Sec. 1.3.2. Under these assumptions, Eqs. (1.16) can be
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written as

u̇i =1 − (b + 1)ui + cu2
i vi + σ1

N

∑
j=1

a(1)ij D(1)
u

(︂
u3

j − u3
i

)︂
+

+ σ2

N

∑
j,k=1

a(2)ijk D(1)
u

(︂
u2

j uk − u3
i

)︂
,

v̇i =bui − cu2
i vi + σ1

N

∑
j=1

a(1)ij D(1)
v

(︂
v3

j − v3
i

)︂
+

+ σ2

N

∑
j,k=1

a(2)ijk D(1)
v

(︂
v2

j vk − v3
i

)︂
.

(4.20)

Similarly to what we have done for the case with pairwise interactions
only, we can perform a linear stability analysis of Eqs. (4.20) around the
fixed point [u∗, v∗]T = [1, b/c]T, following the steps detailed in Sec. 1.3.2.
In the end, we arrive to the block equation

δẋ =
[︂
IN ⊗ JF − σ1L⊗ JH(1)

]︂
δx, (4.21)

where L = L(1) + r2L(2), being L(1) and L(2) the Laplacian matrices
encoding the two-body and three-body interactions, respectively, while
r2 = σ2/σ1. We recall that, given the natural coupling hypothesis, we have
JH(1) = JH(2). We observe that such a system of equations is formally
equivalent to the one obtained considering pairwise interactions only, i.e.,
Eqs. (4.6). Hence, when the coupling functions respect the natural cou-
pling hypothesis, the necessary conditions for the formation of Turing
patterns in a system of coupled Brusselator models, namely Eq. (4.17),
are not altered by the presence of higher-order interactions. Differently
from the previous case, however, the stability of the fixed point [u∗, v∗]T

is determined by the nonzero eigenvalues λi of L, depending on both the
two-body interactions, through the Laplacian matrix L(1), and the three-
body interactions, through L(2). In particular, if there is an eigenvalue λi
such that detJα̃ < 0, with α̃ = σ1λi, then Turing patterns emerge.

To confirm the theoretical expectations, we consider the following ex-
ample. We set the parameters of the Brusselator model to b = 3, and
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Figure 4.1: A graphical representation of the hypergraph considered to
simulate Eqs. (4.20).

c = 3.5, the diffusion coefficients to D(1)
u = 0.1, and D(1)

v = 2, and the
coupling strengths to σ1 = σ2 = 1. One can easily verify that with this
setting conditions (4.17) hold, so Turing patterns can form. We consider a
system of N = 11 coupled Brusselator models, interacting according to a
generic higher-order structure, which is shown in Fig. 4.1. For this struc-
ture, we calculate the eigenvalues of the associated Laplacian matrix L,
and study whether there is at least one λi for which detJα < 0. The results
obtained are shown in panel A of Fig. 4.2. In particular, the blue curve
corresponds to the continuous dispersion relation, obtained by solving
the eigenvalue problem (4.10) associated to system (4.20), while the or-
ange dots are the values of ReΛα obtained for α = σ1λi. We can observe
that a few eigenvalues of L are such that the ReΛα > 0, which is a suffi-
cient condition for the formation of Turing patterns. To confirm whether
patterns emerge, we perform simulation of system (4.20) on the hyper-
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Figure 4.2: Formation of Turing patterns in higher-order structures under
the natural coupling hypothesis. Panel A shows the dispersion relation
ReΛα for system (4.20) (continuous blue line), as well as its value for
α = σ1λi (orange dots) , where λi are the eigenvalues of the Laplacian
matrix associated to the hypergraph shown in Fig. 4.1. Panel B shows
the formation of Turing patterns on the u-component in the dynamics of
(4.20), which has been simulated on the structure in Fig. 4.1. The panels
are obtained by setting the Brusselator parameters to b = 3, and c = 3.5,
the diffusion coefficients to D(1)

u = 0.1, and D(1)
v = 2, and the coupling

strengths to σ1 = σ2 = 1.

graph shown in Fig. 4.1. We set each node to an initial condition close to
the equilibrium point [u∗, v∗]T, and we integrate Eq. (4.20) using a Runge-
Kutta fourth-order method with integration time step dt = 5 · 10−3. The
initial conditions of the oscillators are generated by perturbing the fixed
point with a random perturbation of size 10−2. Panel B of Fig. 4.2 shows
the dynamics of the u-component for each node. As we can observe,
each ui converges to a value different from that of the equilibrium point,
i.e., u∗ = 1, and so patterns are formed. A similar result can be seen
for the v-component of the oscillators, though this is not shown to avoid
redundancy.
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4.3 The case of commutative Laplacian matrices

We now move to the study of higher-order topologies whose associated
Laplacian matrices commute, which still guarantees the possibility to
derive a dispersion relation that determines the stability of the system.
In particular, we will account for two structures, namely the 2-lattice
and the simplicial complex where all two-body and three-body inter-
actions are active. We again consider a system of N Brusselator mod-
els, coupled through cubic diffusive-like interaction functions, with no
cross-diffusion terms. For two-body interactions we take h(1)(uj, vj) =

[D(1)
u h(1)u (uj), D(1)

v h(1)v (vj)]
T, with h(1)u (uj) = u3

j and h(1)v (vj) = v3
j , while

for higher-order interactions we consider h(2)(uj, vj, uk, vk) = [D(2)
u h(2)u (uj, uk), D(2)

v h(2)v (vj, vk)]
T,

with h(2)u (uj, uk) = u2
j uk and h(2)v (vj, vk) = v2

j vk. Note that, differently
from the case presented in the previous section, here we do not assume
the equivalence of the diffusion coefficients at the various orders, mean-
ing that in general we have D(1)

u ̸= D(2)
u and D(1)

v ̸= D(2)
v . Under these

assumptions, Eqs. (1.16) can be written as

u̇i =1 − (b + 1)ui + cu2
i vi + σ1

N

∑
j=1

a(1)ij D(1)
u

(︂
u3

j − u3
i

)︂
+

+ σ2

N

∑
j,k=1

a(2)ijk D(2)
u

(︂
u2

j uk − u3
i

)︂
,

v̇i =bui − cu2
i vi + σ1

N

∑
j=1

a(1)ij D(1)
v

(︂
v3

j − v3
i

)︂
+

+ σ2

N

∑
j,k=1

a(2)ijk D(2)
v

(︂
v2

j vk − v3
i

)︂
.

(4.22)

Let us begin from the case of a system of oscillators coupled in a 2-
lattice, for which we crucially have that L(2) = 2L(1). By performing
a linear stability analysis, so by linearizing Eqs. (4.22) around the fixed
point [u∗, v∗]T = [1, b/c]T, following the steps detailed in Sec. 1.3.1, we
obtain the block equation

δẋ =
[︂
IN ⊗ JF − σ1L(1) ⊗

(︂
JH(1) + 2r2JH(2)

)︂]︂
δx, (4.23)
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where JH(1) is the same as in Eq. (4.16), while JH(2) is given by

JH(2) = 3

⎛⎜⎝D(2)
u 0

0 D(2)
v

(︂
b
c

)︂2

⎞⎟⎠ . (4.24)

For the case in exam, we can define two effective diffusion coefficients

Dlatt
u = D(1)

u + 2r2D(2)
u and Dlatt

v = D(1)
v + 2r2D(2)

v , (4.25)

which allows us to write Eqs. (4.23) as

δẋ =
[︂
IN ⊗ JF − σ1L(1) ⊗JHlatt

]︂
δx, (4.26)

where

JHlatt = JH(1) + 2r2JH(2) = 3

⎛⎝Dlatt
u 0

0 Dlatt
v

(︂
b
c

)︂2

⎞⎠ . (4.27)

Similarly to the case of natural coupling, Eqs. (4.26) are formally equiva-
lent to Eqs. (4.6), obtained by considering pairwise interactions only. This
time, however, conditions (4.17) are written in terms of the effective dif-
fusion coefficients Dlatt

u and Dlatt
v , namely{︄

(b − 1)b2Dlatt
v − c3Dlatt

u > 0,

4b2c3Dlatt
u Dlatt

v −
[︁
(b − 1)b2Dlatt

v − c3Dlatt
u
]︁2

< 0.
(4.28)

Compared to Eqs. (4.17), we note that conditions (4.28) depend on the
coupling coefficients, as the effective diffusion coefficients Dlatt

u , Dlatt
v are

functions of the ratio r2 = σ2/σ1. Hence, a variation in the relative
strength of the higher-order interactions with respects to the pairwise
interactions can affect the formation of Turing patterns, either inducing
or preventing it. Also in this case, from the first inequality of Eqs. (4.28)
we can derive a compact necessary condition on the diffusive coefficients,
which is

b2(D(1)
v + 2r2D(2)

v ) > c2(D(1)
u + 2r2D(2)

u ). (4.29)
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Figure 4.3: Formation of Turing patterns on a 2-lattice. Panel A displays
the dispersion relations Re(Λα) associated to (4.20) (pairwise coupling
only, continuous green line) and to system (4.22) (higher-order coupling,
continuous blue line), as well as their value for α = σ1λ

(1)
i (orange and

pink dots respectively) , where λ
(1)
i are the eigenvalues of the standard

Laplacian matrix associated to a 2-lattice with N = 16 nodes and periodic
boundary conditions. Panel B shows the formation of Turing patterns
on the u-component in the dynamics of (4.22), simulated on the 2-lattice.
The panels are obtained by setting the Brusselator parameters to b = 5.5,
and c = 7, the pairwise diffusion coefficients to D(1)

u = 1, and D(1)
v = 0.5,

the three-body diffusion coefficients to D(2)
u = 0.1, and D(2)

v = 1, and the
coupling strengths to σ1 = 0.01 and σ2 = 1.

As an example, we analyze two settings of system (4.22). First, we
study a case for which the presence of higher-order interactions allows
for the formation of Turing patterns, under the assumption that no pat-
tern emerges when considering pairwise interactions only. Then, we in-
vestigate the opposite scenario where three-body interactions suppress
the formation of patterns induced by the two-body couplings. For the
first, we set the parameters of the Brusselator model to b = 5.5, and
c = 7, the pairwise diffusion coefficients to D(1)

u = 1, and D(1)
v = 0.5, the
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higher-order coefficients to D(2)
u = 0.1, and D(2)

v = 1, while the coupling
strengths are fixed to σ1 = 0.01 and σ2 = 1, which means r2 = 100. We
observe that conditions (4.17) do not hold, whereas conditions (4.28) are
verified, meaning that Turing patterns can emerge only when three-body
interactions are present. We consider a network of N = 16 coupled Brus-
selator models, arranged as a 2-lattice with periodic boundary conditions.
For this latter, we evaluate the eigenvalues of the standard Laplacian ma-
trix L(1), and check if we have detJα < 0 for at least one of them. Panel A
of Fig. 4.3 shows the results obtained when accounting for either the sole
two-body interactions or two-body and three-body interactions together.
As expected from the theory, while the dispersion relation associated to
(4.15) lies below the axis ReΛα = 0 (green line), the one associated to
system (4.22) crosses the axis (blue line), meaning that Turing patterns
can emerge on a continuous support when higher-order interactions are
active. The orange and the pink dots correspond to the values of ReΛα

obtained for α = σ1λ
(1)
i , in the two settings considered. As we can ob-

serve, when we account for higher-order interactions, two eigenvalues
of L(1) yields ReΛα > 0, so Turing patterns can emerge on the 2-lattice.
This is confirmed by the simulation of system (4.22). In facts, in panel B
of Fig. 4.3 we observe that each ui diverges from the equilibrium point
u∗ = 1, thus patterns are formed. The dynamics of ui are obtained by
fixing an initial condition close to the equilibrium point [u∗, v∗]T, and
integrating Eq. (4.22) using a Runge-Kutta fourth-order method with in-
tegration time step dt = 5 · 10−3. The initial conditions are generated by
perturbing the fixed point with a random perturbation of size 10−2.

For the second example, we set the Brusselator parameters to b = 5.5,
and c = 7, the two-body and three-body diffusion coefficients to D(1)

u =

0.1, D(1)
v = 1.5, and D(2)

u = 1, D(2)
v = 0.5, respectively, and the cou-

pling strengths to σ1 = 0.7 and σ2 = 0.2, yielding r2 = 0.29. In this
case, conditions (4.17) are verified, while conditions (4.28) are not, so
we expect higher-order interactions to prevent the formation of Turing
patterns, which would be allowed accounting for pairwise interactions
only. Again, we consider a 2-lattice with N = 16 nodes, and periodic
boundary conditions, and we calculate the eigenvalues of L(1). Panel A
of Fig. 4.4 shows the results obtained when accounting for either the sole
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Figure 4.4: Suppression of Turing patterns on a 2-lattice. Panel A displays
the dispersion relations Re(Λα) associated to (4.20) (pairwise coupling
only, continuous green line) and to system (4.22) (higher-order coupling,
continuous blue line), as well as their value for α = σ1λ

(1)
i (orange and

pink dots respectively) , where λ
(1)
i are the eigenvalues of the standard

Laplacian matrix associated to a 2-lattice with N = 16 nodes and periodic
boundary conditions. Panel B shows the formation of Turing patterns on
the u-component in the dynamics of (4.22), simulated on the 2-lattice. The
panels are obtained by setting the Brusselator parameters to b = 5.5, and
c = 7, the pairwise diffusion coefficients to D(1)

u = 0.1, and D(1)
v = 1.5,

the three-body diffusion coefficients to D(2)
u = 1, and D(2)

v = 0.5, and the
coupling strengths to σ1 = 0.7 and σ2 = 0.2.

two-body interactions or two-body and three-body interactions together.
We observe that the dispersion relation associated to (4.15) crosses the
axis ReΛα = 0 (green line), while the one associated to system (4.22) does
not (blue line), which means that Turing patterns can not emerge when
higher-order interactions are present. Once again, we represent as orange
and pink dots the values of ReΛα obtained for α = σ1λ

(1)
i , for the two

settings considered. The temporal evolution of the u-component of sys-
tem (4.22) is shown in panel B of Fig. 4.4. We note that all ui converge to
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the equilibrium point u∗ = 1, confirming that higher-order interactions
hamper the formation of Turing patterns. The dynamics is again obtained
by fixing an initial condition close to the equilibrium point [u∗, v∗]T, and
integrating Eq. (4.22) using a Runge-Kutta fourth-order method with in-
tegration time step dt = 5 · 10−3. The initial conditions are generated by
perturbing the fixed point with a random perturbation of size 10−2.

We now take into account the all-to-all case. As explained in Sec. 1.3.1,
for this latter we have that L(2) = (N − 2)L(1), so by linearizing Eqs. (4.22)
around the fixed point [u∗, v∗]T = [1, b/c]T we obtain the equation

δẋ =
[︂
IN ⊗ JF − σ1L(1) ⊗

(︂
JH(1) + (N − 2)r2JH(2)

)︂]︂
δx, (4.30)

where JH(1) and JH(2) are the same as those of the previous example. For
the case of all-to-all couplings, we can again define two effective diffusion
coefficients

Da2a
u = D(1)

u + (N − 2)r2D(2)
u and Da2a

v = D(1)
v + (N − 2)r2D(2)

v , (4.31)

so to write Eqs. (4.30) as

δẋ =
[︂
IN ⊗ JF − σ1L(1) ⊗JHa2a

]︂
δx, (4.32)

where

JHa2a = JH(1) + (N − 2)r2JH(2) = 3

⎛⎝Da2a
u 0

0 Da2a
v

(︂
b
c

)︂2

⎞⎠ . (4.33)

As for the 2-lattice, Eqs. (4.32) have the same form of Eqs. (4.6), which
have been derived accounting for pairwise interactions only. Hence, con-
ditions (4.17) are again written in terms of effective diffusion coefficients,
in this case Da2a

u and Da2a
v . We thus have{︄

(b − 1)b2Da2a
v − c3Da2a

u > 0,

4b2c3Da2a
u Da2a

v −
[︁
(b − 1)b2Da2a

v − c3Da2a
u
]︁2

< 0.
(4.34)

As for Eq. (4.28), conditions (4.34) depend on the ratio r2 = σ2/σ1 through
the effective diffusion coefficients Da2a

u , Da2a
v . However, it is worth re-

marking that differently from the case of the 2-lattice, conditions (4.34)
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Figure 4.5: Formation of Turing patterns on the all-to-all simplicial com-
plex of N = 5 nodes. Panel A displays the dispersion relations Re(Λα)
associated to (4.20) (pairwise coupling only, continuous green line) and
to system (4.22) (higher-order coupling, continuous blue line), as well as
their value for α = σ1N (orange and pink dots respectively). Panel B
shows the formation of Turing patterns on the u-component in the dy-
namics of (4.22), simulated on the all-to-all higher-order structure. The
panels are obtained by setting the Brusselator parameters to b = 5.5, and
c = 7, the pairwise diffusion coefficients to D(1)

u = 1, and D(1)
v = 0.1, the

three-body diffusion coefficients to D(2)
u = 0.07, and D(2)

v = 1, and the
coupling strengths to σ1 = 0.01 and σ2 = 1.

also depend on the number of nodes N. Lastly, we can then derive a nec-
essary condition on the diffusive coefficients for the formation of Turing
patterns, namely

b2(D(1)
v + (N − 2)r2D(2)

v ) > c2(D(1)
u + (N − 2)r2D(2)

u ). (4.35)

As an example, we analyze a configuration for which the higher-order
interactions induce the emergence of Turing patterns, assuming that no
patterns are formed when considering pairwise interactions only. We set
the parameters of the Brusselator model to b = 5.5, and c = 7, the pair-
wise diffusion coefficients to D(1)

u = 1, and D(1)
v = 0.1, the higher-order
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coefficients to D(2)
u = 0.07, and D(2)

v = 1, while the coupling strengths are
fixed to σ1 = 0.01 and σ2 = 1, so that r2 = 100. As regards the topol-
ogy, we consider the all-to-all simplicial complex of N = 5 nodes. With
this setting, conditions (4.17) do not hold, whereas conditions (4.34) do,
meaning that Turing patterns can only form in presence of three-body
interactions. The results obtained when accounting for either the sole
two-body interactions or two-body and three-body interactions together
are shown in Panel A of Fig. 4.5. We note that while the dispersion rela-
tion associated to (4.15) lies entirely below the axis ReΛα = 0 (green line),
the one associated to system (4.22) crosses the axis (blue line), which
means that Turing patterns could emerge with the higher-order interac-
tions active. The orange and the pink dots represent the values of ReΛα

for α = {0, σ1N}, being λ
(1)
i = N the only nonzero eigenvalue of the

standard Laplacian matrix in the all-to-all configuration. Such a value of
α leads to ReΛα > 0, so Turing patterns can form on the higher-order
structure. As done before, we confirm this by simulating the dynamics of
system (4.22), which is shown in panel B of Fig. 4.5. We observe that pat-
terns are formed, as each ui diverges from the equilibrium point u∗ = 1.
The dynamics of ui are obtained by fixing an initial condition close to
the equilibrium point [u∗, v∗]T, and integrating Eq. (4.22) using a Runge-
Kutta fourth-order method with integration time step dt = 5 · 10−3. The
initial conditions are generated by perturbing the fixed point with a ran-
dom perturbation of size 10−2.

4.4 The general setting

In this last section, we concentrate on the most general setting of the
problem, in which the Laplacian matrices associated to each order of in-
teraction do not commute, and in which the coupling functions do not
satisfy the natural coupling hypothesis. As discussed in Sec. 1.3, in this
case it is not possible to derive analytically a dispersion relation that de-
termines the stability of the system. However, it is still possible to analyze
the conditions under which Turing patterns form numerically. In partic-
ular, we are here interested in studying how the presence of higher-order
terms impact the emergence of patterns.
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We consider a system of N Brusselator models, coupled through cu-
bic diffusive-like interaction functions, with no cross-diffusion terms. For
pairwise interactions we take h(1)(uj, vj) = [D(1)

u h(1)u (uj), D(1)
v h(1)v (vj)]

T,

with h(1)u (uj) = u3
j and h(1)v (vj) = v3

j , while for higher-order interactions

we use h(2)(uj, vj, uk, vk) = [D(2)
u h(2)u (uj, uk), D(2)

v h(2)v (vj, vk)]
T, where we

have h(2)u (uj, uk) = u2
j uk and h(2)v (vj, vk) = v2

j vk, while we do not consider
terms of order D > 2. Differently from the cases analyzed previously, we
consider cases where D(1)

u ̸= D(2)
u and D(1)

v ̸= D(2)
v , so that the natural

coupling hypothesis does not hold, and account for an arbitrary higher-
order structure, whose associated Laplacian matrices do not commute. In
particular, we will consider the system to be arranged according to the
hypergraph displayed in Fig. 4.1. The equations governing the dynamics
of the system are formally equivalent to Eqs. (4.22), though the adjacency
matrix A(1) and the adjacency tensor A(2) are those associated to the hy-
pergraph in Fig. 4.1.

In this section, we are interested in studying whether higher-order
interactions favor the formation of Turing patterns. In particular, we an-
alyze if the region of the model parameters (b, c) for which the homoge-
neous solution is unstable can be expanded when considering three-body
interactions. To begin with, we consider a setting for which Turing pat-
terns can not emerge when considering two-body interactions only. We
fix the pairwise diffusion coefficients to D(1)

u = 1, and D(1)
v = 0.5, the

higher-order coefficients to D(2)
u = 0.1, and D(2)

v = 2, while the coupling
strengths are fixed to σ1 = 0.1 and σ2 = 1. Note that conditions (4.17)
never hold for any value of b and c, so pairwise interactions are not suf-
ficient to yield the formation of patterns. In this setting, we integrate
Eqs. (4.22) for different values of the Brusselator paramaters b and c, and
we study the stability of the equilibrium point [u∗, v∗]T = [1, b/c]. To
assess the state of the system, we monitor the pattern amplitude of the
stationary state [67], given by

A =

{︄
N

∑
i=1

[︂
(ui(τ)− u∗)2 + (vi(τ)− v∗)2

]︂}︄ 1
2

, (4.36)

where τ is a sufficiently large value of time for which the system has
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Figure 4.6: Instability region of the equilibrium point [u∗, v∗]T in the plane
(b, c) for a system with higher-order interactions. The hatched blue area
corresponds to the values of the Brusselator parameters where the pattern
amplitude A is different from zero, while the white area corresponds to
the region where A = 0. The two-body diffusion coefficients are set to
D(1)

u = 1, and D(1)
v = 0.5, the three-body diffusion coefficients to D(2)

u =

0.1, and D(2)
v = 2, while the coupling strengths to σ1 = 0.1 and σ2 = 1.

reached a stationary state. For the present analysis, we integrate the sys-
tem equations using a Runge-Kutta fourth-order method with integration
time step dt = 5 · 10−3, for a time interval of length τ, where τ = 50.
The results obtained are shown in Fig. 4.6. Here, the hatched blue area
corresponds to the region of the plane (b, c) for which the pattern am-
plitude A is different from zero, namely the parameter sets for which
Turing patterns emerge, while the white area corresponds to the region
where A = 0. The existence of such an area testifies that the presence
of three-body interactions yields the formation of patterns, whereas the
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Figure 4.7: Expansion of the instability region of the equilibrium point
[u∗, v∗]T in the plane (b, c) due to higher-order interactions. The hatched
areas correspond to the values of the Brusselator parameters where the
pattern amplitude A is different from zero. In green, it is represented
the case of a system where only pairwise interactions are active, while
the blue area refers to the case where both pairwise and higher-order
interactions are considered. The white area corresponds to the region
where A = 0. The two-body diffusion coefficients are set to D(1)

u = 0.1,
and D(1)

v = 0.5, the three-body diffusion coefficients to D(2)
u = 0.01, and

D(2)
v = 1, while the coupling strengths to σ1 = 0.2 and σ2 = 1.

sole two-body interactions do not allow for the onset of Turing instabil-
ity. Hence, higher-order interactions can make Turing patterns emerge.
More in general, higher-order terms can enlarge the region of instability
in the space of parameters. To show this, we consider a new setting for
which two-body interactions admit the formation of Turing patterns. In
particular, we fix the pairwise diffusion coefficients to D(1)

u = 0.1, and
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D(1)
v = 0.5, the higher-order coefficients to D(2)

u = 0.01, and D(2)
v = 1,

while the coupling strengths are fixed to σ1 = 0.2 and σ2 = 1. With
this configuration, conditions (4.17) hold for a few values of the Brus-
selator model parameters. Again, we integrate Eqs. (4.22) for different
values of b and c, and we analyze the emergence of patterns by monitor-
ing the pattern amplitude A. The results of such an analysis are shown
in Fig. 4.7. Here, the hatched areas corresponds to the regions of the
plane (b, c) for which A ̸= 0, when considering pairwise couplings only
(in green) or both pairwise and higher-order couplings (in blue), while
the white area corresponds to the region where A = 0. We observe that
three-body interactions favor the formation of Turing patterns, as their
presence expand the parameter region for which the homogeneous solu-
tion [u∗, v∗]T is unstable. We conclude by remarking that, in analogy with
the examples presented in the previous sections, it would be possible to
find settings such that high-order interactions hamper the formation of
Turing patterns, though not explicitly presented in this work.

In conclusion, the analyses presented in this chapter confirm the po-
tential of our mathematical framework for studying the role of higher-
order interactions in Turing pattern formation. We have explored how the
presence of higher-order couplings modifies the conditions for the emer-
gence of patterns. In particular, we have derived a new set of conditions
in the special case of coupling functions respecting the natural coupling
hypothesis, and in that of some higher-order topologies whose associated
Laplacian matrices commute. For these latter, we have found that when
considering general higher-order interaction functions the formation of
Turing patterns depend on their relative strength, so that many-body in-
teractions can either favor or prevent the emergence of patterns. Lastly,
we have provided a few results relaxing the hypothesis on the coupling
functions and on the interaction structure, showing how higher-order in-
teractions can enlarge the region of Turing instability.



Conclusions

Some of the most fascinating and complex phenomena in nature emerge
from the interactions among simple units. With this thesis, we provide
our contribution to the study of complex systems and emergent collective
behaviors. In particular, we have here formulated a general theory to
characterize the dynamics of systems of coupled units, interacting not
only via two-body interactions, but also through many-body interactions.

Specifically, we have described how to represent systems character-
ized by higher-order interactions using a graph theoretical approach. We
have presented two higher-order network representations, i.e., simplical
complexes and hypergraphs, and we have introduced the main metrics
for encoding their structure. In this context, we have developed a math-
ematical framework useful to investigate two emergent phenomena of
major interest for various research fields, namely the synchronization of
coupled oscillators, and the formation of patterns in reaction-diffusion
systems. We have shown how these problem can be analyzed under the
frame of a linear stability problem, extending to the case of higher-order
structures both the Master Stability Function approach for synchroniza-
tion, and Turing’s instability theory for pattern formation.

With respect to synchronization, we have investigated under which
conditions a system of coupled chaotic oscillators achieves a coherent
state in presence of reciprocal many-body interactions. In particular, we
have pointed out the role of higher-order couplings, showing, for in-
stance, how they may enhance synchronization of neural activity, paving
the way for future research on the topic. Furthermore, we have examined

123
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the synchronizability of higher-order topologies, showing how many-
body interactions can either be beneficial or detrimental for synchroniza-
tion, with respect to the form of the coupling. We have concluded the
analysis of reciprocal higher-order interactions by comparing simplicial
complexes and hypergraphs, showing how their different structural fea-
tures may impact the synchronization behavior of the system.

We have then studied the case of nonreciprocal higher-order interac-
tions, showing how the presence of a privileged direction in the inter-
action may affect the synchronization behavior of a system of coupled
chaotic oscillators. Specifically, we have demonstrated how directionality
in hypergraphs can dramatically impact the dynamics of the system, ei-
ther inducing its synchronization or the loss of coherence. Moreover, with
the support of few results on random hypergraphs, we have shown how
different topologies may be differently affected by the presence of non-
reciprocal interactions. These results shed further light on the interplay
between structural and dynamical features in the onset of synchroniza-
tion.

With regards to Turing’s instability theory, we have analyzed the con-
ditions for the formation of patterns in higher-order reaction-diffusion
systems. In particular, we have scrutinized the case of a system of Brusse-
lators, a prototypical model for autocatalytic reactions, coupled through
higher-order, nonlinear, diffusive-like functions. We have shown that
many-body interactions can highly affect the conditions under which pat-
terns emerge, either allowing them in cases where the sole pairwise dif-
fusion is not sufficient, or impeding their formation in the opposite situ-
ation. The necessary conditions for which these opposite scenarios occur
have been derived analytically for various topologies, and with differ-
ent assumptions on the diffusion functions. In particular, in agreement
with Turing’s theory, we have demonstrated how the system behaviors
ultimately depends on the relative strength of the diffusion coefficients,
both pairwise and higher-order. Such a general theory paves the way for
further studies on pattern formation in presence of higher-order interac-
tions.

Our results lay the groundwork for new research on how complex,
collective behaviors emerge from systems of interacting units. For in-
stance, future studies can aim at using our formalism to analyze other
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kinds of phenomena, such as cluster synchronization, Chimera states,
and so on. Though the last years have witnessed a few attempts to ex-
tend the results obtained for networks [163], we believe the possibilities
related to these research questions are substantial. Another interesting
issue is whether higher-order interactions promote either synchroniza-
tion or pattern formation [164]. A complete picture on this subject is
still lacking, although the results here presented provide a few possible
research directions. Then, there is the question of what structures are
optimal for synchronization, a problem deeply studied for complex net-
works [142, 165], but still largely unexplored for higher-order topologies
[166]. From that, it naturally follows the problem of controlling the dy-
namics of a system in presence of higher-order interactions, an aspect of
potentially great interests in many research fields.

To properly answer these and other questions, we believe a few steps
have to be taken, which may require to go beyond the mathematical
framework presented in this thesis. First, we think it is crucial to fully
understand if and how the two higher-order structures presented in this
work, namely simplicial complexes and hypergraphs, yield different emerg-
ing collective behaviors. Second, to entirely grasp the role of many-body
interactions in the dynamics of coupled systems, it may be necessary to
develop methods that go beyond what we could define ”the graph projec-
tion” of higher-order structure, namely beyond the linear stability anal-
ysis. A few crucial attempts in both directions have been already made
[164, 167], but again, further research are needed.
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Appendix A
Other works

In this appendix we collect the abstracts of the articles and the preprints
published during the three years of the PhD programme that have not
find space in this PhD thesis. The first article deals with the problem
of identifiability in epidemic models for COVID-19. In particular, we
show how the choice of the model, in relation with the quantity and the
quality of available empirical data, can affect the ability of making reliable
predictions on the epidemics. The study of the forecasting capabilities of
epidemic models is also a relevant topic of the second article. In this
latter, we show that a model that accounts for the dynamical correlations
of the spreading process can give better performances, as long as data
from contact tracing are available. The last article presents MultiSAGE,
an algorithm developed to embed multiplex networks in vectorial spaces,
with potentially important applications in de-anonymization of users in
online social networks.
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A.1 Lack of practical identifiability may hamper
reliable predictions in COVID-19 epidemic
models

Compartmental models are widely adopted to describe and predict the
spreading of infectious diseases. The unknown parameters of these mod-
els need to be estimated from the data. Furthermore, when some of the
model variables are not empirically accessible, as in the case of asymp-
tomatic carriers of coronavirus disease 2019 (COVID-19), they have to be
obtained as an outcome of the model. Here, we introduce a framework
to quantify how the uncertainty in the data affects the determination of
the parameters and the evolution of the unmeasured variables of a given
model. We illustrate how the method is able to characterize different
regimes of identifiability, even in models with few compartments. Last,
we discuss how the lack of identifiability in a realistic model for COVID-
19 may prevent reliable predictions of the epidemic dynamics.
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A.2 Individual-and pair-based models of epidemic
spreading: Master equations and analysis
of their forecasting capabilities

Epidemic models are crucial to understand how an infectious disease
spreads in a population and to devise the best containment strategies.
Compartmental models can provide a fine-grained description of the evo-
lution of an epidemic when microscopic information on the network of
contacts among individuals is available. However, coarser-grained de-
scriptions prove also to be useful in many aspects. They allow to derive
closed expressions for key parameters, such as the basic reproduction
number, to understand the relationship between the model parameters,
and also to derive fast and reliable predictions of macroscopic observ-
ables for a disease outbreak. The so-called population models can be
developed at different levels of coarse-graining, so it is crucial to deter-
mine: (i) to which extent and how the existing correlations in the contact
network have to be included in these models and (ii) what is their impact
on the model ability to reproduce and predict the time evolution of the
populations at the various stage of the disease. In this work, we address
these questions through a systematic analysis of two discrete-time SEAIR
(susceptible-exposed-asymptomatic-infected-recovered) population mod-
els: the first one developed assuming statistical independence at the level
of individuals, and the other one assuming independence at the level of
pairs. We provide a detailed derivation and analysis of both models, fo-
cusing on their capability to reproduce an epidemic process on different
synthetic networks, and then comparing their predictions under scenarios
of increasing complexity. We find that, although both models can fit the
time evolution of the compartment populations obtained through micro-
scopic simulations, the epidemic parameters adopted by the individual-
based model for this purpose may significantly differ from those of the
microscopic simulations. However, pair-based model provides not only
more reliable predictions of the dynamical evolution of the variables but
also a good estimation of the epidemic parameters. The difference be-
tween the two models is even more evident in the particularly challenging
scenario when one or more variables are not measurable, and therefore
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are not available for model tuning. This occurs for instance with asymp-
tomatic infectious individuals in the case of COVID-19, an issue that has
become extremely relevant during the recent pandemic. Under these con-
ditions, the pairwise model again proves to perform much better than the
individual-based representation, provided that it is fed with adequate in-
formation which, for instance, to be collected, may require a more de-
tailed contact tracing. Overall, our results thus hallmark the importance
of acquiring the proper empirical data to fully unfold the potentialities of
models incorporating more sophisticated assumptions on the correlations
among nodes in the contact network.



A.3. MULTISAGE: A MULTIPLEX EMBEDDING ALGORITHM FOR INTER-LAYER LINK PREDICTION145

A.3 MultiSAGE: a multiplex embedding algo-
rithm for inter-layer link prediction

Research on graph representation learning has received great attention
in recent years. However, most of the studies so far have focused on the
embedding of single-layer graphs. The few studies dealing with the prob-
lem of representation learning of multilayer structures rely on the strong
hypothesis that the inter-layer links are known, and this limits the range
of possible applications. Here we propose MultiSAGE, a generalization
of the GraphSAGE algorithm that allows to embed multiplex networks.
We show that MultiSAGE is capable to reconstruct both the intra-layer
and the inter-layer connectivity, outperforming GraphSAGE, which has
been designed for simple graphs. Next, through a comprehensive experi-
mental analysis, we shed light also on the performance of the embedding,
both in simple and in multiplex networks, showing that either the den-
sity of the graph or the randomness of the links strongly influences the
quality of the embedding.



146 APPENDIX A. OTHER WORKS



Appendix B
List of publications

[1] Gambuzza L.V., Di Patti F., Gallo L., Lepri S., Romance M., Criado
R., Frasca M., Latora V. & Boccaletti S., Stability of synchronization in
simplicial complexes, Nature Communications, 12 (1), 1-13, (2021)

[2] Gallo L., Muolo R., Gambuzza L.V., Latora V., Frasca M. & Carletti
T., Synchronization induced by directed higher-order interactions, Com-
munications Physics, 5, 263 (2022)

[3] Muolo R., Gallo L., Latora V., Frasca M. & Carletti T., Turing patterns
in systems with high-order interactions, arXiv:2207.03985 (2022)

[4] Gallo L., Frasca M., Latora V. & Russo G., Lack of practical identi-
fiability may hamper reliable predictions in COVID-19 epidemic models.
Science Advances, 8(3), eabg5234, (2022)

[5] Malizia F., Gallo L., Frasca M., Latora V. & Russo G., Individual- and
pair-based models of epidemic spreading: Master equations and analysis
of their forecasting capabilities. Physical Review Research, 4, 023145,
(2022)

[6] Gallo L., Latora V & Pulvirenti A., MultiSAGE: a multiplex embedding
algorithm for inter-layer link prediction. arXiv preprint, arXiv:2206.13223
(2022)

147


	Introduction
	Dynamical systems with higher-order interactions
	Higher-order structures: graph and tensor representation
	Undirected higher-order networks
	Directed higher-order networks

	Dynamics of a system of units coupled with higher-order interactions
	Linear stability analysis in higher-order structures
	Commutative generalized Laplacian matrices
	Natural coupling

	Synchronization in symmetric high-order structures
	General case
	An application to neuron dynamics

	Structures with commuting Laplacian matrices
	Natural coupling functions
	A comparison between hypergraphs and simplicial complexes


	Synchronization in directed high-order structures
	The effect of directionality on synchronization
	A symmetrization preserving the total coupling strength
	Synchronization in random hypergraphs

	Turing pattern formation in high-order structures
	Turing patterns with nonlinear diffusion
	The case of natural coupling
	The case of commutative Laplacian matrices
	The general setting


	Conclusions
	Bibliography
	Other works
	Lack of practical identifiability may hamper reliable predictions in COVID-19 epidemic models
	Individual-and pair-based models of epidemic spreading: Master equations and analysis of their forecasting capabilities
	MultiSAGE: a multiplex embedding algorithm for inter-layer link prediction
	List of publications




