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The aim of this work is to design implicit and semi-implicit high-order well-balanced 
finite-volume numerical methods for 1D systems of balance laws. The strategy introduced 
by two of the authors in some previous papers for explicit schemes based on the applica-
tion of a well-balanced reconstruction operator is applied. The well-balanced property is 
preserved when quadrature formulas are used to approximate the averages and the integral 
of the source term in the cells. Concerning the time evolution, this technique is combined 
with a time discretization method of type RK-IMEX or RK-implicit. The methodology will 
be applied to several systems of balance laws.

© 2022 The Author(s). Published by Elsevier B.V. on behalf of IMACS. This is an open 
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Numerous physical systems are described by evolutionary partial differential equations which have the structure of 
hyperbolic systems of balance laws of the form

ut + f (u)x = S(u)Hx, (1)

where

• u(x, t) takes values on an open convex set � ⊂RN ;
• f : � −→RN is the physical flux function;
• the source term is written in the form S(u)Hx , where S : � −→RN and H :R −→R is a known function.

The system (1) has nontrivial stationary solutions that satisfy the ODE system:

f (u)x = S(u)Hx, (2)
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or

J (u)ux = S(u)Hx,

where J (u) is the Jacobian of the flux function. A numerical method is said to be well-balanced if it preserves (in some 
sense) all or a representative set of steady solutions of (1). The development of numerical schemes satisfying the well-
balanced property is a big issue in the simulation of small perturbations of stationary solutions in many geophysical 
problems, such as the tsunami waves in the ocean. Many authors have already dealt with the design of well-balanced meth-
ods: see, for example, [3,17,22,31,30,89,33,41,40,52,51,53,69,56,55,71,72,76,77,80–82,86,87,66,92,65,63,35,67,37,26,43,57,64]
and their references. In earlier papers, some of the authors introduced a general procedure to build explicit high-order 
well-balanced numerical methods whose key was the design of high-order well-balanced reconstruction operators (see 
[28,48–50]). A reconstruction operator is said to be well-balanced if, when the operator is applied to the cell averages of a 
stationary solution, the approximations in the cells provided by the operator coincides with the stationary solution. In other 
words, the reconstruction operator must preserve the steady states. However, in general a standard reconstruction operator 
is not expected to be well-balanced. In this work, we follow the methodology proposed in [28] to obtain a well-balanced 
operator from a standard one. The reconstruction procedure to compute the approximation of a function in a cell given its 
averages in the mesh is the following:

1. Find the stationary solution in the stencil whose average in the cell coincides with the given cell average in that cell.
2. Compute the differences between the cell averages and those of the stationary solution found in the previous step in 

the stencil. Once these differences are obtained, a standard reconstruction operator is applied to them.
3. The reconstruction operator is given by the sum of the stationary solution found in the first step and the approximation 

found in the second step point.

Note that the first step of the reconstruction procedure involves solving, in each cell, local nonlinear problems consisting in 
finding a stationary solution in the stencil with given average in the cells. When the expression of the stationary solutions is 
not available, these problems become difficult and must be numerically solved (see [48,50]). The procedure outlined above 
is recalled in Section 2.2.

Once a well-balanced space-semi-discrete method has been designed using this general procedure, in principle implicit 
or semi-implicit fully discrete methods could be obtained just by using implicit or semi-implicit ODE solvers to discretize 
in time. Nevertheless, such a strategy would require to solve complex global nonlinear systems in order to compute the 
numerical solution at time tn+1: in particular, these systems would involve local steady states related to the unknown 
solution at time tn+1, which is unfeasible from the practical point of view. The aim of this work is to introduce a general 
framework for the derivation of well-balanced implicit and semi-implicit fully discrete numerical methods in which only 
well-balanced reconstructions at time tn have to be computed.

To our knowledge, no general framework to design implicit or semi-implicit well-balanced of schemes has been devel-
oped so far. In the case of low-order schemes, some works can be found for finite-volume, finite-difference, finite-element 
and discontinuous Galerkin methods which only work for particular steady states (mainly zero velocity steady states): see, 
for instance, [32,44,93,29,90,9,70]. See [25] for well-balanced methods for all the one-dimensional steady states for the 
shallow-water system. Concerning high-order schemes, finite-difference, discontinuous Galerkin methods and combination 
of finite-volume/finite-element and finite-volume/finite-difference methods that are well-balanced for particular stationary 
solutions (mainly zero velocity steady states) are presented, for example, in [19,59,88,42,47].

In the context of semi-implicit numerical schemes, RK-IMEX setting represents a powerful tool for the time discretization 
of system of the form (1) if such it contains both stiff and non stiff terms. Typical examples are hyperbolic systems with 
stiff hyperbolic or parabolic relaxation characterized by a relaxation parameter ε, [78,14,15,11,10].

In the hyperbolic to hyperbolic relaxation (HHR) a natural treatment consists in adopting RK-IMEX schemes, in which 
the relaxation term is treated by an implicit scheme, while the hyperbolic part is treated explicitly [78,14]. On the other 
hand, in hyperbolic systems with parabolic relaxation (HPR), standard RK-IMEX schemes developed for HHR systems are not 
appropriate, because the characteristic speeds of the hyperbolic term diverge as the relaxation parameter vanishes. Slightly 
modified IMEX schemes become consistent discretization of the limit diffusive relaxed system, but suffer from the parabolic 
CFL restriction. In [15,11,10] this drawback was overcome by a penalization method, so that the limit scheme becomes an 
implicit scheme for the limit diffusive relaxed system.

Furthermore, in [12] a unified RK-IMEX approach was introduced for systems which may admit both hyperbolic and 
parabolic relaxation (for example with space dependent relaxation parameter). Thus, this latter approach applies to both 
HHR and HPR. All these approaches are capable to capture the correct asymptotic limit of the system when ε → 0, i.e., the 
schemes are asymptotic preserving (AP) independently of the scaling used.

The organization of the article is as follows: in Section 2 we present an overview to build both exactly well-balanced and 
well-balanced reconstruction operators and its application to design explicit high-order numerical schemes satisfying this 
property. Section 3 is devoted to obtain well-balanced implicit methods. We introduce a general procedure to design well-
balanced reconstruction operators adapted to implicit methods and a general result is stated showing that well-balanced 
reconstruction operators lead to well-balanced methods. Section 4 is focused on how the time discretization is performed, 
19
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including the particular case of implicit first- and second-order well-balanced schemes. Section 4 ends with the semi-
implicit case. In Section 5, numerous numerical tests are performed to check the well-balanced property of the implicit 
and semi-implicit numerical methods. Even though the introduced strategy can be used to design arbitrary high-order well-
balanced methods, only first- and second-order methods have been implemented. We consider numerical tests for scalar and 
systems of balance laws: the transport equation, the Burgers equation with a non-linear source term and the shallow water 
model with and without Manning friction. Eventually, some conclusions are drawn in Section 6 and possible forthcoming 
works are also discussed.

2. Preliminaries

As discussed earlier, in previous works, two of the authors introduced a general procedure to design explicit methods 
satisfying these properties based on the use of reconstructions operators. This general strategy involves nonlinear problems 
to be solved at every computational cell and time step consisting in finding a stationary solution of (1) with given average 
in the cell. If the expression of the stationary solutions if available, exactly well-balanced methods can be designed. If it is 
not the case, one can obtain methods that are well-balanced.

2.1. Exactly well-balanced methods

Remember that, given the set {ui} of cell-averages of a function u

ui = 1

�x

xi+1/2∫
xi−1/2

u(x)dx,

or their approximations using a quadrature formula

ui =
M∑

m=1

αmu(xm
i ),

where xm
i and αm are, respectively, the nodes and the weights of the quadrature formula, a reconstruction operator provides 

approximations of u at the cells

u(x) ≈ Pi(x; {ū j} j∈Si }, x ∈ [xi−1/2, xi+1/2],
where xi±1/2 represent the inter-cells. Here for simplicity we assume that space discretization is uniform, so that the 
weights do not depend on i, and xm

i = xi−1/2 + cm�x, m = 1, . . . , M , where cm denotes the nodes of the quadrature formula 
in the interval [0, 1]. These approximations are obtained by interpolation or approximation techniques from the cell values at 
the cells belonging to the stencil of the ith cell: Si represents the set of their indexes. MUSCL, ENO, or CWENO are examples 
of high-order reconstruction operators. It will be assumed from now on that all the cell-averages are approximated using a 
fixed quadrature formula.

The design of explicit high-order well-balanced numerical methods discussed in [28] is based on the use of reconstruc-
tion operators that are well-balanced according to the following definition:

Definition 1. Given a stationary solution ue of (1), a reconstruction operator Pi(x) is said to be exactly well-balanced for ue

if

Pi(x; {ue
j} j∈Si ) = ue(x), ∀x ∈ [xi− 1

2
, xi+ 1

2
], ∀i,

where ue
j represent the exact cell-averages or the approximate cell-averages obtained by a quadrature formula from the 

stationary solution ue .

Since, in general, a standard reconstruction operator is not expected to be well-balanced, the following strategy intro-
duced in [24] is used to obtain a well-balanced operator Pi from a standard one Q i :

Algorithm 1. Given a family of cell values {ui}, at every cell Ii = [xi−1/2, xi+1/2]:

1. Find, if it is possible, a stationary solution ue
i (x) of (1) defined in the stencil of cell Ii such that:

M∑
αmue

i (xm
i ) = ui .
m=1
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2. Apply the reconstruction operator to the cell values {v j} j∈Si given by

v j = u j −
M∑

m=1

αmue
i (xm

j )

to obtain

Q i(x) = Q i(x; {vn
j } j∈Si ).

3. Define

Pi(x) = ue
i (x) + Q i(x).

It can be easily proved that the reconstruction operator Pi is exactly well-balanced provided that Q i is exact for the zero 
function. Notice that, at every cell, a nonlinear problem has to be solved in the first step consisting in finding a stationary 
solution in the stencil of the cell with prescribed average in the cell. Therefore, the expression of the stationary solutions 
either in explicit or implicit form is required.

Once the exactly well-balanced reconstruction operator has been built, the semi-discrete numerical methods write as
follows:

dui

dt
= − 1

�x

(
Fi+1/2(t) − Fi−1/2(t)

) + 1

�x

(
f
(

ue,t
i (xi+1/2))

)
− f

(
ue,t

i (xi−1/2))
))

+
M∑

m=1

αm

(
S(P t

i (xm
i )) − S(ue,t

i (xm
i )

)
Hx(xm

i ), ∀i,
(3)

where

• P t
i is the well-balanced reconstruction obtained from the cell values {ui(t)};

• ue,t
i is the stationary solution found at the first step of the reconstruction procedure at the ith cell;

• Fi+1/2(t) = F(ut,−
i+1/2, u

t,+
i+1/2), where F is any consistent numerical flux and

ut,−
i+1/2 = P t

i (xi+1/2), ut,+
i+1/2 = P t

i+1(xi+1/2).

Notice that in order to use a lighter notation we write ui(t) in place of ui(t) to denote a semidiscrete approximation of 
cell average of the solution,

1

�x

x1+1/2∫
xi−1/2

u(x, t)dx.

This numerical method is well-balanced in the sense that, given any stationary solution ue , the set of cell values {ue
i } is 

an equilibrium of the ODE system (3): see [28].

2.2. Well-balanced methods

When the expression of the stationary solutions in explicit or implicit form is not available, reconstruction operators that 
are just well-balanced but not exactly well-balanced can be designed following the idea developed in [48–50]: consider a 
numerical solver of the ODE system (2) that provides approximations of a stationary solution ue at the inter-cells and the 
quadrature points

ue
i+1/2 ≈ ue(xi+1/2), ue

i,m ≈ ue(xm
i ), m = 1, . . . , M, ∀i.

Well-balanced reconstruction operators are then defined as follows:

Definition 2. Given a stationary solution ue of (1), a reconstruction operator Pi(x) is said to be well-balanced for ue if, for 
every i:

Pi(xi±1/2; {ue
j} j∈Si ) = ue

i±1/2,

Pi(xm
i ; {ue

j} j∈Si ) = ue
i,m, m = 1, . . . , M,

where here the cell-averages {ue
i } are given by
21
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ue
i =

M∑
m=1

αmue
i,m.

Algorithm 1 is modified as follows to obtain well-balanced reconstruction operators:

Algorithm 2. Given a family of cell values {ui}, at every cell Ii = [xi−1/2, xi+1/2]:

1. Find, if it is possible, a stationary solution ue
i (x) of (1) defined in the stencil of cell Ii such that:

M∑
m=1

αmue
i;i,m = ui,

where

ue
i;i,m ≈ ue

i (xm
i ), m = 1, . . . , M,

are the approximations provided by the selected numerical solver for (2).
2. Apply the reconstruction operator to the cell values {v j} j∈Si given by

v j = u j −
M∑

m=1

αmue
i; j,m

to obtain

Q i(x) = Q i(x; {vn
j } j∈Si ),

where

ue
i; j,m ≈ ue

i (xm
j ), m = 1, . . . , M, j ∈ Si .

3. Define

u+
i−1/2 = ue

i;i−1/2 + Q i(xi−1/2),

u−
i+1/2 = ue

i;i+1/2 + Q i(xi+1/2),

Pi(xm
i ) = ue

i;i,m + Q i(xm
i ), m = 1, . . . , M,

where

ue
i;i±1/2 ≈ ue

i (xi±1/2).

Observe that, in order to implement (3) it is enough to compute the reconstructions at the inter-cells and at the quadra-
ture points.

The first step of the reconstruction procedure consists now of applying a numerical solver to the ODE system (2) to find 
a solution with prescribed average at a cell. Two different strategies have been developed to solve these problems:

• A control-based approach (see [48,49]). The nonlinear problems to be solved in the reconstruction procedure are inter-
preted as control problems, in which the control is the value of the solution at the left extreme point of the stencil. 
The gradient of the functional is computed on the basis of the adjoint problem. Different gradient-type methods and 
the Newton’s method are applied to solve the control problems.

• A technique based on RK collocation methods (see [50]). RK collocation methods are used to solve (2) with prescribed 
average in each cell Ii and to extend the found stationary solution to the cells belonging to stencil Si .

Once the well-balanced reconstruction operator has been built, the semi-discrete numerical method writes as follows:

dui

dt
= − 1

�x

(
Fi+1/2(t) − Fi−1/2(t)

) + 1

�x

(
f
(

ue,t
i;i+1/2)

)
− f

(
ue,t

i;i−1/2)
))

+
M∑

αm

(
S(P t

i (xm
i )) − S(ue,t

i;i,m)
)

Hx(xm
i ), ∀i,

(4)
m=1
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where now ue,t
i;i±1/2, ue,t

i;i,m are the approximations at the inter-cells xi±1/2 and the quadrature points xm
i of the stationary 

solution ue,t
i found at the first step of the reconstruction procedure at the ith cell.

This numerical method is well-balanced in the sense that, given any stationary solution ue , the set of cell values {ue
i }

given by

ue
i =

M∑
m=1

αmue
i,m

is an equilibrium of the ODE system (4): see [50].
Observe that (3) is the particular case of (4) corresponding to the exact ODE solver for system (2), i.e.

ue,t
i;i±1/2 = ue,t

i (xi+1/2),

ue,t
i; j,m = ue,t(xm

j ), m = 1, . . . , M.

Therefore, only the expression of the method (4) will be considered without loss of generality.

2.3. Explicit methods

Explicit high-order well-balanced numerical methods are then obtained by applying an ODE solver (usually a TVD RK 
method) to the ODE systems (3) or (4).

3. Implicit methods

Although in principle implicit high-order well-balanced methods can be obtained by applying implicit ODE solvers to (3)
or (4), in practice the well-balanced reconstruction of the unknown solution un+1 would lead to complex nonlinear systems 
that may be costly to solve. To avoid this we look for a solution of the ODE system in [tn, tn+1] of the form ui(t) = un

i +u f
i (t), 

and adopt besides the standard reconstruction operator Q , a new reconstruction Q̃ , which will act on the perturbation u f
i

as described below. Once the approximations at time tn , {un
i }, have been computed, in order to update them we proceed as 

follows:

• First, the well-balanced reconstruction procedure is applied to {un
i } to obtain:

Pn
i (x) = ue,n

i (x) + Q i(x; {vn
j } j∈Si ),

where ue,n
i (x) is the stationary solution found at the first step of the reconstruction procedure at the ith cell.

• Next we consider the following ODE system in the time interval [tn, tn+1]:
du f

i

dt
= − 1

�x

(
Fi+1/2(t) − Fi−1/2(t)

) + 1

�x

(
f
(

ue,n
i;i+1/2

)
− f

(
ue,n

i;i−1/2

))
+

M∑
m=1

αm

(
S(P t

i (xm
i )) − S(ue,n

i;i,m)
)

Hx(xm
i ), ∀i,

(5)

with initial condition

u f
i (tn) = 0, ∀i.

Here

P t
i (x) = Pn

i (x) + Q̃ i(x; {u f
j } j∈S̃i

), (6)

and

Fi+1/2(t) = F(ut,−
i+1/2, ut,+

i+1/2), (7)

where

ut,−
i+1/2 = P t

i (xi+1/2), ut,+
i+1/2 = P t

i+1(xi+1/2). (8)

• Define:

un+1 = un + u f
(tn+1). (9)
i i i
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Observe that, although

ui(t) = un
i + u f

i (t), t ∈ [tn, tn+1]
formally solves (4), the reconstruction P t

i is not the same as the one in the previous section: while there one had

P t
i (x) = ue,t

i (x) + Q i(x; {v j} j∈S̃i
),

now,

P t
i (x) = ue,n

i (x) + Q i(x; {vn
j } j∈Si ) + Q̃ i(x; {u f

j (t)} j∈S̃i
).

The main differences are the following:

• to compute P t
i the stationary solution ue,n

i is used instead of ue,t
i ;

• the reconstruction operator Q̃ i will be in practice easier and cheaper to compute than Q i : in particular, the smoothness 
indicators obtained to compute Q i at time tn may be used to compute Q̃ i . We shall require that Q̃ i maintains null 
states and its order of accuracy is p.

The description of the fully discrete schemes will be completed in the next section, by specifying how to solve the ODE 
system (5)-(9).

Some properties of the numerical schemes do not depend on the detail of the particular scheme that is adopted for the 
numerical solution of system (5)-(9), therefore we shall discuss them in this section.

3.1. Well-balanced property

Here we state two results concerning the well-balanced properties of the schemes described at the beginning of the 
section.

Theorem 1. Given a stationary solution ue of (1), let us suppose that, at every cell, at every time step, Pn
i is a well-balanced recon-

struction operator. Then, the numerical method (9) is well-balanced for ue, in the sense that, if the initial condition is given by

u0
i =

M∑
m=1

αmue
i,m,

then

un
i = u0

i

for every n and every i.

The proof is straightforward: it is enough to check that at every cell, at every time step, u f
i (t) ≡ 0 is the solution of the 

Cauchy problem (5). As a corollary we have:

Theorem 2. Given a stationary solution ue of (1), let us suppose that, at every cell, at every time step, Pn
i is an exactly well-balanced 

reconstruction operator. Then, the numerical method (9) is exactly well-balanced for ue, in the sense that, if the initial condition is 
given by

u0
i =

M∑
m=1

αmue(xm
i ),

then

un
i = u0

i

for every n and every i.
24
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4. Time discretization

This section is devoted to time discretization. If system (5)-(9) is not stiff , i.e. if accuracy and stability restrictions on the 
time step �t are of the same order of magnitude, then one can adopt explicit schemes. This is often the case for hyperbolic 
systems of balance laws if one is interested in resolving all the waves of the system, i.e. if all the signals transported by the 
various waves are not negligible, and if the time scales associated to the right hand side are not too small. In such cases 
one can adopt explicit schemes such as explicit Runge-Kutta of multistep methods. In particular, strongly stability preserving 
schemes are generally adopted for the numerical solution of hyperbolic systems of balance laws, since they prevent forma-
tion of spurious oscillations due to time discretization (see [54]). The literature on well-balanced schemes based on explicit 
schemes is too vast to mention it here. We just recall the following review papers [28,85,6,46,56,55,71,52,51,53,45,7,8,41,
40,87,81,3,17,27,18,69,60,72,68,38,89,21,36,23,24,76,77,86,5,65,92,91,79,75,20,33,58,84,1,83]. For this reason in this paper we 
do not consider well-balanced schemes based on explicit time discretization methods. The choice of the method adopted 
for time discretization depends on the problem we want to solve. We shall consider three different situations:

1. only a source term or part of it is stiff while the hyperbolic term is non stiff;
2. the source or part of it and some part of the hyperbolic term are stiff;
3. both the hyperbolic term and the source are stiff and require implicit solver.

Conceptually, the simplest case is the third one, which requires an implicit treatment of both source and the hyperbolic 
term, so this is the case we start with. In such case one could adopt an implicit scheme for the treatment of (5). Most 
commonly used implicit Runge-Kutta schemes are the so called diagonally implicit schemes (DIRK), and in particular singly 
diagonally implicit which are described by the following Butcher tableau

γ γ 0 0 . . . 0
c2 a2,1 γ 0 . . . 0
c3 a3,1 a3,2 γ . . . 0
...

...
...

...
. . .

...

1 as,1 as,2 as,3 . . . γ
as,1 as,2 as,3 . . . γ

(10)

will be applied to solve the Cauchy problems satisfied by the time fluctuations u f
i (t):

u f ,k
i = �t

k−1∑
l=1

ak,l L
l
i + �tγ Lk

i , k = 1, . . . , s,

u f ,n+1
i = u f ,s

i ,

where

Lk
i = − 1

�x

(
F k

i+1/2 − F k
i−1/2

)
+ 1

�x

(
f
(

ue,n
i;i+1/2

)
− f

(
ue,n

i;i−1/2

))
+

M∑
m=1

αm

(
S(Pk

i (xm
i )) − S(ue,n

i;i,m)
)

Hx(xm
i ), k = 1, . . . , s,

(11)

with obvious notation, that can be written as well in the form:

u f ,k
i =

k−1∑
l=1

γk,lu
f ,l
i + γ �tLk

i , k = 1, . . . , s,

u f ,n+1
i = u f ,s

i ,

for some coefficients γk,l . The choice of the particular DIRK scheme depends on the problem. If the systems we want to 
solve are very stiff, then it is advisable to adopt a L-stable scheme, which is the type of schemes we shall use in this paper.

4.1. First-order schemes

The backward Euler method is used to discretize in time. The system for the time fluctuations writes thus as follows:

u f ,n+1
i = − �t

�x

(
F n+1

i+1/2 − F n+1
i−1/2

)
+ 1

�x

(
f
(

ue,n
i;i+1/2

)
− f

(
ue,n

i;i−1/2

))
+ �t

(
S(Pn+1

i (xi)) − S(ue,n
i;i )

)
Hx(xi),

(12)
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where the midpoint rule has been used to approximate the integrals. The reconstruction operators Q i and Q̃ i are the trivial 
piecewise constant ones so that:

Pn
i (x) = ue,n

i (x), Pn+1
i = ue,n

i (x) + u f ,n+1
i ,

and therefore the reconstructed states are defined as follows:⎧⎪⎨⎪⎩
un+1,−

i+ 1
2

= ue,n
i;i+ 1

2
+ u f ,n+1

i = un,−
i+ 1

2
+ u f ,n+1

i ,

un+1,+
i+ 1

2
= ue,n

i+1;i+ 1
2

+ u f ,n+1
i+1 = un,+

i+ 1
2

+ u f ,n+1
i+1 .

Once System (12) has been solved, the cell-averages are updated as follows

un+1
i = un

i + u f ,n+1
i .

Notice that, except for the case of a linear problem, the system to be solved to compute the time fluctuations u f ,n+1
i , 

(12), is nonlinear: a numerical method such as a fixed-point algorithm or the Newton’s method will be applied to solve 
them.

4.2. Second-order schemes

The second-order implicit Runge-Kutta method whose Butcher tableau is

γ γ 0
1 1 − γ γ

1 − γ γ ,

(13)

where γ = 1 − 1√
2

, will be used now for the time discretization. Since the scheme is stiffly accurate, i.e. as,i = bi, i = 1, . . . , s, 
then the numerical solution coincides with the last stage value. Then, the fully discrete numerical method is as follows:

u f ,1
i = �tγ L1

i ,

u f ,2
i = �t(1 − γ )L1

i + �tγ L2
i ,

u f ,n+1
i = u f ,2

i ,

(14)

where

Lk
i = − 1

�x

(
F k

i+1/2 − F k
i−1/2

)
+ 1

�x

(
f
(

ue,n
i;i+1/2

)
− f

(
ue,n

i;i−1/2

))
+

(
S(Pk

i (xi)) − S(ue,n
i;i )

)
Hx(xi), k = 1,2.

(15)

Again, the midpoint rule is applied to approximate the integrals and ue,n
i (x) is the stationary solution such that ue,n

i (xi) ≈
ue,n

i;i = un
i .

Since

L1
i = u f ,1

i

�tγ
,

(14) can be equivalently written as

u f ,1
i = �tγ L1

i ,

u f ,n+1
i = (1 − γ )

γ
u f ,1

i + �tγ Ln+1
i ,

(16)

where the superindex 2 has been replaced by n + 1, since u f ,n+1
i = u f ,2

i .
The well-balanced reconstruction operator Pn

i (x) is computed on the basis of a MUSCL-type reconstruction operator using 
three-point stencils

Si = {i − 1, i, i + 1}
as follows:
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Algorithm 3. Given the approximations {un
i } at time tn:

1. Find, if possible, a stationary solution ue,n
i (x) such that

ue,n
i;i = un

i ,

where

ue,n
i;i ≈ ue

i (xi).

2. Apply the second-order reconstruction operator Q i to {vn
j } j∈Si given by

vn
j = un

j − ue,n
i; j , j ∈ Si,

where

ue,n
i; j ≈ ue

i (x j), ∈ Si,

to obtain

Q n
i (x) = Q n

i (x; {vn
j } j∈Si ) = �i vn(x − xi).

Here, �i vn is a slope limiter, such as the minmod limiter,

�i vn = minmod

(
vn

i+1 − vn
i

�x
,

vn
i − vn

i−1

�x

)
, (17)

where

minmod(a,b) =
⎧⎨⎩ min(a,b) i f a > 0,b > 0,

max(a,b) i f a < 0,b < 0,

0 otherwise,
(18)

or the avg limiter:

�i vn = avg

(
vn

i+1 − vn
i

�x
,

vn
i − vn

i−1

�x

)
, (19)

where

avg(a,b) =
⎧⎨⎩

|a|b + |b|a
|a| + |b| i f |a| + |b| > 0,

0 otherwise.
(20)

3. Define

un,+
i−1/2 = ue,n

i;i−1/2 + Q n
i (xi−1/2) = ue,n

i;i−1/2 − 1

2
�i vn,

un,−
i+1/2 = ue,n

i;i+1/2 + Q n
i (xi+1/2) = ue,n

i;i+1/2 + 1

2
�i vn,

Pn
i (xi) = ue.n

i;i + Q n
i (xi) = ue,n

i;i ,

where

ue,n
i;i±1/2 ≈ ue

i (xi±1/2).

Finally, two different choices for Q̃ k
i are considered: the trivial piecewise constant reconstruction and a piecewise linear 

one that uses the slope limiters of Pn .
i
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4.2.1. Piecewise constant reconstruction
In this case, S̃i = {i} and the reconstruction operator is given by

Q̃ k
i (x) = u f ,k

i .

With this definition one has:

uk,−
i+1/2 = un,−

i+1/2 + Q̃ k
i (xi+1/2) = un,−

i+1/2 + u f ,k
i ,

uk,+
i−1/2 = un,+

i−1/2 + Q̃ k
i (xi−1/2) = un,+

i−1/2 + u f ,k
i ,

Pk
i (xi) = Pn

i (xi) + Q̃ k
i (xi) = ue,n

i;i + u f ,k
i .

Theorem 3. Let us suppose that Q̃ i is the piecewise constant reconstruction operator. Then

P t
i (x) = Pn

i (x) + Q̃ i

is a second-order reconstruction operator.

Proof. Given a function u(x, t), we consider the reconstruction operator

P t
i (x) = Pn

i (x) + ui(t) − un
i ,

where ui(t) and un
i represent the cell-averages of u at the i-th cell at times t and tn , respectively, and Pn

i is a second-order 
well-balanced reconstruction operator applied to {un

i }.
Let us see that P t

i is a second-order reconstruction operator: given x ∈ Ii and assuming that �t = O (�x) we have

P t
i (x) = Pn

i (x) + ui(t) − un
i

= u(x, tn) + u(xi, t) − u(xi, tn) + O (�x2)

= u(x, tn) + u(x, tn) + ∂xu(x, tn)(xi − x) + ∂t u(x, tn)(t − tn)

−u(x, tn) − ∂xu(x, tn)(xi − x) + O (�x2)

= u(x, tn) + ∂t u(x, tn)(t − tn) + O (�x2)

= u(x, t) + O (�x2).

Then, P t
i is second-order accurate. �

4.2.2. Piecewise linear reconstruction operator
In this case, S̃i = Si = {i − 1, i, i + 1} and the reconstruction operator is given by

Q̃ k
i (x) = u f ,k

i + �u f ,k
i (x − xi),

where

�u f ,k
i = ϕn,L

i

(
u f ,k

i − u f ,k
i−1

)
�x

+ ϕn,R
i

(
u f ,k

i+1 − u f ,k
i

)
�x

.

Here, ϕn,L
i and ϕn,R

i are two slope limiters computed using the approximations un
i at time tn . For instance, if the avg limiter 

is chosen, one has:

ϕn,L
i = |dR |

|dL | + |dR | , ϕn,R
i = |dL |

|dL | + |dR | , (21)

where

dL = un
i − un

i−1, dR = un
i+1 − un

i . (22)

With this definition one has:

uk,−
i+1/2 = un,−

i+1/2 + Q̃ k
i (xi+1/2) = un,−

i+1/2 + u f ,k
i ,

uk,+
i−1/2 = un,+

i−1/2 + Q̃ k
i (xi−1/2) = un,+

i−1/2 + u f ,k
i ,

Pk(xi) = Pn(xi) + Q̃ k(xi) = ue,n + u f ,k
.
i i i i;i i
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where

Q̃ k
i (xi−1/2) = u f ,k

i − 1

2
ϕn,L

i

(
u f ,k

i − u f ,k
i−1

)
− 1

2
ϕn,R

i

(
u f ,k

i+1 − u f ,k
i

)
, (23)

Q̃ k
i (xi+1/2) = u f ,k

i + 1

2
ϕn,L

i

(
u f ,k

i − u f ,k
i−1

)
+ 1

2
ϕn,R

i

(
u f ,k

i+1 − u f ,k
i

)
. (24)

4.3. Semi-implicit methods

If not all terms of the equation are stiff, then it is not necessary to use a fully implicit scheme for the whole system.
Let us suppose, for example, that the problem writes as follows:

ut + f 1(u)x + f 2(u)x = S1(u)Hx + S2(u), (25)

where H is a known function, with f 1 and S1 non stiff, and f 2 and S2 stiff. Then the problem can be more efficiently 
treated by adopting IMEX methods, in which the non stiff terms are treated explicitly, while the stiff terms are treated 
implicitly. We select numerical fluxes F i(ul, ur), i = 1, 2 consistent with f i , i = 1, 2 and an IMEX method with Butcher 
tableaux:

0 0 0 0 . . . 0
c̃2 ã2,1 0 0 . . . 0
c̃3 ã3,1 ã3,2 0 . . . 0
...

...
...

...
. . .

...

c̃s ãs,1 ãs,2 ãs,3 . . . 0

b̃1 b̃2 b̃3 . . . b̃s

,

γ γ 0 0 . . . 0
c2 a2,1 γ 0 . . . 0
c3 a3,1 a3,2 γ . . . 0
...

...
...

...
. . .

...

1 as,1 as,2 as,3 . . . γ
as,1 as,2 as,3 . . . γ

(26)

The numerical method writes then as follows:

u f ,k
i = �t

k−1∑
l=1

ãk,l L
1,l
i + �t

k−1∑
l=1

ak,l L
2,l
i + �tγ L2,k

i , k = 1, . . . , s,

u f ,n+1
i = �t

s∑
l=1

b̃i L
1,l
i + �t

s−1∑
l=1

as,i L
2,l
i + �tγ L2,s

i ,

where

L1,k
i = − 1

�x

(
F 1,k

i+1/2 − F 1,k
i−1/2

)
+ 1

�x

(
f 1

(
ue,n

i;i+1/2

)
− f 1

(
ue,n

i;i−1/2

))
+

M∑
m=1

αm

(
S1(Pk

i (xm
i )) − S1(ue,n

i;i,m)
)

Hx(xm
i );

L2,k
i = − 1

�x

(
F 2,k

i+1/2 − F 2,k
i−1/2

)
+ 1

�x

(
f 2

(
ue,n

i;i+1/2

)
− f 2

(
ue,n

i;i−1/2

))
+

M∑
m=1

αm

(
S2(Pk

i (xm
i )) − S2(ue,n

i;i,m)
)

;

(27)

for k = 1, . . . , s. For instance, if the second order IMEX method with tableaux

0 0 0
1

2γ
1

2γ 0

1 − γ γ

,

γ γ 0
1 1 − γ γ

1 − γ γ
, (28)

with γ = (2 − √
2)/2 is selected, the numerical method writes as follows:

u f ,1
i = �tγ L2,1

i ,

u f ,2
i = �t

2γ
L1,1

i + �t(1 − γ )L2,1
i + �tγ L2,2

i ,

u f ,n+1
i = �t

(
(1 − γ )L1,1

i + γ L1,2
i + (1 − γ )L2,1

i + γ L2,2
i

)
,

or, equivalently,
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u f ,1
i = �tγ L2,1

i ,

u f ,2
i = �t

2γ
L1,1

i + 1 − γ

γ
u f ,1

i + �tγ L2,2
i ,

u f ,n+1
i = u f ,2

i + �t

(
1 − γ − 1

2γ

)
L1,1

i + γ �tL1,2
i .

5. Numerical tests

The following acronyms will be used in this section to denote the different methods considered:

• EXWBMp: explicit well-balanced numerical method of order p where the well-balanced reconstruction operator is 
based on RK collocation methods.

• IEWBMp: implicit exactly well-balanced numerical method of order p.
• IWBMp: implicit well-balanced numerical method of order p where the well-balanced reconstruction operator is based 

on RK collocation methods.
• SIEWBMp: semi-implicit exactly well-balanced numerical method of order p.
• SIWBMp: semi-implicit well-balanced numerical method of order p where the well-balanced reconstruction operator is 

based on RK collocation methods.

Although in principle the methodology introduced here can be used to design high-order well-balanced implicit or 
semi-implicit numerical methods, we have only implemented so far first- and second-order methods. The midpoint rule is 
considered to approximate the integrals and 1-stage RK collocation methods are applied to obtain the discrete stationary 
solutions and to solve the local nonlinear problems in the first step of the well-balanced reconstruction procedure.

Since the goal of this work is to introduce a strategy to develop implicit and semi-implicit well-balanced schemes for 
general systems of balance laws, a wide range of numerical experiments has been performed to check the methods. The 
scalar balance laws or systems of balance laws considered are the following:

• Linear transport equation with source term.
• Burgers equation with nonlinear source term.
• Shallow water equations without friction.
• Shallow water equations with Manning friction.

In all cases, the following numerical tests are presented to check the well-balanced property of the methods:

• Preservation of a stationary solution: the different numerical methods are run for long time periods starting from a 
stationary solution to check its preservation.

• Perturbation of a stationary solution: an initial condition that represents a small perturbation of a stationary solution is 
considered to see how the methods deal with the evolution of the generated waves and how the stationary solution is 
recovered once the waves have left the computational domain.

Moreover, the accuracy of the methods is checked in three order tests (the transport equation, the Burgers equation and 
the frictionless shallow water equations). Additionally, two more numerical tests are included in the case of the frictionless 
shallow water equation to study the shock-capturing property of the methods and the convergence in time of the numerical 
solutions to a stationary solution starting from an initial condition far from equilibrium.

5.1. Transport equation

Let us consider the linear transport equation

ut + cux = αu, (29)

where c, α ∈R. The stationary solutions of (29) are the 1-parameter family:

ue(x) = Ceαx/c, C ∈R.

Therefore, given a family of cell averages {un
i }, and considering that cell-averages and pointwise values of a smooth function 

at cell center agree to second-order in �x, the stationary solution ue,n
i (x) such that ue,n

i (xi) = un
i is

ue,n
i (x) = un

i eα(x−xi)/c.

Exactly well-balanced methods will be considered. The Rusanov numerical flux
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F(u, v) = c

2
(u + v) − k

2
(v − u),

is considered, with k = |c|.

5.1.1. First-order method
In the case of the first-order scheme, one has

F n+1
i+1/2 = c

2

(
ue,n

i (xi+1/2) + u f ,n+1
i + ue,n

i+1(xi+1/2) + u f ,n+1
i+1

)
− k

2

(
ue,n

i+1(xi+1/2) + u f ,n+1
i+1 − ue,n

i (xi+1/2) − u f ,n+1
i

)
,

which leads to the following expression of (12):

u f ,n+1
i = − �t

�x

(
c

2

(
u f ,n+1

i+1 − u f ,n+1
i−1

)
− k

2

(
u f ,n+1

i+1 − 2u f ,n+1
i + u f ,n+1

i−1

))
− �t

�x

(
F

(
ue,n

i (xi+1/2), ue,n
i+1(xi+1/2)

) − F
(
ue,n

i−1(xi−1/2), ue,n
i (xi−1/2)

))
+ �t

�x

(
f
(
ue,n

i (xi+1/2)
) − f

(
ue,n

i (xi−1/2)
)) + α�t

(
ue,n

i (xi) + u f ,n+1
i − ue,n

i (xi)
)

.

Since

F
(
ue,n

i (xi+1/2), ue,n
i+1(xi+1/2)

) = F
(

un,−
i+1/2, un,+

i+1/2

)
= F n

i+1/2,

the linear system for the time fluctuations for the first-order case is:

u f ,n+1
i + �t

�x

(
c

2

(
u f ,n+1

i+1 − u f ,n+1
i−1

)
− k

2

(
u f ,n+1

i+1 − 2u f ,n+1
i + u f ,n+1

i−1

))
− α�tu f ,n+1

i =

− �t

�x

(
F n

i+1/2 − F n
i−1/2

)
+ �t

�x

(
f
(
ue,n

i (xi+1/2)
) − f

(
ue,n

i (xi−1/2)
))

.

If boundary conditions are neglected, a linear system has to be solved whose matrix is tridiagonal with coefficients

d0 = 1 + λk − α�t, d−1 = −λ

2
(c + k), d1 = −λ

2
(−c + k),

in the main, the lower, and the upper diagonals respectively, where

λ = �t

�x
.

5.1.2. Second-order methods
The system of equations for u f ,1

i is as follows:

u f ,1
i = −γ �t

�x

(
F 1

i+1/2 − F 1
i−1/2

)
+ γ �t

�x

(
f
(
ue,n

i (xi+1/2)
) − f

(
ue,n

i (xi−1/2)
))

+ γ �t
(

ue,n
i (xi) + u f ,1

i − ue,n
i (xi)

)
.

If the piecewise constant reconstruction Q̃ k
i described in Subsection 4.2.1 is selected, the expressions of the numerical 

flux are as follows:

F 1
i+1/2 = c

2

(
un,−

i+1/2 + u f ,k
i + un,+

i+1/2 + u f ,k
i+1

)
− k

2

(
un,+

i+1/2 + u f ,k
i+1 − un,−

i+1/2 − u f ,k
i

)
,

and the expression of the numerical method is as follows:

u f ,1
i + γ �t

�x

c

2

(
u f ,1

i+1 − u f ,1
i−1

)
− γ �tk

2�x

(
u f ,1

i+1 − 2u f ,1
i + u f ,1

i−1

)
− γ α�tu f ,1

i =

− γ �t (
F n

i+1/2 − F n
i−1/2

)
+ γ �t (

f
(
ue,n

i (xi+1/2)
) − f

(
ue,n

i (xi−1/2)
))

.

�x �x
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Table 1
Transport equation: Test 1. L1-errors at t = 1,10,100,1000
for IEWBM1 and IEWBM2 with piecewise constant (PWCR) 
or piecewise linear (PWLR) reconstruction Q̃ i .

t IEWBM1 IEWBM2
PWCR PWLR

1 1.63e-13 1.64e-13 1.57e-13
10 1.63e-13 1.64e-13 1.60e-13
100 1.63e-13 1.63e-13 1.59e-13
1000 1.63e-13 1.63e-13 1.58e-13

u f ,n+1
i + γ �t

�x

c

2

(
u f ,n+1

i+1 − u f ,n+1
i−1

)
− γ �tk

2�x

(
u f ,n+1

i+1 − 2u f ,n+1
i + u f ,n+1

i−1

)
− γ α�tu f ,n+1

i =

− γ �t

�x

(
F n

i+1/2 − F n
i−1/2

)
+ γ �t

�x

(
f
(
ue,n

i (xi+1/2)
) − f

(
ue,n

i (xi−1/2)
)) + 1 − γ

γ
u f ,1

i .

If, again, boundary conditions are neglected, two linear systems have to be solved with the same tridiagonal matrix whose 
coefficients are now

d0 = 1 + γ λk − γ α�t, d−1 = −γ λ

2
(c + k), d1 = −γ λ

2
(−c + k).

If we consider now the piecewise linear reconstruction described in Subsection 4.2.2, the implementation of the numer-
ical method (14) leads to solve the following linear systems with pentadiagonal matrices:

u f ,1
i

[
1 − γ α�t + γ �t

�x

c

2

(
ϕn,L

i − ϕn,R
i + 1

2

(
ϕn,L

i+1 − ϕn,R
i−1

))
+ γ �t

�x

k

2

(
2 − 1

2

(
ϕn,L

i+1 + ϕn,R
i−1

))]
+u f ,1

i+1

[
γ �t

�x

c

2

(
1 + ϕn,R

i + 1

2

(
ϕn,R

i+1 − ϕn,L
i+1

))
− γ �t

�x

k

2

(
1 + 1

2

(
ϕn,R

i+1 − ϕn,L
i+1

))]
+u f ,1

i−1

[
γ �t

�x

c

2

(
−1 − ϕn,L

i + 1

2

(
ϕn,R

i−1 − ϕn,L
i−1

))
+ γ �t

�x

k

2

(
−1 + 1

2

(
ϕn,R

i−1 − ϕn,L
i−1

))]
+u f ,1

i+2

[
γ �t

�x
ϕn,R

i+1
k − c

4

]
+ u f ,1

i−2

[
γ �t

�x
ϕn,L

i−1
k + c

4

]
= −γ �t

�x

(
F n

i+1/2 − F n
i−1/2

)
+ γ �t

�x

(
f
(
ue,n

i (xi+1/2)
) − f

(
ue,n

i (xi−1/2)
))

.

u f ,n+1
i

[
1 − γ α�t + γ �t

�x

c

2

(
ϕn,L

i − ϕn,R
i + 1

2

(
ϕn,L

i+1 − ϕn,R
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]
+ u f ,n+1
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[
γ �t

�x
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k + c

4

]
= −γ �t
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(
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)
+ γ �t

�x

(
f
(
ue,n

i (xi+1/2)
) − f

(
ue,n

i (xi−1/2)
)) + 1 − γ

γ
u f ,1

i .

5.1.3. Test 1: stationary solution
Let us consider the space interval [0, 2] and the time interval [0,1000], α = 1 and c = 1. The CFL parameter is set to 2. 

In order to check the well-balanced property, we consider the stationary solution of (29)

u0(x) = ex

as initial condition. L1-errors between the initial and final cell-averages have been computed for IEWBMp, p = 1, 2, using a 
200-cell mesh for different times (see Table 1).

5.1.4. Test 2: perturbation of a stationary solution
We consider now an initial condition that represents a perturbation of the stationary solution of the previous test case:

u0(x) = ex + 1
e−100(x−0.3)2

.

2
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Table 2
Transport equation: Test 2. Differences in L1-norm between the reference and the nu-
merical solutions and convergence rates at t = 1 for IEWBM1 and IEWBM2 with piece-
wise constant (PWCR) or piecewise linear (PWLR) reconstruction Q̃ i with CFL=2.

Cells IEWBM1 IEWBM2
PWCR PWLR

Error Order Error Order Error Order
25 7.27e-02 - 3.65e-1 - 1.99e-1 -
50 6.37e-02 0.19 2.72e-01 0.42 1.09e-01 0.87
100 3.83e-02 0.73 1.57e-01 0.79 3.81e-02 1.51
200 2.17e-02 0.82 5.40e-02 1.52 9.39e-03 2.02
400 1.57e-02 0.47 1.45e-02 1.89 2.19e-03 2.10
800 6.62e-03 1.24 3.70e-03 1.98 5.21e-04 2.06
1600 3.43e-03 0.95 9.24e-04 2.00 1.23e-04 2.08

Fig. 1. Transport equation: Test 2. Differences between ex and the numerical solutions obtained with IEWBM1 using different CFL values at t = 1.

Table 3
Transport equation: Test 2. Differences in L1-norm between 
the stationary and the numerical solution at t = 5 for 
IEWBM1 and IEWBM2 with piecewise constant (PWCR) or 
piecewise linear (PWLR) reconstruction Q̃ i .

IEWBM1 IEWBM2
PWCR PWLR

4.15e-13 4.10e-13 4.09e-13

A reference solution has been obtained using IEWBM2 with piecewise linear reconstruction Q̃ i in a 6400-cell mesh. Table 2
shows the errors in L1-norm with respect to the reference solution for EWBM1 and EWBM2 for both the piecewise constant 
and linear reconstructions. Notice that the errors decrease with the number of cells at the expected rate.

We have also compared the numerical solutions when different values of the CFL number are chosen (see Figs. 1-2).
Notice that, whereas for the first-order methods big values of CFL can be considered, the second order schemes present 

some oscillations related to the time integrator: a linear analysis performed by M. López-Fernández shows that the method 
is stable for CFL values lower than 1 + √

2. Moreover, the numerical solutions obtained with the piecewise constant recon-
struction Q̃ i present more oscillations.

Furthermore, due to the well-balanced property of the methods, they are able to recover the stationary solution once 
the perturbation has left the domain. This is shown in Table 3, where L1-errors between the stationary solution and the 
numerical solutions at time t = 5 have been computed for IEWBMi, i = 1, 2, using a 400-cell mesh and CFL= 2.

5.2. Burgers equation

Let us consider now the Burgers equation with a nonlinear source term

ut +
(

1

2
u2

)
x
= αu2, (30)

where α ∈R. Again, the stationary solutions can be easily obtained:

ue(x) = Ceαx

Then, given a family of cell values {un
i }, the stationary solution ue,n

i (x) sought in the first step of the reconstruction proce-
dure is
33



Fig. 2. Transport equation: Test 2. Differences between ex and the numerical solutions obtained with IEWBM2 for different CFL values at t = 1. Top: PWCR. 
Bottom: PWLR.

ue,n
i (x) = un

i eα(x−xi).

Exactly well-balanced methods are considered again.
Due to the non-linearity of the flux and the source term, nonlinear systems have to be solved now to find the time 

fluctuations. A numerical method for nonlinear systems of algebraic equations is required. In particular, in this problem the 
Newton’s method is considered. For the first-order methods, only one iteration of the Newton’s method is performed. The 
Rusanov numerical flux

F(u, v) = c

2
( f (u) + f (v)) − k

2
(v − u),

is considered again, where k is the viscosity constant.

5.2.1. Test 1: stationary solution
We consider the space interval [0, 2], the time interval [0,1000], α = 1, and CFL=2. As initial condition, we consider the 

stationary solution

u0(x) = ex.

L1 errors between the initial and final cell-averages have been computed for IEWBMp, p = 1, 2, using a 200-cell mesh for 
different times (see Table 4).

5.2.2. Test 2: perturbation of a stationary solution
We consider now the initial condition:

u0(x) = ex + 0.4e−25(x−0.4)2
.

A reference solution has been computed using again IEWBM2 with piecewise linear reconstruction Q̃ i with a 3200-cell 
mesh. The numerical solutions obtained using different values of the CFL number are shown in Figs. 3-4. Notice that, unlike 
the linear case, no oscillations appear for second-order methods for large CFL values. Moreover, similar results are obtained 
with the piecewise constant and linear reconstructions Q̃ i .

Table 5 shows the L1-differences between the underlying stationary solution and the numerical solutions obtained with 
IEWBMp, p = 1, 2 at time t = 10 (once the perturbation has left the computational domain) using a 400-cell mesh and 
CFL= 2. Again, the stationary solution is recovered to machine precision.
I. Gómez-Bueno, S. Boscarino, M.J. Castro et al. Applied Numerical Mathematics 184 (2023) 18–48
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Table 4
Burgers equation: Test 1. L1-errors between the stationary and 
the numerical solution at t = 1,10,100,1000 for IEWBM1 and 
IEWBM2 with piecewise constant (PWCR) or piecewise linear 
(PWLR) reconstruction Q̃ i .

t IEWBM1 IEWBM2
PWCR PWLR

1 1.54e-13 1.32e-13 1.56e-13
10 1.54e-13 1.31e-13 1.56e-13
100 1.54e-13 1.31e-13 1.565e-13
1000 1.54e-13 1.31e-13 1.56e-13

Fig. 3. Burgers equation: Test 2. Differences between ex and the numerical solutions obtained with IEWBM1 using different CFL values at t = 0.3.

Fig. 4. Burgers equation: Test 2. Differences between ex and the numerical solutions obtained with IEWBM2 using different CFL values at t = 0.3. Top: 
PWCR. Bottom: PWLR.
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Table 5
Burgers equation: Test 2. Differences in L1-norm between 
the stationary and the numerical solution at t = 10 for 
IEWBM1 and IEWBM2 with piecewise constant (PWCR) or 
piecewise linear (PWLR) reconstruction Q̃ i .

IEWBM1 IEWBM2
PWCR PWLR

1.54e-13 1.32e-13 1.56e-13

Table 6
Burgers equation: Test 3. Differences in L1-norm between the reference and the numerical 
solutions at t = 0.5 for IEWBM1 and IEWBM2 with piecewise constant (PWCR) or piece-
wise linear (PWLR) reconstruction Q̃ i .

Cells IEWBM1 IEWBM2
PWCR PWLR

Error Order Error Order Error Order
25 1.67e-02 - 1.81e-03 - 1.81e-03 -
50 7.42e-02 1.17 4.76e-04 1.93 4.76e-04 1.93
100 4.79e-03 0.63 1.06e-04 2.16 1.06e-04 2.16
200 2.74e-02 0.81 2.99e-05 1.83 2.99e-05 1.83
400 1.48e-03 0.89 8.00e-06 1.90 8.00e-03 1.90
800 7.69e-04 0.95 2.02e-06 1.99 2.02e-06 1.99
1600 3.93e-04 0.97 4.85e-07 2.00 4.85e-07 2.06

5.2.3. Test 3: order test
We consider now the initial condition:

u0(x) = 0.1ex + 0.5e−25(x−1.0)2
.

A reference solution has been computed with IEWBM2 and the piecewise linear reconstruction using a 6400-cell mesh. 
Table 6 shows the errors in L1-norm with respect to the reference solution for EWBM1 and EWBM2 for both the piecewise 
constant and linear reconstructions: as it can be checked, the errors decrease with the number of cells at the expected 
convergence rate.

5.3. Shallow water equations

Let us consider now the 1d shallow water system with Manning friction

Ut + f (U )x = S1(U )Hx + S2(U ),

where

U =
(

h
q

)
, f (U ) =

⎛⎝ q
q2

h
+ g

2
h2

⎞⎠ , S1(U ) =
(

0
gh

)
, S2(U ) =

(
0

−kq|q|
hμ

)
.

The variable x makes reference to the axis of the channel and t is the time; q(x, t) and h(x, t) are the discharge and the 
thickness, respectively; g = 9.81 is the gravity; H(x) is the depth function measured from a fixed reference level; k is the 
Manning friction coefficient and μ is set to 7

3 .
The eigenvalues of the system are

λ± = u ± c,

with c = √
gh. The flow regime is characterized by the Froude number:

F r(U ) = |u|
c

. (31)

The flow is subcritical if F r < 1, critical if F r = 1 or supercritical if F r > 1.
The stationary solutions satisfy the ODE system⎧⎨⎩

(−u2 + gh
)

hx = ghHx − kq|q|
hμ

,

qx = 0.
(32)

Since the explicit expression of the stationary solutions is not available, well-balanced methods will be designed in which 
RK-collocation methods are used to approximate them. Different schemes are considered:
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Fig. 5. Shallow water equations without friction: Test 1. Initial condition: subcritical stationary solution.

• Fully implicit schemes, where the flux and the source term are treated implicitly.

• Semi-implicit schemes for problems without friction, in which the advection term 
(

q2

h

)
is treated explicitly and the 

equation of h, the pressure term 
(

1

2
gh2

)
and the source term are treated implicitly.

• Semi-implicit schemes for problems with friction, in which only the source term 
(

−kq|q|
hμ

)
is treated implicitly.

While the implementation of the two first types of methods above leads to solve coupled nonlinear algebraic systems at 
every stage of the RK solvers, in the third case of semi-implicit schemes for problems with friction, in which only the friction 
term is implicitly treated, local nonlinear equations have to be solved at every cell. Fixed-point iterations are considered in 
all cases.

5.3.1. Test 1: stationary solution
Let us first check the well-balanced property of the methods for the model without friction (k = 0). We consider x ∈

[0, 3], t ∈ [0,1000] and CFL= 2.0. As initial condition, we consider the subcritical stationary solution which solves the Cauchy 
problem:⎧⎪⎨⎪⎩

qx = 0,

(−u2 + gh)hx = ghHx,

h(0) = 2.0 + H(0), q(0) = 3.5,

where the depth function is given by

H(x) =
{ −0.25(1 + cos(5π(x + 0.5))) if 1.3 ≤ x ≤ 1.7,

0 otherwise,
(33)

(see Fig. 5). Table 7 shows the L1 errors between the initial and final cell-averages, at various times, for IWBMp, SIWBMp, 
p = 1, 2, using a 200-cell mesh.

5.3.2. Test 2: order test
We now simulate a perturbation of a non-stationary smooth solution for the model without friction (k = 0). In particular, 

we consider x ∈ [−5, 5], t ∈ [0,0.5], CFL= 2.0, and the depth function:

H(x) = 1.0 − 0.5e−x2
. (34)

The initial condition is given by:

q0(x) = 0, h0(x) = 0.1e−5.0x2
,

(see Fig. 6). A 200-cell mesh is considered and a reference solution with a 1600-cell mesh using IWBM2 with the piecewise 
linear reconstruction has been obtained. The different implicit and semi-implicit methods have been compared (see Fig. 7). 
As expected, the numerical solutions obtained with first-order schemes are more diffusive than those given by second-order 
methods. Moreover, semi-implicit methods give better results than fully implicit schemes in the first-order case. Concerning 
the second-order schemes, the piecewise constant and linear reconstructions give similar results. No spurious oscillations 
appear for CFL= 2.
I. Gómez-Bueno, S. Boscarino, M.J. Castro et al. Applied Numerical Mathematics 184 (2023) 18–48
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Table 7
Shallow water equations without friction: Test 1. Differences in L1-norm between the 
stationary and the numerical solution at t = 1,10,100,1000 for IWBM1, SIWBM1, 
IWBM2 and SIWBM2 with piecewise constant (PWCR) or piecewise linear (PWLR) 
reconstruction Q̃ i for a 200-cell mesh.

Implicit methods
t IWBM1 IWBM2

PWCR PWLR
h q h q h q

1 5.33e-15 4.88e-15 3.55e-15 7.55e-15 3.55e-15 6.22e-15
10 4.00e-15 3.11e-15 1.04e-14 2.13e-14 1.26e-14 4.46e-14
100 4.00e-15 3.11e-15 1.04e-14 2.13e-14 1.26e-14 4.45e-14
1000 4.00e-15 3.11e-15 1.04e-14 2.13e-14 1.25e-14 4.45e-14

Semi-implicit methods
t IWBM1 IWBM2

PWCR PWLR
h q h q h q

1 2.00e-15 7.11e-15 5.11e-15 8.00e-15 5.55e-15 8.44e-15
10 3.03e-15 2.22e-14 7.02e-15 9.49e-15 4.27e-14 2.49e-14
100 3.03e-15 2.22e-14 7.02e-15 9.49e-15 4.27e-14 2.49e-14
1000 3.03e-15 2.22e-14 7.02e-15 9.49e-15 4.27e-14 2.49e-14

Fig. 6. Shallow water equations without friction: Test 2. Initial condition.

Fig. 7. Shallow water equations without friction: Test 2. Numerical solutions for IWBMp, SIWBMp, p = 1,2 with CFL= 2 at t = 0.5. Top: η. Bottom: q.
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Table 8
Shallow water equations without friction: Test 2. Differences in L1-norm with respect 
to the reference solution and convergence rates for h at t = 0.5 for IWBM1 and IWBM2 
with piecewise constant (PWCR) or picewise linear (PWLR) reconstruction Q̃ i for the 
thickness h.

Cells IWBM1 IWBM2
PWCR PWLR

Error Order Error Order Error Order
25 2.60e-01 - 2.90e-01 - 1.57e-01 -
50 2.32e-01 0.16 1.31e-01 1.14 4.91e-02 1.68
100 2.06e-01 0.17 4.90e-02 1.42 1.37e-02 1.84
200 9.88e-01 1.06 1.42e-01 1.78 3.52e-03 1.96
400 4.20e-02 1.23 3.73e-03 1.94 8.48e-04 2.05

Table 9
Shallow water equations without friction: Test 2. Differences in L1-norm with respect 
to the reference solution and convergence rates for h at t = 0.5 for IWBM1 and IWBM2 
with piecewise constant (PWCR) or picewise linear (PWLR) reconstruction Q̃ i for the 
discharge q.

Cells IWBM1 IWBM2
PWCR PWLR

Error Order Error Order Error Order
25 1.35 - 1.17 - 5.55e-01 -
50 1.04 0.37 5.62e-01 1.05 2.04e-01 1.45
100 7.38-01 0.40 1.92e-01 1.55 5.56e-02 1.87
200 3.98e-01 0.89 5.72e-02 1.74 1.44e-02 1.95
400 1.95e-01 1.03 1.51e-02 1.92 3.48e-03 2.05

Table 10
Shallow water equations without friction: Test 2. Differences in L1-norm with respect 
to the reference solution and convergence rates for h at t = 0.5 for SIWBM1 and SI-
WBM2 with piecewise constant (PWCR) or picewise linear (PWLR) reconstruction Q̃ i

for the thickness h.

Cells SIWBM1 SIWBM2
PWCR PWLR

Error Order Error Order Error Order
25 4.82e-01 - 1.41e-01 - 1.14e-01 -
50 3.70e-01 0.38 5.34e-02 1.40 2.86e-02 1.99
100 2.24e-01 0.72 1.72e-02 1.63 6.33e-03 2.18
200 1.39e-01 0.68 4.55e-03 1.92 1.53e-03 2.05
400 7.38e-02 0.92 1.16e-03 1.97 3.62e-04 2.08

Table 11
Shallow water equations without friction: Test 2. Differences in L1-norm with respect 
to the reference solution and convergence rates for h at t = 0.5 for IWBM1 and IWBM2 
with piecewise constant (PWCR) or picewise linear (PWLR) reconstruction Q̃ i for the 
discharge q.

Cells SIWBM1 SIWBM2
PWCR PWLR

Error Order Error Order Error Order
25 1.74 - 6.10e-01 - 3.33e-01 -
50 1.47 0.24 2.23e-01 1.45 9.40e-02 1.83
100 9.83e-01 0.74 6.88e-02 1.69 2.25e-02 2.06
200 5.83e-01 0.60 1.84e-02 1.91 5.64e-03 2.00
400 3.01e-01 0.95 4.69e-02 1.97 1.35e-03 2.07

Tables 8–11 show the order for the implicit and semi-implicit methods. The expected convergence rates have been 
obtained for both variables h and q.

As expected, second-order schemes which make use of piecewise linear reconstruction for Q̃ i are systematically more 
accurate than the ones based on piecewise constant reconstruction, even if the order of accuracy is the same. It is interesting 
to observe that semi-implicit schemes are more accurate than fully implicit schemes and even of explicit schemes. This 
makes semi-implicit schemes the most cost-effective since they are more accurate and less expensive than fully implicit 
schemes, and they allow larger CFL numbers and are even more accurate than explicit schemes. Fully implicit schemes 
are more dissipative than semi-implicit schemes, which explains the higher accurate for the same grid and CFL number. 
Furthermore, for low Froude number flow, they are also less dissipative than explicit schemes. The reason is that explicit 
schemes have to use a larger numerical viscosity than semi-implicit ones in the Rusanov numerical flux function. This 
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Fig. 8. Shallow water equations without friction: Test 3. Initial condition.

Fig. 9. Shallow water equations without friction: Test 3. Numerical solutions for IWBMp, SIWBMp, p = 1,2 with CFL= 2 at t = 0.2. Top: η. Bottom: q.

effect is well known and discussed in the detail in the literature for numerical methods for all Mach-number flows (see 
for example [39] for the analysis of the phenomenon, [16,2,4] for second order accurate finite volume schemes to treat all 
Mach number flows in compressible Euler equations, [13] for high order schemes, and [73] for applications in astrophysics).

5.3.3. Test 3: shock waves
We consider again the model without friction (k = 0) with a discontinuous initial condition that generates two shock 

waves traveling in oposite directions. We consider the space interval [−5, 5] and the time interval [0, 0.5] and CFL=2. The 
depth function is again given by (34). As initial condition, we consider the functions:

q0(x) = 0, h0(x) =
{

H(x) if |x| ≥ 1;
H(x) + 0.1 if |x| < 1;

(see Fig. 8).
A reference solution with a 1600-cell mesh using the SIWBM2 with piecewise linear reconstruction for Q̃ i has been 

obtained. Figs. 9-10 show the numerical solutions obtained with the different methods at times t = 0.2, 0.5.
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Fig. 10. Shallow water equations without friction: Test 3. Numerical solutions for IWBMp, SIWBMp, p = 1,2 with CFL= 2 at t = 0.5. Top: η. Bottom: q.

Observe that when using a piecewise constant reconstruction Q̃ i(x), the numerical solution is less accurate and more 
oscillatory.

5.3.4. Test 4: convergence to a steady state
The goal now is to compare the ability of explicit and implicit schemes to reach a stationary solution as time increases. 

We consider again the model without friction (k = 0). Only the first-order methods EXWBM1 and IWBM1 are considered 
here.

The space interval is [0, 3] and the depth function is given again by (33). The initial condition is h(x, 0) = 2.0 and 
q(x, 0) = 0.0. The boundary conditions are the following

q(0, t) = 1.0, h(3, t) = 2.0.

A 100-cell mesh is considered. The numerical solution is run until a stationary state is reached: the numerical method is 
stopped if

maxi |Un+1
i − Un

i |
�t

< ε, (35)

where ε is a fixed threshold. In this test, we take ε =1e-12. Fig. 11 shows the stationary solution and Table 12 shows, 
for every numerical method, the time in seconds needed to reach a steady state, the difference in L1-norm between the 
reached steady state and the subcritical stationary solution that solves the problem⎧⎪⎨⎪⎩

qx = 0,

(−u2 + gh)hx = ghHx,

h(3) = 2.0, q(0) = 1.0,

(36)

the CPU times (in seconds), the total number of iterations in time associated to the time step �t and the total and maximum 
(per time step) number of iterations of the fixed-point algorithm applied to solve the nonlinear problems are in the case 
of fully implicit schemes. As expected, the implicit methods converge faster to the stationary solution. Notice that if the 
problem is just to capture the global stationary solution, then first order schemes may be perfectly adequate. However the 
interplay between time accuracy and the final stationary solution (in case the latter depends on the initial conditions as 
well and not only on the boundary conditions) is not obvious and it will be explored in future work.
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Fig. 11. Shallow water equations without friction: Test 4. Stationary solution.

Table 12
Shallow water equations without friction: Test 4. Time needed to reach a steady state, differences 
in L1-norm between the reached steady state and the subcritical stationary solution which solves 
the problem (36), CPU times, total number of iterations in time associated to the time step �t and 
total and maximum number of iterations per time step of the fixed-point algorithm applied to solve 
the nonlinear problems are in the case of fully implicit schemes.

EXWBM1

CFL Times of 
convergence

Errors of 
convergence

CPU 
times

Iterations 
in time

Fixed-point 
iterations

h q Total Max
0.5 177.91 2.55e-14 1.61e-13 80.90 52465 - -
0.99 159.34 1.35e-13 1.29e-12 49.35 29586 - -

IWBM1

CFL Times of 
convergence

Errors of 
convergence

CPU 
times

Iterations 
in time

Fixed-point 
iterations

h q Total Max
2 129.51 1.96e-13 1.65e-12 186.96 10660 97720 26
10 85.84 2.17e-13 1.83e-12 38.40 1413 36265 87
20 64.04 1.55e-13 1.17e-12 21.57 527 22606 201
50 41.64 4.42e-14 1.62e-12 20.60 138 26194 254

Notice that, for CFL=50, in spite of the fact that the total number of iterations of the fixed-point algorithm is bigger 
than in the case of CFL=20, less computational effort is required since the total number of well-balanced reconstructions is 
smaller.

5.3.5. Test 5: stationary solution for the model with friction
Let us check the well-balanced property of the methods for the model with friction. In this test, the Manning friction is 

k = 0.01 and the space interval is [0, 1]. The depth function is given by

H(x) = 1 − 1

2
− ecos(4πx) − e−1

e − e−1 . (37)

We consider a supercritical stationary solution: the solution of (32) with initial conditions q(0) = 3 and h(0) = 0.3 (see 
Fig. 12), obtained numerically by solving system (32) using the mid-point rule (see [50]). We consider a 100-cell mesh and 
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Fig. 12. Shallow water equations with friction: Test 5. Initial condition: supercritical stationary solution. Free surface and bottom.

Table 13
Shallow water equations with friction: Test 5. Differences in L1-norm between the stationary and 
the numerical solution at t = 1,10,100,1000 for IWBM1, SIWBM1, IWBM2 and SIWBM2 with 
piecewise constant (PWCR) or piecewise linear (PWLR) reconstruction Q̃ i for a 100-cell mesh.

Implicit methods
t IWBM1 IWBM2

PWCR PWLR
h q h q h q

1 6.11e-16 8.88e-16 9.44e-16 9.36e-15 6.66e-16 6.22e-15
10 4.27e-16 4.87e-16 9.44e-16 9.03e-15 8.97e-16 9.21e-15
100 4.27e-16 4.87e-16 9.44e-16 9.03e-15 8.97e-16 9.21e-15
1000 4.27e-16 4.87e-16 9.44e-16 9.03e-15 8.97e-16 9.21e-15

Semi-implicit methods
t IWBM1 IWBM2

PWCR PWLR
h q h q h q

1 7.21e-16 6.66e-15 9.44e-16 9.76e-15 8.33e-16 6.21e-15
10 7.21e-16 6.66e-15 3.89e-16 1.33e-15 8.33e-16 8.44e-15
100 7.21e-16 6.66e-15 3.89e-16 1.33e-15 8.33e-16 8.44e-15
1000 7.21e-16 6.66e-15 3.89e-16 1.33e-15 8.33e-16 8.44e-15

the final time is t = 1000. Notice that, at variance with the low Froude number stationary solutions, in the supercritical case 
the profile of the free surface is almost parallel to the bottom profile, so that h(x) is almost constant. Table 13 shows the 
L1-errors between the initial and the approximated cell-averages at times t = 1, 10, 100, 1000 given by SIWBM1, IWBM1, 
SIWBM2 and IWBM2 with piecewise constant (PWCR) or piecewise linear (PWLR) reconstruction Q̃ i .

5.3.6. Test 6: perturbation of a stationary solution for the model with friction
In this test, the Manning friction is again k = 0.01. The depth function is given by (37). We consider a perturbation of 

the supercritical stationary solution: the initial condition U0(x) = [h0(x), q0(x)]T given by

h0(x) =

⎧⎪⎨⎪⎩h∗(x) + 0.05, if x ∈
[

2

7
,

3

7

]
∪

[
4

7
,

5

7

]
,

h∗(x), otherwise,

q0(x) =
⎧⎨⎩q∗(x) + 0.5, if x ∈

[
2

7
,

3

7

]
∪

[
4

7
,

5

7

]
,

q∗(x), otherwise,

where U∗(x) = [h∗(x), q∗(x)]T is the stationary solution considered in Test 5 (see Fig. 13). We consider a 100-cell mesh 
and the numerical simulation is run until t = 2. A reference solution computed with a 800-cell mesh using SIWBM2 with 
piecewise constant reconstruction Q̃ i has been considered. Figs. 14-15 show the evolution of the perturbation at times 
t = 0.01 and t = 0.05 for SIWBM1 and SIWBM2 with piecewise constant (PWCR) or piecewise linear (PWLR) reconstruction 
Q̃ i and Table 14 shows the differences in L1-norm between the stationary and the numerical solutions at t = 2. As expected, 
the stationary solution is recovered with machine precision.

Fully implicit schemes have been also considered with CFL=2, recovering with machine precision the supercritical sta-
tionary solution at the final time t = 2s (see Table 15, where the errors L1-norm between the stationary and the numerical 
I. Gómez-Bueno, S. Boscarino, M.J. Castro et al. Applied Numerical Mathematics 184 (2023) 18–48
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Fig. 13. Shallow water equations with friction: Test 6. Initial condition: perturbation of a supercritical stationary solution. Top: η. Bottom: q.

Fig. 14. Shallow water equations with friction: Test 6. Numerical solutions for SIWBMp, p = 1,2 with CFL= 0.9 at t = 0.01. Top: h. Bottom: q.
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Fig. 15. Shallow water equations with friction: Test 6. Numerical solutions for SIWBMp, p = 1,2 with CFL= 0.9 at t = 0.05. Top: h. Bottom: q.

Table 14
Shallow water equations with friction: Test 6. Differences in L1-norm between the sta-
tionary and the numerical solution at t = 2 for SIWBM1 and SIWBM2 with piecewise 
constant (PWCR) or piecewise linear (PWLR) reconstruction Q̃ i for a 100-cell mesh.

Semi-implicit methods
SIWBM1 SIWBM2

PWCR PWLR
h q h q h q
9.99e-16 1.15e-14 4.44e-16 1.33e-15 6.10e-16 5.32e-15

Table 15
Shallow water equations with friction: Test 6. Differences in L1-norm between the sta-
tionary and the numerical solution at t = 2 for IWBM1 and IWBM2 with piecewise 
constant (PWCR) or piecewise linear (PWLR) reconstruction Q̃ i for a 100-cell mesh.

Implicit methods
IWBM1 IWBM2

PWCR PWLR
h q h q h q
5.00e-16 4.41e-16 1.50e-15 1.51e-14 8.33e-16 7.55e-15

solutions at t = 2 for IWBM1 and IWBM2 with piecewise constant (PWCR) or piecewise linear (PWLR) reconstruction Q̃ i
are shown).

6. Conclusions and forthcoming work

Following some previous work of the authors [24,28,48–50], we develop a general procedure to design high-order im-
plicit and semi-implicit numerical schemes for any one-dimensional system of balance laws. Note that the main ingredient 
of these methods is a well-balanced reconstruction operator. A general result proving the well-balanced property of these 
numerical methods is stated. We checked the new formulation with several numerical tests, considering scalar problems 
such as the linear transport equation and the Burgers equation, and more complex systems such as shallow water in pres-
ence of variable bathymetry and Manning friction. Notice that, when both the flux and the source term of (1) are (equally) 
stiff, the system may relax to a stationary solution of the ODE system (2) in a very short time. If one is interested in effi-
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ciently capturing the stationary solution, then it is advisable to adopt an implicit (or semi-implicit) scheme which is at the 
same time well-balanced. This is shown in a numerical test for the shallow water model.

Future work will include applications to more general systems whose source contains a stiff relaxation and a non-stiff 
term, i.e. systems of the form

ut + f (u)x = 1

ε
S(u) + G(u, x), (38)

that in the limit of vanishing ε relaxes to a lower dimensional system of balance laws of the form

vt + f (v)x = g(v, x), (39)

where v(x, t) = Q u(x, t) ∈ Rn , n < N , Q ∈ Rn×N , Q S(u) = 0, and f = Q f (E(v)), with u = E(v), g(u, x) = Q G(E(u), x). In 
such cases the limit equation admits non-trivial stationary solutions which must be accurately approximated. Our aim will 
be to design numerical schemes for systems (38) which become consistent and well-balanced schemes for systems (39) as 
the relaxation parameter vanishes, which are said to be Asymptotic Preserving and Well-Balanced (APWB) (see [62,61,34,78]). A 
natural framework to define such numerical schemes is the combination of well-balanced finite-volume schemes and IMEX 
methods.

A second important extension concerns the application of this framework to problems in more space dimensions, with 
the specific goal to capture non trivial stationary solutions of systems of balance laws, along the lines of the pioneering work 
of Moretti and Abbett [74], who captured the stationary flow around a blunt body by looking for the stationary solutions of 
a time dependent problem.
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