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We show that the nonlocal two-flavor Nambu–Jona-Lasinio model predicts the enhancement of
both chiral and axial symmetry breaking as the chiral imbalance of hot QCD matter, regulated by a
chiral chemical potential µ5, increases. The two crossovers are reasonably close to each other in the
range of µ5 examined here and the pseudocritical temperatures rise with µ5. The curvatures of the
chiral and axial crossovers for the chiral quark chemical potential approximately coincide and give
κ5 ' −0.011. We point out that the presence of µ5 in thermodynamic equilibrium is inconsistent
with the fact that the chiral charge is not a Noether-conserved quantity for massive fermions. The
chiral chemical potential should not, therefore, be considered as a true chemical potential that sets
a thermodynamically stable environment in the massive theory, but rather than as a new coupling
that may require a renormalization in the ultraviolet domain. The divergence of an unrenormalized
chiral density, coming from zero-point fermionic fluctuations, is a consequence of this property. We
propose a solution to this problem via a renormalization procedure.
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I. INTRODUCTION

The chirality plays an important role in the funda-
mental theory of strong interactions of quarks and glu-
ons described by Quantum Chromodynamics (QCD). In
QCD with Nf massless quarks, the classical formulation
of QCD enjoys the invariance under SU(Nf )L/R chiral
transformations ψL/R → UL/RψL/R, which transforms,
separately, the Nf -plets of quarks with left-handed, ψL,
and right-handed, ψR, chiralities. As a consequence
of the Noether theorem, the chiral charge is a con-
served quantity at the level of classical equations of mo-
tion. In the quantum version of QCD, the chirality is
no more a conserved number because quantum fluctu-
ations break the chiral symmetry spontaneously. The
chiral condensate,

〈
ψ̄ψ
〉
≡
〈
ψ̄LψR

〉
+
〈
ψ̄RψL

〉
, dynam-

ically breaks the full chiral group down to its diagonal
(vector) subgroup, SU(Nf )L × SU(Nf )R ≡ SU(Nf )V ×
SU(Nf )A → SU(Nf )V . Given the number of the light
quarks, Nf = 2, the chiral symmetry breaking mani-
fests itself in the appearance of three Goldstone bosons,
the light pseudoscalar mesons, that correspond to the
number of spontaneously broken generators, 2Nf − 1, of
the chiral SU(Nf )A subgroup [1]. At a classical level,
QCD also possesses the axial symmetry which reflects
the invariance of the QCD Lagrangian under the axial
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U(1)A transformations that rotate all quark flavors by
the same, chirality-sensitive phase: ψL/R → e±iωψL/R.
This symmetry is broken at the quantum level by the ax-
ial anomaly, which leads to nonconservation of the (oth-
erwise, classically conserved) axial current. The chiral
and axial symmetries of quarks are intrinsically related
to the topological properties of the vacuum which are
determined by the gluonic sector of the theory [1].

It is established that at zero baryon chemical poten-
tial the QCD medium experiences a smooth crossover
from the hadronic, low-temperature phase characterized
by a nonzero chiral condensate, to the high-temperature
phase of quark-gluon plasma where the chiral conden-
sate is almost vanishing. As a result, the chiral sym-
metry gets approximately restored with the rise of the
temperature. The fact that this is a crossover rather
than a transition is related to the nonzero quark masses
that break chiral symmetry explicitly, so the chiral con-
densate serves as an approximate order parameter of the
chiral symmetry breaking. There are also arguments why
the axial symmetry should also be restored at high tem-
perature [2]. The nonconservation of the axial current
is related to the presence of topologically nontrivial con-
figurations, usually associated with the instantons. The
strength of the instanton fluctuations, quantitatively de-
termined by the topological susceptibility, depends on the
environment: at high temperatures instantons-based in-
teractions among quarks are suppressed. Therefore, one
expects that the topological susceptibility is small at high
temperatures and the axial symmetry, similarly to the
chiral symmetry, gets restored at the high-temperature
phase. So far a clear relation between chiral and axial
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symmetry restoration is not very clear. Although the
topological susceptibility is not an order parameter, it
seems natural to consider this to be a relevant quantity
for quantifying the axial symmetry breaking, and to de-
fine the crossover for axial symmetry restoration as the
temperature range in which the topological susceptibil-
ity has the largest change with temperature. This is the
strategy that we adopt in the present article, in which we
report on the study of the restoration of chiral and axial
symmetry, studying the latter by means of the topologi-
cal susceptibility.

In this article we model a thermal QCD medium at fi-
nite chiral chemical potential, µ5, the latter being conju-
gated to the asymmetry between left- and right-handed
particles density, n5. The chiral sector of QCD affects
also various transport properties of the system due to
the presence of the axial anomaly. The most famous
example of such phenomena is the Chiral Magnetic Ef-
fect (CME) which generates an electric current [3–8]:
〈J〉 = (e2/2π2)µ5B, in the presence of an external mag-
netic field B in a system of massless fermions possess-
ing a nonzero chiral density n5 6= 0. The chiral den-
sity corresponds to the difference in densities of quarks
with right- and left-handed chiralities, n5 = nR − nL,
encoded in the difference between their chemical poten-
tials, µ5 = µL − µR. The chiral chemical potential µ5 is
thermodynamically conjugated to the chiral density n5,
so that in the thermal equilibrium, the finite density of
massless fermions is set by the help of the matter source
term δL = µ5n5. The chiral density is the temporal com-
ponent of the chiral (axial) 4-current:

jµ5 ≡ (n5, j5) = ψ̄γµγ5ψ. (1)

The CME is suggested to play an essential role in a wide
number of physical systems ranging from astrophysical
systems and quark-gluon plasmas to chiral materials [32].
Although the CME does not exist in a thermodynamic
equilibrium [29–31], the electric CME current is a non-
dissipative quantity even in the presence of strong in-
teractions thanks to the topological protection [32]. In
the electromagnetic sector, the nonzero chiral density
(µ5 6= 0) may be induced via the axial anomaly that
creates an imbalance in densities between right- and left-
handed chiral quarks in the near-equilibrium background
of parallel electric E and magnetic B fields. In the
context of QCD, the chiral density may also appear in
the gluon sector, due to topological transitions between
different vacuum states mediated by the instanton or
sphaleron phase transitions. The chiral density depletes
due to mass effects, pion and sigma exchanges at low tem-
perature [16], and the Compton scattering at high tem-
perature [44]. Regardless of the microscopic processes
involved, the use of µ5 is appropriate as long as one con-
siders a thermodynamic system on a time scale larger
than that of the equilibration time.

In this study, the interaction among quarks is mim-
icked by a nonlocal Nambu–Jona-Lasinio model [20–
22, 45–55, 57–59]. The nonlocal NJL models have re-

vealed to be appropriate for the study of the chiral
medium at finite temperature, in particular because they
predict that the critical temperature for chiral symme-
try restoration, Tc, increases with µ5 [13, 18], differently
from what has been found within models with a local
interaction kernel [7, 9–11, 35], and in agreement with
lattice simulations [14, 24, 25] and calculations based on
Schwinger-Dyson equations [38, 39]. We report on the
calculation of Tc versus µ5, confirming the previous find-
ings that Tc increases with the chiral chemical potential
at least as long as µ5 is smaller than the typical ultravi-
olet scale of the model (for large values of µ5 one should
include the backreaction on the interaction kernel, but
the computation of this is well beyond the scope of our
study). Part of the study presented here is devoted to the
divergence of n5 coming from ultraviolet fermion modes:
we discuss how this divergence arises from the tail of
the quark mass function, and how this divergence can be
cured via a renormalization procedure. Then we compute
the topological susceptibility as a function ot T and µ5

and try to relate this to a possible crossover from a low
temperature phase in which axial symmetry is broken by
axions, to the high temperature phase in which axial sym-
metry is partly restored; we also comment on the simul-
taneity of this crossover and the chiral one, finding that
the two have substantial overlap suggesting that restora-
tion of chiral symmetry is accompanied by the restoration
of the axial symmetry.

The structure of this paper is as follows. In Section
II we present the nonlocal NJL model used in the study,
discussing also a renormalization of n5. In Section III
we present our results about chiral and axial symmetry
at finite temperature and µ5. Finally in Section IV we
collect our conclusions.

II. THE MODEL

A. Thermodynamic potential

In this work we use a nonlocal version of the Nambu-
Jona-Lasinio (NJL) model [22]. As one of the main goals
of this work is to evaluate the topological susceptibil-
ity, it is necessary to introduce the θ-dependence of the
thermodynamic potential. In the QCD Lagrangian, the
topological angle θ appears as a CP -odd term for the
gluon fields:

δLθ = θQ, (2)

where the topological number of the gluonic field config-
uration is computed via the field-strength tensor F aµν :

Q ≡ ∆NCS ≡ NCS

∣∣∣
t→−∞

−NCS

∣∣∣
t→+∞

=
g2

64π2

∫
d4x εµνρσF aµνF

a
ρσ. (3)
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The topological number (3) is given by the difference the
Chern-Simons charge NCS = NCS(t) at initial and final
gluonic configurations.

After performing a chiral rotation of the quark
fields, the topological term (2) disappears and the
θ−dependence is transmitted from the gluonic topologi-
cal term (2) to the quark sector in the form of the chiral
(axial) chemical potential µ5 = ∂θ/∂t. In our work, we
use the NJL model to describe the dynamics of quarks.
The gluon sector will thus leave its imprint only in the
phenomenological interactions between quarks and in the
mentioned chiral chemical potential.

The Lagrangian density of the quark model that we
use in this study is given by the sum of the four terms:

L = Lq + Lm + L4, (4)

where

Lq = ψ̄(iγµ∂µ + µ5γ
0γ5)ψ ≡ ψ̄iγµ∂µψ + µ5n5, (5)

denotes the free quark contribution with the chiral chem-
ical potential µ5 and the term

Lm = −m0Ψ̄Ψ, (6)

introduces the current quark mass m0 via the quark field
dressed by interactions:

Ψ(x) =

∫
d4y G(x− y)ψ(y). (7)

We need to introduce this special form of the mass
term, Eqs. (6) and (7), instead of the standard term

L(0)
m = −m0ψ̄ψ, because we aim to model the perturba-

tive tail of the current quark mass computed in the per-
turbative QCD (pQCD) at large Euclidean momentum.
The perturbative matching will appear in the Fourier
transform of the form-factor G(z) in Eq. (7) at large mo-
mentum p.

The last term in the quark Lagrangian (4) is a nonlocal
interaction term that mimics the gluon-exchange effects:

L4 = G1

3∑
`=0

[
(Q̄τ`Q)2 + (Q̄iγ5τ`Q)2

]
+8G2

[
eiθdet(Q̄RQL) + e−iθdet(Q̄LQR)

]
. (8)

where τl = (1l, iτ ) is a quaternion and the spinor Q rep-
resents yet another dressed (nonlocal) quark field,

Q(x) =

∫
d4y F (x− y)ψ(y), (9)

expressed via the formfactor F (x−y) to be specified later.
This formfactor is similar to the function G(x − y) that
appears in the other form of the dressed quark field (7)
used in the mass term of the quark Lagrangian (6). This
interaction has been considered in its local version in [34],
see also references therein, therefore we remind to that
study for further details.

It is convenient to perform the chiral rotation of the
quark fields:

ψR → e−iθ/4ψR, ψL → eiθ/4ψL, (10)

which removes the θ-dependence in the interaction La-
grangian (8):

L4 = G1

3∑
`=0

[
(Q̄τ`Q)2 + (Q̄iγ5τ`Q)2

]
+8G2

[
det(Q̄RQL) + det(Q̄LQR)

]
. (11)

The θ-dependence reappears in the quadratic part of the
Lagrangian (4) in terms of the new fermionic fields1:

Lq + Lm = ψ̄(iγµ∂µ + µ5γ
0γ5)ψ

−Ψ̄(m0+ + im0−γ
5)Ψ, (12)

via the rotated current masses:

m0+ = m0 cos(θ/2), (13)

m0− = m0 sin(θ/2). (14)

It is also convenient to introduce the collective fields

σ = G+Q̄Q, (15)

η = G−Q̄iγ
5Q; (16)

we have put G± = G1 ± G2. Following the established
procedure of bosonization at the one-loop approximation
we get the thermodynamic potential,

Ω =
σ2

G+
+

η2

G−
(17)

−NcNfT
∑
n

∫
d3p

(2π)3
log β4

(
ω2
n + E2

+

) (
ω2
n + E2

−
)
,

where β = 1/T is the inverse temperature and ωn =
πT (2n + 1) with n ∈ Z are the fermionic Matsubara
frequencies. In Eq. (17) have also defined the energy
branches:

E2
±(p) = (|p| ± µ5)2 +M2(p) +N 2(p), (18)

with

M(p) = m0+R(p)− 2C(p)σ, (19)

N (p) = m0−R(p)− 2C(p)η. (20)

Here the function C(p) ≡ F 2(p) is determined via the
Fourier transform F (p) of the form factor in Eq. (9). The
function R(p) = G(p)2 gives the evolution of the (renor-
malized) current quark mass with the UV scale that is

1 For the notational convenience, we use the same symbols for the
old and new fields, since the old ones will not appear again.
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necessary to reproduce the independence of the combi-
nation m〈q̄q〉 from the renormalization point.

The expectation (i.e., the mean field) values of the con-
densates σ and η are determined at each temperature T
and chiral chemical potential µ5 by the minimization of
the thermodynamic potential Ω. For sake of notational
convenience, we have used σ and η to denote the mean
field values of these fields. To derive Eq. (17), we used
the imaginary time formalism to deal with the finite tem-
perature bath and employed the analytical continuation
to Euclidean momentum pE = (p, p4 = −ip0).

For future reference it is useful to define the quantities

M(pE) = m0R(pE)− 2σC(pE), (21)

m(pE) = m0R(pE), (22)

which correspond to the quark mass function and the
current mass at θ = 0, respectively.

We now specify the analytical forms of R(p) and C(p).
For the latter we follow [13] and take

C(pE) = θ(Λ2 − p2
E)

+ θ(p2
E − Λ2)

Λ2

p2
E

(
log Λ2/Λ2

QCD

)γ(
log p2

E/Λ
2
QCD

)γ ;

(23)

here pE is the Euclidean 4-momentum and γ = 1− dm is
given by the anomalous dimension of the current quark
mass for a two-flavor QCD:

dm = 12/29. (24)

The second line mimics the quark mass function com-
puted in perturbative QCD arising from the chiral con-
densate [56, 58, 59], while Λ is an additional parameter
of the model that corresponds to the momentum scale
at which the perturbative mass is matched to the non-
perturbative one. Differently from previous works, we
have also introduced an energy scale dependence of the
current mass, that mimics the running of this quantity
computed in perturbative QCD [56, 58, 59]:

R(pE) = θ(Λ2 − p2
E)

+ θ(p2
E − Λ2)

(
log Λ2/Λ2

QCD

)dm(
log p2

E/Λ
2
QCD

)dm .
(25)

The perturbative pE tails in the functions C(pE) and
R(pE) ensure that the divergence of the chiral condensate
with a ultraviolet (UV) cutoff ΛUV � Λ is absorbed by
that of the current mass so that the combination m0〈q̄q〉
is independent from the UV cutoff ΛUV. Moreover, the
log-tail of the current quark mass will make the diver-
gence of n5 softer than that of a fermion gas with a mo-
mentum independent mass, as we discuss in Section III.

Strictly speaking, the thermodynamic potential (17)
is a UV divergent quantity which has to be regularized

at a proper subtraction point. In this study, we chose
to subtract the potential with the vanishing condensates
σ = η = 0 at T = µ5 = 0 and θ 6= 0, namely at the
free vacuum Fermi gas contribution at a finite topological
angle θ. Therefore, we work with the following form of
th UV-regularized thermodynamic potential:

Ω =
σ2

G+
+

η2

G−

−NcNfT
∑
n

∫
d3p

(2π)3
log β4

(
ω2
n + E2

+

) (
ω2
n + E2

−
)

+2NcNf

∫
d4pE
(2π)4

log

(
p2
E +m2

0+

Λ2

)
. (26)

We added the factor Λ in the denominator of the last log
function for the sake of the dimensional consistency of the
equation. This addition is irrelevant for the computation
of any physical quantity.

B. Chiral condensate

Before proceeding with the actual calculations, we dis-
cuss subtleties of the definition of the chiral condensate.
We firstly focus on the CP -invariant case µ5 = 0 then we
generalize the discussion to the case of the chiral medium
with µ5 6= 0. Also, we ignore a possible presence of the η
condensate (16) because this condensate breaks the time
reversal symmetry (T : t→ −t) while the chiral chemical
potential is a T -even quantity.

In general, we can write for each quark flavor q:

〈q̄q〉 = −Tr (S − S0) , (27)

where S corresponds to the full quark propagator and S0

denotes the propagator of quarks with only the current
mass taken into account. The subtraction in Eq. (27) is
necessary to take into account only the contribution to
〈q̄q〉 that comes from the interaction and not from the
current quark mass.

It is well known that the chiral condensate diverges
logarithmically with the renormalization scale in pertur-
bative QCD [58, 59]: this behavior is respected in our
model. As a matter of fact we have

〈q̄q〉 = −Nc
∫

d4pE
(2π)4

4M(pE)

p2
4 + p2 +M(pE)2

+Nc

∫
d4pE
(2π)4

4m(pE)

p2
4 + p2 +m(pE)2

. (28)

In the UV regime each component of the Euclidean mo-
mentum pE should be taken much larger than the masses
M and m:

〈q̄q〉UV ≈ −4

∫ ΛUV

Γ

d4pE
(2π)4

[M(pE)−m(pE)]

p2
E

,

(29)
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with Γ > Λ. From the above equation, it is clear that
the subtraction in Eq. (27) leaves the contribution of the
interaction as the only one that is taken into account for
the evaluation of the chiral condensate. Moreover, a sim-
ple power counting shows that the integral possesses a
log-divergence in the limit ΛUV � Γ due to the pertur-
bative tail of M(pE).

The previous discussion can be generalized to a
nonzero chiral chemical potential, µ5 6= 0. Instead of
Eq. (28) we now have

〈q̄q〉 = −Nc
∫

d4pE
(2π)4

4M(pE)[M(pE)2 + p2
4 + p2 + µ2

5]

[p2
4 + λ2

+(pE)][p2
4 + λ2

−(pE)]

+Nc

∫
d4pE
(2π)4

4m(pE)[m(pE)2 + p2
4 + p2 + µ2

5]

[p2
4 + φ2

+(pE)][p2
4 + φ2

−(pE)]
,

(30)

where

λ2
±(pE) = (|p| ± µ5)

2
+M(pE)2, (31)

φ2
±(pE) = (|p| ± µ5)

2
+m(pE)2. (32)

Again in the UV regime in which each component of the
Euclidean momentum pE is taken much larger than the
masses M and m. At the lowest order in µ5 we get:

〈q̄q〉UV ≈ −4

∫ ΛUV

Γ

d4pE
(2π)4

[M(pE)−m(pE)]

p4
E

(p2
E + µ2

5),

(33)

with the infrared cutoff Γ > Λ. Using the power count-
ing, we find that the chiral chemical potential gives a
µ2

5 correction to the chiral condensate. This correction,
proportional to [M(pE)−m(pE)]/p4

E , is finite in the UV
regime.

We finally remark that although the chiral conden-
sate has a UV log-divergence, the condensate σ = 〈Q̄Q〉
computed by minimization of the thermodynamic poten-
tial (26), is a finite quantity independent of the ultra-
violet cutoff. Indeed, it is easy to realize that the gap
equation, ∂Ω/∂σ = 0, gives in this case

σ = −2NcNfTG+

∑
n

∫
d3p

(2π)3

M(ωn,p)C(ωn,p)

ω2
n + E2

+

, (34)

where we also used Eqs. (18) and (19). The loop inte-
gral on the right hand side of the above equation is finite
in the nonlocal NJL model due to the form factor (23)
which removes high–momentum modes. Note that this
factor does not appear in the chiral condensate. As a
consequence, while in the local NJL model the quark
condensate is proportional to σ, in the nonlocal model
this proportionality is lost [22].

C. Chiral density

1. Thermodynamic definition

In this subsection, we discuss the chiral density within
the nonlocal NJL model. The chiral density

n5 = − ∂Ω

∂µ5
, (35)

is given by the variation of the thermodynamic potential
Ω with respect to the chiral chemical potential µ5. From
Eq. (17) we get, at the minimum of Ω:

n5 = 4NcNfµ5H, (36)

with

H = T
∑
n

∫
d3p

(2π)3

ω2
n − p2 +M(pE)2 + µ2

5

[ω2
n + λ2

+(pE)][ω2
n + λ2

−(pE)]
, (37)

where the functions λ± are defined in Eq. (31) and the
Euclidean momentum is determined at the Matsubara
frequencies, pE = (ωn,p).

2. Divergence of unrenormalized chiral density

Before presenting the results on the chiral density n5

obtained within the nonlocal NJL model, we find useful
to make a remark on the divergence of the density n5 for
a case when the quark mass is a fixed finite quantity. We
limit this short discussion to the zero-temperature case,
T = 0, since the finite temperature part provides us with
a finite contribution; in this case, we substitute ωn → p4

and take the integral over the continuous momentum p4

along the full real axis.
If we set the dressed mass to zero, M = 0, in Eq. (36)

then the trivial integration over the momentum p4 along
the full real axis gives us the following expression for the
zero-temperature chiral density:

n5 = 2NcNf

∫
d3p

(2π)3
θ(µ5 − |p|) =

NcNfµ
3
5

3π2
. (38)

The above equation provides us with the standard rela-
tion between a density, n, and a chemical potential, µ, of
an ultrarelativistic massless fermion gas.

We now consider the effect of a momentum indepen-
dent mass, mB , on the chiral density n5. From Eq. (36)
after integrating over the momentum p4 along the real
axis, we get:

n5 = 2NcNf

∫
d3p

(2π)3
X (p), (39)

where

X (p, µ5) =
|p|+ µ5

2
√

(|p|+ µ5)2 +m2
B

− |p| − µ5

2
√

(|p| − µ5)2 +m2
B

. (40)
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The above equation can be interpreted as a distribution
function of a quark at T = 0, µ5 6= 0 and mB 6= 0. For a
zero mass mB = 0, Eq. (40) naturally leads to Eq. (38),
thus implying that a Fermi sphere is filled up to the Fermi
momentum at |p| = µ5.

The effect of the presence of the mass mB is to enlarge
the chiral Fermi surface by putting particles above the
Fermi momentum. Indeed, we may take in Eq. (40) the
large spatial momentum |p| limit by assuming naturally
the order2 mB � µ5 � |p|, and obtain:

X (p, µ5) ≈ m2
Bµ5

|p|3
. (41)

Despite the distribution (41) decays as fast as p−3, the
density of the states increases proportional to the phase-
volume factor p2. Therefore the net contribution to the
chiral density behaves as

∫
dp/p, thus giving rise to a log-

arithmic divergence of the chiral density n5 in the pres-
ence of a nonzero mass, mB 6= 0.

The discussion of the example with mB 6= 0 paves the
way for understanding of the properties of the chiral den-
sity n5 in the nonlocal NJL model. In the latter case, the
integral over the momentum p4 cannot be taken explicitly
to the momentum dependence of the quark mass function
M = M(pE). Nevertheless, we may figure out the UV di-
vergence of the density n5 because to this end it is enough
to consider the asymptotic behavior of the integrand in
Eq. (38) in the high-momentum limit p4, p ∼ ΛUV with
the large ultraviolet cutoff ΛUV � µ5,M .

We firstly expand the integrand in Eq. (37) in powers
of the quark mass function M at the lowest nontrivial
order:

p2
4 − p2 +M(pE)2 + µ2

5

[p2
4 + λ2

+(pE)][p2
4 + λ2

−(pE)]

≈ p2
4 − p2 + µ2

5

[p2
4 + (|p| − µ5)2][p2

4 + (|p|+ µ5)2]
(42)

+M2(pE)
3p4 + 2p2(p2

4 − µ2
5)− (p2

4 + µ2
5)2

[p2
4 + (|p| − µ5)2]2[p2

4 + (|p|+ µ5)2]2
.

Since we are interested in the UV limit of this integrand,
we can safely assume the hierarchy M(pE) � µ5 which
is valid due to the diminishing perturbative tail of the
quark mass function M(pE).

The first term on the right hand side of Eq. (42) leads
to a finite integral and gives back the result (38) for the
massless quarks while the UV divergence of the chiral
density n5 comes from the integral of the second term in
the right hand side of Eq. (42). The quark mass func-
tion M(pE) gets contributions from both the chiral con-
densate and the current quark mass (19). However, for

2 Assuming this specific order for mB , µ5 and |p| is irrelevant in
the UV limit; this choice is closer to the nonlocal NJL model
because of the running of the current quark mass in the UV.

a large Euclidean momentum pE , the latter factor domi-
nates since the former is suppressed by the perturbative
tail 1/p2

E according to Eqs. (23) and (25).
Therefore in the high momentum limit of Eq. (42),

we can replace the quark mass function M(pE) with the
mass m(pE). Moreover, in the UV region p4, |p| � µ5

we can safely set µ5 = 0 in the second term in the right
hand side of Eq. (42) since higher powers of chiral chem-
ical potential µ5 in a µ5/|pE | expansion would only lead
to convergent integrals. Thus, we may finally rewrite
Eq. (42) in the following form:

p2
4 − p2 +M(pE)2 + µ2

5

[p2
4 + λ2

+(pE)][p2
4 + λ2

−(pE)]

≈ p2
4 − p2 + µ2

5

[p2
4 + (|p| − µ5)2][p2

4 + (|p|+ µ5)2]

+m2(pE)
3p2 − p2

4

p6
E

+O
(
m2(pE)µ2

5/p
6
E

)
. (43)

It is now easy to recognize in the last term, proportional
to the mass squared, m2(pE), the source of the UV di-
vergence of the chiral density n5. This divergence would
be of a log-type if the mass m were a constant quantity.
The actual pE-dependence of the mass m = m(pE) leads
to somewhat smoother divergence. Indeed, taking into
account the behavior of the aforementioned term at the
momentum shell Γ � |pE | � ΛUV, we get, ignoring an
irrelevant proportionality constant:

ndivergent
5 ∼ µ5m

2
0

(
log

Λ2
UV

Γ2

)1−2dm

, (44)

where dm is the anomalous mass dimension (24). In a
two-flavor QCD the power of the logarithm in Eq. (44)
is a small, but positive number: 1− 2dm = 5/29 ≈ 0.17.

3. Zero-point origin of the divergence

The divergence (44) of the chiral density n5 occurs if
and only if the current quark mass is nonzero, m0 6= 0.
In this section we demonstrate that this divergence has
a “vacuum” origin rather than a thermodynamic one.

The presence of the chiral chemical potential µ5

modifies the functional behaviour of the energy of the
fermionic modes (18), thus affecting the contribution to
the often-neglected part of the free energy which would
normally be associated with the vacuum energy. Con-
sider, for example, the simplest case of free fermions with
the quark mass m0. The positive-energy branch of the
fermionic modes in the presence of the nonzero chiral po-
tential µ5 has the following form:

ε(χ)
p (µ5) =

√
(|p| − χµ5)2 +m2

0, (45)

where χ = ±1 labels the helicity of the mode.
As the chiral chemical potential modifies the spectrum

of free field fluctuations, it should also modify the vacuum
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energy carried by these fluctuations. According to the
standard rules of quantum field theory, this zero-point
(ZP) contribution is given by the sum over all modes:

ΩZP(µ5) =
∑
χ=±1

∫
d3p

(2π)3
ε(χ)
p (µ5). (46)

In all other circumstances, this zero-point contribution is
automatically neglected because it does not depend on
physical parameters of the system such as temperature
and chemical potential and, therefore, may be undoubt-
edly associated with the vacuum.

However in our case, the zero-point energy (46) de-
pends on the chiral chemical potential µ5 and, conse-
quently, the free-energy term ΩZP must be taken into
account in additional to the conventional free energy of
the system. The explicit dependence of the energy of
the zero-point fluctuations (46) on the chiral chemical
potential determines its nonzero contribution to the chi-
ral charge density. In particular, the zero-point energy
determines the chiral density at zero temperature, when
the usual thermodynamic contribution vanishes:

n5

∣∣∣∣
T=0

= −∂ΩZP

∂µ5
(47)

=
∑
χ=±1

∫ ∞
0

p2dp

π2

(µ5 − χ|p|)√
(µ5 − χ|p|)2 +m2

0

,

which coincides with the functional form of Eqs. (39) and
(40) obtained earlier in another way.

For strictly massless fermions, m0 = 0, the expression
under the integral (47) coincides with the hard Fermi
cutoff, θ(µ5 − |p|), which usually appears in the thermo-
dynamic (and not in the zero-point) part:

n5

∣∣∣∣
m0=0

T=0

=
1

π2

∫ ∞
0

p2dp θ(µ5 − |p|) =
µ3

5

3π2
. (48)

We automatically recover the finite thermodynamic ex-
pression (38) for Nf = Nc = 1.

As we already figured out, the behavior of the chiral
density (47) changes qualitatively for massive fermions
with m0 6= 0. At a large momentum |p| � m, |µ5|, the
integral in Eq. (47) behaves as

n5(T = 0) =
µ5m

2
0

π2

∫ ΛUV dp

p
∼ µ5m

2
0

π2
log

ΛUV

m0
+ . . . ,

(49)
which leads precisely to the logarithmic divergence found
already in Eq. (44) (with vanishing anomalous dimension,
dm = 0, as it is appropriate to a free theory).

Evidently, this zero-point divergence of the chiral den-
sity (49) cannot be renormalized by a conventional sub-
traction method that is usually used with respect to the
vacuum contribution. Thus, we need to modify the nor-
malization prescription itself, in order to deal with a fi-
nite chiral chemical potential in the theories with a finite

fermion mass. We will discuss this question in the next
section.

Before finishing this section, we would like to make
three comments.

First, this type of divergence does not occur in dense
fermionic systems with vanishing chiral chemical poten-
tial. Indeed, the vector chemical potential µ shifts the
particle energy modes linearly without modifying the
functional form of the momentum dependence of the en-
ergy:

√
|p2|+m2

0 →
√
|p2|+m2

0 ± µ. Therefore, the
presence of the vector chemical potential does not affect
the zero-point energy.

Second, in a local NJL model, in which the constituent
quark mass M has no momentum dependence, we would
get the constituent quark mass M instead of the current
quark mass m0 in Eq. (44) which would give a divergence
in the chiral limit as well. This is precisely the divergence
that has been found in Ref. [11]. On the other hand,
within the nonlocal NJL model, if we were in the chiral
limit we would have gotten a finite n5. The divergence,
as we have just demonstrated, appears due to the zero-
point fluctuations which exist in both local and non-local
models.

Third, from the context of this discussion, it is dif-
ficult to say with definiteness if this divergence of the
chiral density n5, in particular Eq. (44), is valid also in
full QCD: it is true that the present model represents a
very crude description of the interaction that leads to the
spontaneous chiral symmetry breaking of QCD. However,
the model describes correctly the behavior of the quark
mass function at large pE which is the region of interest
for the discussion of the divergence of n5, giving an ar-
gument that the result in Eq. (44) is applicable to QCD
as well.

4. Renormalization of the chiral chemical potential

The chiral density has been computed in the first-
principle numerical calculations in the scope of lattice
QCD endowed with the dynamical rooted staggered
fermions [14]. To this end, the Lagrangian has been
shifted by a lattice version of the source term µ5n5 which
effectively induces a nonzero the chiral density n5 6= 0 at
a nonvanishing chiral chemical potential µ5 6= 0. While
the UV divergence of the chiral density n5 in the lin-
ear term has been also been noticed for naive formula-
tion of lattice fermions, the full dynamical QCD calcula-
tions seem to support a finite result n5 ∼ Λ2

QCDµ5, where
ΛQCD is a finite mass parameter of the order of a typical
QCD energy scale. This result matches well the Chiral
Perturbation Theory (χPT) which implies n5 ∼ f2

πµ5

for small µ5 at T = 0 in the chiral limit [14]. Here
fπ ∼ ΛQCD is a pion decay constant. It is an easy exer-
cise to prove that Eq. (36) is consistent with χPT at the
lowest order in the chiral chemical potential µ5 and in the
current quark mass by putting µ5 = 0 in the integrand
and using Eq. (4.26) of Ref. [21].
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We want to notice, however, that we have been un-
able to reproduce the χPT relation n5 ∼ f2

πµ5 for a
non-regularized chiral density n5 in the context of the
nonlocal NJL model. This relation is unlikely to hold in
this model because the integrals for the naively-defined
n5 and the pion decay constant, fπ, entering at different
sides of the relationship, are pretty inconsistent (see, for
example, Ref. [22]). In particular, fπ is given in terms
of convergent integrals, while the non-regularized n5 still
possesses a UV divergence in this model (44). In the
nonlocal NJL model, we can renormalize the chiral con-
densate n5 by removing the logarithmic divergence (44)
similarly to a standard renormalization procedure in any
well-defined renormalizable theory.

As we discussed in the previous section, the divergence
appears from zero-point fluctuations of the fermionic
modes which possess the unconventional energy disper-
sion in the presence of the chiral chemical potential. This
feature appears both in the non-local NJL model (18) as
well as in the case of free fermions (45). In the stan-
dard quantum field theory, the contribution from the
zero-point fluctuations can easily be subtracted because
it does not depend on the parameters of the matter sec-
tor of the theory. In our case, however, the zero-point
term contains also a matter contribution which cannot
be neglected. This leads to subtleties in the normaliza-
tion procedure.

Postponing the physical justification of the formal
renormalization procedure to a later discussion, we notice
that the source of the zero-point ultraviolet divergence
can be easily traced in Eq. (43). We define a renormal-
ized chiral density as follows:

nR
5 = 4NcNfµ5 (H−H0) , (50)

where the counterterm

H0 =

∫
d4pE
(2π)4

(3p2 − p2
4)m(pE)2

[p2
E +m(pE)2]3

. (51)

is computed at zero temperature T = 0 and it is inde-
pendent on the chiral condensate.

When multiplied by the chiral chemical potential µ5

in Eq. (50), the regularized contribution depends only on
µ5. The term m(pE)2 that appears in the denominator of
the integrand in Eq. (51) makes it possible to avoid the
apparent infrared divergence at low Euclidean momenta,
pE → 0. This definition of the chiral density is consis-
tent with Eq. (38) in the chiral limit, at which both the
constituent and current masses are zero, M = m = 0.

The subtraction in Eq. (50) is enough to cancel the
mild logarithmic divergence of the chiral density (44)
since higher-order terms in powers of the chemical po-
tential µ5 in Eq. (43) would lead to convergent integrals.
Moreover, we also verified that within the nonlocal NJL
model at zero temperature n5 ' CMM

2
q µ5, where Mq

denotes the quark mass function at p = 0 and finite µ5.
Numerically, the proportionality constant turns out to
be CM ' 0.5 at low chemical potentials up to µ5 ≈ 300

MeV, while for larger chemical potentials µ5 the propor-
tionality becomes softer, finally reaching CM ' 0.3 at
µ5 = 400 MeV. These results are in agreement with the
lattice QCD studies reported in Ref. [14] in which it is
found that the chiral density n5 at zero temperature is
of the order of the anticipated value µ5Λ2

QCD.
The straightforwardly-defined chiral density is finite

in the chiral limit (where the fermion mass is zero) and
divergent for the massive fermions (44). Therefore, it
is natural to suggest that the divergence of the chiral
density (44) is directed related to the presence of the
fermions’ mass, and, naturally, to the inconsistency of the
notion of the chiral chemical potential for fermions with a
nonzero mass. Indeed, the chiral charge is not conserved
as it dissolves via the chirality flips for a massive fermion
regardless of the origin of it mass which could be either
a current mass or a dynamically-generated mass. For
a free Dirac fermion with a mass M , the axial (chiral)
current (1) has a nonzero 4-divergence at the level of the
classical equations of motion:

∂µj
µ
5 = 2iMψ̄γ5ψ. (52)

For strictly massless fermions, the chirality is a conserved
number: ∂µj

µ
5 = 0.

A generic chemical potential has a well-defined mean-
ing only for conserved quantities such as the electric (vec-
tor) charge. One may alternatively say, that no chemical
potential can thermodynamically be conjugated to a non-
conserved quantity. In the photodynamics, for example,
it is impossible to self-consistently introduce a chemical
potential for the total number of photons as the latter
number is evidently not conserved. In a free theory, such
a “chemical potential”, associated with a non-conserved
quantity, decouples from the dynamics of the theory. In
an interacting theory, this type of chemical potential may
affect the dynamics as we discuss below.

In QCD, the chiral properties of fermions are connected
to the topology of the gluonic sector of the theory. For
example, the instanton- and sphaleron-induced transi-
tions between adjacent topologically distinct vacua in-
duce changes in the chiral charge of the fermions due to
the axial anomaly in QCD:

(NR −NL)
∣∣∣
t→−∞

− (NR −NL)
∣∣∣
t→+∞

= −2Nf∆NCS,

(53)
where N5 ≡ V n5 = NR−NL is the difference between the
numbers of fermions possessing the right-handed (NR)
and left-handed (NL) chiralities, and change ∆NCS in
the Chern-Simons number between initial and final con-
figurations is given by the topological charge (3) of the
gluonic configuration.

Since the fermion and gluon sectors of the theory are
interacting with each other, a finite chiral chemical po-
tential may also induce a response in the topological
gluon sector in thermal equilibrium of QCD. Therefore,
the finite chiral chemical potential may have a physical
sense in QCD with massive fermions, regardless of the
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fact that the chiral number is not a conserved quantity.
The relaxation of the chiral density may induce physi-
cal changes in the topological charge fluctuations in the
gluonic sector of the theory. We will see below that the
topological susceptibility of the theory is seemingly cor-
related with the chiral density in the background of the
chiral chemical potential.

Since the chiral charge is not conserved (52), the in-
troduction of the chiral chemical potential (5) cannot be
justified in the thermodynamical sense. On the contrary,
the chiral chemical potential µ5 should be treated as a
new coupling of QCD, which – in general – needs a renor-
malization. The corresponding thermodynamically con-
jugated quantity, the density, should also require a renor-
malization as well (for example, in QCD, both the gluon
coupling and gluon fields/strength tensors are renormal-
ized perturbatively). Therefore, Eq. (50) defines nothing
but a certain renormalization scheme in the chiral sector.

III. RESULTS

In this section we report the main results of our study
on the nonperturbative quantities associated with the
chiral quark density in the scope of the nonlocal NJL
model. Below we discuss the dynamical quark mass M ,
the chiral condensate 〈q̄q〉, the chiral density n5, the
topological susceptibility χtop, and, finally, the phase di-
agram in the (µ5, T ) parameter plane as originates from
the nearly-critical behaviour of the chiral density and the
topological susceptibility.

First, we fix the parameters of the NJL model. We take
Λ = 550 MeV for the matching scale, m0 = 5 MeV for the
undressed quark mass. Finally, the value of quartic quark
interaction constant G = 2.6/Λ2 and G1 = (1 − c)G1 is
chosen in order to reproduce the phenomenological value
of the light quark condensate 〈q̄q〉 = (−250 MeV)3 in the
vacuum at T = µ5 = 0, and G2 = cG with c = 0.2 [34].
In the numerical computations we regularize the ther-
modynamic potential (17) by summing over all the Mat-
subara’s frequencies and restricting the integration over
the 3-momentum at the momentum sphere |p| ≤ ΛUV

with the ultraviolet cutoff ΛUV = 3Λ (we have verified
that changing this UV cut does not change the results
drastically).

A. Catalysis of chiral symmetry breaking

Our first aim is demonstrate that the nonlocal NJL
model is capable to describe the catalysis of chiral sym-
metry breaking induced by µ5, at least for relatively mod-
erate values of the latter, |µ5| . Λ. To this end, we first
discuss the constituent quark mass and the quark conden-
sate at finite temperature T and chiral chemical potential
µ5. As some features of the quark mass at µ5 6= 0 were
already been discussed in Refs. [13, 18], here we limit
ourselves to show the evolution of the quark mass at zero

0
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μ5 [MeV]
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0

100
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300
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M
(p
=
0)

[M
eV

]

Figure 1: Constituent quark masses M at a zero momentum
p = 0 versus temperature T . The blue dots denote a vanishing
chiral chemical potential µ5 = 0, the green squares stand
for µ5 = 100 MeV, the light green diamonds correspond to
µ5 = 200 MeV, the orange upwards-pointing triangles stand
for µ5 = 300 MeV, and, finally, the red downwards-pointing
triangles denote µ5 = 400 MeV. The solid lines represent the
best fits (54).

Euclidean momentum pE = 0 with varying T and µ5.
For the computation of the quark mass, we restrict our-
selves to vanishing topological angle θ = 0. Therefore,
the pseudoscalar condensate vanishes, η = 0, while the
chiral condensate σ is the only condensate left.

1. Constituent quark mass

In Fig. 1 we plot the constituent quark mass at zero
Euclidean momentum versus temperature. The figure
indicates that the increase in the chiral misbalance en-
hances the chiral symmetry breaking at any temperature
in agreement with conclusions of Ref. [23].

In our model, we have verified that the catalysis of the
chiral symmetry breaking occurs up to µ5 ≈ Λ. Above
this value, the constituent mass decreases with µ5, but
this feature might be related to the fact that we have not
included any backreaction on the interaction kernel. We
also notice that the constituent mass decreases in a nar-
row range of temperatures: there is a crossover to a high
temperature phase in which the chiral symmetry is ap-
proximately restored. The smoothness of the transition
appears to be supported by thermal fluctuations. We will
see in the next section that the chiral symmetry restora-
tion is accompanied by the approximate restoration of
the U(1)A symmetry as well.

One way to determine position of the thermal crossover
is to identify it, at a fixed chemical potential µ5, with the
temperature Tc = Tc(µ5) at which the absolute value of
the slope of the infrared quark mass |dM(pE = 0)/dT |
takes its maximum. For example, one finds Tc ' 125
MeV at µ5 = 0 which agrees very well with the value
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Figure 2: Chiral condensate σu ≡ 〈ūu〉 versus temperature.
Conventions for colors and symbols are the same as in Fig. 1.
The solid lines represent the best fits (54).

quoted earlier in Ref. [20]. Figure 1 also implies that
the critical temperature is an increasing function of µ5

in the whole range of chemical potentials µ5 covered by
this study.

A more accurate way to find the thermal crossover is
to find a suitable fitting function that may smoothly in-
terpolate the low- and high-temperature behaviour of the
constituent quark mass. And indeed, this quantity may
be well described in a wide region of temperatures by the
following function (with O = M in the considered case):

O(µ5, T ) = C1(µ5)T ν tanh

(
T − Tc(µ5)

δTc(µ5)

)
+ C2(µ5),

(54)
where C1, C2, ν, Tc, and δTc are the fitting parameters
defined at each fixed value of the chiral chemical poten-
tial µ5. The power ν is usually quite small (ν ∼ 0.1 or
smaller). Below, we will use the generic function (54) to
describe other quantities in the pseudocritical region. We
do not put the superscript O to the fitting parameters to
keep our notations concise.

The best fits of the mass gap M by the function (54)
are shown in Fig. 1 by the solid lines. The pseudocritical
temperature Tc = Tc(µ5) and the width δTc = δTc(µ5)
the pseudocritical region, as determined by the mass gap
M ≡ M(p = 0), follow very closely the corresponding
quantities for the chiral condensate and the topological
susceptibility, that we will discuss in more detail below.

2. Chiral condensate

The catalysis of the chiral symmetry breaking, induced
by the chiral chemical potential µ5, is also evident from
the behaviour of the chiral condensate, 〈q̄q〉, as defined in
Eq. (27). In Fig. 2 we plot the chiral condensate for one
of the light quarks, σu ≡ 〈ūu〉, versus temperature for
several fixed values of µ5. The magnitude of the chiral
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Figure 3: Regularized chiral density n5, defined via Eqs. (50)
and (51), versus temperature. Conventions for colors and
symbols are the same used in Fig. 1. The solid lines show the
fits by the function (55).

condensate increases with the rise in the chiral chemical
potential µ5. Thus, we have yet another confirmation
that the chiral chemical potential acts as a catalyzer of
the chiral symmetry breaking.

The approximate restoration of the chiral symmetry at
a finite temperature via a smooth crossover and not via
a real thermodynamic phase transition. In the absence
of a thermodynamic singularity in the parameter space,
the very definition of the critical temperature leaves a
large room for ambiguities. Moreover, the transition tem-
perature depends not only on the method of its defini-
tion, but also on the particular thermodynamic quantity
used to identify the temperature. The chiral condensate
σu ≡ 〈ūu〉 (and, equivalently, for σd ≡ σu) may be de-
scribed by the same type of function that has also been
used for the constituent quark (54). The best fits are
shown in Fig. 1 by the solid lines. We will discuss the
pseudocritical temperature Tc = Tc(µ5) and the width
δTc = δTc(µ5) in more detail at the end of this section.

B. Chiral density

In Fig. 3 we plot the regularized chiral density n5, de-
fined in Eqs. (50) and (51), versus temperature T for
several values of the chiral chemical potential µ5. The
qualitative trend of n5 versus temperature is obviously
the same for every fixed µ5: as temperature rises, the
chiral density increases. This property is related to the
fact that thermal excitations contribute more to the ther-
modynamic potential at temperature rises. Alternatively,
the increase of the chemical potential µ5 at any fixed tem-
perature T results in the increase of the chiral density.

For every fixed chiral chemical potential µ5, the chi-
ral density exhibits a knee-like structure which separates
the low-temperature from high-temperature behaviour,
as seen in Fig. 3. This behavior may be described with a
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very good accuracy by the following function:

n5(µ5, T ) = n1(µ5)F

(
T − T0(µ5)

δT0(µ5)

)
+ n2(µ5), (55)

where F (x) = ln (1 + ex). The fitting parameters are n1,
n2, T0, and δT0, where the temperature T0 discriminates
between the low- and high-temperature behaviour while
the quantity δT0 has a sense of the width of the transition
region. All fitting parameters are the functions of the
chiral chemical potential µ5. The best fits are shown in
Fig. 3 by the solid lines.

Since the chiral density n5 is not an order parameter of
the deconfining transition, the knee temperature T0 does
not have a meaning of a (pseudo) critical temperature, es-
pecially, for a crossover transition. We get T0 ' 135 MeV
with the width δT0 ' 20 MeV.

C. Topological susceptibility

The topological susceptibility measures the strength
of fluctuations of the topological charge in the medium.
In our model, the topological susceptibility can be com-
puted as the curvature:

χtop =
∂2Ω

∂θ2

∣∣∣∣
θ=0

. (56)

It is well known that for two degenerate flavors of light
quarks, the topological susceptibility (56) is related to the
quark condensate |〈q̄q〉| follows: χtop = m|〈q̄q〉| where
m is the current quark mass. This relation, valid at
zero temperature, shows the link between the fluctua-
tions of the topological charge (56) and the dynamics
of the light quark flavors that leads to the spontaneous
chiral symmetry breaking. First-principle lattice simula-
tions [27, 28, 33] indicate that the topological susceptibil-
ity tends to decrease with rising temperatures and that
the axial symmetry tends to be restored at high temper-
atures at the chirally unbroken phase.

In a local NJL model, the topological susceptibility
with light quarks in the chiral medium has been studied
for the first time in Ref. [11]. It has also been recently
subjected to the first-principle lattice calculations at zero
temperature in Ref. [14]. Both studies agree qualitatively
with each other on the fact that at zero temperature χtop

increases with µ5, while a quantitative comparison is not
feasible due to the different quark masses used in these
calculations.

On the other hand, the local NJL model [11] indicates
that when the temperature is close to Tc, the chiral chem-
ical potential tends to lower χtop. This property is an
artifact of the local interaction and of the 3-dimensional
regulator used in Ref. [11]. Already with a 4-dimensional
regulator, the critical temperature Tc increases with in-
crease of the chiral chemical potential µ5, at least for
small µ5 [13]. Cutoff effects become substantial at large
values of µ5 in any regularization scheme and Tc tends
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Figure 4: Topological susceptibility (56) versus temperature,
in units of the vacuum susceptibility χ0 (57). Conventions
for colors and symbols are the same used in Fig. 1. The solid
lines represent the best fits by the function (54).

to be lowered with the rise of µ5. For this reason, here
we compute χtop both at zero and at finite temperature
by using the nonlocal NJL model, which offers a more
trustable response of critical temperature Tc considered
as the function of the chiral chemical potential µ5.

In Fig. 4 we plot χtop versus temperature. In the figure
the susceptibility is given in units of its vacuum value,

χ0 ≡ χtop

∣∣∣
T=µ5=0

' 76 MeV, (57)

where the numerical number is presented for the set of
parameters used in our study.

We notice that the increase the chiral density results in
the increase of the topological susceptivity at each fixed
temperature. This result is in a disagreement with previ-
ous calculations that use the local NJL model [11], which
instead predict an increase of χtop at small T but a de-
crease of χtop at large T . The result of [11] was obtained
within a local NJL model, thus the behavior of χtop in
that model follows that of the constituent quark mass at
finite µ5.

Figure 4 indicates that there is a narrow range of
temperatures in which the susceptibility χtop decreases
abruptly thus signaling the partial restoration of the axial
U(1)A symmetry. In order to extract the pseudocritical
temperature more accurately, we describe the topologi-
cal susceptibility by the function (54). The best fits are
shown in Fig. 4 by the solid lines. In the next subsection,
we will discuss the pseudocritical temperature Tc for this
topological crossover in more detail.

D. Pseudocritical temperatures

In Figure 5 we compare the pseudo-critical temper-
atures Tc of the chiral and axial crossovers, as well as
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Figure 5: Pseudo-critical temperatures Tc of the chiral sym-
metry restoration (the orange squares) and the axial symme-
try restoration (the green circles) as functions of the chiral
chemical potentials µ5. The inset shows the thickness of each
transition. The data are obtained by fits of, respectively, the
chiral condensate (Figs. 2) and the topological susceptibility
(Fig. 4), see the text tor more details. The dashed lines are
drawn to guide the eye. The shaded regions represent the
quadratic-curvature behavior of Eq. (58).

their thermal widths, as functions of the chiral chemical
potential µ5.

The figure shows a few interesting qualitative features
of the chiral phase transition. First of all, both pseu-
docritical temperatures rise in the unison as the chiral
density increases. Second, the restoration of the axial
symmetry, as revealed by the topological susceptibility,
appears at a higher temperature than the restoration of
the chiral symmetry. This statement is independent of
the chiral chemical potential. At large values of the chi-
ral chemical potential we observe a flattening of the both
pseudocritical temperatures which, however, should be
attributed to the crudeness of the model used in our stud-
ies. In particular, we have neglected any possible backre-
action induced by the chemical potential µ5 on the form
factor. From this point of view, it would be interesting
the computation of the quark mass function at finite µ5

using the Schwinger-Dyson equation, which should al-
low to incorporate the aforementioned dependence in the
mass formfactor.

The widths of both axial and chiral crossover tran-
sitions, δTc, show a tendency for shrinking as the chi-
ral matter gets denser, thus implying a strengthening
of both transitions as the chiral chemical potential in-
creases. However, we see no signature of a critical end-
point in the (µ5, T ) phase diagram in the studied region
of the chiral chemical potential µ5.

These conclusions are in a certain disagreement with
previous studies that used a local interaction kernel [9,
10] as well as with recent works using the Wigner func-
tion technique [19]. On the other hand, the absence of
the phase transition point in the (µ5, T ) plane agrees well

with the results obtained within the nonlocal NJL mod-
els [12, 13, 17, 18], with the solution of the Schwinger-
Dyson equations [38, 39], and with the first-principle
QCD studies in a limited range of temperatures and
chemical potentials [24].

A quantitative analysis reveals a less sharp picture
given the smooth nature of both crossover transitions.
First of all, the magnitude of the increase of both ax-
ial and chiral pseudo-critical temperatures is very small:
the rise of the chemical potential, from µ5 = 0 to rather
large value µ5 = 400 MeV, leads to the enhancement of
the critical temperature by about ∆Tc ' 5 MeV, or less
than by 5%. This variation of the temperature is located
well within the broad widths of both crossovers, which
are wider than 15 MeV for all studied values of the chi-
ral chemical potential. Moreover, at each given chiral
density, both crossovers overlap strongly since the differ-
ence in the axial and chiral pseudocritical temperatures
is within (2−3) MeV.

We also determine the curvature κ5 of the crossover
transition in the (µ5, T ) plane:

Tc(µ5)

Tc(0)
= 1− κ5

µ2
5

T 2
c (0)

+ . . . , (58)

which is usually applied to the low-density domain with
|µ5| � Tc. According to the conventions used in the liter-
ature, a positive curvature κ corresponds to a diminishing
(pseudo-) critical temperature as the chemical potential
increases. In a realistic QCD with three quark flavors
(Nf = 2 + 1, with two light u and d quarks, and one
heavier s quark), the baryonic curvature κB determines
the curvature of the pseudocritical temperature with re-
spect to increase of the baryonic potential µB = 3µ (see,
for example, the recent studies in Ref. [26]):

Tc(µ5)

Tc(0)
= 1− κB

µ2
B

T 2
c (0)

+ . . . , (59)

where µ ≡ µq is the quark chemical potential. In our
article, we identify the chiral curvature (58) with respect
to the chiral (axial) chemical potential µ5 ≡ µA.

The curvatures of the chiral and axial crossovers for the
chiral quark chemical potential approximately coincide
and give κaxial

5 = −0.0105(4) obtained from the topolog-
ical susceptibility and κchiral

5 = −0.0108(3) as extracted
from the chiral condensate. The corresponding quadratic
dependences are shown in Fig. 5 by the shaded regions.
The width of each region corresponds to the statistical
error. We would like to notice that the quadratic depen-
dence of the critical temperature on the chiral chemical
potential holds very well well for the relatively large val-
ues of the chiral chemical potential, µ5 ∼ Tc.

IV. SUMMARY AND CONCLUSIONS

We have reported on our study of the chiral and ax-
ial symmetry breaking in chirally-imbalanced QCD with
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two flavors of light fermions at finite temperature us-
ing a nonlocal Nambu–Jona-Lasinio model. We studied
the chiral condensate, 〈q̄q〉, the topological susceptibility,
χtop, and chiral density, n5, of a chiral medium, namely
a system with chiral chemical potential µ5 6= 0, at finite
temperature. All the calculations have been performed
within a nonlocal NJL model with quark mass function
that agrees with perturbative QCD at large Euclidean
momentum. Our approach differs from almost all of the
previous calculations in which local effective models have
been used. The use of a nonlocal NJL model is favored
over the local ones since the former predicts that the
critical temperature for the approximate chiral symme-
try restoration, Tc, increases with µ5 in agreement with
the solution of the Schwinger-Dyson equations as well as
with the first-principle lattice QCD calculations. On the
contrary, the conclusions of our approach disagree with
the predictions of local the NJL model as well as with
the results obtained recently within the Wigner function
approach.

The response of the chiral condensate to a finite chi-
ral charge density at zero and finite temperature shows
that the chiral chemical potential µ5 serves as a cat-
alyzer of chiral symmetry breaking: the chiral condensate
strengthens as the chiral density increases. This conclu-
sion is in agreement with other studies [23]. Moreover,
the behaviour of the topological susceptibility at a fi-
nite chiral chemical potential indicates that the chiral
medium tends to break the axial symmetry as well: the
topological susceptibility becomes larger with increase
of the chiral density at all studied temperatures. In
other words, the chiral medium increases the fluctua-
tions of the topological charge, thus enhancing the break-
ing of the axial U(1)A symmetry. We have confirmed
that the critical temperature of the chiral crossover rises
with µ5; we also noted the same behaviour for the ax-
ial crossover and pointed out an apparent hierarchy of
the temperatures T axial

c > T chiral
c . However, the axial

and chiral crossovers possess substantial thermal widths,
δTc ∼ (15− 20) MeV, which imply that these transitions
overlap as T axial

c − T chiral
c ∼ (2 − 3) MeV. Thus, in our

model, the axial symmetry restoration happens simulta-
neously with chiral symmetry restoration.

Part of this study has been devoted to the divergence
of the chiral density. We argued that the presence of the
chiral chemical potential should be treated as a Lorentz-
frame-dependent coupling. The main argument is that
the quarks get substantial masses due the chiral symme-
try breaking while the chiral charge is not a classically
conserved quantity for the massive fermions. Therefore,
the corresponding thermodynamically-conjugated chiral
chemical potential should not, therefore, be considered
as a true chemical potential. The divergence of an un-
renormalized chiral density (44) is a consequence of this
property.

Technically, the presence of a nonzero chiral chemical
potential modifies the functional form of the momentum
dependence of the fermionic eigenenergies. The latter

contributes to the zero-point energy which is no more
associated with the pure vacuum contribution due to
the apparent dependence of the chiral chemical potential.
Consequently, the zero-point fermionic fluctuations con-
tribute to the density of the chiral charge. The zero-point
contribution is finite for massless fermions but it gives
a logarithmically divergent term if the fermions have a
mass. This fact highlights thermodynamic incompatibil-
ity between formation of a finite chiral density and the
absence of the chiral symmetry for massive fermions. In
the response, the system generates an ultraviolet diver-
gent contribution to the free energy Ω ∼ m2

0µ
2
5 ln Λ/m0

which forces the dynamical system to vanish the chiral
chemical potential µ5. In our work we suggest that this
divergence may, however, be regularized and then renor-
malized in order to describe transient phenomena with
a nonzero chiral density in the theories with dynami-
cal mass generation (for example in quark-gluon plasma
formed in heavy-ion collisions and described by QCD).

In order to support the need of the renormalization
of the chiral chemical potential in QCD with a nearly-
massless quarks, we invoked the following chain of argu-
ments: the bare chemical potential creates a chiral charge
density, that tends to decay due to chirality flips that are
catalyzed by the presence of the dynamical mass; the
dynamical mass appears as a result of the interactions
of the theory, and the interactions require the renor-
malization of the corresponding couplings and observ-
ables. Thus, the processes that involve the (non-)con-
servation of the chiral density are affected by the flow in
the renormalization-group space of QCD, so that the chi-
ral chemical potentials and the chiral charge should also
be affected by the renormalization. This statement also
applies to the theories where the quark mass appears
dynamically as a result of the spontaneous breaking of
chiral symmetry.

It will be interesting to check whether these predictions
are valid also in a model with three dynamical flavors,
and to explore the behavior of different topological sus-
ceptibilities to probe the the axial symmetry restoration
that emerges in various contexts [60–64]. We leave these
projects to near future studies.
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