
Hardware Software Synthesis of FormalSpeci�cations in Codesign of Embedded SystemsVincenza CarchioloandMichele MalgeriandGiuseppe MangioniIstituto di Informatica e Telecomunicazioni - Universita' di CataniaViale Andrea Doria, 6 - I95125 Catania (Italy)E-mail fcar, mm, gmangiong @ iit.unict.itThe attempt to integrate the design tecnique of hardware and software is the aim of CoDesign. Inthis work, we present a CoDesign methodology based on a formal approach to embedded systemspeci�cation. This methodology uses the Templated T-LOTOS language to specify the systemduring all the design phases. Templated T-LOTOS is a formal language based on CCS and CSPmodels. Using Templated T-LOTOS a system can be speci�ed by observing the temporal orderingin which the events occur from the outside.In this paper, we focus on the synthesis of system speci�ed by Templated T-LOTOS. The pro-posed synthesis algorithm takes advantage of peculiarities of the Templates T-LOTOS. Hardwaremodules are translated into an Register Transfer Level language managing some signals to drivethe synchronization, whilst the software modules are translated into C according to a �nite statemodel whose operations are controlled by a scheduler.The synthesis of the Templated T-LOTOS speci�cation is based on the direct translation of thelanguage operators, in order to assure that the implemented system is the same as the speci�edone.Categories and Subject Descriptors: B.0.0 [Hardware]; B.5.2 [Hardware]: Design Aids; C.3[Computer System Organization]: Special-Purpose and Application-Based Systems; F.4.3[Mathematical Logic and Formal Languages]: Formal LanguagesGeneral Terms: Codesign, Synthesis, MethodologiesAdditional Key Words and Phrases: Embedded System, Hardware and Software Synthesis, Code-sign1. INTRODUCTIONThe availability of more and more complex electronic devices at a low price hasconsiderably boosted the industry of embedded systems. Consequently, the com-plexity of such systems has increased, and their �eld of application has spread. Anembedded system generally consists of hardware and software components that canbe either physically separate or implemented on the same physical device.Work carried out under the �nancial support of the Ministero dell'Universita' e della RicercaScienti�ca e Tecnologica (MURST) in the framework of the Project Design Methodologies andTools of High Performance Systems for Distributed Applications.

� 2Hw/Sw CoDesign is an attempt to integrate hardware and software design tech-niques in a single framework. Its purpose is to give a homogeneous approach to thedesign of embedded systems aiming at reducing development times and optimizingthe hardware/software trade-o�. A CoDesign methodology must support the de-signer during the whole development of the design (that is, from the speci�cationof the requirements to the implementation of the modules that form the systemand the corresponding communication interfaces).Several design methodologies have been proposed in literature [Gupta et al.1994] [Chou et al. 1995] [Heish et al. 1997]. In general, they agree on the pres-ence of a speci�cation phase, a partitioning phase, and a synthesis phase. One ofthe fundamental aspects of any CoDesign methodologies is the technique used tode�ne the requirements of the system,because it a�ects the other phases. A spec-i�cation technique must allow the designer to specify the system completely andwithout interpretation errors. The use of a formal language to specify the behaviourof a system has some interesting properties, in particular it allows the correctnessof the design process to be validated using mathematical methods.The methodology proposed use, as speci�cation language, Templated T-LOTOS(TTL) [Carchiolo et al. 1996], a formal technique based on CCS [Milner 1980] andCSP [Hoare 1985] algebras. In TTL the system is described through its interactionswith the surrounding environment. Thanks to its formal basis, TTL permits therequirements of the system to be described very precisely, and above all makes itpossible to verify that the system has some key properties (absence of deadlock,liveness property, ...). Besides, in the description of the system, TTL permitsa structured approach to be used allowing the subdivision of a speci�cation intomodules.After describing the system and verifying its correctness, we need to implementit, so that it respects the requirements described through the speci�cation. Thisoperation implies the choice of the system architecture and the division of thesystem into modules to be allocated either to hardware or to software. In order tocomplete the design of the system, we also need to implement the interfaces thatpermit the exchange of information between modules and de�nition of the rulesgoverning concurrency between modules.The synthesis technique presented in detail in this paper takes advantage of TTL.The purpose of the synthesis algorithm proposed is to assure that the implementedsystem is the same as the speci�ed one, through a direct translation of the lan-guage operators (syntax-direct translation approach). This assures that the deviceobtained has the same behaviour as the speci�ed one. The problem of this approachis connected to the need to de�ne, for each operator in the language, a translationrule for both hardware and software. This makes the development of the translationtool more complex. In the approach proposed in this paper, this di�culty has beendealt with by taking advantage of the fact that all TTL operators can be expressedby a limited number of so-called basic operators. However, the derived operatorshave been made translated directly in all the cases in which it is convenient fore�ectiveness reasons.In our approach, a TTL module can be directly translated into RT level languageor into C (in the cases of hardware and software respectively), with no need to passthrough intermediate formalisms. Hardware and software modules are translated

� 3according to a �nite state model whose execution is controlled by a scheduler. Thescheduler is implemented in software, except for the hardware module initializationpart. One of the main problems in translating a TTL speci�cation is to respectits synchronization semantics (rendez-vous). When synchronization takes placebetween hardware modules, it is obtained through appropriate signals; when it takesplace between software and hardware modules it is obtained through an interfaceand the scheduler; lastly, where only software modules are involved it is solved bythe scheduler.This paper deals with a synthesis approach used in the CoDesign methodologydeveloped by the authors [Carchiolo et al. 1998a].Section 2 presents a short overview of the approaches to CoDesign which can befound in literature, in particular regarding the speci�cation and synthesis phases.Section 3 introduces the TTL language chosen to specify the system being devel-oped, and points out the peculiarities which make TTL interesting in CoDesign.Section 4 summarizes all the phases of the CoDesign methodology which includesthe proposed synthesis approach. Section 5 discusses some problems associatedwith the correct synthesis of a TTL speci�cation. Section 6 presents the synthesisapproach, the algorithms for translation into C and RTL and the characteristics ofthe scheduler.2. RELATED WORKThe CoDesign methodologies proposed in literature divide the design process intothe following sub-problems:(1) speci�cation;(2) veri�cation and/or simulation;(3) mapping on the target architecture.Several models and languages have been used for the speci�cation phase.One of most common models used is the Finite State Machine (FSM) [Kohavi1978]. It models a system through an input/output function that is evaluatedby a �nite automaton. Starting from basic FSMs, several extensions have beenproposed. Extended FSMs (EFSM) [Holtzmann 1991], for example, introduce theconcept of non-destructive communication; that is, the written information can beread by the receiver several times. In Behavioural FSMs (BFSM) [Takach and Wolf1995] inputs and outputs are partially sorted according to time, so time constraintscan be expressed. CoDesign FSMs (CFSM) [Chiodo et al. 1993] di�er from FSMsbecause there is an unbounded non-zero quantity of time between the input eventand the emission of the output event. The transformation of a CFSM into an FSMimplies a choice for the set of unbounded delay values. Another model used forthe speci�cation of systems is the Control Data/Flow Graph (CDFG). The modelconsists of nodes and arcs; nodes indicate operations, while arcs indicate relationsof dependence between the nodes. Several CoDesign methodologies are based onthe CDFG [Gupta et al. 1994]. The models used to describe systems also includethose based on process networks, such as the networks of SDL processes [Saraccoet al. 1989], and the networks of Communicating Sequential Processes (CSP) [Hoare1985].

� 4In the �eld of CoDesign several formal languages have been used, most of whichare based on the FSM model. The one that has recently obtained most attentionis Esterel [Berry et al. 1991], which belongs to the group of synchronous languages(which also includes Lustre [Caspi et al. 1987] and Signal [Guernic et al. 1985]). Thehypothesis of perfect synchrony, on which the language is based, implies that thesystem reacts to its environment quickly enough to be considered instantaneous.This means that computation and internal communication take no time. Thanksto this hypothesis, an Esterel description can be transformed into a single FSM.The advantage is that the behaviour of the system becomes highly predictable, sincethere is no problem of either synchronization or interleaving of concurrent processes.One of the main problems of this approach is that the resulting FSM can have ahigh number of states. This becomes a problem when the speci�cation is big andmakes great use of concurrency. Esterel is currently used as a speci�cation languagein CoDesign methodology developed at Berkeley University (POLIS) [Heish et al.1997]. Besides, many studies have been carried out in order to �nd an e�ectivehardware implementation of an Esterel speci�cation [Berry and Touati 1993].StateChart is a graphic speci�cation language based on FSM that permits (amongother things) the hierarchical decomposition of the speci�cation, the speci�cationof time constraints and concurrency [Drusinski and Har'el 1989]. Finally, severalhigh-level textual languages have been used in CoDesign, e.g. Cx [Ernst and J.1993a], Hardware-C [Ku and Micheli 1990], Verilog [Sternheim et al. 1993], andPromela [Wenban et al. 1993].The second step consists of the validation of the speci�cation; simulation is stillthe most widely used approach. Many tecniques have been proposed in literature;they di�er in their method of coupling hardware and software components. Forexample, in [Gupta et al. 1992] a single custom simulator is used for both hardwareand software, whereas another approach proposes using a software process runningon a host computer loosely connected with a hardware simulator [Wilson 1994].The use of models or formal languages permits a better approach to the vali-dation, since it is possible to use the mathematical basis of the language to carryout more complete veri�cations. The tools available for formal veri�cations can bedivided into two categories: theorem proving-based [Boyer et al. 1995] [Gordon andeditors Melham 1992] and �nite automata-based tools [Thomas 1990].The third problem is the mapping on the target architecture. It consists ofpartitioning the speci�cation into hardware and software parts, and then synthesingthem. Several partitioning techniques have been proposed in literature, for example,see [Catania et al. 1997] [Vahid 1997].The synthesis is generally carried out starting from a graph representation ofthe speci�cation (which can be handled much more easily), and from a possibleallocation of the various components into hardware or software (coming from thepartitioning phase).The synthesis of the hardware parts usually takes place according to the classictechniques of logical synthesis (see [Micheli 1994]).Conversely, in embedded systems the synthesis of software parts highlights newproblems. A scheduler to manage software parts is nearly always required, dueto the need to sequentialize a set of tasks that are generally concurrent in thespeci�cation (however, there are some exceptions, as in Esterel [Berry et al. 1991]).

� 5The scheduler in embedded systems must respond to criteria of great simplicityand e�ectiveness, considering the small dimensions of the system. In this area,much of the knowledge acquired in the �eld of operating systems, especially Real-Time Operating Systems (RTOS), has been applied. For an overview of schedulingmethods see [Halang and Stoyenko 1991].As we said above, in [Berry et al. 1991] the authors propose an approach thattakes a single FSM that solves the problem of communication and concurrencybetween the modules starting from the speci�cation in Esterel of the system as aset of concurrent modules, which do not require the presence of a scheduler.The other approaches followed in CoDesign tend to subdivide the system intoa set of concurrent tasks, and require the implementation of a scheduler. In thissense, it is possible to use classicial scheduling algorithms [Shin and Choi 1997] or todevelop ad hoc algorithms. This approach is followed, for example, in [Chou et al.1994], where an algorithm for a feasible scheduling (respecting timing-constraints)is developed starting from a speci�cation in Verilog.In [Gupta et al. 1994] and [Gupta and Micheli 1994], starting from a speci�cationin HardwareC, a CDFG is derived; several threads are extracted from it and ascheduling algorithm is proposed.In [Chiodo et al. 1995] a synthesis methodology is proposed which starts from aCFSM speci�cation of the system. Using this speci�cation model it is possible toobtain an e�ective hardware implementation. In this approach software synthesistakes place by using an acyclic CDFG obtained from the CFSM speci�cation. Thissoftware implementation requires the presence of a scheduler, even if it is quitesimple.3. TTLTemplated T-LOTOS (TTL) is derived from T-LOTOS, which is a timed exten-sion of standard LOTOS (Language Of Temporal Ordering Speci�cation). LO-TOS is a Formal Description Technique (FDT) standardized by ISO (InternationalStandards Organization) between 1981 and 1988 ([ISO-IS-8807 1988]). LOTOSwas speci�cally developed for Open Systems Interconnection, but is applicable tothe description of any system, especially concurrent and/or distributed ones (seealso [Bolognesi and Brinksma 1987] [Logrippo et al. 1990]).The main features of TTL are:|formal basis: it allows us to check that the speci�cation possesses useful proper-ties, like deadlock freedom and liveness, by the use of a mathematical approach.|concurrency: this feature makes it possible to model systems made up of variousparts which evolve in parallel, a situation typical of hardware systems.|modularity: this allows time to be saved in the speci�cation phase and leads tomore e�cient design thanks to the reuse of already developed, and thus carefullytested and optimized, components.|high degree of abstraction: it allows us to concentrate on what is to be done with-out being a�ected by problems regarding actual implementation. This guaranteesthe language is suitable for describing both hardware and software regardless ofthe target architecture.

� 6TTL has been developed in such a way as to use all the existing tools for T-LOTOS (e.g. LOLA [Quemada et al. 1989]) with few restrictions.The language has two components: the �rst is the description of the behaviourof processes and their interaction, and is mainly based on the CCS [Milner 1980]and CSP [Hoare 1985] models; the second is the description of data structures andexpressions, and is based on ACT ONE [Ehrig 1985], a language for the descrip-tion of Abstract Data Types (ADTs). In the following we will only discuss thebehavioural part of the TTL. The data structure part of the TTL is the same ofLOTOS one; for a complete description see [ISO-IS-8807 1988] or [Bolognesi andBrinksma 1987].The basic hypothesis of TTL is that the behaviour of the system can be speci�edby observing from the outside the temporal order in which events occur. In practice,the system is seen as a black box which interacts with the environment by means ofevents, the sequence of which is described by TTL behavioural expressions.In TTL a system is described in terms of processes; the system as a whole isrepresented as a process, but it may consist of a hierarchy of processes (often calledsubprocesses) which interact with each other and the environment. The atomicforms of interaction with the outside world take the name of events. The syntax ofa process in TTL is:process <process-identifier> <parameter-list> :=<behaviour-expression>endprocwhere:<process-identifier> is the name to be assigned to the process;<parameter-list> is the list of events with which the process caninteract with the environment;<behaviour-expression> are the TTL expressions which define the behaviourof the processThe recursive occurrence of a process-identi�er in a behavioural expression makesit possible to de�ne in�nite behaviour (both self and mutual recursion are possible).A special process which models a completely inactive process, i.e. one which cannotexecute any event, is referred to as stop .3.1 Basic operators3.1.1 Action Pre�x. This operator produces a new behavioural expression froman existing one, pre�xing it with the name of an event. If B is a behaviouralexpression and a is the name of an event, the expression a;B indicates that theprocess containing it �rst takes part in the event a and then behaves as indicated bythe expression B. The possible events include one in particular which is indicatedas i and represents an internal action, i.e. an action which can occur withoutinteraction with the environment.The introduction of types makes it possible to describe structured events. Theyconsist of a label (gate name) which identi�es the point of interaction (gate), and a�nite list of attributes. Two types of attributes are possible: value declaration andvariable declaration.|A value declaration consists of a TTL data item preceded by an exclamationmark. The expression g!E;B, for example, means that the process o�ers thevalue E through the gate g and then behaves as indicated in B;

� 7|A variable declaration is of the type ?x:t, where x is the name of the variableand t is its sort. The expression g?x:int;B, for instance, means that the processaccepts a value of sort int through gate g, stores it in x and then behaves as B.TTL also allows us to describe timed events, by associating a time attribute tothe gate name, that is, a time interval in which it can take place. In the samespeci�cation we can have both timed and non-timed events. The time attributesare quite general, such as to permit the modelling of a wide range of situations,including those typical of control-dominated embedded systems. It is, for instance,possible to model �xed delays, min/max constraints and periodic events [Guptaet al. 1994].3.1.2 Choice. If B1 and B2 are behavioural expressions, then B1 [] B2 denotesa process which can behave both as B1 and B2. Choice between them is madeby the environment: if it o�ers an event which is the initial event of B1, then theformer is selected; if, on the other hand, it o�ers an event of B2, the latter will beselected.Choice, action pre�x and stop are often called basic operators because they canspecify any behaviour. All other operators, therefore, can be expressed in termsof the basic ones, so all the operators which are described in the following can beviewed as derived operators.3.2 Derived OperatorsThe arbitrary interleaving operator represents the independent composition of twoprocesses, P1 and P2 and is indicated as P1 jjjP2. If the two processes havesome event in common, P1 jjjP2 indicates their capacity to synchronize with theenvironment but not with each other.The parallel operator is indicated as P1 kP2 and it means that the two processeshave to synchronize with each other in all events. P1 kP2 can take part in anevent if and only if both P1 and P2 can participate.The general parallel composition is a general way of expressing the parallel evo-lution of several processes which synchronize on a given set of events. It is denotedwith the expression P1 j [a1; :::; an] j P2.The hiding operator internalizes actions. If B is a behaviourial expression anda1; :::; an are events, then the expression hide a1; :::; an in B represents an expres-sion which behaves like B, but the events a1; :::; an have been made internal, i.e.they have become unobservable and occur spontaneously, without the participationof the environment.Sequential composition of two processes, P1 and P2, is indicated as P1 >>P2and it means that when the execution of P1 terminates successfully (when, forexample, no deadlock situations have occurred), P2 is executed (">> " is alsoknown as an enabling operator). To mark successful termination, there is a specialTTL process called exit . When exit is reached by the �rst process, control passesto the second.The disruption operator was introduced to facilitate the modelling of situationssuch as a sudden fall of a connection or the occurrence of an error (in general, allsituations in which a given action disrupts the normal execution of operations).Given two processes, P1 and P2, P1 [> P2 de�nes a process which normally

� 8executes P1, but which can be interrupted at any time by execution of any initialaction of P2. After the occurrence of such an event, control passes to P2.Every TTL behavioural expression can be preceeded by a boolean condition, aguarding operator, which determines whether the expression is to be executed ornot.Table I lists all the operators in the language. Several of them have already beenillustrated; for those not analyzed the reader is referred to [Carchiolo et al. 1996].3.3 Modules and templatesTTL, thanks to modules and templates, allows the designer to create and uselibraries of components. This feature is very useful because it permits the designerto model already existing components and also to reduce the development time byusing parameterized blocks which can be present in libraries.The TTL modules are a collection of processes which can be used at any time.A TTL module comprises a declarative part and a de�nition part. The �rst partexports all the information needed for the designer to use the process; this partpermits us to perform a complete static analysis of the speci�cation. The secondpart represents the implementation of the processes declared in the previous part.Both a public and a private section can be de�ned for each module: the former willbe exported and used whereas the latter is used for internal matters.The TTL templates are a further extension of process concepts. Templates allowus to parameterize the name of processes and the type of gates (in the gate list).Thus the templates are concretized into processes as required. The use of themodules and of the template is discussed in [Carchiolo et al. 1996]4. CODESIGN PATHThe CoDesign methodology, in which we �nd the synthesis approach presentedin this paper, has been developed for the design of control-dominated embeddedsystems (that is, systems in which the control part is predominant with respect tothe data-ow part).In this CoDesign methodology we can outline 4 fundamental phases, each con-sisting of di�erent steps (see Fig. 1):(1) speci�cation;(2) re�nement and decomposition;(3) partitioning;(4) implementation;Below we will briey discuss the phases of the methodology.4.1 Speci�cationThe �rst phase of the methodology is speci�cation of the system, which, as wesaid above, is carried out by using TTL. The purpose of this phase is to expressthe requirements of the system given by the client in (plain) TTL, to verify theircorrectness, and to give a quick prototype to be accepted by the client. In fact, aTTL speci�cation can easily be simulated using a TTL interpreter.During the whole speci�cation phase we need to verify that the behaviour de-scribed corresponds to what we want to specify (this operation is known as model

� 9Name Syntaxinaction stoptermination exitexit(E1,...,En)choice B1 [] B2action-pre�x g;Bi;Bgd1:::dn [SP];B where di is of the form ?x:t or !Eparallel-composition B1 j[g1,...,gn]j B2B1 jjjB2B1 kB2hiding hide g1; :::; gn in Binstantiation p[g1; :::; gn] (E1,...,En)guarding [GP] ! Bdisabling B1 [>B2enabling B1 >>B2B1 >> accept x:t1,...,x:tn in B2local-de�nition let x:t1=E1, ..., x:tn=En in Blet x:t=Esum-expression choice g in [g1,...,gn] [] Bchoice x:t [] Bpar-expression par g in [g1,...,gn] j[a1,...,an]j Bpar g in [g1,...,gn] jjjBpar g in [g1,...,gn] k Bloop-expression loop(guard; value-expression; B1)Table I. TTL Operatorsvalidation). The model that we used for speci�cation allows us to deal with theproblem di�erently from traditional simulation methods.In fact, veri�cation through simulation is carried out by using test patterns asinputs of the system, and by verifying that the outputs are the expected ones. Thismethod, however, only allows partial veri�cation of the system's behaviour. Theresult is that correctness is assured only for the veri�ed test patterns.The use of a formal model as a speci�cation technique gives the opportunityto exploit the mathematical base to carry out more complete veri�cations. Forexample, we can verify the so-called safety properties, that is, verify that the system,whatever the inputs might be, never ends up in undesired states. We can also verifythe liveness properties, that is, to verify that a given desired con�guration is adoptedby the system. Besides, the combination of these two properties allows us to verifyeven very complex situations.The tools for formal veri�cations can be divided into two categories: theo-rem proving-based tools and �nite automata-based tools. The former are toolsthat assist the designer during mathematical demonstrations (generally semi-automatically), meaning that they assure the correct use of the basic theoremsof the model (see [Boyer et al. 1995]). The second category of tools, which ex-ploit the theory of automatons, permit the veri�cation process to be automatized,

� 10
Global Specification and Requirements

RTL and C modules

Description

System

Refinement

Decomposition

Translation

Interfacing and

Scheduling

Cost Evaluation

Minimized

Formal
Verification

Step 1

Step 2

Step N

Refined Specification

Set of Tasks

Partitioning

Mapping

Current Mapping

Mapped modules

Set of Clusters

Decomposition

Refinement
and

Clustering

Implementation

Specification

Fig. 1. Overview of Methodologyeven if this approach is not often feasible due to problem related to state explotion(see [Kurshan 1994]).4.2 Re�nement and decompositionThis phase consists of three steps:(1) re�nement;(2) translation into an intermediate format;(3) decomposition of the system.The purpose of the �rst step is to speci�cy the requirements in a form that is easilyand e�ectively implementable. During this step, several styles of speci�cation areusually adopted. In [Brinksma et al. 1987] and [Vissers et al. 1988] the problem ofthe style of speci�cation (resource-oriented, state-oriented, constrain-oriented andmonolithic) to be adopted in the di�erent phases of the design is discussed; [vanEijk 1989] discusses the problem of transformation from one style of speci�cationto another.At each re�nement step, some functional blocks are divided into simpler blocks,without changing the behaviour of the system. The �nal purpose is to obtain aspeci�cation which is detailed enough to be e�ectively implemented, but correctlydescribes the requirements of the system.The equivalence between what has been speci�ed at one level of re�nement andthe speci�cation at the next level usually takes place through simulation. The use oflanguages with a formal base, like TTL, allows us to use tools assisting the designerduring whole the re�nement phase, and giving the mathematical certainty that thedescriptions at the di�erent levels are equivalent.

� 11In the second step of this phase the speci�cation is translated into an intermediateformat called the Intermediate Graph Model (IGM). This representation is usedduring the decomposition and synthesis phases. The purpose of the IGM is to havean easily manageable representation for the translation into both hardware andsoftware.Each process that forms the speci�cation is translated into an IGM. Each nodeof an IGM represents an operator of the TTL language, directly synthesizable, ora reference to a process. Fig. 2 (a) contains an example of a TTL speci�cation,whereas Fig. 2 (b) represents the behavioural graph that is associated to it. Shadednodes do not represent an operator, but are used to facilitate interpretation of thegraph. The node labelled 0 in the behavioural graph indicates the point from whichto start.
Process P[t1,t2,t3]:exit:=

(t1?v:int;i;exit [] t2?v:int;P[t1,t2,t3] [] t3!3:exit) >> P1[t1]|||P1[t3]
endproc

P[...]0

exit

t2?

t3!

t1? i exit

P1[t1] P1[t3]

(a)

(b)Fig. 2. Example of IGMIn the last step, called decomposition, the speci�cation is divided into a set ofelements called tasks, according to their parallelism. In this step no hypothesisabout the target architecture is necessary, nor do we need to add constraints onthe mapping of tasks. Thus we do not need to reduce the level of autonomy in thepartitioning phase.The decomposition algorithm operates as follows:(1) Classi�cation of the IGM into two sets:|PARA: indicates an instance relating to a process consisting of only theparallel composition of several processes;|NOPARA: indicates all the other processes.(2) Construction of the instance tree (IT). It represents the behaviour of the systemas a whole. Each node of the instance tree represents an instance of a formalprocess, and the nodes are connected according to the order of instantiation. Inconclusion, the instance tree is made by composing the IGMs (already classi�edinto PARA or NOPARA) of each formal process in the speci�cation, afterreplacing the formal parameters with the actual ones (if necessary).(3) Decomposition in task. The tasks are all the processes that are classi�ed asNOPARA in the IT.

� 12At the end of the decomposition algorithm, the initial speci�cation is dividedinto a series of tasks. Fig. 3 (a) shows a TTL speci�cation, whereas in Fig. 3 (b)the relative IT with the labelled nodes is shown. In Fig. 3 (b) the hatched nodesare the tasks resulting from the decomposition process.

(a) (b)

main_1

DP4_2

DP1_1

DP4_3

DP2_1 DP3_1

DP2_2

DP4_1

specification example[t1,t2,t3]:noexit

 behaviour

endspec

exm::process main[t1,t2,t3]:noexit:=

((DP1[t1,t2,t3]|{t1,t2,t3]|DP2[t2,t3])|[t2,t3]|DP3[t1,t3])|[t3]|DP4[t3])

endproc

exm::process DP1[t1,t2,t3]:exit:=

 t1?v:int; i; stop

 []

 t2?v:int; exit

 []

 t3!3; exit >> DP4[t1]|||DP4[t3]

endproc

exm::process DP2[t1,t3]:noexit:=

 t1!3; i; DP2[t1,t3]

endproc

exm::process DP3[t2,t3]:noexit:=

endproc

exm::process DP4[t3]:noexit:=

 exm.main[t1,t2,t3]

 t2!1; i; exit [> DP2[t1,t3]

 t3?v:int; i; stop

endproc

Example

Fig. 3. Example of IT4.3 PartitioningThe purpose of the partitioning phase is to choose which of the tasks resultingfrom the decomposition step must be allocated to either hardware or software. Thepartitioning phase consists of 2 steps: clustering (which is not connected with thearchitecture), and mapping.Clustering reduces the number of tasks below a �xed threshold, in order to reducethe complexity and therefore the cost (in computational terms) of the next phase.The purpose of the clustering algorithm used in our methodology is to minimizethe degree of coupling between two tasks; this parameter is de�ned as the numberof interactions between the tasks [Carchiolo et al. 1998a].The degree of coupling is a critical factor for the implementation of the �naldevice, mainly because the higher its value is, the higher the cost of the communi-cation (and therefore of the interfaces) among the modules will be. The degree ofcoupling seems to be an e�ective heuristic method for reducing the complexity ofthe problem. In fact, tasks characterized by a considerable amount of interactionwill be grouped in the same cluster, and will therefore be mapped in the same

� 13partition. The number of clusters generated by the clustering step is of great im-portance for the next step, i.e. mapping. In fact, if the number of clusters is toohigh the problem of mapping is too complex, whilst if the number of clusters is toosmall the mapping algorithm has few chances to obtain a good hardware/softwaretrade-o� [Carchiolo et al. 1998a].The step called mapping consists of choosing the best allocation for the clusters,according to a number of factors, the most important of which are:|Performance. This parameter a�ects the whole design of the system. Accordingto this principle, a cluster must be allocated in hardware, in order to obtain animprovement in performance.|Implementation cost. The choice of a good allocation for the modules has aconsiderable impact on production costs, since the di�erence between the hard-ware and software realizations is considerable. If some hardware resources canbe shared, this factor must be taken into account.|Modi�ability. This parameter (which is di�cult to quantify) favours the softwarerealization, because software can be more easily modi�ed.|Communication. We need to consider the additional cost due to the exchange ofdata among the blocks allocated in di�erent partitions. In some cases, this costcan be considerable.The problem of mapping is to decide whether to implement a module in hardwareor in software according to the evaluation of a cost function = that takes the abovementioned parameters into consideration. A practical approach is to allocate allblocks in hardware and then to move to software those tasks whose = remains withina given value (usually called hardware-oriented approach, see for example [Guptaand Micheli 1993]). Of course, we can also do the opposite, as in [Ernst and J.1993b].In order to evaluate = correctly, we need to determine the cost of each task.Some of the approaches proposed in literature are based on cosimulation [Wilson1994] [Rowson 1994], some are based on soft-computing techniques [Catania et al.1995], and others on the knowledge of computed values of =, with reference tolibraries of components [Axelsonn 1996]. Another approach simultaneously developsthe scheduler and evaluates the impact of the allocation (hardware or software) on= [Kuman and Alii 1993].In this paper we do not expressly deal with the problem of mapping. However,since we can synthesize the tasks (both in hardware and in software) at a lowcomputational cost, we can evaluate some of the basic parameters for calculating=, and therefore apply some of the techniques that we can �nd in literature.4.4 ImplementationThe purpose of the last phase of CoDesign is the synthesis of hardware and softwaremodules, the interface between these modules and the scheduling algorithm.In this phase, the target architecture is selected. It usually consists of a micro-processor and several hardware components (FPGAs, for example). One or moremodules building the system will be mapped on to these elements.The implementation phase is discussed thoroughly in the following sections.

� 145. IMPLEMENTATION OF THE SPECIFICATIONThe main purpose of the synthesis algorithm presented in the following paragraphsis to obtain a device having a unique correspondence with the speci�cation pro-cessed during the previous phases of the methodology. This allows us to avoid in-termediate translations into representations which have no formal base and whichtherefore might not assure the consistency of the �nal result with the speci�cationinput.In the case of hw the system is directly synthesized into an RTL level description.The synthesis into software components is more complex due to the limits imposedby the nature of software.In embedded application the software components must reduce the use of dy-namic allocation of memory and the use of stack in order to simplify the architec-ture of the target device and make the amount of memory needed predictable. Thelanguage chosen to synthesize TTL is C, due to its di�usion and, therefore, theavailability of tools and compilers for any microprocessor.The presence of software components together with hardware ones imposes thepresence of a scheduler; it has the following tasks:(1) it must synchronize all the modules of the system;(2) it serializes the software modules which have to share the (single) microproces-sor;(3) it must be simple and reliable;(4) it has to use minimal resources (processor, memory, etc.).The scheduler is subdivided into two parts: the �rst one manages the activationof all the modules and the serialization of software; the second is in charge of theinitialization of hardware components. Since the language is based on the conceptof event, the scheduler has also been de�ned on the same basis. In fact, it does notselect the next process to be activated, but the next event that has to take place.The synthesis technique used to synchronize the modules is imposed by the lan-guage chosen for the speci�cation: it implies that an event can take place only whenall the processes that want to synchronize are ready to execute it (rendez-vouz).For this reason, the synchronization protocol has been implemented into hardwarecomponent. The presence of bu�ers is not necessary, as the exchange of signals isabsolutely synchronous. The main disadvantage of this technique is the presenceof a higher number of signals (and therefore of wires) between the modules.Another characteristic of the synthesis algorithm proposed is the opportunity tosynthesize complex behaviour by using only a few translation rules, because theTTL operators can all be expressed by the basic operators. This fact allows us tosynthesize the device as a set of distinct components that will only be joined later.5.1 RestrictionsIn this paragraph we present some of the hypotheses on which the synthesis processis based, and in particular which restrictions we have had to impose in the use ofTTL.The synthesis of a TTL process can be carried out both after reducing all thederived operators into basic operators (�ne-grained approach) [Henkel et al. 1994],

� 15and by acting on the general form (coarse-grained approach) [Adams and Thomas1995] directly.The basic element of TTL is the event, which consists of the interaction betweenprocesses based on a rendez-vous mechanism. Three di�erent types of interactionare present in TTL: value matching, value generation and value passing. The onlyone which is meaningful for our application is value passing because it has a corre-spondence with the physical reality of devices, thus it is the only one we have takeninto account.The instantiation of processes in TTL plays a fundamental role in the speci�cationof systems; some situations which are syntactically correct cannot be used due tothe static nature of hardware. The main limit imposed on the use of processes liesin the use of recursion and in the form of the gate list. Mutual recursion must beavoided because it is a dynamic structure and therefore it has no correspondencein hardware. Moreover, self-instantiation is only allowed if the gate list is notmodi�ed.In the implementation of the choice operator we have to solve the non-determinism typical of this operator because it cannot be easily implemented ineither hardware or software.We are working on discarding some of the above limitations, such as the avoidanceof recursion.6. TRANSLATIONThe translation of the TTL speci�cation into the target languages (C and RTL)is made by operating on the IGM and on the IT created during the re�nementand decomposition phase. The way an IGM is synthesized depends of course onwhether it is implemented in software or in hardware.In the case of software, each TTL process is translated into a procedure thatimplements an FSM obtained from the relative IGM representation. Each procedureexecutes the typical instructions of a state in atomic mode; this means that theirexecution cannot be interrupted either by the scheduler or by other modules. Thisfact allows us to respect the synchronization semantics of TTL.In the case of hardware synthesis, each IGM state corresponds to a certain numberof registers that are activated through an appropriate control sequence. In this case,the atomicity of each state is assured through appropriate signals to synchronizethe registers.Fig. 4 shows the architecture of the synthesized system and the relations amongits parts, that is: the scheduler, hardware and software modules, and the interfacesthat will be described in detail later.6.1 SchedulingThe scheduler is the component of the system that manages activation and thesynchronization of the various modules, whether they are hardware or software.It is necessary to sequentiale the software modules which are represented in thespeci�cation by concurrent processes.The scheduler consists of a software and a hardware part. The hardware scheduleris a very simple component that has the task of activating hardware modules (dur-ing the initialization), according to the information sent by the scheduler software.

� 16
SW

Scheduler Scheduler
HW

Scheduler

Module 1
(SW) (SW)

Module 2
(HW) (HW)

Module NModule i.

Interface

Fig. 4. Scheme of the synthesized systemAs we will see below, the synchronization on events, in which only hardware mod-ules participate, is solved by implementing the synchronization protocol directlyin hardware. The synchronization on events involving software modules is solvedby the scheduler, whose task is, among other things, to implement the complexrendez-vous protocol of the TTL.6.1.1 Software scheduler. The choice of the appropriate scheduling algorithm hasbeen a�ected by the need for a complete and reliable manager of the device, thatmust avoid the excessive use of resources (memory and CPU time in particular).Two possible types of scheduling algorithm can be chosen: polling and inter-rupt driven. The interrupt-driven technique schedules hardware and software tasksusing interrupts: each task generates an interrupt, which is managed by the re-lated Interrupt Service Routine (ISR). This technique introduces some complexityregarding the saving of contexts and the management of priorities. Moreover, itrequires additional memory to store the contexts, and, in general, a dedicated cir-cuit to manage several interrupt lines. The techniques based on polling algorithmsare characterized by less implementation and management complexity, but by aresponse time which is higher (on average) than the technique based on interrupt.The scheduling algorithm that we use belongs to the second group of techniques,but it is di�erent from classical polling algorithms, because scanning is carried outon events rather than on tasks. It is implemented by an in�nite loop, in whichsynchronization on the various events is checked. When a synchronization on anevent is found out, the processes involved are activated. In order to explain theoperation of the scheduler better, we need to introduce a logical model of softwaremodules. In Fig. 5 we represent the state diagram of a software module, and thepossible transitions from one state to the others.The most signi�cant transitions of Fig. 5 are described below. Transition 1 takesplace when a module is ready to synchronize on a given event. Transitions 2 and 3are caused by the scheduler. Transition 2 takes place when the module returns con-trol to the scheduler. Transition 3 takes place when the scheduler sends the moduleback to RUNNING. Finally, transition 4 takes place when the synchronization ona given event has �nished, and the module can go back to the READY state.Hardware and software modules implement synchronization in di�erent ways.When software modules are ready to take part in an event (both transmitting andreceiving), they notify their availability to the scheduler. This does not occur forhardware modules, which notify the scheduler of their availability to take part in

� 17
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

Starting:

Terminating

Runnig

Starting

Waiting

Notifying

1

4

Instantiation

Stop or Exit

2 3

Synchronizing

Ready

Running:

Ready:

Waiting:

the module is using the CPU

the module is ready to switch, but the CPU is engaged by another module

the module is available for synchronization and is waiting for all the other modules

Notifying:

involved are to be ready.

the module switches in thi state after executing the stop or exit operation

initial state all the modules are in, when they have not yet been instantiated.

the module switches to this state as soon as all the other modules involved in
synchronization on the event are ready.

Terminating:

5

Fig. 5. Diagram of the states of a moduleFUNCTION Scheduler() fLOOP FOREVER fFOR EACH Event fIF (all Modules which are sensitive to the event are ready to synchronize) fIF (the transmitter Module is sw) <CASE1>ELSE <CASE2>gg //Runs all the Modules that are Ready to RunFOR EACH Module fIF (the Module is (Sw && Ready to Run))Run the Moduleggg Fig. 6. Scheduling algorithman event only when they are receiving. As we will see below, this di�erence is dueto the solution adopted for the implementation of synchronization in hardware.The most general case of synchronization is one-to-many (a transmitter and sev-eral receivers), where both hardware and software modules are involved. Two casesmay occur:(1) the process o�ering the event (transmitter) is of the software type;(2) the process o�ering the event (transmitter) is of the hardware type.The two cases of synchronization are managed in a di�erent way. In Fig. 6 thegeneral scheduling algorithm is shown, while the management of the two subcasesmentioned before is described below.The scheduling algorithm is based on two scanning cycles: one for events and theother for modules. The �rst one verifes if all the modules involved in synchroniza-tion on a given event are ready to take part in the event (that is, they are all in theSYNCHRONIZING state). Should this be true (transition 5 in Fig. 5), there aretwo possible scheduler procedures: CASE1 is called when the transmitter moduleo�ering the event is hardware, CASE2 is called when the transmitter module issoftware.Procedures CASE1 and CASE2 �rst manage the exchange of data between thetransmitter and the receivers, and then set the modules in the READY state. Thescanning cycle of the modules sets all the software modules that are in the READY

� 18state (that is, those that are not already involved in a synchronization) in theRUNNING state.The CASE1 procedure carries out three basic operations.(1) The software modules that are synchronizing on the given event are activated.During this activation, an exchange of values between the transmitter and thereceivers takes place.(2) An ack is sent to all the hardware receivers involved in the synchronization.The synchronization signals are sent to the hardware modules thanks to anappropriate external circuitry. On the reception of the ack signal, the hardwaremodules proceed autonomously till they synchronize.(3) All the modules are set in the READY state, because they are ready to takepart in another event.The basic steps of the CASE2 procedure are as follows:(1) The ready signal is sent, through an interface, to the transmitter hardwaremodule. If it is ready to synchronize, it sends back an ack signal, which is copiedin a register of the interface used to notify the scheduler of the availabilityto synchronize. Thus the scheduler starts the synchronization managementprocedure. Conversely, if the hardware module is not ready to synchronize, themanagement procedure terminates. The availability of the hardware module tosynchronize will be re-tested subsequently.(2) The same as step 1 of the CASE1 procedure.(3) The same as step 3 of the CASE1 procedure.The exchange of values between the transmitter and the receivers takes placewithin the CASE1 and CASE2 management procedures, in a di�erent way accordingto the type of modules involved. In particular, the receiver modules read the valuetransmitted as follows.(1) A hardware receiver module reads the value transmitted:|through a register, previously initialized to the value by the transmitter mod-ule, if it is software;|through a direct connection, if the transmitter is hardware.(2) A software receiver module reads the value transmitted from a vector in memory(if the transmitter is software), or from an external register (if the transmitteris hardware).6.2 Module TranslationThe following subsection shows the way hardware and software modules are trans-lated. The main problem is preserving the synchronization semantics of TTL inthe target modules. The software translation manages the synchronization thanksto the scheduler whilst the hardware translation uses signals to synchronize themodules.6.2.1 Synchronization. A generic module, both software and hardware, is syn-chronized (with the other modules) on an event through an operation carried outin two steps: in the �rst step it noti�es the scheduler that it is ready to take part

� 19in the event (WAITING state in Fig. 5), while in the second step it is actuallysynchronized with other modules (NOTIFYING state in Fig. 5). The last steptakes place only when the scheduler �nds out that all the modules involved in asynchronization are ready; then this information is noti�ed to the modules involved.The exchange of information among the modules that are synchronizing takes placethrough a vector, which contains an element for each gate of the system.Let us assume we have two processes, T and R, which, at a certain time, respec-tively o�er and are able to accept a value v through a gate g. In this case two gatesare involved in the synchronization, one of which o�ers a value (condition expressedby the symbol "!") while the other accepts a value (expressed by "?").This situation is expressed in TTL as:T := � � � g!v; � � �R := � � � g?v; � � � (1)6.2.2 Implementation of the synchronization in C. The translation of the eventg!v, in the case of software, is shown in Fig. 7....SWITCH (STATE[instanceNumber]) f...CASE x:notifies the scheduler to be ready for the synchronization;VALUE[gateId]=v;STATE[instanceNumber]++;RETURN; //After the RETURN the module is in the WAIT state...g //end SWITCH... Fig. 7. Translation of the transmitter into CProcess T noti�es the scheduler to be ready to take part in the event and, at thesame time, sets the value v to be transmitted to the appropriate entry of the vectorVALUE, so that, when the synchronization has taken place, the other processesinvolved in the synchronization can read this value.Fig. 8 shows the translation of the event g?v. Process R noti�es the scheduler ofits availability for synchronization and, after updating the state, returns the controlto the scheduler. Once the synchronization has taken place (NOTIFYING state),the scheduler activates all the modules involved in the synchronization. All thereceiver modules read the value transmitted by the transmitter, and immediatelyexecute the code relating to the next operator. The receiver reads this item andcarries out the code relating to the next state atomically. The implementation doesnot change in the case of N receivers (one-to-many synchronization).6.2.3 Implementation of the synchronization in RTL. In RT level synthesis wehave to distinguish between two possible cases: synchronization between two pro-

� 20...SWITCH (STATE[instanceNumber]) f...CASE y:notifies the scheduler to be ready for the synchronization;STATE[instanceNumebr]++;RETURN; //After the RETURN the module is in the WAIT stateCASE y+1:v=VALUE[gateId]; //NOTIFY stateSTATE[instanceNumber]++;break;...g //end SWITCH... Fig. 8. Translation of the receiver into Ccesses (one-to-one) and the synchronization of one process with many others (one-to-many).One-to-One. First we will deal with the problem of one-to-one synchronizationwith a value exchange, irrespective of the value actually exchanged.Translation of the complex TTL synchronization into RTL requires the use ofseveral signals to guarantee the semantic correctness of the translation. So eachsynchronization operation (event) is associated with three signals: one for the ex-change of the data itself, and two others to manage the synchronization (a readyand an acknowledgement signal). The need for two signals for synchronization isdue to the fact that communication in TTL is a rendez-vous between events.Let us assume we have the same processes, T and R, shown in the previoussubsection. Schematically, translation of the event g!v can be represented as inFig. 9 (a). Fig. 9 (b) is the scheme of the event g?v. The signal ini (inj) represents
in i in j

(a) (b)

out out

g

g

g

g g

g

g

g

i

n

ack

rdy

n

rdy

ack

vv

j

Ck Ck

i j

! ?

Fig. 9. Scheme of basic interaction eventsthe signal enabling execution of block i (j) and signal outi (outj) the terminationof block i (j) (which coincides with the signal enabling execution of the block i+1).The signal gn is needed when a choice operator is involved in the synchronization (ascan be seen in subsection 3.1.2). Translation of block i into hardware is represented

� 21in Fig. 10 using the RTL language described in appendix A. As we can see from... :x : if (not grdy; grdy) goto(x; x+ 1) waits for the receiver to be ready tosynchronizex+ 1 : gack = 1 acknowledges the synchronizationx+ 2 : if (not gn; gn) goto(x; x+ 1) waits for the synchronization to be correctlyconcluded by the receiver (gn = 1)x+ 3 : gv = vT... : Fig. 10. Translation of TransmitterFig. 10, the transmitter waits for the receiver to be available for synchronization,after which it acknowledges the synchronization and exchanges the value (if any).Fig. 11 represents the translation into RTL of the block j. The behaviour of the... :y : grdy = 1; if (not gack; gack) goto(y; y + 1) warns the transmitter to be readyfor synchronization and simultane-ously sends an ack signaly + 1 : gn = 1 informs transmitter that synchro-nization has actually occurredy + 2 : vR := gv accepts the value... : Fig. 11. Translation of Receiverreceiver complements that of the transmitter. In Fig. 10 vT represents the variablecontaining the value to be transferred, which in RTL is equivalent to a register.Likewise, in Fig. 11 vR is the register which, following synchronization, will containthe value exchanged.According to the translation scheme used, the transmitter is translated in 4 RTLsteps, the receiver in 3 steps.One-to-Many. In one-to-many synchronization a transmitter synchronizes withseveral receivers, which all have to be available for the event. The RTL coding ofthe receivers remains unchanged with respect to the one shown in Fig. 11. Codingof the transmitter is similar to that of the previous case (shown in Fig. 10), theonly exception being that this time the transmitter has to ascertain, before sendingthe ack signal, that all the receivers are available for synchronization.Let us assume we have three processes, one transmitter and two receivers; theyare the same processes shown above. The RTL coding of the transmitter is givenin Fig. 12. The case described in Fig. 12 implements a transmitter which is ableto synchronize with two receivers. In the case where more than two receivers arepresent the condition (grdy1 and grdy2) (see line labelled x in Fig. 12) is generalizedby using the functional block cond(grdy1; ::: ; grdyn) which in RTL implements theveri�cation condition.

� 22... :x : if(not(grdy1 and grdy2)) ; (grdy1 and grdy2) goto(x; x+ 1) waits for all the re-ceivers to be ready forsynchronizationx+ 1 : gack = 1 acknowledges the syn-chronizationx+ 2 : if(not(gn1 and gn2) ; gn1 and gn2) goto(x; x+ 3) waits for all the gnx sig-nals to be equal to 1x+ 3 : gv = vt exchanges the value... : Fig. 12. Translation of Transmitter6.2.4 Implementation of the Choice Operator. The choice operator allowsbranches to be introduced into the speci�cation. The branch to be taken is chosenaccording to the type of event occurring. A process carrying out a several-branchchoice o�ers its availability to take part in all the events indicated by the di�erentbranches of the choice. The event on which the actual synchronization will takeplace will be given according to the availability of the other processes involved. Asusual, the job of the synchronization is given to the scheduler, which will also havethe task of informing the process that has executed the choice expression of theevent on which actual synchronization has taken place, in order to determine theway to be followed.Implementation in C. An n-way choice is represented in TTL below.T := � � � ((g1!v1; � � �)[](g2!v2; � � �)[](� � �)[](gm!vm; � � �)) � � �R1 := � � � g1?v1; � � �R2 := � � � g2?v2; � � �...Rm := � � � gm?vm; � � � (2)The translation of the choice into C uses a vector called BRANCH, containingas many elements as there are branches in the choice expression. Each element ofBRANCH stores the next state from which execution begins when the related eventtakes place. The translation into C is shown in Fig. 13.RTL implementation. In explaining the RTL coding algorithm we will assume, forthe sake of simplicity, that we are dealing with a choice between two possible events(extension to more general cases is dealt with below). Three di�erent situationscan occur, according to the type of event (accepting or o�ering a value) present inthe choice.Case 1. Let us assume we have three TTL processes of the following kind:T := � � � (g1!v; � � � [] g2!v; � � �) � � �R1 := � � � g1?v; � � �R2 := � � � g2?v; � � � (3)That is, a process T which is able to synchronize both on the event g1!v and onthe event g2!v, and two processes which can accept a value, the �rst one on gate

� 23VOID ProcessName(int p) fSTATIC INT BRANCH[NumEvents];WHILE(1) fSWITCH(STATE[instanceNumber]) fCASE -1://Updates the state according to the value of BRANCH[p](where p is a//parameter passed by the scheduler, and which indicates on which gate//the synchronization has taken place).STATE[instanceNumber]=BRANCH[p];break;...CASE x://Event of the first way of the choice expression;Notifies the scheduler to be ready for synchronization on g1;VALUE[g1]=v1;BRANCH[g1]=STATO 1; ...//Event of the m-th way of the choice expression;Notifies the scheduler to be ready for synchronization on gm;VALUE[gm]=vm;BRANCH[gm]=STATO m;STATE[instanceNumber]=-1;RETURN;...ggg Fig. 13. Choice Implementationg1 and the second on gate g2. The RTL coding of the two processes, R1 andR2, is identical to that seen previously, as from their point of view it makes nodi�erence whether the process with which they synchronize contains a choice ornot. Fig. 14 shows the RTL translation of T. A fundamental point in coding the... :x : if((not g1rdy) and (not g2rdy); g1rdy; (not g1rdy) and g2rdy) goto(x; x+ 1; x+ k)x+ 1 : g1ack = 1x+ 2 : if(not g1n; g1n) goto(x; x+ 3)x+ 3 : g1v = vT... :x+ k : g2ack = 1x+ k + 1 : if(not g2n; g2n) goto(x; x+ k + 2)x+ k + 2 : g2v = vT... : Fig. 14. Translation of Process Tchoice operator is the instruction in step x in Fig. 14; otherwise, the coding canbe considered to be the union of two synchronization operations of the kind seenpreviously. The conditional jump in step x makes it possible to implement thesemantics of the choice operator. If, in fact, neither process R1 nor process R2is ready to synchronize (condition expressed by the fact that both ready signalsare set to zero) the instruction jumps to position x, restarting execution of thesame instruction. If, on the other hand, either of the two ready signals goes high,the algorithm executes a goto and the instruction starts synchronization with the

� 24gate emitting the ready signal. If both ready signals go high at the same time(i.e. during the same clock cycle) the semantics of the choice operator allows anon-deterministic choice between the two events it is possible to synchronize with.In our implementation this indeterminism is solved by choosing one of the possibleevents a priori. In Fig. 14, for instance, if both g1rdy and g2rdy have a value of 1, thesynchronization is on g1. In the more general case of one-to-many synchronization,the conditions have to be veri�ed on the logical and of all the ready signals, i.e. asexplained in the case of one-to-one synchronization, g1rdy is substituted with thecombinatorial function cond(g11rdy; g12rdy; :::); this is repeated for g2rdy, g1n andg2n.Case 2. The second case which may occur is complementary to the �rst one, i.e.where the types of event are acceptance of a value. Let us assume we have thefollowing TTL processes:R := � � � (g1?v; � � � [] g2?v; � � �) � � �T1 := � � � g1!v; � � �T2 := � � � g2!v; � � � (4)The RTL translation of processes T1 and T2 proceeds as above. Fig. 15 shows thecoding of the process R. Here again, the RTL translation can be considered as the... :x : g1rdy = 1; g2rdy = 1;if((not g1ack) and (notg2ack); g1ack; (not g1ack) and g2ack) goto(x; x+ 1; x+ k)x+ 1 : g1n = 1x+ 2 : vR := g1v... :x+ k : g2n = 1x+k+1 : vR := g2v... : Fig. 15. Translation of Process Runion of two operations of synchronization with the acceptance of a value. Themeaning of the conditional instruction in step x is the same as in Case 1. Thistime the signals g1n and g2n play a fundamental role. If, after the emission of thesignals g1rdy and g2rdy (which signal the availability of process R to participateboth in the event g1?v and in the event g2?v), the processes T1 and T2 are readyfor synchronization (expressed by the emission of the signals g1ack and g2ack), anindeterminate situation will occur and, as in the previous case, will be solved infavour of the �rst event. However, if there were no signal g1n to con�rm thatprocess T1 has been chosen for synchronization, both processes, T1 and T2, wouldreach the synchronization instruction. This situation is semantically incorrect forT2: not having been chosen for synchronization, T2 has to remain in the ready statefor synchronization on the event g2!v.

� 25Case 3. The last case that can occur is a mixture of the previous ones. Let usassume we have the following TTL processes:TR := � � � (g1?v; � � � [] g2!v; � � �) � � �T := � � � g1!v; � � �R := � � � g2?v; � � � (5)Here again the RTL translation of T and R presents no di�culties, being the sameas previous cases. Fig. 16 gives the RTL coding of TR. If g2!v is involved in a one-... :x : g1rdy = 1;if((not g1ack) and (not g2rdy); g1ack; (not g1ack) and g2rdy) goto(x; x+ 1; x+ k)x+ 1 : g1n = 1x+ 2 : vR := g1v... :x+ k : g2ack = 1x+k+1 : if(not g2n; g2n) goto(x; x+ k + 2)x+k+2 : g2v = vT... : Fig. 16. Translation of Process TRto-many synchronization, g2rdy has to be substituted with cond(g21rdy; g22rdy; :::),as does g2n.In the more general case of a choice among several events, the RTL coding methodis exactly the same as explained above. The only di�erence lies in the fact thatmore than two processes must synchronize whith each other. Thus the condition inthe �rst conditional jump (corresponding to step x in the previous cases) is morecomplex, because it takes into account all the signals exchanged among all theprocesses, but it can easily be computed. To clarify the procedure we will give anexample which extends the situation shown in Case 1; the same procedure can beapplied to extend the other cases. Let us extend Case 1 to one in whichm processesare able to receive a value and one process can synchronize with them, as shown inexpression(2).The RTL code of process T is the same as Fig. 14 but the condition is of thefollowing form:if(Vni=1(not cond(gi1rdy; gi2rdy; ::: ; gimrdy);cond(g11rdy; g12rdy; ::: ; g1mrdy);(not cond(g11rdy; g12rdy; ::: ; g1mrdy))and cond(g21rdy; g22rdy; ::: ; g2mrdy);:::Vn�1i=1 (not cond(gi1rdy; gi2rdy; ::: ; gimrdy))and cond(gn1rdy; gn2rdy; ::: ; gnmrdy))6.2.5 Synthesis of derived operators. This subsection presents some examples ofthe synthesis of derived operators, that is, the TTL operators which can be de�nedin terms of other TTL operators. The derived operators permit the user to simplifyspeci�cations and to gain a clearer understanding of the behaviour of the system.As said above, they are all obtained by simple composition of the basic operators. In

� 26particular in this section we show the synthesis of the enable and parallel operatorsdescribed in Section 3.C Inplementation. Let us suppose we have N processes. Their sequential com-position is expressed in TTL as P1 >> P2 >> : : : PN , whereas their parallelcomposition is expressed as P1 k P2 k : : : PN . To implement the enable andparallel operators in software we use the scheduler.|In the implementation of the enable operator the scheduler is informed by theinvolved process of its successful termination, then the scheduler deactivates thecurrent process and enables the next one. After this operation the current processis put in the TERMINATION state and the next process in the READY state.|The parallel operator is managed directly by the scheduler, which provides thenecessary mechanism for sequentializing parallel execution.RTL Implementation. Each process has an input signal, Pstart, which starts theprocess and an output signal Pexit which is emitted when the process ends success-fully. When the signal Pexit is never emitted (as for example in a recursive process)we represent it with a oating signal. To represent a process P graphically in the
1P

P

P1 exit

2

PN

P2 exit

PN exit

End

Start

(a)

P PP1 2 N

Start

End

P1 P2 PN exitexitexit

(b)Fig. 17. Scheme of sequential and parallel composition�gures we use a box with a thick border. Fig. 17 (a) shows the result of synthesisin RTL of the behaviour expression P1 >> P2 >> : : : PN whereas Fig. 17 (b)shows the result of synthesis of P1 k P2 k : : : PN .For the sake of clarity we provide a simple example of the synthesis of a compo-sition of processes using the previously shown operators. The TTL speci�cation is

� 27as follows:P := P1 k P2 k P3where P1 := g1!v1;P1 [] g2!v2;P1P2 := g1?x : integer;P2P3 := P4 >> P5where P4 := (g2?y : integer; exit)P5 := g2?z : integer;P5Fig. 18 shows the result of the synthesis process. The blocks labelled with a
Ck

P1 start

1g ack

1g v

1g rdy

1
g n

g rdy

g rdy

g n

g n

2g rdy

2g v 2g ack

Pexit

g n
2

out out ii
1 2

g n

Ck

startP2

Pstart

P1

P

P2

?

P2

P1 exit

exit

Ck

Ck

startP3

2(4)

2(3)

2(3)

2(4)

EXIT

?

?

P3exit

startP4

P4 exit

P3
P4

P5

[]
2

Fig. 18. Scheme of examplequestion mark are the translation of the basic receiver and the block labelled withthe symbol [] 2 represents the translation of a two-way choice; lastly the block

� 28labelled exit is the implementation of the exit operator. The �gure also shows theinterconnections among the blocks and the input/output signals.7. CONCLUSIONSThe paper presents all the phases of the methodology, but mainly focus on thesynthesis phase.The proposed design path is deeply presented pointing out the aspects makingit interesting in the context of embedded system. The use of a formal technique tospecify the system is the key point characteriziong the methodology.Moreover the kind of formal language has a strong impact on the synthesis phase;the problems related to this problem has been stressed throughout the whole paperand some toy examples are presented to clarify the algorithm used (some othermore complex examples can be found in [Carchiolo et al. 1998b]).Further studies are needed to optimize the synthesis of both hardware and soft-ware. A critical parameter in embedded systems is memory usage by softwaremodules. For this reason we are working on minimization of the size of the codegenerated for the software part. Moreover, some studies are being devoted to op-timal synthesis of the hardware part, mainly in the implementation of interfacesbetween hardware and software. Finally, we are working on the use of some otherlanguages for register level hardware description in order to exploit the large amountof commercial tools available.ACKNOWLEDGMENTSThe authors are indebted to Prof. Giovanni De Micheli for many helpful discussions.We also thank the anonymous referees and the editor for many helpful commentson the presentation of the paper.ReferencesAdams, J. and Thomas, D. 1995. Multiple-process behavioural synthesis for mixedHardware-Software systems. In Proceedings of International Symposium on System Syn-thesis (September 1995). pp. 10{15.Axelsonn, J. 1996. Hardware/Software partitioning aiming at ful�llment of real-time con-straints. Journal of System Architecture 42, 6{7 (December), 439{464.Berry, G., Couronn�e, P., and Gonthier, G. 1991. The synchronous approach to reactiveand real-time systems. IEEE Proceeding 79.Berry, G. and Touati, H. 1993. Optimized controller synthesis using Esterelle. In Pro-ceedings of the International Workshop on Logic Synthesis (May 1993).Bolognesi, T. and Brinksma, E. 1987. Introduction to the ISO speci�cation languageLOTOS. Computer Networks and ISD Systems 14, 25{59.Boyer, R. S., Kaufmann, M., and Moore, J. S. 1995. The Boyer-Moore theorem proverand its interactive enhancement. Computer & Mathematics with Applications, 27{62.Brinksma, E., Scollo, G., and Vissers, C. 1987. Experience with and future of LOTOSas a speci�cation language. Technical Report INF-87-17, Department of Computer Science,Twente University.Carchiolo, V., Malgeri, M., and Mangioni, G. 1996. TTL: A LOTOS extension forsystem description. In Proceedings of Basys '96 (Lisboa, Portugal, 1996).Carchiolo, V., Malgeri, M., and Mangioni, G. 1998a. Formal codesign methodologywith multistep partitioning. VLSI Design Journal 7, 4.Carchiolo, V., Malgeri, M., and Mangioni, G. 1998b. Synthesis of TTL Speci�cation:a Case Study. CESA98 - IMACS MultiConference.

� 29Caspi, P., Pilaud, D., Halewachs, N., and Plaice, J. 1987. LUSTRE A declarativelanguage for the real-time programming. In Proceedings of Conference on Principles ofProgramming Languages (Munich, 1987).Catania, V., Malgeri, M., and Russo, M. 1995. A methodology for codesign based onfuzzy logic and genetic algorithms. In Proceedings of 8th International Conference (Mel-bourne, Australia, June 1995).Catania, V., Malgeri, M., and Russo, M. 1997. Applying fuzzy logic to codesign parti-tioning. IEEE Micro 17, 3 (May-June), 62{70.Chiodo, M., Giusto, P., Hsieh, H., Jurecska, A., and alii. 1995. Synthesis of Softwareprograms from CFSM speci�cations. In Proceedings of the Design Automation Conference(June 1995).Chiodo, M., Giusto, P., Jureska, A., Hsieh, H. C., Sangiovanni-Vincentelli, A., andLavagno, L. 1993. A formal speci�cation model for Hardware/Software codesign. InProceeding of International Workshop on Hardware-Software Codesign (Boston, September1993).Chou, P., Ortega, R., and Borriello, G. 1995. The Chinook Hardware/Software co-synthesis system. In International Symposium on System Synthesis (Cannes, France,September 1995).Chou, P., Walkup, E., and Borriello, G. 1994. Scheduling for reactive real-time systems.IEEE Micro 14.Drusinski, D. and Har'el, D. 1989. Using statecharts for Hardware description and syn-thesis. IEEE Transaction on Computer Aided Design 8.Ehrig, B. M. H. 1985. Fundamentals of Algebraic Speci�cations, 1 EATCS Monographson Computer Science. 1 EATCS Monographs on Computer Science. Springer-Verlag.Ernst, R. and J., H. 1993a. Hardware-Software codesign of embedded controllers based onHardware extraction. In Proceeding of the International Workshop on Hardware-SoftwareCodesign (Boston, September 1993).Ernst, R. and J., H. 1993b. Hardware-Software cosynthesis for microcontrollers. IEEEDesign and Test Computers 10, 4 (December), 29{41.Gordon, M. J. C. and editors Melham, T. F. 1992. Introduction to HOL: a theoremproving environment for higher order logic. Cambridge University Press.Guernic, P. L., Benveniste, A., Bournat, P., and Gauthier, T. 1985. A data oworiented language for signal processing. Technical Report IRISA report 246, IRISA, Rennes,(France).Gupta, R. K., Coelho Jr, C. N., and De Micheli, G. 1992. Synthesis and simulation ofdigital systems containing interacting Hardware and Software components. In Proceedingof Design Automaton Conference (June 1992).Gupta, R. K., Coelho Jr, C. N., and Micheli, G. D. 1994. Program implementationschemes for Hardware-Software systems. IEEE Computer.Gupta, R. K. and Micheli, G. D. 1993. Hardware-Software cosynthesis for digital systems.IEEE Design and Test Computer.Gupta, R. K. and Micheli, G. D. 1994. Constrained Software generation for Hardware-Software systems. In Proceedings of the International Workshop on Hardware-SoftwareCodesign (1994).Halang, W. and Stoyenko, A. 1991. Constructing predictable real time systems. KluwerAcademic Publishers.Heish, H., Lavagno, L., Passerone, C., Sansoe, C., and San Giovanni-Vincentelli, A.1997. Modeling microcontroller peripherals for high-level co-simulation and syntheis.In Proceeding of Fifth International Workshop on Hardware/Software Codesign (Braun-schweig, Germany, March 1997).Henkel, J., Benner, T., Ernst, R., Ye, W., Serafimov, N., and Glawe, G. 1994.COSYMA: A Software-orienetd approach to Hardware-software codesign. The Journal ofComputer and System Architecture 2, 3, 293{314.Hoare, C. A. R. 1985. Communicating Sequential Processes, International Series in Com-puter Science. International Series in Computer Science. Prentice-Hall.Holtzmann, G. 1991. Design and Validation of Computer Protocols. Prentice-Hall.

� 30ISO-IS-8807. 1988. Information Processing Systems, Open System Interconnection, LO-TOS, A Formal Description Technique Based on the Temporal Ordering of ObservationalBehaviour. ISO.Kohavi, Z. 1978. Switching and Finite Automata Theory. McGraw-Hill, New York.Ku, K. and Micheli, G. D. 1990. HardwareC - A language for Hardware design version2.0. Technical Report No. CSL-TR-90-419 (April), Standford University.Kuman, S. and Alii. 1993. A framework for Hardware/Software codesign. Computer 26, 12(December), 39{45.Kurshan, R. P. 1994. Automata-Theoretic Veri�cation of Coordinating Processes. Prince-ton University Press.Logrippo, L., Melanchuck, T., and DuWors, R. 1990. The Algebraic Speci�cation Lan-guage LOTOS: An Industrial Experience. In M. Moriconi, Ed., Proceedings of the ACMSIGSOFT International Workshop on Formal Methods in Software Development (Napa,CA.) (1990). pp. 59{66.Micheli, G. D. 1994. Synthesis and optimization of digital circuits. McGraw-Hill.Milner, R. 1980. A Calculus of communicating systems, LCNS 92. LCNS 92. SpringerVerlag, New York.Quemada, J., Paven, S., and Fernandez, A. 1989. State exploration by transformationwith LOLA. Workshop on Automatic Veri�cation Methods for Finite State Systems.Rowson, J. 1994. Hardware/Software co-simulation. In Proceedings of Design AutomationConference (1994). pp. 439{440.Saracco, R., Smith, J. R. W., and Reed, R. 1989. Telecommunications systems engi-neering using SDL. North-Holland Elsevier.Shin, Y. and Choi, K. 1997. Enforcing Schedulability of Multi-Task Systems by Hardware-Software Codesign. In 5th International Workshop on Hardware Software Codesign (Braun-schweig, Germany, March 1997).Sternheim, E., Singh, R., Madhaven, R., and Trivedi, Y. 1993. Digital Design andSynthesis with Verilog HDL. Automata Publishing Company.Takach, A. and Wolf, W. 1995. An automaton model for scheduling constraints instnchronous machines. IEEE Transaction on Computer 1, 44 (January), 1{14.Thomas, W. 1990. Automata on in�nite objects, handbook of Theoritical Computer Sci-ence. handbook of Theoritical Computer Science. Elsevier.Vahid, F. 1997. Modifying min-cut for Hardware and Software functional partitioning. In5th International Workshop on Hardware Software Codesign (Braunschweig, Germany,March 1997).van Eijk, P. 1989. Tools for LOTOS speci�cation style transformation. Technical ReportMemoranda 89-35 (June), Twente University.Vissers, C. A., Scollo, G., and van Sinderen, M. 1988. Architecture and speci�cationstyle in formal description of distributed systems. In Proceedings of Conference of ProtocolSpeci�cation, testing and Veri�cation (Amsterdam, 1988). North-Holland, pp. 189{204.Wenban, A. S., O'Leary, J. W., and Brown, G. M. 1993. Codesign of CommunicationProtocols. IEEE Computers, 46{52.Wilson, J. 1994. Hardware/Software selected cycle solution. In Proceeding of InternationalWorkshop on Hardware-Software Codesign (1994).APPENDIXA. THE TARGET RTL LANGUAGEThe RTL language used throughout this paper is a language which can de�ne thestructure of a generic digital system. Any digital system is modelled by usinga functional block which receives information from the external environment byusing signals and processes them producing output signals (the response to theenvironment). Each functional block is implemented by the control unit and theprocessing unit. The �rst unit provides the signal to synchronize the operationsperformed by the second. The full system is based on a single clock which provides

� 31the synchronization. The basic hypothesis is that the circuit must be stable beforethe clock cycle �nishes. Fig. 19 represents the logical scheme of a generic digitalsystem.
Processing

Unit Unit
Control

ClockInput Data

Output DataFig. 19. Logical scheme of a Digital SystemThe RTL module is de�ned by the following sections:|components: it contains the declaration of the components which make up theprocessing unit.|control sequence: it de�nes the internal command sequence which must be emit-ted by the control unit.|permanent assignment: it de�nes an operation which must be repeated everyclock cycle.The control sequence is made up of steps; each one is numbered and must beexecuted in a single clock unit. Each step is made up of one or more commandswhich are executed in parallel. All the commands belonging to a step are separatedby ;. Therefore the control sequence has the following form:i: op1; op2; op3j: op4; op5where i and j are the generic step i and step j and opi are the commands.The main constructs of the language are the assignment and the conditional.The �rst represents the transfer of a value between two registers. The right handside of the operation can contain any Boolean operation. The two operators arerepresented as follows:i: targetRegister := sourceRegisterj: targetRegister := sourceRegister_1 and sourceRegister_2 or ...k: if(c1; c2) then (op1; op2)h: if(c3; c4) goto (n; m)To describe a direct connection between elements, the language allows us to describethe assignment of a value to a line; in this case the assignment is only valid for oneclock cycle. It is described by the operator "=" and it is also used to describe theassignment to output lines.

