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Abstract 
 

Schneider asks [8] whether there exists an affine invariant and continuous 
measure of convexity on the space Cof compact subsets of a finite-dimensional 
Euclidean space. This question is considered still open.  We provide a negative 
answer to the previous question: any affine invariant measure of convexity on C 
cannot be continuous in terms of the Hausdorff metric. We also show that some 
weaker form of continuity can still be retained for affine invariant measures of 
convexity by showing that the Schneider’s measure proposed in [7] is lower semi 
continuous. 
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1 Introduction 
 
In reminiscence of Grünbaum’s definition of “measure of symmetry” ([4]), 
Schneider ([7,9]) proposes an affine invariant measure of convexity justified by 
the fact that “convexity if an affine notion” (([9, p 131]). However, unlike 
measures of symmetry, which usually are affine invariant and continuous as well,  
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the existing measures of convexity are either continuous but not affine invariant 
(see e.g. [1], [10]) or affine invariant but not continuous (see [7]) (For a survey 
see [5]). Consequently, Schneider [8] asks whether there exists an affine invariant 
measure of convexity on the space C of compact and non-empty subsets in dℜ
which is also continuous with respect to the Hausdorff metric dH. This problem 
has recently been referred to as a still open question in [5, p. 32].   
By means of an elementary proof we provide a negative answer to the previous 
question: any affine invariant measure of convexity on C cannot be continuous in 
terms of the Hausdorff metric. Intuitively, the reason is that while convexity is an 
affine invariant concept, non-convexity can be lost under (infinite iteration of) 
affine transformations. Given the importance of continuity of measures of 
convexity in applications (see e.g. [6]), one may wonders whether it is possible to 
maintain some weaker form of continuity for affine invariant measures of 
convexity. We show that Schneider’s measure is lower semi continuous. 
 
 
2The main result 
 
Recall that for A,B∈C the Hausdorff distance is defined as follows: 

{ }( , ) max supinf ,supinfH y B y Ax A x B
d A B x y x y

∈ ∈∈ ∈
= − −  and that a real valued function m 

defined on the space C is a measure of convexity if m(A) = β for some real number 
β if and only if A is a convex subsets in C.  The measure m is affine invariant if 

( ) ( )m A m TA= for any nonsingular affine transformation T of dℜ , and it is 
continuous if for every sequence of sets { }nA in dℜ such that 

Hn dA A⎯⎯→ , if 

( ) *nm A m→  then m*=m(A). 
 
THEOREM 1.Let :m → ℜC be a measure of convexity on C. If m is affine 
invariant, then it is not continuous. 
 
Proof. Let m be an affine invariant measure of convexity on C. Suppose for the 
moment that there exists a sequence { }nA in C such that: (i) 0A ∈C is a 

non-convex set, (ii)  1n nA TA −=   for every n = 1, 2,….., where T is a nonsingular 
affine mapping, and (iii) 

Hn dA A⎯⎯→ ,with A convex. By the non-convexity of A0, 

we have that m(A0) = α ≠ β and, by affine invariance, that 1( ) ( )n nm A m A α−= =
for every n = 1, 2, ….. However, by convexity of A, m(A) = β, then function m is 
not continuous as 

Hn dA A⎯⎯→ and ( ) ( )nm A m Aα β→ ≠ = . 

To complete the proof, we have to prove that there exists a sequence { }nA in C 
satisfying conditions (i), (ii) and (iii) specified above. To this end consider the  
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sequence { }nA  defined as follows: { }0 0,A x= where 0 is the origin of dℜ and x 

any vector different from 0, and 1
2

T I= where I is the identity matrix. It is 

obvious that the sequence { }nA with 0
n

nA T A= satisfies the desired conditions 
(i)-(iii). 
 
REMARK. The proof shows that continuity of measures of convexity can fail even 
if the stronger condition of homothetic invariance is required. 
 
 
3. Lower semi-continuous affine invariant measures of convexity 
 
In this section we show that Schneider’s measure proposed in [7] is lower 
semi-continuous.  
Given a metric space X, function :f X → ℜ is lower semi continuous at point x0 
if for each real number a such that f(x0) >a there exists a positive number δ such 
that d(x,x0) <δ implies f(x) >a, where d is the Euclidean distance function on X 
(see, e.g.[2,p. 150]). The measure of convexity introduced by Schneider in [7] is 
the following. For a subset dA ⊂ ℜ , define m(A) = {inf 0 convA Aλ λ≥ +

}is convex . Schneider proves that function m maps set C into the interval [0,d]. 
Obviously, m(A) = 0 if and only if A is convex. 
 
THEOREM 2. Function m is lower semi continuous onC. 
 
Proof. Consider Cendowed with the Hausdorff metric dH. Then, suppose that the 
assertion is not true, hence, there exist a set A0∈C and a number a∈[0,d]satisfying 
the condition m(A0)>a such that for every δ> 0 there exists a set A such that 
dH(A,A0)<δ implies m(A) ≤a. So, consider a sequence { }nδ of numbers in [0,+∞] 

such that 0nδ → , therefore there exists a sequence of sets { }nA in C such that for 
every n,dH(An,A0)<δn and m(An) ≤a. Clearly, 0nA A→  and 0 ≤m(An) ≤a<m(A0) 
for every n. The latter inequality implies that there exists a subsequence of sets 
{ }'nA such that the associate sequence { }'( )nm A is convergent with limit m0, 0 
≤m0≤a<m(A0). By construction, set ' ' '( ) conv n n nA m A A+  is convex and compact 
for every n′, moreover ' 0nA A→ , ' 0( )nm A m→  and 0conv conv nA A→ . So, 

0 0 0 conv A m A+ should be convex (see e.g. [11, p. 94]). However, this cannot be 
true because m0<m(A0).  
 
COROLLARY 1.LetXbe a compact subset ofC, then there exists a set A*∈Xsuch  
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thatm(A*)≤m(A) for everyA∈X.  
Set A* in Corollary can be interpreted as a set which is “closest” to be convex 
with respect to all sets in X.  The following corollary is an immediate 
consequence of Ekeland’sVariational Principle (see [3]) and of the fact that the 
metric space (C,dH) is complete (see, e.g. [9, p. 49]). 
 
COROLLARY 2.Letε, μ> 0 and letA∈Cbe such thatm(A)≤infCm+ ε. Then, there 
existsB∈Cwith the following properties: 
(a) m(B) ≤m(A); 

(b) dH(A,B)≤ 1
μ

; 

(c) m(B) <m(A) + εμdH(A,B) for all A∈C\{B} 
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