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Abstract

We study zero-dimensional fat points schemes on a smooth quadric Q = P' x P', and we
characterize those schemes which are arithmetically Cohen—Macaulay (aCM for short) as sub-
schemes of Q giving their Hilbert matrix and bigraded Betti numbers. In particular, we can
compute the Hilbert matrix and the bigraded Betti numbers for fat points schemes with homoge-
neous multiplicities and whose support is a complete intersection (CI for short). Moreover, we
find a minimal set of generators for schemes of double points whose support is aCM. (© 2001
Elsevier Science B.V. All rights reserved.

MSC: 14A15; 14E15; 13H10; 13D02; 13D40

0. Introduction

In the last few years many papers have investigated the Hilbert functions, minimal
free resolutions, Betti numbers, ... for fat points ideals in P2, i.e. I C k[xo,x1,x2] with
I=p!"N---N " where the @; are prime homogeneous ideals of height 2 (or ideal
of a point P;) and m; are positive integers. In P? our knowledge is very “thin” and
a lot of questions are still unanswered; we can see the paper [10] that summarizes
works on the topic “fat points”. In [11], Giuffrida completely analyzed the case r =6
where the m; are arbitrary and [8] considers the case where the @; correspond to points
on a line of P? and the m; are arbitrary. The Hilbert function of / has been studied
in P? by many authors, like Gimigliano [10], Harbourne [15-19], Hirschowitz [23],
and by larrobino in P” in [24], but much remains conjectural. More can be said in
the case of subschemes of P? involving small numbers of points or points in special
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position. For example in [20], the Hilbert function is completely determinated for any
scheme of fat points where the points lie on a plane cubic (possibly reducible and not
reduced); in [5], Catalisano determines a minimal homogeneous set of generators for
I in the case the points P; lie on a smooth plane conic; using [9], one can determine
a minimal homogeneous set of generators for / where the points P; are i < 9 general
points of P? and he also conjectures a result for i > 9. In [21], the author finds the
degrees of minimal homogeneous sets of generators for ideals / where the points P;
lie on a plane curve of degree at most 3 and we can regard [22] as a continuation of
the previous work. In [6], Catalisano and Gimigliano show that there is an algorithm
which computes the Hilbert function for ideals / when the points P; lie on a rational
normal cubic. On the other hand, [1-4] determine the Hilbert function for any number
of general points in P” if the coefficients m; are at most 2 and [7] for any number of
general points in P? if the coefficients m; are small and nearly constant.

In this paper we want to study the behaviour of fat points subschemes of a smooth
quadric O = P! x P!, with special regard to their behaviour with respect to the divisors
of the quadric itself. This kind of topic seems to be unexplored, so the results in this
paper represent a starting point in this field. In [12—14] Giuffrida, Maggioni and Ragusa
gave a complete description of the arithmetically Cohen—Macaulay zero-dimensional
subschemes of a smooth quadric O = P! x P! in terms of their Hilbert Matrix.

First, we fix some preliminaries and notation, then we give the definition of fat
points schemes on Q = P! x P!, Section 2 is devoted to the classification of fat points
schemes which are aCM subschemes of O and in Section 3 we complete the study of
double points schemes whose support is aCM giving both Hilbert matrix and graded
Betti numbers.

This paper will be part of my Ph.D. Thesis.

1. Preliminaries and notation

Let P! = P} (k an algebraically closed field), and let O = P! x P! be a smooth
quadric and O its structure sheaf. Since PicQ = Z x Z, as usual we can assume
the classes of the two rulings as basis of PicQ. If DC Q is a divisor of type (a,b),
we denote by (p(a,b) the corresponding sheaf, and for any sheaf # on O, we set
F(a,b)=F ® Op(a,b). We also assume the notation

H'(a,b)=H'(Q, 0g(a,b)),
Ki(a,b) = dimy H'(a, b),
H'(7(a,b))=H'(Q, 7 (a,b)),

H(F (a,b)) = dimg H'(F (a,b)).
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The dimensions /i(a,b) for i = 0,1,2 are easily computed [12, Section 1]. Moreover,
we will use the following ring:

S =Hy(a,b) = H(a.b)
a>0
b>0
which is generated by H°(1,0) and H°(0,1); let u, ' and v and v be bases for H°(1,0)
and H°(0,1), then we have a bigraded ring
S 2 k[u, u'] @ k[v, v'].

For any zero-dimensional subscheme X C Q one can consider the Hilbert matrix of X,
defined as the function

MXZZXZHN,

My (r,s) = h°(r,s) = h°(Ix(r,5)), (1)
where #y is the ideal sheaf of X on Q. In the sequel, we will use the first difference
matrix AMy(r,s) = (Cx(r,s)) with

Cx(r,s)=Mx(r,s) + Mx(r — 1,s — 1) — Mx(r,s — 1) — Mx(r — 1,s).

In the sequel, it will be useful to consider in Z x Z and in N x --- x N the partial

(lexicographic) ordering induced by the usual one in Z and in N respectively; we will
denote it by “<”.

Definition 1.1. Let M =(M(r,s)) be a matrix such that M(r,s)=0 for » < 0 or s < 0.
We say that M is admissible when its first difference AM = (C(r,s)) satisfies the
following conditions:

(i) C(r,s) <1 and C(r,s)=0 for >0 or s>0;
(ii) if C(r,s) < 0 then C(h,k) <0 for any (r,s) < (h,k);
(iii) for every (r,s) 0 < >0 C(r,t) < >, ,C(r—1,t) and 0 < >°7_, C(t,5) <
Yoo Clt,s — 1).

When M is an admissible matrix the non-zero part of AM is contained in a rectangle
with opposite vertices (0,0),(a,b) and the elements of the first row (resp. of the first
column) are:

CO,s)=1ifs<b, and C(0,5)=0 ifs>b

(resp. C(r,0)=1if r <a, and C(,0)=0 if r>a).

In this case we say M or AM is of size (a,b).
Let My be the Hilbert matrix of a zero-dimensional scheme X C Q.

Definition 1.2. For every » > 0 we set:

jx(}”) :min{t e N ‘Mx(l”,t) :M)((l”,f + 1)}
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and for every s > 0 we set

iX(S) :min{t e N |MX(t,S) :Mx(t + 1,S)}.

Remark 1.3. The sequences ix(s) and jy(r) are non-increasing [12, Proposition 2.7],
and the meaningful part of the matrix My is inside the rectangle with opposite vertices
(0,0),(ix(0),jx(0)); this means that for every » > iy(0) the rth row is equal to the
ix(0)th row, and for every s > jx(0) the sth column is equal to the jx(0)th column.
Of course, for (r,5) > (ix(0),jx(0)) we have My(r,s)=deg X, and outside the above
rectangle AMy has null entries.

For properties of these matrices see [12, Section 2].
The scheme X is represented in S by a bigraded homogeneous saturated ideal Iy,
which has a minimal free resolution as a bigraded S-module of type:

p n
0— P S(—asi, —as,) — EP S(—ax, —ab,)

i=1 i=1

m
— P S—ai,—a},) = Iy -0, )

i=1
where the morphisms are of bidegree (0,0). From this, taking sheaves, one gets an
(p-free resolution of the ideal sheaf .7y

p n
0— P Oo(—asi, —ab) — EP Oo(—a, —ah)
i=1 i=1
— P Op(—ai,—d;)) = Ix — 0. (3)
i=1
We will refer to (3) as the minimal free resolution of .#y.
Put S(X) = S/Iy,

Definition 1.4. If resolution (2) has length 2, i.e. when depth S(X) = 2, then S(X)
is a Cohen—Macaulay ring and X is called arithmetically Cohen—Macaulay (aCM for
short).

Definition 1.5. An admissible matrix M will be called an aCM matrix if AM has only
non-negative entries.

Definition 1.6. Let M be an aCM matrix of size (a,b). We say (r,s) is a corner for
AM if (r,s)=(0,b4+ 1) or (r,s)=(a+ 1,0), or even if C(r,s)=0 and C(r — 1,5) =
C(r,s —1)=1. We say that (r,s) is a vertex for AM if C(r — 1,s)=C(r,s —1)=0
and C(r — 1,s — 1) = 1; in this case, of course C(r,s)=0.

For more facts about the ring S(X'), the Hilbert matrix and properties of zero-dimen-
sional subschemes of O we refer to [12].
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Let P a point on Q and @ = (l(u,u')® 1,1 ® I'(v,v")), where [ and [’ are linear
forms, its defining ideal. The element (a,a’; b,b") € k* x k* homogeneous in a,a’ and
b,b’ with l(a,a’) =0 and /'(b,b') =0 gives the coordinates of P as subvariety of Q,
with respect to the chosen basis.

Definition 1.7. Let P € O and let P correspond to the prime ideal ¢ CS. If ¢ is any
positive integer then the subscheme of Q defined by the ideal g’ is called a fat point
in S supported on P and it is denoted by (P;1).

On Q, let R; be lines of type (1,0) for i=1,...,a and let L; be lines of type (0,1)
for j=1,...,b; denote P;;=R;NL; for i=1,...,a and j=1,...,b and let P;; correspond
to the ideal @;;. Let m;; be positive integers and let o; be the largest index such that
myy, >0 fori=1,...,a.

From now on we suppose that

o >0 > > 0. C))

Definition 1.8. The subscheme X of O defined by the ideal
I x = m KJ?}U
ij

is called a fat points subscheme of Q = P' x P! with support {P;;} and its ideal Iy
is called a fat points ideal on Q. The scheme X is denoted by

X={Pj;m;Vi=1,...,aand j=1,...,0} (5)
and its support is denoted by Xieq.

In the case
mi;=m Vizl,...,a andjzl,...,oc,»

we call X a homogeneous fat points subscheme of Q.

If oy =---=0a, and

Vi=1,...,a PieNay=>pp>--->p>1,
such that

mij=m fori=1,...,a and j=1,...,6
and

mj=m—1 fori=1,...,.a and j=p+1,... 0,

then X is called a quasi-homogeneous fat points subscheme of Q and its support Xpeq
is a CI of type ((a,0),(0,01)).
We have

degX:Z(m’j;l).

Lj
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Example 1.9. Let us take on Q two non-collinear points (i.e. not contained on a line
of Q), say P|,P;, and let p; =(u® 1,1 ®@v) and @, = (' @ 1,1 ® v') their defining
ideals. If X ={P;,P,} we have Iy =(uv’ @ LLu® v',u’ ® v,1 @ vv'). Then we have the
following AMy:

0 1 2
0/1 1 0 (6)
11 -1 0

Hence, in this case the scheme X is not aCM. This follows from the next theorem
which gives the characterization for aCM schemes in terms of their Hilbert matrix:

Theorem 1.10. Let X C Q be a zero-dimensional subscheme, and let My be its Hilbert
matrix. X is an aCM scheme if and only if My is an aCM matrix. Furthermore, in
this case, the minimal free resolution of Jx looks like:

m—1 m
0 — P Co(—az, —ay) — P Co(—ar, —a};) — Ix — 0 (7)
i=1 i=1

where (—aa;, —ab;) runs over all the vertices and (—ay;, —a\;) runs over all the corners
Of AMX

Proof. See [12]. [

Remark 1.11. From Theorem 1.10, it follows that a homogeneous fat points scheme
with all the multiplicities m;; =1 is equivalent to an aCM scheme of simple points.

Let us consider the following example:

Example 1.12. Let
X ={P1,Pyp;m1 =mpy =2}

be the scheme of two non-collinear double points, then X has the following AMy:

0 1 2 34
ot 1 1 10
11t 1 1 =10 (8)
211 1 =2 00
31 =1 0 0 0

Hence, in this case both X and X (its support) are not aCM.
Now, consider the fat points scheme X’

X" ={P11,P12,P13,Po1; myy =3,mi; =2,my3 = 1,my = 3}.



E. Guardo | Journal of Pure and Applied Algebra 162 (2001) 183-208 189

In this case X,; is aCM. After an easy computation, AMy- is the following:

T«

012 3456
0|1 1 1 1110
1111 1000
2/1 11 =100 0 )
3/1 10 00 00
41100 00 0 0
5100 0000

So, even if the support of a scheme of fat points X’ is an aCM scheme, X’ could
be not aCM.

Hence, it seems natural to ask under which conditions such fat points schemes are
aCM.

2. The main result

Let O = P! x P' be a smooth quadric and X a fat points scheme on QO of type:
X:{P,’j; mijVi:1,...,aandj:1,...,oci} (10)

and we use the convention that m;; =0 for j > o;.
Put Vhe Ny, Vi=1,...,aand Vj=1,...,0

tl'j(h) = maX(O, ml, — h)
Let us consider the following set:
S x ={ln(h),... .t (h))} (1)
Vi=1,...,a and Vh € N.

When Sy is a totally ordered set with respect to the previously defined ordering in
Ng‘ (see Section 1), we define Vi=1,...,a and Vh € N

o
Zip = Z tii(h),
j=1

up = m,%X{zi,h}
and
w, = max; {{zin} \ {u1,...,u,—1}} fore=2,...,p

where p =max;_1 _, {> i, mi}.
Obviously u; is obtained for # =0, hence

o
u; = max{z; o} = max E m;;
1 1
=1

Then, with the above notation, we have the following:
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Theorem 2.1. Let X be a fat points scheme on Q as in (10). Ly is totally ordered

if and only if X is aCM with the difference Hilbert matrix AMy of X of type:

0 1...... u1—1u1
0o |1 1 1...1 0
up
I |1 1...10 0
——
u
p—1{1 1...10--- 0
——
Up

Proof. Let us suppose that Sy is totally ordered and let us show that X is aCM.

(12)

We work by induction on p. If p=1, then X is a set of collinear simple points and

hence the conclusion is true (Theorem 1.10 and Remark 1.11).

Let us suppose that the theorem is true for fat points schemes X = (Pij;m;;) on O

for which p =max;{},n;;} < p and let us prove it for X.
Let 1 <k < a be an integer such that we obtain

ok g
up =max;i{zio} =z = Z t;(0) = Z my;
=1 =1

and define the following fat points scheme:

AN . .
Py my; =my; — 1 for j=1,...,04;

X’:: m;j:mlj fori:L...,k,...,a
and j=1,...,0;

where " means omitted.
Let us check that X’ satisfies the inductive hypotheses:
(i) p' <p. In fact, Vj=1,...,0

a

r ’
E:mt‘j—’"kﬂf E, mjj
i=1

1<i<a
i#k
a
:I’)’lkj—1+ E m,:i: E m,j—l.
1<i<a i=1
i#k

Then p' =p — 1 < p.

(ii) The set Sy is totally ordered. In fact, put for all / € Ny, i=1,...,a and j=1,...

t{i(l) = max(O,ml'j - 0.

(13)
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We have for all j=1,...,0
t;,(1) = max(0,my; — 1)
=max(0,my; — (I + 1)),
then
t,’(j(l):tkj(l—i—l) Vi=1,...,04 and VI € Ny. (14)
Moreover Vi # k and j=1,...,0
ti’j(l) = max(0, m,’j )
=max(0,m;; — )
=1;(I) VI e N (15)
Hence, the set Sy is obtained eliminating the maximum element from the set &y,
and so <y is totally ordered.
Then, by inductive hypotheses, X’ is aCM and, from (14) and (15), we have
Zy=zip Vi=1l,...k...,aand VI=h € N,

and

/
Zk,O =Zk1-
Therefore Vi € Ny
/ ’
up = max {z;;} = max {{zis} \ 1} = ws.
i=l,.,a 7 i=l,...a
So we get
/I
u] = Uz,
/
u2 = us3,

o _
Uy =U,_ | =Up

and hence AMy. is of type:

e . (16)

o =11 1...10--- 0

Claim. AMy is obtained from AMy: just adding a first row consisting of uy “1”
entries, with uy =37 | my.

In fact, since we added only 1 and 0 entries, AMx(r,s) will be aCM and of
type (12).
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Proof. Our claim is equivalent to

s+l if 0<s<u —1,
MX(O’S)_{M if s> u;

and

My(r,s)+s+1 if r>0and 0<s<u; — 1,

M Ls)=
x(r+1,5) {MX/(r,S)—Hn if r>0ands>uwu

(17)

(18)

and in terms of the first difference matrices AMx(r,s) = (Cx(r,s)) and AMy.(r,s) =

(Cx/(r,s)), that

1 if0<s<uy -1,
CX(O’S)_{O if s> u

and
Cx(r+ 1,58) = Cx:(r,s) for (r,s) > (0,0).

Let us prove (17) and hence (19).
We have

deg(X) = Z <m,~j2+ 1)

L.J

_ ml-j+l)+ 2 (mkj—l—l>
(") (™,

ik

m;; + 1 X m X m
()
(") 2+
LJ Jj=1 Jj=1
ik

Olje

:deg(X’)+kaj

j=1
and we know that

Ol
E muzu1:1¢M{4ﬁ}:4p
i=l,.,a
=1
hence, for the ideal sheaf .#y associated to X, we have

23
R (ﬂx <o,zmkj - 1>> =0
i=1

then, from definition (1),

Ol ol
My (O,ka]‘ - 1> = kaj =uy.
i=1 i=1
Obviously, for s < 7%, my; = uy

H(Ix(0,5)) =0,

(19)

(20)

21

(22)
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then
Mx(0,s)=s+1
for s < u;.
Moreover,
ok
R (JX <o,zmk,>> =1
i=1
hence,

Ol Ok
My O,E my; =§ My = uy;
i=1 i=1

from Remark 1.3, it is jx(0) =u; — 1, so for every s > (u; — 1) the sth column is
equal to the (u#; — 1)th column, then My (0,s)=u; for s > u.
Now, let us show (18). We may observe that for s < u; — 1 we have

(I xi(r,8)) = h(Ix(r + 1,5)),

since every curve of type (r + 1,s) through X splits into the line R; and a curve of
type (r,s) through X', hence

My(r+ 1,8) = +2) s+ 1) — i°(Ix(r + 1,5))
=(r+ s+ 1) —m(Ix(rs)+s+1
=Mxy/(r,s)+s+ 1. (23)

Let us check (20). Since jx(0)=u; — 1 and jx/(0)=u, — 1, from Remark 1.3 we have
Cx(r+1,8)=Cx/(r,s)=0 Vs> u (24)

and we are done.

Vice versa, let us suppose that X is aCM and let us show that Sy is totally ordered
with respect to the previously defined ordering in N'.

Since X is aCM, AMy is aCM and it is of size (p,b).

Let us work by induction on p. If p =1, then X is a set of collinear simple points
and, hence,

Sy ={1,1,....1)}
———
b+1

and it is totally ordered.
Let us suppose p > 1 and that the theorem is true for aCM fat points schemes X’
of size (p’,b’) with p’ < p and b’ < b and let us prove it for X.
From [12, Theorem 2.12], there exists a line R of type (1,0) such that [RNX|=b+1.
Let 1 <k < a be an integer such that ijkj =b+ 1.
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Let us call X’ the following fat points scheme:

Pyj; m;(j:mk_,- —1 forj=1,...,04;
X'= m;j:mij fori=1,...,k,....a
and j=1,...,0;
where " means omitted.
We have
(i) o' <p;

(i) AMy/(r,s) = AMx(r + 1,5) (see [12, Lemma 2.15 or Corollary 2.16]), then X’
is aCM. Hence, by inductive hypothesis, ¥y is totally ordered;
(iii) moreover,

yX:yX/U{(mkl,...,mkm)}. (25)
Claim. (mgy,..., My ) > (Mi1,..., My, ) for alli=1,...,a.
In fact, from (25), Sx will be totally ordered.
Let us define
mj =max{m;} V1 <j<oy. (26)
1

If my, < my;, for suitable 4 € {1,...,a,} and I € {1,...,a}, since b—i—lzzjmj, we
would have

b+1=>"m>Y my=>b+1,
J J

a contradiction.
Hence the theorem is completely proved. [

Remark 2.2. Given a zero-dimensional subscheme X C O we can also consider X as
a subscheme of P? via the usual embedding Q < P3, therefore we can determine both
the Hilbert function and the graded Betti numbers for any aCM subscheme X C O as
subscheme of P3 (see [13, Section 2, Proposition 2.3]).

Example 2.3. Let us consider the following fat points scheme:
X:={(Pi;7), (P12;5), (P1333) (Pai35) (P232) (Pass D}
Here, oy = o =3 and a = 2. The set Ly is
{(7,5,3), (6,4,2), (5,3,1), (5,2,1), (4,2,0), (4,1,0),
(3,1,0), (3,0,0), (2,0,0), (2,0,0), (1,0,0), (1,0,0)}
and it is totally ordered. We have

3 3
Z1,0 = Zlu(o) =15 zi1= Ztlj(l) =12,

J=1 J=1
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3

Zip = Ztlj(z)

9, ziz3= Z 1;(3) =6,

1

3

4, 2= 1;(5)

J

1

3

Z14 = Zﬁj(“)

J

25

1
3

ze= Yt (60)=1, z20= 5,(0)=8,

J

1

J
3

3

i=Y b(N=5 2,=Y 5,(2)=3

j=1

1

J
3

1

3

3= hi(3)

J

2, ma4= Z hi(4)=1

1

J

myy + mp; = 12 and

Hence k=1, p

=15,

Uy =2zi,0

uy =z =12,

9, us=20=38,

Us =212

6, us=z1 =75,

Us =213

4,

U7 =21,4

ug =235 =3,

=23=2,

Uio

2,

Ug =2z1,5s

1

222,4 =

23V

=zi6=1,

Ui

so, AMy is

11 12 13 14 15

23 45 6 78 9 10

1

0

0
0
0
0
0
0
0
0
0

1 0 0 0

00 0 0O

0 000 O0O
0000 O0O0TO

00 0 O0OO0OO0OTO
000 0O0O0OO0OTU 0O
000 O0O0OO0OO0OTGO0ODO®O
0000 O0O0O0OTO0OT 0O
0000 O0OO0O0OTO0OT 0O

1

(27)

0

1

1

1
1

1
1
1
1

1
1
1
1
1

8
9

10

11
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Remark 2.4. Not all the aCM matrices are the Hilbert matrices of fat points schemes
with some m;; > 1; in fact, let us consider the following AM:

01 2 3 4
01T 1 1 1 0
1/1 1100 (28)
2/1 1.0 0 0
3]0 00 00

AM is an aCM matrix but we can easily check that there is no fat points subscheme
of O with some m;; > 1 which has AM as first different matrix.

Corollary 2.5. If
X={Pyj; my=mVi=1,...,aand j=1,...,00}, (29)

i.e. X is a homogeneous fat points subscheme of Q whose support is a CI, then X is
aCM.

Proof. It easy to check that, for such an X, &y is totally ordered. [
Corollary 2.6. If oy =--- =y, let Y be the following:

Y = Pij; mij =m fOl"i:1,...,aandj:1,...,ﬂ,’
mj=m—1 fori=1,...,aandj=p+1,...,04

with oy =y > 2 > -+ Ba, i.e. Y is a quasi-homogeneous fat points subscheme of
O whose support is the CI of type ((a,0),(0,a1)). Then AMy is aCM; hence Y is
aCM.

Proof. The set #y is of type

{(m,...,m),(m,....mm—1,....m—1),...,(m,....mm—1,...,m— 1),
—_—— —— ———— — —_—

% Ba a1 =P Ba o1 —Pa
m—1,....m—1),(m—1,....m—1,m—2,....m—2),...,
o B2 a—p2
m—1,....m—1m—2,....m—2),...,
Ba o1 —Pa

(1,...,1),(1,...,1,0,...,0),...,(1,...,1,0,...,0)},
N LN AR AR
o B2 o1 —fa Ba o1 —fa

therefore it is totally ordered. [
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3. Schemes of double points

Example 3.1. Let X be the homogeneous scheme of double points:

where e means a double point. Here

o = 4,
O) =03 = 3,
oy =2. (30)
Sx is not totally ordered, then X is not aCM and AMy is the following:
01 2 3 4 5 6 7 8
o1 1 1 1 1 1 1 1 0
/1 1 1 1 1 1 1 0 0
211 1 1 1 1 1 0 0 0
311 1 1 1 1 1 -1 0 0 (31)
411 1 1 1 0 -1 0 0 0
51111 0 0 0 0 0 0
6|1 1 1 0 —1 0 0 0 0
711 1 0 0 O 0 0 0 0

Let Y be the following quasi-homogeneous fat points scheme:

where e means a double point and * means a simple point. Here
a = f1 =4,
Br=Pp3=3,
By=2. (32)
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Sy is totally ordered, then Y is aCM and AMy is

0123456 7 8
01T 1 1 1 11110

1111111100

21111111100

3/1 11111000 (33)
4111110000 0

51 11000000

61 11000000

701 100 00000

Let us describe a method how to compute the Hilbert matrix of a homogeneous
scheme of double points X with an aCM support.
Let X be the following homogeneous scheme of double points:

X::{P,’j; n'i,'j:2Vi=1,...,aandj:1,...,oci} (34)
with o > -+ > o.
Let us define the following quasi-homogeneous scheme Y:

Y:—{Pij; m;=2 fori=1,...,aand j=1,...,0; }

35
my=1 fori=1,...,aand j=o;+1,...,0 (33)

where Yieq is a CI of type ((a,0),(0,a;)).
We remark that, according to the definition of a quasi-homogeneous scheme of fat
points, for all i=1,...,a it is
%(Y) =0
and
m;; = m;; whenever j < o;.

It means that we complete an aCM support X.q of a homogeneous scheme of double
points X to a support Yiq of a quasi-homogeneous scheme Y and Y, is a CI of type

((a,0),(0,01)).
In the sequel, we will call X a homogeneous scheme of double points and Y the
completion of the scheme X to the CI ((a,0),(0,0)).

Remark 3.2. Let Y be a scheme of type (35). From Theorem 1.10 we know that if
(r,s) is a corner of AMy then h°(.#y(r,s))= 1. Moreover, this generator is a curve of
bidegree (r,s) of type

Ri-oootR L3 L3 LI, - Lis—gys1 - Ly
if 0 <r<aand oy <s <20q (where we put Rg =1);

RI-...-R* ,-Re_ysr-...-Ry-Ly-... L

if a<r<2aand 0 <s <o (where we put Lo =1).
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Let X be a homogeneous scheme of double points and Y its completion.

Definition 3.3. For all i=1,...,a and j=o; + 1,...,0, define
Xaoq :Yz

Xi—1)m =Xy,
and, inductively,
Xij = Xigj+1) \ Pij1)
that is, proceeding from the right to the left and from the bottom to the top, we take
away one simple point in each step from the scheme Y.
Theorem 3.4. Let X be a homogeneous scheme of double points, Y its completion to
a CI and X;; as before. Denoted by
myj+ - m—n; = i
and
Miy =+ -+ Mij—1) = Vij,
then

AMX‘.(/il)(}’,S) _ { AMXU(V,S) fOV (I",S) 7& (uij,vij), (36)

AMy, (r,s) =1 for (r,s) = (uy, vij)
Vi=1,---,a and Vj=o;+1,...,0.
Proof. If ¢y =--- =0, then X =Y.

Let us suppose that we are in the other cases. The set &y is totally ordered and
then, by Theorem 2.1, Y is aCM and AMy is of type:

01...... 200 — 1 204

o0 (1 1 1---1 0

I |1 1...1 0---0

(37)
a—111 1...1 0 0
H/_/al+%(/
a |1 1...10 0
——
2a—1|1 1...1 0--- 0




200 E. Guardo | Journal of Pure and Applied Algebra 162 (2001) 183-208

We may observe that
My, (r,s) — 1 < MX,(j_l)(r,s) < My, (r,s).
Our theorem is equivalent to prove that

hOJXi(]._”(r,s) = hOJXU(r,s) +1 for (r,5) > (uj,vi), (38)

K Ix, ., (rs)= hIx,(r,s) otherwise. (39)

We prove only (38) because (39) is trivial. First, we need to find a form F of bidegree
(uij, vij) such that the curve defined by F passes through Xj ;1) but not through Xj;.
The form

> UL VAR » LT A L RpMG=Dj | ymi Ly MmG=n
F=R\" - RyY - RV LY LT

Vi=1,...,aand j=o; +1,...,0;, is a form of bidegree (u;;,v;;) which vanishes at all
the points of Xj;_1) but does not vanish in P;; = R; N L;.
Now, we prove that

W7y

iG=1
Take a basis f1,..., f; for HOJXU(r,s), and denote by f an element in HOfX,(/,”(sz, v;j)
but not in H°.s x;(tij, vij), such an element f exists for what we said before. Let C

be a curve of type (r — u;;,s — v;;) that does not pass through P;;. The elements
f1s---5 f1, f - C are a basis for Hof)g,(/fl)(r,s). In fact,

(V,S):honU_(l",S)+1 for (}’,S)>(Mljj,l)l:]').

[-C#Y fa
z=1

because f:(P;)=0Vz=1,...,tand (f-C) (Py)#0. O

Next, we would like to compute a minimal set of generators (for short m.s.o.g.) for
a homogeneous scheme X C Q of double points.

Thus, for a homogeneous scheme of double points X and its completion Y to a CI,
we need few new definitions.

Definition 3.5. We call base corner of a fat points scheme X a pair (i, j) for i=2,...,a
and 1 < j < oy such that m;; =0 and m_1); = m;j—1)=2.

Definition 3.6. We call corner of a fat points scheme X a pair(r,s) such that (r,k)
and (A4,s) are base corners for some 4 and k.
Definition 3.7. If we put
(i, v7) = (maj + o gy mig + o Mi-1)),
we call form of bidegree (u;;,v;;) relative to the pair (i,j) the following form:

__p™mj Mn2j Mi—1)j miy Mi(j—1)
Fy=R" - Ry RNV L L
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Using the previous terminology, we also define the corners for the scheme Xj;.

Definition 3.8. We call corners of a fat points scheme X;;:
(a) the pair (i,j + 1);

(b) the corners (r,s) of X such that m,, =0 for Xj;;
(c) the pairs (A, k) such that my; =0 for which there exist a (base) corner (£,k) of X

with ¢ < h, such that my # 0 for all [ < A.

Remark 3.9. We notice that the corners of X;; are those of Xj(;;1) plus the pair (i, j+1)
and except (i + 1,7 + 1) if it was not of type (b), or (i,j + 2) if it was not of type
(b) or (c).

Hence, if (i+1,j+1) is a corner of Xj(;+1) and is not a corner of X, then it is not
a corner for Xj;.

Remark 3.10. We may observe that the base corners are of type (i,o; + 1) for some
i=2,...,a. Let us call them

(Cll,bl),...,(d,,,bn),

where (aj,b;) is obtained starting from the top of X. Then, all the other corners are
of type

(612, bl )7 (a37b2)9 (a?’, b] )7 ey (am bn—l )5 LR} (al’l, b2)> (arU bl )

For short, we will use the term corner both for base corners and corners; hence all the

n+1
2

Moreover, the forms relative to the corners (a,,b.) with ¢ > z are of type:

corners arc (

Flapy=Ri ... -Ro_| Ry ... Ryoy -L1-...-Lj Ly +...-Ly .

a

Of course, for t =z we have

Fapy=Ri ... R _ -Li-...-L} .

a

Remark 3.11. Let X be a homogeneous scheme of double points, Y its completion to
a CI and Xj; as before. We may observe that if m; ;1) =1, then

Ri - Fijyy=H - Fiiz1)j+1) (40)

Ly Fijry=K - Fij12), (41)

where H and K are suitable bigraded forms.
In fact, from definition we have

L a_pMGE) | pMagEh | pMa=DGE) | pma M
Fije1y=R, R, R Ly L
. pMG+2) 12 j+2) MG —1)(j+2) miy Mi(j+1)
Figjpay=R{" RO R e
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and

Rglz(/url) R R;Vli(/ﬂ) 3 L;”(HI)I R erl(i+1)f'

Farn =R i

But, for such fat points schemes, it is m;, =2 or 1 for all (4,s); hence,
Mps 2 Mp(s41)
and
Mps = M(jg1)s-
So,
Ri- Figjrny = H - Furny+1)
where H is equal to 1 or is a form of type (0, p) for some positive integer p, and
Lji1 - Figj+1y =K - Fi(j+2)

where K is equal to 1 or is a form of type (¢,0) for some positive integer q.

Lemma 3.12. Let X be a homogeneous scheme of double points, Y its completion to
a CI and X;; as in Definition 3.3. Then

1. Fij12y is multiple of Fi(j4+1y if and only if (i,j + 2) is not a corner of Xjj+1y of
type (b) or (c).

2. If (i+1,j+1) is a corner of Xij+1y and is not a corner of X, then F(it1yj+1) Is
a multiple of Fij11).

Proof. (1) Let us suppose that (i, j +2) is such that there exist corners (¢,j +2) of X
with ¢ <i. Let (h,j +2) and (r,k) with h <r» < i and k < j+ 2 be base corners of
X. We have

Fijy2y=R} ... Rp_| “Ry-...-Riy LY.Ly Ly ...-Ljpy
and
Fiy1y=R} ... R R, -...-Ri_y - L} L Ly-...- L.

Then Fjj42y is not multiple of Fi( 1.

Let us suppose that there are no corners (¢,j +2) of X with ¢ <.

Put / =min{r |m,;12)=1} and consider (/,k) with k£ < j+2 the base corner of X.
We get

Fijyay=R} - ... RI_ “Ry-... Ry L3 ... Lf_ | -Ly-...-Lip
and
Fijy1y=Ry ... RI_| “Ry-... Ry L} Li_ - Ly-...- L.

Then Fiji2) = Figj+1) - Lj+1-
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(2) Since (i +1,j+ 1) is a comer of Xj ;1) and is not a corner of X, there exist
corners of X of type (z,j+ 1) with ¢ < i but there is no corner in the (1,0)-line i + 1,
then o; = o4 1.

Let us take the base corner (%, + 1) with & < i, we have

Flsnyey =Rt ... Ry_| Ry Ri- Ly~ L3 Ly 1. Ly
and

Fije1y=Ri ..o Ry_ | Ry ..o Riy Ly ..o Ly Loy ..o L.
Then Fiiyiy 1) = Figrn - Ri. O

We need an other general result:
Proposition 3.13. Let X be a set of points in P} and P a point of X.
Set X' =X \ P and let u be the integer such that
AH(X',u) = AH(X,u) — 1.
Let fe(I(X'),\ X))y then
IX")=UX), )
Proof. We know that
(I(X), )1,
it remains to prove that

I(X") CUX), f):=J.
Claim. J =I(X").

Since J CI(X’), our claim is equivalent to prove that
dimJ, =dim (I(X")), VneN
From the hypothesis we have that for all n < u
Jn=TX))y =X
Ifn>u
dim (/(X)), < dimJ, < dim (I(X")),

Moreover, if (I(X)), = {(f1,..., fr) then fi,..., fr, f - h, for a suitable form 2 € R,_,,
are Li., so

dimJ, > dim (/(X)), + 1 = dim (I(X")),
hence we are done. [

Remark 3.14. We may observe that Proposition 3.13 is true for every scheme X’ C X
such that deg X’ = degX — 1.
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Let X, Y and X;; as above. Then

Theorem 3.15. A m.s.0.g. for a homogeneous scheme of double points X consists of

: . +1
the generators of the fat points scheme Y, completion of X to a C.I, plus the (”2 )
forms Fyg, where (h,s) runs among all the corners of X.

Proof. From Definition 3.3, we have that
Xl = 1Y =N
where N =37 . (1 — o) — (o1 — ).

Claim. 4 m.s.0.g. for X;; consists of the generators of Y and the forms Fy; where
(h,s) runs among the corners of X;; for i=2,...,a and j=o; +1,..., 0.

Proof. We use induction on N. If N =0, that is for i=a and j=ua;, then X;;=X,,, =Y
and the conclusion is true (see Remark 3.2).

Let us suppose N >0 and the claim true for fat points schemes Xj; for which
Np < N and let us prove it for Xj;.

We have

Xij = Xigj+) \ Pigj+1) (42)

and

Xijenl =1Y] = > (= o) — (o —j = 1)

t=i+1

a
=[Y] = > (=)= ( —j)+1
t=i+1

=|Y[ - - 1),
hence

Ny, N-1

Gy

and the inductive hypothesis holds for Xj(;;1), then a m.s.0.g. for X ;;) consists of the

generators G, of Y and the forms Fj; where (4,s) runs among the corners of Xj( ).
Using Remark 3.9 and Lemma 3.12 we can show that a m.s.o.g. for X;; is

{Gp}. {Fis} and  Figjpn) (43)

if i+1,741) is a corner of type (b) and (i, + 2) is a corner of type (b) or (c).

If i+ 1,74+ 1) is not of type (b) then a m.s.0.g. can be obtained by deleting
F(i+1)(j+1) from (43)

Analogously, if (i,j + 2) is not of type (b) or (c¢) then a m.s.0.g. can be obtained
by deleting Fj;42) from (43).

In fact, from Proposition 3.13, we know that the generators of Xj ;1) plus Fi ;1)
are a system of generators of X;;. It remains to prove the minimality of this set of
generators.
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Let us suppose that

Gy=> A4,Gy+ > CisFis + BFji1)
P#q (h.s)
or

Fy= ZApGp + Z ChsFps + BFi(j+l)a
p (h,5)#(r,t)

where (r,¢) # (i,j +2) and (r,t) # (i + 1,7+ 1).
Computing (44) and (45) in Py ;1) we have

G,(Pij+1))=0 Vp,

Fis(Pij+1)) =0 Y(h,s),

since Pjj4+1y=R; N L4 and Fyy is of type

Fpgi=R" .- RM R L LD,
Hence,
B(Pi s 1)Fi+n(Pij+1y) =0
and, since
Fiir1y(Pij+1)) # 0,
it must be

B(Pij+1)) =0,

that is
B € (Ri,Ljt1).

It means that B is of type
B= fiRi + foLj11

with f] and f, bigraded forms.
Using Remark 3.11,

RiFi i1y = HE11)(i+1)
and
LjnFijny = KFij+2)

for suitable H and K bigraded forms.
Hence from (44) and (45) we have that

{Gp} {Fs}

should not be a m.s.o.g. for Xj(;;1) and this is not possible.

205

(44)

(45)

(46)
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Let us suppose that

Farngrn = ZApGp + Z CisFrs + BFi(j1 1),
» (h$)A(+1,j+1)

(47)

where G, are the generators of Y, 4, and B are opportune bigraded forms and (4,s)

runs among the corners of Xj;.
Computing (47) in Pj;+1) and using Remark 3.11, we get

(I = AHFenGin =Y 4G+ Y CiFis
P (h,$)#(i+1,j+1)

for suitable bigraded forms fi, H, Cj, and 4,.
By the minimality of the generators of X;(;11), we get

11— fiH =0,
hence

H=1,
therefore

RiFi(j+1) = Flit1)(j+1)

(48)

and this happens when (i + 1,/ 4 1) is a comer of Xj(;+1) but not a corner of X, i.e.

it is not of type (b) (Lemma 3.12).
Analogously, let us suppose that

Fijin =Y 4G+ > CuFis+ BFj).
b4 (h.s)#(i.j+2)
Computing (49) in Pj;+1) and using Remark 3.11, we get
(1 - f2K)Fi(j+2) = ZApGp + Z Chths
p (h,$)7(,j+2)

for suitable bigraded forms f>, K, 4, and Chs.
In this case it is

K=1,
hence
Li 1 Figjv1) = Fij12)

and this happens iff (7, 4+ 2) is not a corner of type (b) or (¢) (Lemma 3.12).
Furthermore, we observe that

Xi—1y =Xig; = Xiwt1) \ Pigay+1)

(49)

(50)

hence the corners of X(;_;), are the same corners of Xj, and we can work in an

analogous way as before.
Hence the claim is proved.
In this way we have finished, since X is the last step of the induction. [J
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Example 3.16. If X is the homogeneous scheme of double points and Y its completion
to the CI ((4,0),(0,4)) defined in Example 3.1, then the corners of the scheme X are
the pairs:

(2,4),(4,3),(4,4),

since Y is aCM, the corners of AMy are the pairs
(0,8),(1,7),(3,6),(4,4),(5,3),(7,2),(8,0).

The generators of the scheme X are
Gi:=L-13 1% L of bidegree (0,8);
Gy:=R,-1?-13 ~L§ - Ly of bidegree (1,7)
G3:=R|-Ry-R3-R4-Ly-Lp-L3-Lsy of bidegree (4,4)
Gy:=R}-Ry-R3-Ry-Ly-Ly-Ly of bidegree (5,3)
Gs:=R?-R}-R;-R; of bidegree (8,0)
G¢:=R|-Ry-Ry-L}- L% Ls-Ly of bidegree (3,6)
G7:=R}-R3-R5-Ry-Li-L, of bidegree (7,2)
Fy:=R}-L}-13-1% of bidegree (2,6)
Fy3:=R}-R5-R}-L}-L3 of bidegree (6,4)
Fiu:=R?-Ry-Ry-L}- L3 Ly of bidegree (4,5).
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