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In this paper, we study the local regularity of solutions to linear degenerate elliptic
equations of the form

n n n
=) (@ + )+ by +cu=f =Y (fi)y- ()
i, j=1 i=1 i=1

We prove Harnack’s inequality for positive solutions and the Holder continuity of
the solutions of (), assuming on the coefficients of the lower order terms very
general hypotheses involving appropriate “degenerate’” Morrey spaces. © 2002 Elsevier
Science (USA)
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1. INTRODUCTION

In [9], Gutiérrez studied the local regularity properties of solutions of
degenerate elliptic equations of the form

— Z (aijux,),, +cu =0, (1.1)

i, j=1

where the coefficients g;;(x) are measurable functions such that

a;j(x) = aji(x), Lj=1,2,...,n (1.2)
and satisfy
>0 v Iw@)EP < Z a(O)EE<mIE ae xeQ, VEeR',  (1.3)
i, j=1
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where the function w controlling the degeneracy is a weight in the class A4,.
Assuming that the function ¢ belongs to the degenerate Kato—Stummel class
(see Definition 2.3), Gutiérrez proved Harnack’s inequality for positive
solutions of (1.1) and as a consequence, the local continuity of solutions. In
this way, he extended to the degenerate case the sharp result proved by
Chiarenza et al. [1].

Subsequently, Vitanza and Zamboni [16] proved the local Holder
continuity of solutions to Eq.(1.1) assuming that the function c¢ is
in the degenerate Morrey space M;(w), ¢ >0 (see Definition 2.4), and
extending in this way to the degenerate case the results contained in the
papers [5, 14].

Recently, De Cicco and Vivaldi [4] studied the regularity of solutions to
more general degenerate elliptic equations of the form

=N (s, + d), + > b teu= = (fi), (1.4)
i,j=1 i=1 i=1

proving Harnack’s inequality for nonnegative weak solutions and
establishing the Holder continuity of weak solutions. They assumed on
the weight w in (1.3) properties typical of the 4, weights and the coefficients
of the lower order terms in some suitable weighted L? spaces; precisely they
supposed

2 2
() eron  (4) L (2) e, >3
w w/) w\w 2

where x represents the intrinsic dimension induced on R" by weight w (see
[3]) and depends on the constant appearing in the duplication formula (see
Lemma 2.1(a)). The constant k coincides with the euclidean dimension 7 if
w = 1. We stress that their condition on the coefficient ¢ is stronger than
those in [9, 16], see Remark 2.6.

The purpose of this note is to improve the results contained
in [4] extending the result obtained in [16] to more general equations
like (1.4). Given we 4, and Q an open bounded subset of R", that
without loss of generality, we assume the ball centered at the origin and
radius R>0, we study the local behavior of the solutions to the
degenerate elliptic equation (1.4), where the coefficients a;;(x) satisfy the
assumptions (1.2) and (1.3). Taking the functions b;, ¢, d;, f and f; in such
a way that

2 -\ 2
Ea (i) ’1’ (£> € MU(Qa W)s g > 0’ (15)
w w

w w
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we prove Harnack’s inequality for nonnegative solutions of (1.4) (see
Theorem 4.1) and, as a consequence, the Holder continuity of the solutions
of the same equation (see Theorem 5.2). Our hypotheses on the coefficients
are more general than those in [4]. In fact, it is shown in Remark 2.6 that
LP(w) = My(w), for some ¢ >0, if p>75.

About the technique used, it follows as closely as possible the
classical work [13] (see also [17]), and Moser’s iteration technique
(see [10]). We take, as usual, powers of solutions as test functions;
the novelty is that we use Theorem 2.7 to estimate products of the
coefficients of the equation times test functions instead of Holder and
Sobolev inequalities.

The organization of the paper is as follows. Section 2 contains some
preliminary results. In Section 3, we prove that solutions are locally
bounded. Harnack’s inequality is proved in Section 4. Finally, in Section 5
we establish the Holder continuity.

2. FUNCTION SPACES AND PRELIMINARY RESULTS

Let p>1. A function w:R" -]0,+00[ is an 4, weight, we 4, if and
only if

1 1 B
_ — (p-1 =
sgp <|B|/Bw(x) dx) <|B|/B[w(x)] r )dx> Co< +00 (2.1

for all balls B in R"; Cj is called the 4, constant of w.
We now recall some results about 4, weights (see [2, 8] for the proof).

LEMMA 2.1.  Let w(x) € Ap, p €]l,+00[. Then
(a) Doubling: There exist positive constants C,; and k such that
w(B(xo, tr)) < Cat* w(B(xo, 1))

for every xo e R", r>0, and t=1, where w(B,) = fB‘w(x) dx;' and conse-
quently

(b) Reverse doubling: There exist positive constants C, and u such
that

w(B(xq, tr)) = C,t*w(B(xo, 1))
for every xo e R", r>0, and t>1.

'"We write B(x, ) to indicate the Euclidean ball centered at x with radius ». Whenever x is not
relevant we will write B,.
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LEMMA 2.2 [See Fabes et al. [7]]. Let we Ay, B = R" an arbitrary ball,
then

(a) for all ¢ € C°(B), we have

1 1
1 2 x . 1 ) 2
(W(B)/ng wdx) <C1(d1amB)(w(B)/B|V¢| wdx)

for some t > 1, independent of ¢ and B;
(b) for all ¢ € C'(B), we have

=

|
1 2 2 . 1 2
where ¢p = W%me Pw dx.

Let Q be an open bounded set in R". Because of the local character of our
results it is sufficient to assume Q = B(0, R).

Let w € 4,. We give the definitions of the weighted spaces LP(Q, w), H'-?
(Q,w), H:P(Q,w), HyP(Q,w), H-7(Q,w), pe[l,+00[ (see also [6]).

LP(Q,w) is the space of measurable u in Q, such that

leellrim) = ( /Qlu(x)lpw(x) dx>p< + o0.

Lip (Q) denotes the class of Lipschitz functions in Q. Lip, (©2) denotes the
class of functions ¢ € Lip (©2) with compact support contained in Q. If ¢
belongs to Lip (Q2) we can define the norm

n
bl r@m = 1Bllzoeum + D 10gllLrcum- (22)
i=1

H"“P(Q,w) denotes the closure of Lip (Q) under norm (2.2). We say that
ue HyP(Q,w) if ue H-P(Q,w) for every Q' < < Q. Hy”(Q,w) denotes the
closure of Lip, (Q) under norm (2.2). H "/ (Q,w) is the dual space of
Hy?(Q,w), where %4— % = 1. We have T e H~"7(Q,w) if there exist f; such
that L e LV (Q,w), i =1,2,...,n, with T = 31| (/).

We now give some more definitions.
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DErFINITION 2.3 [See Gutiérrez [9]]. Let Q be a bounded domain of R”
and we L] (Q). We set

s@w={ver@m: s [ VG
xeQ {yeQ: |x—y|<r}
0<r<2R

4R
s
X ——dsw(y)dy=n(r) - 0 forr - 0
/xy|w(B(x,s)) (»)dy = n(r)

DEFINITION 2.4 [See Vitanza and Zamboni [16]]. Let 0 € R. We set

xQ T
0<r<2R

1
My@w) =V e ' @w): Vo= sup — / V)
{yeQ: |x—y|<r}

4R s
/Xy mds w(y)dy< + o0

Remark 2.5. We note that in the nondegenerate case, i.e. w = 1, S(Q,w)
and M,(Q2,w) coincide with the classical Kato—Stummel class and Morrey
space L', for some appropriate 4, respectively. In particular, for ¢ > 0, we
obtain L' with A =n —2 +a.

Remark 2.6.  The inclusion M;(Q,w) = S(Q,w), 6 >0, is trivial. We now

compare M,(Q,w) with the space LP(Q,w) for p>3. We shall show that
there exists ¢ > 0 such that

LP(Q,w) © M;(Q,w).

Indeed, for every x € Q and 0 <r<2R, we have

4R

S
V ——d d
/{yeQ: x—yl<r} | (y)| [x—y| W(B(X, S)) g W(y) 4

r

N
= V [ —
/{yeQ: x—yl<r} | (y)| [x—y| W(B(xn S))

4R
N
———d dy=1+1II. (23
' /{yeﬁr xy|<r}|V(y)|/r w(B(x, 5)) s w(y)dy + (2.3)

dsw(y)dy
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By Fubini’s theorem, Holder’s inequality and Lemma 2.1(a) we have

" K
I=/ — V(»)Iw(y)dy ds
o W(B(x,9) J{yea: x—yl<s) Yy

r s Tk
Wl [~ ds< CCa RV a5 s
" w(Br, ) 0

z_ﬁ
= C(Ca, DIV ||t P (2.4)

We now estimate II. We write

4R

S
=) ey dy = AB. 2.5
/r W(B(x,s)) S/{yeQ: \xfy\<r}|V(y)|W(y) Y AB ( )

By Holder’s inequality
1
BV lpp@um WB(x,1)?.

To estimate B, pick ¢ such that p>¢ > k/2 and write

4R
A= / 5 ds.

W(B . )1 w(B(x, )7

Since s<4R, by Lemma 2.1(a) it follows that w(B(x,s))= C(Cy, R)s"*, and

consequently,
4R
A< ! / s' 74 ds.

C(Ca, RYW(B(x, )Y

Therefore,
< C(Cy, R, V| r@m)W(B(x, 7))

with & = é — 1 On the other hand, by reverse doubling, Lemma 2.1(b), we
have w(B(x, r§)<C(Ca,R)r", and consequently, we obtain
< Criv,

The desired inclusion then follows with ¢ = min{2 — £, eu}.

In general, we have M;(Q,w)#L?(Q,w) for which 1t is sufficient to note
that if w= 1 then x = n, M,(Q, 1) = L' 27°(Q) and it is known (see [12])
that LP(Q)L'"~27%(Q) with p >4

The following theorem (see [9, Lemma 3.3]) is the main tool in the proofs
of the next sections.
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THEOREM 2.7. Let V: Q — R" be a function such that % € M,(Q,w). Then
for any 0<e<1 there exists 6 > 0 such that

/ |V(x)|u2(x)dx<8/ [Vu(x)Pw(x) dx + Ce™° / u? (X)w(x) dx
Q Q Q
Sor all u e C°(Q), where C is a constant depending on v, o, n and ||%||G,Q.

Proof. It is sufficient to note that = e S(Q, w) with n(r) ~ |2, or°. Then
by Lemma 3.3, p. 408 of [9], it follows that for any 0 <e<1

/ V@) dr<e / IVu)Pw) dx + p(e) " / W2 (wix) dx.
Q Q Q
Fixing p(¢) in such a way that

2
cm(Hg p“) -2
a,Q

the conclusion follows with & = %2 |

3. LOCAL BOUNDEDNESS OF SOLUTIONS

Let a;;(x) be measurable functions such that (1.2) and (1.3) hold, and b;, c,
d, f and f; (i =1,2,...,n) real functions defined in Q such that

2 2 2
<@) < (ﬁ) A (£> eM,(Q,w), ¢>0. (3.1)
w w w w w

We will say that u e H 12Q w) is a local weak solution of the equation

loc

= (g dp) + Y b teu= =Y (f), (B2
i,j=1 i=1 i=1

if

/{ ajju ., + Z du,. + Z diugf + cut//}dx
Q 1 =l i=1

=

= /Q { U+ filpx[}dx Vi € CR(Q). (3.3)
i=1

We note that (3.3) is meaningful by Theorem 2.7.
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The purpose of this section is to show that weak solutions of
Eq. (3.2) are locally bounded. To do this we will follow the technique by
Serrin [13].

THEOREM 3.1. Let u be a weak solution of Eq. (3.2) defined in some ball
By, =« = Q. We assume that conditions (1.2), (1.3) and (3.1) hold. Then there
exists a positive constant C, depending on v, 6, n, 1’ Y .| ||(%)2||m32,-’ 1]
[P ”(%)ZHU.BW C| and z, such that

1
2
|u*w dx)

©

lletl |2~ (B,.) (W(B2r) By,

o=

J: _|_r”i

6.8, i=1

+77

7,8,
where B, is a ball with the same center of B»,.

Proof. We prove the theorem when r = 1 with the solution correspond-
ingly defined in B,. The general case r# 1 follows by dilations.

Let ¢ =1, h a positive number that will be determined later and / > 4. We
consider the function

G(u) = sign u{F(0)F'(v) — gh*~"},  u €] — 00, 00,
where
v=lul+h

and

v? if h<v<l,
F(v) =
qli='v — (g — 1) if I<v.

Let y(x) = n*(x)G(u), where n(x) e C;°(Q) is such that 0<n(x)<1 and
supp #(x) < B,. Substituting  in (3.3) yields

) / aijit (20, G(u) + 11° G (w)uy,] dx
ij=1 7Q

n
+ Zl /Q du[2nn,, G(u) + 1° G (wyuy, ] dx
=



HOLDER CONTINUITY FOR ELLIPTIC EQUATIONS 129
+ lz:: /Qbiux,nzG(u) dx—i—/gcur]zG(u) dx
= /Q fﬂzG(u)dxﬂle:: /Q [il20m,, Gw) + n* G (wyu,] dx.
Using (1.2) and (1.3) we obtain
vl /Q IVul*n* G (uyw dx
< 2v/g|Vu| Vnln |G(u)|w dx
s [t @+ 2 3 [ttt G
=1 /9 j=1 79
¥ ; [ bl riGwlas + [ G+ [ 1riGalds

2 n i y i 2 X, ! .
#23) /Q|f|'7|'7x,.||G(u)|dx+; [l 6w

Recalling that v = |u| + & and using that (see [13, Theorem 1, p. 257])

e Ve)F'Y if jul<l—h,
(F  if [u|>1—h,

|GI<F(F"),
vF’ <qF,

we obtain
/ Voo d
Q

<2 / Vol [Vl F (F'yw ds
Q

N -
n <2 - 5) o> /Q|dj|112F(F/)|vxj| dv+2qv Y /Qld_;lnlnx,Idex
=1 J=1
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#0 ) [l FEyd g [ e v ity [ 17 ds
' Jo Q Q
n
207> [ i ds
i=1
1 - n
+ (2——)qvh Ny / | filn v |F (F) dx.
q i—1 Q
Using the inequality

|
ab<§a2+2—8b2, £>0

and setting

V:zn:|b"|2+|c|+zn:w+h“|f|+h—2zn:ﬂ
i1 " Fe = o

it follows that

/ |vu|2n2(F’)2wdx<C(v)q2{ / IVnl*F?w dx + / Vn2F2dx}. (3.4)
Q Q Q

We observe now that % e M,(Q,w) and
v n <b1) 2
— < —

k. <2 |G

/
w

C
5
w

0.8,

n
+2
a,B> =

0

0

0,8,

n

+h Y

[:7) i=1

+ h!

(7,32
Thus, setting

()

O',Bz
we obtain

%
w 0.
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If we set
U(x) = F(v),

then from (3.4) it follows that
/ WIVUPwdx < C(v)qz{/ [Vyl?Uw dx + / Vy?U? dx}
Q Q Q

and using Theorem 2.7 we get

/n2|VU|2wdx <C(v)q2{(l +e)/ |Vn|2U2wdx+s/n2|VU|2wdx.
Q Q Q

Vv .
+C|v,0o,n, s")/anzwdx Vo<e<1.
w O',Bz Q

we obtain

: _ 1
By choosing ¢ = T

/172|VU|2wdx<C{q2/ |V17|2U2wdx—|—+q2+2‘5/n2U2wdx}, (3.5)
Q Q Q

where C is a positive constant depending on v, o, n and ||%||J,Bz.
From Lemma 2.2(a) and (3.5) we have

1
( U w dx)f
By

1 .
<Cw(Bz)rl{q2 / IVylPUw dx + ¢*% InUlzwdx} (3.6)
B>

By

with > 1 and C depending on v, g, n, ||%||o,327 and the constant C; in Lemma
2.2(a).

Let ; and r; be such that 1 <r; <r, <2, choosing #(x) in such a way that
n(x) =1in B, 0<n(x)<1 in B, and [Vy|<; % we obtain

T 1
/ Urwdx | < Cw(Bz)?_l% g / Uw dx.
Brl (7'2 - rl) B

2
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Taking the ﬁth root on each side and letting / - +00, we have

1
2gt
/ VW dx
B,
1 PERVARERYE
<Coaw(By)2* s <_> g ( /
r—r B,

Set y = 2¢q, we have

2
1 11 1 5 2(145)
(—1); T(V\y
i < Cria () (g
ol s, ) (B>) <r2 —r1> 5 10/l )

We set, fori=1,2,..., )
1

7=21

and {
] = 1 .
7 + 7i

Hence, the previous inequality becomes

1 10 2y 2(149)
: G ity (V)7
lolles s, o < Cw B @ (L) el .

Iteration yields

No[—

1
V|7~ w <C Ww(B)) U2de)
10l 8, ) (w(Bz) B

and recalling that v = |u| + & we get

1
il oy <C ( S dx)i
Ul wy < —— [ |ul'w
e w(B2, W) /s,
%
f " ‘fi
+H<— + fi o 3.7
w 1) l:Zl w 7,8 ( )
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4. HARNACK'’S INEQUALITY OF SOLUTIONS
In this section we prove the following theorem.
THEOREM 4.1.  Let u be a nonnegative weak solution of Eq. (3.2) defined in
some ball By, — < Q. We assume that conditions (1.2), (1.3) and (3.1) hold.

Then there exists a positive constant C depending on v, a, n, 1 S0 [I(2)’]
dn2
lo.8s,> 77 Ellomy s 77 Doimt NG Nlom,,» Ci1s Ca and T such that

()

Proof. Also in this case we prove the theorem assuming r = 1.
Proceeding as in the proof of Theorem 3.1, setting v = u + A, where

2
-WL(E10
1/1/0_32 w

and taking as a test function in (3.3) Y(x) = n*(x)v#(x), where n(x) is a
nonnegative smooth function such that supp n(x) < B; and f§ € R, we obtain

1
n 2

+r"z

0,83, i=1

f

w

max u<C{ min u +r»°

r r

0.,B3,

n

>

i=1

7.,B3

vUBL | IVoPreP wodx
Bs

<2v [ |V |V17|nv/}wdx
Bs

" |ﬁ|§j / e e 23 / i s
-

+ > bdloglegde + [ el ac+ [ R Ao ax
;. B3 B3

B3
b /Bzh-‘mmz MU SEDY /&h‘llﬁlnlnx,lvﬁdX~ @.1)

Using, as usual, the inequality

a? b?
<ab<—¢e+
0<ab 5 e+ %
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it follows that

[VolPn>o#w dx
B3

I+ 1 2 i1 (Iﬁ|+1)2 2 et
SC(V){ 7 /33|V11|v wdx + 5 /33an dx ¢, 4.2)

where

V:Zn:ﬁ+|c|+i:@+h*1|f|+h*2iﬂ
i=1 w i=1 w =1 W.

Set

B+h/2 _
UG) = { v(x) if f#—1,
log v(x) if f=—1.

By (4.2) we have that

1 3
|VU|2n2wdx<C(v){(|ﬁ|+2) \VnPUw dx
B3 B Bs
1 2
+<|ﬁ|—+) / Vanzdx} if p£-1 (43)
ﬂ 33
and

|VU|2112wdx<C(v){ |vn|2wdx+/ Vr/zdx} it f=1. (4.4

B3 B; B;

We begin to examine (4.4). By Theorem 2.7

IVUPn*w dx < c{ IVilPw dx + /

nzwdx}, (4.5)
B;

Bs Bs

where C is a positive constant depending on v, ¢, n and ||%||J,B3. Choosing
n(x) in such a way that n(x) = 1 in B,, suppn < By, = B3, and [Vi()| <%,
where B, is an arbitrary open ball contained in B;, by (4.5) and doubling we

get
1
1 5 2
[VU|'wdx | <C-.
W(Bp) B, P
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Thus, by Lemma 2.2(b) we obtain

[U—-Ug|'wdx | <C
w(B,o/B,, %

for every B, < B», with C depending on v, ¢, n, ||%||J’B3 and C,, where C, is
the constant in Lemma 2.2(b). The John and Nirenberg Lemma for BMO
(w) (see [11]) yields that there exist two positive constants, py and C,
depending on the same arguments of C, such that

4 1
ePYw d.x) " ( ! e MUy, dx) ” <C. (4.6)

1
(W(Bz) B, w(B2) /g,

Set

(I)(p,h):(/B vadx)p

for any real number p#0 and 4 > 0, by (4.6), recalling that U = log v, we
have

=1 S L
W (B2)®(po, 2) < Cwi (B2)P(— po, 2). 4.7)

We consider now (4.3). By Theorem 2.7 we obtain
1\ 2
/ IVUP*wdx< CS (1B + 1)° (1 +> / IVyl>U*w dx
By 1B Jss

4446 1) 2712
ES) (”ﬁ) /13317dex},

where C depends on v, ¢, n and ||%||1’J’33; using Lemma 2.2(a) we have

T 1 1\ 22
( |nU|2fwdx> SCWﬁ(Bs)(IBI+1)4+4‘3<1+W)
Bs

x{ |V17|2U2wdx+/ n2U2wdx}, (4.8)
B3 Bs

where C depends on v, g, n, ||%||U,B3 and Cy, Cy being the constant in Lemma
2.2(a).

Let »; and r, be real numbers such that 0 <r; <r, <2. Let the function
be chosen so that #(x) =1 in B,,, 0<n(x)<1 in B,,, n(x) = 0 outside B,,,
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|Vn(x)| <—2-. By (4.8) we have

r—r

1
( / |U|2fwdx>
B,
1

<c +1 pias 2426 1 )
<Cw—1(B3)(1f + 1) Hﬁ m/B Uwdx.  (4.9)

Putting p = f+ | and taking the pth root of each side of (4.9), we obtain,
recalling that U?(x) = vf*!(x) = v?(x),

2428
LoL(Ly) 4145 S
O(zp,r) <Crwr B (p+2) 2 <1+|m)
%‘D(P’rz) (4.10)
(r — )7

for positive p#1, and

Ly s
O(p,r)=C pwrit V(B3)(pl+2) ¥ ———=P(p,r)) (411
(r —r1)?

for negative p. These are the inequalities which we wish to iterate. In order
that (4.10) be applicable at each stage, we choose an initial value pj < pp in
such a way that the point p =1 lies midway between two consecutive
iterates of pj and for i =0,1,..., we let

Di = T[Pf)
and
1+ !
rp = -
1 21
Thus we also obtain
T—1
= .
B T+

Hence, by iteration of (4.10) we get

=1
max v< Cw? (B3)®(p), 2), (4.12)
1
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where C is a positive constant depending on v, g, n, II%IIJ’BP Cy and 7. Now if
pi =17 po and r; = 1 + 1, then iteration of (4.11) yields

1
min o> Cwi(B3)®(— po, 2), (4.13)
1

where C is a positive constant depending on v, o, n, II%IIU&, C; and 7.
Therefore, from (4.7), (4.12), (4.13), and noting that from Holder’s
inequality

11
(), 2) <D(po, 2)w(B2) P,

we obtain

max v<C min v
B B

with C depending on v, g, n, ||%||o,33: C; and 7. Since v = u + h we have

1
2
b
0,B3

/i

w

f n
By 1 J,B3+< Z

max u<C{min u + ||~
B w =1

which concludes the proof of the theorem. 1

5. HOLDER CONTINUITY OF SOLUTIONS

Before proving the Holder continuity result we recall the following lemma
(see [15]).

LemMA 5.1. Let 0<0<1, H>0 and w:]0,4+00[—]0,+00[ be a non-
decreasing function such that

o(p)<0w(4p) + Hp* Vp<py<l.
Then there exist positive constants A and K such that
w(p)<Kp".

THEOREM 5.2. Let u be a weak solution of (3.2) in Q. If we assume that
conditions (3.1) hold, then u is locally continuous in Q.
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Proof. By Theorem 3.1 we have that
lu()|<L
in every arbitrary subset Q' of Q, where L is a positive constant depending on
)2 )2 . Jiy2
b0 S ) e oo 3200 16D Nngs llegr S0y 16 o €1, oy 7
and Q.

Let B, be an arbitrary ball contained in Q" and the functions

M=M@) = max u

and
m = m(r) = min u.
B/‘

Set
u=M®r)—u,

it is not difficult to show that u# is a nonnegative solution in B, of the
equation

—(agtts)y, — > (i) + Y bt +cu=Mc— )= (Md; — fp),,.
J=1 i=1 i=1

We note that

Mc— f (Md; — f;\?
< f,< i f’) eM,Qw), >0
w w

Md; — f;\*
()

for every B, c Q..
By Harnack’s inequality we obtain

and
Mc— f
w

I

c
<LH—
a,B, w

7,8,

o

b
7,8,

2y

a,B, i=1

()

n
i=1

<2r? zn:
i=1
X

a,B a,B,

+
a,Q

g

max ¥ <C{ min u + (Z) <LH£
Br Br 3 w
3 3

0,Q>
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(ol o))

where C is a positive constant depending on v, o, n, Zl 1 ||(b )2||JQ, [ e
din2
Yo 1) o, Cr, Co, T
Then

a,Q

M(r) — m(g) <C{M(r) —M(g) +Hr%}, (5.1)

where (r<R)

= (5) (el
+ G) (2L2 Z;

In the same way, setting

I

w 1,07(2)
ﬂ 2
w

a=u—m),

1,6,Q

1

2
a,Q

()

a,Q

we obtain

M(g) —m(r)< C{m(g) —m(r) + H3 }, (5.2)

where C and H are the same as those in (5.1).
Adding (5.1) and (5.2) we get

M@ —m(;) g+ L) — m()] + 2C s,

C+1
Set, for p >0
w(p) = M(p) — m(p),
Cc-1
S
and C
K=—H



140 PIETRO ZAMBONI

we have

off) <of() ot 5

and the conclusion follows by Lemma 5.1. 1
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