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Abstract-In this paper, we consider a problem of the type -AU = X(j(u)+pg(u)) in R, ~10~ = 0, 
where R c R” is an open-bounded set, f,g are continuous real functions on Fl, and X,/J E R. As 
an application of a new approach to nonlinear eigenvalues problems, we prove that, under suitable 
hypotheses, if 1~1 is small enough, then there is some X > 0 such that the above problem has at least 

three distinct weak solutions in W,$’ (S-Z).@ 2000 Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION 

The aim of this paper is to establish the following result. 

THEOREM 1.1. Let R C R” be arr open-bounded set, with smooth boundary, and f, g : R --+ R 

two continuous functions, with supeeR Ji f(t) dt > 0. Assume that there are four positive con- 

stants a, q, s, 7, with q < (n + ?)/(n - 2) (if n > 2), s < 2, and y > 2, such that 

max{lf(C)l, lgK)ll 541 + ISI”), VC E R, (1.1) 

and 

lim sup s,’ f(t) dt 

MY 
< +m. 

C--O 
(1.3) 

Then, there exists 6 > 0 such that, for each ~1 E [-b,6], th ere exists X0 > 0 such that the problem 

-Au = Ao(f (4 + cLg(u)), in Sz, 

4an = 0 

has at least three distinct weak solutions in W$2(fi). 

Theorem 1.1, in a slightly simpler (but less general) form, has been announced in (11, as an 

example of application of a new approach to nonlinear eigenvalue problems. 
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Here is the plan for the present paper. Given the novelty of our approach, we report, in 

Section 2, the basic theory developed in [l], giving complete proofs. In Section 3, combining our 

theory with Corollary 1 in [2], we get a three critical points theorem which is the key to proving 

Theorem 1.1. We also establish a technical proposition which is most useful for the applications 

of the basic theory. The proof of Theorem 1.1 is given in Section 4. Finally, Section 5 is devoted 

to various remarks. 

2. THE BASIC THEORY 

Our method is based on the following general principle. 

THEOREM 2.1. Let X be a topological space, 1 E R an interval, and f : X x I -+ R a given 

function. Assume that 

(a) for each x E X, the set 

{XEI:f(x,X) 20) 

is closed in I and the set 

{A E I : f(z, A) > 0) 

is nonempty, connected, and open in I; 

(b) for each X E I, the set 

{xEX:f(x,X)<O} 

is nonempty, closed, and sequentially compact; 

(c) there is Xc E I such that the set 

is connected. 

Under such assumptions, there exists x* E X, X* E I, a sequence {An} in I converging to X*, 

and a neighbourhood U of x+ such that f(x*, X’) = 0 and f (x, X,) > 0 for all n E N, x E U. So, 

in particubr, x* is a local minimum for f(., A’). 

Our proof of Theorem 2.1 is fully based on set-valued analysis. So, for the reader’s convenience, 

we first recall some basic notions on multifunctions. Let X,Y be two topological spaces and 

F : X -+ 2y a multifunction. For any R C Y, we put 

We say that F is lower (respectively, upper) semicontinuous if for every open set fl c Y, the 

set F-(R) is open (respectively, closed). The graph of F (denoted by gr(F)) is the set {(x, y) E 

X x Y : y E F(x)]. We say that F is sequentially upper semicontinuous if for every sequence 

{(G,Y~)) in gr(FL with {xn} converging to some xa E X, there is a subsequence of {yn} 

converging to some yc E F(xo). It is easy to check that when X is first-countable, the sequential 

upper semicontinuity of F implies the upper semicontinuity of F. 

We now point out four propositions whose use will be the key for proving Theorem 2.1. 

PROPOSITION 2.1. (See [3, Theorem 2.21.) Let X be a topological space, I C R a compact 

interval, S a connected subset of X x 1 whose projection on I is equal to I, and P : X --) 2’ a 

lower semicontinuous multifunction, with nonempty connected values. 

Then, the graph of F intersects S. 



Elliptic Eigenvalue Problems 1487 

PROPOSITION 2.2. Let X, Y be two topological spaces, with X connected and first-countable, and 

Jet F : X -+ 2y be a lower semicontinuous and sequentially upper semicontinuous multifunction. 

Assume that there is some x0 E X such that F(xo) is nonempty and connected. 

Then, the graph of F is connected. 

PROOF. Consider the multifunction G : X -+ Zxx y defined by 

G(x) = {x} x F(x), 

for all x E X. It is clear that G is lower semicontinuous and sequentially upper semicontinuous. 

So, since X is first-countable, it is upper semicontinuous. Then, taking into account that G(xo) 

is nonempty and connected, Theorem 1 of [4] ensures that the set Us.* G(a), that is the graph 

of F, is connected, as claimed. I 

PROPOSITION 2.3. Let X, Y be two topoJogicaJ spaces, and Jet F : X -+ Zy be a multifunction, 

with nonempty vaiues, such that F-(y) is open for all y E Y and X \ F-(yo) is sequentially 

compact for some yo E Y. 

Then, for every nondecreasing sequence {Y,} of subsets of Y, with UnEN Y, = Y, there exists 

n E N such that F-(Y,) = X. 

PROOF. Arguing by contradiction, assume that for every n E N, there is 5, E X such that 

F(z,) n Y, = 0. (2.1) 

Fix v E N such that yo E Y,. Thus, for each n > v, one has yo $! F(x%), that is x, E X \ F-(yo). 
Consequently, since this latter set is sequentially compact, the sequence {zcn} has a cluster point 

x* E X \ F-(~0). Fix y* E F(x*) and choose n1 E N such that y* E YnI. Since, by assumption, 

F-(y”) is a neighbourhood of x+, there exists 7~2 > n1 such that x,, E F-(y*). Hence, y* E 

F(z,~) rl Y,,,, against (2.1). I 

PROPOSITION 2.4. Let I G R be an intervaf, X a topological space, and F : I -+ 2* a muJ- 

tifunction, with sequentially compact and sequentially closed values, such that for each x E X, 
I \ F-(s) is connected and open in I. 

Then, F is sequentially upper semicontinuous. 

PROOF. Let {(Xn,xn)} b e a sequence in gr(F), with {&} converging to some X0 E I. So, one 

has 

2, E F(W, Vn E N. (2.2) 

Consider the sets 
NI = {n E N : A, < X0) 

and 
Nz = {n E N : A, > X0). 

One of them is infinite. Suppose, for instance, that N1 is so (the reasoning is similar if N2 is 

infinite), Put 
A = {X E I : {n E N1 : zn E F(X)} is infinite}. 

First, assume that X0 E A. Then, since F(Xo) is sequentially compact, there is a subsequence of 

{x,} converging to some x0 E F(Xo), and we are done. Now, assume that X0 +! A. So, there is 

v E N such that 

5, $ F(Xo), Vn > u, with n E N1. (2.3) 

In view of (2.3), x0 > inf I. Let T = infnEN An. We claim that r E A. Assume the contrary. 

Thus, there is v1 > v such that 

Vn > ~1, with n E N1. (2.4) 
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Then, if n E N1 and n > ~1, from (2.3) and (2.4) we get that both T and X0 lie in I\F-(2,) which 

is, by assumption, connected. But T 5 A, 5 X0, and hence, A, E I \ F-(x,), against (2.2). Since 

F(r) is sequentially compact, there is an increasing sequence {nk} in N1 such that the sequence 

{x,,} converges to some x* E F(r). Now, reasoning as above, we see that for each p l ]r,Xo[, 

the set {Ic E N : x,, E F(p)} is infinite. Consequently, since F(p) is sequentially closed, we have 

x* E F(p). But F-(x*) is closed, and so x* E F(Xo), which concludes the proof. I 

We now can prove Theorem 2.1. 

PROOF OF THEOREM 2.1. Consider the multifunctions F : I ---) 2x and G : X -+ 2’ defined by 

F(X) = {x E X : f(x,A) < o}, 

and 

G(z) = {A E I : f&A) > 0). 

Thanks to (a) and (b), we can apply Proposition 2.3 to G. Thus, if {Ik} is a nondecreasing 

sequence of compact intervals with X0 E 11 and U kEEN Ik = I, there is k E N such that G-(Ik) =X. 

Put 

S = {(x,X) E X x & : f(&x) < o}, 

as well as 

a(x) = G(x) r-l&, 

for all x E X. Observe that @ is a lower semicontinuous multifunction with nonempty connected 

values whose graph does not intersect S. Moreover, by (b), the projection of S on Ik is equal to Ik. 

Consequently, by Proposition 2.1, S is disconnected. But S is homeomorphic to gr(Flr,), and so 

this latter set is disconnected. From (a) and (b), we directly get that the multifunction F satisfies 

the assumptions of Proposition 2.4. Consequently, it is sequentially upper semicontinuous. Since 

(by (c)) F(Xo) is connected, we then conclude, in view of Proposition 2.2, that Fisk. is not lower 

semicontinuous. Hence, there exist A* E Ik, a sequence {A,} in Ik COrWWgingto A*, and an open 

set U c X intersecting F(X*) such that F(X,) II U = 0 for all n. E N. Of course, that means 

f(z, A,) > 0 for all x E U, n E N. By (a), we infer that _f(z, A*) 2 0 for all z E U. Finally, let x* 

be any point in F(X*) n U. So, f( x*, A’) = 0, and hence x* is a local minimum for f(+, A*). 1 

The next result is a consequence of Theorem 2.1 which is particularly useful in view of appli- 

cations to differential equations. 

THEOREM 2.2. Let X be an unbounded, closed, convex set in a separable and reflexive real 

Banach space E; Cp : X -+ R a lower semicontinuous convex functional; Q : X --t R a sequentialiy 

weakly continuous functional; I c R an interval; ~0 E I; and h : I --t R a continuous concave 
function. Put 

and assume that a < b. Moreover, suppose that 

lim 
sex, ll2ll-++oo 

(Q(x) + (A - PO)%)) = +oo, 

for all X E I. Then, for each T ~]a, b[, there exist A” E I \ (~0) and x* E X such that 

@(XT*) + (A* - p,,)@(x*) -I- h(X*) = T, 

and x* is a local, nonabsolute minimum for @ + (A’ - po)Q in the relative weak topology of X. 

PROOF. Fix T ~]a, b[, and put 

f(x, A) = G(x) + (A - c”o)W) f h(X) - T, 
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for all (2, X) E X x I. We wish to apply Theorem 2.1 to such an f, endowing X with the relative 

weak topology. Since T < b and h is continuous and concave, condition (a) is clearly satisfied. 

Moreover, since ip is convex, we can satisfy condition (c) taking X0 = ,u~. Now, fix X E I, and 

consider the set 

L = {z E x : @(z) + (A - pl))!lqz) 5 T - h(X)}. 

It is clear that L is nonempty (since a < T-) and bounded, in view of the coercivity of the functional 

Cp + (X - PO)*. Let us show that L is weakly closed in X (and so in E, since X is weakly closed). 

So, let x0 E X be such that 

@(x0) + (A - PO)@(~O) > 7. - h(X). 

Choose p > 0 so that 

@i(x) + (A - POP(X) > T - h(X), 

for all 5 E X, with ][z-x011 > p. Since E is separable and reflexive, the set {z E X : llx--zoII 5 p}, 

equipped with the relative weak topology, is metrizable. Consequently, the restriction to this set 

of the functional Cp + (X - /JO)Q is weakly continuous. Hence, there is a neighbourhood U of x0 

in the weak topology of E such that 

G(z) + 0 - @o)@(X) > T - h(X), 

for all 2 E UnX, with ~~x-xo~~ < p. This inequality is so satisfied for all x E UnX, showing that 

X \ L is weakly open in X. Then, by reflexivity and by the Eberlein-Smulyan theorem, L is also 

sequentially weakly compact, and so condition (b) is satisfied. At this point, the existence of X* 

and z* as in the conclusion follows directly from Theorem 2.1. In particular, the fact that x* is 

not an absolute minimum for @ + (X* - PO)!& follows from the inequality a < T. Moreover, the 

fact that X* # ~0 follows from the convexity of @. I 

REMARK 2.1. From the above proof, it is clear that when P,-J = inf I (respectively, /-LO = supI), 

it suffices to assume that Q is sequentially weakly lower (respectively, upper) semicontinuous. 

3. A THREE CRITICAL POINTS THEOREM 

The key to proving Theorem 1.1 is provided by the following result which comes from a joint 

application of Theorem 2.2 with Corollary 1 in [2]. 

THEOREM 3.1. Let X be a separable and reflexive real Banach space; @ : X --+ R a continuously 

Gdteaux differentiable and convex functional whose Gtiteaux derivative admits a continuous in- 

verse on X’ ; %J! : X 4 R a continuously GGteaux differentiable functional whose Gliteaux 

derivative is compact; I E R an interval; and ~0 E I. Assume that 

,,,,~+,(@(x) + (A - Po)Wx)) = +a, 

for all X E I, and that there exists a continuous concave function h : I -+ R such that 

(3.1) 

Then, there exists X’ E I \ (~0) such that the equation 

@‘(z) + (X’ - /&)9’(x) = 0 

has at least three solutions in X. 

PROOF. Clearly, Q and Q satisfy the hypotheses of Theorem 2.2. 

is compact implies that 9 is sequentially weakly continuous [5, 

- POP!(X) + h(X)). (3.2) 

In particular, the fact that Q’ 
Corollary 41.91. Hence, there 
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exists A* E I \ (~0) such that the functional Cp + (A” - po)\k has a local, nonabsolute minimum 

in the weak (and so in the strong) topology of X. By (3.1), this functional has an absolute 

minimum, too. Moreover, our assumptions ensure that it satisfies the Palais-Smale condition 

(see, for instance, [5, Example 38.251). Then, by Corollary 1 in [2], the same functional admits a 

third critical point, as claimed. I 

The application of Theorem 3.1 in proving Theorem 1.1 is made possible by the following 

proposition. 

PROPOSITION 3.1. Leti X be a nonempty set, and Cp, J two real functions 

there are r > 0, 20, ~1 E X, such that 

Q(Q)) = J(ZrJ) = 0, @‘(21) > T, 

sup 
Jh> J(z) < T-. 

SE@--‘(]-u&r]) @(Xl) 

Then, for each p satisfying 

one has 

sup 
J(xI> J(x) <p < r-, 

ZE@--‘(I-oo,r]) @(Xl) 

on X. Assume that 

(3.3) 

(3.4) 

PROOF. First of all, observe that 

!:f( ~>LJW + X(P - J(x))) = _jftpf +ool) (a(x). 

Next, note that by (3.4), one has 

r5 inf 
z&J-* ([P,+col) 

Q(x). 

Moreover, since @(xl) > r, from (3.4), we infer that J(xl) > p. This implies that the function A --f 

infZEx(@(z) + X(p - J(z))) tends to --oo as A + +oo. But, this function is upper semicontinuous 

in [0, +oo[, and hence, it attains its supremum at a point x. We now distinguish two cases. 

If 0 5 1 < r/p (note that p > 0 since @(x0) = J(Q) = 0), then @(x0) + A(p - J(x0)) = 
&I < r. If r/p I A, then since (by (3.4) again) (r. - @(zl))/(p - J(q)) < P./P, we have 

@(z,) + A(P - J(n)) < T, and the proof is complete. I 

REMARK 3.1. Let X be a nonempty set, and a’, J two real functions on X having a common 

zero. Consider the function cp : IO, +oo[ + [0, +co] defined by putting 

At> = 
suP@-1(]-c0,t]) J(x) 

t , 

for all t > 0. Then, it is easy to check that the following conditions are equivalent. 

(i) The function cp is not nonincreasing. 

(ii) There exist r > 0 and ~1 E X, with Q(z~) > T, such that 

sup 
J(a) J(x) < T-. 

ZE*-1(]-co,r]) @(Xl) 
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4. PROOF OF THEOREM 1.1 

We are going to apply Theorem 3.1, taking I = [0, +oo[, ~0 = 0, and X = wit2(R), with the 

norm ]]~j] = (Jo ]VU(Z)]~&)~/~. For each u E X, put 

and 

By (1.3), there are 77 E]O, I] and c > 0 such that 

J 
s 
f(t) dt 5 cICl’, 

0 

for all ,$ E 1-7, q]. Of course, it is not restrictive to assume that y < 2n/(n - 2) (if n > 2). In 

view of (1.2), if we put 

Cl = ma-x c, sup 
{ 

41 + 111”) 
ICI>0 I iv ’ 

we have 

for all c E FL Consequently, if T > 0 and ll~j/~ 5 Zr, by the Sobolev embedding theorem, we have 

(for suitable constants ~2, cs) 

J (J > 
Y/2 

Jl(u) L ci s1 b-+>lr kc 5 ~2 lVu(x}12 dx 5 c&? 
n 

Hence, we have 

Iim 
SUP~~74~~2TJlb) () 

=. 
T-d+ r 

Since, by assumption, sups& $ f(t) dt > 0, we can choose w E X \ (0) in such a way that 

Jr(w) > 0. Now, fix r,c > 0, with r < (1/2)[Jn111~, so that 

Jl (4 sup J&) ~2r------E. 
l14129r 11412 

Next, fix 6 > 0 satisfying 

Then, if we put 

fT=c--6 sup 1 J2(u)I + 2r- 
b11252F 

we readily have 

SUP (J&l + pJ2b)) 5 29. 
J&4 + CIJZW _ ~ 

b’11’3F bll” ’ 
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for all p E [-&A]. Finafiy, fix p f [-S, S], and define @, @ : X + R, and h : {O, +cm[ + [0, +co[, 

by 

where p is a fixed number satisfying 

sup (A(u) + @2(u)) < P < 2%. 
Jl (w) + $2 (w) 

I141212r 11412 ’ 

By (l.l), it follows that the functional 9 is continuously Gateaux differentiable, with compact 

Gateaux derivative, the weak solutions of the problem 

-Au = W(u) + w(u)), in 52, 

u1an = 0 

being precisely the critical points in X of the functional @ + X9 [6, Proposition B.10). Further- 

more, observe that thanks to (1.2) and to the Poincare inequality, one readily has 

llup+,w4 + XQ(u)) = +m, 

for all X 2 0. Consequently, thanks to Proposition 3.1, @, Q, and h satisfy all the assumptions 

of Theorem 3.1, and our conclusion then follows directly from the latter. I 

5. REMARKS 

We begin this section with the following remark. 

REMARK 5.1. In Theorem 1.1, the condition supEsn s,’ f(t) dt > 0 is essential. Indeed, if we 

drop this condition, then we can assume f = g = 0, and, of course, the conclusion does not hold. 

Likewise, we cannot drop condition (1.3). To see this, take f = 1 and g = 0. Note that when 

n = 1, condition (1.1) can be removed. Concerning condition (1,2), we believe that some slightly 

more sophisticated examples should show that it cannot be omitted. Moreover, the conclusion 

of Theorem 1.1 cannot hold, in general, for any /J E R. ‘IO see this, it suffices to take first an f 

satisfying (together with -f) the assumptions, and then g = f, p = -1. 

REMARK 5.2. Proposition 3.1 provides a first, natural way of finding a suitable continuous 

concave function h for which inequality (3.2) does hold. Precisely, it provides an h which is 

linear. It would be very interesting to find a pair of functionals @, 9 satisfying the assumptions 

of Theorem 3.1 and such that for each linear function h on R, inequality (3.2) does not hold. 

REMARK 5.3. Clearly, if @, J are two real functions on a set X having a common zero ~9, the 

simplest way of satisfying condition (3.3) in Proposition 3.1 is to assume that 

and that there is some ~1 E X such that min{@(zi), J(zi)} > 0. Now, besides these assumptions, 
suppose that X is a topological space, Q is continuous at ~0, and 20 is a strict local minimum 

for Q. Then, for every X > @(z~)/J(E~), ~0 is a strict local, nonabsolute minimum for @ + XJ. 

To see this, fix an q > 0 such that 

suPZ,~-‘(l-aJ,Pl) J(z) < 1 
r A’ (5.1) 
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for all r ~10, n[. Next, choose a neighbourhood U of x0 such that 

for all z E U \ (x0). Consequently, in view of (5.1), if x E U \ {x0}, we have 

that is 

@(x) - U(x) > 0. 

From this, recalling that @(xl) - XJ(zr) < 0, our claim follows. 
At this point, the meaning of the present remark is clear. That is to say, when we are in a 

setting of the type described above, the conclusion of Theorem 2.2 (even in a more precise form) 

follows at once, without resorting to Theorem 2.1. Consequently, always in the same setting, 

the nontriviality of the conclusion of Theorem 3.1 would be due to Corollary 1 in (21 only. As it 

comes out from the proof, this remark applies to Theorem 1.1 when g = 0. In other words, the 

full power of Theorem 1.1 resides in the cases where g # 0. 

REMARK 5.4. The final remark concerns the position of Theorem 1.1 with respect to known 

results. So, given a continuous function cp : R + R, let us consider the problem 

-Au = Acp(u), in R, 

u1ao = 0. 

In checking the (by now boundless) literature on multiplicity results for this problem, we can 

realize two distinct categories of them, according to whether the conditions imposed on cp imply 

that ~(0) = 0 or not. The results where ~(0) = 0 are certainly the majority. We refer, for 

instance, to [7-131, and, more generally, to the monographs [6,14,15]. 

In our Theorem 1.1, condition (1.3) implies that f(0) = 0, but we can have g(0) # 0, and so for 

our cp (that is f+pg) we can have ~(0) # 0. In another numerous category of papers, the ancestor 

of which is [16], it is required that the limits lim++m((p(c)/t) and lim+_,(v(<)/<) exist, in 

order to do suitable comparisons with the eigenvalues of the problem -Au = Xu, ~130 = 0. We 

refer, for instance, to the papers quoted in [17] and, furthermore, to [M-21] and the references 

therein. 

The hypotheses of Theorem 1.1 do not imply that the above limits exist. In conclusion, 

assuming n 2 3, consider the specific problem 

-Au = X ( ]u]~-~ UCOS ]zl]? + p (a]u]Q f 6)) , in 52, 

u1an = 0, 

wherea,b,~~RR,0<q<1,and2<y<2n/(n-2). 

Clearly, Theorem 1.1 applies. Accordingly, if ]p] is small enough, there is X > 0 for which 

the problem has at least three weak solutions. Actually, these solutions are classical since the 

right-hand side of the equation is locally Holder continuous. 

Such a conclusion, for the problem under consideration, can be deduced from none of the 

results we have quoted above. 
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