
VLSI DESIGN
2001, Vol. 12, No. 2, pp. 245-273
Reprints available directly from the publisher
Photocopying permitted by license only

(C) 2001 OPA (Overseas Publishers Association) N.V.
Published by license under

the Gordon and Breach Science
Publishers imprint.

An Instruction-Level Power Analysis Model
with Data Dependency

GIUSEPPE ASCIAa’*, VINCENZO CATANIAa’t, MAURIZIO PALESIa’*

and DAVIDE SARTAb’

aDipartimento di Ingegneria Informatica e delle Telecomunicazioni, Universith di Catania, V.le. A. Doria,
6-95125 Catania- Italy," bSTMicroelectronies, Stradale Pr#nosole 95100 Catania- Italy

(Received 20 June 2000; In finalform 3 August 2000)

Power constraints are becoming a critical design issue in the field of portable
microprocessor systems. The impact of software on overall system power is becoming
increasingly important as more and more digital applications are implemented as
embedded systems, part of which are hardware (ASICs) and part software in which a
specific application is executed on a processor. In this paper, a data-dependent
instruction-level power analysis model is presented. It is compared with the average cost
model proposed by Tiwari et al. [1] in both estimation accuracy and characterisation
time. The data-dependent model can be generalised to be applied to generic RISC
processor. Application of the data-dependent model we propose sensibly reduces errors
in estimating software power consumption per clock cycle which is lower than 10%, in
the case of the ST20-C2P core.

Keywords: Embedded systems; Low-power; Power estimation; Instruction-level power model;
Data dependency; Software consumption

1. INTRODUCTION

The spread of portable microprocessor systems
(mobile phones, PDAs, MP3 players) that use a
battery as a source of energy is making power
consumption a key issue. Power consumption con-
straints are now equally important system design
specifications as memory area and performance.

The reasons for this sudden interest are not
only the evolution of technological processes
(which makes it possible to integrate millions of
transistors on a cm2 die) but also the develop-
ment of the System-On-Chip concept whereby a
processing system with all its peripherals can be
implemented on a single integrated circuit, thus
allowing us to hold in the palm of our hand what

*Corresponding author. Tel." + 39-95-7382353, Fax: / 39-95-338280, e-mail: gascia@iit.unict.it
e-mail: vcatania@iit.unict.it
e-mail: mpalesi@iit.unict.it
Tel." / 39-95-7407742, Fax: + 39-95-7407720, e-mail: davide.sarta@st.com

245

246 G. ASCIA et al.

up to a few years ago took up a whole desk.
Competition on the portable electronics market
concerns three different aspects: autonomy, func-
tionality and volume. Only an optimal combina-
tion of these three indexes is the winning solution.
It is not a simple task as these three variables are

closely correlated and enhancing one is often to
the detriment of another. If, for example, the aim
is to increase autonomy, one possibility is to use a

larger battery, but this increases the volume; to
increase functionality more complex software is
needed (the functions of an embedded system are
usually implemented by the software): this gen-
erates a greater processing workload, which means
more power consumption and consequently less
autonomy.

Current research in the field of low-power
devices focuses on two issues: methods to design
low-consumption architectures and the definition
of techniques to analyse power consumption right
from the earliest design stages. The former include
low-power synthesis techniques [5, 6] which map a

technology-independent circuit onto a dependent
one, using a power metric to choose gates from a

library; techniques for power management applied
to the single blocks of a circuit which allow blocks
whose result will not be used to be turned off
(clock gating, operand isolation etc.) [7-10];
encode/decode techniques to minimise switching
on high-capacity buses (e.g., those interfacing the
memory) [13-19]. Among the latter we have
methods operating at a higher level of abstraction
which conduct a search through all possible system
configurations and choose the one that optimises a
function usually depending on the variables area,
performance and power. In [21,22] the possible
configurations of a reference system comprising a
CPU, a hierarchy of memories and a certain
number of ASICs and peripherals are explored for
varying memory hierarchy configurations (size,
associative capacity, cache block size) and bus
features (number of lines, encoding techniques). In
[23,24] the architecture of more complex, highly
parametrised systems is explored, defining a wide
range of possible configurations.

Optimisation in terms of power is only possible
if estimation methods and power analysis tools are
available to measure the impact of any modifica-
tions made. Power consumption analysis often
focuses more on the impact of the hardware
components of a system, not taking into account
the impact of software on overall system power.
Software is, however, becoming increasingly im-
portant as more and more digital applications are
implemented as embedded systems, part of which
are hardware (ASICs) and part software in
which a specific application is executed on a

processor. Although it is clearly of fundamental
importance to assess the impact of software on

power consumption, most research efforts have
focused on defining analysis methods at a low level
of abstraction, i.e., at the circuit and gate level,
and little has been done at a higher level, in
particular the software level. Analysis at lower
levels gives the best results in terms of accuracy,
but it takes a very long time to estimate the con-
sumption of a system on which a program is
executed. Estimating the power consumption for a

program with millions of instructions is not

realistically possible with low-level analysis tools.
A higher-level, i.e., software-level, methodology is
less accurate but has the advantage of taking much
less time.
An approach specifically defined to estimate the

amount of power absorbed by a processor when it
executes a software program was presented by
Tiwari et al., in [1]; it consists of characterising the
instruction set of a processor in terms of power, by
assigning an average cost to the various instruc-
tions. Once the instruction set has been charac-
terised in terms of power it is possible to calculate
the amount of power absorbed by the processor
when it executes any program with a known trace,
by summing the power contributions of each
instruction executed. This model, however, does
not take into account the contribution of data to
power consumption. While it is low for highly
complex processors, in the case of very simple
processors (frequently used as the core of
embedded systems) the contribution made by data

POWER ANALYSIS MODEL 247

may be significant. In this case considerable errors
may be made in estimating power consumption.

In this paper we present a software power
consumption analysis model that can capture its
dependence not only on instructions but also on
data. The cost model is characterised by means of a
circuit-level analysis tool. Characterisation using
very low-level analysis tools is the only type possible
when the processor silicon is not available but only
an HDL model or the netlist of the core, as happens
in the design of embedded systems. Although the
instruction set is characterised at a low level, this is
not a limiting factor because it only needs to be
done once. Once the characterisation stage has been
completed, software power consumption can be
estimated by executing the program on a simulator
of the processor and summing the contributions
made by the instructions and the data involved at
each clock cycle. This means that it is not necessary
to know details of the architecture of the processor
to estimate the software power consumption, but it
is necessary to have the power cost model provided
by the manufacturer.

Application of the data-dependent model we
propose sensibly reduces errors in estimating
software power consumption per clock cycle. In
the case of the ST20-C2P core, which we took as a
case study, the error per cycle remained lower than
10%, whereas the mean error for the whole of the
test was below 5%.

In 2 we will describe the average cost model
proposed by Tiwari et al. [1] and apply it to the
ST20-C2P. As will be seen, the great data-
dependency prevents an instruction from being
labelled with an average cost. To overcome this
problem, in 3 we propose a data-dependent model
which measures certain activity indexes to obtain
more precise estimates for all architectures in
which data makes a significant contribution to
power consumption. In 4 we will discuss the
strategy used to design a high-level tool to estimate
software power consumption on the basis of a
trace generated from a functional model of the
processor. Finally, 5 will give our conclusions and
discuss future developments.

2. AN AVERAGE MODEL

In [1] Tiwari et al., proposed a method for
estimation of the power absorbed by a processor
executing any program, starting from a trace of
the instructions it executes. The authors state that
by measuring the power absorbed by a processor X
repeating certain instructions or short sequences of
instructions it is possible to obtain much of the
information needed to calculate the power dis-
sipated when the processor X executes the instruc-
tions of any program Y. Note that we will use
terms power and energy interchangeably since for a

processor power is just the energy per cycle times
the clock frequency.
Given a processor, and indicating the code of a

generic program as P, an estimate of the amount
of power absorbed by the processor during the
execution of P is given by the following equation:

Ep Z(Bi x Ni) -at- Z(Oi,j >(Ni,j) --[- Z Ek (1)
i,j k

where the basic cost, Bi, of the instruction (i.e.,
the average amount of power absorbed when all
the stages of the pipeline are processing the
instruction i) is weighted by the number of times,
Ni, the instruction is executed. To this it is

necessary to add the overhead, Oi,j, due to the
change in system configuration (since the instruc-
tion is preceded by the instruction j) weighted by
the number of times, Ni,j, this pair occurs during
execution of the program. Finally, the power
consumed by any stalls or cache misses that occur

during execution of the program is added. The
terms Bi, Oi,j, Ek refer to the processor being
investigated and are determined in a preliminary
characterisation stage in which the basic cost of
each instruction in the instruction set and the cost
of changing instructions for each pair of instruc-
tions (or each pair of classes of instructions) are
defined. In Section 2.1.2 we will discuss the
techniques used to determine these values.
Model was applied to three different proces-

sors [3]: an Intel 486DX2 (a CISC processor based

248 G. ASCIA et al.

on the x86 architecture) [1], a Fujitsu SPARCli-
teMB86934 (a 32-bit RISC processor based on the
SPARC architecture) [4] and a proprietary Fujitsu
DSP [2]. For the fist two the model was simplified,
representing the contribution Oi,j for any pair of
instructions with a single constant term. This was
because the overhead (with respect to the basic

cost) of the power absorbed during execution of
the instruction when it is preceded by the
instruction j is negligible if compared with
the average amount of power absorbed during
the execution of a program. These contributions
range from 5 to 30mA as compared with 300-
400mA during execution of a program on the Intel
486DX2, and are below 20mA on the Fujitsu
SPARClite as compared with a range of 250-
400mA. With the DSP, on the other hand, the
overhead is not negligible and has to be taken into
account.

2.1. Application to the ST20-C2P

Equation (1) was adapted for application to the
ST20-C2P, which is a core processor, i.e., a
processor that does not exist as a single component
but is the core of a microprocessor-based em-

bedded system. It is used in a range of applications
from the cheapest portable embedded systems to
more exacting applications with the performance
requirements typical of DSPs [25]. It is a 32-bit
processor, the control unit is micro-programmed,
it has a two-stage pipeline (the first stage involving
instruction fetch and decoding, the second execu-
tion and write back), and is manufactured using
HCMOS7 technology, 0.25 lxm, 2.5 V. The analysis
was made considering the two main blocks making
up the CPU the fetch unit and the execution unit

separately. The fetch unit features average power
absorption per cycle of about 6.6mA with an

average deviation of =k 2 mA. The execution unit

absorbs on average 30.3 mA =k 15 mA. It was
therefore decided to label the fetch unit with a
fixed cost of 6.6 mA and to treat the execution unit
separately, as it is the main power consumer.

In general, the average amount of power
absorbed by a processor in a given clock cycle

depends on the instructions processed by the
various pipeline stages in that clock cycle. If we
take the ST20-C2P as a reference and define the
clock cycle in which the instruction Ii is executed as
the cycle in which the instruction Ii is processed by
the last stage in the pipeline, we can write:

Cost(Ii) base(Ii) + (Ii-1 li)back
-[-(Ii Ii+1)forw (2)

Cost(Ii) indicates an estimate of the average
amount of power absorbed during execution of
the instruction Ii. The term base(Ii) represents the
basic cost of the instruction Ii, i.e., the average
amount of power absorbed by the processor
during execution of instruction Ii when the latter
is preceded by the same instruction Ii, or more
generally, when all the stages in the pipeline
are processing the instruction Ii. The terms

(Ii_ ---Ii)back and (Ii---+ Ii+l)forw which we will
call the backward and forward costs respectively,
represent the inter-instruction contribution, i.e., an
excess added to the basic cost due to the fact that
the instruction currently being executed is pre-
ceded and/or followed by a different instruction.
The former is the inter-instruction cost in the
execution stage while the latter is the inter-
instruction cost in the fetch and decoding stage
(see Section 3.4). We will indicate this model as
ACM (average cost model).

2.1.1. Explanation of Inter-instruction Costs

When an instruction Ii is preceded by an instruc-
tion Ii_ (Ii Ii_ 1) or followed by an instruction

Ii+l (Ii Ii+ 1), its cost exceeds that of base(Ii).
This excess is called the inter-instruction cost.

It can be seen as the sum of two contributions: a
backward cost and a forward cost. To see how
much the inter-instruction cost affects the basic
cost of an instruction, consider Table I. The first
column shows the instruction executed, the second
column the average amount of power absorbed by
the execution unit, the third the average amount of
power absorbed by the micro-controller block

POWER ANALYSIS MODEL 249

TABLE How much the inter-instruction cost affects the
basic cost of an instruction

Ieu I,C overhead
Instruction (mA) (mA) %

ldnlp 15.209 10.885
stl 12.994 3.5719
stl 7.0202 2.6162
stl 31.801 27.223
add 12.212 3.3052

85%
0%
353%

alone, and the fourth the percent increase in power
absorbed when an instruction is followed or

preceded by a different instruction as compared
to when it is preceded or followed by the same
instruction. As can be seen, an stl [25] followed
and preceded by the same stl causes an absorp-
tion of about 7 mA in the execution unit, 2.6 mA of
which are absorbed by the micro-controller alone.
The first stl preceded by an ldnlp, on the other
hand, absorbs about 13 mA, causing an overhead
of 85% as compared with the previous case, due to
the change in configuration. The last stl followed
by an acid causes an absorption of about 32mA
with an overhead of 353% as compared with the
first case discussed. In this last case, the excess is
all concentrated in the micro-controller block
(86% of the power absorbed by the execution unit

in this case is concentrated in the micro-control-

ler). Later on it will be seen in the case study that
the average amount of power absorbed by the
execution unit during execution of an instruction
greatly depends on the data it is processing. The
values given in Table I are there not absolute
values but can vary considerably along with
variations in the data involved. The values given
were measured in particular conditions of null
activity (the concept of null activity will be dealt
with in further detail below).
A great inter-instruction effect was also ob-

served in [3] for a proprietary Fujitsu DSP in
which the overhead was in some cases over 25 mA
when variation of the power absorbed during
execution of a program was distributed in a range
between 20 and 60mA. For more complex
architectures like the Inte1486DX2 and the Fujitsu
SPARClite, these effects were considered to be

negligible as compared with the basic cost: in the
worst case the excess was no higher than 10% of
the basic cost ([3, 4]).
As for many microprocessors, in the ST20-C2P

functioning at the circuit level is controlled by
a micro-programmed sequence of instructions
stored in a ROM in the CPU. Retrieval of the
instructions in machine language and decoding
causes the execution of a micro-program. The
latter controls all the activity of the signal lines and
all the data transfer or operations in the CPU
during execution of the instruction. By way of
example, let us refer to the execution of three
instructions, Ii_ 1, Ii, Ii+ 1, and consider the clock
cycle in which the last stage is processing instruc-
tion Ii. In this case, (Ii_ Ii)back is due to the
-change in the configuration of the execution stage
which was processing instruction Ii-1 in the
previous clock cycle. (Ii Ii+ 1)forw, on the other
hand, is due to the change in the configuration of
the fetch/decode stage that was processing instruc-
tion Ii during the last cycle, while it is currently
processing instruction Ii+ 1.

2.1.2. Determination of Costs

Application of the model described by Eq. (2)
requires the basic and inter-instruction costs to be
determined. The basic cost of instruction Ii is
determined by constructing a test entailing repeti-
tion of instruction Ii and making it operate on data
uniformly distributed within the admissible range
of variation. To clarify this concept, let us assume
that the instruction being investigated is Inst n,
operating on an explicit 32-bit operand. The test to
calculate the cost base(Inst) will be:

Inst N1

Inst N2

Inst N3

Inst Nn

where Ni [0x00000000, 0xFFFFFFFF].
Having obtained the average current absorbed

by each instance of the instruction Inst n (we say

250 G. ASCIA et al.

c1, 2, n) we have:

base(Inst)
nk=l

(3)

To determine the inter-instruction costs
(Ii--1 ---+ Ii)back and (Ii Ii+ 1)forw it is sufficient to
construct a test in which a sequence of Ii is
embedded between a pair of instructions Ii_ and

Ii+ 1. The first occurrence of Ii will contribute
towards determining the cost (Ii_ -+ Ii)baek, while
the last will determine the cost (Ii Ii+ 1)forw.
To make this even clearer, let us consider the

following code fragment:

2. Ik)

3. I}k)
4 I (k)

i+l

Let us assume that the sequence is repeated N
times (k E {1,2,..., N}), keeping the operands of

Ii uniformly distributed. Let cl) be the power
absorbed by the i-th instance of the sequence at the
k-th repetition. We therefore define:

N C:)_ base(li) (4)(li-I i)back-- N
k:l

U c)_base(li)
(li-I --+ li)forw Z N (5)

k:l

A basic hypothesis for characterisation of the
instruction set using the ACM is the possibility of
creating sequences formed by the same instruction
(the one to be characterised) operating on uni-
formly distributed data. In the architectures taken
as references in [1-4, 11] most of the instructions
have an explicit argument, in which case the
structure of the test to determine the basic cost of a
generic instruction Inst can be as follows:

Inst nl

Inst n2

Inst nn

where ni are uniformly distributed. The ST20-C2P
has a load/store stack-based architecture with a
stack comprising three registers. Most of the
instructions work on the data stored in the registers,
so it is necessary to alternate register loading with
the repetition of the instructions. As the execution
of an instruction causes stack rotation, making the
last register indefinite, the maximum length of the
sequence is three instances: during execution of
the second instance the measurement is made, while
the first and third instances give the measure
without the inter-instruction effects. The test to
determine the basic costs for instruction Inst
will be structured as follows:

load registers
Inst

Inst

In this case the amount of power absorbed has
to be measured as corresponding to the framed
instruction, so we need measurement tools that
make it possible to conduct an analysis at the
instruction level. From an operational point of
view, the use of a simulation tool provides a cycle-
accurate analysis but the simulation takes a long
time. In this case, in fact, to determine the basic
cost of an instruction it is necessary to take N (in
[11], for example, N=100) measures, which
require the execution of N sequences of this kind.

Characterisation of the model (i.e., determina-
tion of the basic and inter-instruction costs)
requires a tool to measure the amount of power
absorbed by the processor during execution of a
software test. The approach adopted in [1-4] was
to use an ammeter in series between the electric
power supply pin of the processor and the power
source. Although this method has the advantage of
allowing measurements to be taken rapidly, it
presents a number of problems: it supplies average
information concerning a time window in which

POWER ANALYSIS MODEL 251

various instructions are executed, and it requires
availability of the processor as an integrated
component. In many cases, as in the hardware/
software codesign of an embedded system for
example, the silicon of the core alone does not
exist and the only way to measure the power
absorbed by the core is to use a simulation tool for
power analysis. As the ST20-C2P is a core

processor, i.e., a processor that does not exist as
a single component, a transistor-level simulator,
Powermill, was used as a measurement tool.

Figure shows the flow of operations performed
to construct the database of basic and inter-
instruction costs, to estimate the code and make
a comparison with the results of the electrical
simulation. The program being analysed was used

VHDL Simulator

we

Estimator Cot Costs
Extractor

Compare

FIGURE Flow of operations performed to construct the database of basic and inter-instruction costs.

252 G. ASCIA et al.

as input for VHDL simulation, to generate stimuli
for simulation with Powermill. VHDL simulation
also provides the signals needed to generate a

cycle-accurate trace of the flow of instructions
executed. The results of the Powermill simulation
are combined with the trace of the program to
generate an instruction trace file including power
information. This file is processed to extract any
basic and inter-instruction costs, which will be
stored in a database. Together with the trace of the
instructions executed, this will represent the input
for the estimation program, the results of which
will be compared with those obtained in the
Powermill simulation.

2.1.3. Results of Estimation

In [1] the ACM gave good results when used to
estimate the power consumption of two commer-
cially available processors, the Intel 486DX2 and
the Fujitsu SPARClite 934, in which a low data-
dependency was observed and the hypothesis of

labelling instructions with an average value was
confirmed. In [2] the same authors then applied the
ACM to a DSP, noticing that in this case data-
dependency is greater and the inter-instruction
effect more marked. These effects are always
present, but their contribution in terms of the
fraction of power absorbed grows in an inversely
proportional fashion to the architectural complex-
ity of the processor. In DSPs with simple
architectures, these effects are much more evident.
In [1] the range of variation on the basic cost as the
data varied always remained below 5% for the
Intel 486DX2. In [3], on the other hand, a greater
variation was observed for a proprietary Fujitsu
DSP, but it remained lower than 10%.
With the core ST20-C2P we observed that

consumption strongly depended on data. To
highlight the contribution of data to power con-

sumption, Figure 2 shows the average amount
of power absorbed by the execution unit cycle
by cycle during execution of a sequence of add

instructions operating with null arguments

221
low activity

/ high activity

20I. estimatin ’A’

12

0 5 10 15 20 25 30 35 40 45 50
cycles

FIGURE 2 Average amount of power absorbed by the execution unit cycle by cycle during execution of a sequence of add
instructions operating with null arguments and gradually increasing arguments.

POWER ANALYSIS MODEL 253

(dashed and dotted curve) and gradually increas-
ing arguments (continuous-line curve). The aver-

age amount of power absorbed per cycle ranges
between 7 and 20mA, a band of 13mA that
corresponds to 185% of the minimum absorption,
while in terms of power there is an increase of 78%
entirely due to the effect of the data. Use of the
ACM to estimate this code (dashed curve) would
mean a mean error per cycle of 98% in the low-
activity test estimate and 20% in the increasing
activity estimate.

In our case study, the data-dependency of power
consumption is far from negligible. The range of
variation of the amount of power absorbed during
execution of an instruction with varying amounts
of data is on average 150% more than the lower
end of the range.

3. A DATA-DEPENDENT MODEL

In Section 2.1.3 it was shown that use of the ACM
to estimate the average amount of power absorbed
by an instruction leads to considerable error with
simple processor architectures. It is therefore not
appropriate to label an instruction with an average
value: we need a model that is data-dependent as
well [12]. In the following sections we will present a

data-dependent estimation model as a general-
isation of the ACM, simply separating the basic
and inter-instruction costs from the contribution
made by data. The model will be adapted in order
to apply it to the ST20-C2P and will be validated
by estimating some software tests and comparing
the results with those obtained using the ACM.

3.1. Formulation

We will initially refer to the simple architecture of
the core processor which represents our case study.
Architectures of this kind are commonly used in
embedded systems in which memory area and
power consumption constraints are more impor-
tant than performance. The model will then be

extended to consider RISC architectures with a
greater pipeline depth.
Given the sequence of instructions Ii_ 1, Ii and

Ii+1, the average amount of power absorbed
during execution of the instruction Ii can be
estimated by using the following equation:

Cost(Ii) base(F) (Ii+1) + int(F) (Ii, Ii+l)+

+ base(e) (Ii) + int(e) (Ii-1, Ii)
+f(data) (6)

Considering constant the power absorbed by the

fetch unit (base(v)(Ii)- K V Ii), given base()(Ii)-
base(e) (Ii) + K and indicating the inter-instruction
costs in the execution and fetch stages as (Ii-1
Iij’back(O) and (Ii Ii+ Jforw

(0) respectively, we have:

1. (o)Cost(Ii) base() (Ii) -k- (Ii-1 .tlback -+-
(o)/ (I I+ forw +f(data) (7)

The estimation function is seen as the sum of
three contributions: that depending on the instruc-
tion being examined, the inter-instruction contri-
bution (the sum of the effect of the change in
configuration and the determination of the sub-
sequent state) depending on the instruction pre-
ceding and following the one being executed, ad
lastly the contribution made by the data. The three
addends are filtered by their mutual effects: the
basic and inter-instruction costs are determined in
a state of null activity and the contribution of
the data is filtered by the basic and inter-instruc-
tion costs.

3.1.1. Basic Cost in a State of Null Activity

The meaning of the terms appearing in Eq. (7) is
made clearer by Figure 3, which shows part of the
datapath of a generic processor, comprising three
components: the registers, the datapath buses and
the logical combiner blocks. The first contain the
data to be processed, while the second act as
channels to transfer the data to the combiner

254 G. ASCIA et al.

ResBus
ReglFromResBus

Register

RegNFromResBus

Register N

XBusFromRegl

YBusFromRegl

XBusFromRegN

YBusFromRegN

XBus YBus

FIGURE 3 Part of the datapath of a generic processor.

blocks. Figure 3 shows N registers connected to
the two datapath buses (xbus and ybus) by three-
state buffers, xbus and ybus are connected to the
ALU, the sub-blocks of which (adder, multiplier,
shifter, comparator, etc.) perform arithmetical and
logical functions on the data transported by xbus
and ybus. All the blocks have the same input and
all output a result. A multiplexer will only select
the output of the correct block, loading the resbus
with the result of the operation requested.
The basic cost of the instruction Ii in a null

activity state (base)(Ii)) is defined as the amount
of power absorbed during execution of the
instruction Ii when it is preceded and followed
by the same instruction Ii and null activity is
maintained on the buses and registers. As execu-
tion of an instruction translates into correct
mapping of the registers on xbus and ybus, by
maintaining activity on the registers null, the
activity on the bus is also null.

For the ST20-C2P the basic null-activity cost
was around 7.2 mA per instruction. The reason for
this behaviour is mainly the absence of operand
isolation techniques: during execution of an in-
struction all the blocks are working and producing
a result; the only difference between two different
instructions is selection of the output of one block
rather than that of another. If, for example, we
focus on the ALU block during execution of an
add instruction, all the blocks (adder, comparator,
shifter etc.) receive the same data and they all
output a result, but only the adder output is
selected. This therefore accounts for the similarity
between the basic costs.

Table II gives the basic null-activity costs for 36
instructions. As expected, the null-activity basic
costs for the various instructions are pretty much
the same. The average deviation of the null-
activity basic costs from the average value is less
than 7%.

POWER ANALYSIS MODEL 255

TABLE II Basic null-activity costs for 36 instructions (values
in mA)

Current Current
Instruction (mA) Instruction (mA)

adc 6.8462 ldnlp 6.7553
add 6.8055 ls 7.1600
and 6.7426 lsx 7.4301
bcnt 6.7660 mint 8.1546
bsub 6.8478 nop 5.8913
cj 8.3284 or 7.1834
diff 6.7552 pop 8.4912
dup 6.8469 rev 6.8016
eqc 8.2784 shl 6.8044
gt 6.8644 shr 6.7221
gtu 8.4379 ssub 6.8047
lb 7.2378 stabs 7.0677
lbx 7.4530 stl 7.0202
ldabs 6.9215 sub 6.7981
ldc 6.7322 sum 7.0246
ldinf 8.9764 wsub 6.7306
ldl 8.0208 wsubdb 6.7326
ldlp 6.9280 xor 6.8684

This excess is exclusively due to the micro-
controller that determines the subsequent state
or, more generally, to the decoding logic.

Tables III and IV give the backward and
forward costs for a number of pairs of instruc-
tions. The variation in backward costs as com-
pared with the basic cost is on average less than
25%. For forward costs, on the other hand, the
deviation is much greater: on average over 100%.
Note also that the symmetry hypothesis put
forward in [2] is not always valid in our case.
The lack of symmetry in forward costs is due to
glitches that occur at the micro-controller ROM
inputs for particular pairs of instructions. See, for
example, the forward costs for the pairs (and; add),
(and; sub) and (and; rev), where this asymmetry is
quite evident.

3.1.3. Data Contribution

3.1.2. Null-activity Inter-instruction Cost

.(0) is defined as the overheadThe cost (Ii_1 - .Jback
on the basic null-activity cost of instruction Ii
when the latter is preceded by the same instruction
Ii_ and followed by the instruction Ii and activity
on the registers and buses remains null. This excess
is exclusively due to the effects of the change in

(0) isconfiguration. Likewise, the cost (Ii-- Ii+ljforw
defined as the overhead on the basic null-activity
cost of the instruction Ii when it is preceded by the
same Ii and followed by the instruction Ii and
activity on the registers and buses remains null.

The term in 7 indicated as f(data) takes into
account the contribution of data towards the
amount of power absorbed during execution of
the instruction Ii. Execution of this instruction
means activating the appropriate combiner blocks,
the power absorbed by which depends on how
their respective inputs vary. Let us indicate a metre
whereby we can measure these variations with the
term activity. The average power absorbed in a

cycle by the generic block Blocky depends on the
activity of its inputs:

CurrentBtockj function(activityj)

TABLE III Backward costs (Low " (0) (values in mA)1col back"

ldc adc ldl and ldlp xor shr add sub rev

ldc 0 2.2358 2.8322 5.7584 1.7709 6.3066 4.1149 5.5035 10.4929 1.7647
adc 2.4086 0 3.5152 4.1824 2.5392 4.7116 5.6289 3.5985 8.8789 1.8869
ldl 4.3438 5.6238 0 6.4104 4.3830 6.7266 7.0199 6.5295 11.5839 2.6096
and 4.3188 2.7828 3.7732 0 6.2490 0.1607 2.4895 0.4680 5.7339 2.5358
ldlp 2.0811 2.9153 3.3912 6.3754 0 6.7066 6.3449 5.9925 10.9109 3.8214
xor 4.4088 2.9989 4.0482 0.2301 4.5960 0 2.7095 0.5129 5.9469 2.7532
shr 3.4078 5.2868 4.6662 2.7419 5.3490 2.8250 0 2.8203 8.1259 5.2404
add 4.2078 2.4870 3.7092 0.4657 4.2790 0.4109 2.7327 0 5.3209 2.5789
sub 7.3828 5.8088 6.5782 2.2959 7.8270 2.3966 4.5909 3.3885 0 5.3054
rev 2.5458 2.7739 3.6812 3.4064 2.6570 3.2926 3.9279 3.1623 8.5449 0

256

ldc adc

G. ASCIA et al.

TABLE IV Forward (Irow Icot)forw."(0) (values in mA)

ldl and ldlp xor shr add sub rev

ldc 0 13.2088
adc 13.7068 0
ldl 2.5052 18.3832
and 20.3214 29.2884
ldlp 10.0940 9.6260
xor 28.9366 30.6096
shr 22.2029 21.1129
add 24.5395 34.4555
sub 27.4709 27.7049
rev 30.0924 28.0094

1.9298 16.2518 9.7448 27.5108 19.5178 21.2688 25.1338 24.2858
15.5348 29.3388 9.6738 29.4628 21.9638 32.6258 27.8898 25.2718
0 16.1212 8.7242 25.7692 22.7282 21.5772 28.7982 27.4252
18.6504 0 22.7614 27.9834 11.1494 12.1174 17.8604 17.0164
12.9450 22.9130 0 24.6580 17.7420 29.5460 34.7740 23.9830
28.3086 27.4136 23.5486 0 23.1136 21.2956 25.6796 15.0986
24.6759 10.7869 16.7359 23.5839 0 18.999 22.3789 7.9969
24.8345 34.7765 25.5405 34.8075 42.1455 0 9.4955 9.8205
29.4309 47.2159 32.9449 37.6149 43.8209 9.8419 0 13.1249
30.3144 41.8314 24.0494 30.5464 33.4654 10.5334 15.6304 0

Let"

and

activity(Ii) [activitylli), activity(,]

respectively be the blocks activated during execu-
tion of the instruction Ii and the activity at the
inputs of these blocks. We can then write:

NBIi
f(data) Z

j--1
Currentn,...(activityti)) (8)

IfflOCK.j

Adapting to the ST20-C2P, which has no operand-
isolation functions, execution of an instruction Ii
means activating all the blocks, so we have:

NBIi NB V

therefore substituting in 8 we get:

NB

f(data) Z CurrentBtoc:j(activityj) (9)
j=l

Going back to Figure 3, it is clear that the activity
at the inputs of a block depends on the activity on
the datapath buses (which represent the inputs of
the combiner blocks):

activityj function(activityxbus, activityrbus)

The activity induced on the datapath buses
depends on the mapping of the registers of the
current and previous instruction. If we indicate the
registers mapped on xbus and ybus when instruc-
tion Ii is executed as RegXi and Reg Yi respectively,
we have:

activityxbus function(RegXi_ 1, RegXi)
activityrbus function(RegYi-1, RegYi

So, in conclusion:

f(data) function(RegMapi_ 1, RegMapi) (o)

where

RegMapj [RegXj, RegYj]

represents the register values that instruction /j.
maps on xbus and ybus.

Equation (10) can be generalised to account for
other activity indexes such as activity on the
address and data lines interfacing the memory.
Proceeding in the same way, if we indicate the
registers mapped on the memory address and data
buses when instruction/, is executed as RegMAj
and RegMI/V. respectively, Eq. (10) still holds:

RegMapj [RegXj, RegFj, RegMAj, RegMWj.]

3.2. Application to a Case Study

The model defined by Eq. (7) was applied to the
ST20-C2P.

POWER ANALYSIS MODEL 257

3.2..1. Definition off(data)

It was found that the activity induced on the
datapath buses (bus and ybus) and on the
memaddr bus was the greatest power consumer in
the ST20-C2P. These buses were therefore chosen
as activity indexes. To measure this activity, the
Hamming distance between two successive config-
urations of the index being considered was chosen.
This confirms the hypothesis that the power
absorbed depends on the number of variations
and is independent of the lines on which the
variations occur. To define f(data) a linear
model was chosen in which the activity of the
various indexes is weighted with a different
coefficient.

Given these hypotheses, Eq. (10), as adapted for
the C2P, becomes:

f(data) Hamming(xbusi_l xbusi)

weightxbu+

+ Hamming(ybusi_l, ybusi)

weightybu+

+ Hamming(memaddri_ 1, memaddri)

weightmemaddr (11)

We will now describe the method used to
determine the weights and confirm the linearity
hypothesis.

3.2.2. Determination of Weights

By suitable loading the registers and knowing the
register/activity index mapping, it is possible to
construct sequences of instructions in such a way
as to induce guided activity on the activity indexes.
To calculate the weights appearing in Eq. (11) a

test was constructed in such a way as to render the
activity on two indexes fixed, making only one of
them variable. In this way the contribution of the
activity on one index is isolated and it is possible to
define a relation that links the activity on the index
with the power absorbed.

Let E 96 x be a column vector split into 3
components with 32 elements: the elements of the
first component (c(1 32)) represent the power
absorbed by the execution unit when there are
1,2,..., 32 transitions on xbus and zero transitions
on the remaining activity indexes. The elements of
the second component of (c(33 64)) represent
the power absorbed by the execution unit for
1,2,..., 32 transitions on ybus and zero transitions
on the remaining activity indexes. Likewise for the
third component, memaddr.

Given:

c2

C32

C33

C34
M--

c64

c65

c66

C96.

weight

0 0

2 0 0

32 0 0

0 0

0 2 0

0 32 0

0 0

0 0 2

0 0 32

weightxbys

weightybus

weightmemaddr

we can write:

M weight (12)

Equation (12) is a system of 96 equations with the
three unknown values weightxbu, weightyb, and
weightmemaddr. By applying the least squares
method it is possible to obtain the vector weight

258 G. ASCIA et al.

minimising the quadratic error.

weight- (MrM)-IMr (13)

A more general method is to use a lookup table for
each activity index. Each table is addressed by
measuring the activity on the activity index being
examined and gives the average amount of power
absorbed.

3.2.3. Linearity Approximation

The adequacy of the linearity approximation
linking the amount of power absorbed to the
activity on the activity indexes is evident in
Figure 4, which shows the power absorbed by
the execution unit with varying amounts of activity
on xbus and ybus. As can be seen, the activity
induced on xbus leads to a greater power dissipa-
tion. The difference can be accounted for by the
fact that xbus has more branches than ybus
and propagates its activity to a greater number
of blocks, thus entailing a higher cost per transi-
tion. It was also observed that the weight of
0- transitions was different from that of
1-0 transitions. Table V gives the costs per
transition determined by the least squares meth-

od, discriminating between 0 and --+ 0
transitions.

Equation 11 was extended so as to treat 0
and - 0 transitions differently:

f(data) Hamm0-1 (xbusi_l xbusi)

weigh,01xbus+
/ Harem1(xbusi_l, xbusi)

1_.10_
wetgntxbus-t-

+ Hamm-1 (ybusi_l, ybusi)

wetghtybu +
+ Harnrn1-(ybusi_, ybusi)

wetgnZybu +
+ Hamrn(memaddri_l, rnernaddri)

weightmemaddr (14)

where the function HammX-Y(,[) gives the
number of transitions x y involved in passing
from configuration to configuration b.
The activity indexes will foreseeably shift from

the combinatorial elements towards the intercon-
nection buses as the scale of integration increases.
The wire-to-gate capacity ratio has gone from 3
for old technologies to 100 for new technologies.

251 1->0

’ 10

25,

() (b)

FIGURE 4 Current absorbed by the execution unit with varying amounts of activity on xbus in (a) and ybus in (b).

POWER ANALYSIS MODEL 259

TABLE V Costs per transition determined by the least
squares method (mA/transition)

Transitions

071 1-0

xbus 0.6966 0.3665
ybus 0.3125 0.2000
memaddr 0.2500

and add. From Table VII we obtain"

HammO (xbusacd, xbustdc) 0

Hamm1- xbusaclcl xbuslcle 0

Hamm (ybusaclc ybustcc) 0

Hamm1-o (ybusaclvl ybustclc 0

This means that the interconnection buses are of
greater importance, in relation to power consump-
tion, than combinatorial logic and so it is of
fundamental importance to focus on the power
dissipated due to activity on the buses.

3.2.4. Determination of Glitches

To apply Eq. (14) it is necessary to have precise
knowledge of the transitions on the activity
indexes. Let us consider the following code
fragment:

idc OxO0000000
idc Oxffffffff

idc OxO0000000

add

idc Oxffffffff

idc 0

Let us assume that we wish to determine the
contribution of data, in terms of power absorbed,
following execution of the instruction idc Oxfff

ffff f. To determine the activity on xbus and ybus
Table VI shows the mapping of the registers on the
datapath buses in relation to the instructions

TABLE VI Mapping of the registers on the datapath buses

Instruction xbus ybus

ldc n 0 n
add AReg BReg

from which we conclude that according to Eq. (14)
the data contribution is null.
The power measured during execution of the

idc Oxffffffff is 62mA, while the estimated
amount is 11 mA, thus giving an underestimation
error of 82%. The estimation error was due to
the way in which the transitions were counted. The
enable signals of the three-state buffers for the
mapping of the registers on the datapath
buses come from the micro-controller. As the
length of the paths is different, these selection
signals arrive after the contents of the registers
have changed.

Figure 5 shows the real transitions on xbus and
ybus. During execution of the instruction acid,
xbus and ybus are loaded with the contents of
the registers AReg and BReg respectively. On the
rising edge of the next cycle the contents of the
registers will be updated with the result of the add
operation and the datapath buses will be loaded
with the new contents of the registers AReg and
BReg, generating 32 0 transitions on xbus and
32 1-0 transitions on ybus. After a delay T
following the rising edge of the clock, the selection
signals will map the registers ConstantReg and
OReg on xbus and ybus, thus determining another
32 0 transitions on xbus and 32 0- transi-
tions on ybus.

Indicating the contents of the register that
instruction Ii_ maps on xbus during execution
of the instruction Ii as RegXi), the total number of
transitions on xbus when instruction Ii, preceded

TABLE VII Then the data contribution is null

Instruction AReg BReg CReg xbus ybus

add

ldc Oxffffffff

0
Oxffffffff

Oxffffffff 0 0
0 0

Oxffffffff

Oxffffffff

260 G. ASCIA et al.

YBus

SOX SBY

CK

SAX

SBY

SOX

SCY

XBus

YBus

FIGURE 5 Real transitions on xbus and ybus.

by instruction Ii_ 1, is executed is:

Hamm(xbusi_ 1, RegXi)l
+ Hamm(RegXi)l, xbusi)

Indicating:

transXab(Ii_l,Ii)
Hamma-b(xbuSi_l RegXi)_)+

+ Hammab(RegXi)_l, xbusi)
transya-b(Ii_,Ii)

Hammab(ybusi_l, Regyi)_)+

/ Hamma-b (Regyi)_ ybusi)

Equation (14) becomes:

f(data) transX-1 (Ii-l,Ii) x weightxls+
_..1---0+ transX1- (Ii-1, Ii) x wegmbus+
071+ transyO- (Ii-1, Ii) wetghtybu +

1--,o+ transY (Ii-l,Ii) x wegnybu -r-

+ Harem(memaddri- 1, memaddri
X weightmemaddr (15)

3.3. Estimation Tests

Given the sequence of instructions Ii_ 1, Ii, Ii+ 1,

the model used to estimate the average amount
of power absorbed during execution of instruc-
tion Ii is:

Cost(Ii) base() (Ii)+
(o)-- (Ii-1 ---+ Ii back

(o)+ (Ii Ii+l)forw-]-
+ transXO- (Ii_ 1, Ii)

01wetghtxbus+
+ transX1(Ii_ 1, Ii)

_.10
Welgntxbus

+ trans1 (Ii-1, Ii)
_01

X welgntybu +
+ transY1(Ii-1, Ii)
x weigh 10tybu +
+ Hamm(memaddri_l, memaddri)

weightmemaddr (16)

This model will be referred to as DDM (data
dependent model). The DDM was validated and
compared with the ACM by performing some

POWER ANALYSIS MODEL 261

software estimation tests. These were divided into
two classes: tests constructed ad hoc to highlight
the features of the model proposed, and tests
extracted from fragments of the codes of real
applications. Each test was carried out using both
the ACM and the DDM, calculating the average
amount of power absorbed by the execution unit

(real and estimated) per cycle (for the first 80
clock cycles) and the distribution of the mean
percent error over the estimation cycle.
To show the influence of data on power

consumption, a test was prepared comprising a
sequence of 50 add instructions. This test was
performed in two modes: low-activity (sum_low)
and high-activity (sum h+/-cjh). In the low-activity
mode the 50 acid instructions operate on null
arguments, while in the high-activity mode the
arguments gradually increase (see Section 2.1.3).
In Figure 6 the solid line shows the real average
power absorbed per cycle in the case of high and
low activity, while the dashed line shows the
estimated power absorption.
To test the robustness of the DDM to inter-

instruction effects, a test (rand inst) was built
comprising a sequence of about 500 instructions
extracted at random from the instruction set. The
aim of this test was to create a preponderant

,18
g

4

0

60 1; 1; 0 25 0 5 40 45 50
cycles

FIGURE 6 Real and estimated average power absorbed per
cycle in the case of high and low activity for a test comprising a
sequence of 50 add instructions.

inter-instruction effect which, as we have seen, is
the greatest contributor to power consumption.
The random distribution of the instructions avoids
the presence of repeated sequences which might
falsify the estimation results. Figure 7 gives the
percent error distribution over the cycle using the
ACM (a) and the DDM (b).

Figures 8 and 9 shows percent error distribu-
tions using the ACM and the DDM for test which
executes the sum (mzx_sum) and the product
(mtzx_mu) of two 3 x 3 matrices formed by
random integer elements.

Figure 10 shows the real and estimated power
absorbed by the execution unit in the first 80 cycles
of execution of a test performing a digital Fourier
transform (d5t:) on 16 signal samples. Figure 11
gives the percent error distributions over the cycle
using the ACM (a) and the DDM (b).

Table VIII summarises the results of the tests
described in this section, r and s respectively
indicate the vectors of the real and estimated
power per cycle. E{x} indicates the average of the
elements in the vector x. For each test carried out
the table gives the average amount of power
absorbed during execution, the percent estimation
error and the average of the absolute error values
obtained cycle by cycle. In all cases the error made
using the DDM was lower than 6% in estimating
the average power and less than 10% in the
estimate per cycle. The accuracy of the ACM is not
so easy to quantify as the error varies in a very
wide range. For some highly data-dependent tests,
the average error goes from 97.77% to 5.58% for
varying amounts of input data. In the test estimate
in which the average amount of power absorbed
has a narrow range of variation for varying
amounts of data, the average ACM estimate error
is between 7% and 20% for the average amount of
power absorbed and between 15% and 30% for
the cycle-based estimate.

3.4. Generalisation for Pipelined Processors

The model described by 7 was specifically defined
for our case study. In this section we will show that

262 G. ASCIA et al.

140

120

-20 40 60 100 20 40 60 80 100

(b)

FIGURE 7 Percent error distribution over the cycle using the ACM (a) and the DDM, (b) for a test comprising a sequence of about
500 instructions extracted at random from the instruction set.

3

!

|

!-O0 -80 -60 -.40 -20 20 40 60 80 100
%

300!

250

20(

501

-100 -80 -60 -40 -20 20 40 60 80
%

FIGURE 8 Percent error distribution over the cycle using the ACM (a) and the DDM, (b) for a test which executes the sum of two
3 3 matrices.

it is possible to generalise the model to apply it to
generic RISC processors. Let us refer to the
following simplifying hypothese:

N pipeline stages (indicated as S, $2,..., SN).
Each stage processes instructions in a single
clock cycle.
Each instruction is processed by all the stages.

We will consider the pipeline configuration
shown in Figure 12.

The average power absorbed per CKt clock
cycle is:

CCKt bcIselO) (IN+I) -- ir/tlO) (IN, IN+I)-+
+ F1 (activity1, IN+I)+
+ base) (IN) + int) (/N-l, IN)+
+ F2 (activity2,117)+
+...+

POWER ANALYSIS MODEL 263

600

500

400

300

-100 -80 -60 -40 -20 20 40 60 80 100
%

600,

5001

4001

3001

2oo!

-100 -80 -60 -40 -20 20 40 60 80 100
%

FIGURE 9 Percent error distribution over the cycle using the ACM (a) and the DDM, (b) for a test which executes the product of
two 3 3 matrices.

60

30

20

10

real
stime

10 20 30 40 50 60 70 80
cycles

FIGURE 10 Real and estimated power absorbed by the execution unit in the first 80 cycles of execution of a test performing a
digital Fourier transform (DDM).

FN-1 (activityN_l 13)+

base(Ne) (12) + int(N) (11, I2)+
FN(activityN, 12) (17)

where:

base(se) (I) is the power absorbed (per cycle) by
stage S when it processes instruction I and when

activity on the activity indexes of the stage
remains null.
int(s) (1, J) is the excess as compared with

base(s)(I) (or base(s)(J)) due to the fact that
the stage before S was processing instruction J
(/) while the current one I (J) is being processed.
int(s)(I,J) represents the cost of the change in
configuration for stage S and the following
relation is assumed to hold:

264 G. ASCIA et al.

(b)

FIGURE 11 Percent error distributions over the cycle using the ACM (a) and the DDM, (b) of a test performing a digital Fourier
transform.

TABLE VIII Results summary

Test E{r} E{s} (mA) (E{r} E(s}/E(r}) E(l(r- s/r)

name (mA) ACM DDM ACM DDM ACM DDM

sum low 6.79 13.44 6.80 97.77% 0.12% 97.79% 0.86%
sum_h+/-cjh 14.24 13.44 14.31 5.58% 0.5% 20.37% 3.47%
rand +/-nst: 40.62 48.14 40.12 18.51% 1.24% 31.37% 6.44%
mt:x sum 31.97 37.83 30.97 18.32% 3.13% 31.44% 6.81%
rnt:x mul 36.01 41.26 34.02 7.07% 5.53% 27.21% 8.61%
rift: 32.07 28.57 30.92 10.91% 3.54% 15.13% 8.94%

Clock 11 Sx $9. SN-x SN
CKM-1 [1 IN IN-x I2 Ix
CKM 1[IN+I IN 13 12

FIGURE 12 Pipeline configuration.

int(s) (I, J) int(s) (J, I) (18)

Fu(activitys, I) represents the contribution of
activity on the activity indexes for stage S.
Activity in stage S is measured by the vector
activitys and can be defined, for example, as the
Hamming distance between two subsequent
configurations of the activity indexes for stage
S. The contribution of activity is differently
weighted according to the instruction currently
being processed by stage S (so Fs also depends
on instruction/).

Example In the execution stage the activity
indexes can be the registers operating at the
ALU block input. In this case:

activityexec [activityoper, activityoper2]

and for example:

Fexec activityexec I)
activityoper, weight1 (I)+
+ activityoper2 weight2 (I)+

where weightl and weight2 weight the activity
according to the instruction being executed. In no

operand isolation architectures we will have
weight(I) cost V L

POWER ANALYSIS MODEL 265

3.4.1. Basic and Inter-instruction Costs

Constructing a test formed by repetition of an
instruction/, so that the pipeline configuration is
the one shown in Figure 13, it is possible to obtain
the basic costs base(s) (I)V S E { 1,2,..., N}. Like-
wise, constructing a test in which the sequence of
instructions I and J is repeated, so that the pipeline
configuration is the same as the one in Figure 14,
we obtain the costs int(s) (I, J)V S E { 1,2,..., N}.

3.4.2. Determination of Fs(activitys, I)

There remain to be determined the contribution of
the data represented in Eq. (17) with the terms of
type Fs(activitys, I). First it is necessary to identify
the activity indexes for each stage. It can reason-
ably be assumed that buses transferring data
towards large combinatory blocks or buses inter-
facing the memory (with large capacity loads)
represent general activity indexes.

This will be made clearer by referring to a
specific case. Let us consider the classic 5-stage
pipeline architecture of an MIPS or DLX. We will
assume two activity indexes in the execution stage:
the registers operating at the ALU input (interface
between the decode and execution stages) and
define an activity metric (e.g., the Hamming
distance between the configurations in these
registers in two subsequent clock cycles). It is
possible to construct a sequence of instructions in
such a way as to induce a fixed activity on the

Clock l[Sx $2 Sv-x SN
CK-11I I I I I
CK I I I I

FIGURE 13 Pipeline configuration to obtain the basic costs
base(s) (1)V S E {1,2,... ,N}.

Clock l[$1 $2 $3 Sr-1 SN
CK-1 I J I J I
CK]i J I J I J

FIGURE 14 Pipeline configuration to obtain the costs
int(s)(l,J)V S E {1,2,... ,N}.

activity indexes. To determine the relation between
activity on one index and the amount of power
absorbed it is necessary to construct a test in which
activity on one index is made to vary continuously
while that on the other is kept constant. The points
obtained can be interpolated or approximated
with the points of a straight line using the least
squares method to establish a relation between
activity on the index concerned and the power
absorbed. Let us consider for example the instruc-
tion add rd, rsl, rs2, the effect of which is to load the
activity indexes with the contents of the registers
rl and r2. Constructing a sequence of the type:

li rl, Xla; rl::Xla

li r2, X2a; r2"--X2a
li r3, Xlb; r3.’=Xlb
li r4, X2b; r4"--X2b

add r5, rl, r2; Operl=rl, Oper2=r2
add r5, r3, r4; Operl=r3, Oper2=r4

when the second add had been processed by the
execution stage, the first activity index will pas
from the configuration Xla to the configuration
Xlb, while the second index will pass from x2a to
2b. If we define the average amount of power
absorbed by the execution stage and the activity
on the activity indexes as Cex and activityex
respectively, it is necessary to link Cex and
activityex mathematically, i.e., to determine a
function f such that:

f(activtyex) Cex + err

so as to minimise err. The function f can be
determined in various ways. If the activity index
under examination is a high-capacity bus, the
activity can be measured via the Hamming
distance between two subsequent configurations
and the activity can be linked with the power
absorbed with a proportionality constant. If the
activity index is due to variation in the inputs of a

combinatory block, it can be characterised using
the power model proposed in [20] or by using a
neural network to obtain the relation between the
input switching activity and the power absorbed.

266 G. ASCIA et al.

3.5. Characterisation: ACM Vs. DDM

As we have shown, the characterisation of both
models (ACM and DDM) on the core processors
of embedded systems requires the use of software
analysis tools. Although the use of accurate
simulation tools during characterisation guaran-
tees better results in the estimation phase, it
requires great calculation resources and long
computation times (the lower the level at which
they operate, the more accurate they are).

In this section the ACM and DDM will be
compared in relation to the complexity of char-
acterisation when, as in our case study, the silicon
of the core to be characterised is not available and
the only way to take the measurements is to use a
software tool for power analysis. As a specific case
we will consider characterisation of the instruction
set of the ST20-C2P. Determination of base(Inst)
requires the construction of a test in which the
sequence:

ide random

idc random

idc random

Inst

Inst

is repeated a significant number, N, of times to
characterise the average. The]_de instructions
are executed in a number of cycles proportional
to the length in nibbles of the operand

(nibbte(n)-l) If the data iscycles(]_dc n): 1 + 2

uniformly distributed, a]_de random will be
executed on average in 2 cycles. Let Cznst be the
number of cycles needed to execute the instruction
Inst. The total number of cycles needed to calcu-
late the basic cost of instruction Inst is therefore:

Cyclesacm(base(lnst))- N (3-k-3 Clnst)
ldc Inst

To determine the inter-instruction
repeating N times the sequence:

ldc random

ldc random

costs, by

ldc random

Inst_j

Inst i

the cost (Ms% StOback is determined, whereas
by repeating N times the sequence:

ldc random

ldc random

ldc random

Inst i

Inst_j

(Insti--+ Instj)forw is determined. We have:

Cyclesacm (Inslj ---+ Insti)back
N (3+ + Cinst -- 2 Clnsti)

ldc

Cyclesacm (Insti Instj)frow
N (3+ + 2 C,l,lSti + C,l,lSlj

ldc

Let M the number of instructions to be charac-
terised, the number of cycles needed to determine
all the basic and inter-instruction costs for the
ST20-C2P is:

Cylesacm
M

Z Cycles(base(lnsti))+
i=1
M M

-k- EE[Cycles((Instj InStk)back)]+
j=l k=l

M M

+ ZZ[Cycles((Instlc --+ Instj)forw)]
j=l k=l

(19)

We follow the same reasoning when the DDM is
used. Determination of base()(Inst) requires the
construction of a test of the following kind:

ldc C

ldc B

ldc A

Inst

Inst

POWER ANALYSIS MODEL 267

in which the values A, B and C are fixed in such a

way that execution of the framed instruction takes
place in a state of null activity, base()(Inst) will be
the average power absorbed during execution of
the framed instruction. If we indicate the number
of cycles needed to execute instruction Inst as Cznst
the total number of cycles needed to calculate
base()(Inst) will be:

M

Cyclescm E Cycles(base()(Insti))+
i=1

M M

+ EE[Cycles((Instj - Inst)a)clc)]+
j=l k=l

M M

+EE[Cycles((Instl -+ Instil()
j=l k=l

Cyclesdclm (base() (Inst)

ldc Inst

To determine the inter-instruction costs with null
activity, we consider the following sequences:

ldc C

ldc B

ldc A

Inst_j

Inst i

determining the cost (Instj (o)
---+ Insti)back, while

from:

ldc C

ldc B

ldc A
Inst i

Inst_j

()we determine (Insti - Instj)forw. We get:

CycleSddm (Itlstj --+ Insti Oa)ck
(3,++CInstj +2 Clnsti)

ldc

CycleSddm (Insti Instj forw(O)
(3,+ + 2 x Clnst Jr- Clnstj)

ldc

The number of cycles needed to determine all
the basic and inter-instruction costs with null
activity is"

Then:

CycleSacm 2 N2 CycleSddm

This requires some clarification. The number of
cycles needed to characterise the ACM was
calculated without including the cycles needed to
characterise the term f(data). In our case study,
only two activity indexes were taken into con-
sideration, so the number of cycles needed to
characterise them is negligible as compared to
those required to characterise the other terms. In
addition, the absence of operand isolation mechan-
isms makes it possible to render f(data) instruc-
tion-independent (see 3.2.2. in which about 96
measures were required to determine the costs per
transition for the activity indexes considered and
where each measure required the construction of a
test of about 10 cycles). It should be pointed out
that prediction of the number of cycles needed for
the characterisation phase, as presented, is quite
conservative. In reality, the number may be greatly
limited if the instruction set is subdivided into
classes of instructions (e.g., memory access in-
structions, integer calculation, operations on bits,
etc.) and only one instruction per set is char-
acterised. This technique minimises characterisa-
tion times, but it makes the estimate less accurate.

4. A TOOL FOR SOFTWARE POWER
CONSUMPTION ESTIMATION

Application of model 16 requires knowledge of the
state of the processor cycle by cycle. By the state of
a processor in a generic clock cycle we mean the
contents of the registers, the logical levels of the

268 G. ASCIA et al.

lines of the buses interfacing the memory and the
datapath, and the state of the finite state machine
implementing the micro-controller. Such detailed
knowledge of the state of the processor can be
obtained via VHDL simulation of the code to be
estimated. The manufacturer of the processor will
obviously not provide the VHDL models of the
processor, so the client cannot run a VHDL
simulation of the code to obtain a cycle-accurate
trace and apply model 16.
A CPU emulator is an application that is always

present in the package of development tools a
CPU manufacturer provides his client with. A
CPU emulator is a functional model of the CPU
with which it is possible to trace the flow of
instructions executed by the processor during the
execution of a program. For each instruction
executed, it gives the state of the registers and any
memory access operations. An instruction is
generally executed in a certain number of cycles,
passing through a sequence of micro-states that is
usually not fixed.

4.1. Binary Tree Representation

The finite state machine implementing the CPU
micro-controller determines the subsequent state
according to the current one and the value of
certain signals. The VHDL code implementing the
FSM of the micro-controller can be generalised as
in Figure 15. So, given an initial state it is possible
to reach several final states according to the value
of certain signals. We can represent the states that
can be reached from a certain state by means of a
binary tree in which the nodes represent the
conditions and the leaves the states reached. In
the case described, the binary tree representing the
state statei is made up of four nodes and four
leaves. The nodes represent the conditions of the
IF constructs while the leaves represent the
possible subsequent states (Fig. 16). The path
through the tree depends on whether the condi-
tions defined by the nodes are met or not: having
fixed a conditional node, the left-hand side path is
taken if the condition is met, the right-hand side

CASE current_state IS

WHEN state_i =>
<operazioni>

<operazioni>
IF signal_i TRUE THEN

IF signal_j TRUE THEN
next_state <= state_j;

ELSE
next_state <= state_k;

END IF;
ELSE

IF sinal_k TRUE THEN
IF signal_l TRUE THEN
next_state <= state_l;

ELSE
next_state <= state_m;

END IF
ELSE

END IF
END IF

END CASE

FIGURE 15 VHDL code implementing the FSM of the
micro-controller.

one if it does not. If, for instance, the signals signali
and signal are both high, the subsequent state will
be statej.

4.2. Analysis of Conditions

Splitting up the instructions into the component
micro-states can be achieved if it is possible to
evaluate the conditions (at the nodes of the
conditional tree) using the information supplied
by the CPU emulator. These conditions refer to
the contents of the registers, the datapath bus and
the signals regulating the memory access protocol.
The conditions depending on the register con-

tents can be directly evaluated as the trace file
generated by the processor emulator provides
information about the register contents. Informa-
tion about the state of the datapath bus lines is not
directly given in the trace file. It is, however,

POWER ANALYSIS MODEL

State_i

269

Signal_j TRUE

Signal_i TRUE,,)--- Signal_l TRUE --FIGURE 16 Conditional tree representing the state statei.

possible to obtain it through knowledge of the
current state and the register contents. The state,
in fact, fixes the mapping between the registers and
the datapath buses, so it is possible to obtain the
word mapped on xbus and ybus. For instructions
that do not map a register on xbus and ybus the
contents remain constant due to the presence of
the bus keepers. The problem of evaluating the
conditions depending on the memory speed is
solved by implementing a memory model that
operates according to the protocol specified.

4.3. Generation of a Trace of the Micro-states

As we have illustrated, it is possible to split an
instruction up into its component micro-states just
by using the register contents and state informa-
tion. Valuation of the conditions makes it possible
to visit the conditional tree relating to the current
state and reach the leaf representing the subse-
quent state. If this algorithm is applied to all the
instructions appearing in the trace of a program, it
is possible to generate a micro-state by micro-state
trace from the instruction by instruction trace.

Figure 17 shows the estimation flow starting
from the source code of the program. This is

compiled to generate an image of the ROM, and is
then executed via the CPU emulator that supplies
a trace of the instructions executed together with
the contents of the registers and information about
memory access. State information in the form of a
conditional tree, together with the instruction by
instruction trace and memory model, allow us to

generate a micro-state by micro-state trace. At this
point we can apply the model defined by 16 to
obtain a trace comprising power information.

4.4. Clarification of the Cycle-accurate Concept

Splitting the instruction up into their component
micro-states does not mean generating a cycle-
accurate trace. Fetch unit stalls may introduce
waiting states that are difficult to pick up from the
instruction trace. A waiting state is imposed when
the fetch unit has stalled and the execution unit is
ready to execute a new instruction in the next
cycle. Picking up these effects form the instruction
by instruction trace is a very complex operation
that essentially depends on two factors:

the memory speed, which determines the num-
ber of cycles needed to fill the instruction buffer
with the new instructions to be executed.

270

States info

FSM.vhd

State info
Extractor

G. ASCIA et al.

Program.C

Compiler

ROM Image

CPU Emulator

Instruction Trace File

Memory
Model

Instructions
to

uStates

Base costs Backward Forward
costs costs

uState Trace File

Estimator

uState Trace File

costs per
transition

FIGURE 17 Estimation flow.

The alignment of the words of the machine code
of the instructions in the memory.

Estimation of the average amount of power
absorbed during these waiting states also depends

on a number of factors. As we have seen, a great
contribution to the power absorbed in the ST20-
C2P is made by activity at the micro-controller
ROM inputs. In fetch unit stall cycles, the micro-
controller ROM is stimulated with spurious data

POWER ANALYSIS MODEL 271

on account of the direct connection between the
fetch unit predec output and the micro-controller
ROM inputs.

4.5. Validation of the Method

TABLE IX Estimate of the average power absorbed when the
term f(data) is neglected and maximised. (values in mA)

Program E{I} E{lmin} E{Imax}

rntx sum 30.30 27.79 51.82
mtx mul 34.31 28.53 55.41
img- filter 28.04 24.62 50.29

The tool was validated by executing some estima-
tion tests and comparing the results with those
obtained using PowerMill. In all the cases exam-
ined both the error in estimating the average
amount of power absorbed and that in estimating
the total power required were always below 5%. It
was not possible to assess the tool in terms of error
per cycle since stalls during the execution of the
tests led to a loss of synchronisation between the
trace extracted via the VHDL simulation and
the one generated by the tool. It was only possible
to perform this analysis on short sequences of
code in which there were no stalls. The accuracy
achieved is shown in Figure 18.

4.6. Best and Worst Case

The energy absorbed in executing any one
program varies according to the data involved. A
data-dependent model can be used to determine
the minimum and maximum power absorbed to

execute the program. These operational extremes
can be estimated by exploiting model 7. Having
established the software, the minimum power
required can be estimated by neglecting the data
contribution (i.e., setting f(data)=O for each
instruction executed), whereas the maximum
power required can be estimated by maximising
the term f(data), i.e., maximising the activity on
the activity indexes involved during execution of
each instruction.
An example of the possible variation in the

amount of power absorbed by a single program
when the amount of data varies is given in
Table IX. For each program the table gives the
estimate of the average power absorbed when the
termf(data) is neglected and maximised. As can be
seen, the data contribution alone can in principle
cause a 100% difference in the average amount of
power absorbed per cycle.

real
stime

-lo

10 15 20 ;5
cycles

FIGURE 18 Real and estimated power absorbed in the first
32 cycles of execution of a test performing the sum of two 3x3
matrices.

5. CONCLUSIONS

We have proposed a data-dependent model for
estimation of the average amount of power a

processor consumes cycle per cycle during execu-
tion of a program. Application of the model
requires a trace of the program as input, i.e., the
flow of instructions executed and the state of the
system as defined by the contents of the registers
and information about memory access, if any. To
determine the trace of the program it is necessary
to execute it using, for example, a functional
model of the processor. The need to execute the
program to obtain the trace is not a limiting factor:
generally, any model for software power consump-
tion estimation requires knowledge of the flow of
instructions executed. As the sequence of instruc-

272 G. ASCIA et al.

tions executed is highly data-dependent (consider,
for example conditional jumps), it is necessary to
execute the program to be evaluated.
The software power consumption estimation

models proposed in literature aim at minimising
the mean estimation error over a time window
which extends to the duration of the program. Our
point of view, on the other hand, was to minimise
the estimation error per clock cycle: in this case the
data contribution cannot be overlooked (compare
Figs. 2 and 6). The results obtained confirm the
validity of the model: in all the tests carried out,
the average error per cycle remained below 10%.
The advantage of a data-dependent model over a
data-independent one ([1]) or an instruction-
independent one ([11]) is without doubt the greater
accuracy of the estimate.

All three models give the same estimate of the
total amount of power consumed during execution
of a whole general-purpose program, but where a
data-dependent model shows its strength is in the
estimation of small fragments of code or highly
input data-dependent applications (mathematical
routines, DSP applications).
A data-dependent model can be used to

characterise a given software application in power
terms for varying amounts of input data. An
example is given by a function for the application
of an image filter: it can be characterised via a
power cost depending on the graphical filter used.
Another field of application for a data-dependent
estimation model is determining the best case and
worst case conditions for a program in terms of
power: model 7 can be applied to each instruction
in the program trace minimising or maximising the
term f(data).

References

[1] Vivek Tiwari, Sharad Malik and Andrew Wolfe,"Power
Analysis of Embedded Software: A First Step Towards
Software Power Minimization", IEEE Transactions on
VLSI Systems, December, 1994.

[2] Tiwari, V., Malik, S., Lee, M. and Fujita, M.,"Power
Analysis and Minimization Techniques for Embedded
DSP software", IEEE Transactions on VLSI Systems,
March, 1997.

[3] Tiwari, V., Malik, S. and Wolfe, A. (1996). "Instruction
Level Power Analysis and Optimization of Software",
Journal of VLSI Signal Processing, pp. 1-18.

[4] Tiwari, V. and Lee, M. (1998). "Power Analysis of a 32-bit
Embedded Microcontroller", VLSI Design Journal, 7(3).

[5] Tiwari, V., Ashar, P. and Malik, S.,"Technology Map-
ping for Low Power", NEC CCRL Technical Report,
1(92-C019-4-5509-2), October, 1992.

[6] Bahar, R. I. and Somenzi, F., "Boolean Techniques for
Low Power Driven Re-Synthesis", ICCAD-95: ACM/
IEEE International Conference on Computer Aided Design,
Santa Clara, CA, November, 1995.

[7] Tiwari, V., Malik, S. and Ashar, P., "Guarded Evaluation:
Pushing Power Management to Logic Synthesis/Design",
IEEE Transactions on Computer-Aided Design.

[8] T611ez, G. E., Farrahi, A. and Sarrafzadeh, M. (1995).
"Activity-Driven Clock Design for Low Power Circuits",
International Conference on Computer Aided Design
(ICCAD95), San Jose, Ca., USA, pp. 62-65.

[9] Chih-Tung Chen, C. T. and Kucukcakar, K., "An
Architectural Power Optimization Case Study Using
High-level Synthesis", International Conference on Compu-
ter Design (ICCD ’97). 12-15 October, 1997, Austin, Texas.

[10] Tiwari, V., Donnelly, R., Malik, S. and Gonzalez, R.,
"Dynamic Power Management for Microprocessors: A
Case Study", IEEE VLSI Design, January, 1997.

[11] Russell, J. T. and Jacome, M. F., "Software Power
Estimation and Optimization for High Performance,
32-bit Embedded Processors", Proceedings of ICCD’98.

[12] Sarta, D., Trifone, D. and Ascia, G., "A Data Dependent
Approach to Instruction Level Power Estimation", IEEE
Alessandro Volta Memorial Workshop on Low Power
Design, Como Italy, 4-5 March, 1999, pp. 182-190.

[13] Benini, L., De Micheli, G., Macii, E., Poncino, M. and
Quer, S., "Power Optimization of Core-Based Systems by
Address Bus Encoding", IEEE Transactions on VLSI
Systems, 6(4), December, 1998.

[14] Jensen, F. and Tyagi, A., "Reduced Address Bus Switch-
ing with Gray PC", Power Driven Architecture Workshop,
Barcelona, Spain, 1998.

[15] Musoll, E., Lang, T. and Cortadella, J., "Reducing the
Energy of Address and Data Buses with the Working-
Zone Encoding Technique and its Effect on Multimedia
Applications", Power Driven Architecture Workshop,
Barcelona, Spain, 1998.

[16] Benini, L., De Micheli, G., Macii, E., Sciuto, D. and
Silvano, C., "Address Bus Encoding Techniques for
System-Level Power Optimization", IEEE Design Auto-
mation and Test Conference in Europe, Paris, France,
February, 1998, pp. 861 866.

[17] Stan, M. R. and Burleson, W. P., "Coding a Terminated
Bus for Low Power", Great Lakes Symposium on VLSI,
pp. 70-73, Buffalo, NY, March, 1995.

[18] Ramprasad, S., Shanbhag, N. R. and Hajj, I. N., "Coding
for Low-Power Address and Data Busses: A Source-
Coding Framework and Applications", Eleventh Interna-
tional Conference on VLSI Design: VLSI for Signal
Processing, 4-7 January, 1998, India.

[19] Stan, M. R. and Burleson, W. P. (1999). "Bus-Invert
Coding for Low Power I/O", IEEE Transactions on VLSI
Systems.

[20] Qing Wu, Qinru Qiu, Massoud Pedram and Chih-Shun
Ding, "Cycle-Accurate Macro-Models for RT-Level
Power Analysis", IEEE Transactions on VLSI Systems,
6(4), December, 1998.

POWER ANALYSIS MODEL 273

[21]

[22]

[23]

[24]

[25]

Givargis, T., Henkel, J. and Vahid, F., "Interface and
Cache Power Exploration for Core-Based Embedded
System Design", Int. Conference on Computer Aided
Design (ICCAD), pp. 270-273, November, 1999.
Givargis, T. and Vahid, F., "Interface Exploration for
Reduced Power in Core-Based Systems", Int. Conference
on System Synthesis, December, 1998.
Vahid, F. and Givargis, T. (1998). "Incorporating Cores
into System-Level Specification", Int. Symposium on
System Synthesis.
Givargis, T., Vahid, F. and Henkel, J. (2000). "A hybrid
approach for core-based system-level power modeling",
Asia and South Pacific Design Automation Conference.
"ST20C2 Core Instruction Set Reference Manual", ST-
Microelectronics, http://www.st.eorn/.

Authors’ Biographies

Giuseppe Ascia received the Laurea degree in
electronic engineering and the Ph.D. degree
in Telecommunications from the University of
Catania, Italy, in 1994 and 1998, respectively.

In 1994, he joined the Institute of Computer
Science and Telecommunications, University of
Catania, Italy. His interests are artificial intelli-
gence, soft computing, and hardware architec-
tures.
Vincenzo Catania received the Laurea degree in
electrical engineering from the University of
Catania, Italy, in 1982.

Until 1984, he was responsible for testing
microprocessor systems at SGS, Catania, Italy.

Since 1985 he has been cooperating in research on

computer networks with the Institute of Computer
Science and Telecommunications, University of
Catania, Italy, where he is an Associate Professor
of computer science. His research interests include
performance and reliability assessment in parallel
and distributed systems, VLSI design, and fuzzy
logic.
Maurizio Palesi received the Laurea degree in
computer science engineering from the University
of Catania, Italy, in 1999. He is currently working
toward the Ph.D. degree at the same university.

In 1999, he joined the Institute of Computer
Science and Telecommunications, University of
Catania, Italy. His research interests include power
estimation, low-power design methodologies and
techniques, codesign techniques for embedded
systems.
Davide Sarta received the Laurea degree in
electronic engineering from the University of
Catania, Italy, in 1994 and Master degree in
Information Technology in 1997 at the Politecnico
di Milano.
He has worked at STMicroelectronics, Catania,

Italy, since 1997, where he is involved in design
and verification of System-on-a-Chip. His research
interests include techniques for power estimation
and optimisation in digital systems.

