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By extending the maximum entropy principle within a scheme in total average energy
we obtain a closed system of hydrodynamic equations for a full nonparabolic band
model in which all the unknown constitutive functions are completely determined. The
theory is validated by comparing hydrodynamic calculations with Monte Carlo
simulations performed for bulk and submicron Si structures at 300 K. In the general
framework of the moment theory a systematic study of small-signal response functions
is provided.
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1. INTRODUCTION

The basic limitations of existing MPE theories as

applied to solid state physics [1- 5] are in: (i) the
use of parabolic energy dispersion for the single
carrier, (ii) the use of a few number of macro-

scopic moments to be taken as constraints in the
variational procedure. Both assumptions are
dictated by the complexity of the analytical
formulation.
The aim of this work is to overcome these

limitations by reformulating the theory within a

total energy scheme described by a local and
isotropic maxwellian distribution in terms of an

arbitrary number of generalized kinetic fields

{EP, cPbli, EP l(il bli2), EPbl(il bli2 lis), .}

where U is the carrier group velocity, e(k) is the
single particle band energy and, in general,

U(ilUi2’’’Uis is the traceless part of the tensor uil

ui2 ""uis being p=0, 1,...,N, and s= 1,2,...,M
with arbitrary values for the integers N and M.
A new system of generalized hydrodynamic

(HD) equations is derived with the full complexity
of the band modeled in terms of a single particle
with an effective mass which is a function of the
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average total energy and becomes a new constitu-
tive function [5]. Accordingly, the present HD
theory does not need other adjustable parameters
but the knowledge of the elementary microscopic
interactions as for the kinetic theory.

1.1. Balance Equations and Entropy
Maximization

Equation (1) is the key formula since it generalizes
the kinetic fields to energy dispersions of general
form. With this approach, if we consider the
expectation values

FA

{F(p), F(p)lil F(p)l(ili2), F(p)](il...i), .} (2)

then N=M= we find the usual physical quan-
tities such as n F(o (numerical density), W= F(I
(total energy density), nvi:Fo)li (velocity flux
density), Si:Flli (energy flux density). By con-
trast, for N, M > we obtain macroscopic addi-
tional variables, which in some cases correspond to
fluxes of vi and Si. In particular all the scalar
moments Fp) can be separated into a local
equilibrium part and a non-equilibrium part
through the relationship F(p):F(p)]Ent-/(p). The
set of HD equations which are formally obtained
within this scheme are [2-6]

OFA OFA e
-+- RaiEi + PA,

Ot Ox h
with A 1,...,N" (3)

where 32 is the number of moments used, and FAk,
PAi, RA indicate, respectively, the fluxes, the
external field productions, and the collisional
productions given by:

The structure of this equation shows that there
are some unknown constitutive functions Ha
{FA:,PAi, RA} that must be determined, in a
self-consistent way, in terms of the variables FA.
Following information theory, one can determine
systematically the unknown constitutive functions,
by introducing the MEP in terms of generalized
kinetic fields (1), and thus also an analytic
expression for the non-equilibrium distribution
function. The MEP is based on the assumption
that the least biased distribution function assign-
ment to a physical system is that which maximizes
the entropy subject to the contrains imposed by
the available information. For this reason we
assume that the information expressed by a certain

fixed number 32 of moments is sufficient to
describe the thermodynamical state of hot carriers
satisfactorily and we search the distribution that
makes best use of this information. Following this
approach the distribution function will have the
explicit form

( .N ). .a exp ’5-Z ;(m)
A(il...is)emU(il "’’Ui)

s=0 m:0

(4)

where a are the nonequilibrium part of the
Lagrange multipliers [2,4, 6] and fa the local
maxwellian.
Now, instead of introducing a local tempera-

ture, typical for a parabolic band shape, we keep
the total average electron energy [5, 6] which is a
well defined quantity for any band shape [7]. To be
consistent with this choice, the moments of the
distribution function FA cannot be separated into
their convective and nonconvective parts and the
local distribution function should be defined in
terms of the total average energy of the single
carrier as 5"t 7 exp(-/3e(k)) being -y "y(n, W) a
normalization factor and - fl- 1(W/n) an appro-
priate average energy. By considering an explicit
energy-wave-vector relation e(k), the quantities
{7,/3}, can be determined by means of the local
equilibrium relationships
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By expanding around the maxwellian 3rt, both
the distribution function 9r and the constitutive
functions Ha can be expressed as polynomials in
the non-equilibrium variables whose coefficients
depend on the local equilibrium quantities
{n(’, t), W(’, t)}. The explicit HD expressions
obtained from Eq. (3) are detailed in [6], here
numerical results are displayed for validation
purposes.

1.2. Small-signal Analysis for Bulk

We consider the time evolution of a small
perturbation of the single-particle moments ’a-
Fain under spatially homogeneous conditions. In
this case the corresponding balance equations take
the form:

OFA e~

O---t- + -RaiEi + PA O, with A 1,... A/" (6)

By assuming that at the initial time the system of
carriers is perturbed by an electric field SE(t)
(where (t) is an arbitrary function of time
satisfying I(t)l < 1), we will calculate the devia-
tions from their average values of the moments
denoted respectively with ’a. After linearizing
Eq. (6) around the stationary state, we obtain a
system of equations which can be written in the
compact form

dt r, 6P (t) (7)

where the relaxation of the system after the
perturbation of the electric field is described by
the response matrix F. By assuming 5’(0) 0,
Eq. (7) has the formal solution

(8)

with K(s)-exp(Fs)F) that can be determined
through the matrix

exp(Ft)  diag(exp(A t),..., exp(Au+zt)
(9)

where As are the eigenvalues of l and the
matrix of its eigenvectors.
The vector function K(t) determines the linear

response of the moments FA to an arbitrary
perturbation of the electric field. For example,
with K(t), Kv(t) and K(t) we denote the response
functions, respectively for the fluctuations of: mean
energy, velocity, and energy flux.

2. NUMERICAL RESULTS

In this section the theory of moments is applied
to the case of n-Si where full-band effects are
described by introducing an effective mass as a

function of the electron total energy [5]. For the
collisional processes, scattering with phonons off-
and g-type are considered. MC simulations are

performed using full-band model [8] and analytic
nonparabolic-band model [9]. The MC with
analytic-band model and the HD calculations
make use of the same physical scattering param-
eters [9].

2.1. Bulk with an Arbitrary Number
of Moments (Linear Expansion)

Figure shows the HD values for {v, ,} as a

function of the electric field, calculated for N: 1,
N= 3, N= 5 and M-- both in the parabolic and
nonparabolic case. For the velocity, energy, and
energy flux we report the MC values of full-band
simulations [8] (open circles) and analytic non-

parabolic-band simulations [9] (crosses); for the
velocity we report also the experimental data. We
note that the HD calculations exhibit small
variations (at most within 10%) from the number
of moments used. In any case the numerical results
converge for N= 5 both in the parabolic and
nonparabolic case. The convergence is particularly
evident for the velocity-field curves which are in
closer agreement with experimental data.

Figure 2 reports the time-dependence of the
linear response function (in the non-parabolic
case) of the first scalar {K(t),K2(t),K12(t)}
and vectorial moments {Kv(t),K(t),K2li(t)} for
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FIGURE Drift velocity v, average total-energy if’, and energyflux vs. electric field for electrons in Si at To 300 K. Lines refer to
present parabolic (P) and nonparabolic (NP) HD calculations with N-- (dashed lines), N- 3 (dash-dotted lines) N- 5 (solid lines).
Open circles refer to full-band MC simulations performed along (111 crystallographic directions [8]. Crosses refer to analytical NP
band MC simulations performed along the (111 crystallographic direction [9]. For the drift velocity we report also the experimental
data obtained with the microwave time-of-flight technique (MTOF) along the (111) crystallographic direction [10].
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FIGURE 2 Response functions {K,Kp2 ,K/ } and {Kv,KK,2,. } (associated respectively to scalar {,F(2),A(2)} and vectorial
vs. time for electrons in 1 in the case of [’P band model at To 300 K and increasing electric fields. The{vi,i,’(2)li} moments)

( (2

dashed and the continuous lines refer to N and to N 5 respectively.

{N= 2, N= 5} at increasing electric fields. As a
general trend, from Figure 2 we notice that the
increase in the number of moments yields small
differences in the shape of the response function at
any field value. The decay with time of the
response functions is controlled essentially by
the momentum and energy relaxation rates. The
presence of the electric field couples the two
relaxations processes [6], thus provoking a non-
exponential shape of the decay. We note that K,

K.I211 and all vectorial moments decays similarly
but faster than Kv.

2.2. Structures with the First 13 Moments
(Nonlinear Expansion)

Figure 3 reports v, # and for three n+nn+ Si
structures with channel lengths of 0.2, 0.3 and
0.4pm and an applied voltage of 1.5V and 2V,
respectively. For the HD calculations both para-
bolic and nonparabolic band models are reported.
For the longer structure MC results of the
analytical nonparabolic model with the same

scattering parameters used in the HD calculations
are also reported. When compared with MC
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FIGURE 3 Velocity v, average total-energy , and energy flux for a n + nn + Si structure with a channel length of 0.2, 0.3 and
0.4gm, respectively, with n+=5 x 1017cm -3 and n=2 x 10]Scm -3 for an applied voltage of 1.5V and 2V at 300K. Sharp
homojunctions are considered. Continuous (dotted) curves refer to present NP (P) HD calculations, respectively. Points refer to MC
simulations with a NP analytical model.
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FIGURE 4 Spatial profile of energy flux for a n+nn + Si structure with a channel length of 0.4ktm, n + =5 1017 cm -3,
n=2 105 cm -3 and applied voltages of, respectively, V, and 1.5V. Symbols refer to an explicit evaluation of the energy flux
making use of data obtained from NP MC simulations. Curves refer to results obtained from the constitutive functions (dotted lines
for the convective term, dashed lines for the diffusive term, dashdotted lines for the field term and continuous lines for the total) by
substituting in the appropriate expressions the values of the average moments and electric field obtained from MC data of the Si
structure.
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results, HD calculations are found to agree satis-
factorily apart from some discrepancy near the
anode region. These discrepancies are associated
with the strong gradient of the electric fields which
need to account for other moments in the develop-
ment of the analytical approach. As second step,
we consider the contribution of higher moments
and in Figure 4 we report a relevant subset of a
complete series of data showing the spatial profiles
of for the n+nn+ structure calculated for an
increasing number of moments with M- 1, N=
and N= 5 at increasing applied voltages. Overall,
the agreement between the HD and MC results is
considered to be satisfactory, thus validating the
constitutive relations found here.
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