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Abstract
Unforced bistable dynamical systems having dynamics of the general form
τF ẋ(t) = −∇xU(x) cannot oscillate (i.e. switch between their stable attractors). However, a
number of such systems subject to carefully crafted coupling schemes have been shown to
exhibit oscillatory behavior under carefully chosen operating conditions. This behavior, in
turn, affords a new mechanism for the detection and quantification of target signals having
magnitude far smaller than the energy barrier height in the potential energy function U(x) for
a single (uncoupled) element. The coupling-induced oscillations are a feature that appears to
be universal in systems described by bi- or multi-stable potential energy functions U(x), and
are being exploited in a new class of dynamical sensors being developed by us. In this work
we describe one of these devices, a coupled-core fluxgate magnetometer (CCFM), whose
operation is underpinned by this dynamic behavior. We provide an overview of the underlying
dynamics and, also, quantify the performance of our test device; in particular, we provide a
quantitative performance comparison to a conventional (single-core) fluxgate magnetometer
via a ‘resolution’ parameter that embodies the device sensitivity (the slope of its input–output
transfer characteristic) as well as the noise floor.
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(Some figures in this article are in colour only in the electronic version)

1. Introduction

A large class of dynamic sensors have nonlinear input–
output characteristics, often corresponding to a bistable
potential energy function that underpins the sensor dynamics.
These sensors include magnetic field sensors, e.g. the simple
(classical) fluxgate sensor [1–4] and the superconducting
quantum interference device (SQUID) [5], ferroelectric
sensors [6] and mechanical sensors [7], e.g. acoustic

transducers, made with piezoelectric materials. Fluxgate
magnetometers, the focus of this work, have always been of
interest to the technical and scientific communities as practical
and convenient sensors for magnetic field measurements
requiring a resolution around 1 µT at room temperature;
they have found applicability [4, 8] in fields such as
space and geophysical exploration and mapping, and non-
destructive testing, as well as assorted military applications.
Recently, the possibilities offered by new technologies and
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materials in realizing miniaturized devices with improved
performance have led to renewed interest in a new generation
of cheap, compact and low-power fluxgate sensors. However,
their miniaturization is complicated by the rapid increase
of the magnetic noise with the reduction of the device
dimensions, and general practical requirements for achieving
high sensitivity (large number of windings, large cross-
sectional sensor area and large driving current) which,
however, are at odds with the desired characteristics (low cost,
power and noise) of the miniaturized sensors. Nonetheless,
despite the difficulties manifest in integrated devices with
better performance, the literature does contain good examples
of fluxgate sensors in PCB [9–11] and even CMOS [12, 13].
In particular, CMOS affords the possibility of realizing the
sensing part (fluxgate) and the read-out circuit on the same
chip, resulting in enhanced reliability, and lower costs in batch
production. Today’s highly specialized fluxgate devices boast
laboratory noise floors as low as 10 pT/ Hz−1/2 [14], and are
used in a variety of magnetic remote sensing applications [15].

The conventional (single-core) fluxgate magnetometer
(SCFM) can be treated [17] as an overdamped nonlinear
dynamic system by assuming the core as approximately single
core-domain, and writing an equation for the evolution of the
(suitably normalized) macroscopic magnetization parameter
x(t):

τF ẋ(t) = −∇xU(x, t),

U(x, t) = x2(t)

2
− 1

c
ln cosh c[x(t) + h(t)].

(1)

c is a nonlinearity parameter (proportional to the ratio Tc/T

with T the temperature and Tc the Curie temperature) which
controls the topology of the potential function U(x, h(t) = 0):
the system becomes monostable, or paramagnetic, for c < 1
corresponding to an increase in the core temperature past the
Curie point, and remains ferromagnetic for c > 1. The overdot
denotes the time derivative, and h(t) is an external signal
comprising a known time-periodic (sinusoidal or triangular)
reference signal as well as the target signal ε (taken to be
dc throughout this treatment). τF is the device time constant
(inverse bandwidth); usually this time is very small, so that
for most application scenarios, the device can be treated as a
static nonlinearity. The known time-periodic signal switches
the core magnetization between its stable steady states on a
time scale given, roughly, by one-half the period of the signal.
Then the target signal (which is, for the applications that
concern us, too weak to overcome the energy barrier between
the steady states) is quantified via its asymmetrizing effects
on the system response. Good treatments of the conventional
fluxgate magnetometer can be found in [1–4].

Usually, the amplitude of the bias signal is taken to
be quite large, often far above the deterministic switching
threshold which is itself dependent on the potential barrier
height and the separation of the minima, in order to render the
response largely independent of the noise. The frequency is
also quite high (30–200 kHz in some commercial devices)
in order to achieve good electromagnetic coupling among
circuit elements, avoid the 1/f portion of the power spectral
density (PSD) and ensure an adequate number of data points

for averaging purposes. Hence, the switching events are
controlled by the bias signal. In the presence of background
noise and absent the target signal, the PSD of the system
response contains only odd harmonics of the (usually time-
sinusoidal) bias signal. The effect of an additional target
dc signal is, then, to skew the potential, resulting in the
appearance of features at even harmonics of the bias frequency
ω in the system response. Put succinctly, for an a priori
symmetric potential function U(x), the spectral amplitude at
2ω is zero unless the asymmetrizing dc signal is present, hence
the appearance of power at 2ω and its subsequent analysis is
used as a detection/quantification tool for the target signal.

An alternative to the power-spectral-based readout is a
time-domain-based readout that relies on a compilation of the
‘residence times’ in the stable steady states; this procedure is
the backbone of the readout scheme in our recently developed
single-core fluxgate magnetometer (SCFM) [17, 19–21]. In
the presence of a noise background, the crossing times have
random components, and one must compute a noise-averaged
residence time. The residence times readout has some
advantages compared to the conventional (PSD based) readout
scheme: it can be implemented experimentally without
complicated feedback electronics, and works without the
knowledge of the computationally demanding power spectral
density of the system output (in most cases a simple averaging
procedure on the system output works just fine) and, finally, it
performs well in the presence of noise. The simplicity of the
technique is underpinned by its event-based structure, akin to
the occurrence of neural ‘spikes’ [16] with very little required
knowledge of the system dynamics leading up to each spike;
this is, truly, a discrete 2-state system replacement of the more
complex potential-based dynamics so that relevant observable
becomes the ‘inter-spike interval’, typically a random variable
whose statistics impart all the relevant information about
the stimulus and the system response to it. A variant of this
readout was proposed for fluxgate sensors as early as 1961
[18].

One can show [19–21] (in contrast to the conventional
readout scheme applied to the SCFM) that the sensitivity of
the SCFM subject to the residence times readout is inversely
proportional to the bias amplitude and frequency [20]. Hence,
the (theoretical) conditions for increasing the sensitivity in the
residence times readout correspond to those for decreasing
the onboard power requirement. Of course, one cannot lower
the bias amplitude and frequency too far; the frequency must
remain high enough to ensure a good data sampling rate as
well as strong electromagnetic coupling between the core and
the readout circuit elements, while the amplitude must remain
somewhat higher than the energy barrier height separating the
steady states (i.e. the saturation states of the hysteresis loop) of
the potential energy function, to ensure reliable switching in
the absence of the target signal. Further, as the reference signal
amplitude approaches the deterministic switching limit (the
point at which the deterministic forcing alone is just sufficient
to drive switching events) from above, the switching events
become increasingly contaminated by the sensor noise floor,
and a large number of crossing events must be gathered in
order to obtain a reliable estimate for the difference in mean
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residence times. Hence, in practical applications, the decrease
in onboard power (with the concomitant decrease in the noise
contribution from the bias signal generator) must be offset
against an increase in the observation time, required to obtain
reliable statistics [17].

Following the above preamble, this paper will focus on
a novel class of magnetometers that use the (conventional)
fluxgate element, i.e. the wound ferromagnetic core, as a
component in a unidirectionally coupled nonlinear dynamic
system. We organize this paper as follows: in the following
section, we provide a brief theoretical overview of the
coupled-core dynamics together with the emergent cooperative
behavior that is exploited in the coupled-core system. Details
of the calculations are not presented; they have already been
published separately [22]. This is followed by the thrust
of this paper: a description of the experimental setup and
readout of the CCFM, and a compendium of results, aimed
at demonstrating the validity of the theoretical model, and
affording the possibility of detecting weak dc target fields,
with significant performance enhancements over its SCFM
counterpart. As part of our expose, we will introduce
a performance measure that embodies the (appropriately
defined) sensitivity of the device as well as the effect of system
fluctuations on the response.

2. Coupled-core fluxgate magnetometer (CCFM)

We start with an overview of the coupling scheme including
a new twist which we have, recently, implemented in our
laboratory CCFM. We give theoretical expressions for the
threshold for the onset of coupling-induced cooperative
behavior characterized by oscillations, as well as their
frequency without, however, giving many details of the
derivation, since this has already been done in prior work. We
then describe the implementation of the coupled-core sensor,
and show that the experimental setup does, in fact, yield the
correct physical results predicted by the theory. Finally, we
quantify the sensor performance within the reference frame of
the SCFM (we provide the main figures of merit of our SCFM
for reference), and buttress our preference for this sensor (over
the SCFM) despite somewhat greater engineering complexity.

2.1. Background: coupling scheme and dynamics

The CCFM is constructed by unidirectionally coupling
N(>2) wound ferromagnetic cores with cyclic boundary
condition, thereby leading to the dynamics,

ẋi = −xi + tanh(c(xi + λxi+1modN + ε)), i = 1, . . . , N

(2)

where xi(t) represents the (suitably normalized) magnetic
flux at the output (i.e. in the secondary coil) of unit i, and
ε � U0 is an external dc ‘target’ magnetic flux, U0 being
the energy barrier height (absent the coupling) for each of the
elements (assumed identical for theoretical purposes). Note
that the (unidirectional) coupling term, having strength λ,
which is assumed to be equal for all three elements, is inside
the nonlinearity, a direct result of the mean-field nature of

the description (the coupling is through the induction in the
primary or ‘excitation’ coil). The dynamics of this coupled
system have been detailed in [22] where it is shown that
the oscillatory behavior occurs even for ε = 0, however
when ε �= 0, the oscillation characteristics change; these
changes can be exploited for signal quantification purposes,
the underpinnings of the CCFM. Note the absence of the bias
signal (that is endemic to the SCFM) in the dynamics (2);
in the coupled-core system, the oscillations (corresponding
to switching events in each core between the allowed stable
states) are generated by the coupling and the cyclic boundary
condition. We also observe that the particle-in-potential
paradigm is no longer applicable to the coupled system (2)
due to the unidirectional coupling. Finally, we note that the
oscillations occur for any N � 3, however we concentrate
on the N = 3 case for convenience (the results for a general
odd N can be readily written down by inspection [22]). Also,
N can be even, however in this case one must have a large
number of coupled elements [23]. The above system (with
N = 3) has been realized in the laboratory [22] and is,
currently being implemented in a cheap, lightweight, room
temperature magnetic sensor, the CCFM.

A theoretical analysis [22] shows that the system
(2) exhibits coupling-induced oscillatory behavior with the
following features:

(1) The oscillations commence when the coupling coefficient
exceeds a threshold value

λc = −ε − xinf + c−1 tanh−1 xinf, (3)

with xinf = √
(c − 1)/c; note that in our convention,

λ < 0 so that oscillations occur for |λ| > |λc|.
(2) The individual oscillations (in each elemental response)

are separated in phase by 2π/N , and have period

Ti = Nπ√
cxinf

(
1√

λc − λ
+

1√
λc − λ + 2ε

)
(4)

which shows a characteristic dependence on the inverse
square root of the bifurcation ‘distance’ λc − λ, as
well as the target signal ε; these oscillations have been
experimentally produced at frequencies ranging from a
few Hz to high kHz.

(3) The summed output oscillates at period T+ = Ti/N and its
amplitude (as well as that of each elemental oscillation) is
always suprathreshold. This latter consideration implies
that the external bias signal used in the single core fluxgate
[19] is no longer needed to drive the magnetization
between its saturation states. Increasing N changes the
frequency of the individual elemental oscillations, but
the frequency of the summed response is seen to be
independent of N. Numerical simulations of the system
(2) have verified the characteristic scaling of the period
with the square root of the ‘bifurcation distance’ λc − λ.
As expected, decreasing the coupling strength increases
the oscillation period.

(4) Changing the target field strength also changes the period,
via its influence on the threshold λc; in addition, we
immediately observe that increasing ε leads to λc going
to larger (and negative) values i.e. a larger |λ| is required
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Figure 1. Time series from simulations on a standard CCFM arrangement (left) and AO arrangement (right). The RTD �1(t) (see text) of
the element x1 in the AO arrangement, is seen to be N times the corresponding quantity in the standard arrangement.
N = 3, c = 3, λ = −0.54, ε = 0.07.

to drive the system past its critical point. A glance at Ref
period quickly confirms that for a fixed coupling strength,
a critical value εc = |λc0 − λ| will render the period
imaginary; effectively, the oscillations are suppressed at
this value of the applied signal. Here, we have defined
λc0 = −xinf +c−1 tanh−1 xinf as the critical coupling value,
absent a target signal.

(5) Finally, it is important to observe that the elements in the
ring switch sequentially between their stable steady states.
This is apparent in figure 1 (left panel) which shows that
during the switching interval for any of the elements, the
other two elements remain in their (opposite) steady states,
this gives the emergent oscillations the appearance of a
‘ripple’ (visually, reminiscent of a soliton) that propagates
around the ring.

In practice, it is usually more convenient to use the
residence times difference (RTD) �t as a quantifier of the
target signal. In the hypothesis made here of static hysteretic
nonlinearity, the RTD quantifies the difference between the
times spent by the magnetization state variable in each stable
state. The RTD can be computed [22], from the ith core
element output signal, as

�t = π√
cxinf

(
1√

λc − λ
− 1√

λc − λ + 2ε

)
, (5)

which vanishes (as expected) for ε = 0. The system
responsivity, defined via the derivative ∂�t/∂ε, is found to
increase dramatically as one approaches the critical point in
the oscillatory regime; this suggests that careful tuning of
the coupling parameter so that the oscillations have very low
frequency, could offer significant benefits for the detection
of very small target signals. In this regime, one may do a
small-ε expansion to yield �t ≈ πε(cxinf)

−1/2(λc0 − λ)−3/2,
where λc0 now represents the critical coupling, absent the
target signal. The responsivity, defined via the RTD �t , is
seen to be (for small ε) independent of ε, a considerable

advantage when trying to optimize the device for maximal
responsivity; by contrast, if one computes the responsivity via
the change in oscillation period with ε, it becomes apparent
that the responsivity depends on ε. For a fixed ε one
observes, immediately, that the responsivity ∂�t/∂ε increases
as one approaches the critical point (through adjusting the
coupling parameter λ), i.e. the instrument yields its optimal
performance in the very low-frequency regime, close to the
oscillation threshold. In this context, it is worth noting that
the experimental system can be made to oscillate at very
low frequencies, far lower than the bias frequency that is
necessary for the readout of conventionally operated (single
core) fluxgates. This ‘tunability’ of the optimal operating
regime, if done carefully with consideration of the magnitude
of target signals expected in a given application, is a big
advantage of the coupled system over its single element
counterpart. It immediately removes the onboard power
requirement for the bias signal generator that is integral to
the SCFM, although this power savings is offset, somewhat,
by the power that must be supplied to the coupling circuit
elements. In addition, a significant source of noise (the bias
signal generator) is eliminated. It is always important to realize
that, in the coupled system, the assorted circuit components (in
particular those that realize the coupling circuit) do require an
onboard power source; hence the emergence (and sustenance)
of the oscillations does not violate any fundamental laws.
With the cyclic boundary condition and the appropriate choice
of coupling strength, the only remaining condition for the
oscillatory behavior is that at least one element should have
an initial state that is different from the others; this is
quite easy to achieve in practice, since the initial conditions are
random in any reasonable device. On connection, the onset
of oscillations is quite rapid; once a given elemental state
variable xi has made a single interval switch, it continues to
oscillate.
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Figure 2. RTD response (�t) of the x1 element in a CCFM as a function of ring size N, and coupling strength λ. (Left) standard
configuration (SO) and (right) alternating configuration (AO). Near the onset of coupled-induced oscillations, in particular, the RTD response
of the standard configuration remains constant (as expected) while that of the AO configuration increases linearly as a function of N.
c = 3, ε = 0.07. In each case, the maximum RTD is realized infinitesimally past the critical coupling λc. The response has been computed,
in both figures, via a numerical integration of the full system dynamics (2) and (6). Note the (substantial) difference in the vertical scales.

A recent twist to the above coupling scheme has led to
a substantial improvement in the performance of the CCFM.
The idea is to reverse the orientation of successive cores so
that the sign of the ε term in (2) alternates; for N odd, this
guarantees that there will be two adjacent elements with the
same sign of ε. This alternating orientation (AO) arrangement
is described by:

ẋi = − xi + tanh(c(xi + λxi+1mod N + (−1)i+1ε)), i = 1, . . . , N.

(6)

One can readily calculate [24] the oscillation period Ti of an
individual element as well as the threshold value λAO

c for the
onset of oscillations; these quantities are identical to those
given above for the conventional arrangement. However, this
does not apply to the residence times difference. We find that
this quantity changes, depending on the particular element
under consideration. Focusing on the element i = 1 which
has the same sign of ε as the element that it is back-coupled to
(namely the i = 3 element), we find [24]:

�1t = N�t (7)

with the result generalized to the arbitrary N (odd) case. This
departure from the standard behavior in the arrangement (2) is
evident in figure 1. In fact, recalling that ∂�t/∂ε measures the
responsivity (often called the sensitivity) of a CCFM, it follows
that the sensitivity of the AO configuration, using x1(t) as the
measurement element, improves, linearly, by a factor of N
when compared to the best sensitivity that can be achieved
by the standard CCFM configuration, given the same external
signal and core parameters. The dependence of the RTD and,
consequently of the sensitivity, on the size (i.e. number of
coupled dynamic elements) of the ring in the AO configuration
is in direct contrast to the sensitivity response of the standard
configuration, in which increasing N beyond N = 3 does
not lead to additional benefits. The above observations are
confirmed in figure 2, in which we calculate, numerically, the
RTD �1t for a CCFM system with standard as well as with
AO configuration. As expected, near the onset of coupling-
induced oscillations, the RTD response of the i = 1 element

in a standard CCFM configuration remains constant while that
of the AO configuration increases, linearly, with N.

It is clear that, for rings of arbitrary N (odd) elements, one
always has a situation wherein two adjacent elements have the
same orientation (i.e. the sign of the dc term in the dynamics
(6) is the same for these two elements). In this case, the most
sensitive (i.e. yielding the largest RTD) element is always the
one (out of these two elements) which receives input from an
element with the opposite orientation. For example, in the
system at hand, x3 and x1 have the same orientation, with x3

receiving input from x1 (same orientation) but x1 receiving
input from x2 (opposite orientation); hence, for the N = 3
configuration being considered here, x1 is the most sensitive
for detecting the target dc signal via the RTD.

2.2. Laboratory implementation of the CCFM

The experimental coupled core device involves three
ferromagnetic cores together with the coupling circuit; the
setup conforms to the model equations (2); in recent
experiments we have also implemented the AO arrangement
(6) which affords the prospect of enhanced sensitivity. Figure 3
shows the block diagram, as an overview, of the setup. We
now provide some details of the construction of the sensor and
the coupling circuit. The microwire-fluxgate magnetometer
is based on 100 µm FeSiB amorphous ferromagnetic core
material. The ferromagnetic cores are produced by rapidly
cooling alloys comprised of 80% Fe, Ni or Co, and 20% P,
Si, Al, C, B to obtain the desired magnetic properties [25]. In
particular, the FeSiB microwire is obtained using the in-water
quenching technique with a typical diameter range of 80–
160 µm and cylindrical structure. Typically, the solidification
process induces two magnetic domain regions: (1) an inner
core, easy axis parallel to the wire axis and (2) an outer
shell with radial easy axis. The internal stress induced by
the solidification process can be reduced through an annealing
process at 350–400 ◦C. The (wound) core implementation can,
then, be summarized as follows: (1) 100 µm diameter wire-
coils (primary and secondary coils) are wound around a plastic

5



Meas. Sci. Technol. 19 (2008) 075203 A R Bulsara et al

Instrumentation
Amplifier

Fluxgate 1

Filter

V-I 
Converter Amplifier

D
riv

in
g

S
en

si
ng

Integrator

Instrumentation
Amplifier
Instrumentation
Amplifier

Fluxgate 1Fluxgate 1

FilterFilter

V-I 
Converter

V-I 
Converter AmplifierAmplifier

D
riv

in
g

S
en

si
ng

IntegratorIntegrator

Instrumentation
Amplifier

Fluxgate 2

Filter

V-I 
Converter Amplifier

D
riv

in
g

S
en

si
ng

Integrator

Instrumentation
Amplifier
Instrumentation
Amplifier

Fluxgate 2Fluxgate 2

FilterFilter

V-I 
Converter

V-I 
Converter AmplifierAmplifier

D
riv

in
g

S
en

si
ng

IntegratorIntegrator

Instrumentation
Amplifier

Fluxgate 3

Filter

V-I 
Converter Amplifier

D
riv

in
g

S
en

si
ng

Integrator

Instrumentation
Amplifier
Instrumentation
Amplifier

Fluxgate 3Fluxgate 3

FilterFilter

V-I 
Converter

V-I 
Converter AmplifierAmplifier

D
riv

in
g

S
en

si
ng

IntegratorIntegrator

(a) (b)

Driving Coil
from previous core

Sensing Coil
to Instrumentation 
Amplifier

from previous core to Instrumentation 
Amplifier

Figure 3. (a) Schematic representation of a single ferromagnetic core. (b) Flow diagram of the N = 3 coupled-core system as an overview
for the device realization. The AO configuration is achieved by crossing wires at the connector between the x2 output and the coupling
circuit.

structure (of diameter 1.2 mm) and (2) a cylindrical glass-
support (1 mm external radius and 100 µm internal radius) is
used to contain the 100 µm FeSiB fluxgate core.

The cylindrical glass-support is fixed to the center of the
solenoid and the magnetic core is centered with respect to
the cylindrical plastic support. The cores are mounted on the
faces of a structure with a triangular section for orienting all
of them in the same direction (the device is, effectively, a
single-axis sensor with the target field measured along each
core axis) and then coupled through electronic circuits wherein
the voltage readout (i.e., the time derivative signal of the flux
detected by one of the sensing coils) is amplified by a voltage
amplifier (see figure 3). Next, the signal is passed through an
integrator to convert the derivative signal seen by the sensing
coil back to the ‘flux’ form so that the experimental system
closely conforms to the model. The signal then passes through
an amplifier to achieve adequate gain to drive the adjacent
fluxgate. Following this, the signal passes through a voltage-
to-current converter (V − I converter) in its final step to drive
the primary coil of the adjacent fluxgate. The setup is repeated
for the other two coupling connections for the remaining cores
and all values of the coupling circuit parameters are closely
matched from one set to the other. Each stage of the coupling
circuit also employs low noise, high speed and high precision
operational amplifiers (op-amps) to minimize the time delay in
order to conform closely to the model since a knowledge of the
state variable xi is available instantly in the model. Note that,
starting from the standard configuration, the AO configuration

is achieved by reversing the polarities of the excitation coils for
the x3 coil; this can be, simply, achieved by crossing wires at
the connector between the x2 output and the coupling circuit.

A stability analysis of the model equations with respect
to a delay in the signal shows no significant divergence in the
behavior, if the delay time is limited to 10% of the oscillation
period. This point is very significant in the implementation
of the actual device because there will always be delays in
the electronic circuits due to the component response times,
and the coupling circuit board presented here has about 2–
4% of the period in delay time (depending on the choice of
op-amps, resistors and capacitors used) when operating at a
relatively high frequency (around 150 Hz). Most of the time,
the laboratory device has been operated in the 37–100 Hz
regime, so that the delay is even smaller.

Once the magnetometer is configured, as described above,
the outputs of the coupled cores are sent for processing
to extract the information about the target field being
detected. The signal from the inverted core element is passed
through a Schmitt trigger which converts the output into a
clean dichotomous signal, retaining only the all-important
information about the locations (along the time axis) of the
switching events. The output from the Schmitt trigger is passed
through a voltage divider and diode to convert the signal to TTL
in which +5 V corresponds to a HIGH and 0 V corresponds
to a LOW. This HIGH and LOW state is then passed to
a programmable integrated circuit (PIC) microcontroller for
further processing; this, eventually, leads to compilation of the
residence times T± in the upper and lower states.
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Figure 4. Time series from the experimental system (standard
configuration) for ε = 0 (left column) and ε = 8.0 µT (right
column). The top figures show the input (i.e. response) signal fed to
each core. It can be observed as the (oscillatory) traveling wave
pattern discussed in the text. Each one has the same amplitude and
frequency but each is phase shifted by 120◦ as observed in the
numerical model. The bottom figure shows the outputs (transduced
into voltages) of the sensing coils of each core; the signals are
recorded after the instrumentation amplifier stages. The response
matches, qualitatively, the theoretical results derived earlier [22].
G = −0.8 in both cases.

In practice, both the upper and lower residence times
are accumulated for an appropriate number (10–15 in
our laboratory setup, but adjustable, depending on the
circumstances of the application) of oscillation cycles. A
mean and a standard deviation are then computed for both.
The difference T+ −T− of the two mean values is proportional
to the external field in the small-ε limit, as already noted in
section 1. Since there is inherent noise within the system, the
standard deviation is always nonzero for both residence times.

2.3. Experimental results

The oscillations observed from our coupled setup are quite
striking (figure 4). The system readily oscillates in a traveling
wave pattern and, like the model, it favors this pattern no matter
how many times it is restarted. The oscillation frequency, for
the system parameter values considered in this case is about
260 Hz. Each wave is phase shifted by exactly 2π

3 as predicted
by the model. Comparison of the experimentally obtained
oscillations to the numerical results (as shown in figure 1)
shows good agreement with the caveat that, since the values of
c and the time constant τF in the actual device (we set τF = 1
[s] in the model) are not known, we cannot correctly compare
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Figure 5. Experimentally obtained frequency scaling with respect
to the coupling strength, expressed as a gain and the applied dc
target magnetic field (horizontal axis). The curves scale as

√
λc − λ

in accordance with the theory.

the time scales in the model and the experimental observations.
The amplitudes of the oscillations in the experiment are also
arbitrary in comparison to the model because the recorded
voltages depend on the gains set in the coupling circuit. The
magnetic flux in the model saturates between ±1, but in
the devices this quantity cannot be measured directly. We
note that, despite the above issues, the qualitative agreement
between theory and experiment is very good; in fact, all the
mathematical relations listed in section 2 are well satisfied by
the experimental data.

Further illustration of good qualitative agreement between
the numerical system and the prototype system is the frequency
scaling (figure 5), as a function of the coupling strength and
also as a function of the applied (dc) field. As expected, the
frequency of the coupled system should rise as the square root
of the coupling strength; further, as the applied field magnitude
increases, the frequency decreases until the coupling strength
is at the critical value where the oscillations cease to exist.
Increasing the coupling values beyond this point will not
produce any oscillation. We recall that, in the convention
adopted in our theoretical description, the coupling is negative,
so that an ‘increase’ of coupling implies that the coupling
coefficient λ approaches zero. Similarly, increasing the
applied field in either direction away from zero will reduce
the frequency of the oscillations as predicted by the model;
this can also be observed in the experimental results shown
in figure 5. The oscillations cease to exist when the applied
field is too large because the field moves the system past the
critical point into the non-oscillating regime; this behavior
has already been outlined in the preceding section. In what
follows, to facilitate the correspondence between theory and
experiment, we adopt a notation wherein the coupling strength
λ is expressed as λ = λ∗G where λ∗ is a constant parameter
and G is the (dimensionless) gain of the amplifier (see figure 3)
that can be tuned via the ratio of two resistors. Figure 6 (left)
shows a family of responsivity curves as a function of the
applied field for different coupling strengths; the figure agrees
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Figure 6. (Left panel) responsivity curves, of the residence time difference (RTD) versus the applied target magnetic field ε for different
coupling strengths. As expected, the coupled-core system is less responsive as the dimensionless coupling parameter G is increased. In
particular, note the large difference in responsivity (for the same G = 0.6) between the AO (top curve) and SO (second curve from top)
configurations. The bottom curve is the responsivity of an ‘equivalent’ single core fluxgate magnetometer with bias signal amplitude
selected to be slightly suprathreshold, thereby yielding the maximal sensitivity. (Right panel) temporal variation of the RTD response of the
‘preferred’ element (x1 in figure 1(right)) as the target signal is swept (in 100 pT steps) through a range of values. G = 0.8.

well with theoretical results (not shown). As the coupling
strength is increased toward the critical value, the responsivity
curve becomes steeper. The greatest sensitivity is realized
when the coupling strength is set closest to the critical value,
but in this regime it can only detect a very small target field
amplitude. Hence, the ability to tune the coupling to detect a
range of target field strengths, must be a central feature of this
mode of operation; when implemented, it presents a capability
where one may tune the coupling to reduce the sensitivity and
increase the operating range, or vice versa. The RTD response
(of a single element in the AO configuration) as a function of
the target signal for a particular value of the coupling strength
is shown in figure 6 (right). In the context of this figure it
must, of course, be remembered that the RTD vanishes in the
absence of the external signal.

3. Quantifying the sensor performance

It is appropriate to discuss the effect of the sensor noise
floor on the response; in a real application, this noise can
arise from internal (materials, electronics, etc) sources, as
well as contamination of the target signal. The voltage
output signal from a single core fluxgate (operated via the
residence times readout) has been shown [19, 20] to have a
noise component that can be well approximated by a Gaussian
distribution. However, the individual residence times have
noise components which are, in general, non-Gaussian; they
have noise-dependent tails and, with increasing noise intensity
the tails get longer, a feature that is quite common to two-state
devices. Our earlier theoretical [17] and experimental [26]
work on the SCFM showed these features, and also showed
that decreasing the noise intensity (alternatively, increasing the
bias amplitude A) reduced the tail and made the distributions
more Gaussian-like; in the small σ 2/A limit (where σ 2 is a
theoretical noise variance) the residence times distributions

are Gaussian [17], as also observed in the experiments. Of
course, this comes at the price of reduced sensitivity (since
the sensitivity, for the residence times readout, is inversely
proportional to the bias amplitude). The above ratio can
be reduced (for a given noise floor) by increasing the bias
amplitude A, but this increases the onboard power as well as
the contribution to the noise floor arising from the reference
signal generator. A careful optimization of geometrical and
other core parameters is also known to lower the noise in the
voltage signal (see, e.g., [27]).

To better understand the ramifications of background
noise, we have introduced [17] the (critical to a practical
system) observation time Tob, and defined a response signal-
to-noise ratio (SNR) which is directly proportional to

√
Tob. A

longer observation time leads to an enhanced response (to very
weak target signals), however, practical constraints may limit
Tob. One can increase the bias frequency ω, thereby increasing
the number of crossing events and improving the statistics
of the measurement process, however this implies a larger
power requirement. Hence, in a practical application, one must
strike a balance between the physical constraints (e.g. onboard
power, noise from the bias signal generator) and the need to
carry out a reliable measurement of the mean RT D. The
practical configuration is also, of course, heavily dependent
on the amplitude (relative to the energy barrier height) of the
target signal ε to be quantified; it helps to have an a priori
idea of the range of target signals under consideration for a
given application. However, if the target signal is larger than
the energy barrier height (or, roughly, the coercive field) it is,
usually, easier to detect it by standard techniques that do not
require a sophisticated sensor such as the one described in this
work.

In the RTD readout the effects of noise are, usually,
manifest in uncertainties in the crossing times at the lower
and upper thresholds. The ensuing uncertainty (in the time-
domain) has been, formally, connected [20] to an uncertainty
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Figure 7. Difference in SNR response between alternating (AO) and standard (SO) core configurations as discussed in section 2 and
figure 1. Observe that near the onset of coupling-induced oscillations the SNR response of the AO configuration is significantly better. The
maximum SNR in each case is obtained just barely past the critical point (defined by λc). Parameters are: N = 3 cores (left panel) and
N = 7 cores (right panel), c = 3, τc = 150.0 and ε = 0.07. In each case, the SNR has been measured for the element with the maximal
response (see the text), at the feature corresponding to the oscillation frequency in the output power spectral density. Here, D ≡ σ 2τc is the
noise intensity parameter (see the text).

in the amplitude domain i.e., to an equivalent noise-floor [4]
that one would obtain via an output power spectral density.

3.1. The effects of noise in the CCFM: an overview of recent
results

Before introducing a performance-quantification measure
specific to our time-domain readouts, we give a rapid overview
of existing results on the effects of noise in the coupled-
core device. This noise can arise from a contamination
of the external target signal, as well as from the readout
electronics, magnetic core, etc. Regardless of the source
of the noise, we have treated it as being Gaussian band-
limited noise having zero mean, variance σ 2 and correlation
time (inverse bandwidth) τc, i.e. 〈N(t)〉 = 0, 〈N(t)N(t ′)〉 =
〈N2(0)〉 exp[−|t−t ′|/τc], with 〈N2(0)〉 = σ 2τc/2; the ‘white’
limit of delta-correlated noise is realized for τc → 0.

A small additive noise floor (arising from internal sources)
manifests itself in fluctuations of the ‘rest’ states of each core,
about the deterministic mean values ±b (the minima of each
core potential energy function, in the absence of coupling).
Numerical simulations [28] of the coupled system, for this
case, show that the threshold crossings are quite sharp and
unambiguous in the presence of this noise term, as long as the
noise is not too strong; this is a direct consequence of the very
low time constant τF (usually � τc) of each core; to all intents
and purposes, each element behaves like a static nonlinearity,
with near-instantaneous switching events.

We now consider the situation wherein the target dc signal
is noise-contaminated. In this case, one inserts a correlated
noise term N(t) (specified as described above) additively into
the argument of the nonlinearity in each of the equations (2)
and (6). Our simulations in this case [24] have focused on
a comparison of the spectral response (quantified by a SNR

obtained at the spectral feature at the switching frequency
in the oscillatory regime), the intention being to compare the
response of the two coupling configurations (2) and (6). These
comparisons are well summarized in figure 7 wherein we plot
the SNR difference (at the oscillation frequency) between the
SO and AO configurations (given by (2) and (6), respectively).
One readily finds that the AO configuration provides far
better SNR performance when operated close to the onset of
switching, i.e. in the low-frequency oscillation regime just past
the critical point. The improvement is enhanced for increasing
N. The AO configuration, therefore, offers a tangible way of
improving the sensor responsivity (or resolution) by exploiting
large-N effects, although any potential improvement must
be balanced against the engineering complexity involved in
producing a larger (than N = 3) device.

3.2. A performance measure: the resolution

The RTD readout that we use in our devices is very simple to
implement; one requires a clock and a counting circuit to keep
track of the crossing events of the upper and lower thresholds,
and a running arithmetic mean of the residence times in the up
and down states. The (measured) quantity of interest is, then,
the mean RTD, denoted by RT D.

We now introduce the ‘Resolution’; it is the minimum
magnetic field that can be discriminated by the sensor against
the background, after ambient static (homogenous) magnetic
fields have been nulled out, as described earlier. The resolution
is defined as

R = ST D(�1t)/[∂�1t/∂ε] (8)

where �1t represents the averaged RTD measured (in this case)
at the x1 element and the denominator is simply the slope of
the output–input transfer characteristic (the plot of �1t versus
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Figure 8. Return map of the (experimentally obtained) RTDs; each
cluster corresponds to a different ε and the straight line is the locus
of the means. Each individual point in a cluster corresponds to an
average of 15–20 values of the RTD taken in an observation time
window (0.1 s in this case). Standard deviation of each cluster is a
function of ε (see the text), while mean value is proportional to ε so
that the responsivity (denominator of (8) is an ε-independent number
(see the text). At low signal values, the resolution is, approximately,
constant (see the text). Parameters are: N = 3 cores and G = −0.8.

the target signal ε), and represents the device responsivity. For
small target signals, we expect this slope to be independent of
ε (i.e. �1t ∝ ε); this is, of course, convenient for practical
applications. The numerator in (8) is the standard deviation of
the RTD, i.e., ST D(�1t).

We now describe how this quantity is measured,
experimentally, in a CCFM consisting of N = 3 cores
following the AO dynamics (6), i.e., the ‘favored’ element for
measuring the RTD is x1(t). We use an observation time (once
the ambient static magnetic field nulling has been achieved)
of 0.1s and an oscillation frequency that is adjusted (via the
coupling λ) to yield 15–20 cycles of the response during this
observation window. Of course, the observation time can
be increased, but this would depend on the circumstances
of the particular application and, more importantly, on the
statistics and stationarity (or lack thereof) of the ambient noise.
Keeping ε fixed, we compute the time-averaged RTD �1t

by averaging the RTDs obtained in the observation window.
The experiment is then repeated several times for the same ε;
each repetition yields a time-averaged (over the observation
window) RTD which is not necessarily the same as the others,
due to fluctuations. In this way, one obtains a large number
of time-averaged RTDs corresponding to the fixed value of
ε. The quantity �1t is, then, the statistical average of these
points (for the same value of ε). The process is repeated for
different values of ε. A plot of �1t versus ε shows clusters
of discrete points (each point corresponding to an average
over the observation window) for each value of ε. The locus
of the statistical means of each cluster of points then yields a
straight line for small ε. In figure 8, we have plotted the ‘return

map’ of the (experimentally obtained) RTDs. For a given ε,
each data point in a cluster represents the (window-averaged)
RTD at two successive observation intervals each 0.1 s long;
thus, we generate a cluster of points corresponding to a plot
(actually a residence times return map) of �1tn+1 versus �1tn.
Each cluster of points corresponds to one value of the target
field ε (in the absence of background noise, each cluster would
collapse into a single point for that particular value of ε); in this
experimental sequence (figure 8), the point clusters correspond
to values of ε that are approximately 2.0 nT apart; one can
use a smaller separation of ε values, however this separation
has been chosen for purposes of elucidation (with smaller
separation the clusters tend to merge into one another). The
density function of each cluster is near-Gaussian, with a mean
value corresponding to the averaged RTD over all the discrete
points, and a standard deviation that can be computed from
the observations. The locus of the mean values is the straight
line. When one plots these mean RTD values as a function
of ε (not shown), the slope of this line (the responsivity,
i.e. the denominator of (8)) is 229.83 s T−1. In the figure,
the standard deviations of the point clusters are (from left to
right) 0.057 315, 0.054 994, 0.065 573, 0.044 63 µs, resulting
in resolutions (calculated from (8) of 250, 240, 286, 195 pT
respectively, resulting in a mean resolution of 242 pT
for this particular realization of the sensor. The
resolution is approximately constant (the deviations arise from
experimental uncertainties and fluctuations) in this regime of
low target signal. It is important to realize that, as ε increases,
the target signal becomes more easily ‘resolved’. However,
the analytic description of the response breaks down when ε

becomes comparable to (or exceeds) the energy barrier height
of a single element (isolated) potential function; in this regime,
the resolution becomes ε-dependent.

One expects, at least in the linear regime (ε � �U , the
energy barrier height of a single isolated element), that the
distribution of the discrete points corresponding to a given
ε will be near-Gaussian; this is, in fact, observed in our
experiments. The numerator in (8) is also computed, directly
from the data, for each value of ε. The definition (8) should be
compared with our heuristic definition of a response SNR [17];
we find, in fact, that the resolution is proportional to the inverse
of the SNR. This is reasonable because a lower value of the
resolution implies better performance, as does a higher value
of the SNR. What is important to note is that the quantity in (8)
incorporates the effects of the noise on the sensor performance
in a simple manner that can be easily implemented in practice;
we can, in fact, use this quantity to make comparisons between
different sensor versions.

In an experiment, however, one cannot pin down the
exact sources of background noise, and the statistics of
the fluctuations are even more difficult to quantify. In
SCFM experiments we found that the fluctuations in the
RTD were approximately Gaussian [20] in conformance with
a theoretical model that was presented in [17]. For the
CCFM, an analogous calculation can be carried out, albeit
with some careful approximations which can be made, by a
consideration of the various time scales inherent in the system.
Specifically, we assume that the individual points in the scatter
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plot (8) (corresponding to the averaging of several RTDs in an
observation window) can be modeled as the response to an
external dc magnetic flux that is Gaussian distributed but does
not change rapidly (specifically, it changes on time scales that
are on the order of the observation window, typically 0.1 s); we
also assume that no other noise sources are present. In other
words, we assume that each of the window-averaged data
points in this figure is a random variable that is uncorrelated
with its predecessor, and arises from a different realization
of the external signal, these realizations being drawn from
a Gaussian distribution with mean ε and variance σ 2. We
are, then, led to a derivation of the statistics (in particular,
the first two moments) of the residence times in the two
stable steady states of each of the ferromagnetic magnetic
cores, whence a simple expression for the resolution can be
computed, following the definition (8). While the details of the
calculation are beyond the scope of this paper it is worth noting
that the resulting expression reproduces, qualitatively, several
features that are seen in the experiments; most importantly,
the resolution is independent of the target signal in the small
signal limit, and depends solely on the (deterministic) device
parameters (c, λ) as well as the variance σ 2 of the fluctuations.
It also displays the N-dependent performance enhancement
that can be expected through the AO configuration (6).

4. Discussion and conclusions

We have developed a laboratory version of the CCFM with
the AO configuration. This sensor yields dynamic behavior
that faithfully follows all the theoretical predictions. The
(laboratory) resolution of this sensor is around 200 pT. In
principle, the resolution can be improved (i.e. the numerical
value decreases) by incorporating a larger number of cores;
this is readily apparent when we realize that the denominator
of (8) scales, linearly, as N. However, increasing the number of
cores comes at the cost of increased engineering complexity,
and additional onboard power (for the coupling circuitry). In
addition, the effects of increasing N on the magnetic noise
floor are still under investigation, although the results shown
in figure 7 provide grounds for optimism that increasing N
will not degrade the response as long as we operate within
well-defined regimes of optimal response (e.g. near the onset
of oscillations as suggested in figure 7). Here, however,
an important caveat emptor must be inserted. When the
system is tuned very close to the onset of oscillations, the
background noise can have a significant effect, particularly if
it is large enough so that its variance approaches the energy
barrier height. This is the weak coupling regime wherein
the input to each element from the element it is coupled to is
deterministic but very small compared to the noise floor. In this
regime an experimental time series of the response displays
a noise component that decreases as the coupling becomes
larger. Accordingly, while the system may exhibit its best
(theoretical) response in the low-frequency regime, a practical
system may need to be operated somewhat farther away from
the critical point; this option is not available in the SCFM
where a large noise floor is, usually, offset by increasing the
bias signal amplitude at the cost of a larger onboard power

requirement. Clearly, this makes the case for using every
available means to a priori lower the system noise floor.

The CCFM draws greater power than its SCFM
counterpart. This is, largely, due to the coupling circuitry;
in fact N cores must be driven instead of one (in the
SCFM). However this is balanced by significantly enhanced
performance, quantified by the resolution as well as the
experimentally observed lower (compared to the SCFM)
noise-floor. Future plans call for the realization of these
circuits in low power CMOS which should lead to a reduction
in the power budget. In both sensors (CCFM and SCFM),
following the nulling procedure, the sensor detects very small
static magnetic fields (which can be far below the terrestrial
magnetic field) in motion. The observation/measurement time
is 0.1 s for both sensors, and it is not necessary to carry out the
nulling procedure prior to every observation.

We also point out that, in recent laboratory realizations of
the CCFM, parameter mismatch issues have been reduced to
a minimum. The cores are near-identical (cut from the same
sample of single-domain magnetic wire), and the coupling
circuitry can also be set up so that the coupling coefficients λ

are almost the same throughout the arrangement. Hence, while
there are likely to be lingering mismatches in parameter values,
they can be substantially minimized; a recent article [30]
addresses, quantitatively, the effects of parameter mismatch
specifically variations in the nonlinearity parameter c. Of
greater concern are the sources of noise arising from the
readout electronics, the magnetic noise in the cores themselves,
and fluctuations that are superimposed on the target signal.
Magnetic noise in the cores is overcome by very careful
fabrication and machining of the single-domain wire that
constitutes each core, while the other sources of fluctuations
can be modeled using a ‘coarse-grained’ approach (in this case,
assuming that they occur on the time scale of the observation
time). We also point to our earlier work [23, 28] in which
we described the effects of the fluctuations without the above
time-scale restriction, and also described some rich noise-
mediated spatio-temporal behavior in large coupled rings.
This leaves us with another potential source of noise that can
easily arise in practice, namely temperature fluctuations that
affect the nonlinearity parameter c, particularly when the same
device is operated in greatly different environments. The
parameter c is proportional to the ratio Tc/T , Tc being the
Curie temperature. Temperature fluctuations will, therefore,
introduce complicated state-dependent noise terms in the
coupled dynamics. In turn, the parameters λc as well as the
positions of the fixed points of the core potential functions (for
zero coupling) will also fluctuate. A systematic treatment of
the effects of these fluctuations is beyond the scope of this
paper.

It should be clear that our coupling scheme is quite
readily applicable to a vast array of dynamical systems which
follow the basic ‘particle-in-potential’ paradigm with U being
any bi- or multi-stable potential and x the appropriate state
variable. The ability to control the oscillation frequency (the
laboratory realization of the CCFM can be made to oscillate at
frequencies ranging from a few Hz to several kHz, for example)
dramatically broadens the range of applications that can benefit
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from this scheme. We note, also, that the response of the
CCFM to time-sinusoidal magnetic fields has been described
(and quantified in the laboratory) [29]. Hence, although we
have focused on the case of a dc target signal in this review,
we emphasize that there is a richness of nonlinear dynamic
behavior that can be exploited in the detection of time-periodic
magnetic fields, using the CCFM.
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