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Fat Points in P
1 × P

1 and

Their Hilbert Functions

Elena Guardo and Adam Van Tuyl

Abstract. We study the Hilbert functions of fat points in P
1 × P

1. If Z ⊆ P
1 × P

1 is an arbitrary fat

point scheme, then it can be shown that for every i and j the values of the Hilbert function HZ (l, j)

and HZ (i, l) eventually become constant for l ≫ 0. We show how to determine these eventual values

by using only the multiplicities of the points, and the relative positions of the points in P
1 × P

1. This

enables us to compute all but a finite number values of HZ without using the coordinates of points. We

also characterize the ACM fat point schemes using our description of the eventual behaviour. In fact,

in the case that Z ⊆ P
1 × P

1 is ACM, then the entire Hilbert function and its minimal free resolution

depend solely on knowing the eventual values of the Hilbert function.

Introduction

The Hilbert function of a fat point scheme in P
n is the basis for many questions

about fat points schemes. Although some facts have been established (see the survey
of Harbourne [6] for the case of n = 2), we do not have a complete understanding of
the Hilbert functions of fat point schemes.

In this paper we investigate the Hilbert functions of fat point schemes in a different

space, specifically, in P
1 × P

1. Interest in the Hilbert functions of fat point schemes
in P

n1 × · · · × P
nk with k ≥ 2 is motivated, in part, by the work of Catalisano, et

al. [2] which exhibited a connection between a specific value of the Hilbert function
of a special fat point scheme in P

n1 × · · · ×P
nk and a classical problem of computing

the dimension of certain secant varieties to the Segre variety.

The Hilbert functions of sets of points in P
1 × P

1 appear to be first studied by
Giuffrida, et al. [3]. Some of the results of [3] were extended and generalized to sets
of points in P

n1×· · ·×P
nk by the second author [8, 9]. Unlike the case of sets of simple

points in P
n, the problem of characterizing the Hilbert functions of sets of reduced

points in P
n1 × · · · × P

nk , even in the case of P
1 × P

1, remains open. Arithmetically
Cohen-Macaulay fat point schemes in P

1 × P
1 were studied by the first author [5]

(which was based upon [4]). Catalisano, et al. [2] give some results about fat point
schemes in P

n1 × · · · × P
nk . However, like the case of fat point schemes in P

n, we do

not have a complete understanding of the Hilbert functions of fat point schemes in
P

n1 × · · · × P
nk .

In this paper we are specifically interested in studying the eventual behaviour of
the Hilbert function of a fat point scheme Z ⊆ P

1 × P
1. If Z is an arbitrary fat point

scheme and if HZ denotes its Hilbert function, then it is not difficult to show that for

Received by the editors March 7, 2002; revised October 27, 2002.
AMS subject classification: 13D40,13D02,13H10,14A15.
Keywords: Hilbert function, points, fat points, Cohen-Macaulay multi-projective space.
c©Canadian Mathematical Society 2004.

716



Fat Points in P
1 × P

1 and Their Hilbert Functions 717

any i or j, the values HZ(l, j) and HZ(i, l) become constant for l≫ 0. Our first main
result (Theorem 3.2) is to calculate these eventual values by using numerical infor-

mation about Z. In particular, we show that these values can be calculated directly
from the multiplicities of the points, and from the relative positions of the points in
the support, that is, if P, P ′ are in the support, we only need to know if πi(P) = πi(P ′)
for i = 1, 2 where πi is the i-th projection map. The actual coordinates of the points

are therefore not needed to compute all but a finite number of values of HZ .

We then show that the eventual behaviour of HZ gives us further information
about the scheme Z. In particular, we show (cf. Theorem 4.8) that the eventual val-

ues of HZ can be used to determine if Z is arithmetically Cohen-Macaulay (ACM). In
fact, a specific type of eventual behaviour characterizes the ACM fat point schemes of
P

1 ×P
1. We relate our characterization with the results of [3] and [5]. Furthermore,

in the case that Z is ACM, the eventual values of HZ can be used to completely deter-

mine the entire Hilbert function, and the minimal free resolution, of Z.

This paper has five parts. In the first section we recall the relevant facts about
bigraded rings and fat point schemes. We also give some elementary properties for

the Hilbert function of a fat point scheme in P
1 × P

1. In the second section we
compute the Hilbert function of a fat point scheme in P

1 × P
1 whose support lies

on either a (0, 1)-line or a (1, 0)-line. In the third section we introduce two tuples
αZ and βZ that contain information about the multiplicities and relative position of

the points, and show how to compute all but a finite number of values of the Hilbert
function from αZ and βZ . In the fourth section we show how to use αZ and βZ to
determine if Z is ACM. In the final section, we look at some ACM fat point schemes

with some extra conditions on their multiplicities.

Many of these results had their genesis in examples. Instrumental in computing
these examples was the computer program CoCoA [1]. We would like to thank A. Ra-

gusa for his useful comments and suggestions. We would also like to thank the referee
for their helpful comments and suggestions, and especially for suggesting a shorter
proof for Theorem 2.2.

1 Preliminaries

In this section we recall the necessary definitions and facts about bigraded rings and
fat point schemes.

Let N := {0, 1, 2, . . .}. It will be useful to consider in Z× Z and in N× · · · × N

the partial ordering induced by the usual one in Z and in N respectively. We will
denote it by “≤”. Thus, if (i1, i2), ( j1, j2) ∈ N

2, then we write (i1, i2) ≤ ( j1, j2) if
ik ≤ jk for k = 1, 2.

We let k denote an algebraically closed field. Let R = k[x0, x1, y0, y1] where
deg xi = (1, 0) and deg yi = (0, 1). Then the ring R is N

2-graded, or simply, bigraded,
that is,

R =

⊕

(i, j)∈N2

Ri, j and Ri1,i2
R j1, j2

⊆ Ri1+ j1,i2+ j2

were each Ri, j consists of all the bihomogeneous elements of degree (i, j).

For each (i, j) ∈ N
2, the set Ri, j is a finite dimensional vector space over k. A basis
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for Ri, j is the set of monomials {xa0

0 xa1

1 yb0

0 yb1

1 ∈ R | (a0 + a1, b0 + b1) = (i, j)}. It
follows that dimk Ri, j = (i + 1)( j + 1) for all (i, j) ∈ N

2.
Suppose that I = (F1, . . . , Fr) ⊆ R is an ideal such that the Fis are bihomogeneous

elements. Then I is called a bihomogeneous ideal. If I ⊆ R is any ideal, then we define
Ii, j := Ri, j ∩ I. The set Ii, j is a subvector space of Ri, j . If I is a bihomogeneous ideal,
then I =

⊕
(i, j) Ii, j .

If I is a bihomogeneous ideal of S, then the quotient ring S = R/I is also bigraded,
i.e., S =

⊕
(i, j) Si, j where Si, j := Ri, j/Ii, j for all (i, j) ∈ N

2. The numerical function

HS : N
2 → N defined by

(i, j) 7−→ dimk Si, j = dimk Ri, j − dimk Ii, j

is the Hilbert function of S = R/I. We sometimes write the values of the Hilbert
function HS as an infinite matrix (Mi, j) where Mi, j := HS(i, j). For example, if
I = (0), then HR/I(i, j) = (i + 1)( j + 1), and so we write

HR/I =





1 2 3 4 · · ·
2 4 6 8 · · ·
3 6 9 12 · · ·
4 8 12 16 · · ·
...

...
...

...
. . .




.

Note that we begin the indexing of the rows and columns at 0 rather than 1.

Remark 1.1 In [3] the Hilbert function was referred to as the Hilbert matrix. How-

ever, we will refer to (HS(i, j)) as the Hilbert function.

We wish to study the Hilbert functions of rings of the form R/I where I is the ideal

associated to a fat point scheme in P
1 × P

1. We now recall the relevant definitions.
Let P

1 := P
1
k

be the projective line defined over k, and let P
1 × P

1 be the product
space. The coordinate ring of P

1×P
1 is the bigraded ring R = k[x0, x1, y0, y1] where

deg xi = (1, 0) and deg yi = (0, 1).

Suppose that
P = [a0 : a1]× [b0 :b1] ∈ P

1 × P
1

is a point in this space. The ideal ℘ associated to P is the bihomogeneous ideal

℘ = (a1x0 − a0x1, b1 y0 − b0 y1).

The ideal ℘ is a prime ideal of height two that is generated by an element of degree
(1, 0) and an element of degree (0, 1).

If P = P1 × P2 ∈ P
1 × P

1, then we shall sometimes write LP1
and LP2

for the

generators of the ideal ℘ = (LP1
, LP2

) defining P where LP1
is a form of degree (1, 0)

and LP2
is a form of degree (0, 1). Since P

1 × P
1 ∼= Q, the quadric surface in P

3, it is
useful to note that LP1

defines a line in one ruling of Q and LP2
defines a line in the

other ruling, and P is the point of intersection of these two lines.
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Let X be a set of s reduced points in P
1 × P

1. Let π1 : P
1 × P

1 → P
1 denote the

projection morphism defined by P1 × P2 7→ P1. Let π2 : P
1 × P

1 → P
1 be the other

projection morphism. The set π1(X) = {R1, . . . , Rr} is the set of r ≤ s distinct first
coordinates that appear in X. Similarly, the set π2(X) = {Q1, . . . , Qt} is the set of
t ≤ s distinct second coordinates. For i = 1, . . . , r, let LRi

denote the (1, 0) form
that vanishes at all the points of P

1 × P
1 which have first coordinate Ri . Similarly,

for j = 1, . . . , t , let LQ j
denote the (0, 1) form that vanishes at all the points whose

second coordinate is Q j .

Let D := {(i, j) | 1 ≤ i ≤ r, 1 ≤ j ≤ t}. If P ∈ X, then IP = (LRi
, LQ j

) for some

(i, j) ∈ D. (Note that this does not mean that if (i, j) ∈ D, then Pi j ∈ X. There may
be a pair (i, j) ∈ D, but Pi j /∈ X.) For each (i, j) ∈ D, let mi j be a positive integer
if Pi j ∈ X, otherwise, let mi j = 0. Then we denote by Z the subscheme of P

1 × P
1

defined by the saturated bihomogeneous ideal

IZ =

⋂

(i, j)∈D

℘
mi j

i j

where ℘ 0
i j := (1). We say Z is a fat point scheme of P

1×P
1. We sometimes say that Z

is a set of fat points. The integer mi j is called the multiplicity of the point Pi j . We shall
sometimes denote the fat point scheme as

Z = {(Pi j ; mi j) | (i, j) ∈ D}.

In the case all the non-zero mi j are the same, we call Z a homogeneous fat point scheme.
The support of Z, written Supp(Z) is the set of points X. If X = Supp(Z), then

IX =
√

IZ .

Let IZ be the defining ideal of a fat point scheme Z ⊆ P
1 × P

1. Because the

ideal IZ ⊆ R is a bihomogeneous ideal, we can study its Hilbert function HR/IZ
. We

sometimes write HZ to denote HR/IZ
, and say HZ is the Hilbert function of Z.

We give some elementary results about the Hilbert function of a fat point scheme

in P
1 × P

1. These results generalize some of the results of [8] about sets of simple
points.

It was shown in [8, Lemma 3.3] that if X is a reduced set of points, then there exists

a (1, 0) form L ∈ R (respectively, a (0, 1) form L ′ ∈ R) that is a non-zero divisor of
R/IX . The proof of this lemma can extend to the non-reduced case:

Lemma 1.2 Let Z be a fat point scheme of P
1×P

1. Then there exists a bihomogeneous

element L ∈ R (respectively, L ′ ∈ R) with deg L = (1, 0) (respectively, deg L ′
= (0, 1))

such that L (respectively, L
′
) is a non-zero divisor of R/IZ .

The existence of these non-zero divisors enables us to prove the following:

Proposition 1.3 Let Z be a fat point scheme in P
1 × P

1 and suppose that HZ is the

Hilbert function of Z. Then

(i) for all (i, j) ∈ N
2, HZ(i, j) ≤ HZ(i + 1, j), and HZ(i, j) ≤ HZ(i, j + 1).
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(ii) if HZ(i, j) = HZ(i + 1, j), then HZ(i + 1, j) = HZ(i + 2, j).

(iii) if HZ(i, j) = HZ(i, j + 1), then HZ(i, j + 1) = HZ(i, j + 2).

Proof Let L be the non-zero divisor of R/IZ from Lemma 1.2 with deg L = (1, 0).

For any (i, j) ∈ N
2, the map (R/IZ)i, j

×L−→ (R/IZ)i+1, j is an injective map of vector

spaces because L is a non-zero divisor. It then follows that HZ(i, j) ≤ HZ(i + 1, j) for
all (i, j) ∈ N

2. The other statement of (i) is proved similarly.

The proof of (ii) and (iii) are similar, so we will only show (ii). Let L be as above.
For each (i, j) ∈ N

2, we have the following short exact sequence of vector spaces:

0 −→ (R/IZ)i, j
×L−→ (R/IZ)i+1, j −→ (R/(IZ , L))i+1, j −→ 0.

If HZ(i, j) = HZ(i +1, j), then this implies that the morphism×L is an isomorphism
of vector spaces, and thus, (R/(IZ , L))i+1, j = 0, or equivalently, (IZ , L)i+i, j = Ri+1, j .

But then (IZ , L)i+2, j = R1,0 ⊗k Ri+1, j = Ri+2, j , and thus, (R/(IZ , L))i+2, j = 0 as well.
The exact sequence then implies that (R/IZ)i+1, j

∼= (R/IZ)i+2, j .

Remark 1.4 Proposition 1.3 implies that the values in the columns and rows of the
Hilbert function HZ , written as a matrix, must eventually stabilize, that is, stay con-
stant. However, at least two questions remain. First, where do the rows and columns
stabilize? Second, at what values must the columns and rows stabilize? These ques-

tions are answered in the following sections (Corollary 3.4).

Remark 1.5 Because Lemma 1.2 shows the existence of a non-zero divisor in R/IZ

for any fat point scheme Z of P
1 × P

1, it follows that the inequality depth R/IZ ≥ 1
always holds. It should be noted that the arguments used in Lemma 1.2 and Proposi-
tion 1.3 use nothing special about P

1 × P
1 and can be extended to fat point schemes

in P
n1 × · · · × P

nk . Proposition 1.3 could also be deduced from Propositions 2.5 and
2.7 of [3].

2 Fat Point Schemes Whose Support Is on a Line

In this section we investigate the Hilbert functions of fat point schemes in P
1 × P

1

whose support lies on a line defined either by a form of degree (1, 0) or a form of
degree (0, 1). Because P

1 × P
1 ∼= Q, the quadric surface of P

3, this is equivalent
to studying those fat point schemes whose support is on one of the rulings of the
surface. We show that the Hilbert function in this case can be computed directly

from the multiplicities of the points. This result is a key component of our proof in
the next section describing the eventual behaviour of all fat point schemes in P

1×P
1.

So, let Z be the fat point scheme

Z = {(P11; m11), (P12; m12), (P13; m13), . . . , (P1s; m1s)}

of s fat points where P1 j = R1 × Q j . Then Supp(Z) = {P11, . . . , P1s}. It follows that
Supp(Z) lies on the line defined by the form LR1

∈ R1,0.
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Let Z ′ denote a fat point scheme whose support lies on a line defined by a form of
degree (0, 1), that is, Z ′

= {(Q1 × R1; m11), . . . , (Qs × R1; ms1)} with Qi and R1 as

in Z. Then, for any (i, j) ∈ N
2, (IZ)i, j

∼= (IZ ′) j,i , and therefore, HZ(i, j) = HZ ′( j, i).
Because of this relation, it is enough to investigate the case that the support of Z is
contained on the line defined by a form of degree (1, 0).

Remark 2.1 The following result can be recovered from Theorem 4.1 of [3] and
Theorem 2.1 in [5] if one first shows that these schemes are arithmetically Cohen-

Macaulay. However, we give a new proof of this result that does not depend on
knowing that the scheme is Cohen-Macaulay.

Theorem 2.2 Let Z = {(P11; m11), (P12; m12), . . . , (P1s, m1s)} be a fat point scheme

in P
1 × P

1 whose support is on a line defined by a form of degree (1, 0). Set m =

max{m1 j}s
j=1. For h = 0, . . . , m − 1, set ah =

∑s
j=1(m1 j − h)+ where (n)+ :=

max{0, n}. Then the Hilbert function of Z is

HZ =





1 2 · · · a0 − 1 a0 a0 · · ·
1 2 · · · a0 − 1 a0 a0 · · ·
1 2 · · · a0 − 1 a0 a0 · · ·
...

...
...

...
...

. . .




+





0 0 · · · 0 0 0 · · ·
1 2 · · · a1 − 1 a1 a1 · · ·
1 2 · · · a1 − 1 a1 a1 · · ·
...

...
...

...
...

. . .




+

· · · +





0 0 · · · 0 0 0 · · ·
...

...
...

...
...

0 0 · · · 0 0 0 · · ·
1 2 · · · am−1 − 1 am−1 am−1 · · ·
1 2 · · · am−1 − 1 am−1 am−1 · · ·
...

...
...

...
...

. . .





.

Proof For each j = 1, . . . , s, the ideal associated to P1 j is ℘1 j = (LR1
, LQ j

). Set
L = LR1

and note that L defines the (1, 0) line in P
1 × P

1 on which all the points lie.
Now for each 0 ≤ h ≤ m− 1 we set

Zh = {(P11; (m11 − h)+), . . . , (P1s; (m1s − h)+)}

and let IZh
be the associated ideal. Thus Z0 = Z. Furthermore, we have the identity

Lh ∩ IZ = Lh · IZh
for each h = 0, . . . , m− 1.

Since Lm ∈ IZ , we have 0 = L
m · S ⊆ L

m−1 · S ⊆ · · · ⊆ L · S ⊆ S where S = R/IZ

and L
i

denotes the image of Li in S. It then follows that

HZ(i, j) = dimk Si, j =

m−1∑

h=0

dimk

(
L

h · S
L

h+1 · S

)

i, j

.

Now for each h = 0, . . . , m− 1,

L
h · S

L
h+1 · S

∼= LhR

Lh+1 + Lh ∩ IZ

∼= LhR

Lh+1 + LhIZh

∼= L
h
(

R

L + IZh

)
.
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Hence dimk

(
L

h
·S

L
h+1

·S

)

i, j
= dimk

(
R/(L + IZh

)
)

i−h, j
, and thus

HZ(i, j) =

m−1∑

h=0

dimk

(
R/(L + IZh

)
)

i−h, j
.

To compute HZ , we thus need to compute the Hilbert function of R/(L + IZh
) for

each h. We now note that for each h,

(L + IZh
) = (L, L(m11−h)+

Q1
· · · L(m1s−h)+

Qs
),

that is, (L + IZh
) is a complete intersection generated by forms of degree (1, 0) and

(0, ah). The resolution of (L + IZh
) is given by the Koszul resolution, i.e.,

0 −→ R(−1,−ah) −→ R(−1, 0)⊕ R(0,−ah) −→ (L + IZh
) −→ 0.

Hence, the Hilbert function of R/(L + IZh
) is

HR/(L+IZh
) =




1 2 · · · ah − 1 ah ah · · ·
1 2 · · · ah − 1 ah ah · · ·
...

...
...

...
...

. . .



 .

This now completes the proof.

From now on, if α = (a0, . . . , am−1) is a tuple of non-negative integers, then by
ak ∈ α we shall mean that ak appears as a coordinate in α. The following corollary of
Theorem 2.2 will be required in the next section.

Corollary 2.3 With the notation as in Theorem 2.2, let α = (a0, . . . , am−1). Fix

j ∈ N. Then, for all i ≥ m− 1 = max{m1k}s
k=1 − 1,

HZ(i, j) = #{ak ∈ α | ak ≥ 1} + #{ak ∈ α | ak ≥ 2}+
· · · + #{ak ∈ α | ak ≥ j + 1}.

Proof Fix a j ∈ N, and set

(∗) = #{ak ∈ α | ak ≥ 1} + #{ak ∈ α | ak ≥ 2} + · · · + #{ak ∈ α | ak ≥ j + 1}.

From our definition of a0, . . . , am−1, it follows that a0 ≥ a1 ≥ · · · ≥ am−1. Let l

be the largest index such that a0, . . . , al−1 ≥ j + 1 but al, . . . , am−1 < j + 1. Set
α ′

= (al, . . . , am−1).
For each integer h = 1, . . . , j + 1, we have

#{ak ∈ α | ak ≥ h} = l + #{ak ∈ α ′ | ak ≥ h}.
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Thus

(∗) = ( j + 1)l + #{ak ∈ α ′ | ak ≥ 1} + · · · + #{ak ∈ α ′ | ak ≥ al}.

If we set (∗∗) = #{ak ∈ α ′ | ak ≥ 1} + · · · + #{ai ∈ α ′ | ak ≥ al}, then

(∗∗) = #{ak ∈ α ′ | ak = 1} + 2#{ak ∈ α ′ | ak = 2}+
· · · + al#{ak ∈ α ′ | ak = al}

= al + al+1 + · · · + am−1.

Hence, (∗) = ( j + 1)l + al + al+1 + · · · + am−1.

On the other hand, by Theorem 2.2, if i ≥ m− 1, then

dimk(R/IZ)i, j =

s∑

h=1

min{ j + 1, ah}.

Since a0, . . . , al−1 ≥ j + 1, it follows that

dimk(R/IZ)i, j = ( j + 1)l + al + al+1 + · · · am−1 = (∗)

which is what we wished to prove.

3 The Eventual Behaviour of the Hilbert Function of a Fat Point
Scheme

Let P1, . . . , Ps be s distinct points of P
1 × P

1 and suppose m1, . . . , ms are arbitrary

positive integers. Let Z = {(P1; m1), . . . , (Ps; ms)} be the resulting fat point scheme
of P

1 × P
1. In this section we wish to describe the eventual behaviour of the Hilbert

function of Z. We will show that the eventual values of the Hilbert function de-
pend only upon the numbers m1, . . . , ms and numerical information describing X =

Supp(Z). This result is a generalization of a result of the second author[8, Corol-
lary 5.13] about sets of points in P

1 × P
1.

We start by defining our notation. If Z is a fat point scheme, let X denote the
support of Z. We suppose that |X| = s. Let π1(X) and π2(X) be defined as in the
previous section. For each Ri ∈ π1(X), define

Z1,Ri
:= {(Pi j1

; mi j1
), (Pi j2

; mi j2
), . . . , (Pi jαi

; mi jαi
)}

where Pi jk
= Ri × Q jk

are those points of Supp(Z) whose first projection is Ri . Thus

π1(Supp(Z1,Ri
)) = {Ri}, and furthermore it follows that

IZ =

r⋂

i=1

IZ1,Ri
.
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For each Ri ∈ π1(X) define li := max{mi j1
, . . . , mi jαi

}. Then, for each integer
0 ≤ k ≤ li − 1, we define

ai,k :=

αi∑

t=1

(mi jt
− k)+ where (n)+ := max{n, 0}.

Let αRi
:= (ai,0, . . . , ai,li−1) for each Ri ∈ π1(X). Define

αZ := (αR1
, . . . , αRr

)

= (a1,0, . . . , a1,l1−1, a2,0, . . . , a2,l2−1, . . . , ar,0, . . . , ar,lr−1).

Similarly, for each Q j ∈ π2(X), define

Z2,Q j
:= {(Pi1 j ; mi1 j), (Pi2 j ; mi2 j), . . . , (Piβ j

j ; miβ j
j)}

where Pik j = Rik
× Q j are those points of Supp(Z) whose second projection is Q j .

Thus π2(Supp(Z2,Q j
)) = {Q j}. For Q j ∈ π2(X) define l ′j = max{mi1 j , . . . , miβ j

j}.
Then, for each integer 0 ≤ k ≤ l ′j − 1, we define

b j,k :=

β j∑

t=1

(mit j − k)+ where (n)+ := max{n, 0}.

Let βQ j
:= (b j,0, . . . , b j,l ′j −1) for each Q j ∈ π2(X). Define

βZ := (βQ1
, . . . , βQt

)

= (b1,0, . . . , b1,l ′
1
−1, b2,0, . . . , b2,l ′

2
−1, . . . , bt,0, . . . , bt,l ′t −1).

Example 3.1 With the above notation, let us determine the tuples αZ and βZ as-
sociated to the scheme Z = {(P11; 4), (P12; 2), (P23; 3), (P32; 2), (P41; 3)}. The sub-
scheme Z1,R1

is

Z1,R1
= {(P11; 4), (P12; 2)}.

We set l1 := max{4, 2} = 4. Then

a1,0 = 4 + 2 = 6

a1,1 = (4− 1)+ + (2− 1)+ = 4

a1,2 = (4− 2)+ + (2− 2)+ = 2

a1,3 = (4− 3)+ + (2− 3)+ = 1.

Hence, αR1
= (6, 4, 2, 1). For R2, R3, and R4, we get αR2

= (3, 2, 1), αR3
= (2, 1),

αR4
= (3, 2, 1). Hence

αZ = (6, 4, 2, 1, 3, 2, 1, 2, 1, 3, 2, 1).

Similarly, for Q1, Q2, Q3 ∈ π2(X), l ′1 = 4, l ′2 = 2 and l ′3 = 3. So, we have βQ1
=

(7, 5, 3, 1), βQ2
= (4, 2), and βQ3

= (3, 2, 1), and therefore,

βZ = (7, 5, 3, 1, 4, 2, 3, 2, 1).
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We now state and prove our main result about the eventual behaviour of the
Hilbert function. Recall that if we write ak ∈ α, where α is a tuple of non-negative

integers, then we shall mean that ak appears as a coordinate in α.

Theorem 3.2 Let Z be a fat point scheme of P
1 × P

1. Then, with the above notation,

(i) for a fixed j ∈ N, if i ≥ (l1 + · · · + lr)− 1, then

dimk(R/IZ)i, j = #{ak,l ∈ αZ | ak,l ≥ 1} + #{ak,l ∈ αZ | ak,l ≥ 2} + · · ·
+ #{ak,l ∈ αZ | ak,l ≥ j + 1};

(ii) for a fixed i ∈ N, if j ≥ (l ′1 + · · · + l ′t )− 1, then

dimk(R/IZ)i, j = #{bk,l ∈ βZ | bk,l ≥ 1} + #{bk,l ∈ βZ | bk,l ≥ 2} + · · ·
+ #{bk,l ∈ βZ | bk,l ≥ i + 1}.

Proof We will only prove (i) since the proof of statement of (ii) is similar. Let Z be
a set of fat points in P

1 × P
1, and let X = Supp(Z). The proof is by induction on

r = |π1(X)|. If r = 1, i.e., π1(X) = {R1}, the conclusion follows from Corollary 2.3.

So, suppose that r > 1, and the theorem holds for all fat point schemes Z ′ with
|π1(Supp(Z ′))| < r. For each Ri ∈ π1(X), we let IZ1,Ri

denote the ideal that defines

the subscheme Z1,Ri
:= {(Pi j1

; mi j1
), (Pi j2

; mi j2
), . . . , (Pi jαi

; mi jαi
)}. We set

IY1
:=

r−1⋂

i=1

IZ1,Ri
and IY2

:= IZ1,Rr
.

The ideals IY1
and IY2

are the defining ideals of fat point schemes in P
1 × P

1 with

|π1(Supp(Yi))| < r for i = 1, 2. We shall also require the following result about IY1

and IY2
.

Claim For any j ∈ N, if i ≥ l1 + · · · + lr − 1, then (IY1
+ IY2

)i, j = Ri, j .

Proof of the Claim Set m = l1 + · · ·+ lr. It is enough to show that (IY1
+ IY2

)m−1,0 =

Rm−1,0. Recall that for each Ri ∈ π1(X), the integer li is defined to be li =

max{mi jc
}αi

c=1 where Z1,Ri
is as above. If (LRi

, LQ jc
) is the ideal associated to the point

Pi jc
, then IZ1,Ri

=
⋂αi

c=1(LRi
, LQ jc

)mi jc . Note that deg LRi
= (1, 0) and deg LQ jc

= (0, 1).

From this description of IZ1,Ri
, it follows that Lli

Ri
∈ IZ1,Ri

. Thus Ll1
R1

. . . L
lr−1

Rr−1
∈ IY1

and

Llr
Rr
∈ IY2

.

Set J := (Ll1
R1
· · · Llr−1

Rr−1
, Llr

Rr
) ⊆ IY1

+ IY2
. Since J is generated by a regular sequence,

the bigraded resolution of J is given by the Koszul resolution:

0 −→ R(−m, 0) −→ R(−m + lr, 0)⊕ R(−lr, 0) −→ J −→ 0.
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If we use this exact sequence to calculate the dimension of Jm−1,0, then we find

dimk Jm−1,0 = (m− 1− (m− lr) + 1) + (m− 1− lr + 1)− (m− 1−m + 1)

= lr + m− lr = m = dimk Rm−1,0.

Since dimk Jm−1,0 ≤ dimk(IY1
+ IY2

)m−1,0 ≤ dimk Rm−1,0, the conclusion

(IY1
+ IY2

)m−1,0 = Rm−1,0

now follows.

From the short exact sequence

0 −→ IY1
∩ IY2

= IZ −→ IY1
⊕ IY2

−→ IY1
+ IY2

−→ 0

we deduce that

dimk(IZ)i, j = dimk(IY1
)i, j + dimk(IY2

)i, j − dimk(IY1
+ IY2

)i, j

for all (i, j) ∈ N
2. Thus, if i ≥ l1 + · · · + lr − 1, then by the claim we have

HZ(i, j) = (i + 1)( j + 1)− dimk(IY1
)i, j − dimk(IY2

)i, j + dimk(IY1
+ IY2

)i, j

= (i + 1)( j + 1)− dimk(IY1
)i, j + (i + 1)( j + 1)− dimk(IY2

)i, j

= HY1
(i, j) + HY2

(i, j).

For each h = 1, . . . , j + 1, it follows that

#{ak,l ∈ αZ | ak,l ≥ h} = #{ak,l ∈ αY1
| ak,l ≥ h} + #{at,l ∈ αY2

| at,l ≥ h}

where αYi
is the tuple associated to the fat point scheme Yi for i = 1, 2. The conclu-

sion now follows by the induction hypothesis and the fact that HZ(i, j) = HY1
(i, j) +

HY2
(i, j) if i ≥ l1 + · · · + lr − 1.

Remark 3.3 Suppose that Z is a set of simple points in P
1×P

1, i.e., the multiplicity
of each point in Z is one. So, if π1(Z) = {R1, . . . , Rr}, then

Z1,Ri
= {Ri × Qi1

, . . . , Ri × Qiαi
} for i = 1, . . . , r.

So, li = 1, and thus, ai,0 =
∑αi

j=1 1 = αi . So, αZ = (α1, . . . , αr), which is exactly
how αZ is defined for sets of simple points in [8]. Thus Theorem 3.2 generalizes [8,
Proposition 5.11] for sets of points in P

1 × P
1 to fat point schemes in P

1 × P
1.

We can rewrite Theorem 3.2 more succinctly.
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Corollary 3.4 Let Z be a fat point scheme in P
1×P

1. With the notation as in Theorem

3.2, let m = l1 + · · · + lr and m ′
= l ′1 + · · · + l ′t . Then

HZ(i, j) =






∑s
i=1

(
mi +1

2

)
if (i, j) ≥ (m− 1, m ′ − 1),

HZ(m− 1, j) if i ≥ m− 1 and j < m ′ − 1,

HZ(i, m ′ − 1) if j ≥ m ′ − 1 and i < m− 1.

Proof For any j ∈ N, if i ≥ m − 1, then Theorem 3.2 implies that HZ(i, j) =

HZ(m − 1, j). Similarly, for any i ∈ N, if j ≥ m ′ − 1, then HZ(i, j) =

HZ(i, m ′ − 1). Thus, for any (i, j) ≥ (m − 1, m ′ − 1), we have HZ(i, j) =

HZ(i, m ′ − 1) = HZ(m− 1, m ′ − 1).

All that remains to be shown is that HZ(m − 1, m ′ − 1) =
∑s

i=1

(
mi +1

2

)
. From

Theorem 3.2 it follows that

HZ(m− 1, j) = #{ak,l ∈ αZ | ak,l ≥ 1} + · · · + #{ak,l ∈ αZ | ak,l ≥ j + 1}
= #{ak,l ∈ αZ | ak,l = 1} + 2#{ak,l ∈ αZ | ak,l = 2} + · · ·

+ ( j + 1)#{ak,l ∈ αZak,l = j + 1}.

Thus, if j ≫ 0, then HZ(m− 1, j) =
∑r

k=1

∑lk−1

l=1 ak,l. For any k ∈ {1, . . . , r}

lk−1∑

l=1

ak,l = ak,0 + ak,1 + · · · + ak,lk−1

=
[

mi1
+ (mi1

− 1) + · · · + 2 + 1
]

+ · · · +
[

miαi
+ (miαi

− 1) + · · · + 2 + 1
]

=

(
mi1

+ 1

2

)
+ · · · +

(
miαi

+ 1

2

)
.

It then follows that HZ(m − 1, j) =
∑s

i=1

(
mi +1

2

)
if j ≫ 0. In particular,

HZ(m− 1, m ′ − 1) =
∑s

i=1

(
mi +1

2

)
.

Remark 3.5 From the above corollary, we see that if we know the values of
HZ(m − 1, j) for j = 0, . . . , m ′ and the values of HZ(i, m ′ − 1) for i = 0, . . . , m,

then we know the entire Hilbert function except at a finite number of values. This
observation motivates the next definition.

Definition 3.6 Let Z be a fat point scheme and let αZ and βZ be constructed as
described above. If m = |αZ | and m ′

= |βZ|, then define the following tuples:

BC =
(
HZ(m− 1, 0), HZ(m− 1, 1), . . . , HZ(m− 1, m ′ − 1)

)

and
BR =

(
HZ(0, m ′ − 1), HZ(1, m ′ − 1), . . . , HZ(m− 1, m ′ − 1)

)
.

The tuple BC is called the eventual column vector because it contains the values at
which the columns will stabilize. Similarly, BR is the eventual row vector. Set BZ :=
(BC , BR). The tuple BZ is called the border of the Hilbert function of Z.
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The notion of a border was first introduced in [8] for sets of simple points in
P

n1×· · ·×P
nk . The name is used to describe the fact that once we know the values of

border, then we know all the values of the Hilbert function “outside” the border. Thus
only values “inside” the border, i.e., those (i, j) ∈ N

2 with (i, j) ≤ (m − 1, m ′ − 1),
need to be calculated to completely determine the entire Hilbert function.

It follows from Theorem 3.2 that the border can be computed directly from the
tuples αZ and βZ . By borrowing some terminology from combinatorics, we can make

this connection explicit. Our main reference for this material is Ryser [7]. But first,
for the remainder of this paper, we will adopt the following convention about αZ

and βZ .

Convention 3.7 Let Z be a fat point scheme in P
1×P

1, and suppose that αZ and βZ

are constructed from Z as described above. We will assume that the entries of αZ =

(α1, . . . , αm) have been reordered so that αi ≥ αi+1 for each i. We assume the same

for βZ .

Definition 3.8 A tuple λ = (λ1, . . . , λr) of positive integers is a partition of an
integer s if

∑
λi = s and λi ≥ λi+1 for every i. We write λ = (λ1, . . . , λr) ⊢ s.

The conjugate of λ is the tuple λ∗
= (λ∗

1 , . . . , λ∗
λ1

) where λ∗
i = #{λ j ∈ λ | λ j ≥ i}.

Furthermore, λ∗ ⊢ s.

Example 3.9 If Z = {(P1, m1), . . . , (Ps, ms)} is a fat point scheme of P
1 × P

1, then
the tuples αZ and βZ are partitions of deg Z =

∑s
i=1

(
mi +1

s

)
.

Definition 3.10 To any partition λ = (λ1, . . . , λr) ⊢ s we can associate the follow-
ing diagram: on an r × λ1 grid, place λ1 points on the first line, λ2 points on the

second, and so on. The resulting diagram is called the Ferrer’s diagram of λ.

Example 3.11 Suppose λ = (4, 4, 3, 1) ⊢ 12. Then the Ferrer’s diagram is

• • • •
• • • •
• • •
•

The conjugate of λ can be read off the Ferrer’s diagram by counting the number
of dots in each column as opposed to each row. In this example λ∗

= (4, 3, 3, 2).

For any tuple p := (p1, . . . , pk), we define ∆p := (p1, p2 − p1, . . . , pk − pk−1).

Corollary 3.12 Let Z be a fat point scheme of P
1 × P

1. Then

(i) ∆BC = α∗
Z ;

(ii) ∆BR = β∗
Z .
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Proof We use Theorem 3.2 to calculate ∆BC :

∆BC = (#{αi ∈ αZ | αi ≥ 1}, #{αi ∈ αZ | αi ≥ 2}, . . . , #{αi ∈ αZ | αi ≥ m ′})

where m ′
= |βZ |. Since #{αi ∈ αZ | αi ≥ h} is by definition the hth coordinate of

α∗
Z , we have ∆BC = α∗

Z . The proof of (ii) is the same.

Remark 3.13 Corollary 3.12 implies that we can compute the Hilbert function of

Z at all but a finite number of values from only the multiplicities and the relative
positions of the points.

Example 3.14 This example illustrates that in P
1 × P

1, subschemes with the same
border can have different Hilbert functions. Set Ri = Qi = [1 : i] ∈ P

1, and let Pi j

denote the point Ri × Q j . Let

Y1 = {(P11; 1), (P22; 1), (P33; 1), (P45; 1)},
Y2 = {(P11; 1), (P22; 1), (P33; 1), (P44, 1)}.

As an exercise one can verify that αY1
= αY2

= (1, 1, 1, 1) and βY1
= βY2

=

(1, 1, 1, 1). Thus, the two schemes have the same border. The Hilbert function of
HY1

is 



1 2 3 4 4 · · ·
2 4 4 4 4 · · ·
3 4 4 4 4 · · ·
4 4 4 4 4 · · ·
4 4 4 4 4 · · ·
...

...
...

...
...

. . .





from which we deduce that (IY1
)1,1 = 0. On the other hand, the unique (1, 1)-form

(x0 y1 − y0x1) which passes through P11, P22, and P33 also passes through the point
P44 but not P45. Thus (IY2

)1,1 6= 0, and hence, HY1
6= HY2

.

As we have seen, the tuples αZ and βZ give us a lot of information about the
Hilbert function of Z. It is therefore natural to ask which tuples can arise from a fat

point scheme Z in P
1 × P

1. Because of Corollary 3.12, this is equivalent to asking
what can be the border of the Hilbert function of a fat point scheme in P

1 × P
1. The

following theorem places a necessary condition on the tuples αZ and βZ . We require

the following definition.

Definition 3.15 Let λ = (λ1, . . . , λt ) and δ = (δ1, . . . , δr) be two partitions of s.

If one partition is longer, we add zeroes to the shorter one until they have the same
length. We say λ majorizes δ, written λ D δ, if

λ1 + · · · + λi ≥ δ1 + · · · + δi for i = 1, . . . , max{t, r}.

Majorization induces a partial ordering on the set of all partitions of s.



730 E. Guardo and A. Van Tuyl

Theorem 3.16 Let Z be a scheme of fat points in P
1 × P

1. Then

α∗
Z D βZ .

Proof We work by induction on m = |αZ |. If m = 1, then Z is a scheme of simple
points in P

1 × P
1. Thus α∗

Z D βZ by Theorem 5.16 in [8].
So, let us suppose that m > 1. We can write Z as

Z = {(Pi j ; mi j) | 1 ≤ i ≤ r, 1 ≤ j ≤ t}

where mi j ≥ 0 and Pi j = Ri × Q j for some Ri , Q j ∈ P
1. Recall that if mi j = 0, then

Pi j /∈ Supp(Z).

For each i = 1, . . . , r, set mi :=
∑t

j=1 mi j . After relabeling the Pi j ’s, we can

assume that m1 = max{m1, . . . , mr}. Furthermore, we can also suppose that after

relabeling, m1 j 6= 0 for j = 1, . . . , k, and m1 j = 0 for j = k + 1, . . . , t . Thus
m1 = m11 + · · · + mik. Note that m1 = α1, the first coordinate of αZ .

Let Y be the following subscheme of Z:

Y := {(Pi j ; m ′
i j) | 1 ≤ i ≤ r, 1 ≤ j ≤ t}

where

m ′
i j =

{
(mi j − 1)+ i = 1, 1 ≤ j ≤ t

mi j 2 ≤ i ≤ r, 1 ≤ j ≤ t

with (n)+ := max{0, n}. The subscheme Y is constructed from Z by subtracting 1
from the multiplicity of each point on the (1, 0) line that corresponds to α1 in αZ .

Since αZ = (α1, . . . , αm), and because α1 = m1, from our construction of Y it
follows that αY = (α2, . . . , αm). Therefore, by induction α∗

Y
D βY .

Let βY and βZ be the tuples associated to Y and Z, respectively, but for the moment
we assume that βY and βZ have been constructed as first described at the beginning

of Section 3, that is, βY and βZ have not been ordered.
We now describe how βZ and βY are related. Suppose βZ = (b1, b2, . . . , bl) and

βY = (b ′
1, b ′

2, . . . , b ′
h). Clearly h ≤ l.

If h = l, then

bp = b ′
p + 1 for all p = 1, . . . , l.

If h < l, we first insert (l − h) zeroes into the tuple βY at specific locations. For

j = 1, . . . , t , set l ′j := max{m1 j , m2 j , . . . , mr j}, and for d = 1, . . . , t , set hd :=
∑d

s=1 l ′s . Then we insert a zero into the hth
d spot of βY if l ′d = m1d but l ′d > mid for all

i = 2, . . . , r. It then follows from our definition of Y that we are only adding (l − h)

zeroes to βY . Relabel our tuple as βY = (c1, . . . , cl).
From our construction of Y from the scheme Z, it follows that

bi =






ci + 1 for i = 1, . . . , m11, l ′1 + 1, . . . , m12, l ′1 + l ′2 + 1, . . .

. . . , m13, . . . , l ′1 + l ′2 + · · · + l ′k−1 + 1, . . . , m1k,

ci otherwise.



Fat Points in P
1 × P

1 and Their Hilbert Functions 731

So βZ can be constructed from βY by adding 1 to m11 + m12 + · · · + m1k = m1 = α1

distinct coordinates in βZ , and then reordering so that βZ is a partition.

Since αZ = (α1, . . . , αm) and αY = (α2, . . . , αm), α∗
Z can be computed from α∗

Y

by adding 1 to the first α1 entries of α∗
Y

. (If |α∗
Y
| < α1, we extend α∗

Y
by adding zeroes

so |α∗
Y
| = α1.) By induction, α∗

Y
D βY . So, if βY = (c1, . . . , cl), then

α∗
Z D (c1 + 1, . . . , cα1

+ 1, cα1+1, . . . , cl).

But since βZ can be recovered from βY by adding 1 to m1 = α1 distinct entries of βY

(and not necessarily the first α1 entries) and then reordering, we have

α∗
Z D (c1 + 1, . . . , cα1

+ 1, cα1+1, . . . , cl) D βZ.

Hence α∗
Z D βZ , as desired.

4 ACM Fat Point Schemes

For any fat point scheme in P
n, the associated coordinate ring is always Cohen-

Macaulay. In contrast, fat point schemes in P
n1 × · · · × P

nk with k ≥ 2 may fail
to have this property, even if the support is ACM. See [3, 5, 9] for more details on
ACM zero-dimensional schemes in P

n1 × · · · × P
nk .

A fat point scheme is said to be arithmetically Cohen-Macaulay (ACM for short)
if the associated coordinate ring is Cohen-Macaulay. ACM schemes on a smooth
quadric Q ∼= P

1 × P
1 were studied in [3] and by the first author in [5] (which is

based on [4]). In [3] the authors gave a characterization of ACM schemes in terms of

their Hilbert functions. In [5], ACM fat points schemes in P
1×P

1 were characterized
in terms of the multiplicities of the points. In this section we show that ACM schemes
can also be classified using the tuples αZ and βZ introduced in the previous section.
We will also show how these various classifications are related.

We begin by recalling the construction and main result of [5]. Let Z be a fat point
scheme in P

1 × P
1 where Z = {(Pi j ; mi j) | 1 ≤ i ≤ r, 1 ≤ j ≤ t} with mi j ≥ 0 and

Pi j = Ri × Q j for some Ri , Q j ∈ P
1. For each h ∈ N, and for each tuple (i, j) with

1 ≤ i ≤ r and 1 ≤ j ≤ t , define

ti j(h) := (mi j − h)+ = max{0, mi j − h}.

The set SZ is then defined to be the set of t-tuples

SZ =
{(

ti1(h), . . . , tit (h)
) ∣∣1 ≤ i ≤ r, h ∈ N

}
.

For each integer 1 ≤ i ≤ r, set li := max{mi1, . . . , mit}. For any fat point scheme,
we then have |SZ| = m :=

∑r
i=1 li . For each i = 1, . . . , r and for all h ∈ N we set

zi,h :=

t∑

j=1

ti j(h).

We then define u1 := maxi,h{zi,h}, and we recursively define

up := max
i,h

{
{zi,h} \ {u1, . . . , up−1}

}
for p = 2, . . . , m.
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Definition 4.1 Let HZ : N
2 → N be the Hilbert function of a fat point scheme Z in

P
1 × P

1. The first difference function of HZ , denoted ∆HZ , is the function defined by

∆HZ(i, j) = HZ(i, j)−HZ(i − 1, j)−HZ(i, j − 1) + HZ(i − 1, j − 1)

where HZ(i, j) = 0 if (i, j) � (0, 0).

With this notation we can state the main result of [5].

Theorem 4.2 ([5, Theorem 2.1]) Let Z be a fat point scheme on Q ∼= P
1 × P

1. Then

the set SZ is totally ordered if and only if Z is ACM. In this case, the first difference

function of HZ is:

∆HZ =





1 1 · · · 1 1 0 · · ·︸ ︷︷ ︸
u1

1 1 · · · 1 0 0 · · ·︸ ︷︷ ︸
u2

...
...

...
...

1 · · · 1 0 0 0 · · ·︸ ︷︷ ︸
um

0 · · · 0 0 0 0 · · ·
...

...
...

...
...

. . .





where u1, . . . , um are defined as above.

Remark 4.3 From the construction of u1, . . . , um, one can verify that the identity
αZ = (u1, . . . , um) holds.

The following result, required to prove the main result of this section, holds for

any ACM scheme of codimension two. Here, we give a proof in the bihomogeneous
case.

Theorem 4.4 Suppose that Z is a fat point scheme in P
1×P

1. If Z is ACM, then there

exists L1, L2 ∈ R such that deg L1 = (1, 0) and deg L2 = (0, 1), and L1, L2 give rise to a

regular sequence in R/IZ .

Proof The Krull dimension of R/IZ is K-dim R/IZ = 2. Because Z is ACM, it

follows that there exists a regular sequence of length 2 in R/IZ . It is therefore sufficient
to show that the elements in the regular sequence have the appropriate degrees.

By Lemma 1.2 there exists L1 ∈ R such that deg L1 = (1, 0) and L1 is a non-
zero divisor of R/IZ . It is therefore enough to show there exists a non-zero divisor

L2 ∈ R/(IZ , L1) with deg L2 = (0, 1).
Let (IZ , L1) = Q1 ∩ · · · ∩ Qs be the primary decomposition of (IZ , L1) and set

℘ i :=
√

Qi . We claim that (x0, x1) ⊆ ℘ i for each i. Indeed, since L1 is a non-zero
divisor, we have the following exact graded sequence:

0 −→ (R/IZ)(−1, 0)
×L−→ R/IZ −→ R/(IZ , L) −→ 0.
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Thus, HR/(IZ ,L1)(i, j) = HZ(i, j) − HZ(i − 1, j) for all (i, j) ∈ N
2. By Corollary 3.4,

if i ≫ 0, HZ(i, 0) = HZ(i − 1, 0), and hence, HR/(IZ ,L1)(i, 0) = 0. This implies

(IZ , L1)i,0 = Ri,0 =
[
(x0, x1)i

]
i,0

. So, (x0, x1)i ⊆ Q j for i ≫ 0 and for each j =

1, . . . , s. Therefore, (x0, x1) ⊆ ℘ j for each j.

The set of zero divisors of R/(IZ , L1), denoted Z(R/(IZ , L1)), are precisely the ele-
ments of

Z(R/(IZ , L1)) =

s⋃

i=1

℘ i .

Because k is infinite, it is enough to show that (℘ i)0,1 ( R0,1 for each i. If there exists
an i ∈ {1, . . . , s} such that (℘ i)0,1 = R0,1, then (x0, x1, y0, y1) ⊆ ℘ i . But then every
homogeneous element of R/(IZ , L1) is a zero divisor, contradicting the fact that Z is
ACM. So R/(IZ , L1) has a non-zero divisor of degree (0, 1).

Corollary 4.5 If Z is an ACM fat point scheme in P
1 × P

1, then the first difference

function ∆HZ is the Hilbert function of a bigraded artinian quotient of k[x1, y1].

Proof Let L1, L2 be the regular sequence of Theorem 4.4. By making a linear change
of coordinates in the x0, x1s, and a linear change of coordinates in the y0, y1s, we can
assume that the L1 = x0, L2 = y0 give rise to a regular sequence in R/IZ .

From the short exact sequences

0 → (R/IZ)(−1, 0)
×x0−→ R/IZ → R/(IZ , x0) → 0

0 → (R/(IZ , x0))(0,−1)
×y

0−→ R/(IZ , x0) → R/(IZ , x0, y0) → 0

it follows that HR/(IZ ,x0,y0)(i, j) = ∆HZ(i, j) for all (i, j) ∈ N
2. Moreover,

R/(IZ , x0, y0) ∼= R/(x0, y0)

(IZ , x0, y0)/(x0, y0)
∼= k[x1, y1]/ J

where J is a bihomogeneous ideal with J ∼= (IZ , x0, y0)/(x0, y0). By using Corol-

lary 3.4 it follows that ∆HZ(i, j) = 0 if i ≫ 0 or j ≫ 0. Hence k[x1, y1]/ J is an
artinian ring.

Lemma 4.6 Let Z be a fat point scheme of P
1 × P

1. Set ci, j := ∆HZ(i, j). Then

(i) for every 0 ≤ j ≤ |βZ | − 1

α∗
j+1 =

∑

h≤|αZ |−1

ch, j

where α∗
j+1 is the ( j + 1)-th entry of α∗

Z , the conjugate of the partition αZ ;

(ii) for every 0 ≤ i ≤ |αZ | − 1

β∗
i+1 =

∑

h≤|βZ |−1

ci,h

where β∗
i+1 is the (i + 1)-th entry of β∗

Z , the conjugate of the partition βZ .
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Proof Fix an integer j such that 0 ≤ j ≤ |βZ | − 1 and set m = |αZ |. Using
Theorem 3.2 and the identity HZ(i, j) =

∑
(h,k)≤(i, j) ch,k to compute α∗

j+1 we have

α∗
j+1 = HZ(m− 1, j)−HZ(m− 1, j − 1)

=

∑

(h,k)≤(m−1, j)

ch,k −
∑

(h,k)≤(m−1, j−1)

ch,k =

∑

h≤m−1

ch, j .

The proof for the second statement is the same.

Lemma 4.7 ([9, Lemma 4.1]) Let α = (α1, . . . , αn), β = (β1, . . . , βm), and sup-

pose that α, β ⊢ s. If α∗
= β, then

(i) α1 = |β|.
(ii) β1 = |α|.
(iii) if α ′

= (α2, . . . , αn) and β ′
= (β1 − 1, . . . , βα2

− 1), then (α ′)∗ = β ′.

Theorem 4.8 Let Z be a fat point scheme in P
1 × P

1 with Hilbert function HZ . Then

the following are equivalent:

(i) Z is arithmetically Cohen-Macaulay.

(ii) ∆HZ is the Hilbert function of a bigraded artinian quotient of k[x1, y1].

(iii) α∗
Z = βZ .

(iv) The set SZ is totally ordered.

Proof In light of Theorem 4.2 and Corollary 4.5, it is enough to prove that (ii)⇒
(iii)⇒ (iv).

Suppose that ∆HZ is the Hilbert function of a bigraded artinian quotient of

k[x1, y1]. Since dimk k[x1, y1]i, j = 1 for all (i, j), ∆HZ(i, j) = 1 or 0. If we write
∆HZ as an infinite matrix whose indexing starts from zero, rather than one, then we
have

∆HZ =

0

0

m ′−1

m−1

1

0
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where m = |αZ | and m ′
= |βZ|. By Lemma 4.6 the number of 1’s in the (i − 1)th

row of ∆HZ for each integer 1 ≤ i ≤ m is simply the ith coordinate of β∗
Z . Similarly,

the number of 1’s in the ( j − 1)th column of ∆HZ for each integer 1 ≤ j ≤ m ′ is
the jth coordinate of α∗

Z . Now ∆HZ can be identified with the Ferrer’s diagram (see
Definition 3.10) by associating each 1 in ∆HZ with a dot in the Ferrer’s diagram in a
natural way:

0

0

m ′−1

m−1

1

•

•

•

•

•

•

•

•

•

•

• •

←→

By using the Ferrer’s diagram and Lemma 4.6 we can calculate that βZ = (β∗
Z )∗ = α∗

Z,
and so (iii) holds.

Now suppose that Z is a fat point scheme Z = {(Pi j ; mi j) | 1 ≤ i ≤ r, 1 ≤ j ≤ t}
where mi j are non-negative numbers and α∗

Z = βZ . We will work by induction on

β1 = max{
∑r

i=1 mi j}t
j=1.

If β1 = 1, then Z is a set of s distinct simple points with αZ = (s) and βZ =

(1, . . . , 1︸ ︷︷ ︸
s

). So Z = {P × Q1, . . . , P × Qs}, in which case it can be easily checked that

SZ = {(1, . . . , 1)}, and that the set is trivially ordered.

Let us suppose that β1 > 1 and the theorem holds for all fat point schemes Y with
α∗

Y
= βY , and the first coordinate of βY is less than β1.

Let k be the index in {1, . . . , r} such that α1 =
∑t

j=1 mk j .

Claim mk j > 0 for j = 1, . . . , t .

Proof of the Claim Set l ′j = max{m1 j , . . . , mr j} for j = 1, . . . , t . Then |βZ | =

l ′1 + · · · + l ′t . Since α∗
Z = βZ , by Lemma 4.7 α1 = l ′1 + · · · + l ′t . Now suppose that

mkc = 0 for some c ∈ {1, . . . , t}. Since l ′j ≥ mk j for each j = 1, . . . , r, we would
then have

α1 = l ′1 + · · · + l ′t > l ′1 + · · · + l̂ ′c + · · · + l ′t

≥ mk1 + · · · + m̂kc + · · · + mkt

= mk1 + · · · + mkc + . . . mkt = α1

where ̂ means the number is omitted. Because of this contradiction, the claim holds.
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Let Y = {(Pi j ; m ′
i j) | 1 ≤ i ≤ r, 1 ≤ j ≤ t} be the subscheme of Z where

m ′
i j =

{
mi j i 6= k,
mk j − 1 i = k.

By the claim mk j − 1 ≥ 0 for all j = 1, . . . , t . Let β be the first coordinate of βY .
Then β < β1. In fact, for each j = 1, . . . , t , we have

r∑

i=1

m ′
i j = m ′

k j +
∑

i 6=k

mi j =

( r∑

i=1

mi j

)
− 1.

Furthermore, if αZ = (α1, . . . αm) and βZ = (β1, . . . , βm ′), then from our construc-
tion Y we have αY = (α2, . . . , αm) and βY = (β1 − 1, . . . , βα2

− 1). By Lemma 4.7,
α∗

Y
= βY , and so by induction SY is totally ordered.

The set SZ is now obtained from SY by adding the tuple (mk1, . . . , mkt ). Moreover,
this element is larger than every other element of SY with respect to our ordering, so

SZ is totally ordered, as desired.

Corollary 4.9 If Z is a scheme of fat points whose support is on a line, then Z is ACM.

Proof It easy to check that either the set SZ is totally ordered, or α∗
Z = βZ .

Corollary 4.10 If Z is an ACM scheme of fat points with αZ = (α1, . . . , αm), then

the Hilbert function of Z is

HZ =





1 2 · · · α1 − 1 α1 α1 · · ·
1 2 · · · α1 − 1 α1 α1 · · ·
1 2 · · · α1 − 1 α1 α1 · · ·
...

...
...

...
...

. . .




+





0 0 · · · 0 0 0 · · ·
1 2 · · · α2 − 1 α2 α2 · · ·
1 2 · · · α2 − 1 α2 α2 · · ·
...

...
...

...
...

. . .




+

· · · +





0 0 · · · 0 0 0 · · ·
...

...
...

...
...

0 0 · · · 0 0 0 · · ·
1 2 · · · αm − 1 αm αm · · ·
1 2 · · · αm − 1 αm αm · · ·
...

...
...

...
...

. . .





.

Proof Use Theorem 4.2 and Remark 4.3.

From the above corollary, we see that if the fat point scheme Z in P
1×P

1 is ACM,

then the entire Hilbert function of Z can be determined from the tuple αZ . This
contrasts with the main result of the previous section where we showed that for a
general fat point scheme in P

1 × P
1, most, but not all, of the values of the Hilbert

function can be determined from the tuples αZ and βZ .
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In fact, if Z is an ACM fat point scheme in P
1×P

1, we can even compute the Betti
numbers in the minimal free resolution of IZ directly from the tuple αZ . To state our

result, we first develop some suitable notation.
Let Z be an ACM scheme of fat points and let αZ = (α1, . . . , αm) be the tuple

associated to Z. Define the following two sets from αZ :

CZ := {(m, 0), (0, α1)} ∪ {(i − 1, αi) | αi − αi−1 < 0}
VZ := {(m, αm)} ∪ {(i − 1, αi−1) | αi − αi−1 < 0} .

We take α−1 = 0. With this notation, we have

Theorem 4.11 Suppose that Z is an ACM set of fat points in P
1 × P

1 with αZ =

(α1, . . . , αm). Let CZ and VZ be constructed from αZ as above. Then the bigraded

minimal free resolution of IZ is given by

0 −→
⊕

(v1,v2)∈VZ

R(−v1,−v2) −→
⊕

(c1,c2)∈CZ

R(−c1,−c2) −→ IZ −→ 0.

Proof Using Theorem 4.2, it can be verified that the tuples in the set CZ are what [3]
defined to be the corners of ∆HZ , and the elements in VZ are precisely the vertices of
∆HZ . The conclusion now follows from Theorem 4.1 in [3] .

5 Special Configurations of ACM Fat Points

Theorem 4.8 enables us to identify the ACM fat point schemes directly from the tu-
ples αZ and βZ , or from the set SZ . In this section, we use these characterizations to

investigate ACM fat point schemes which have some extra conditions on the multi-
plicities of the points. We show that some special configurations of ACM fat point
schemes can occur only if the support of the scheme has some specific properties.

Remark 5.1 By Theorem 2.12 and Theorem 4.1 in [3], we can deduce that X is not

an ACM scheme if and only if there exist two points P11 = [a1 :a2] × [b1 :b2] and
P22 = [c1 : c2]× [d1 : d2] of X with ai, bi , ci, di ∈ k such that P12 = [a1 :a2]× [d1 :d2]
and P21 = [c1 : c2]× [b1 :b2] /∈ X.

Proposition 5.2 If Z is an ACM fat point scheme, then Supp(Z) is ACM.

Proof Let us suppose that Supp(Z) is not ACM. Then by Remark 5.1, in SZ we can
find tuples of type

(∗, 1, ∗, 0, ∗), (∗, 0, ∗, 1, ∗)
that are incomparable. Therefore, by Theorem 4.8, Z is not ACM.

Remark 5.3 Theorem 1.2 of [3] showed that for any saturated bihomogeneous
ideal I ⊆ R of height two, the minimal generating set for I must contain exactly
one form of degree (m, 0) for some m, and one form of degree (0, n) for some n. If
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F ∈ I is the form of degree (m, 0), then F ∈ k[x0, x1] ⊆ R, and thus F can be written
as the product of (1, 0) forms. Similarly, the form of degree (0, n) can be written

as a product of forms of degree (0, 1). Thus, following Remark 1.3 of [3], we shall
call a set of points X a complete intersection if IX = (F, G) where deg F = (m, 0) and
deg G = (0, n).

We now describe the support of the ACM fat point schemes which are homoge-

neous, i.e., all the nonzero multiplicities are equal.

Theorem 5.4 Fix a positive integer m ≥ 2, and let Z be a homogeneous fat point

scheme of P
1 ×P

1 with all the nonzero multiplicities equal to m. Then Z is ACM if and

only if Supp(Z) is a complete intersection.

Proof If Supp(Z) is a complete intersection, then Z is ACM by Corollary 2.5 of [5].

Conversely, suppose that Z is ACM, and thus, SZ is totally ordered by Theorem 4.8.
Because Z is ACM, from Proposition 5.2, Supp(Z) must also be ACM.

Suppose that Supp(Z) is not a complete intersection. This implies that Z contains
a subscheme of type

Y ={(Pi1 j ; mi1 j) | mi1 j = m for j = 1, . . . , t}

∪
{

(Pi2 j ; mi2 j)
∣∣∣ mi2 j = m j = 1, . . . , h with h < t

mi2 j = 0 otherwise.

}
.

But then in SZ we can find three tuples of the form

{
(m, . . . , m︸ ︷︷ ︸

t

), (m, . . . , m,︸ ︷︷ ︸
h

0, . . . , 0︸ ︷︷ ︸
t−h

), (m− 1, . . . , m− 1︸ ︷︷ ︸
t

)
}

.

But then SZ is not totally ordered, which is a contradiction.

Remark 5.5 Homogeneous schemes with all mi j = 2 have been further investigated
by the first author in [5].

Definition 5.6 A fat point scheme Z in P
1 × P

1 is called an almost homogeneous

fat point scheme if all the nonzero multiplicities of Z are either m or m − 1 for some
integer m > 0.

We now recall a definition first given in [5].

Definition 5.7 Let Z = {(Pi j ; mi j) | 1 ≤ i ≤ r, 1 ≤ j ≤ t} be a fat point scheme.
The scheme Z is called a quasi-homogeneous scheme of fat points if there exist r integers
t = t1 ≥ t2 ≥ · · · ≥ tr ≥ 1 such that

mi j =

{
m j = 1, . . . , ti ,

m− 1 j = ti+1, . . . , t1.
.
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Remark 5.8 Note that if Z is a quasi-homogeneous scheme and m ≥ 2, then
Supp(Z) is the complete intersection {Pi j | 1 ≤ i ≤ r, 1 ≤ j ≤ t}. If m = 1,

then a quasi-homogeneous scheme of fat points is an ACM scheme of simple points.
However, if m = 1, then the support is not a complete intersection. We also observe
that any quasi-homogeneous fat point scheme is also an almost homogeneous fat
point scheme for any m.

Remark 5.9 If Z is a quasi-homogeneous fat point scheme, then Z is ACM by
Corollary 2.6 in [5] .

Since P
1 × P

1 is isomorphic to the quadric surface Q ⊆ P
3, using Remark 5.3, we

can draw fat point schemes on Q as subschemes whose support is contained in the
intersection of lines of the two rulings of Q. For example, if Pi j = Ri×Q j ∈ P

1×P
1,

then the fat point scheme Z = {(P11; 4), (P12; 2), (P22; 3)} can be visualized as

Z =

Q1 Q2

R2

R1
t4 t2

t3

where a dot represents a point in the support, and the number its multiplicity.

Theorem 5.10 Let Z be a fat point scheme. If Z is an ACM almost homogeneous

fat point scheme with m ≥ 4, then Z is a quasi-homogeneous scheme of fat points. In

particular, the support of Z is a complete intersection.

Proof Suppose that Z is an ACM almost homogeneous fat point scheme.

Claim Supp(Z) is a complete intersection.

Proof of the Claim For a contradiction, suppose Supp(Z) is not a complete inter-
section. Since Supp(Z) is contained within a complete intersection, we can find a
point Pi j = Ri×Q j /∈ Supp(Z) but Pi ′ j = Ri ′ ×Q j and Pi j ′ = Ri×Q j ′ in Supp(Z).
So Z contains the following subscheme

Q j ′ Q j

Ri

Ri ′

tb

tc ta

t0

where a, b, and c denote the multiplicities of Ri ′×Q j , Ri×Q j ′ and Ri ′×Q j ′ respec-

tively, and 0 denotes the absence of the point Ri × Q j .

We observe that the tuples (∗, c, ∗, a, ∗) and (∗, b, ∗, 0, ∗) are in SZ with c and b in
the j

′th spot and the a and 0 in the jth spot, and where ∗ denotes the other unknown

numbers in the tuple. Because Z is ACM, SZ is totally ordered, so m ≥ c ≥ b ≥ m−1.

We see that c can be either c > b or c = b. If c > b, then c = m and b = m − 1.
But then the tuple (∗, m− 2, ∗, a− 2, ∗) is also in SZ with a− 2 ≥ (m− 1)− 2 > 0
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because m ≥ 4. But then SZ is not totally ordered because the tuples (∗, b, ∗, 0, ∗)
and (∗, c − 2, ∗, a− 2, ∗) are incomparable.

Similarly, if c = b, then the tuple (∗, c− 1, ∗, a− 1, ∗) is in SZ with b > c− 1, but
a− 1 > 0, contradicting the fact that SZ is totally ordered. So, the support of Z must
be a complete intersection.

Because of the claim, we can consider subschemes of Z that consist of the following
four points: Pi j = Ri ×Q j , Pi ′ j = Ri ′ ×Q j , Pi j ′ = Ri ×Q j ′ , and Pi ′ j ′ = Ri ′ ×Q j ′ .
Now no such subscheme will have the form

Q j ′ Q j

Ri

Ri ′

tm

tm− 1 tm

tm− 1

because such a subscheme would contradict the fact that SZ is totally ordered. So, if

we write only the multiplicities of the points, then the scheme Z must have the form

m m · · · m m m
...

...
...

...
...

m m · · · m m m

m m · · · m m m− 1
m m · · · m m− 1 m− 1
...

...
...

...
...

m m− 1 · · · m− 1 m− 1 m− 1

that is, Z is a quasi-homogeneous scheme of fat points.

Example 5.11 One can check that the following scheme

Q1 Q2

R2

R1

t2

t3 t2

is an almost homogeneous fat point scheme that is also ACM. However, the support
is not a complete intersection. So the hypothesis m ≥ 4 is needed in the above

theorem.
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