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Abstract

A method for embedding certain countable spaces into a pseudocompact Tychonoff space
of countable tightness is given. In particular, this permits construction under [CH] of two
pseudocompact Tychonoff spaces of countable tightness, one does not have countable fan tightness
and the other contains a non-discrete extremally disconnected subspace.
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It is well known that if a regular spack is countably compact then many properties of
X actually imply stronger properties both ¥hand its subspaces.

The starting point for the results presented here was in the attempt to generalize the
following two theorems:

Theorem A [1, Corollary 2].Any countably compact regular space of countable tightness
has also countable fan tightness.

Theorem B [3, Corollary 2]. Every extremally disconnected subspace of a countably
compact regular space of countable tightness is discrete.
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A topological spaceX has countable fan tightness provided that whenever
N{A,: n < w} then there are finite sef§, € A, such thate € [ J{K,: n < w)}.

It is rather easy to see that theorems A and B are no longer true for Hausdorff spaces.
For this, let M be a countable regular maximal space. The existence of such space
was first shown in [4]. It is well known tha¥/ is extremally disconnected. Moreover,
Proposition 3.1 in [2] shows thaf does not have countable fan tightness.

Now, consider th&€&ech—Stone compactificatighf of M. Theorem 1.1 of [7] shows
that there exists a strengthening of the topology#f in such a way that the resulting
spaceX has the following properties:

(1) M is a subspace of;
(2) X islocally countable;
(3) each closed infinite subset &fhas cardinality 2

So, we get a countably compact Hausdorff space of countable tightness which does
not have countable fan tightness and contains the non-discrete extremally disconnected
subspaceV.

Itis a much harder job to show that the above two theorems may fail for pseudocompact
regular spaces.

All the basic notions used here can be found in [6,5].

As usual, the formul@® C* P means that the s \ P is finite.

A collection { fs: B < w1} of functions fromw into w is a scale of cardinality; if
fa(m) < fg(m) for cofinitely manym € o wheneverr < g and for every mag 1w — o,
there ise such thatf (m) < fy(m) for cofinitely manym € w.

The existence of scales of cardinali®s is equivalent to the assumption that the
dominating numbebd is equal taw1 (see [5]). Furthermore, CH impligs= w1.

If F is a free filter orw, thenw U {F} indicates the space with the only non-isolated
point 7, where a local base & is the family{{ 7} U F: F € F}.

Theorem 1. [0 = w1] If F is a free filter onw having a base which is well-ordered by
C* in typews then there exists a pseudocompact zero-dimensiBrapace of countable
tightness which has a closed subspace homeomorphitt@F}.

Proof. Let {F,: o < w1} be a base fof, whereF, C* Fg wheneverg < «. Fix a scale
{fs: B <wi}in®w.

Let o, 8 be two countable ordinals and It € o x w. Let us say that the sef is
parametrized by, 8) if the following holds:

(1) G is a partial functiono — w and dongG) is infinite;
(2) domG)N F, =;

(3) foreachy <a, domG) C* F,;

(4) G < fg,i.e.,G(n) < fg(n) for eachn € dom(G);

(5) forally < g, the set{n: f), (n) > G(n)} is finite.

If asetG C w x w is parametrized by, 8) then we will writeg1(G) = « and¢2(G) = 8.
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Let G be a maximal almost disjoint collection of parametrized subsets>oto.

Foranya < wy,letRy ={(n,x) ewx(w+1):n¢ Fy, x > f,(n)}U{G € G: ¢p1(G) <
o < ¢2(G)}.

Let X = w x (w+ 1) UG U {a}, wherea is a point not belonging te x (w +1) UG
and define a topology on the sktas follows:

e w x (w+ 1) is the usual product of a discrete space with a convergent sequence and it
is open inX;

e A neighbourhood base at a poiite G consists of all set§G} U G \ D, whereD is
finite;

e A neighbourhood subbase atconsists of all setX \ R, for ¢ < w1, of all sets
X\ (n x (w+ 1)), forn € w, and of all setsx \ (G U {G}), whereG e g.

It is clear that the space x (o + 1) U G, defined according to the first two
conditions, isT1 and zero-dimensional. Taking this into account, it is evident that the above
neighbourhood assignment gives to the Xe& zero-dimensional’-topology upon the
verification that any seR,, is clopen in the space x (w+ 1) UG.

If n € w then the setn} x (w+ 1) satisfies eithefn} x (w+ 1) N R, =@ (casen € Fy)
or{n} x (w+ 1)\ Ry = {n} x fu(n). So, we see that a point of the forgm, ) is in the
interior either ofX \ Ry or of R,.

Let us try now to do the same for a poifite G. We have to distinguish three cases.

Casel: o < ¢1(G). Because of (3), we have d@@i) C* F, and consequentl§ N R, C
{(n, G(n)): n e dom(G) \ F,}. Since the latter set is finite, we see that the point
G isin the interior ofX \ Ry .

Case2: ¢2(G) < a. Because of (4), there is an integey such that for any: > ng we
haveG (n) < f,(n). Consequentlys N R, C {(n, G(n)): n < ng} and soG is in
the interior ofX \ R, .

Case3: ¢1(G) < a < ¢2(G), i.e.,G € Ry. Because of (2) and (5), we have that both sets
dom(G)N F, and{n € dom(G): (G(n) < f,(n)} are finite. Now, ifk € dom(G) \
(dom(G)NF, U{n: G(n) < fy(n)}), we immediately see th&, G (k)) € R, and
henceG \ R, is finite. So, the poinG is in the interior ofR,,.

Now that we have proved that is a zero-dimensiondh-space, we may proceed to the
verification of the other required properties.

e X is pseudocompact. For this, it suffices to show that any infinite subseto x w
has an accumulation point . If dom(A) is finite, then there is somee » such that
the setB = AN {n} x w is infinite. So, we havén, w) € B C A.

If dom(A) is infinite, then leta be the smallest ordinal such that dot \ F, is
infinite and putB = dom(A) \ F,. Now, denote byC a partial functiorw — o satisfying
dom(C) = B andC < A. Since the family{ fs: 8 < w1} is a scale, we can find an ordinal
B < w1 which is the smallest ordinal for which the sbt={n € B: C(n) < fg(n)} is
infinite. Then letE = C N D x w. It is immediate to check that the sEtis parametrized
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by the pair(«, 8). But then, the maximality of the familg leads to the existence of
someG € G for which G N E is infinite. This clearly impliesG € E € A. Thus, X is
pseudocompact.

e X contains a closed subspace homeomorphieitt{ F}. Let us consider the subspace
Y = wx {w}U{a} C X. Each point of the fornin, ) is obviously isolated it and the
trace of the neighbourhood system givera @n Y is the family{(F, \ n) x {o}: a <
w1, n < w}. Thus, the subspadéis homeomorphic te U {F}.

e X has countable tightness. The spacks first countable at each point different than
Sincew x (w + 1) is countable, we need only to check that i€ T, for someT C G,
then there is a countableC T such that € S.

If we putV, ={G € G: ¢1(G) > o or ¢2(G) < «}, then the family{V, \ A: o <
w1, A € [G]=?}isjustthe trace of a local baseabn the subspaaggU {a}. Case 1: the set
T’ of all elementsG € T for which ¢1(G) > ¢2(G) is infinite. In this case, it follows that
T' C V, for everya < w1 and saa is in the closure of any countable infinite se€ 7'.

If case 1 fails, then we may assume thatG) < ¢2(G) holds for eachG € T. Lety
be the smallest ordinal such that {G € T: ¢2(G) < y}.

Case2. y is a successor ordinal. Then the minimalityyofmplies thata € 7, where
T'={G eT: ¢2(G) =y — 1}. SinceV, N T’ # @, for eacha < y — 1, it follows that
suf¢1(G): G € T'} = y — 1. Therefore, for any: < w we may pickG,, € T’ in such a
way that{¢1(G,): n < w} is an increasing sequence convergingte- 1. It is clear that
a € SwhereS ={G,: n < w)}.

Case3. y is limit. Fix a« < y and denote the s¢G € T: a < ¢2(G) <y} by T’'. Then
a € T’ by the minimality ofy. HenceT’ N V,, # ¢. It follows from the definitions ofr”’
andV, that¢1(G) > o for someG € T'. Also we are assuming that (G) < ¢2(G) for
every suchG. So for everyx < y, there isG € T suchthatr < ¢1(G) < ¢2(G) < y. Then
there is a sequenceg= {G, € P: n € w} such thatp1(G,) > ¢2(Gr) whenevem > k.
Then|S N Ug| < 1 for everyp < w1. Thereforen € S. O

Remark. If F is a filter onw which has a base which is well-ordered by almostinclusion in
typews, then no space of the formU {F} can be densely embedded into a pseudocompact
Tychonoff space of countable tightness.

Proof. By contradiction, assume there exists a pseudocompact Tychonoff Xpabéh
containsw U {F} as a dense subspace and{lgf: « < w1} be a base ofr which is well-
ordered byD*. Let T be the set of all points af which are in the closure of some infinite
subset ofv \ F, for somex < wy. The regularity ofX guarantees thaf € 7. Now, letS
be a countable subset Gfand for eacly € S let oy be an ordinal for which € w \ Fy, . If

y =supey: s € S} andU is an open neighbourhood 6 such thatV N w = F,,, then we
haveU N S = @. ThereforeX cannot have countable tightnessa

Recall that a spac is sequential if any non-closed s&tC X contains a sequence
converging to a point outsidg The class of sequential spaces is properly contained in the
class of spaces of countable tightness.
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Forany f € “w let U(f) ={(m,n) € w X w: n > f(m)}. The sequential far§,, is
the setw x w U {p} topologized in such a way that every pointofx w is isolated and
a fundamental system of neighbourhoodgas the family {{p} U U (f): f € “w}. The
spaces,, is a standard example of a countable space which does not have countable fan
tightness.

Let F be the neighbourhood filter gb in S,. Assuming the existence of a scale
{fa: @ < w1}, itis easy to realize that the familypl UU (f,) \n x n: a < w1, n < w}is
alocal base ap in S,,. Notice that, ife < 8 thenU(fg) C* U(fa).

By identifyingw x w with w, the space,, takes the formw U {F}.

Corollary 1. [0 = w1] There exists a pseudocompact Tychonoff sequential spadieich
contains a copy of,,. ThenX does not have countable fan tightness.

Proof. Considers,, in the formw U {F} and apply Theorem 1. We get a pseudocompact
Tychonoff spaceX which contains a closed subspace homeomorphsg té-ollowing the
same notation in the proof of Theorem 1, we will check that #is actually sequential.
To this end, letA be a non-closed subset &f=w x (w + 1) U G U {a}. If there is some

x #ain A\ A, then the first countability at does the job. Thus, we proceed by assuming
thatA is closed inX \ {a}.

Casel:a € ANG. By applying the reasoning used to check the countable tightness in
Theorem 1, we get a S6tC A N G such thau € S. However, it is easy to realize thétis
actually a sequence convergingto

Case2:a ¢ ANG. We may fix a closed neighbourhobdof a suchthaly NANG = @.

By replacing A with U N A, we may then assume that C w x (v + 1). The set
A’ = ANw x o must satisfyA’ Cn x o for somen < w. The reason is that otherwise
dom(A’) should be infinite and then, arguing as in the proof of pseudocompactngsas of
Theorem 1, we could find an elemeSite G in the closure ofA’. The conditionA’ Cn x w
clearly impliesa ¢ A’ and soa € ANw x {w} = ANY. But, Y is just the sequential fan
and we are done.O

Recall that a poinp € Bw \ w is a P-point provided that for any fami{yP,: n < w} C p
there existy) € p such thatQ c* P, for eachn. It is known that P-points exist under CH.
Moreover, assuming CH, any P-point has a base which is well-ordered liy type ws.
Thus, we immediately get:

Corollary 2. [CH] If p € Bw \ w is a P-point then there exists a pseudocompact Tychonoff
space of countable tightness which contains a closed copy of the subkspggg C Bw.

Finally, taking into account the well-known fact that any space of the totnfip} C Bw
is extremally disconnected, we have:

Corollary 3. [CH] There exists a pseudocompact Tychonoff space of countable tightness
which contains a non-discrete extremally disconnected subspace.

The authors are strongly indebted to the referee for his comments.



166 A. Bella, O.1. Pavlov / Topology and its Applications 138 (2004) 161-166

References

[1] A.V. Arhangel'ski, A. Bella, Countable fan tightness versus countable tightness, Comment. Math. Univ.
Carolin. 37 (3) (1996) 565-576.

[2] A. Bella, V.I. Malykhin, Tightness and resolvability, Comment. Math. Univ. Carolin. 39 (1) (1998) 177-184.

[3] A. Bella, V.I. Malykhin, F-points in countably compact spaces, Appl. Gen. Topology 21 (2001) 33-37.

[4] E.K. van Dowen, Applications of maximal topologies, Topology Appl. 51 (1993) 125-140.

[5] E.K. van Dowen, The integers and topology, in: K. Kunen, J.E. Vaughan (Eds.), Handbook of Set-Theoretic
Topology, Elsevier, Amsterdam, 1984, pp. 111-167.

[6] R. Engelking, General Topology, PWN, Warszawa, 1977.

[7] J.E. Vaughan, Countably compact, locally countaBjespaces, Proc. Amer. Math. Soc. 80 (1) (1980) 147—
153.



