

Available at www.ElsevierMathematics.com

Topology and its Applications 138 (2004) 161-166

Topology and its Applications

www.elsevier.com/locate/topol

Embeddings into pseudocompact spaces of countable tightness

Angelo Bella^{a,*}, Oleg I. Pavlov^b

^a Department of Mathematics, University of Catania, Citta' universitaria viale A. Doria 6, 95125 Catania, Italy ^b Department of Mathematics, Mercer University, Macon, GA 31207-0001, USA

Received 19 November 2002; received in revised form 21 March 2003; accepted 25 March 2003

Abstract

A method for embedding certain countable spaces into a pseudocompact Tychonoff space of countable tightness is given. In particular, this permits construction under [CH] of two pseudocompact Tychonoff spaces of countable tightness, one does not have countable fan tightness and the other contains a non-discrete extremally disconnected subspace. © 2003 Elsevier B.V. All rights reserved.

MSC: 54A25; 54A35; 54B05; 54D20; 54G05; 54G20

Keywords: Countable tightness; Countable fan tightness; Sequential spaces; Pseudocompactness; P-points; Extremally disconnected spaces

It is well known that if a regular space X is countably compact then many properties of X actually imply stronger properties both in X and its subspaces.

The starting point for the results presented here was in the attempt to generalize the following two theorems:

Theorem A [1, Corollary 2]. *Any countably compact regular space of countable tightness has also countable fan tightness.*

Theorem B [3, Corollary 2]. Every extremally disconnected subspace of a countably compact regular space of countable tightness is discrete.

^{*} Corresponding author. E-mail addresses: Bella@dipmat.unict.it (A. Bella), Pavlov_oi@mercer.edu (O.I. Pavlov).

^{0166-8641/\$ –} see front matter $\hfill \ensuremath{\mathbb{C}}$ 2003 Elsevier B.V. All rights reserved. doi:10.1016/j.topol.2003.03.001

A topological space X has countable fan tightness provided that whenever $x \in \bigcap \{\overline{A_n}: n < \omega\}$ then there are finite sets $K_n \subseteq A_n$ such that $x \in \bigcup \{K_n: n < \omega\}$.

It is rather easy to see that theorems A and B are no longer true for Hausdorff spaces. For this, let M be a countable regular maximal space. The existence of such space was first shown in [4]. It is well known that M is extremally disconnected. Moreover, Proposition 3.1 in [2] shows that M does not have countable fan tightness.

Now, consider the Čech–Stone compactification βM of M. Theorem 1.1 of [7] shows that there exists a strengthening of the topology of βM in such a way that the resulting space X has the following properties:

(1) M is a subspace of X;

(2) X is locally countable;

(3) each closed infinite subset of X has cardinality 2^{c} .

So, we get a countably compact Hausdorff space of countable tightness which does not have countable fan tightness and contains the non-discrete extremally disconnected subspace M.

It is a much harder job to show that the above two theorems may fail for pseudocompact regular spaces.

All the basic notions used here can be found in [6,5].

As usual, the formula $Q \subseteq^* P$ means that the set $Q \setminus P$ is finite.

A collection { f_{β} : $\beta < \omega_1$ } of functions from ω into ω is a scale of cardinality ω_1 if $f_{\alpha}(m) < f_{\beta}(m)$ for cofinitely many $m \in \omega$ whenever $\alpha < \beta$ and for every map $f : \omega \to \omega$, there is α such that $f(m) < f_{\alpha}(m)$ for cofinitely many $m \in \omega$.

The existence of scales of cardinality ω_1 is equivalent to the assumption that the dominating number ϑ is equal to ω_1 (see [5]). Furthermore, CH implies $\vartheta = \omega_1$.

If \mathcal{F} is a free filter on ω , then $\omega \cup \{\mathcal{F}\}$ indicates the space with the only non-isolated point \mathcal{F} , where a local base at \mathcal{F} is the family $\{\{\mathcal{F}\} \cup F \colon F \in \mathcal{F}\}$.

Theorem 1. $[\mathfrak{d} = \omega_1]$ If \mathcal{F} is a free filter on ω having a base which is well-ordered by \subseteq^* in type ω_1 then there exists a pseudocompact zero-dimensional T_1 -space of countable tightness which has a closed subspace homeomorphic to $\omega \cup \{\mathcal{F}\}$.

Proof. Let $\{F_{\alpha}: \alpha < \omega_1\}$ be a base for \mathcal{F} , where $F_{\alpha} \subseteq^* F_{\beta}$ whenever $\beta \leq \alpha$. Fix a scale $\{f_{\beta}: \beta < \omega_1\}$ in ${}^{\omega}\omega$.

Let α , β be two countable ordinals and let $G \subseteq \omega \times \omega$. Let us say that the set G is parametrized by $\langle \alpha, \beta \rangle$ if the following holds:

(1) *G* is a partial function $\omega \rightarrow \omega$ and dom(*G*) is infinite;

- (2) $\operatorname{dom}(G) \cap F_{\alpha} = \emptyset;$
- (3) for each $\gamma < \alpha$, dom(*G*) $\subseteq^* F_{\gamma}$;

(4) $G < f_{\beta}$, i.e., $G(n) < f_{\beta}(n)$ for each $n \in \text{dom}(G)$;

(5) for all $\gamma < \beta$, the set $\{n: f_{\gamma}(n) > G(n)\}$ is finite.

If a set $G \subseteq \omega \times \omega$ is parametrized by $\langle \alpha, \beta \rangle$ then we will write $\phi_1(G) = \alpha$ and $\phi_2(G) = \beta$.

Let \mathcal{G} be a maximal almost disjoint collection of parametrized subsets of $\omega \times \omega$. For any $\alpha < \omega_1$, let $R_\alpha = \{(n, x) \in \omega \times (\omega + 1): n \notin F_\alpha, x \ge f_\alpha(n)\} \cup \{G \in \mathcal{G}: \phi_1(G) \le \alpha < \phi_2(G)\}.$

Let $X = \omega \times (\omega + 1) \cup \mathcal{G} \cup \{a\}$, where *a* is a point not belonging to $\omega \times (\omega + 1) \cup \mathcal{G}$ and define a topology on the set *X* as follows:

- ω × (ω + 1) is the usual product of a discrete space with a convergent sequence and it is open in X;
- A neighbourhood base at a point $G \in \mathcal{G}$ consists of all sets $\{G\} \cup G \setminus D$, where D is finite;
- A neighbourhood subbase at *a* consists of all sets $X \setminus R_{\alpha}$ for $\alpha < \omega_1$, of all sets $X \setminus (n \times (\omega + 1))$, for $n \in \omega$, and of all sets $X \setminus (G \cup \{G\})$, where $G \in \mathcal{G}$.

It is clear that the space $\omega \times (\omega + 1) \cup \mathcal{G}$, defined according to the first two conditions, is T_1 and zero-dimensional. Taking this into account, it is evident that the above neighbourhood assignment gives to the set *X* a zero-dimensional T_1 -topology upon the verification that any set R_{α} is clopen in the space $\omega \times (\omega + 1) \cup \mathcal{G}$.

If $n \in \omega$ then the set $\{n\} \times (\omega + 1)$ satisfies either $\{n\} \times (\omega + 1) \cap R_{\alpha} = \emptyset$ (case $n \in F_{\alpha}$) or $\{n\} \times (\omega + 1) \setminus R_{\alpha} = \{n\} \times f_{\alpha}(n)$. So, we see that a point of the form (n, ω) is in the interior either of $X \setminus R_{\alpha}$ or of R_{α} .

Let us try now to do the same for a point $G \in \mathcal{G}$. We have to distinguish three cases.

- *Case* 1: $\alpha < \phi_1(G)$. Because of (3), we have dom $(G) \subseteq^* F_\alpha$ and consequently $G \cap R_\alpha \subseteq \{(n, G(n)): n \in \text{dom}(G) \setminus F_\alpha\}$. Since the latter set is finite, we see that the point *G* is in the interior of $X \setminus R_\alpha$.
- *Case* 2: $\phi_2(G) \leq \alpha$. Because of (4), there is an integer n_0 such that for any $n \geq n_0$ we have $G(n) < f_{\alpha}(n)$. Consequently $G \cap R_{\alpha} \subseteq \{(n, G(n)): n < n_0\}$ and so G is in the interior of $X \setminus R_{\alpha}$.
- *Case* 3: $\phi_1(G) \leq \alpha < \phi_2(G)$, i.e., $G \in R_\alpha$. Because of (2) and (5), we have that both sets dom(G) $\cap F_\alpha$ and $\{n \in \text{dom}(G): (G(n) < f_\alpha(n)\}$ are finite. Now, if $k \in \text{dom}(G) \setminus (\text{dom}(G) \cap F_\alpha \cup \{n: G(n) < f_\alpha(n)\})$, we immediately see that $(k, G(k)) \in R_\alpha$ and hence $G \setminus R_\alpha$ is finite. So, the point G is in the interior of R_α .

Now that we have proved that X is a zero-dimensional T_1 -space, we may proceed to the verification of the other required properties.

X is pseudocompact. For this, it suffices to show that any infinite subset A ⊆ ω × ω has an accumulation point in X. If dom(A) is finite, then there is some n ∈ ω such that the set B = A ∩ {n} × ω is infinite. So, we have (n, ω) ∈ B ⊆ A.

If dom(*A*) is infinite, then let α be the smallest ordinal such that dom(*A*) \ F_{α} is infinite and put $B = \text{dom}(A) \setminus F_{\alpha}$. Now, denote by *C* a partial function $\omega \to \omega$ satisfying dom(*C*) = *B* and *C* \subseteq *A*. Since the family { $f_{\beta}: \beta < \omega_1$ } is a scale, we can find an ordinal $\beta < \omega_1$ which is the smallest ordinal for which the set $D = \{n \in B: C(n) < f_{\beta}(n)\}$ is infinite. Then let $E = C \cap D \times \omega$. It is immediate to check that the set *E* is parametrized

by the pair $\langle \alpha, \beta \rangle$. But then, the maximality of the family \mathcal{G} leads to the existence of some $G \in \mathcal{G}$ for which $G \cap E$ is infinite. This clearly implies $G \in \overline{E} \subseteq \overline{A}$. Thus, X is pseudocompact.

- *X* contains a closed subspace homeomorphic to $\omega \cup \{\mathcal{F}\}$. Let us consider the subspace $Y = \omega \times \{\omega\} \cup \{a\} \subseteq X$. Each point of the form (n, ω) is obviously isolated in *Y* and the trace of the neighbourhood system given at *a* on *Y* is the family $\{(F_{\alpha} \setminus n) \times \{\omega\}: \alpha < \omega_1, n < \omega\}$. Thus, the subspace *Y* is homeomorphic to $\omega \cup \{\mathcal{F}\}$.
- *X* has countable tightness. The space *X* is first countable at each point different than *a*. Since $\omega \times (\omega + 1)$ is countable, we need only to check that if $a \in \overline{T}$, for some $T \subseteq \mathcal{G}$, then there is a countable $S \subseteq T$ such that $a \in \overline{S}$.

If we put $V_{\alpha} = \{G \in \mathcal{G}: \phi_1(G) > \alpha \text{ or } \phi_2(G) \leq \alpha\}$, then the family $\{V_{\alpha} \setminus A: \alpha < \omega_1, A \in [\mathcal{G}]^{<\omega}\}$ is just the trace of a local base at *a* on the subspace $\mathcal{G} \cup \{a\}$. Case 1: the set *T'* of all elements $G \in T$ for which $\phi_1(G) \ge \phi_2(G)$ is infinite. In this case, it follows that $T' \subseteq V_{\alpha}$ for every $\alpha < \omega_1$ and so *a* is in the closure of any countable infinite set $S \subseteq T'$.

If case 1 fails, then we may assume that $\phi_1(G) < \phi_2(G)$ holds for each $G \in T$. Let γ be the smallest ordinal such that $a \in \{\overline{G \in T}: \phi_2(G) < \gamma\}$.

Case 2. γ is a successor ordinal. Then the minimality of γ implies that $a \in \overline{T'}$, where $T' = \{G \in T : \phi_2(G) = \gamma - 1\}$. Since $V_\alpha \cap T' \neq \emptyset$, for each $\alpha < \gamma - 1$, it follows that $\sup\{\phi_1(G): G \in T'\} = \gamma - 1$. Therefore, for any $n < \omega$ we may pick $G_n \in T'$ in such a way that $\{\phi_1(G_n): n < \omega\}$ is an increasing sequence converging to $\gamma - 1$. It is clear that $a \in \overline{S}$ where $S = \{G_n: n < \omega\}$.

Case 3. γ is limit. Fix $\alpha < \gamma$ and denote the set $\{G \in T : \alpha < \phi_2(G) < \gamma\}$ by T'. Then $a \in \overline{T'}$ by the minimality of γ . Hence $T' \cap V_{\alpha} \neq \emptyset$. It follows from the definitions of T' and V_{α} that $\phi_1(G) > \alpha$ for some $G \in T'$. Also we are assuming that $\phi_1(G) < \phi_2(G)$ for every such G. So for every $\alpha < \gamma$, there is $G \in T$ such that $\alpha < \phi_1(G) < \phi_2(G) < \gamma$. Then there is a sequence $S = \{G_n \in P : n \in \omega\}$ such that $\phi_1(G_n) > \phi_2(G_k)$ whenever n > k. Then $|S \cap U_\beta| \leq 1$ for every $\beta < \omega_1$. Therefore $a \in \overline{S}$. \Box

Remark. If \mathcal{F} is a filter on ω which has a base which is well-ordered by almost inclusion in type ω_1 , then no space of the form $\omega \cup \{\mathcal{F}\}$ can be densely embedded into a pseudocompact Tychonoff space of countable tightness.

Proof. By contradiction, assume there exists a pseudocompact Tychonoff space *X* which contains $\omega \cup \{\mathcal{F}\}$ as a dense subspace and let $\{F_{\alpha}: \alpha < \omega_1\}$ be a base of \mathcal{F} which is well-ordered by \supseteq^* . Let *T* be the set of all points of *X* which are in the closure of some infinite subset of $\omega \setminus F_{\alpha}$ for some $\alpha < \omega_1$. The regularity of *X* guarantees that $\mathcal{F} \in \overline{T}$. Now, let *S* be a countable subset of *T* and for each $s \in S$ let α_s be an ordinal for which $s \in \omega \setminus F_{\alpha_s}$. If $\gamma = \sup\{\alpha_s: s \in S\}$ and *U* is an open neighbourhood of \mathcal{F} such that $U \cap \omega = F_{\gamma}$, then we have $U \cap S = \emptyset$. Therefore *X* cannot have countable tightness. \Box

Recall that a space X is sequential if any non-closed set $S \subseteq X$ contains a sequence converging to a point outside S. The class of sequential spaces is properly contained in the class of spaces of countable tightness.

For any $f \in {}^{\omega}\omega$ let $U(f) = \{(m, n) \in \omega \times \omega: n \ge f(m)\}$. The sequential fan S_{ω} is the set $\omega \times \omega \cup \{p\}$ topologized in such a way that every point of $\omega \times \omega$ is isolated and a fundamental system of neighbourhoods at p is the family $\{\{p\} \cup U(f): f \in {}^{\omega}\omega\}$. The space S_{ω} is a standard example of a countable space which does not have countable fan tightness.

Let \mathcal{F} be the neighbourhood filter of p in S_{ω} . Assuming the existence of a scale $\{f_{\alpha}: \alpha < \omega_1\}$, it is easy to realize that the family $\{\{p\} \cup U(f_{\alpha}) \setminus n \times n: \alpha < \omega_1, n < \omega\}$ is a local base at p in S_{ω} . Notice that, if $\alpha < \beta$ then $U(f_{\beta}) \subseteq^* U(f_{\alpha})$.

By identifying $\omega \times \omega$ with ω , the space S_{ω} takes the form $\omega \cup \{\mathcal{F}\}$.

Corollary 1. $[\mathfrak{d} = \omega_1]$ There exists a pseudocompact Tychonoff sequential space X which contains a copy of S_{ω} . Then X does not have countable fan tightness.

Proof. Consider S_{ω} in the form $\omega \cup \{\mathcal{F}\}$ and apply Theorem 1. We get a pseudocompact Tychonoff space *X* which contains a closed subspace homeomorphic to S_{ω} . Following the same notation in the proof of Theorem 1, we will check that this *X* is actually sequential. To this end, let *A* be a non-closed subset of $X = \omega \times (\omega + 1) \cup \mathcal{G} \cup \{a\}$. If there is some $x \neq a$ in $\overline{A} \setminus A$, then the first countability at *x* does the job. Thus, we proceed by assuming that *A* is closed in $X \setminus \{a\}$.

Case 1: $a \in \overline{A \cap G}$. By applying the reasoning used to check the countable tightness in Theorem 1, we get a set $S \subseteq A \cap G$ such that $a \in \overline{S}$. However, it is easy to realize that *S* is actually a sequence converging to *a*.

Case 2: $a \notin \overline{A \cap G}$. We may fix a closed neighbourhood U of a such that $U \cap A \cap G = \emptyset$. By replacing A with $U \cap A$, we may then assume that $A \subseteq \omega \times (\omega + 1)$. The set $A' = A \cap \omega \times \omega$ must satisfy $A' \subseteq n \times \omega$ for some $n < \omega$. The reason is that otherwise dom(A') should be infinite and then, arguing as in the proof of pseudocompactness of X in Theorem 1, we could find an element $G \in G$ in the closure of A'. The condition $A' \subseteq n \times \omega$ clearly implies $a \notin \overline{A'}$ and so $a \in \overline{A \cap \omega \times \{\omega\}} = \overline{A \cap Y}$. But, Y is just the sequential fan and we are done. \Box

Recall that a point $p \in \beta \omega \setminus \omega$ is a P-point provided that for any family $\{P_n : n < \omega\} \subseteq p$ there exists $Q \in p$ such that $Q \subseteq^* P_n$ for each *n*. It is known that P-points exist under CH. Moreover, assuming CH, any P-point has a base which is well-ordered by \supseteq^* in type ω_1 . Thus, we immediately get:

Corollary 2. [CH] If $p \in \beta \omega \setminus \omega$ is a *P*-point then there exists a pseudocompact Tychonoff space of countable tightness which contains a closed copy of the subspace $\omega \cup \{p\} \subseteq \beta \omega$.

Finally, taking into account the well-known fact that any space of the form $\omega \cup \{p\} \subseteq \beta \omega$ is extremally disconnected, we have:

Corollary 3. [CH] *There exists a pseudocompact Tychonoff space of countable tightness which contains a non-discrete extremally disconnected subspace.*

The authors are strongly indebted to the referee for his comments.

References

- A.V. Arhangel'skiĭ, A. Bella, Countable fan tightness versus countable tightness, Comment. Math. Univ. Carolin. 37 (3) (1996) 565–576.
- [2] A. Bella, V.I. Malykhin, Tightness and resolvability, Comment. Math. Univ. Carolin. 39 (1) (1998) 177-184.
- [3] A. Bella, V.I. Malykhin, F-points in countably compact spaces, Appl. Gen. Topology 21 (2001) 33-37.
- [4] E.K. van Dowen, Applications of maximal topologies, Topology Appl. 51 (1993) 125-140.
- [5] E.K. van Dowen, The integers and topology, in: K. Kunen, J.E. Vaughan (Eds.), Handbook of Set-Theoretic Topology, Elsevier, Amsterdam, 1984, pp. 111–167.
- [6] R. Engelking, General Topology, PWN, Warszawa, 1977.
- [7] J.E. Vaughan, Countably compact, locally countable T₂-spaces, Proc. Amer. Math. Soc. 80 (1) (1980) 147– 153.