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Abstract

A method for embedding certain countable spaces into a pseudocompact Tychonoff
of countable tightness is given. In particular, this permits construction under [CH] of
pseudocompact Tychonoff spaces of countable tightness, one does not have countable fan
and the other contains a non-discrete extremally disconnected subspace.
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It is well known that if a regular spaceX is countably compact then many properties
X actually imply stronger properties both inX and its subspaces.

The starting point for the results presented here was in the attempt to general
following two theorems:

Theorem A [1, Corollary 2].Any countably compact regular space of countable tightn
has also countable fan tightness.

Theorem B [3, Corollary 2]. Every extremally disconnected subspace of a count
compact regular space of countable tightness is discrete.
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A topological spaceX has countable fan tightness provided that wheneverx ∈
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⋂{An: n < ω} then there are finite setsKn ⊆An such thatx ∈ ⋃{Kn: n < ω}.
It is rather easy to see that theorems A and B are no longer true for Hausdorff s

For this, letM be a countable regular maximal space. The existence of such
was first shown in [4]. It is well known thatM is extremally disconnected. Moreove
Proposition 3.1 in [2] shows thatM does not have countable fan tightness.

Now, consider thěCech–Stone compactificationβM of M. Theorem 1.1 of [7] show
that there exists a strengthening of the topology ofβM in such a way that the resultin
spaceX has the following properties:

(1) M is a subspace ofX;
(2) X is locally countable;
(3) each closed infinite subset ofX has cardinality 2c.

So, we get a countably compact Hausdorff space of countable tightness which
not have countable fan tightness and contains the non-discrete extremally discon
subspaceM.

It is a much harder job to show that the above two theorems may fail for pseudoco
regular spaces.

All the basic notions used here can be found in [6,5].
As usual, the formulaQ⊆∗ P means that the setQ \ P is finite.
A collection {fβ : β < ω1} of functions fromω into ω is a scale of cardinalityω1 if

fα(m) < fβ(m) for cofinitely manym ∈ ω wheneverα < β and for every mapf :ω → ω,
there isα such thatf (m) < fα(m) for cofinitely manym ∈ ω.

The existence of scales of cardinalityω1 is equivalent to the assumption that t
dominating numberd is equal toω1 (see [5]). Furthermore, CH impliesd = ω1.

If F is a free filter onω, thenω ∪ {F} indicates the space with the only non-isola
pointF , where a local base atF is the family{{F} ∪ F : F ∈F}.

Theorem 1. [d = ω1] If F is a free filter onω having a base which is well-ordered b
⊆∗ in typeω1 then there exists a pseudocompact zero-dimensionalT1-space of countabl
tightness which has a closed subspace homeomorphic toω ∪ {F}.

Proof. Let {Fα : α < ω1} be a base forF , whereFα ⊆∗ Fβ wheneverβ � α. Fix a scale
{fβ : β < ω1} in ωω.

Let α,β be two countable ordinals and letG ⊆ ω × ω. Let us say that the setG is
parametrized by〈α,β〉 if the following holds:

(1) G is a partial functionω → ω and dom(G) is infinite;
(2) dom(G)∩ Fα = ∅;
(3) for eachγ < α, dom(G)⊆∗ Fγ ;
(4) G< fβ , i.e.,G(n) < fβ(n) for eachn ∈ dom(G);
(5) for all γ < β , the set{n: fγ (n) >G(n)} is finite.

If a setG⊆ ω×ω is parametrized by〈α,β〉 then we will writeφ1(G)= α andφ2(G)= β .
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Let G be a maximal almost disjoint collection of parametrized subsets ofω ×ω.
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For anyα < ω1, letRα = {(n, x) ∈ ω×(ω+1): n /∈ Fα, x � fα(n)}∪{G ∈ G: φ1(G)�
α < φ2(G)}.

Let X = ω × (ω + 1) ∪ G ∪ {a}, wherea is a point not belonging toω × (ω + 1) ∪ G
and define a topology on the setX as follows:

• ω× (ω+ 1) is the usual product of a discrete space with a convergent sequence
is open inX;

• A neighbourhood base at a pointG ∈ G consists of all sets{G} ∪ G \D, whereD is
finite;

• A neighbourhood subbase ata consists of all setsX \ Rα for α < ω1, of all sets
X \ (n× (ω+ 1)), for n ∈ ω, and of all setsX \ (G∪ {G}), whereG ∈ G.

It is clear that the spaceω × (ω + 1) ∪ G, defined according to the first tw
conditions, isT1 and zero-dimensional. Taking this into account, it is evident that the a
neighbourhood assignment gives to the setX a zero-dimensionalT1-topology upon the
verification that any setRα is clopen in the spaceω × (ω+ 1)∪ G.

If n ∈ ω then the set{n} × (ω+ 1) satisfies either{n} × (ω+ 1)∩Rα = ∅ (casen ∈ Fα)
or {n} × (ω + 1) \ Rα = {n} × fα(n). So, we see that a point of the form(n,ω) is in the
interior either ofX \Rα or ofRα .

Let us try now to do the same for a pointG ∈ G. We have to distinguish three cases.

Case1: α < φ1(G). Because of (3), we have dom(G)⊆∗ Fα and consequentlyG∩Rα ⊆
{(n,G(n)): n ∈ dom(G) \ Fα}. Since the latter set is finite, we see that the po
G is in the interior ofX \Rα .

Case2: φ2(G) � α. Because of (4), there is an integern0 such that for anyn � n0 we
haveG(n) < fα(n). ConsequentlyG ∩ Rα ⊆ {(n,G(n)): n < n0} and soG is in
the interior ofX \Rα .

Case3: φ1(G)� α < φ2(G), i.e.,G ∈ Rα . Because of (2) and (5), we have that both s
dom(G)∩Fα and{n ∈ dom(G): (G(n) < fα(n)} are finite. Now, ifk ∈ dom(G)\
(dom(G)∩Fα ∪{n: G(n) < fα(n)}), we immediately see that(k,G(k)) ∈ Rα and
henceG \Rα is finite. So, the pointG is in the interior ofRα .

Now that we have proved thatX is a zero-dimensionalT1-space, we may proceed to t
verification of the other required properties.

• X is pseudocompact. For this, it suffices to show that any infinite subsetA ⊆ ω × ω

has an accumulation point inX. If dom(A) is finite, then there is somen ∈ ω such that
the setB =A∩ {n} ×ω is infinite. So, we have(n,ω) ∈ �B ⊆ �A.

If dom(A) is infinite, then letα be the smallest ordinal such that dom(A) \ Fα is
infinite and putB = dom(A) \ Fα . Now, denote byC a partial functionω → ω satisfying
dom(C)= B andC ⊆A. Since the family{fβ : β < ω1} is a scale, we can find an ordin
β < ω1 which is the smallest ordinal for which the setD = {n ∈ B: C(n) < fβ(n)} is
infinite. Then letE = C ∩D × ω. It is immediate to check that the setE is parametrized
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by the pair〈α,β〉. But then, the maximality of the familyG leads to the existence of
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someG ∈ G for which G ∩ E is infinite. This clearly impliesG ∈ �E ⊆ �A. Thus,X is
pseudocompact.

• X contains a closed subspace homeomorphic toω∪{F}. Let us consider the subspa
Y = ω×{ω}∪{a} ⊆X. Each point of the form(n,ω) is obviously isolated inY and the
trace of the neighbourhood system given ata onY is the family{(Fα \ n)× {ω}: α <
ω1, n < ω}. Thus, the subspaceY is homeomorphic toω ∪ {F}.

• X has countable tightness. The spaceX is first countable at each point different thana.
Sinceω × (ω+ 1) is countable, we need only to check that ifa ∈ �T , for someT ⊆ G,
then there is a countableS ⊆ T such thata ∈ �S.

If we put Vα = {G ∈ G: φ1(G) > α or φ2(G) � α}, then the family{Vα \ A: α <

ω1, A ∈ [G]<ω} is just the trace of a local base ata on the subspaceG∪{a}. Case 1: the se
T ′ of all elementsG ∈ T for whichφ1(G)� φ2(G) is infinite. In this case, it follows tha
T ′ ⊆ Vα for everyα < ω1 and soa is in the closure of any countable infinite setS ⊆ T ′.

If case 1 fails, then we may assume thatφ1(G) < φ2(G) holds for eachG ∈ T . Let γ
be the smallest ordinal such thata ∈ {G ∈ T : φ2(G) < γ }.

Case2. γ is a successor ordinal. Then the minimality ofγ implies thata ∈ �T ′, where
T ′ = {G ∈ T : φ2(G) = γ − 1}. SinceVα ∩ T ′ �= ∅, for eachα < γ − 1, it follows that
sup{φ1(G): G ∈ T ′} = γ − 1. Therefore, for anyn < ω we may pickGn ∈ T ′ in such a
way that{φ1(Gn): n < ω} is an increasing sequence converging toγ − 1. It is clear that
a ∈ �S whereS = {Gn: n < ω}.

Case3. γ is limit. Fix α < γ and denote the set{G ∈ T : α < φ2(G) < γ } by T ′. Then
a ∈ �T ′ by the minimality ofγ . HenceT ′ ∩ Vα �= ∅. It follows from the definitions ofT ′
andVα thatφ1(G) > α for someG ∈ T ′. Also we are assuming thatφ1(G) < φ2(G) for
every suchG. So for everyα < γ , there isG ∈ T such thatα < φ1(G) < φ2(G) < γ . Then
there is a sequenceS = {Gn ∈ P : n ∈ ω} such thatφ1(Gn) > φ2(Gk) whenevern > k.
Then|S ∩Uβ | � 1 for everyβ < ω1. Thereforea ∈ �S. ✷
Remark. If F is a filter onω which has a base which is well-ordered by almost inclusio
typeω1, then no space of the formω∪{F} can be densely embedded into a pseudocom
Tychonoff space of countable tightness.

Proof. By contradiction, assume there exists a pseudocompact Tychonoff spaceX which
containsω ∪ {F} as a dense subspace and let{Fα : α < ω1} be a base ofF which is well-
ordered by⊇∗. Let T be the set of all points ofX which are in the closure of some infini
subset ofω \ Fα for someα < ω1. The regularity ofX guarantees thatF ∈ �T . Now, letS
be a countable subset ofT and for eachs ∈ S let αs be an ordinal for whichs ∈ ω \ Fαs . If
γ = sup{αs : s ∈ S} andU is an open neighbourhood ofF such thatU ∩ω = Fγ , then we
haveU ∩ S = ∅. ThereforeX cannot have countable tightness.✷

Recall that a spaceX is sequential if any non-closed setS ⊆ X contains a sequenc
converging to a point outsideS. The class of sequential spaces is properly contained i
class of spaces of countable tightness.



A. Bella, O.I. Pavlov / Topology and its Applications 138 (2004) 161–166 165

For anyf ∈ ωω let U(f ) = {(m,n) ∈ ω × ω: n � f (m)}. The sequential fanSω is
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the setω × ω ∪ {p} topologized in such a way that every point ofω × ω is isolated and
a fundamental system of neighbourhoods atp is the family{{p} ∪ U(f ): f ∈ ωω}. The
spaceSω is a standard example of a countable space which does not have counta
tightness.

Let F be the neighbourhood filter ofp in Sω . Assuming the existence of a sca
{fα : α < ω1}, it is easy to realize that the family{{p} ∪U(fα) \ n× n: α < ω1, n < ω} is
a local base atp in Sω. Notice that, ifα < β thenU(fβ)⊆∗ U(fα).

By identifyingω× ω with ω, the spaceSω takes the formω ∪ {F}.

Corollary 1. [d = ω1] There exists a pseudocompact Tychonoff sequential spaceX which
contains a copy ofSω. ThenX does not have countable fan tightness.

Proof. ConsiderSω in the formω ∪ {F} and apply Theorem 1. We get a pseudocomp
Tychonoff spaceX which contains a closed subspace homeomorphic toSω. Following the
same notation in the proof of Theorem 1, we will check that thisX is actually sequentia
To this end, letA be a non-closed subset ofX = ω × (ω + 1) ∪ G ∪ {a}. If there is some
x �= a in A \A, then the first countability atx does the job. Thus, we proceed by assum
thatA is closed inX \ {a}.

Case1: a ∈A∩ G. By applying the reasoning used to check the countable tightne
Theorem 1, we get a setS ⊆ A∩ G such thata ∈ �S. However, it is easy to realize thatS is
actually a sequence converging toa.

Case2: a /∈A∩ G. We may fix a closed neighbourhoodU of a such thatU ∩A∩G = ∅.
By replacingA with U ∩ A, we may then assume thatA ⊆ ω × (ω + 1). The set
A′ = A ∩ ω × ω must satisfyA′ ⊆ n × ω for somen < ω. The reason is that otherwis
dom(A′) should be infinite and then, arguing as in the proof of pseudocompactness oX in
Theorem 1, we could find an elementG ∈ G in the closure ofA′. The conditionA′ ⊆ n×ω

clearly impliesa /∈ �A′ and soa ∈ A∩ ω× {ω} = A∩ Y . But, Y is just the sequential fa
and we are done.✷

Recall that a pointp ∈ βω\ω is a P-point provided that for any family{Pn: n < ω} ⊆ p

there existsQ ∈ p such thatQ⊆∗ Pn for eachn. It is known that P-points exist under CH
Moreover, assuming CH, any P-point has a base which is well-ordered by⊇∗ in typeω1.
Thus, we immediately get:

Corollary 2. [CH] If p ∈ βω \ω is a P-point then there exists a pseudocompact Tycho
space of countable tightness which contains a closed copy of the subspaceω ∪ {p} ⊆ βω.

Finally, taking into account the well-known fact that any space of the formω∪{p} ⊆ βω

is extremally disconnected, we have:

Corollary 3. [CH] There exists a pseudocompact Tychonoff space of countable tigh
which contains a non-discrete extremally disconnected subspace.

The authors are strongly indebted to the referee for his comments.
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