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ABSTRACT

A luminosity-temperature relation is derived for clusters of galaxies. The two models used take into account the
angular momentum acquisition by the protostructures during their expansion and collapse. The first model is a
modification of the self-similar model, while the second is a modification of the punctuated equilibria model of
Cavaliere et al. In both models the mass-temperature relation (M-T ) used is based on previous calculations of Del
Popolo.We show that the abovemodels lead, in X-rays, to a luminosity-temperature relation that scales as L / T5 at
the scale of groups, flattening to L / T 3 for rich clusters and converging to L / T2 at higher temperatures.
However, a fundamental result of our paper is that the nonsimilarity in the L-T relation can be explained by a simple
model that takes into account the amount of angular momentum of a protostructure. This result is in disagreement
with the widely accepted idea that the nonsimilarity is due to nongravitating processes, such as heating and/or
cooling.

Subject headinggs: cosmology: theory — galaxies: formation — large-scale structure of universe

1. INTRODUCTION

Observations of clusters of galaxies (e.g., ROSAT, ASCA)
performed in the past decade have shown the existence of a tight
correlation between the total gravitating mass of clusters (Mtot),
their X-ray luminosity (LX), and the temperature (TX) of the
intracluster medium (ICM) (David et al. 1993; Markevitch
1998; Horner et al. 1999). The importance of these relations is
due to the fact that cluster masses are difficult to measure di-
rectly, and when comparing cluster observations with models of
structure formation, a surrogate for cluster mass is used. Since
Mtot compares with the ICM temperature measurements that can
be obtained through X-ray spectroscopy, the M-T relation is
important. On one hand, the X-ray temperature measures the
depth of the potential wells, and the bolometric luminosity, L /
n2R3

XT
1/2, emitted as thermal bremsstrahlung by intracluster

plasma measures the baryon number density n within the volume
R3
X. Until some years ago, the cluster structure was considered to

be scale-free, which means that the global properties of clusters,
such as halo mass, luminosity-temperature, and X-ray luminosity
would scale self-similarly (Kaiser 1986). In particular, the gas
temperature would scale with cluster mass as T / M 2/3 and the
bolometric X-ray luminosity would scale with temperature as
L / T2, in the bremsstrahlung-dominated regime above�2 keV.4

Studies following that of Kaiser (1986) showed that the ob-
served luminosity-temperature relation is closer to L / T3 (e.g.,
Edge & Stewart 1991), indicating that nongravitational pro-
cesses should influence the density structure of a cluster’s core,
where most of the luminosity is generated (Kaiser 1991; Evrard
& Henry 1991; Navarro et al. 1995; Bryan & Norman 1998).
One way to obtain a scaling law closer to the observational one

is to have nongravitational energy injected into the ICM before
or during cluster formation. This solution, called preheating,
was originally invoked to solve two related problems: (1) to ex-
plain (Kaiser 1991; Evrard & Henry 1991)5 the apparent neg-
ative evolution of the X-ray cluster luminosity function (Gioia
et al. 1990; Henry et al. 1992) from the Einstein Medium Sen-
sitivity Survey in a �m ¼ 1 universe, and (2) to explain (White
1991)6 why groups and low-mass clusters seem to have higher
X-ray temperatures than expected based on member velocity
dispersions.
The mechanisms proposed to explain the slope change of the

L-T relation can be divided into three main categories:

1. Models that include a preheating of the gas within a clus-
ter. Ponman et al. (1999) showed that the entropy of the ICM in
the center of low-temperature clusters is greater than the value
expected from gravitational collapse. It has been shown that
models that include an additional gas entropy can successfully
reproduce many observational properties (Bower et al. 1997;
Cavaliere et al. 1997, 1999; Tozzi & Norman 2001; Borgani
et al. 2001; Voit & Brian 2001).
2. Models that implement feedback processes that alter the

gas characteristics during the evolution of the cluster. In prin-
ciple, there are many different physical processes that could
break the self-similar scaling, including heating from super-
novae or active galactic nuclei, or the removal of low-entropy
gas via radiative cooling with subsequent supernova heating
(Voit & Bryan 2001). Another example is that of Muanwong
et al. (2001), who simulated galaxy cluster formation including ra-
diative cooling with cool gas dropout and was able to repro-
duce the L / T3 dependence, without adding any entropy to the
gas. Moreover, other possibilities such as magnetic pressure or
cosmic-ray pressure have not been ruled out. Allen & Fabian
(1998) have examined the effects of cooling flows for a sample
of the most X-ray–luminous clusters (Lbol > 1045 ergs s�1),
finding a flattening from L / T3 to L / T2, in agreement with
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4 Indeed, numerical simulations that include gas dynamics but exclude

nongravitational processes such as radiative cooling and supernova heating
produce clusters that obey these scaling laws (e.g., Evrard et al. 1996; Bryan &
Norman 1998; Thomas et al. 2002).

5 Kaiser’s self-similar model predicts L / T 3:5. Evrard & Henry (1991)
obtained the relation L / T11/4.

6 In this case preheating was in the form of supernova-driven galactic winds.
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models that include the effects of shocks and preheating on the
X-ray gas (Cavaliere et al. 1997, 1999). Cavaliere et al. (1997,
1998) have constructed a model in which the observed L-M
relation on both cluster and group scales can be reproduced by
varying the gas density at the virial radius, according to the
accretion-shock strength, as determined by the temperature
difference between the infalling and virialized gases. Another
possibility to explain the L-T relation are systematic variations
in the baryonic fraction with cluster mass (David et al. 1993).
To distinguish among these processes, observations of high-
redshift groups and clusters will be crucial to measure the
evolution of the observed scaling relations as a function of
redshift.

3. Hydrodynamic models that do not include gas preheating
or feedback processes, which also reproduce the available ob-
servational data (e.g., Bryan & Norman 1998). Throughout this
paper, we will analyze this last scenario.

On the other hand, the mass-temperature relation seemed like
it ought to be more fundamental and less sensitive to non-
gravitational effects. Yet, observations collected over the last
few years indicate that this relation also disagrees with both the
scale-free predictions and simulations that exclude nongravi-
tational processes (Horner et al. 1999; Nevalainen et al. 2000;
Finoguenov et al. 2001; Xu et al. 2001). These results derive
mostly from resolved X-ray and temperature profiles coupled
with the assumption of hydrostatic equilibrium, and they do
seem consistent with gravitational lensing measurements (Allen
et al. 2001). Understanding the scaling properties of clusters is of
broad importance because these scaling laws are integral to de-
termination of cosmological parameters. Thus, any inaccuracies
in the mass-temperature relation propagate into uncertainties in
cosmological parameters derived from clusters (e.g., Voit 2000,
hereafter V00).

In Del Popolo (2002b), we derived the mass-temperature
relation and its time evolution for clusters of galaxies in dif-
ferent cosmologies. We use two different models: the first one is
a modification and improvement of a model by Del Popolo &
Gambera (1999) based on amodification of the top-hat model in
order to account for angular momentum acquisition by proto-
structures and for an external pressure term in the virial theo-
rem. The second one is an improvement of a model proposed by
V00, again to account for the angular momentum acquired by
protostructures during their formation. Both models showed
that theM-T relation is not self-similar. A break is present in the
quoted relation at T � 3 keV and, at the lower mass end, the
power-law index of theM-T relation is larger than � ¼ 3/2 even
in flat universes. The slope of the power-law index depends on
the considered cosmology. The two models also agree in pre-
dicting a more modest time evolution (which also depends on
the cosmology) of the quoted relation in comparison with the
results of previous models.

This is in agreementwith studies showing that the self-similarity
in theM-T relation seems to break at a few keV (Nevalainen et al.
2000; Xu et al. 2001). Bymeans of ASCA data for a small sample
of nine clusters (six at 4 keV and three at �1 keV), Nevalainen
et al. (2000) have shown that Mtot / T1:79�0:14

X for the whole
sample, andMtot / T3/2

X excluding the low-temperature clusters.
Xu et al. (2001) have foundMtot / T1:60�0:04

X using the �-model,
and Mtot / T1:81�0:14

X by means of the Navarro et al. (1995) pro-
file. Finoguenov et al. (2001) have investigated the T-M relation in
the low-mass end, finding that M / T�2, and M / T�3/2 at the
high-mass end. This behavior has been attributed to the effect of
the formation redshift (Finoguenov et al. 2001; but seeMathiesen

2001 for a different point of view), or to cooling processes
(Muanwong et al. 2001) and heating (Bialek et al. 2001). Afshordi
& Cen (2002, hereafter AC02) have shown that nonsphericity
introduces an asymmetric, mass-dependent scatter for the M-T
relation, altering its slope at the low-mass end (T � 3 keV).

The L-T andM-T relations are somehow related: as shown by
Shimizu et al. (2003), it is possible to make a reliable prediction
for the L-T relation once the M-T relation is specified. In turn,
one can obtain the M-T relation that reproduces the observed
L-T relation without assuming an ad hoc model for the thermal
evolution of intracluster gas. The two relations (M-T and L-T )
are strictly connected.

This conclusion in turn indicates that the L-T relation pro-
vides a good diagnosis of the underlyingM-T relation, which is
as yet poorly determined observationally.

Apart from the physical mechanism of the additional thermal
processes, there are three effects that might modify the mass
dependence of X-ray luminosity and steepen the resulting L-T
relation. First, the gas density profile might be significantly flat-
ter for less massive systems. Second, the mass dependence of the
hot-gas mass fraction is strong as fgas / M 1/3

vir . Finally, the mass-
temperature relation is Tgas / M 2/5

vir. In practice, a realistic model
should be a combination of these three effects to some extent.

In this paper we derive a luminosity-temperature relation for
clusters of galaxies that takes into account the amount of the
angular momentum of protostructures. We use two different
models: the first (which we call MSSM) is a modification of the
self-similar model (SSM), while the second one is a modifi-
cation of the punctuated equilibria model (MPEM) (Cavaliere
et al. 1999). We show that the presence of the angular momen-
tum during the gravitational collapse leads to a non–self-similar
L-T relation. The two models used are described in x 2. The
results are presented and discussed in x 3, and the conclusions
are summarized in x 4.

2. MODEL

2.1. Modified Self-Similar Model for the L-T Relation

The L-T relation constitutes a fundamental link between the
physics of the baryon component and the dynamical properties
of the dark matter (DM) condensations. The simplest model
describing that relation is the SSM model (Kaiser 1986), ob-
tained assuming that the gas density or the baryon number den-
sity n is proportional to the average DM density � and that the
virial radius Rvir is proportional to RX (see x 1 for a definition).
In this way, one obtains, according to this last, L / Mvir�T1/2.
In fact, T / Mvir /Rvir; n/ �/Mvir /R

3
vir; Rvir /RX, and L/R Rvir

0
�2T1/2r2dr / �2T1/2R3

vir, and recalling thatRvir / (Mvir /�)
1/3

leads to L / �MvirT
1/2 or recalling that Rvir / (T /�)1/3, we get

L / �1/2T 2. This last result is inconsistent with observed corre-
lation close to L / T3 (Edge & Stewart 1991; Mushotzky 1994).
In addition, a further steepening at the temperature of galaxy
groups is indicated for thermal emission not associatedwith single
galaxies (Ponman et al. 1999).

In the following, we derive a modified SSM, showing that
slope of the L-T relation changes at different scales.

Using the notation of Balogh et al. (1999), let us begin with a
cluster with gas temperature T(r) and density profile �(r)g for
which the bolometric X-ray luminosity from bremsstrahlung
scales as

L ¼ 6�k

C1(�mp)
2

Z Rvir

0

r2�g(r)
2Tg(r)

1=2dr ð1Þ
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(see Balogh et al. 1999), where C1 ¼ 3:88 ; 1011 s K�1/2 cm�3,
� ¼ 0:59, and Rvir / (Mvir/�)

1/3 is the virial radius, where
�(z) / (1þ z)3 is the DM density in the cluster, proportional to
the average cosmic DM density �u at formation. The simplest
model describing the L-T relation, which can be calculated by
equation (1), is the SSM (Kaiser 1986), assuming that �g / �.

We only consider halos in which not all of the gas within Rvir

has had time to cool since the halo formed.
We assume a singular, truncated isothermal sphere for the

DM potential, �(r) ¼ �R(r/Rvir)
�2, where �R is the density at

the virial radius Rvir and is equal to a third of the mean density
within Rvir, �̄(Rvir). This latter quantity is related to the critical
density at redshift z by �̄(Rvir) ¼ �c(z)�c(z), and�c ¼ 78�(z)þ
80þ 300�(z)/ 1þ15�(z)½ � is a fit, accurate to better than 2%,
to the results of the spherical collapse model as presented in Eke
et al. (1996). It will be convenient to define a redshift evolution
term, F1(z)

2 ¼ (1þ z)2(1þ �0z)�c(z)/�c(0), so that

�R ¼ 1

3
�c(0)�c(0)F1(z)

2: ð2Þ

For �0 ¼ 1; F1(z)
2 ¼ (1þ z)3 and �c ¼ 178. In this model,

we make the common assumption (e.g., Eke et al. 1996) that the
gas is distributed isothermally, with a temperature equal to the
virial temperature of the halo. If the gas is dissipationless, its
density profile will match that of the DM, i.e.,

�g(r) ¼ �g;R(r=Rvir)
�2; ð3Þ

and �g;R/�R ¼ �b/�0. To avoid the singularity at r ¼ 0 when
integrating over the assumed isothermal profile, an arbitrary
core radius of rc ¼ fcRvir is adopted with fc ¼ 0:1, such that
�g(r < rc) ¼ �g(rc). The integral in equation (1) is dominated
by the contribution from within a few core radii, and thus the
scaling properties of this integral depend weakly on the as-
sumed density profile. Furthermore, departures from the stan-
dard profile can be accommodated by redefining the core radius
of the system.

In order to obtain the luminosity-mass relation, we evaluate
equation (1) and use theM-T relation, which takes into account
the angular momentum of the protostructure, which is obtained
in Appendix C:

kT ’ 8 keV
M 2=3

1015 h�1 M�

� �
1

m1

þ t�

t

� �2=3

þ K1(m1; x)

M 8=3

" #

;
1

m1

þ t�

t0

� �2=3

þ K0(m1; x)

M
8=3
0

" #�1

; ð4Þ

where K1(m1; x) is given by7

K1(m1; x)¼ m1 � 1ð ÞFxLerchPhi x; 1;
3m1

5þ 1

� �

� m1 � 1ð ÞF LerchPhi x; 1;
3m1

5

� �
; ð5Þ

where

F ¼ 27=3�2=3��
2=3
b

32=3H 2�

Z r

0

L2dr

r3
; ð6Þ

m1¼ 5/(nþ3); t� ¼ ��0/H0 1��0���ð Þ3/2, x ¼ 1þ (t�/t)
2/3,

which is connected to mass byM ¼ M0 x
�3m1/5 (V00), and � ¼

rta/x1, where rta is the turnaround radius and x1 is defined by the
relation M ¼ 4��b x

3
1 /3, where �b is the background density.

Finally, we get

L¼ 3:31 ; 1045
M

M0

� �4=3
1

178
�c

� �
F2
1

�b

�

� �2

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=m1 þ t�=tð Þ2=3þK1(m1; x)= M=M0ð Þ8=3

1=m1 þ t�=tð Þ2=3þK0(m1; x)=M
8=3
0

vuut 1� fc

fc

� �
;

ð7Þ

which, differently from Kaiser’s (1986) prediction, is not self-
similar. It reduces to the self-similar form (L / M 4/3) if angular
momentum acquisition is not taken into account, namely, if
L ! 0 (or F ! 0).
The previous computation depends on the value of the an-

gular momentum acquired by the DM halos from tidal torques
from surrounding matter. This enters the L-T relation through
the quantities F and K1 (see also Appendix A). In the limit of
vanishing angular momentum, the L-TandM-T relations reduce
to the well-known self-similar forms. Thus, it is important to
add a discussion on the magnitude of the angular momentum
calculated as in previous papers (e.g., Del Popolo & Gambera
1998; Del Popolo et al. 2001).

The angular momentum is acquired by the cosmological
torque acting on the protostructures due to the tidal field of the
environment. The amount of angular momentum as well as its
distribution are related to the assumed power spectrum of den-
sity perturbations. We have to note here that the problem of the
growth of angular momentum of protostructures from the tidal
torques of the surrounding matter has been studied extensively
in the literature with both analytical and numerical (N-body)
methods (e.g., Efstathiou & Jones 1979; Barnes & Efstathiou
1987; Voglis & Hiotelis 1989; Warren et al. 1992; Eisenstein &
Loeb 1995; Kratsov et al. 1998). A main result of the above
studies is that the values of the dimensionless spin parameter
k � LjEj1/2/GM 5/2 (Peebles 1971) follow a lognormal distri-
bution with a small average value of 0.05. In the above relation,
L is the total angular momentum of the protostructure, E is its
binding energy, M is its mass, and G is the gravitational con-
stant. The above numerical results are confirmed by analytical
studies presented by other authors, such as those of Steinmetz &
Bartelmann (1995) and Catelan & Theuns (1996). To be more
precise, k depends on the galactic morphological type, being as
high as k ’ 0:5 for spirals and SO galaxies and k ’ 0:05 for
ellipticals, although the dispersion around these values is large
(Efstathiou & Jones 1979). In the case of structures of 1012–
1013 M� its value is ’0.1, and ’0.01 for clusters.8

In this paper, we calculate angular momentum as in x 3 of Del
Popolo et al. (2001), followingEisenstein&Loeb (1995).With the
Bardeen et al. (1986) power spectrum smoothed on galactic scale
for a � ¼ 2 peak, the model gives a value of 2:5 ; 1074 g cm2 s�1,
in very good agreement with Catelan & Theuns (1996); in other
words the amount of angular momentum used in our calculations
is consistent with the values of k predicted by the tidal fields
of the surrounding matter. Although this amount is in general
small, our results show that it is efficient to lead to a nonsimilar

7 K0(m1; x) indicates that K1(m1; x) must be calculated assuming t ¼ t0.

8 The resulting typical circular velocities of structures is ’150 km s�1 for
galaxies similar to the Milky Way, ’5 km s�1 for clusters, and ’10 km s�1 for
superclusters (see Catelan & Theuns 1996).
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L-T relation. The angular momentum of DM halos also has other
important consequences. For example, small amounts of angu-
lar momentum are able to change the density profile of DM
halos from the isothermal law �(r) / r�2 to a profile that flattens
significantly inward (e.g., Hiotelis 2002).

Moreover, several studies have shown that the influence
and the role of shear on structure formation is of fundamental
importance. Shear on a density perturbation can be produced
by the intrinsic asphericity of the perturbation itself (internal
shear), or it can be due to the interaction of the perturbation with
the neighboring ones (external shear). For example, according
to the previrialization conjecture (Peebles & Groth 1976; Davis
& Peebles 1977; Peebles 1990), initial asphericities and tidal
interactions between neighboring density fluctuations induce
significant nonradialmotions that oppose the collapse. Thismeans
that virialized clumps form later, with respect to the predictions
of the linear perturbation theory or the spherical collapse model,
and that the initial density contrast needed to obtain a given final
density contrast must be larger than that for an isolated spherical
fluctuation. This kind of conclusion was supported by Barrow &
Silk (1981), Szalay & Silk (1983), Villumsen & Davis (1986),
Bond & Myers (1993a, 1993b), and Lokas et al. (1996). Argu-
ments based on a numerical least-action method led Peebles
(1990) to the conclusion that irregularities in the mass distribu-
tion, together with external tides, induce nonradial motions that
slow down the collapse. In a more recent paper, Audit et al.
(1997) conclude that spherical collapse is the fastest. This result
is in agreement with Peebles (1990) and more recent papers,
namely, Del Popolo et al. (2001) and Del Popolo (2002a).

2.2. Improvements to the Punctuated Equilibria Model

In this subsection, we extend the punctuated equilibria model
(PEM) by Cavaliere et al. (1997, 1998, 1999; hereafter CMT97,
CMT98, CMT99) to take account of angular momentum ac-
quisition from the protostructure. In their model (CMT98), the
cluster evolution is described as a sequence of ‘‘punctuated equi-
libria,’’ that is to say, a sequence of hierarchical merging episodes
of the DM halos, associated in the intracluster plasma (ICP) with
shocks of various strengths (depending on the mass ratio of the
merging clumps), which provide the boundary conditions for the
ICP to readjust to a new hydrostatic equilibrium.

The X-ray bolometric luminosity of a cluster is given by
equation (1), which in CMT98’s notation is

L /
Z r2

0

n2(r)T1=2(r)d3r: ð8Þ

Here T(r) is temperature in the plasma and r2 is the cluster
boundary, which we take to be close to the virial radius Rvir /
M 1/3

vir �
�1/3, where �(z) / (1þ z)3 is the DM density in the clus-

ter, proportional to the average cosmic DM density �u(z) at
formation.

As shown in Appendix B, the L-T relation can be cast in the
form

L / n2

n1

� �2

�
T2

Tv

� �1=2

½n(r)=n2
�2þ(��1)=2

m4=3

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=m1 þ t�=tð Þ2=3þK1= m=m0ð Þ8=3

1=m1 þ t�=tð Þ2=3þK0=m
8=3
0

vuut : ð9Þ

See Appendix B for a derivation of equation (9) and a definition
of the terms involved.

Our final aim is to compute the average value of L and its
dispersion, associated with a given cluster mass m. In order to
reach this goal, we must sum over the shocks produced at a
time t 0 < t in all possible progenitors m0 (weighting with their
number) by the accreted clumps�m (weighting with their merg-
ing rate); finally, we integrate over times t 0 from an effective lower
limit t ��t.

The average L is then given by

hLi¼Q

Z t

t��t

dt 0
Z m

0

dm0
Z m�m 0

0

d�m
df

dm0 (m
0; t 0jm; t)

;
d 2p(m0 ! m0 þ�m)

d�mdt 0
L; ð10Þ

and the variance is given by

h�L2i¼Q

Z t

t��t

dt 0
Z m

0

dm0
Z m�m 0

0

d�m
df

dm0 (m
0; t 0jm; t)

;
d 2p(m0 ! m0 þ�m)

d�mdt 0
L� hLið Þ2; ð11Þ

where Q is the normalization factor (the compounded proba-
bility distribution in eqs. [10] and [11] has been normalized to
1). The effective lower limit for the integration over masses is
set as described in x 2.4 of CMT99.

3. RESULTS

The results of our calculation are plotted in Figures 1–3. In
Figure 1 we plot a direct comparison between the SSM (long-
dashed line), MSSM (short-dashed line), PEM9 (solid line),
and finally MPEM with a tilted CDM cosmogony (dotted line).
As is well known, the SSM predicts that L / T 2 (Kaiser 1986),
while the MSSM predicts non–self-similar behavior of the L-T
relation, namely, an L-T relation L / T 5 on the scale of groups
and L / T 3 for rich clusters, in agreement with observations,
and the L-T relation saturates toward L / T2 for higher tem-
peratures. The plot shows that the MSSM predicts a behavior of
the L-T relation similar to that predicted by the PEM. Differ-
ences of a maximum of 10% are noted for smaller values of the
temperature.

We note above that a self-similar evolution for all clusters at
typical cluster temperatures (T > 2 keV) should lead to L /
T 2, since free-free emission dominates the cooling. Instead, the
observed L-T relation is more steep, L / T 2:6 2:9, meaning that
lower temperature clusters and groups of galaxies are far less
luminous than expected. Several different models have been
proposed in order to explain the quoted behavior in the L-T
relation. The key point of these models is that the X-ray lumi-
nosities of low-temperature clusters are small because their gas
is less centrally concentrated than in hotter clusters, an effect
that has been attributed to a universal minimum entropy level in

9 The PEM is based on hierarchical clustering. Group and cluster formation
is envisaged in terms of DM potential wells evolving hierarchically and engulf-
ing outer baryons by accretion of smooth gas or by merging with other clumps.
After a merging episode, the ICP in the wells falls back to a new, approximate
hydrostatic equilibrium. This sequence of hydrostatic equilibria of the ICP is
physically motivated for all merging events except for those involving compar-
able clumps (a mass ratio larger than�1/4). However, these sum up to less than
10% in the number. In the PEM, thermal energy of the infalling gas is initially
due to stellar preheating (of nuclear origin); then it is increased to the virial value
(of gravitational origin) when the accreted gas is bound in DM subclumps. So
the preheating sets an effective threshold kT1 � 0:5 keV to gas inclusion, which
breaks the self-similar correlation L / T 2 not only in its vicinity but also up to a
few keV.
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intracluster gas resulting from supernova heating (Ponman
et al. 1999; Wu et al. 2000; CMT99), from heating by active
nuclei (Wu et al. 2000), or from radiative cooling (Wu et al.
2000; Bryan 2000). In other terms, for some reasons the core
gas is less high than that expected in the self-similar model.
For example, an early episode of uniformly distributed supernova
feedback could rectify the problem by heating the uncondensed
gas and therefore making it harder to compress in the core. In
other words, the models with preheating and similar processes
give rise to the quoted break because they change the density in
the core. During the hierarchical buildup an energy input pre-
heats the gas before it falls into new groups and clusters, thus
hindering its flow into the latter. The core density decreases, and
thus so does the luminosity.

A similar mechanism acts in the model of this paper. In fact,
as shown in Del Popolo & Gambera (1998), the angular mo-
mentum acquired by a shell centered on a peak in the CDM
density distribution is anticorrelated with density: high-density
peaks acquire less angular momentum than low-density peaks
(Hoffman 1986; Ryden 1988). A greater amount of angular
momentum acquired by low-density peaks (with respect to the

high-density ones) implies that these peaks can more easily
resist gravitational collapse, that consequently it is more diffi-
cult for them to form structure, and that in some conditions the
structure formation by low-mass peaks is even inhibited.10

The break of the self-similarity of the L-T relation may also
have important consequences for determining the cluster masses
from their luminosity. As shown by Shimizu et al. (2003), the
predicted L-T relation is very sensitive to the assumed M-T
relation, and thus the non–self-similarity of the L-T relation is
strictly connected to that in the M-T relation. The M-T relation,
as previously discussed, is also non–self-similar, and this be-
havior has been interpreted in different ways (see x 1). In Del
Popolo (2002b), the bend in theM-T relation is entirely justified
in terms of tidal interaction among neighboring clusters, or in
other terms, it is strictly connected to the asphericity of clusters
(see Del Popolo & Gambera 1999 for a discussion on the re-
lation between angular momentum acquisition, asphericity, and
structure formation). Nonsphericity introduces an asymmetric
bend, dependent on mass, in theM-T relation that gives rise to a
different slope at the low-mass end (T � 3 keV): the lower the
mass, the larger the bend.
This result is in agreement with AC02’s result. In that paper,

the authors used a nearly spherical collapsing region to obtain
the M-T relation. According to their results, nonsphericity in-
troduces an asymmetric, mass-dependent scatter (the lower the
mass, the larger the scatter) for the M-T relation, thus altering
the slope at the low-mass end (T ’ 3 keV).
As noted in x 1, heating/cooling mechanisms are not necessary

to explain the observational L-T correlation. Bryan & Norman
(1998), carrying out large hydrodynamic simulations that fol-
lowed the hierarchical evolution of clusters of galaxies, found
that the observed M-T, L-T relations can be thoroughly repro-
duced if the number of particles and the spatial resolution are
large enough. The importance of the numerical accuracy proves
to be crucial to determining those relations, and so, for example,
Muanwong et al. (2001), using simulations with only 1603 par-
ticles and a spatial resolution of 100 h�1 Mpc, obtain L / T 2 in-
dependent of mass, if radiative cooling is not implemented. In
contrast, Bryan & Norman (1998), using simulations with 5123

Fig. 2.—MPEM model. Shown is the average L-T correlation with a 2 	
dispersion (dotted lines), for a tilted cosmogony. Group data from Ponman et al.
(1999) are represented by filled squares, while cluster data from Markevitch
(1998) are represented by filled hexagons.

Fig. 3.—Similar to Fig. 2, but for the MSSM model.

10 One interesting point to mention, at this point, is that several different
assumptions are able to reproduce the observed L-T relation. This could mean
that L-T is not a very sensitive test since almost any change to the ‘‘pure’’ self-
similar model reproduces this relation.

Fig. 1.—Comparison between the SSM (long-dashed line), MSSM (short-
dashed line), PEM (solid line), and MPEM (dotted line).
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particles and a spatial resolution of 50 h�1 Mpc, did reproduce
the observational bend of the L-T relation at the low-mass region.

A priori, it is unclear why the L-T and M-T relations are that
sensitive to resolution. One possible explanation goes in the
direction of the results shown in this paper. Taking into account
that protostructures gain angular momentum owing to tidal
interactions with other nonspherical structures, low resolution
may hinder the gain of angular momentum by preventing an
accurate determination of the protostructure shape. To clarify
this point, we shall use the simulations of Muanwong et al.
(2001) and Bryan & Norman (1998) as an example. The particle
mass mp of the first was mp ¼ 2:1 ; 1010 h�1 M�, whereas the
later used mp ’ 6 ; 108 h�1 M� in their simulations. Since a
common characteristic of hydrodynamic calculations is that all
particles have the same mass, clusters with kT < 2 keV (where
the bend in the L-T relation starts to depart clearly from self-
similarity) have masses of M � 3 ;1014 h�1 M�; i.e., they
contain approximately N < 1:4 ; 104 and N < 5 ; 105 particles
in the Muanwong et al. (2001) and Bryan & Norman (1998)
simulations, respectively. As we go to lower masses, we reduce
the number of particles enclosed in protostructures. As a con-
sequence, the shape and therefore the inertia axes may fluctuate
randomly, which would lead on average to a systematic decrease
of angular momentum gained by low-mass protoclusters.

Besides the poorly determined shape of low-mass structures,
one must also take into account the possible effects of force res-
olution. In a typical N-body evolution code, such as TREECODE
in Hernquist (1987), for example, the force acting on a particle is
given by the sum of two components: the force coming from the
nearest neighbors and that coming from an expansion of the
gravitational potential of the entire system up to quadrupole
terms. As can be shown, the value of the average stochastic force
in the simulation, Fsim, is an order of magnitude greater than that
obtained from the theory, Fth, of stochastic forces. As a conse-
quence only the higher force are taken into account, while the
small fluctuations induced by the small-scale substructure are
not ‘‘seen.’’ This is the case for CDM models in which the
stochastic force generators are substructures at least three orders
of magnitude smaller in size than the protostructures in which
they are embedded (e.g., clusters of galaxies).

Taking into account the large simulations required to obtain a
good description of the L-T relation, it is not surprising that
similar disagreements are reported in other cases too. For exam-
ple, in the case of theM-T relation, it is noted that the results from
different observational methods of mass measurements are not
consistent with one another and with the simulation results (e.g.,
Horner et al. 1999; Neumann & Arnaud 1999; Nevalainen et al.
2000; Finoguenov et al. 2001). In general, X-ray mass estimates
are about 80% lower than the predictions of hydrosimulations.
On the other hand, X-ray mass estimates lead to normalizations
about 50% higher than our result and simulations.

One possible source of difference between theoretical and
observational normalizations is that the values for �̃11 are dif-
ferent in the two cases due to systematic selection effects. Also,
intriguingly, Bryan & Norman (1998) showed that there is a
systematic increase in the obtained value of �̃ by increasing the
resolution of the simulations.

We would like to stress that even if the effects of angular
momentum are not taken into account, this last process gives
rise to self-similar structures only in a first approximation. In
fact, (1) the effective spectral index neff of CDM models de-

pends, even if weakly, on the scale, going from values of neA ’
�1:2 for clusters to neA ’ �2 for galaxies; (2) we live in a uni-
verse with a cosmological constant different from zero, which
means that there is a typical redshift at which it became impor-
tant for cosmic dynamics; (3) even DMprofiles are not perfectly
self-similar, since they depend on the concentration parameter,
which in turn is inversely proportional to mass because smaller
structures formed, on average, at earlier times, when cosmic
density was larger.

As reported, Figure 1 shows a slight difference between the
SMMS prediction and that of PEM, with the slope predicted by
SMSS at low temperatures being less steep than that of PEM
andMPEM. The difference is not large, implying a difference in
luminosity of 10% (larger for SMSS with respect to PEM).
Also plotted in Figure 1 is the L-T relation predicted byMPEM.
In this last case, the bending is produced by two effects: the
threshold effect of the preheating temperature kT1 ’ 0:5 keV
(as in CMT99) and the effect of angular momentum acquired by
clusters. As a consequence, if we compare MPEM with PEM
(or MSSM), the bending is larger (besides the threshold effect,
we have the acquisition of angular momentum).

Relative to this last item, looking at Figure 1 one can see that
the curve obtained from MSSM is very different from that
corresponding to SSM, whereas the one fromMPEM differs not
much from that of PEM. The reason is the following: if we
consider a cluster, without implementing preheating, the an-
gular momentum acquisition is responsible for the slowing
down and eventual stopping of the matter collapse toward the
center of the cluster, leading to the consequences we have dis-
cussed. Implementing preheating, this gives rise (by heating the
uncondensed gas and therefore making it harder to compress in
the core) to a region at higher temperature and pressure that acts
like a boundary for the infalling gas, which therefore reduces
the effects induced by angular momentum acquisition.

In Figure 2 we plot the results for theMPEMmodel: the average
L-T correlation with the 2 	 dispersion (dotted lines) for a tilted
cosmogony. Group data from Ponman et al. (1999) are represented
byfilled squares, while cluster data fromMarkevitch (1998) are rep-
resented by filled hexagons. TheL-Tcorrelation is given by the dou-
ble convolution (eq. [10]), while �L is obtained by equation (11).
The normalization has been fitted to the data (see CMT99).

The quantities and profiles of the PEM model are the same as
those of CMT99, namely, the reference cluster has a mass m ¼
M /M0 and a DM potential 
(r), as described in Appendix B. The
density and temperature profiles are given by equation (30), and
they should match the shock boundary conditions at the posi-
tion r2 ’ Rvir. The average value and scatter of the parameter �
given by equation (31), calculated through the PEM and shown
in Figure 2 of CMT99, increases from � ¼ 0:5 to � ’ 0:9,
while the baryonic fraction f2 is the one in Figure 3 of CMT99.
The �-parameter is fixed as described in Appendix B. As the
plot shows, in agreement with CMT99, the correlation is not a
simple power law but starts as L / T 2 for very rich clusters, and
then it bends down with decreasing T. As previously noted, the
bending is induced by two mechanisms: the threshold imposed by
the preheating temperature kT1 ’ 0:5 keV (as in CMT99) and the
angular momentum acquired by clusters. As a consequence, if we
compare MSSM with PEM, the bending is larger (beside the
threshold effect we have the acquisition of angular momentum).

Wewant to point out a similarity between the role of preheating
temperature T in the PEM and that of the angular momentum L
in our model. In the PEM, the thermal energy of infalling gas
comes initially from stellar preheating (of nuclear origin); then it
is increased to the virial value (of gravitational origin) when the

11 �̃ ¼ �½1þ f (1/� � 1)�b /�m�, where f is the fraction of the baryonic
matter in the hot gas, and �b is the density parameter of the baryonic matter.
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accreted gas is bound to DM subclumps. So the preheating sets an
effective threshold kT1 � 0:5 keV to gas inclusion, which breaks
the self-similar correlation L / T 2 not only in its vicinity but also
up to a few keV. Increasing the preheating temperature, the bend-
ing in the L-T relation becomes more pronounced. A similar pro-
cess occurs if the acquired angular momentum is larger.

A fitting formula similar to that of CMT98 for the predicted
L-T correlation (for T > T1 ’ 1 keV) is given by

L ¼ aLT
2þ�L (�=�o)

1=2;

aL / �0:3
0 (1þ z)0:22=�0 þ (1� �0)e

�0:7(1þz);

�L ¼ a1(1þ z)�0:2e�a2(T�T1)=�
0:1
0 (1þz)0:5 ; ð12Þ

where the luminosity is expressed in units of 1044 ergs s�1 and
the temperature in keV, and with a1 ¼ 1:2 and a2 ¼ 0:17.

At temperatures larger than the threshold kT1 ’ 0:5 keV, the
relative �L/L remains constant around 25%. A study of the de-
pendence of hLi and �L on �0 shows that both these quantities
increasewith increasing�0, similarly towhat shown inCMT99.12

Figure 3 shows MSSM compared with observational data.
Similarly to Figure 2, we plot the average L-T correlation with
the 2 	 dispersion (dotted lines) for a tilted cosmogony. Group
data from Ponman et al. (1999) are represented by filled squares,
while cluster data from Markevitch (1998) are represented by
filled hexagons. The L-Tcorrelation can be fitted in this case by a
formula similar to that of equation (13), with a1 ¼ 1:28 and a2 ¼
0:19. As reported, Figure 1 shows a slight difference between the
SMMS prediction and that of PEM, with the slope predicted by
SMSS at low temperatures being less steep than that of PEM.
The difference is not large, implying a difference in luminosity
of 10% (larger for SMSS). The fit of the SMSSmodel to the data,
as Figure 3 shows, is also very good.

To summarize, the key idea of the SMSS model and of other
mechanisms proposed to reproduce the non–self-similarity of
the L-T relation is in all cases fairly similar: if one wants to have
clusters less luminous than the SSM prediction, it is necessary

to have a physical process that reduces the quantity of gas in-
falling toward the center of the cluster, which therefore reduces
the core luminosity. In the case of heating/cooling models, some
energy input preheats the gas before it falls into new groups and
clusters, hindering its flow into the latter. In the SMSS model,
that role is played by the initial spin present in protoclusters.

4. CONCLUSIONS

In this paper we have shown that the presence of angular
momentum during the collapse of a protostructure leads to a
non–self-similar L-T relation. The quoted effect leads, in X-rays,
to a luminosity-temperature relation that scales as L / T 5 at the
scale of groups, flattening to L / T3 for rich clusters and con-
verging to L / T 2 at higher temperatures.
These results are in disagreement with the largely accepted

assumption that heating/cooling and similar processes are fun-
damental in originating the non–self-similar behavior (shaping)
of the L-T relation. As Bryan &Norman (1998) showed, it is not
necessary to hypothesize preheating/cooling models in order to
reproduce observations; on the contrary, it is possible to repro-
duce the observed L-T relation if the spatial and mass resolution
are accurate enough. Poorly resolved clusters, with few par-
ticles enclosed, lead to self-similar L-T curves.
We have shown that the large bend of the L-T relation is

caused by the fact that the angular momentum acquired by a shell
centered on a peak in the CDM density distribution is anti-
correlated with density: high-density peaks acquire less angular
momentum than low-density peaks. A greater amount of angular
momentum acquired by low-density peaks (with respect to the
high-density ones) implies that these peaks canmore easily resist
gravitational collapse and consequently that it is more difficult
for them to form structure. This results in a tendency for less
dense regions to accrete less mass with respect to a classical
spherical model. As a consequence, the X-ray luminosities of
low-temperature clusters are small because their gas is less cen-
trally concentrated than in hotter clusters.

N. Hiotelis acknowledges the Empirikion Foundation for its
financial support.

APPENDIX A

M-T RELATION

As previously noted, numericalmethods and simple scaling arguments suggest that theX-ray temperature of clusters, TX, can be directly
related to their masses asMvir / T3/2

X ��1/2
b ��1/2

vir , where �b is the critical density and�vir is the mean density within the virial radius Rvir.
In Del Popolo & Gambera (1999) and Del Popolo (2002b), we got theM-T relation in two different ways: (1) modifying the top-hat

model, and (2) modifying the Voit & Donahue (1998) model. In the first, we modified the top-hat model in order to take account of
angular momentum acquisition by protostructures and used a modified version of the virial theorem in order to include a surface
pressure term (V00; AC02). This correction is due to the fact that at the virial radius Rvir the density is nonzero and that this requires a
surface pressure term to be included in the virial theorem (Carlberg et al. 1997) (the existence of this confining pressure is usually not
accounted for in the top-hat collapse model). The derivation of the previous relation is fundamentally based on the approximation of
cluster formation with the evolution of a spherical top-hat density perturbation (Peebles 1993) and on the additional assumption that
each cluster observed at a redshift z has just reached the moment of virialization. This last assumption is currently known as the late-
formation approximation, which is a good one in a critical�0 ¼ 1 case because for this value of�, massive clusters develop rapidly at
all redshifts and the moment of virialization is always close to that of observation. In other words, for �0 ¼ 1 the accretion rate
remains sufficiently high, and this implies that the clusters we actually observe attained their observed masses recently. In the �0 < 1
case, cluster formation is ‘‘shutting down’’ and it is necessary to take account of the differences between the moment of virialization
and that of observation. The problem becomes worse going through �0T1: in fact, in the late-formation approximation Mvir rises
steadily since �b�vir declines indefinitely, while we expect that the cluster formation is going to stop.13

12 This is because the underlying strength of the current shocks grows on
average as the merging rate (moderately) increases on approaching the critical
cosmology; see Lacey & Cole (1993).

13 The result of the late-formation approximation is displayed in eqs. (18) and (19) of Del Popolo (2002b).
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The late-formation approximation is a good one for many purposes, but a better one can be obtained in the low-� limit. As can be
found in the literature, there are two ways of improving the quoted model. One is to define a formation redshift zf at which a cluster
virializes, and then the properties of observed clusters at z are obtained by integrating over the appropriate distribution of formation
redshifts (Kitayama & Suto 1996; Viana & Liddle 1996). The second possibility is the one described by Voit & Donahue (1998) and
V00. In this approach, the top-hat cluster formation model is substituted by a model of cluster formation from spherically symmetric
perturbations with negative radial density gradients. The fact that clusters form gradually, and not instantaneously, is taken into
account in the merging-halo formalism of Lacey & Cole (1993). In hierarchical models of structure formation, the growth of the
largest clusters is quasi-continuous since these large objects are so rare that they almost never merge with another cluster of similar
size (Lacey & Cole 1993). So, the Lacey & Cole (1993) approach extends the Press-Schechter formalism by considering how clusters
grow via accretion of smaller virialized objects. Summarizing, in order to obtain the proper normalization and time evolution of the
M-T relation, one has to account for (1) the continuous accretion of mass of clusters and (2) the nonzero density at Rvir, requiring a
change in the virial theorem by including a surface pressure term.

TheM-T relation derived by means of a model of continuous accretion differs from the late-formation model in both normalization
and time-dependent behavior.14

In order to obtain the M-T relation in this second approach, we assume, as shown by V00, that the mass grows as M / !�3/(nþ3)

(Lacey & Cole 1993; Voit & Donahue 1998; V00).
In order to obtain an expression for the kinetic energy, we first calculated E/M:

E

M
¼ �

R
� dM

M
¼ 3m1

10(m1 � 1)

2�G

t�

� �2=3

M2=3 1

m
þ t�

t

� �2=3

þ K1(m1; x)

M 8=3
1

" #
; ð13Þ

K1(m1; x) ¼ m1 � 1ð ÞFxLerchPhi x; 1;
3m1

5þ 1

� �
� m1 � 1ð ÞF LerchPhi x; 1;

3m1

5

� �
; ð14Þ

where

F ¼
27=3�2=3��

2=3
b

32=3H 2�

Z r

0

L2dr

r3
; ð15Þ

m1 ¼ 5/(nþ 3); t� ¼ ��0 /H0 1� �0 � ��ð Þ3/2, x ¼ 1þ (t�/t)
2/3, which is connected to mass by M ¼ M0x

�3m1/5 (V00), and � ¼
rta/x1, where rta is the turnaround radius and x1 is defined by the relation M ¼ 4��bx

3
1 /3, where �b is the background density. The

LerchPhi function is defined as follows:

LerchPhi (z; a; v) ¼
X1
n¼0

zn

(vþ n)a
: ð16Þ

The angular momentum L acquired by the protostructure is calculated using the same model (and same spectrum) as described in Del
Popolo &Gambera (1998, 1999). More hints on themodel and some of the model limits can be found in Del Popolo et al. (2001). Then
the virial theorem with the surface pressure term correction, as in V00, is used in order to get a connection between the kinetic energy
and temperature. We utilize the usual relation

hKi ¼ 3�̃MkT

2�mp

ð17Þ

(AC02), where k is Boltzmann’s constant, � ¼ 0:59 is the mean molecular weight, mp is the proton mass, and �̃ ¼ 	2
v / kT /�mp

� �
,

where 	v is the mass-weighted mean velocity dispersion of DM particles and �̃ ¼ �½1þ f (1/� � 1)�b /�m�, where f is the fraction of
the baryonic matter in the hot gas and �b is the density parameter of the baryonic matter. In this way, we finally get

kT ¼ 2

5
a
�mp

2�

m1

m1 � 1

2�G
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� �2=3

M2=3 1

m1

þ t�

t

� �2=3

þ K1(m1; x)

M
8=3
0

" #
; ð18Þ

where a ¼ �̄/ 2�(Rvir)� �̄½ � is the ratio between kinetic and total energy (V00). If K1 ¼ 0, equation (13) reduces to equation (10) of
V00. As stressed by V00, some factors give rise to a higher value of E/M with respect the case of the late-formation value. The
m1/(m1 � 1) value accounts for the effect of early infall. The 1/m1 value in the square brackets of equation (13) accounts for the
cessation of cluster formation when t3 t�. Finally in equation (13) a new term is present, which comes from the tidal interaction.

14 A comparison of the normalization predicted by the late-formation model with that predicted by simulations of Evrard et al. (1996) shows that when �0 ¼ 1 this
normalization is only 4% below the empirical value, but it lies 20% below it for�0 ¼ 0:2. In the case of the V00 model and for a power-law spectrum, a comparison with the
same simulations show that the temperature normalization of the n ¼ �2 case deviates by less than 10%over the range 0:2 < �0 < 1 and by’18% in the case n ¼ �1 (V00).
The normalization obtained by the V00model, even if it is more accurate than that given by late formation or by AC02, which is in agreement with hydro-simulations, shows a
noteworthy discrepancy when compared with X-ray mass estimates (about 50% for the AC02 model; see also V00). One possible source of differences in theoretical and
observational normalizations may be due to the fact that � is different in the two cases because of systematic selection effects. For example, as shown by Bryan & Norman
(1998), increasing the resolution of simulations there is an increase in the value of �. So summarizing, concerning normalization the continuous-formation model gives more
precise results than the late-formation one, but in any case if we want to fit observations we need to shift the normalization (see AC02).
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Using the relation �vir ¼ 8�2/Ht 2 (see V00) within the early-time limit (tTt�), equation (18) reduces to

kT ¼ 2

5

m1

m1 � 1
a
�mp

2�
GM 2=3 4�

3
�b�vir

� �1=3

; ð19Þ

which, in the case n � �2; a � 2, is identical to the late-formation formula described in V00 (see their eq. [8]). Normalizing
equation (18) similarly to V00, we get

kT ’ 8 keV
M 2=3

1015 h�1 M�

� �
1
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þ t�

t
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þ K1(m1; x)

M 8=3

" #
1
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� �2=3

þ K0(m1; x)

M
8=3
0

" #�1

; ð20Þ

where K0(m1; x) indicates that K1(m1; x) must be calculated assuming t ¼ t0
Equation (20), when compared to the result of V00 (their eq. [17]), shows an additional, mass-dependent term. This means that as in

the case of the top-hat model, the M-T relation is no longer self-similar, showing a break at the low-mass end (see Appendix B).

APPENDIX B

L-T RELATION IN THE MODIFIED PUNCTUATED EQUILIBRIUM MODEL

The X-ray bolometric luminosity of a cluster is given by equation (1), which in CMT98’s notation is

L /
Z r2

0

n2(r)T1=2(r)d3r: ð21Þ

Here T(r) is temperature in the plasma and r2 is the cluster boundary, which we take to be close to the virial radius Rvir / M 1=3��1=3,
where �(z) / (1þ z)3 is the DM density in the cluster, proportional to the average cosmic DM density �u(z) at formation. The infalling
gas is expected to become supersonic near r2 (see, e.g., Perrenod 1980; Takizawa &Mineshige 1998), so that a shock front will form
there. The conservations across the shock of mass, energy, and stresses yield the Rankine-Hugoniot conditions, i.e., the temperature
and density jumps from the outer values T1 and n1 to T2 and n2 just interior to r2. Thus the luminosity can be rewritten in the form

L / r32n
2
2T

1=2
2

Z 1

0

d3x
n(x)

n2

� �2
T (x)

T2

� �1=2
; ð22Þ

where x � r/r2; n1 is fixed by n1 / fu�u /mp in terms of the universal baryonic fraction fu , whereas T1 is determined only statistically
through the diverse merging histories ending up with the massM. In sum, a given dark massM admits a set of ICP equilibrium states
characterized by different boundary conditions, each corresponding to a different realization of the dynamical merging history. It is the
convolution over such a set that provides the average values of L and RX and their scatter. Following CMT98, the preshock
temperature in a merging event is that of the infalling gas, and if the latter is contained in a sufficiently deep potential well, T1 is the
virial temperature T1v / �m/r of the secondary merging partner; on using r / (�m/�)1/3, this gives

kT1v ¼ 4:5(�m)2=3(�=�0)
1=3 keV; ð23Þ

where the numerical coefficient is taken from Hjorth et al. (1998) and the masses m ¼ M /M0 are normalized to the current value
M0 ¼ 0:6 ;1015�0 h�1 M� (i.e., the mass enclosed within a sphere of 8 h�1 Mpc), so in the following the actual value of T1 is

15

T1 ¼ max T1v; T1�ð Þ: ð24Þ

Given T1, the boundary conditions for the ICP in the cluster are set by the strength of the shocks separating the inner from the infalling
gas. In the case of three degrees of freedom and for a nearly hydrostatic postshock condition with v2Tv1, assuming that the shock
velocity matches the growth rate of the virial radius Rvir (t),

kT2 ¼
�mpv

2
1

3

1þ
ffiffiffiffiffiffiffiffiffiffiffi
1þ �

p� �2
4

þ 7

10
�� 3

20

�2

1þ
ffiffiffiffiffiffiffiffiffiffiffi
1þ �

p� �2
" #

ð25Þ

(CMT97).
Here � � 15kT1/4�mpv

2
1 , and � is the average molecular weight; the inflow velocity v1 is set by the potential drop across the region

of nearly free fall, to read v1 ’ �
2/mp

� �
1/2

in terms of the potential 
2 at r2. In the case of strong shocks appropriate to ‘‘cold inflow’’
(�T1), as in rich clusters accreting small clumps and diffuse gas, the approximation

kT2 ’ �
2=3þ 3kT1=2 ð26Þ

15 An independent lower bound kT1� � 0:5 keV is provided by preheating of diffuse external gas, due to feedback energy input following star formation and
evolution all the way to supernovae (David et al. 1995; Renzini 1997).
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holds, where 
2 is the gravitational potential energy at r2 ’ Rvir. For � 	 1 the shock is weak and T2 ’ T1. From T2 and T1, the
density jump at the boundary n2/n1 is found to be (see CMT97)

n2

n1
¼ 2 1� T1

T2

� �
þ 4 1� T1

T2

� �2

þ T1

T2

" #1=2

: ð27Þ

Adopting the polytropic temperature description T (x)/T2 ¼ ½n(x)/n2���1
, with the index � in the range 1 
 � 
 5/3, and given that

the radius r2 can be written in terms of temperature Tv / m/r2 and thatm / �r32 , leading to r2 / (t /�)1/2, the luminosity can be written
in the form

L / n2

n1

� �2

mT 1=2
v �

T2

Tv

� �1=2

½n(r)=n2
�2þ(��1)=2

; ð28Þ

where the bar denotes the integration over the emitting volume r3 
 r32 , and � is the average DM density in the cluster, proportional
to �u and so to n1.

Equation (28) can be also cast in the form

L / n2

n1

� �2

�
T2

Tv

� �1=2

½n(r)=n2
�2þ(��1)=2

m4=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=m1 þ t�=tð Þ2=3þK= m=m0ð Þ8=3

1=m1 þ t�=tð Þ2=3þK0=m
8=3
0

vuut : ð29Þ

The ratio n(x)/n2 is obtained from the hydrostatic equilibrium dP/mpn dr ¼ �GM (<r)/r2 ¼ �d
/dr with the polytropic pressure
P(r) ¼ kT2n2

	
n(r)=n2

��
. This yields (see Cavaliere & Fusco-Femiano 1978; Sarazin 1988 and references therein) the profiles

n(r)

n2
¼ T (r)

T2

� �1=(��1)

¼ 1þ � � 1

�
� 
̃2 � 
̃(r)
	 �
 �1=(��1)

; ð30Þ

where 
̃ � 
/�mp	
2
2 is the potential normalized to the associated one-dimensional DM velocity dispersion at r2. The ICP dis-

position in equation (11) relative to the DM depends on the previously encountered parameter

� ¼ �mp	2=kT2 ð31Þ

and is further modulated by the second parameter � to yield, as the latter increases, flatter profiles n(r) and steeper T(r).16

The function �(T ) can be easily computed from equation (26) for a given DM potential 
2 corresponding to �(r); 
(r) and 	(r) are
obtained in agreement with Navarro et al. (1997).

APPENDIX C

CALCULATION OF THE ANGULAR MOMENTUM

The effect of tidal torques on structure evolution has been studied in several papers, especially in connection with the origin of
galactic rotation (Hoyle 1949; Peebles 1969; White 1984; Ryden 1988, hereafter R88; Eisenstein & Loeb 1995).

Following Eisenstein & Loeb (1995), we separate the universe into two disjoint parts: the collapsing region, characterized by
having high density, and the rest of the universe. The boundary between these two regions is taken to be a sphere centered on the
origin. As usual, in the following we denote with �(x), x being the position vector, the density as a function of space, and �(x) ¼
�(x)� �b½ �/�b. The gravitational force exerted on the spherical central region by the external universe can be calculated by expanding
the potential �(x) in spherical harmonics. Assuming that the sphere has radius R, we have

�(x) ¼
X1
l¼0

4�

2l þ 1

Xl

m¼�l

alm(x)Ylm(; 
)x
l; ð32Þ

where Ylm are spherical harmonics and the tidal moments alm are given by

alm(x) ¼ �b

Z 1

R

Ylm(; 
)�(s)s
�l�1d3s: ð33Þ

16 For the King potential (see Sarazin 1988) and CMT97, with core radius rc ¼ Rv /12, �(T ) increases from � ’ 0:5 for T ’ T1 to � ’ 0:9 for T 3T1. A similar
result is obtained for a Navarro et al. (1997) potential. The other parameter, �, will be bounded according to CMT99; the polytropic index � 	 1 describes the equation
of state for the ICP. An upper bound to it arises if the overall thermal energy of the ICP is not to exceed its gravitational energy. The thermal and the gravitational energy
are computed using the profiles in eq. (30), and their ratio is given in Fig. 4 of CMT99, to show that the upper bound � 
 1:3 holds. It turns out that observations by
Markevitch et al. (1998) are consistent with the T(r) predicted when � ¼ 1:2 � 0:1, in our allowed range. Hereafter we focus on � ¼ 1:2.
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In this approach the protostructure is divided into a series of mass shells and the torque on each mass shell is computed separately.
The density profile of each protostructure is approximated by the superposition of a spherical profile �(r) and a random CDM
distribution "(r), which provides the quadrupole moment of the protostructure. To first order, the initial density can be represented by

�(r) ¼ �b 1þ �(r)½ � 1þ "(r)½ �; ð34Þ

where "(r) is given by

j"k j2
D E

¼ P(k); ð35Þ

P(k) being the power spectrum. The torque on a thin spherical shell of internal radius x is given by

�(x) ¼ �GMsh

4�

Z
"(x)x<:�(x)d�; ð36Þ

whereMsh ¼ 4��b 1þ �(x)½ �x2�x. Before going on, I want to recall that we are interested in the acquisition of angular momentum from
the inner region, and for this purpose we take account only of the l ¼ 2 (quadrupole) term. In fact, the l ¼ 0 term produces no force,
while the dipole (l ¼ 1) cannot change the shape or induce any rotation of the inner region. As shown by Eisenstein & Loeb (1995), in
the standard CDM scenario the dipole is generated at large scales, so the object that we are studying and its neighborhood move as a
bulk flow, with the consequence that the angular distribution of matter will be very small and thus the dipole terms can be ignored.
Because of the isotropy of the random field "(x), equation (36) can be written as

j� j2
D E

¼
ffiffiffiffiffi
30

p 4�G

5
a2m(x)

2
� 

q2m(x)
2

� 
� a2m(x)q

�
2m(x)

� 2h i1=2
; ð37Þ

where h� � �i indicates a mean value of the physical quantity considered. As stressed below, following Eisenstein & Loeb (1995) the
integration of the equations of motion will end at some time before the inner external tidal shell (i.e., the innermost shell of the part of
the universe outside the sphere containing the ellipsoid) collapses. Then the inner region behaves as a density peak. This last point is
an important one in the development of the present paper.

An important question to ask, before going on, regards the role of triaxiality of the ellipsoid (density peak) in generating a
quadrupole moment. Equation (37) takes into account the quadrupole moment coming from the secondary perturbation near the peak.
The density distribution around the inner region is characterized by a mean spherical distribution � and a random isotropic field. In
reality the central region is a triaxial ellipsoid. It is then important to evaluate the contribution to the quadrupole moment due to the
triaxiality. We remember that the quadrupole moments are given by

q2m ¼
Z

rj j<R

Y �
2m(; 
)s

2�(s)d3s ¼ x2Msh

4�

Z
Y �
2m(; 
)"(x)d� ð38Þ

and approximate the density profile as

�(x) ¼ �(x)h ispherical þ �f (x)A(e; p); ð39Þ

where h�(x)ispherical is the mean spherical profile, � ¼ �/	 is the peak height, and 	 is the rms value of �. The function A(e; p) of the
triaxiality parameters e and p is given by

A(e; p) ¼ 3e(1� sin2� sin2 sin2
)þ p(1� 3 sin2 cos2
); ð40Þ

while the function f (x) is given (R88) by

f (x) ¼ 5

2	
R2
�

1

x

d�

dx
� 1

3
92�

� �
; ð41Þ

where �, 	, and R� are respectively the two-point correlation function, the mass variance, and a parameter connected to the spectral
moments (see Bardeen et al. 1986, hereafter B86, eq. [4.6d]). Substituting equations (39) and (40) into equation (38), it is easy to
show that the sum of the mean quadrupole moments due to triaxiality is

1

Msh

X2
m¼�2

q2m(x)h i ¼ �x2f (x)
1

2�

ffiffiffiffiffiffi
6�

5

r
(e� p)þ 1

4�

ffiffiffiffiffiffi
4�

5

r
(3eþ p)

" #
; ð42Þ

which must be compared with that produced by the secondary perturbations ":

q2m(x)
2

� 
¼ x4

(2�)3
M 2

sh

Z
k 2P(k) j2(kx)

2dk; ð43Þ
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where j2 is the Bessel function of order 2. The values of e and p can be obtained from the distribution of ellipticity and prolateness
(B86, eq. [7.6] and Fig. 7) or for � > 2 by

e ¼ 1ffiffiffi
5

p
x 1þ 6=(5x2)½ �1=2

ð44Þ

and

p ¼ 6

5x4 1þ 6=(5x2)½ �2
ð45Þ

(B86, eq. [7.7]), where x is given in B86 (eq. [6.13]). In the case of a peak with � ¼ 3, we have e ’ 0:15, p ’ 0:014, while for peaks
having � ¼ 2 and � ¼ 1 these are respectively given by e ’ 0:2; p ’ 0:03 and e ’ 0:25; p ’ 0:04.

As shown in Figure 1 of Del Popolo et al. (2001), for a 3 	 profile the source of the quadrupole moment due to triaxiality is less
important than that produced by the random perturbations " in all of the protostructure, except in the central regions where the
quadrupole moment due to triaxiality is comparable in magnitude to that due to secondary perturbations. In other words, the triaxiality
has a significant effect only in the very central regions, which contain no more than a few percent of the total mass and where the
acquisition of angular momentum is negligible. It follows that the triaxiality can be ignored while computing both expansion and spin
growth (R88). Moreover, as observed by Eisentein & Loeb (1995) the ellipsoid model does better in describing low-shear regions
(having higher values of �), whose collapse is more spherical and thus for which the effects of triaxiality are less evident. Just the
peaks having at least � > 2 are studied in this paper. In any case, even if the triaxiality is not negligible it should contribute to
incrementing the acquisition of angular momentum (Eisenstein & Loeb 1995) and finally to a larger effect on the density evolution
(i.e., a larger reduction of the growing rate of the density).

In order to find the total angular momentum imparted to a mass shell by tidal torques, it is necessary to know the time dependence of
the torque. This can be done connecting q2m and a2m to parameters of the spherical collapse model (Eisenstein & Loeb 1995, eq. [32];
R88, eqs. [32] and [34]). Following R88 we have

q2m( ) ¼
1

4
q2m;0�̄

�3
0

1� cos ð Þ2f2( )
f1( )� �0=�̄0

� �
f2( )

ð46Þ

and

a2m( ) ¼ a2m;0
4

3

� �4=3

�̄0(� sin  )�4=3: ð47Þ

The collapse parameter  is given by

t( ) ¼ 3

4
t0�̄

�3=2
0 (� sin  ): ð48Þ

Equations (46) and (47), by means of equation (37), give to us the tidal torque:

�( ) ¼ �0
1

3

4

3

� �1=3

�̄�1
0

1� cos ð Þ2

(� sin  )4=3
f2( )

f1( )� �0=�̄0
� �

f2( )
; ð49Þ

where f1() and f2() are given in R88 (eq. [31]), and �0 and �0 ¼ �� �bð Þ/�b are respectively the torque and the mean fractional
density excess inside the shell, as measured at current epoch t0. The angular momentum acquired during expansion can then be
obtained by integrating the torque over time:

L ¼
Z

�( )
dt

d
d: ð50Þ

As remarked in the Del Popolo et al. (2001), the angular momentum obtained from equation (50) is evaluated at the time of maximum
expansion tM. Then the calculation of the angular momentum can be solved by means of equation (50), once we have made a choose
for the power spectrum. With the power spectrum and the parameters given above and for a � ¼ 2 peak, the model gives a value of
2:5 ;1074 g cm2 s�1. As previously quoted, we assume that from tM on, the ellipsoid has this constant angular momentum. Following
procedures 1 and/or 2 given in Appendix A, we are able to get the time evolution of the density.
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