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Abstract

In this paper we extend a multiplicity result of Ricceri to locally Lipschitz functionals and prove the
existence of multiple solutions for a class of hemivariational inequalities.
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1. Introduction

The present paper yields some multiplicity results for a class of hemivariational inequalities
on unbounded domains. This problem is studied via variational methods: Clarke’s theory of
differentiation for locally Lipschitz functionals on Banach spaces is employed, in conjunction
with some results in the theory of best approximation in Banach spaces.

A link between best approximation and the (classical) critical point theory was established
in the recent works of Tsar’kov [19] and Ricceri [18]. In the latter it is proved that, given a
continuously Gâteaux differentiable functional J defined over a real Hilbert space X, for each
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real σ within the range of J and x0 ∈ J−1(]−∞, σ [), either there exists λ > 0 such that the
energy functional

x → ‖x − x0‖2

2
− λJ (x)

admits at least three critical points, or the set J−1([σ,+∞[) has a unique point minimizing the
distance from x0. The alternative is then resolved, under the very general assumption that J

admits a non-convex superlevel set: in this case, an application of the results of [19] allows to
conclude that the energy functional above has at least three critical points for suitable x0 ∈ X,
λ > 0. This abstract result has a natural application in the field of differential equations: already
in [18], a class of boundary value problems for semilinear equations with smooth nonlinearities
on bounded domains was studied, achieving the existence of at least three solutions.

Further developments of Ricceri’s result deal with more general classes of problems: in [10],
Kristály examines a Schrödinger equation on R

N ; in [6], Faraci and Iannizzotto study, through an
extension of the abstract result from Hilbert spaces to a wider class of Banach spaces, boundary
value problems involving the p-Laplacian on bounded domains. This paper represents a new step
in the progress resumed above: the multiplicity result (first in the alternative form) is proved for
a class of locally Lipschitz functionals, defined on Banach spaces, and applied to hemivariational
inequalities on unbounded domains.

We quickly introduce the class of problems we will be dealing with (see Section 3 below for
more details): let Ω be an unbounded domain in R

N , X be a Banach space (compactly embedded
in some space Lr(Ω)), A the duality mapping on X induced by the weight function t → tp−1

(1 < p < N ), F : R → R a locally Lipschitz function with generalized directional derivative F ◦,
b :Ω → R a non-negative function. In Section 4 we shall prove that, under suitable hypotheses,
there exist u0 ∈ X, λ > 0 such that the inequality

(Pλ)
〈
A(u − u0), v

〉 + λ

∫
Ω

b(x)F ◦(u(x);−v(x)
)
dx � 0 for all v ∈ X

admits at least three solutions in X.
Hemivariational inequalities were first introduced by Panagiotopoulos in [15] (see also [16]),

as a generalization of variational inequalities to the case of non-convex potentials: the theory
of generalized directional derivatives for locally Lipschitz functions developed by Clarke was
employed, instead of that of subdifferentials for convex functions (in Section 2 we recall some
basic definitions and results about locally Lipschitz functions).

The study of hemivariational inequalities on unbounded domains began with the work of
Gazzola and Rădulescu [7], followed by the papers of Kristály [11,12], Dályai and Varga [4],
and Varga [20]. The main problem arising in this field is the lack of compact embeddings of
Sobolev spaces: in general, indeed, if Ω is unbounded, W 1,p(Ω) is not compactly embedded
in any Lr(Ω). In Section 5, we show how such a difficulty can be overcome by two different
devices: the use of weighted Sobolev spaces, and the application of symmetry groups and of the
non-smooth form of Palais’ principle of symmetric criticality (see the works of Krawcewicz and
Marzantowicz [9], Kobayashi and Otani [8]).

We conclude this section by observing that elliptic equations with discontinuous nonlinearities
can be studied with the methods of hemivariational inequalities: for instance, as a consequence
of our results, we will prove the existence of a continuous function g : RN → R and a positive λ

such that the equation

(Eλ) − �u + V (x)u = λb(x)H(u − 1)(lnu − 1) + g(x) in R
N
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(where V is a positive and coercive potential and H is the Heaviside function) admits at least
three solutions in H 2(RN) (see Section 5.1 for more details). We point out that the same type of
equations, in the case of continuous nonlinearities, was studied by Kristály in [10].

2. Preliminaries

In the sequel, X will denote a (real) Banach space (with norm ‖ · ‖) and X� its topological
dual (with norm ‖ · ‖�); by 〈·,·〉 we will denote the duality pairing between X� and X.

The next lemma introduces the duality mapping on the space X, induced by the weight func-
tion t → tp−1:

Lemma 1. [2, Propositions 2.2.2, 2.2.4] Let X be a Banach space with strictly convex dual, p > 1
a real number. Then, there exists a mapping A :X → X� such that for all x ∈ X,

(DM1) ‖A(x)‖� = ‖x‖p−1;
(DM2) 〈A(x), x〉 = ‖A(x)‖�‖x‖.

Moreover, for all x, y ∈ X,〈
A(x) − A(y), x − y

〉
�

(‖x‖p−1 − ‖y‖p−1)(‖x‖ − ‖y‖).
The functional x → ‖x‖p

p
is Gâteaux differentiable with derivative A.

Now, for the reader’s convenience, we give the basic notions from the theory of generalized
differentiation for locally Lipschitz functions and non-smooth analysis, as exposed by Motreanu
and Panagiotopoulos in [13].

Definition 1. A function h :X → R is locally Lipschitz if, for every x ∈ X, there exist a neigh-
borhood U of x and a constant L > 0 such that∣∣h(y) − h(z)

∣∣ � L‖y − z‖ for all y, z ∈ U.

Although it is not necessarily differentiable in the classical sense, a locally Lipschitz function
admits a derivative, defined as follows:

Definition 2. The generalized directional derivative of h at the point x ∈ X in the direction y ∈ X

is

h◦(x;y) = lim sup
z→x, τ→0+

h(z + τy) − h(z)

τ
.

The generalized gradient of h at x ∈ X is the set

∂h(x) = {
x� ∈ X�:

〈
x�, y

〉
� h◦(x;y) for all y ∈ X

}
.

For all x ∈ X, the functional h◦(x, ·) is subadditive and positively homogeneous: thus, due
to the Hahn–Banach theorem, the set ∂h(x) is nonempty. The next lemma resumes the main
properties of the generalized derivatives, which will be useful in the sequel.
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Lemma 2. Let h,g :X → R be locally Lipschitz functions. Then,

(h1) h◦(x;y) = max{〈ξ, y〉: ξ ∈ ∂h(x)};
(h2) (h + g)◦(x;y) � h◦(x;y) + g◦(x;y);
(h3) (−h)◦(x;y) = h◦(x;−y).

This notion extends both that of Gâteaux derivative, and that of directional derivative for
convex functionals. In particular:

Lemma 3. Let h :X → R be a convex, continuous, Gâteaux differentiable function. Then, h is
locally Lipschitz and〈

h′(x), y
〉 = h◦(x;y) for all x, y ∈ X.

The next definition generalizes the notion of critical point to the non-smooth context:

Definition 3. A point x ∈ X is a critical point of h, if 0 ∈ ∂h(x), that is,

h◦(x;y) � 0 for all y ∈ X.

Remark 1. Note that every local extremum of h is a critical point of h in the sense above.

A very important tool for our proofs shall be the non-smooth version of the Pucci–Serrin
mountain pass theorem. Before stating it, we give a fundamental definition, equivalent to that
of [13]:

Definition 4. The function h satisfies the Palais–Smale condition, if every sequence {xn} in X

such that

(PS1) {h(xn)} bounded;
(PS2) there exists a sequence {εn} in ]0,+∞[ with εn → 0 such that h◦(xn;y − xn) +

εn‖y − xn‖ � 0 for all y ∈ X, n ∈ N.

admits a convergent subsequence.

The mountain pass theorem, which can be obtained as a consequence of Corollary 3.2 of [14],
reads as follows:

Theorem 1. Let h :X → R be a locally Lipschitz function, satisfying the Palais–Smale condition,
x and y two local minima of h. Then, h has a critical point in X different from x and y.

We conclude this section by recalling two results which will be useful in our proofs. The first
is a topological minimax theorem:

Theorem 2. [17, Theorem 1 and Remark 1] Let X be a topological space, Λ a real interval, and
f :X × Λ → R a function satisfying the following conditions:

(A1) for every x ∈ X, the function f (x, ·) is quasi-concave and continuous;
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(A2) for every λ ∈ Λ, the function f (·, λ) is lower semicontinuous and each of its local minima
is a global minimum;

(A3) there exist ρ0 > supΛ infX f and λ0 ∈ Λ such that {x ∈ X: f (x,λ0) � ρ0} is compact.

Then,

sup
Λ

inf
X

f = inf
X

sup
Λ

f.

The second is a result from the theory of best approximation which, roughly speaking, assures
that, in a certain class of Banach spaces, every sequentially weakly closed Chebyshev set is
convex:

Theorem 3. ([19, Theorem 2]; [5, Lemma 1]) Let X be a uniformly convex Banach space, with
strictly convex topological dual, M a sequentially weakly closed, non-convex subset of X. Then,
for any convex, dense subset S of X, there exists x0 ∈ S such that the set

{
y ∈ M: ‖y − x0‖ = d(x0,M)

}
contains at least two points.

3. The problem

Now we can give our problem a more precise formulation: let Ω ⊂ R
N (N � 2) be an

unbounded domain with smooth boundary ∂Ω (or Ω = R
N ), p ∈ ]1,N [ be a real number.

Throughout the sequel X denotes a separable, uniformly convex Banach space with strictly con-
vex topological dual; moreover, we assume that

(E) there exists r ∈ [p,p�[ such that X is compactly embedded in Lr(Ω)

where p� = Np
N−p

is the Sobolev critical exponent, and we denote by ‖ · ‖r the norm in Lr(Ω)

and by cr the embedding constant. Condition (E) is equivalent to the assumption that X is a
linear subspace of Lr(Ω), endowed with a norm ‖ · ‖ such that the identity is a compact operator
from (X,‖ · ‖) into (Lr(Ω),‖ · ‖r ).

Let F : R → R be a locally Lipschitz function such that F(0) = 0 and suppose that

(F ) there exist k > 0, q ∈ ]0,p − 1[ such that |ξ | � k|s|q for all s ∈ R, ξ ∈ ∂F (s).

Let b :Ω → R be a non-negative, not zero function such that

(b) b ∈ L1(Ω) ∩ L∞(Ω).

Note that in the proofs of our results we will use the inclusion

L1(Ω) ∩ L∞(Ω) ⊂ Lν(Ω),

where ν = r
r−(q+1)

, which derives from the inequality ‖u‖ν � ‖u‖
ν−1
ν∞ ‖u‖

1
ν

1 .
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Our approach to problem (Pλ) is variational: indeed, we will seek for solutions of (Pλ) as
critical points (in the sense of Definition 3) of a suitable energy functional defined on X. Let us
define the functional J :X → R by putting

J (u) =
∫
Ω

b(x)F
(
u(x)

)
dx

for all u ∈ X. The next lemma summarizes the properties of J :

Lemma 4. The functional J is well defined, locally Lipschitz, sequentially weakly continuous
and satisfies

J ◦(u;v) �
∫
Ω

b(x)F ◦(u(x);v(x)
)
dx for all u,v ∈ X.

Proof. We begin by giving an estimate of the integral which defines J : from the Lebourg mean
value theorem [13, Theorem 1.1] it follows that for all s ∈ R there exist t ∈ R, with 0 < |t | < |s|,
and ξ ∈ ∂F (t) such that F(s) = ξs, so, by (F ),∣∣F(s)

∣∣ � k|s|q+1. (1)

Thus, for all u ∈ X we get, by applying Hölder’s inequality, that∣∣∣∣
∫
Ω

b(x)F
(
u(x)

)
dx

∣∣∣∣ � k

∫
Ω

b(x)
∣∣u(x)

∣∣q+1
dx � k‖b‖ν‖u‖q+1

r � K‖u‖q+1,

where K = c
q+1
r k‖b‖ν . Hence, J is well defined.

We prove that J is Lipschitz on bounded sets: let us choose M > 0 and u,v ∈ X with
‖u‖,‖v‖ < M . By using the Lebourg mean value theorem and by condition (F ) we get for
all x ∈ Ω ,

∣∣F (
u(x)

) − F
(
v(x)

)∣∣ � k max
{∣∣u(x)

∣∣q,
∣∣v(x)

∣∣q}∣∣u(x) − v(x)
∣∣

� k
(∣∣u(x)

∣∣ + ∣∣v(x)
∣∣)q ∣∣u(x) − v(x)

∣∣.
Then, by Hölder’s inequality,

∣∣J (u) − J (v)
∣∣ � k‖b‖ν

(∫
Ω

(∣∣u(x)
∣∣ + ∣∣v(x)

∣∣)r
dx

) q
r ‖u − v‖r

� k‖b‖ν

(‖u‖r + ‖v‖r

)q‖u − v‖r

� 2qKMq‖u − v‖.
We prove now that J is sequentially weakly continuous: let {un} be a sequence in X, weakly
convergent to some ū ∈ X. It follows by (E) that ‖un − ū‖r → 0. Then, by the above inequalities
for J we get J (un) → J (ū).

Finally, the inequality in the thesis follows from Proposition 3.3 of [4], so the proof is con-
cluded. �
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Given u0 ∈ X and λ > 0, the energy functional I :X → R related to the problem (Pλ) is
defined by

I (u) = ‖u − u0‖p

p
− λJ (u).

We observe that, by Lemma 1, the convex functional u → ‖u−u0‖p

p
is Gâteaux differentiable, so

by Lemma 3 it is locally Lipschitz with derivative A: hence, I is locally Lipschitz too. The close
relationship between I and (Pλ) is expressed by the following lemma:

Lemma 5. Let u ∈ X be a critical point of I . Then, u is a solution of (Pλ).

Proof. By Lemmas 1, 2 and 4 we get

I ◦(u;v) �
〈
A(u − u0), v

〉 + λ(−J )◦(u;v)

= 〈
A(u − u0), v

〉 + λJ ◦(u;−v)

�
〈
A(u − u0), v

〉 + λ

∫
Ω

b(x)F ◦(u(x);−v(x)
)
dx,

so the conclusion follows. �
4. The main result

Following [18], we first prove our main result in the form of an alternative:

Theorem 4. Let Ω ⊂ R
N be an unbounded domain with smooth boundary ∂Ω or Ω = R

N

(N � 2), p ∈ ]1,N [ be a real number, X be a separable, uniformly convex Banach space with
strictly convex topological dual, satisfying (E). Let F : R → R be a locally Lipschitz, non-zero
function satisfying F(0) = 0 and (F ), b :Ω → R be a non-negative, non-zero function satisfy-
ing (b).

Then, for every σ ∈ ]infX J, supX J [ and every u0 ∈ J−1(]−∞, σ [) one of the following con-
ditions is true:

(B1) there exists λ > 0 such that the problem (Pλ) has at least three solutions in X;
(B2) there exists v ∈ J−1(σ ) such that, for all u ∈ J−1([σ,+∞[), u 
= v,

‖u − u0‖ > ‖v − u0‖.

Proof. Fix σ and u0 as in the thesis, and assume that (B1) does not hold: we shall prove that
(B2) is true.

Putting Λ = [0,+∞[ and endowing X with the weak topology, we define the function
f :X × Λ → R by

f (u,λ) = ‖u − u0‖p

p
+ λ

(
σ − J (u)

)
,

which satisfies all the hypotheses of Theorem 2.
The condition (A1) is trivial.
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The condition (A3) becomes trivial too, once we know that supλ∈Λ infu∈X f (u,λ) < +∞: we
achieve this inequality by observing that there exists some u1 ∈ X such that J (u1) > σ , so

sup
λ∈Λ

inf
u∈X

f (u,λ) � sup
λ∈Λ

f (u1, λ) = ‖u1 − u0‖p

p
.

In examining condition (A2), let λ � 0 be fixed: we first observe that, by Lemma 4, the func-
tional f (·, λ) is sequentially weakly lower semicontinuous (l.s.c.). Moreover, f (·, λ) is coercive:
indeed, for all u ∈ X we have

f (u,λ) � ‖u‖p

(‖u − u0‖p

p ‖u‖p
− λkc

q+1
r ‖b‖ν‖u‖(q+1)−p

)
+ λσ,

and the latter goes to +∞ as ‖u‖ → +∞, since ‖u‖(q+1)−p → 0 and ‖u−u0‖p

p‖u‖p → 1
p

. As a con-
sequence of the Eberlein–Smulyan theorem, the outcome is that f (·, λ) is weakly l.s.c.

We need to check that every local minimum of f (·, λ) is a global minimum. Arguing by
contradiction, suppose that f (·, λ) admits a local, non global minimum; besides, being coercive,
it has a global minimum too, that is, it has two strong local minima.

We now prove that f (·, λ) fulfills the Palais–Smale condition: let {un} be a sequence satisfying
(PS1), (PS2). From (PS1), together with the coercivity of f (·, λ), it follows that {un} is bounded,
hence we can find a subsequence, which we still denote {un}, weakly convergent to a point ū ∈ X.
By condition (E) we can choose {un} to be convergent to ū with respect to the norm of Lr(Ω).
Fix ε > 0. As the sequence {εn} from (PS2) tends to 0, for n ∈ N big enough we have

εn‖un − ū‖ <
ε

2
,

so, from (PS2) and Lemma 4 it follows

0 � f ◦(un,λ; ū − un) + ε

2

�
〈
A(un − u0), ū − un

〉 + λ

∫
Ω

b(x)F ◦(un(x);un(x) − ū(x)
)
dx + ε

2
,

(f ◦(·, λ; ·) denotes the generalized directional derivative of the locally Lipschitz functional
f (·, λ)).

We use (h1) from Lemma 2 and condition (F ), together with Hölder’s inequality, to get∣∣∣∣
∫
Ω

b(x)F ◦(un(x);un(x) − ū(x)
)
dx

∣∣∣∣ �
∫
Ω

b(x) max
ξn(x)∈∂F (un(x))

∣∣ξn(x)
(
un(x) − ū(x)

)∣∣dx

� k

∫
Ω

b(x)
∣∣un(x)

∣∣q ∣∣un(x) − ū(x)
∣∣dx

� kc
q
r ‖b‖ν‖un‖q‖un − ū‖r <

ε

2λ
.

Hence〈
A(un − u0), un − ū

〉
< ε

for n ∈ N large enough. On the other hand, 〈A(ū−u0), un − ū〉 tends to zero as n goes to infinity.
From the above computations, it follows that

lim sup
n

〈
A(un − u0) − A(ū − u0), un − ū

〉
� 0. (2)
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Applying Lemma 1, we obtain that
〈
A(un − u0) − A(ū − u0), un − ū

〉
�

(‖un − u0‖p−1 − ‖ū − u0‖p−1)(‖un − u0‖ − ‖ū − u0‖
)
� 0.

From this inequality and (2), we deduce that ‖un − u0‖ → ‖ū − u0‖, which, together with the
weak convergence, implies that {un} tends to ū in X: that is, the Palais–Smale condition is ful-
filled.

We can apply Theorem 1, deducing that f (·, λ) (or equivalently the energy functional I )
admits a third critical point: then, by Lemma 5, the inequality (Pλ) should have at least three
solutions in X, against our assumption. Thus, condition (A2) is fulfilled.

Now Theorem 2 assures that

sup
λ∈Λ

inf
u∈X

f (u,λ) = inf
u∈X

sup
λ∈Λ

f (u,λ) =: α. (3)

Notice that the function λ → infu∈X f (u,λ) is upper semicontinuous in Λ, and tends to −∞ as
λ → +∞ (since σ < supX J ): hence, it attains its supremum in some λ� ∈ Λ, that is,

α = inf
u∈X

(‖u − u0‖p

p
+ λ�

(
σ − J (u)

))
. (4)

Let us determine the infimum in the right-hand side of (3): since for any u ∈ J−1(]−∞, σ [) we
have supλ∈Λ f (u,λ) = +∞, clearly

α = inf
u∈J−1([σ,+∞[)

f (u,λ) = inf
u∈J−1([σ,+∞[)

‖u − u0‖p

p
;

moreover, since the functional u → ‖u−u0‖p

p
is coercive and sequentially weakly l.s.c. while the

set J−1([σ,+∞[) is sequentially weakly closed, there exists v ∈ J−1([σ,+∞[) such that

α = ‖v − u0‖p

p
.

It is easily seen that v ∈ J−1(σ ). Hence

α = inf
u∈J−1(σ )

‖u − u0‖p

p
(in particular α > 0). (5)

By (4) and (5) it follows that

inf
u∈X

(‖u − u0‖p

p
− λ�J (u)

)
= inf

u∈J−1(σ )

(‖u − u0‖p

p
− λ�J (u)

)
. (6)

We deduce that λ� > 0: if λ� = 0, indeed, (6) would become α = 0, against (5).
Now we can prove (B2): namely, we prove that v defined above is the only point of

J−1([σ,+∞[) minimizing the distance from u0. Arguing by contradiction, let w ∈ J−1([σ,

+∞[) \ {v} be such that ‖w − u0‖ = ‖v − u0‖. As above, we have that w ∈ J−1(σ ), and so
both w and v are global minima of the functional I (for λ = λ�) over J−1(σ ), hence, by (6),
w and v are global minima of I over X. Thus, applying Theorem 1, we obtain that I has at least
three critical points, against the assumption that (B1) does not hold (recall that λ� is positive).
This concludes the proof. �
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In the next corollary, the alternative of Theorem 4 is resolved, under a very general assumption
on the functional J , so we are led to a multiplicity result for the hemivariational inequality (Pλ)

(for suitable data u0, λ):

Corollary 1. Let Ω , p, X, F , b be as in Theorem 4 and let S be a convex, dense subset of X.
Moreover, let J−1([σ,+∞[) be not convex for some σ ∈ ]infX J, supX J [.

Then, there exist u0 ∈ J−1(]−∞, σ [) ∩ S and λ > 0 such that problem (Pλ) admits at least
three solutions in X.

Proof. Since J is sequentially weakly continuous (Lemma 4), the set M = J−1([σ,+∞[) is
sequentially weakly closed. Since M is not convex, by Theorem 3 we get that, for some u0 ∈ S,
there exist two points v1, v2 ∈ M , with v1 
= v2, satisfying

‖v1 − u0‖ = ‖v2 − u0‖ = dist(u0,M).

Clearly u0 /∈ M , that is, J (u0) < σ . In the framework of Theorem 4, condition (B2) is false, so
(B1) must be true: there exists λ > 0 such that (Pλ) has at least three solutions in X. �
5. Applications

In order to give some applications of the results of the previous section, we need to express
their hypotheses in a slightly different form, directly related to the data of (Pλ).

We can obtain the non-convexity of a convenient superlevel set of the functional J (the main
hypothesis of Corollary 1) by assuming the very general condition that F is not a quasi-concave
function, that is:

(C) there exists ρ ∈ ]infR F, supR F [ such that F−1([ρ,+∞[) is not convex.

Concerning condition (E), the lack of compact embedding of W
1,p

0 (Ω) into any Lr(Ω) for
unbounded Ω suggests us to restrict the study to special cases: namely, we will examine a
modified Sobolev space with a weighted norm and a subspace of W

1,p

0 (Ω) characterized by
a symmetry property with respect to a group of isometries (in the latter case we will make use of
the principle of symmetric criticality).

5.1. Weighted Sobolev spaces

Let Ω be R
N or an unbounded domain in R

N (N � 2) with C1 bounded boundary, p ∈ ]1,N [,
V :Ω → R be a continuous potential satisfying the following conditions:

(V1) infΩ V > 0;
(V2) for every M > 0 the set {x ∈ Ω: V (x) � M} has finite Lebesgue measure

(note that in particular, condition (V2) is fulfilled whenever V is coercive). We introduce the
space

X =
{
u ∈ W 1,p(Ω):

∫
Ω

(∣∣∇u(x)
∣∣p + V (x)

∣∣u(x)
∣∣p)

dx < +∞
}
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endowed with the norm

‖u‖ =
(∫

Ω

(∣∣∇u(x)
∣∣p + V (x)

∣∣u(x)
∣∣p)

dx

) 1
p

.

With the definitions above, for all u0 ∈ X, λ > 0, our problem (Pλ) reads as follows:∫
Ω

(∣∣∇(
u(x) − u0(x)

)∣∣p−2∇(
u(x) − u0(x)

) · ∇v(x)

+ V (x)
∣∣u(x) − u0(x)

∣∣p−2(
u(x) − u0(x)

)
v(x)

)
dx

+ λ

∫
Ω

b(x)F ◦(u(x);−v(x)
)
dx � 0 for all v ∈ X.

We can deduce the following multiplicity result:

Corollary 2. Let Ω , p, V , X be as above; F , b be as in Theorem 4; S be a convex, dense subset
of X. Moreover, assume that condition (C) is satisfied. Then, there exist u0 ∈ S and λ > 0 such
that the problem (Pλ) admits at least three solutions in X.

Proof. We observe that X is a separable, uniformly convex Banach space with strictly convex
topological dual, and that C∞

c (Ω) ⊂ X; moreover, the conditions (V1), (V2) guarantee that the
space X is compactly embedded in Lp(Ω) (see [1] for the case p = 2), so condition (E) is
satisfied with r = p. Since b is not zero, there exist a point x0 ∈ Ω and R > 0 such that

b1 =
∫
B

b(x) dx > 0,

where B is the open ball centered in x0 with radius R, contained in Ω .
By condition (C), we can assume, without loss of generality, that there exist real numbers s1 <

s2 < s3, with s1 
= 0, such that F(s1),F (s3) > ρ, F(s2) < ρ. Now we prove that the functional
J admits a non-convex superlevel set. Choose ε > 0, R1 > R with

‖b‖∞M meas(A) < ε < b1
∣∣F(si) − ρ

∣∣ (i = 1,2,3),

where A = {x ∈ Ω: R < |x − x0| < R1} and M = max{|F(t)|: |t | � |si |, i = 1,2,3}. There
exists u1 ∈ C∞

c (Ω) such that

u1(x) =
{

s1 if x ∈ B,

0 if x ∈ Ω \ (A ∪ B)

and ‖u1‖∞ = |s1|; define, also, u2, u3 ∈ C∞
c (Ω) by putting u2 = s2

s1
u1, u3 = s3

s1
u1. Thus,

J (u1) =
∫
B

b(x)F (s1) dx +
∫
A

b(x)F
(
u1(x)

)
dx

� b1F(s1) − M‖b‖∞ meas(A)

� b1F(s1) − ε

> b1ρ.
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By analogous computations, we get

J (u2) < b1ρ < J(u3).

Then, since u2 lies on the segment joining u1 and u3, it is proved that J−1([b1ρ,+∞[) is not
convex. An application of Corollary 1 yields the existence of a function u0 ∈ J−1(]−∞, b1ρ[)∩
S and λ > 0 such that (Pλ) has at least three solutions in X. �

We go back to the equation (Eλ) considered in the Introduction, and clarify what stated there:

Example 1. Let V : RN → R be a continuous, positive and coercive function, X be as above with
p = 2 < N , b be as in Theorem 4. Recall that the Heaviside function H : R → R is defined by

H(s) =
{

0 if s � 0,

1 if s > 0,

and put

f (s) = H(s − 1)(ln s − 1) for all s ∈ R

(with obvious meaning for s � 1). We denote, for all s ∈ R,

f−(s) = lim
δ→0+ inf|t−s|<δ

f (t), f+(s) = lim
δ→0+ sup

|t−s|<δ

f (t).

Following Chang [3], for all continuous g : R
N → R and λ > 0, by a weak solution of (Eλ) we

mean a function u ∈ H 2(RN) such that, for almost every x ∈ R
N ,

−�u(x) + V (x)u(x) ∈ g(x) + λb(x)
[
f−

(
u(x)

)
, f+

(
u(x)

)]
. (7)

It is easily seen that the function F : R → R defined by

F(s) =
s∫

0

f (t) dt

is locally Lipschitz and satisfies the condition (F ) with arbitrary q ∈ ]0,1[ for k big enough;
moreover, for all ρ ∈ ]2 − e,0] the set F−1([ρ,+∞[) is not convex, so condition (C) is fulfilled.
Taking S = C∞

c (RN), we can apply Corollary 2: thus, we find u0 ∈ S and λ > 0 such that the
hemivariational inequality∫

RN

(∇(
u(x) − u0(x)

) · ∇v(x) + V (x)
(
u(x) − u0(x)

)
v(x)

)
dx

+ λ

∫

RN

b(x)F ◦(u(x);−v(x)
)
dx � 0 for all v ∈ X

admits at least three solutions in X. Let u be one of these: by standard regularity results, we get
u ∈ H 1

0 (RN) ∩ H 2(RN); arguing as in [3], we find that u satisfies (7) with

g(x) = −�u0(x) + V (x)u0(x) for all x ∈ R
N.

Thus, (Eλ) has at least three weak solutions.
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5.2. Symmetry groups

Let Ω be an unbounded domain in R
N (N > 2) with smooth boundary, such that 0 ∈ Ω , and

let G be a closed subgroup of O(N) which leaves Ω invariant, i.e. g(Ω) = Ω for all g ∈ G. We
assume that Ω is compatible with G, that is, there exists r > 0 such that

m(x, r,G) → ∞ as dist(x,Ω) � r, |x| → ∞,

where

m(x, r,G) = sup
{
n ∈ N: ∃g1, g2, . . . , gn ∈ G s.t. B(gix, r) ∩ B(gjx, r) = ∅ if i 
= j

}
.

We consider the space X = W
1,p

0 (Ω) endowed with the norm

‖u‖ =
(∫

Ω

(∣∣∇u(x)
∣∣p + ∣∣u(x)

∣∣p)
dx

) 1
p

.

In the present setting, our problem (Pλ), for all u0 ∈ X, λ > 0, reads as follows:∫
Ω

(∣∣∇(
u(x) − u0(x)

)∣∣p−2∇(
u(x) − u0(x)

) · ∇v(x)

+ ∣∣u(x) − u0(x)
∣∣p−2(

u(x) − u0(x)
)
v(x)

)
dx

+ λ

∫
Ω

b(x)F ◦(u(x);−v(x)
)
dx � 0 for all v ∈ X.

We define the action of the group G over the space X by putting

gu(x) = u
(
g−1x

)
for all g ∈ G, u ∈ X, x ∈ Ω.

We observe that G acts linearly and isometrically on X, i.e., the action G×X → X which maps
(g,u) into gu is continuous and, for every g ∈ G, the map u → gu is linear and ‖gu‖ = ‖u‖ for
every u ∈ X. The group G induces an action of the same type on the dual space X� defined by
〈gu�,u〉 = 〈u�, g−1u〉 for every g ∈ G, u ∈ X and u� ∈ X�.

We introduce the set

XG = {
u ∈ X: gu = u for all g ∈ G

}
of the fixed points of X under the action of G, and observe that XG is a Banach space (which
inherits all the properties of X), whose dual coincides with the fixed point set of X� under the
action of G, denoted (XG)�. By reducing ourselves to considering symmetric functions, as said
before, we easily overcome the problem of verifying condition (E):

Lemma 6. [8, Proposition 4.2] XG is compactly embedded in Lr(Ω) for all r ∈ ]p,p�[.

Now we define the class of functionals we will be dealing with:

Definition 5. A functional h :X → R is G-invariant if h(gu) = h(u) for every g ∈ G and u ∈ X.

An important property of invariant functionals is expressed by the principle of symmetric crit-
icality. This principle, proved by Palais for Gâteaux differentiable functionals and then extended
to locally Lipschitz functionals (see [9]), for our purposes, can be stated as follows:
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Theorem 5. Let X be a Banach space, let G be a compact topological group acting linearly and
isometrically on X, and h :X → R be a locally Lipschitz, G-invariant functional. Then, every
critical point of h|XG is also a critical point of h.

From our general result we deduce an analogous of Corollary 2, which assures the existence
of at least three symmetric solutions:

Corollary 3. Let Ω , p, X, G be as above, S be a convex, dense subset of XG. Let F be as
in Theorem 4 and satisfying condition (C). Also, let b :Ω → R be a non-negative, G-invariant
function (that is, b(gx) = b(x) for all g ∈ G, x ∈ Ω) satisfying condition (b) and such that∫

B

b(x) dx > 0
(
B = B(0,R) for some R > 0 small enough

)
.

Then, there exist u0 ∈ S and λ > 0 such that the problem (Pλ) admits at least three solutions
lying in XG.

Proof. We are going to apply Corollary 1 to the space XG and to the functional J |XG : first, we
note that XG is separable and uniformly convex, and that (XG)� is strictly convex (as a subspace
of X�); moreover, by Lemma 6, the space XG satisfies condition (E) for any r ∈ ]p,p�[.

To see that J |XG admits a non-convex superlevel set, we argue as in the proof of Corollary 2,
putting x0 = 0 and choosing the functions u1, u2, u3 ∈ C∞

c (Ω) radially symmetric (so, in partic-
ular, lying in XG).

Thus, by Corollary 1, there exist u0 ∈ S and λ > 0 such that the energy functional I |XG has at
least three critical points in XG.

Now we prove that I is G-invariant on X. Let g ∈ G and u ∈ X; recalling that u0 ∈ XG, G

acts isometrically over X and b is G-invariant, we obtain the following equalities:

I (gu) = 1

p
‖gu − u0‖p −

∫
Ω

b(x)F
(
gu(x)

)
dx

= 1

p

∥∥g(u − u0)
∥∥p −

∫
Ω

b(x)F
(
u
(
g−1x

))
dx

= 1

p
‖u − u0‖p −

∫
Ω

b(y)F
(
u(y)

)
dy

= I (u).

Then, applying Theorem 5, we deduce that the critical points of I |XG are actually critical points
of I . We can conclude that problem (Pλ) has at least three symmetric solutions. �

Next we give an example, in order to highlight the generality of our hypotheses:

Example 2. Put N = 3 and define the unbounded domain

Ω = {
(x1, x2, x3) ∈ R

3: |x3| < x2
1 + x2

2 + 1
}
.
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Then, consider the closed subgroup of O(3) defined by G = O(2) × {id}, whose action on
X = W

1,p

0 (Ω) (1 < p < N ) is expressed as follows: for all g = (g̃, id) ∈ G, and for all u ∈ X,
(x1, x2, x3) ∈ Ω we set

gu(x1, x2, x3) = u
(
g̃−1(x1, x2), x3

)
.

It is easily seen that Ω is G-invariant and compatible with G, and that the subspace XG of the
fixed points of X under the action of G is the set of all u ∈ X with a cylindric symmetry, that is,
satisfying

u(x1, x2, x3) = u(y1, y2, x3) whenever x2
1 + x2

2 = y2
1 + y2

1 .

Let q ∈ ]0,p − 1[ be a real number, F : R → R be defined by

F(s) = 1 − ∣∣|s|q+1 − 1
∣∣ for all s ∈ R.

It is easily seen that F is a locally Lipschitz function, satisfying F(0) = 0 and conditions (F )

(with k = q + 1) and (C) (for all ρ ∈ ]0,1]).
Moreover, we consider a non-negative function b :Ω → R, having a cylindric symmetry and

satisfying condition (b), and we assume that b is positive in a neighborhood of 0.
In such a setting, Corollary 3 applies: thus, there exist u0 ∈ XG, λ > 0 such that the hemivari-

ational inequality (Pλ) admits at least three solutions, and each of them has a cylindric symmetry.
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