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Taylor Formula on step two
Carnot Groups

Gabriella Arena, Andrea O. Caruso and Antonio Causa

Abstract
In the setting of step two Carnot groups we give an explicit repre-

sentation of Taylor polynomial in terms of a suitable basis of the real
vector space of left invariant differential operators, acting pointwisely
on monomials like the ordinary Euclidean iterated derivations.

1. Introduction

In this article we deal with the expression of Taylor formula for real valued
functions defined on a step two Carnot group G. According to the defi-
nition, that goes back to Folland and Stein where it is given for general
homogeneous Lie groups (see [6]), a polynomial Pm of homogeneous degree
m at most on G is said to be the mth Taylor polynomial of a given function
f ∈ Cm

H
(G) at a fixed point c ∈ G, if it realizes a contact of order m with

the function f at c, that is, if XI(Pm − f)(c) = 0, for any iterated deriva-
tion XI of the canonical Poincarè–Birkhoff–Witt basis (see Definition 2),
with homogeneous degree m at most. The well–posedness of the definition
relies on the existence of a linear isomorphism L between the vector space
of polynomials and the vector space of left invariant differential operators
on G (see Remark 2). Although the definition of Taylor polynomial is quite
straightforward, several difficulties of computational kind occur if one wants
to write it down explicitly; indeed the polynomial valued vector fields of the
Lie algebra g of G, do not commute in general, so it is not an easy task
to invert the upper triangular matrix associated to L, for a fixed degree m.
We attack the problem in an alternative and more theoretical way. For the
sake of clarity we deal first with the simplest Carnot group G = H1; in this
setting, general considerations about the Taylor series expansion of a given
analytic function f on a 3–dimensional analytic Lie group G, suggest the
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expression for the mth Taylor polynomial of f in terms of suitable sym-
metrized k–derivations (see Definition 9). Some combinatorial consider-
ations allow us to analyze the pointwise behaviour of these symmetrized
k–derivations when applied to monomials: we prove that their action on
monomials imitates, at the central point c, the one of Euclidean iterated
derivations (see Proposition 1). In turn, such symmetrized k–derivations
form a basis of the vector space of differential operators on G and also the
Taylor polynomial introduced in Definition 9, realizes a contact of order m
with the function f at c (see point ii) of Theorem 1 and Theorem 2). In
support of these results, we also exhibit some algebraic considerations on
the linear generators of the free Lie algebra K〈X, Y 〉, investigating several
sets of generators for the real vector space of left invariant differential oper-
ators on G. In Section 4, concluding the paper, we extend all the previous
considerations to the case of step two Carnot groups.

We stress that, after the paper was submitted, we knew of the investi-
gation devoted to the Taylor polynomial in [4, Chapter 20] that, up to
now and to our knowledge, seems to be the major reference text, jointly
with the older [6], on calculus in general homogeneous Lie groups. Roughly
speaking, the authors represent the mth Taylor polynomial as the sum of all
k–derivations of the kind ZJk

(see Definition 2) up to degree m (see Corollary
20.3.12 in [4]); nevertheless the proof that this polynomial is effectively the
Taylor polynomial is done by verifying iii) of Theorem 1, and so they do
not tackle the problem of determining the action of iterated vector fields on
single monomials, which is exactly the core of this note. We also observe
that the 2th Taylor polynomial in the setting of the Heisenberg group H1

appeared previously in [3].
Finally, we point out that the problem of finding the explicit expres-

sion of the Taylor polynomial, raised to our attention when dealing with
the generalization to the case of Carnot groups of the well known Whitney
extension theorem of a given function f of class Cm(F ), outside of a closed
subset F ⊂ Rn (see [12, 5, 1]).
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2. Notation and Preliminaries

2.1. The stratified structure of step two Carnot groups

A step two Carnot group is a connected and simply connected nilpotent
Lie group of stratified type, i.e., its Lie algebra denoted by g, admits a
decomposition as direct sum of two vector subspaces. Namely, g = V1 ⊕ V2

where V2 = [V1, V1], V1 is called the horizontal slice and its vector fields the
horizontal vector fields on G. Evidently, such an algebra is nilpotent of step
two by definition or, equivalently, V2 is included in the center of g. indent The
stratified structure of g gives rise to a family of mappings {γλ}λ∈R of g called
dilations, which turn to be a group of homomorphims for λ > 0, defined on
the generators by imposing, for any λ ≥ 0, γλ(X) = λX whenever X ∈ V1,
γλ(T ) = λ2T whenever T ∈ V2 and, finally, γ−1(Y ) = −Y for any Y ∈ g.
The family {γλ}λ∈R can be pushed forward on G via the exponential map,
obtaining a family of dilations on G by the position δλ := exp ◦ γλ ◦ exp−1 .
After, setting l = dim(V1) and p = dim(V2), we choose a basis of g adapted to
the stratification by selecting a basis of left invariant vector fields X1, . . . , Xl

of V1 and T1, . . . , Tp of V2 such that Xi(e) = ei for any i = 1, . . . , l, and
Tj(e) = el+j for any j = 1, . . . , p, where e is the identity of G and {eh}h=1,...,n

denotes the standard basis of Rn, n = l+p. Relatively to this basis we write
z = (x, t) ≡ (x1, . . . , xl, t1, . . . , tp), or also z ≡ (zh), h = 1, . . . , n, where such
coordinates of z ∈ G comes from the exponential first kind representation
z = exp(

∑l
i=1 xiXi +

∑p
j=1 tjTj); in particular, for λ ≥ 0, δλ(z) = (λx, λ2t).

With respect to such a given system of coordinates, it is not difficult to verify
(see for instance Theorem 3.2.2 in [4]) that, setting z = (x, t), w = (ξ, τ) with
x, ξ ∈ R

l and t, τ ∈ R
p, then

zw = (x+ ξ, t+ τ +
1

2
〈Bx, ξ〉)

where, 〈Bx, ξ〉 denotes the p-tuple
(〈B(1)x, ξ〉, . . . , 〈B(p)x, ξ〉) for suitable

l × l independent skew–symmetric matrices B(1), . . . , B(p). It follows easily
that the identity e ∈ G is identified with 0 ∈ Rn and that the inverse of an
element z = (x, t) is identified with −z = (−x,−t).

2.2. Homogeneity degree and k–derivations

Definition 1 We say that a function f : G → R is homogeneous of degree
α ∈ R if, f

(
δλ(x)

)
= λαf(x) for any λ > 0. We say that a left invariant

differential operator D on G is homogeneous of degree α ∈ R if, D(f ◦
δλ)(x) = λα(Df ◦ δλ)(x), for any smooth function f and for any λ > 0.
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Clearly, if D is a left invariant differential operator homogenous of degree α
and f is a function homogeneous of degree β, then Df, if defined, is a
function homogeneous of degree β−α and fD is a left invariant differential
operator homogenous of degree α− β; moreover if D1, D2 are left invariant
differential operators, homogenous of degree α and β respectively, thenD1D2

is a left invariant differential operator homogenous of degree α+β. Arguing
as in Proposition 2.2. of [8] it is possible to verify that

Xi = ∂xi
+

1

2
〈(Bx)i,∇t〉 for each i = 1, . . . , l

Tj = ∂tj for each j = 1, . . . , p

where ∇t := (∂t1 , . . . , ∂tp), (Bx)i := ((B(1)x)i, . . . , (B
(p)x)i) and (B(k)x)i is

the ith component of B(k)x. Consequently, each Xi is homogeneous of degree
one and each Tj is homogeneous of degree two.

Definition 2 (Derivations and multi–indexes) A left invariant differ-
ential operator of the kind ZJk

= Xi1 · · ·XimTj1 · · ·Tjr , where k is a non–
negative integer, m + r = k and 1 ≤ i1, . . . , im ≤ l, 1 ≤ j1, . . . , jr ≤ p,
is called k–derivation; in this case, setting Jk = (i1, . . . , im, j1, . . . , jr), the
numbers |Jk| = m + r and d(Jk) = m + 2r are called respectively the or-
der and the degree of XJk

and Jk. In particular, a left invariant differential
operator of the kind ZHk

= Xi1 · · ·Xik , where 1 ≤ i1, . . . , ik ≤ l, is called
horizontal k–derivation and in this case we have |Hk| = d(Hk) = k.

A left invariant differential operator of the kind ZI =X i1
1 · · ·X il

l T
j1
1 · · ·T jp

p

where, for n = l + p, I = (i1, . . . , il, j1, . . . , jp) is a n–tuple of non negative
integers, will be called a derivation of the canonical basis of BPW (short for
Birkhoff–Poincarè–Witt, see next Remark 1) –briefly canonical derivation–
of order |I| =

∑l
h=1 ih +

∑p
h=1 jh and degree d(I) =

∑l
h=1 ih +

∑p
h=1 2jh; as

before, the numbers |I|, d(I) are also called the order and the degree of the
multi–index I.

In both the cases, a 0–derivation, denoted equivalently with the symbols
ZJ0, ZH0 and ZI , where I is the null n–tuple, is just the identity operator.

Finally, we shall denote by {Z i
α} i∈N

α∈Ai

a given basis for the real vector

space of all left invariant differential operators on G; so, for any i ∈ N,
Ai is a set of indexes for the basis {Z i

α}α∈Ai
of the finite dimensional real

vector space of left invariant differential operators of homogeneous degree i
(in particular {Z1

α}α∈A1 is chosen adapted to the stratification of g).

Horizontal k–derivations are also called nonholonomic partial derivatives of
order k, see for instance [2].
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Remark 1 (Birkhoff–Poincaré–Witt Theorem) Recall that the Birk-
hoff–Poincaré–Witt theorem ensures that the set of all canonical derivations
ZI constitutes a basis for the algebra of all left invariant differential operators
on G (see, for instance, [11]). In particular, taking into account the stratified
structure of g, the following spanning relationships easily hold

Span
R
({ZIk

})d(Ik)=k = Span
R
({ZHk

}) = Span
R
({ZI})d(I)=k

= SpanR({Zk
α})α∈Ak

.

2.3. Polynomials on Carnot groups

Definition 3 A function P : G → R is called a polynomial on G if P ◦exp−1

is a polynomial on the vector space g.

More precisely, according to the previous notation z = (zh) ∈ G, if (ζh) :=
(ωi, ηj) ∈ g∗ denotes the dual basis of (Zh) := (Xi, Tj), then, for any
h = 1, . . . , n, we have ζh ◦ exp−1(z) = zh. So, if I is a multi–index as
in Definition 2, the general monomial can be written as m I(z) = z I =

xi1
1 · · ·xil

l t
j1
1 · · · tjp

p . Note that m I(δλ(x)) = λd(I)m I(x), so the monomial m I

is of homogeneous degree d(I). Consequently, a basis for the real vector
space of polynomials of degree m at most is the set of all monomials of
the kind m I for all n–tuples I such that d(I) ≤ m, hence a general polyno-
mial P of homogeneous degree m is P =

∑
d(I)≤m aI m I , for some aI ∈ R

such that max{d(I) : aI = 0} = m. In what follows we shall denote by Pm

a polynomial P for which max{d(I) : aI = 0} ≤ m. We stress that, as in
the Euclidean case, the homogeneous degree of a given polynomial depends
neither on the fixed basis adapted to the stratification nor on the translation
in the group (see for instance Proposition 1.25 in [6]).

2.4. Carnot–Caratheodory metrics

In every Carnot group a natural sub–Riemannian distance between two given
points x, y ∈ G can be introduced as the infimum of all times s for which
there exists an absolutely continuous horizontal curve joining the points, i.e.,
a curve γ : [0, s] → G such that γ̇ =

∑l
j=1 μjXj(γ) a.e., for some measurable

vector function μ : [0, s] → Rl, ‖μ‖∞ ≤ 1, γ(0) = x, γ(s) = y. Such
horizontal curves do exist by the Hörmander bracket generating condition,
so the distance d is finite and such that, for any fixed Euclidean compact set
K ⊂ G, there exists a constant C = C(K) for which 1

C
‖x− y‖ ≤ d(x, y) ≤

C‖x−y‖ 1
k , for any x, y ∈ K, where ‖·‖ denotes the Euclidean norm. This fact

proves that the Euclidean topology coincides with the one induced by d but,
in general, the two distances are not equivalent. Nevertheless, d shares with
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the Euclidean metric the (left) translation invariance and the homogeneity
of degree one with respect to the dilations δλ, i.e., d(zx, zy) = d(x, y) and
d
(
δλ(x), δλ(y)

)
= |λ| d(x, y), for any x, y, z ∈ G and for any λ ∈ R.

On any Carnot group G there exist several quasi–metrics equivalent to
the Carnot–Caratheodory one, but much more easier to handle (refer to [6]
and [8] for more details). In what follows, we do not need a particular quasi–
metric or metric, so we will write d to denote any one of the distance function
described above satisfying the translation invariance and the homogeneity
of degree one.

2.5. Calculus on Carnot groups and Taylor polynomials

The notion of Lie derivative meets sub–Riemannian geometry in the fol-
lowing definition.

Definition 4 Let f : G → R, c ∈ G, X ∈ V1 and let v = exp(X). We say
that the function f is differentiable along X at the point c if the function
R � λ → f

(
c δλ(v)

) ∈ R is differentiable at the point λ = 0; in this case we
write Xf(c) for such a limit.

Following Folland and Stein (see [6]), we recall the definition of function
of class Cm

H
(G) on Carnot groups.

Definition 5 Let f : G → R. We say that f ∈ C1
H
(G) if Xif exist and are

continuous at each point of G, for every i = 1, . . . , l. Moreover, for any
non–negative integer m, we say that f ∈ Cm

H
(G), if XHk

f exist and are
continuous at each point of G, for every horizontal k–derivation XHk

such
that 0 ≤ k ≤ m.

Clearly, according to Remark 1, the definition of function of class Cm
H

(G) can
be equivalently done with anyone of the k–derivations given in Definition 2.
Moreover, it can be verified that f ∈ Cm

H (G) if and only if anyone of the (k
or |I|)–derivations homogeneous of degree m at most exist in distributional
sense and are continuous at each point of G.

Finally, we recall the definition of Taylor polynomial of a function f ∈
Cm

H
(G), according to [6].

Definition 6 Let m be a non–negative integer, c ∈ G and f ∈ Cm
H

(G).
A polynomial Pm is called the (left) Taylor polynomial of f at the point c,
if XI(P − f)(c) = 0, for any |I|–derivation of the BPW basis such that
0 ≤ d(I) ≤ m.

Remark 2 Taking into account that XI is a left invariant differential op-
erator, the well posedness of this definition relies on Proposition 1.30 of [6].
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More precisely, denoting with Pm and Dm respectively the vector spaces of
all polynomials and of all left invariant differential operators on G, both of
homogeneous degree d(I) ≤ m, the linear mapping L : Pm → Dm defined
through the position L(Pm) =

∑m
d(I)=0(X

IP (0))XI , ∀Pm ∈ Pm, comes to be
an isomorphism; in particular the matrix M associated to L, with respect to
the two BPW bases {xI}d(I)=0,1,...,m and {XI}d(I)=0,1,...,m is upper triangular
with non zero diagonal. In the simplest Heisenberg group H1 (see examples
in Subsection 2.5), we have L(x) = X, L(y) = Y but L(t) = T − 2XY.

So, if we want to write down the Taylor polynomial of a given function
f ∈ Cm

H (G), we must determine the action of L−1, i.e., write explicitly the
matrix M−1 : unfortunately this is not an easy task in the general case. In
the next sections we will tackle this difficulty exhibiting, in the case of step
two Carnot groups, an alternative basis for Dm which will fill this gap.

For the sake of completeness, and according to notations introduced in
Subsection 2.2, we state the following well known facts in a form useful to
our purposes, sketching some of the proofs.

Theorem 1 Let m be a non negative integer, c ∈ G, f ∈ Cm
H

(G) and Pm

a given polynomial of homogeneous degree m at most. Then, according to
notation introduced in Definition 2, the following facts are equivalent:

i) Pm is the mth Taylor polynomial of f at c;

ii) Z i
α(Pm − f)(c) = 0, for any i = 0, . . . , m and for any α ∈ Ai;

iii) (Pm − f)(x) = o
[
d(x, c)

]m
as x→ c.

Proof. i) ⇐⇒ ii) follows immediately from Remark 1. i) =⇒ iii) follows
immediately from the stratified Taylor inequality proved in Theorem 1.42 of
[6]. iii) =⇒ i): It suffices to verify that if Qm is a polynomial of homoge-
neous degree m at most such that Qm(x) = o

[
d(x, 0)

]m
as x → 0, then Qm

is identically zero. Indeed, let Qm =
∑

d(I)≤m aI m
I and let us verify, by

induction, that aI = 0 for all I such that d(I) ≤ m. This is trivial when
d(I) = 0; assuming that aI = 0 for all I such that d(I) = k < m, we can
write Qm =

∑
d(I)=k+1 aI m

I +
∑

k+1<d(I)≤m aI m
I . Fix p ∈ G, p = 0. Then

δλ(p) → 0 if and only if λ→ 0 and, recalling that d is homogeneous of degree
one, we have∑

d(I)=k+1 aI m
I(p)[

d(p, 0)
]k+1

=
Qm(δλ(p))[

d(δλ(p), 0)
]k+1

−
∑

k+1<d(I)≤m λ
d(I)aI m

I(p)

λk+1
[
d(p, 0)

]k+1
→ 0.

Thanks to the arbitrariness of p it follows that aI = 0 for any I such that
d(I) = k + 1, as desired. To conclude the proof observe that if P ′

m is



246 G. Arena, A.O. Caruso and A. Causa

the Taylor polynomial of f at the point c, then, denoting by τc the left
translation pointed at c we have (Pm−P ′

m)◦ τ−1
c (x) = o

[
d(x, 0)

]m
as x→ 0,

which implies Pm = P ′
m. �

We conclude this subsection observing that, thanks to the left invariance
of the vector fields, for any f ∈ Cm

H
(G), for any c ∈ G and for any |I|–deri-

vation of the canonical basis of BPW, we have XIf(c) = XI(f ◦ τc)(0) so, in
the next sections, we will look for the Taylor polynomial at the identity of G.

Examples

The paradigmatic example of step two groups is the Heisenberg group Hn as-
sociated to the Lie algebra hn = h⊕v whose linearly independent generators
X1, . . . , Xn, Y1, . . . , Yn, T satisfy the conditions h = Span

R

({Xj, Yj}j=1,...,n

)
,

v = Span
R
{T} and the only non zero brackets are [Xj, Yj] = aT, for any j =

1, . . . , n and for some fixed real number a = 0. If p = (x1, . . . , xn,y1, . . . , yn,t),
q = (x′1, . . . , x

′
n,y

′
1, . . . , y

′
n,t

′) ∈ Hn, than the group product reads p q =
(x1 + x′1, . . . , xn + x′n, y1 + y′1, . . . , yn + y′n, t + t′ + a

2

∑n
j=1(xjy

′
j − x′jyj)); it

follows that Xj = ∂
∂xj

− a
2
yj

∂
∂t
, Yj = ∂

∂yj
+ a

2
xj

∂
∂t

and T = ∂
∂t
. In this paper

we follow notation as in [7], choosing a = −4.

The Heisenberg group Hn is actually the prototype of a general class
of step two Carnot groups, the so called H–type groups (see [9]). More
precisely, let g be a Lie algebra nilpotent of step two endowed with an inner
product 〈·, ·〉. Let z be the center of g. For any v ∈ z⊥, adv is a z–valued
linear mapping: set kv = ker(adv) ∩ z⊥ so that z⊥ = kv ⊕ k⊥v . Then g is said
to be of H–type if adv : k⊥v → z is a surjective isometry for every vector v
such that 〈v, v〉 = 1 and, in this case, the corresponding group is said to be
a group of type H. It can be verified that these conditions are equivalent to
say that, according to the general form of the group law, each B(i) is also
an orthogonal matrix and, for any i1, i2, we have B(i1)B(i2) +B(i2)B(i1) = 0.

3. Taylor Formula on H
1

In this section we propose an explicit expression for the Taylor polyno-
mial Pm,f : we restrict the argument to the case H1; indeed it will be clear
at the end of this subsection how to extend the formula and relative proofs
to the case Hn. We are going to prove that (see the following Theorem 2)
Pm,f is the unique polynomial on H1 for which the equivalent facts of The-
orem 1 hold. In order to find Pm,f , we begin by recovering Taylor formula
using standard arguments of calculus in Lie groups. We assume first that G

is an analytic Lie group and that f is defined and analytic around the iden-
tity e ∈ G that we identify with 0 ∈ Rn. For X, Y, T ∈ g, the following
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Taylor series holds (see for instance [11, Theorem2.12.3], see also the Ap-
pendix in [10]):

f(x, y, t) =

∞∑
k=0

1

k!

[(
xX + yY + tT

)k
f
]
(0) =

=

∞∑
k=0

[ ∑
n1,n2,n3=0,1,...
n1+n2+n3=k

(
σ(Xn1 ,Y n2 ,T n3)

(n1+n2+n3)!
f
)
(0)

n1!n2!n3!
xn1yn2tn3

]
,(TS f)

where the meaning of the symbol σ(Xn1 , Y n2, T n3) relies on the following
definition.

Definition 7 Let a1, . . . , ar be given elements of a (not necessarily commu-
tative) ring A. Set

(σ) σ(a1, . . . , ar) =
∑
π∈Sr

aπ(1) · · ·aπ(r),

where π ∈ Sr denotes an element of the symmetric group over {1, . . . , r}.
With the aid of Definition 7, for any fixed n1, n2, n3 = 0, 1, . . . , setting X1 =
· · · =Xn1 = X, Xn1+1 = · · · =Xn1+n2 = Y, Xn1+n2+1 = · · · = Xn1+n2+n3 = T,
we can define

σ(Xn1, Y n2 , T n3) = σ(X1, . . . , Xn1+n2+n3).

Now having in mind the case G = H1 one observes that, relatively to (TS f),
the degree of the monomial xn1yn2tn3 appearing in the kth–sum is n1 + n2 +
2n3 which, in general, is different from k; so it appears quite natural to
rewrite (TS f) as follows

f(x, y, t) =

∞∑
k=0

[ ∑
n1,n2,n3=0,1,...
n1+n2+2n3=k

(
σ(Xn1 ,Y n2 ,T n3)

(n1+n2+n3)!
f
)
(0)

n1!n2!n3!
xn1yn2tn3

]
.

All these considerations suggest the right candidate for the Taylor polyno-
mial of a given f ∈ Cm

H (H1) :

Definition 8 For any f ∈ Cm
H (H1), we set

(Pm,f) Pm,f(x, y, t) =

m∑
k=0

[ ∑
n1,n2,n3=0,1,...
n1+n2+2n3=k

(
σ(Xn1 ,Y n2 ,T n3 )

(n1+n2+n3)!
f
)
(0)

n1!n2!n3!
xn1yn2tn3

]
.
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Remark 3 Let Sym(Xn1 , Y n2, T n3) be the sum of all k–iterated vector
fields, each of them containing n1 times the derivationX, n2 times the deriva-
tion Y, and n3 times the derivation T, then it is clear that Sym(Xn1 , Y n2, T n3)

= σ(Xn1 ,Y n2 ,T n3)
n1!n2!n3!

. Another useful property of this symmetrizing operator is
the following. For any n1, n2 = 1, 2, . . . , we have

Sym(Xn1 , Y n2) = Sym(Xn1−1, Y n2)X + Sym(Xn1, Y n2−1) Y

= X Sym(Xn1−1, Y n2) + Y Sym(Xn1, Y n2−1).(S’)

Both these equalities follow immediately from the consideration that the
differential operators appearing in the second (resp. the third) member are
all different by construction and, moreover, by observing that, by the general
binomial identity (n1+n2)!

n1!n2!
=

(
n1+n2−1

n1

)
+

(
n1+n2−1

n2

)
, n1, n2 = 1, 2, . . . , both the

first and the second (resp. the third) members, have the same number of
elements.

Now we want to rewrite (Pm,f) as a sum of formal powers i.e. as in the
first series of (TS f). We observe that in (xX + yY + tT )k it is natural
to see the summand containing n1 times the derivation X, n2 times the
derivation Y and n3 times the derivation T, where n1 + n2 + 2n3 = k, as a
unique (n1 + n2 + n3)

th–iterated derivation, more precisely as n1!n2!n3!
(n1+n2+n3)!

·
Sym(Xn1, Y n2 , T n3); so, the following definition appears quite natural.

Definition 9 Set, for any non negative integers k, n1, n2, n3 such that n1 +
n2 + 2n3 = k,

(3.1)
∂k

∂Xn1∂Y n2∂T n3
=

n1!n2!n3!

(n1 + n2 + n3)!
· Sym(Xn1 , Y n2, T n3).

We call (3.1) a symmetrized (n1 +n2 +n3)–derivation of order k containing
n1–times X, n2–times Y and n3–times T (symmetrized derivation for short,
when we need to specify neither the order k nor the single vector fields).

Remark 4 Observe that in Definition 9 the number k is the homogeneity
degree of the left invariant differential operator. For instance ∂ 0 = id,
∂1

∂X1 = X, ∂1

∂Y 1 = Y, ∂2

∂T 1 = T. Moreover we observe that, as in Remark 3,
we have the following property for these symmetrized derivations. For any
n1, n2 = 1, 2, . . . , we have

∂n1+n2

∂Xn1∂Y n2
=

n1

n1 + n2
· ∂n1+n2−1

∂Xn1−1∂Y n2
X +

n2

n1 + n2
· ∂n1+n2−1

∂Xn1∂Y n2−1
Y

=
n1

n1 + n2
·X ∂n1+n2−1

∂Xn1−1∂Y n2
+

n2

n1 + n2
· Y ∂n1+n2−1

∂Xn1∂Y n2−1
.(S”)

Both these equalities follow immediately from (S’).
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Now, according to Definition 9, we can come back to formula (Pm,f), and
rewrite it as follows
(Pm,f - Second Form)

Pm,f(x, y, t) =

m∑
k=0

[ ∑
n1,n2,n3=0,1,...
n1+n2+2n3=k

(
∂k

∂Xn1∂Y n2∂T n3
f
)
(0)

n1!n2!n3!
xn1yn2tn3

]
.

Remark 5 Observe that, since T belongs to the center of h1, the differen-
tial operator Sym(Xn1, Y n2 , T n3) satisfies the relation Sym(Xn1, Y n2 , T n3) =(

n1+n2+n3

n3

)· Sym(Xn1, Y n2)T n3 or, equivalently, ∂k

∂Xn1∂Y n2∂T n3
= ∂n1+n2

∂Xn1∂Y n2
T n3.

Remark 6 If we want to rewrite the polynomial Pm,f as a sum of formal
powers of degree k, we have to involve the ratio k!

n1!n2!n3!
, where n1 + n2 +

2n3 = k. In the Euclidean case, where k = n1 + n2 + n3, it is a polynomial
coefficient of degree k and it represents the number of the permutations of
the objects x, y and t repeated respectively n1, n2 and n3 times. Analogously,
we can introduce a polynomial Newton–Leibniz formula adapted to graded
coordinates in H

1, by setting[(
(x+y)+t

)k
]

H1
=

∑
h,n3=0,1,...
h+2n3=k

k!

h!n3!

(
x+y

)h
tn3 =

∑
n1,n2,n3=0,1,...
n1+n2+2n3=k

k!

n1!n2!n3!
xn1yn2tn3 ,

where the hth-power must be computed as for the standard binomial theo-
rem.

These last considerations suggest the following alternative expression
for Pm,f :

Pm,f(x, y, t) =

m∑
k=0

1

k!

[((
x
∂

∂X
+ y

∂

∂X

)
+ tT

)k

f

]
H1

(0) =

=
m∑

k=0

1

k!

[ ∑
h,n3=0,1,...
h+2n3=k

k!

h!n3!

((
x
∂

∂X
+ y

∂

∂Y

)h

(tT )n3

)
f

]
(0) =

=
m∑

k=0

[ ∑
n1,n2,n3=0,1,...
n1+n2+2n3=k

(
∂n1+n2

∂Xn1∂Y n2
T n3f

)
(0)

n1!n2!n3!
xn1yn2tn3

]
.

(Pm,f - Third Form)

Setting now,

Sk :=
{ ∂n1+n2

∂Xn1∂Y n2
T n3 : n1, n2, n3 = 0, 1, . . . , n1 + n2 + 2n3 = k

}
,
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we are going to prove that (see Proposition 1 and Corollary 1) the set⋃∞
k=0 Sk forms a basis for the vector space of all left invariant differential

operators on H1 and that the linear mapping D : Pm → Dm defined through
the position

D(Pm) =
m∑

k=0

∑
n1,n2,n3=0,1,...
n1+n2+2n3=k

( ∂n1+n2

∂Xn1∂Y n2
T n3Pm(0)

) ∂n1+n2

∂Xn1∂Y n2
T n3, ∀Pm∈Pm,

is indeed an isomorphism having a diagonal matrix associated with respect
to the two basis

{
xn1yn2tn3

}
n1,n2,n3=0,1,...

n1+n2+2n3=0,1,...,m
and

m⋃
k=0

Sk.

Roughly speaking, the two bases are essentially dual to each other, i.e., any
such a symmetrized derivation acts pointwisely on monomials as if it were an
Euclidean iterated derivative. We stress that this result is not at all trivial
if one takes into account the very definition of symmetrized derivation as in
Definition 9.

We need first the following Lemma 1, whose statement is easily expected
if one takes into account the very definition of the vector fields X and Y.

Lemma 1 For any n1, n2, m1, m2 = 0, 1, . . . , we have[
∂n1+n2

∂Xn1∂Y n2
(xm1 ym2)

]
(x,y,t)=(0,0,0)

=

{
m1!m2! if n1 = m1 and n2 = m2

0 otherwise
.

Proof. The proof can be easily achieved by induction on the sum n1 + n2,
taking into account Remark 4. �

Proposition 1 For any n1, n2, n3, m1, m2, m3 = 0, 1, . . . , we have[
∂n1+n2

∂Xn1∂Y n2
T n3(xm1 ym2 tm3)

]
(x,y,t)=(0,0,0)

=

{
m1!m2!m3! if ni = mi, i = 1, 2, 3

0 otherwise
.

Proof. We argue by induction on n3, assuming first that the thesis holds
when n3 = 0. When m3 = 0 the thesis holds trivially; then, for m3 ≥ 1, we
have

∂n1+n2

∂Xn1∂Y n2
T n3(xm1 ym2 tm3) = m3 · ∂n1+n2

∂Xn1∂Y n2
T n3−1(xm1 ym2 tm3−1),

and the thesis follows easily by the induction hypotheses. So it remains to
prove the induction base, i.e. the case n3 = 0. We argue again by induction
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on n1 + n2. The base n1 + n2 = 0 of the induction argument holds trivially,
so, according to Remark 4, assume n1 + n2 ≥ 1. When m3 = 0 the thesis
easily follows by the previous Lemma 1; when m3 ≥ 1 we can write,[

∂n1+n2

∂Xn1∂Y n2
(xm1 ym2 tm3)

]
(x,y,t)=(0,0,0)

=
n1

n1 + n2
·
[

∂n1+n2−1

∂Xn1−1∂Y n2

(
X(xm1ym2) · tm3

)]
(x,y,t)=(0,0,0)

(I)

+
n1

n1 + n2
·
[

∂n1+n2−1

∂Xn1−1∂Y n2

(
xm1ym2 ·X(tm3)

)]
(x,y,t)=(0,0,0)

(II)

+
n2

n1 + n2
·
[

∂n1+n2−1

∂Xn1∂Y n2−1

(
Y (xm1ym2) · tm3

)]
(x,y,t)=(0,0,0)

(III)

+
n2

n1 + n2
·
[

∂n1+n2−1

∂Xn1∂Y n2−1

(
xm1ym2 · Y (tm3)

)]
(x,y,t)=(0,0,0)

(IV)

=
n1

n1 + n2
·
[

∂n1+n2−1

∂Xn1−1∂Y n2

(
xm1ym2 ·X(tm3)

)]
(x,y,t)=(0,0,0)

(II)

+
n2

n1 + n2
·
[

∂n1+n2−1

∂Xn1∂Y n2−1

(
xm1ym2 · Y (tm3)

)]
(x,y,t)=(0,0,0)

,(IV)

because by the induction hypotheses (I) and (III) are equal to zero. Now
observe that when m3 ≥ 2 also (II) and (IV) are equal to zero. Finally,
when m3 = 1, we have

(II)+ (IV) =

[
n1

n1 + n2
· ∂n1+n2−1

∂Xn1−1∂Y n2

(
2xm1ym2+1

)]
(x,y,t)=(0,0,0)

+

[
n2

n1 + n2
· ∂n1+n2−1

∂Xn1∂Y n2−1

( − 2xm1+1ym2
)]

(x,y,t)=(0,0,0)

.

So, if n1−1 = m1 and n2 = m2 +1 (otherwise the thesis follows immediately
as before), we have

(II)+ (IV) =
2(m1 + 1)

m1 +m2 + 2
·m1! (m2 +1)!− 2(m2 + 1)

m1 +m2 + 2
· (m1 +1)!m2! = 0,

that completes the proof. �
Corollary 1 The set

⋃m
k=0 Sk is a basis of the vector space of all left in-

variant differential operators on H1.

Proof. The thesis follows immediately from Proposition 1 and observing
that we have,

(3.2)
∣∣Sk

∣∣ =
∣∣{Xn1Y n2T n3

}
n1,n2,n3=0,1,...
n1+n2+2n3=k

∣∣.
�
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Now we can prove the main result of this section.

Theorem 2 Let m be a non negative integer and let f ∈ Cm
H (H1). Then

Pm,f is the Taylor polynomial of f at zero.

Proof. It suffices to show that Pm,f verifies condition ii) of Theorem 1:
thanks to Proposition 1 it suffices to check condition ii) with any fixed
symmetrized derivation. Having in mind last member of Pm,f - Third Form, and
thanks to the previous Proposition 1, for any n1, n2, n3 such that n1 + n2 +
2n3 ≤ m, we have[

∂n1+n2

∂Xn1∂Y n2
T n3

(
Pm,f − f

)]
(x,y,t)=(0,0,0)

=

[
∂n1+n2

∂Xn1∂Y n2
T n3

( ∂n1+n2

∂Xn1∂Y n2
T n3f(0)

n1!n2!n3!
xn1yn2tn3 − f

)]
(x,y,t)=(0,0,0)

=

[( ∂n1+n2

∂Xn1∂Y n2
T n3f

)
(0) − ∂n1+n2

∂Xn1∂Y n2
T n3f

]
(x,y,t)=(0,0,0)

= 0 ,

and the proof is completed. �
Before ending this section, we provide an alternative, completely differ-

ent, proof of Corollary 1 (see Proposition 2) based on some considerations
about free Lie algebras. First of all a little bit of notations. Let K be a
field of characteristics zero and let K〈X, Y 〉 be the free associative algebra
generated by the symbols X and Y. It is worth saying that the generators
do not commute. The algebra K〈X, Y 〉 is naturally graded; indeed, given a
monomial m ∈ K〈X, Y 〉, one can define the degree deg m = length m, as the
number of the letters of the word which identifies m. For any k = 0, 1, . . . ,
we will denote by K〈X, Y 〉k the linear subspace generated by all the mono-
mials m of degree k; so it is K〈X, Y 〉 =

⊕∞
k=0 K〈X, Y 〉k, where, clearly,

dim
(
K〈X, Y 〉k

)
= 2k. A subspace R of K〈X, Y 〉 is called homogeneous if,

for any polynomial p in R, every homogeneous component of p is in R. It is
obvious that, for any k = 0, 1, . . . , K〈X, Y 〉k is a homogeneous subspace of
K〈X, Y 〉 and, moreover, the product mapping K〈X, Y 〉 × K〈X, Y 〉 � (p, q)
→ pq ∈ K〈X, Y 〉, maps a product of homogeneous subspaces into another
homogeneous subspace; in particular K〈X, Y 〉i × K〈X, Y 〉j is mapped into
K〈X, Y 〉i+j. A monomial m ∈ K〈X, Y 〉 is actually endowed with a partial
degree. For any monomial m ∈ K〈X, Y 〉, define a couple of non–negative
integers as follows:

degX,Y m= ( “number of Xin the word m” , “number of Y in the word m” ) .
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For any i, j = 0, 1, . . . , we will denote with K〈X, Y 〉i,j, the subspace of
K〈X, Y 〉i+j which is generated by the monomials m of degX,Y m = (i, j); a
polynomial p is said to be finely homogeneous if it belongs to K〈X, Y 〉i,j.
Of course it is dim

(
K〈X, Y 〉i,j

)
= (i+j)!

i!j!
and, moreover, for any k = 0, 1, . . . ,

the subspace K〈X, Y 〉k, is decomposed as the direct sum of the subspaces
K〈X, Y 〉i,j with i + j = k, i.e. K〈X, Y 〉k =

⊕
i+j=k K〈X, Y 〉i,j. Let now

aT denote the commutator of X and Y, i.e. aT = [X, Y ] = XY − Y X, for
some a = 0; the ideal generated by T will be denoted by (T ); moreover, as
customary, we denote by K[x, y] the algebra of commutative polynomials.
After we define two linear maps φ and ψ as follows: fix arbitrarily i, j =
0, 1, . . . ; The map φ : K〈X, Y 〉 → K[x, y] is the map which associates to
each monomial m ∈ K〈X, Y 〉 of degX,Y m = (i, j), the monomial xiyj ∈
K[x, y]. The map ψ : K[x, y] → K〈X, Y 〉 is defined on the monomial xiyj,
as ψ(xiyj) = σ(X i, Y j) (see Definition 7). It is quite easy to prove that
ker φ = (T ). Hence we get the following exact sequence of vector spaces

0 −→ (T ) −→ K〈X, Y 〉 φ−→ K[x, y] −→ 0,

which restricted to homogeneous subspaces gives the following exact se-
quences of finite dimensional vector spaces

0 −→ (T )k −→ K〈X, Y 〉k φ−→ K[x, y]k −→ 0.

Since φ ◦ ψ = Id, the sequences of vector spaces split for any k and we get

K〈X, Y 〉k = (T )k ⊕ (Imψ)k.

From this it follows that the subspace K〈X, Y 〉k will be generated by the k+1
canonical generators of (Imψ)k and by the polynomials of the form pTq,
where, for any k = 2, 3, . . . , pq is a monomial such that deg(pq) = k − 2.
It is worth saying that these polynomials do not form a basis. At last, it
follows trivially that, if R ⊆ K〈X, Y 〉 is an ideal of K〈X, Y 〉, we get

K〈X, Y 〉
R

=
(T )

R ∩ (T )
⊕ Imψ

R ∩ Imψ
.

Furthermore, if R is homogeneous, we get the following equalities:

K〈X, Y 〉k
Rk

=
(T )k

Rk ∩ (T )k
⊕ (Imψ)k

Rk ∩ (Imψ)k
.

Remark 7 (Direct decomposition in h1) Let R = (TX − XT, Y T −
TY ), then we have, for any k = 0, 1, . . . ,

K〈X, Y 〉k
Rk

=
(T )k

Rk
⊕ (Imψ)k.
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Proposition 2 Let Z0 = Z0 = S0 = {id}, Z1 = Z1 = S1 = {X, Y } and
according to notations of Section 2, for k = 2, 3, . . . ,

Zk =
{
ZHk

: ZHk
is a horizontal k–derivation

}
,

Zk =
{
ZHk

T,
∂n1+n2

∂Xn1∂Y n2
: ZHk

is a horizontal (k − 2)–derivation,

n1, n2 = 0, 1, . . . , n1 + n2 = k
}
,

Sk =
{ ∂n1+n2

∂Xn1∂Y n2
T n3 : n1, n2, n3 = 0, 1, . . . , n1 + n2 + 2n3 = k

}
.

Then, for any k we have

SpanR

(Zk

)
= SpanR

(
Zk

)
= SpanR

(
Sk

)
.

Proof. The first equality follows immediately from Remark 7. The second
equality follows considering that, for each k ≥ 1, the elements of Sk are
proved to be linearly independent. Indeed, observe that if

(3.3)
∑

n1+n2+2n3=k

an1,n3,n3

∂n1+n2

∂Xn1∂Y n2
T n3 = 0

applying φ to both members, we recover
∑

n1+n2=k

an1,n2,0 x
n1yn2 = 0 which

implies that any an1,n2,0 is zero; then (3.3) becomes

(3.4)
( ∑

n1+n2+2n3=k−2

an1,n3,n3

∂n1+n2

∂Xn1∂Y n2
T n3

)
T = 0

which, in its turn, implies
∑

n1+n2+2n3=k−2 an1,n3,n3

∂n1+n2

∂Xn1∂Y n2
T n3 = 0, and

the proof easily follows by induction on k. �

Remark 8 Observe that another proof of Theorem 2 follows from the
standard equality among the derivative of the polynomial of the function
and the polynomial of the derivative of the function, working in this case
only for the commuting left invariant vector fields: indeed it is easy to
verify that for a given f ∈ Cm

H
(H1), relatively to the polynomial Pm,f , for

any k = 0, 1, . . . , [m
2
] we have T k(Pm,f − f) = Pm−2k,T kf − T kf, taking

into account that T belongs to the center of h1. Then, through a partial
application of Proposition 1, the proof is easily achieved by induction on the
degree of the set of generators Zk.

Remark 9 With very minimal changes all previous considerations work
in Hn.
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4. Taylor Formula on step two Carnot groups

In this section, according with notation introduced in Section 2, we shall
denote by G a step two Carnot group, by {X1, . . . , Xl} a basis of V1 and
by {T1, . . . , Tp} a basis of V2. The arguments employed for the Heisenberg
group H1 work as well, with slight changes of notations, in the general case
dimR(V2) ≥ 1. Indeed, arguing as in Section 3, we can recover the Taylor
polynomial starting from the Taylor expansion related to a family of l + p
left invariant vector fields; more precisely, observing that V2 is contained in
the center of g, we define the symmetrized derivation with respect to the
vector fields X1, . . . , Xl, T1, . . . , Tp according to the following definition.

Definition 10 Set, for any non negative integers k, n1, . . . , nl, s1, . . . , sp,
such that, k = n1 + . . .+ nl + 2 (s1 + . . .+ sp),

∂n1+···+nl

∂Xn1
1 · · ·∂Xnl

l

T s1
1 · · ·T sp

p :=

:=
n1! · · ·nl!

(n1 + · · ·+ nl)!
· Sym(Xn1

1 , . . . , Xnl
l )T s1

1 · · ·T sp
p .(4.1)

We call (4.1) a symmetrized k-derivation of order k containing n1-times
X1, . . . , nl-times Xl, s1-times T1, . . . , sp-times Tp (symmetrized derivation
for short, when we need to specify neither the order k nor the single vector
fields).

Remark 10 Formulas (S’) and (S”) of Section 3 become respectively,

Sym(Xn1
1 , . . . , Xnl

l ) =

= Sym(Xn1−1
1 , . . . , Xnl

l )X1 + · · ·+ Sym(Xn1
1 , . . . , Xnl−1

l )Xl,(S’2)

and

∂n1+···+nl

∂Xn1 · · ·∂Xnl
=

n1

n1 + · · ·+ nl
· ∂n1+···+nl−1

∂Xn1−1 · · ·∂Xnl
X1+

+ · · · · · · · · · · · · · · · · · · · · ·+
+

nl

n1 + · · ·+ nl
· ∂n1+···+nl−1

∂Xn1 · · ·∂Xnl−1
Xl;(S”2)

as before, the first one is justified by the multinomial identity

(n1 + · · · + nl)!

n1! · · ·nl!
=

(n1 + · · ·+ nl − 1)!

(n1 − 1)! · · ·nl!
+ · · · · · · + (n1 + · · · + nl − 1)!

n1! · · · (nl − 1)!
,

while the second one follows immediately by the first one after some easy
calculations.
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In this case, the right formula for the Taylor polynomial for a given
f ∈ Cm

H
(G), comes to be

(Pm,f - Step–2 Groups) Pm,f (z) =
m∑

k=0

[ ∑
d(I)=k

(
∂n1+···+nl

∂X
n1
1 ···∂X

nl
l

Tm1
1 · · ·Tmp

p f
)
(0)

n1! · · ·nl!m1! · · ·mp!
zI

]
,

where, for any k = 0, . . . , m, I = (n1, . . . , nl, m1, . . . , mp) denotes a general
(l+p)–tuple of non negative integers, d(I) = n1 + . . .+nl +2 (m1 + . . .+mp)
and zI = xn1

1 · · ·xnl
l t

m1
1 · · · tmp

p .
Now we set,

Sk =
{ ∂n1+···+nl

∂Xn1
1 · · ·∂Xnl

l

T s1
1 · · ·T sp

p :

n1, . . . , nl, s1, . . . , sp = 0, 1, . . . , n1 + · · · + nl + 2 (s1 + · · ·+ sp) = k
}

with S0 = {id}.
We check that the set

⋃m
k=0 Sk is a basis of the vector space of all differen-

tial operators on G and that the Taylor polynomial Pm,f - Step–2 Groups satisfy ii)
of Theorem 1. To this aim, it suffices to extend Lemma 1 and Proposition 1.

Lemma 2 For any n1, . . . , nl, m1, . . . , ml = 0, 1, . . ., we have,[
∂n1+...+nl

∂Xn1
1 · · ·∂Xnl

l

xm1
1 · · ·xml

l

]
(x1,...,xl)=(0,...,0)

=

{
m1! · · ·ml! if n1 = m1 . . . nl = ml

0 otherwise
.

Proof. The proof can be easily achieved by induction on the sum n1+· · ·+nl,
taking into account (S”2) in Remark 10. �

Proposition 3 For any n1, . . . , nl, s1, . . . , sp, m1, . . . , ml, r1, . . . , rp, we have[
∂n1+···+nl

∂Xn1 · · ·∂Xnl
T s1

1 · · ·T sp
p (xm1

1 · · ·xml
l tr1

1 · · · trp
p )

]
(x1,...,xl,t1,...,tp)=(0,...,0)

=

{
m1! · · ·ml! r1! · · · rp! if ni = mi, i = 1, . . . , l and si = ri, i = 1, . . . , p

0 otherwise.

Proof. We argue by induction on s1 + · · · + sp, assuming first that the
thesis holds when s1 + · · · + sp = 0. Then, suppose s1 + · · · + sp ≥ 1. If
r1 + · · · + rp = 0, the thesis holds trivially. If r1 + · · · + rp ≥ 1, we can
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suppose, without loss of generality, that sp ≥ 1; then, supposing rp ≥ 1, we
have,

T s1
1 · · ·T sp

p (xm1
1 · · ·xml

l tr1
1 · · · trp

p ) =

=

{
rp · T s1

1 · · ·T sp−1
p (xm1 · · ·xml tr1

1 · · · trp−1
p ) if rp = sp

0 if rp = sp

and the thesis follows by the induction hypothesis. So, it remains to prove
the induction base, i.e., the case s1 + · · · + sp = 0. We argue, again, by
induction on n1 + · · ·+nl. The basis n1 + · · ·+nl = 0 of the induction argu-
ment holds trivially, so, assume n1 + · · ·+nl ≥ 1. Then, if r1 + · · ·+ rp = 0,
the thesis follows by Lemma 2; if r1 + · · ·+ rp ≥ 1, observe that, according
to (S”2) of Remark 10, we can write, for each j = 1, . . . , p,

∂n1+···+nl

∂Xn1
1 · · ·∂Xnl

l

(xm1
1 · · ·xml

l tj) =

=
n1

n1 + · · ·+ nl
· ∂n1+···+np−1

∂Xn1−1
1 · · ·∂Xnl

l

X1(x
m1
1 · · ·xml

l tj)+

+ · · ·+ nl

n1 + · · · + nl

· ∂n1+···+nl−1

∂Xn1
1 · · ·∂Xnl−1

l

Xl(x
m1
1 · · ·xml

l tj).(4.2)

Now, to achieve the thesis, it is sufficient to show that, for any n1, . . . , nl,
m1, . . . , ml = 0, 1, . . ., for each j = 1, . . . , p, we have:[

∂n1+···+nl

∂Xn1
1 · · ·∂Xnl

l

(xm1
1 · · ·xml

l tj)

]
(x1,...,xl,t1,...,tp)=(0,...,0)

= 0.

Indeed, if we apply, for each i = 1, . . . , l, the vector field Xi to xm1
1 · · ·xml

l tj ,
we getXi(x

m1
1 · · ·xml

l tj) = Xi(x
m1
1 · · · xml

l )tj+ xm1
1 · · · xml

l Xi(tj) :=(I)i+(II)i

and, by the induction hypothesis, it follows that any symmetrized derivation
in the right hand side of (4.2) applied to the respective (I)i is zero when
evaluated at the origin. So, we have[

∂n1+···+nl

∂Xn1
1 · · ·∂Xnl

l

(xm1
1 · · ·xml

l tj)

]
(x1,...,xl,t1,...,tp)=(0,...,0)

=

=
n1

n1 + · · ·+ nl
·
[

∂n1+···+nl−1

∂Xn1−1
1 · · ·∂Xnl

l

(
xm1

1 · · ·xml
l X1(tj)

)]
(x1,...,xl,t1,...,tp)=(0,...,0)

+ · · · · · · · · · · · · · · · · · · · · ·+

+
nl

n1 + · · ·+ nl

·
[

∂n1+···+nl−1

∂Xn1
1 · · ·∂Xnl−1

l

(
xm1

1 · · ·xml
l Xl(tj)

)]
(x1,...,xl,t1,...,tp)=(0,...,0)

.

(4.3)
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Now, taking into account the form of the vector field Xh we have, for each
fixed h = 1, . . . , l,

(4.4) Xh(tj) =
1

2
(bjh1x1 + · · ·+ bjhlxl).

Then, by Lemma 2, there exists at most one k ∈ {1, . . . , l} (suppose h ≤ k),
such that

(4.5) (n1, . . . , nh − 1, . . . , nk, . . . , nl) = (m1, . . . , mh, . . . , mk + 1, . . . , ml)

and, in turn, such that

nh

n1 + · · · + nl

· ∂n1+···+nl−1

∂Xn1 · · ·∂Xnh−1 · · ·∂Xnl

(
xm1

1 · · ·xml
l Xh(tj)

)
=

=
nh

n1 + · · ·+ nl

·

· ∂n1+···+nl−1

∂Xn1 · · ·∂Xnh−1 · · ·∂Xnl

(1

2
· bjhk · (xm1

1 · · ·xmh
h · · ·xmk+1

k · · ·xml
l )

)
=

1

2
· bjhk ·

m1! · · · (mh + 1)! · · · (mk + 1)! . . . , ml!

m1 + · · ·+ml + 2
.

To conclude the proof, we notice that (4.5) is equivalent to

(4.6) (n1, . . . , nh, . . . , nk − 1, . . . , nl) = (m1, . . . , mh + 1, . . . , mk, . . . , ml),

so, it suffices to observe that, by similar calculations on the term

nh

n1 + · · · + nl
· ∂n1+···+nl−1

∂Xn1 · · ·∂Xnk−1 · · ·∂Xnl−1

(
xm1

1 · · ·xml
l Xk(tj)

)
,

we obtain a pair of terms that cancel out since the matrices Bj are skew-
symmetric. Then, summing all terms in (4.3), we obtain zero, as desired. �
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