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Abstract

We study the vanishing of some Tori (M,R/J ) when R is a local Cohen–Macaulay ring, J any ideal
of R with R/J Cohen–Macaulay and M a finitely generated R-module. We use this result to study the
homological dimension of unions X ∪ Y of arithmetically Cohen–Macaulay closed subschemes of Pr . In
particular, we show that “generically” such a homological dimension is the expected one. We give some
generalization when one of the two schemes has codimension 2 and we apply this result to the monomial
case.
© 2006 Elsevier Inc. All rights reserved.
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Introduction

Let X,Y be two closed subschemes of the projective space Pr . A very naive question is to
relate properties of X and Y with properties of the union X ∪Y. For instance, in the book [MDP]
and in the paper [Mi], respectively for disjoint aCM curves in P3 and for disjoint aCM schemes
of codimension 2 and r − 1 in Pr , the authors are able to give precise results on the homological
dimension, on the deficiency module, on the Hilbert function, on the Betti numbers of the scheme
X ∪ Y. In a more general context, even the simplest question of computing the homological
dimension of X ∪ Y in terms of the homological dimensions of X and Y is not trivial and quite
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open, depending on the scheme X ∩ Y. For instance, if X and Y are complete intersections of
codimension c and d , respectively, with c + d � r + 1 and X ∩ Y is a complete intersection of
codimension c + d then hdR/IX ∩ IY � c + d − 1. Our results on this paper generalize both the
previous situations to aCM subschemes X, Y of any codimension c and d which meet properly,
i.e. with X ∩ Y of codimension c + d � r + 1 (Corollary 2.6). This result says, in particular, that
“generically” the homological dimension of the union of two aCM schemes is the aspected one
(see Theorem 2.7). In order to get the mentioned results we make use of a general result on the
vanishing of some TorRi (M,R/J ) where R is a local Cohen–Macaulay ring (see Theorems 1.3
and 2.1).

When only one of the two schemes X,Y is aCM, the question becomes more complicated
and we can give some result in case of codimension 2 for the aCM scheme X. Sometimes,
instead of working with IX∪Y = IX ∩ IY , it can be easier to give information on the homological
dimension of R/IXIY (see Theorem 2.10). Since in the reduced case, IX ∩ IY = √

IXIY , the
previous information can be used, essentially, whenever one can link the homological dimension
of an ideal J with the homological dimension of its radical

√
J . This is used here to get a result

on the homological dimension of union of monomial reduced 2-codimensional aCM schemes
(Theorem 2.11). These results will be applied in a next paper for discussing the homological
dimension of some special schemes which are union of linear varieties, in particular for studying
their Cohen–Macaulayness. These special schemes also arise on studying fat point schemes of
P2.

The generality of the result of Corollary 2.6 was obtained because of a lot of useful discussions
that the authors had with Silvio Greco which therefore they would like to thank deeply.

1. Vanishing of some Tor modules

This section is devoted to prove an algebraic result which will be applied in a geometrical
context in Section 2.

To start with we need the following lemma.

Lemma 1.1. Let R be a commutative ring with unit and let I, J,K ⊂ R be ideals. If I ⊆ √
J

then
√

(I + H)/H ⊆ √
(J + H)/H in the ring R/H .

Proof. The proof uses a standard argument of Commutative Algebra. �
Corollary 1.2. If

√
I = √

J then
√

(I + H)/H = √
(J + H)/H, in the ring R/H.

Proof. Trivial consequence of the previous lemma. �
Now we prove the main theorem of this section.

Theorem 1.3. Let R be a local Cohen–Macaulay ring and let J ⊂ R be an ideal such that R/J is
Cohen–Macaulay too. Furthermore, let M be a finitely generated R-module of finite homological
dimension such that

√
AnnR M �⊆ √

J . Then

TorRi (M,R/J ) = 0 for i � htJ + 1 + dimM/JM − depthM.
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Proof. Let

0 → Fc
ϕc−→ · · · ϕ2−→ F1

ϕ1−→ F0 → M → 0 (1)

be a minimal free resolution of M. Of course, TorRi (M,R/J ) = 0 for i � c + 1. Tensoring by
R/J we obtain the complex

0 → Fc ⊗ R/J
ϕ′

c−→ · · · ϕ′
2−→ F1 ⊗ R/J

ϕ′
1−→ F0 ⊗ R/J → M/JM → 0;

if we set F ′
i = Fi ⊗ R/J, we get the following complex of free R′ = R/J -modules

0 → F ′
c

ϕ′
c−→ · · · ϕ′

2−→ F ′
1

ϕ′
1−→ F ′

0.

Now we call F ′• the complex of free R′-modules

0 → F ′
c

ψu−−→ · · · ψ2−→ F ′
c−u+1

ψ1−→ F ′
c−u,

where u = ht(AnnR M + J ) − htJ and ψi = ϕ′
i+c−u for 1 � i � u. We would like to show that

F ′• is exact, using the Buchsbaum–Eisenbud criterion, see [BE].
At first we observe that I (ϕi) �⊆ J. Namely, I (ϕi) ⊆ J implies that

√
I (ϕi) ⊆ √

J ; but√
AnnR M ⊆ √

I (ϕ1) ⊆ √
I (ϕi) for every i � 1 (cf. [E, Corollary 20.12 and Proposition 20.7]),

i.e.
√

AnnR M ⊆ √
J and this contradicts our hypotheses. Consequently (I (ϕi) + J )/J �= 0,

hence rankϕ′
i = rankϕi. Trivially rankF ′

i = rankFi so the first condition of the criterion is sat-
isfied. Moreover we have that I (ψi) = (I (ϕi+c−u) + J )/J. To conclude that F ′• is exact it is
enough to show that depth I (ψi) � i for 1 � i � u. Now

√
(AnnR M + J )/J ⊆

√(
I (ϕi) + J

)
/J for 1 � i � c

⇒ √
(AnnR M + J )/J ⊆ √

I (ψi) for 1 � i � u

⇒ htR′(AnnR M + J )/J � htR′ I (ψi) for 1 � i � u

⇒ depthR′(AnnR M + J )/J � depthR′ I (ψi) for 1 � i � u,

since R′ is a Cohen–Macaulay ring. On the other hand,

depthR′(AnnR M + J )/J = htR′(AnnR M + J )/J = htR(AnnR M + J ) − htR J = u

⇒ depthR′ I (ψi) � u � i.

This implies the exactness of F ′•. Consequently TorRi (M,R/J ) = 0 for i � c − u + 1. But

u = htR(AnnR M + J ) − htR J = htR
(
AnnR(M/JM)

) − htR J,

since
√

AnnR(M/JM) = √
AnnR M + J (cf. [E, Proposition 10.8]), so
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c − u + 1 = hdM − htR
(
AnnR(M/JM)

) + htR J + 1

= (dimR − depthM) − dimR + dim(M/JM) + htR J + 1

= −depthM + dim(M/JM) + htR J + 1,

and consequently the requested vanishing of the TorRi ’s. �
2. Results on homological dimension

We would like to apply the previous result to the case of projective schemes.
Let k be an algebraically closed field, R := k[x0, . . . , xn] the polynomial ring and Pr = ProjR

the r-dimensional projective space. When X is a subscheme of Pr we denote by IX its defining
ideal. We are interested in studying the homological dimension of X ∪ Y, i.e. hdR/IX ∩ IY , in
terms of the homological dimensions of the given subschemes X and Y of Pr .

Of course, in order to treat the previous subject, we need to have information about the two
schemes and about their intersection. For instance, if X and Y are complete intersections of
codimension c and d, respectively, such that X ∩ Y is a complete intersection of codimension
c + d and r � c + d − 1 then hdR/IX ∩ IY = c + d − 1. The easy proof uses a mapping cone
computation.

On the other hand, it is well known that if C and D are two disjoint aCM curves in P3, then
ICID = IC ∩ ID = IC ⊗ ID, therefore one can deduce a minimal free resolution of IC∪D from
the minimal free resolutions of IC and ID (see [MDP]). This result is generalized in [Mi] to the
case of two disjoint aCM subschemes C and D of Pr of codimensions 2 and r − 1, respectively.

In some sense we would like to generalize these results to the case of aCM schemes in Pr of
any codimensions.

Theorem 2.1. Let X,Y be closed subschemes of Pr , with Y aCM and such that Yred � Xred.

Then

TorRi (R/IX,R/IY ) = 0 for i � hdR/IX + codimY − codim(X ∩ Y) + 1.

Proof. Apply Theorem 1.3 with M = R/IX and J = IY after localization of R = k[x0, . . . , xn]
at the irrelevant maximal ideal. �
Corollary 2.2. Let X,Y be aCM closed subschemes of Pr , such that Yred �⊆ Xred. Then

TorRi (R/IX,R/IY ) = 0 for i � codimX + codimY − codim(X ∩ Y) + 1.

Proof. A direct consequence of the previous result when X is an aCM scheme. �
Now would like to apply the previous results to give information on the homological dimen-

sion of unions of schemes.

Corollary 2.3. In the same hypotheses of Theorem 2.1

(1) if codim(X ∩ Y) � hdR/IX + codimY − 1 then IX ⊗R IY
∼= IXIY ;

(2) if codim(X ∩ Y) = hdR/IX + codimY then IX ⊗R IY
∼= IXIY

∼= IX ∩ IY .



A. Ragusa, G. Zappalà / Journal of Algebra 310 (2007) 41–48 45
Proof. Applying Theorem 2.1, if codim(X ∩ Y) � hdR/IX + codimY − 1 then TorRi (R/IX,

R/IY ) = 0 for i � 2 and if codim(X ∩ Y) = hdR/IX + codimY then TorRi (R/IX,R/IY ) = 0
for i � 1; so it is enough to remember that TorR2 (R/IX,R/IY ) is the kernel of the natural map
IX ⊗R IY → IXIY and TorR1 (R/IX,R/IY ) ∼= (IX ∩ IY )/IXIY . �
Corollary 2.4. In the same hypotheses of Theorem 1.3, if ht(AnnR M + J ) = hdM + htJ and
F• and G• are graded minimal free resolution of M and R/J, respectively, then TotF• ⊗R G•
is a graded minimal free resolution of M/JM. In particular hdM/JM = hdM + htJ.

Proof. The homology of the total complex

Hi(TotF• ⊗R G•) ∼= TorRi (M,R/J ) = 0, for i � 1,

by Theorem 1.3. So TotF• ⊗R G• is a graded resolution of M ⊗R R/J ∼= M/JM. Since F• and
G• are minimal resolutions, then TotF• ⊗R G• is a minimal resolution too, since the entries in
the matrices of TotF• ⊗R G• are entries of the matrices of F• and G•, i.e. they are non-units. �
Remark 2.5. If I, J are homogeneous ideals of the polynomial ring R, then the condition
ht(I + J ) = hdR/I + htJ is equivalent to the conditions that ht(I + J ) = ht I + htJ and R/I

is Cohen–Macaulay. In particular, Corollary 2.4 implies the classical result that the non-empty
proper intersection of two arithmetically Cohen–Macaulay subschemes X and Y is arithmetically
Cohen–Macaulay and that its minimal free resolution is the total complex of the tensor product
of the resolutions of X and Y. In this case, we also obtain the minimal free resolution of the union
X ∪ Y.

Corollary 2.6. Let X,Y ⊆ Pr be arithmetically Cohen–Macaulay subschemes such that
ht(IX + IY ) = ht IX + ht IY . Let F• and G• be graded minimal free resolution of R/IX and
R/IY , respectively, and we denote by F̃• and G̃• the graded minimal free resolutions of IX and
IY obtained from F• and G• by deleting the first module. Then Tot F̃• ⊗R G̃• is a graded minimal
free resolution of IX ∩ IY . In particular hdR/(IX ∩ IY ) = hdR/IX + hdR/IY − 1.

Proof. The homology of the total complex

Hi(Tot F̃• ⊗R G̃•) ∼= TorRi (IX, IY ) = Hi(F̃• ⊗R IY )

= Hi+1(F• ⊗R IY ) = TorRi+1(R/IX, IY ) = Hi+1(R/IX ⊗R G̃•)

= Hi+2(R/IX ⊗R G•) = TorRi+2(R/IX,R/IY ) = 0 for i � 1.

So Tot F̃• ⊗R G̃• is a graded resolution of IX ⊗R IY
∼= IX ∩ IY , by Corollary 2.3. Since F• and

G• are minimal resolutions, then Tot F̃• ⊗R G̃• is a minimal resolution too, since the entries in
the matrices of Tot F̃• ⊗R G̃• are entries of the matrices of F• and G•, i.e. they are non-units. �

The next proposition shows that “generically” the union of two aCM schemes of codimension
c and d in Pr (c + d � r + 1) has homological dimension c + d − 1.
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Theorem 2.7. Let P and Q two Hilbert polynomials admissible for aCM subscheme of Pr of
codimension c and d, respectively, with c + d � r + 1. Let SP ⊆ HP and SQ ⊆ HQ be the sub-
schemes of the Hilbert schemes parametrizing the aCM subschemes. Let R be the homogeneous
coordinate ring of Pr . Then there exists a non-empty open subset U ⊆ SP × SQ, such that for
any (s, t) ∈ U, hdR/IXs ∩ IYt = c + d − 1.

Proof. Let U = {(s, t) ∈ SP × SQ | codimXs ∩ Xt = c + d}. By the theorem on the semiconti-
nuity of fiber dimension it is an open set, trivially non-empty. The conclusion is a consequence
of Corollary 2.6. �

The next example shows that when the codimension of X ∩ Y is smaller than c + d , even if
the two schemes have no common component, it can happen that the homological dimension of
R/IX ∩ IY is greater than c + d − 1.

Example 2.8. Let R = k[x, y, z,w, t] be the coordinate ring of P4. Let us consider the ideals
I = (x, z)∩ (x,w)∩ (y, z) = (xy, xz, zw) and J = (t2, x2 −yz). I is the ideal of a cubic surface,
union of three planes and J is a complete intersection. Then a computer computation shows that
I ∩ J has graded minimal free resolution

0 → R(−8) → R(−6) ⊕ R(−7)4 → R(−5)6 ⊕ R(−6)4 → R(−4)7 → I ∩ J → 0,

i.e. hdR/I ∩ J = 4.

In order to investigate the case in which the codimension of X ∩ Y is smaller than c + d, we
will treat the case X an aCM scheme of codimension 2 and Y any scheme, not necessarily aCM.

In many questions about IX ∩ IY it is useful to have information on IXIY . Now since, in
this context, IX ⊗ IY is more easy to handle than IXIY , one can be interested in the case when
IXIY

∼= IX ⊗ IY .

Theorem 2.9. Let X,Y ⊂ Pr be two subschemes with X aCM of codimension 2 not containing
the support of any component of Y. Then IX ⊗ IY

∼= IXIY .

Proof. Since TorR2 (R/IX,R/IY ) is the kernel of the natural map IX ⊗R IY → IXIY , it is enough
to prove the vanishing of TorR2 (R/IX,R/IY ). Consider a minimal free resolution of R/IX

0 → F2 → F1 → R → R/IX → 0;

tensoring by R/IY we get the complex

0 → F2 ⊗ R/IY
f−→ F1 ⊗ R/IY → R ⊗ R/IY → 0
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from which we deduce that TorR2 (R/IX,R/IY ) ∼= Ker(f ). If we denote n = rank(F1) we see that
f : (R/IY )n−1 → (R/IY )n is the map induced by the Hilbert–Burch matrix A which defines IX.

Take (f 1, f 2, . . . , f n−1) ∈ Ker(f ) (here x means working in R/IY ); then, we have

A

⎛
⎜⎜⎝

f 1

f 2
...

f n−1

⎞
⎟⎟⎠ = 0

from which we have Aif j = 0, for all i = 1, . . . , n, j = 1, . . . , n − 1 and Ai, 1 � i � n, denote
the maximal minors of A. Lifting in R we have Aifj ∈ IY , for all i, j. This implies that fj IX ⊆
IY , i.e. fj ∈ IY : IX = IY since by the assumptions IX is not contained in any associated prime
ideal of IY . Hence f j = 0 for all j. Thus, Ker(f ) = 0 and therefore TorR2 (R/IX,R/IY ) = 0. �
Theorem 2.10. Let X,Y ⊂ Pr be two subschemes with X aCM of codimension 2 not containing
the support of any component of Y and hdR/IY = s. Then hdR/IXIY � s + 1.

Proof. By previous theorem we have IXIY
∼= IX ⊗R IY . Now, by hypothesis, R/IY has a mini-

mal free resolution

F• 0 → Fs → Fs−1 → ·· · → F1 → R.

Let

G• 0 → G2 → G1 → R

be a minimal free resolution of R/IX and consider the tensor product of the corresponding
minimal free resolutions F̃• and G̃• of IY and IX, i.e. the complex C• = Tot F̃• ⊗R G̃•. Since
Hi(C•) ∼= TorRi (IX, IY ), and TorRi (IX, IY ) is the ith homology module of the complex

0 → G2 ⊗ IY
α−→ G1 ⊗ IY → 0

we get Hi(C•) = 0 for i � 2. On the other hand, from the following exact diagram

0

0 IY ⊗ G2
f

α

G2

β

0 IY ⊗ G1
g

G1

we see that α is injective, i.e. H1(C•) ∼= TorR1 (IX, IY ) = 0 (see also [Mi, Lemma 1.1]). In conclu-
sion, C• is an exact complex, hence a free resolution for IX ⊗ IY ; then hd(IX ⊗ IY ) � s, hence
hd(R/IXIY ) � s + 1. �
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We now apply the previous results to give a bound to the homological dimension of some
monomial schemes.

Theorem 2.11. Let X1,X2, . . . ,Xn be reduced aCM subschemes of codimension 2 in Pr with
Xi and Xj having no common components for i �= j and such that their defining ideals IXi

are
monomial ideals for all i. Set R the homogeneous coordinate ring of Pr and Y = X1 ∪ X2 ∪
· · · ∪ Xn. Then

hd(R/IY ) � n + 1.

Proof. We use induction on n. For n = 1, Y = X1 is aCM of codimension 2, so hd(R/IY ) = 2.

Suppose now n > 1 and denote Z = X1 ∪X2 ∪ · · · ∪Xn−1. Then Y = Z ∪Xn and IY = IZ ∩ IXn

and hdR/IZ � n. By previous theorem we have that hdR/IZIXn � n + 1. Since Xi are reduced
we have that IZ ∩ IXn = √

IZIXn; using the monomial hypothesis for the first part of the proof
of Theorem 2.6 [HTT] we obtain hd(R/IZ ∩ IXn) � hd(R/IZIXn) � n + 1. �
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