A MULTIPLICITY THEOREM FOR A PERTURBED SECOND-ORDER NON-AUTONOMOUS SYSTEM

FRANCESCA FARACI AND ANTONIO IANNIZZOTTO

Department of Mathematics and Computer Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy (ffaraci@dmi.unict.it; iannizzotto@dmi.unict.it)

(Received 6 December 2004)

Abstract In this paper we establish a multiplicity result for a second-order non-autonomous system. Using a variational principle of Ricceri we prove that if the set of global minima of a certain function has at least k connected components, then our problem has at least k periodic solutions. Moreover, the existence of one more solution is investigated through a mountain-pass-like argument.

Keywords: multiple periodic solutions; second-order non-autonomous system; critical point theory

2000 Mathematics subject classification: Primary 34C25; 35A15

1. Introduction

In this paper we consider the second-order non-autonomous system

$$\begin{cases} \ddot{u} = \alpha(t)(Au - \nabla F(u)) + \lambda \nabla_x G(t, u), & \text{a.e. in } [0, T], \\ u(0) - u(T) = \dot{u}(0) - \dot{u}(T) = 0, \end{cases}$$
 (P_{\lambda})

where A is an $N \times N$ symmetric matrix satisfying

$$Ax \cdot x \geqslant c|x|^2$$
 for all $x \in \mathbb{R}^N$, (1.1)

where c is some positive constant. Assume that $\lambda > 0$, $\alpha \in L^{\infty}([0,T])$, $a = \text{ess inf}_{[0,T]}\alpha > 0$, $F: \mathbb{R}^N \to \mathbb{R}$ is continuously differentiable, and that $G: [0,T] \times \mathbb{R}^N \to \mathbb{R}$ is measurable in t for all $x \in \mathbb{R}^N$ and continuously differentiable in $x \in \mathbb{R}^N$ for a.e. $t \in [0,T]$. Moreover, assume

$$\sup_{|x| \le s} |\nabla_x G(\cdot, x)| \in L^1([0, T]) \quad \text{for every } s > 0, \quad G(\cdot, 0) \in L^1([0, T]). \tag{1.2}$$

It is well known (see [3]) that a solution of (P_{λ}) is a function $u \in C^{1}([0,T],\mathbb{R}^{N})$, with \dot{u} absolutely continuous, such that

$$\begin{cases} \ddot{u}(t) = \alpha(t)(Au(t) - \nabla F(u(t))) + \lambda \nabla_x G(t, u(t)), & \text{a.e. in } [0, T], \\ u(0) - u(T) = \dot{u}(0) - \dot{u}(T) = 0. \end{cases}$$

For the more general problem

$$\begin{cases} \ddot{u} = \nabla_x \phi(t, u), & \text{a.e. in } [0, T], \\ u(0) - u(T) = \dot{u}(0) - \dot{u}(T) = 0, \end{cases}$$

the existence of at least three solutions has previously been studied in [1], [6], [7] and [9] under the following assumption, firstly introduced by Brezis and Nirenberg: there exist r > 0 and an integer $k \ge 0$ such that

$$-\frac{1}{2}(k+1)^2 w^2 |x|^2 \leqslant \phi(t,x) - \phi(t,0) \leqslant -\frac{1}{2}k^2 w^2 |x|^2 \tag{1.3}$$

for each $|x| \leq r$, a.e. $t \in [0, T]$, where $w = 2\pi/T$.

The perturbed problem

$$\begin{cases} \ddot{u} = \nabla_x \phi(t, u) + \lambda \psi(t), & \text{a.e. in } [0, T], \\ u(0) - u(T) = \dot{u}(0) - \dot{u}(T) = 0 \end{cases}$$

was studied in [8], in which Tang proves the existence of at least three solutions, for $\lambda > 0$ small enough, under the stronger condition that there exist r > 0 and an integer $k \ge 0$ such that

$$-\mu|x|^2 \le \phi(t,x) - \phi(t,0) \le -\nu|x|^2 \tag{1.4}$$

for each $|x| \le r$, a.e. $t \in [0,T]$, where $\nu > \frac{1}{2}k^2w^2$, $\mu < \frac{1}{2}(k+1)^2w^2$ and $w = 2\pi/T$.

In this paper we prove a multiplicity result of the following type: for each integer k > 1, (P_{λ}) has, for λ small enough, at least k solutions.

Our main tool is a recent theorem by Ricceri [4, Theorem 6], which, for the convenience of the reader, we state here.

Theorem A. Let X be a reflexive and separable real Banach space and let $\Psi, \Phi: X \to \mathbb{R}$ be two functionals. Assume that there exists $r > \inf_X \Psi$ such that the set $\Psi^{-1}(]-\infty, r[)$ is bounded. Moreover, suppose that the functional Φ is bounded below in $(\overline{\Psi^{-1}(]-\infty, r[)})_w$ and the functional $\Psi + \lambda \Phi$ is sequentially weakly lower semicontinuous for each $\lambda \geqslant 0$ small enough. Finally, assume that the set $\Psi^{-1}(\inf_X \Psi)$ has at least k weakly connected components.

Then, there exists $\lambda_r > 0$ such that, for each $\lambda \in]0, \lambda_r[$, the functional $\Psi + \lambda \Phi$ has at least k τ_{Ψ} -local minima lying in $\Psi^{-1}(]-\infty, r[)$, where τ_{Ψ} is the smallest topology on X which contains both the weak topology and the family of sets $\{\Psi^{-1}(]-\infty, \rho[)\}_{\rho \in \mathbb{R}}$.

2. A multiplicity theorem

Let us introduce the space

$$H_T^1 = \{u : [0, T] \to \mathbb{R}^N \text{ absolutely continuous, } u(0) = u(T), \ \dot{u} \in L^2([0, T], \mathbb{R}^N)\}.$$

For all $u, v \in H^1_T$, define the scalar product as follows:

$$(u,v) = \int_0^T \dot{u}(t) \cdot \dot{v}(t) dt + \int_0^T \alpha(t) A u(t) \cdot v(t) dt.$$

The norm

$$||u|| = \left(\int_0^T |\dot{u}(t)|^2 dt + \int_0^T \alpha(t) Au(t) \cdot u(t) dt\right)^{1/2}$$

in H_T^1 is equivalent to the usual one thanks to condition (1.1).

Let us observe that H_T^1 is compactly embedded in $C^0([0,T],\mathbb{R}^N)$. Define, for each $u \in H_T^1$,

$$\Psi(u) = \frac{1}{2} ||u||^2 - \int_0^T \alpha(t) F(u(t)) \, \mathrm{d}t,$$

$$\Phi(u) = \int_0^T G(t, u(t)) \, \mathrm{d}t.$$

Clearly, Ψ is well defined, sequentially weakly continuous, and continuous together with its Gâteaux derivative. Moreover, from (1.2) we have

$$\sup_{|x| \le s} |G(\cdot, x)| \in L^1([0, T]) \quad \text{for every } s > 0.$$

Thus, it is easy to prove that Φ satisfies the same properties of $\Psi.$

We recall that u is a solution of (P_{λ}) if and only if $u \in H^1_T$ and it satisfies

$$\int_0^T \left[\dot{u}(t) \cdot \dot{v}(t) + \alpha(t) A u(t) \cdot v(t) - \alpha(t) \nabla F(u(t)) \cdot v(t) \right] \mathrm{d}t + \lambda \int_0^T \nabla_x G(t, u(t)) \cdot v(t) \, \mathrm{d}t = 0$$

for all $v \in H_T^1$, that is, if u is a critical point of $\Psi + \lambda \Phi$ in H_T^1 . Our result reads as follows.

Theorem 2.1. Let α , A, F, G be as in § 1. Assume that

- (i) $\limsup_{|x| \to +\infty} \frac{F(x)}{|x|^2} < \frac{1}{2}c;$
- (ii) the set of global minima of the function $H(x) = \frac{1}{2}Ax \cdot x F(x)$ has at least k connected components in \mathbb{R}^N $(k \ge 2)$.

Then, for every $r > \|\alpha\|_{L^1} \inf_{\mathbb{R}^N} H$, there exists $\lambda_r > 0$ such that, for every $\lambda \in]0, \lambda_r[$, (P_{λ}) has at least k solutions in $\Psi^{-1}(]-\infty, r[)$.

Proof. Set $X = H_T^1$. Let us show that the functionals Ψ and Φ defined above satisfy the hypotheses of Theorem A. The functional $\Psi + \lambda \Phi$ is sequentially weakly continuous for each $\lambda \geqslant 0$. We now prove that Ψ is coercive: let σ be a positive number such that

$$\lim \sup_{|x| \to +\infty} \frac{F(x)}{|x|^2} < \sigma < \frac{1}{2}c.$$

Then $F(x) < \sigma |x|^2 + m$ for all $x \in \mathbb{R}^N$, for some constant m, and

$$\begin{split} \Psi(u) &\geqslant \frac{1}{2} \int_{0}^{T} |\dot{u}(t)|^{2} dt + \frac{1}{2} \int_{0}^{T} \alpha(t) A u(t) \cdot u(t) dt - \int_{0}^{T} \alpha(t) (\sigma |u(t)|^{2} + m) dt \\ &\geqslant \frac{1}{2} \int_{0}^{T} |\dot{u}(t)|^{2} dt + \left(\frac{1}{2} - \frac{\sigma}{c}\right) \int_{0}^{T} \alpha(t) A u(t) \cdot u(t) dt - m \|\alpha\|_{L^{1}} \\ &\geqslant \left(\frac{1}{2} - \frac{\sigma}{c}\right) \|u\|^{2} - m \|\alpha\|_{L^{1}}, \end{split}$$

which implies that $\Psi(u)$ tends to infinity as ||u|| goes to infinity.

Specifically, from the coercivity of Ψ it follows that for every $r > \|\alpha\|_{L^1} \inf_{\mathbb{R}^N} H$ the set $\Psi^{-1}(]-\infty, r[)$ is bounded. Moreover, we note that the restriction of Φ to the sequentially weakly compact set $(\overline{\Psi}^{-1}(]-\infty, r[))_w$ has a global minimum.

We claim that

$$\inf_{X} \Psi = \|\alpha\|_{L^{1}} \inf_{\mathbb{R}^{N}} H.$$

In fact, for all $u \in X$ we have

$$\Psi(u) \geqslant \frac{1}{2} \int_0^T \alpha(t) A u(t) \cdot u(t) dt - \int_0^T \alpha(t) F(u(t)) dt$$
$$= \int_0^T \alpha(t) H(u(t)) dt \geqslant \|\alpha\|_{L^1} \inf_{\mathbb{R}^N} H.$$

Let us denote by M the set of global minima of H in \mathbb{R}^N . If $x_0 \in M$, then the function defined by putting $u_0(t) = x_0$ belongs to X and

$$\Psi(u_0) = \int_0^T \alpha(t) H(u_0(t)) dt = \|\alpha\|_{L^1} \inf_{\mathbb{R}^N} H.$$

Thus, our claim is proved.

We note that, if $u \in X$ is not constant, then $|\dot{u}| > 0$ on some set of positive measure, hence it cannot be a global minimum of Ψ , and the same is true for constant functions whose value does not belong to M.

Let $\gamma: \mathbb{R}^N \to X$ be the function that maps $x \in \mathbb{R}^N$ into the constant function u(t) = x in X: γ is then a homeomorphism between \mathbb{R}^N and $\gamma(\mathbb{R}^N)$ (endowed with the relativization of the weak topology). The set of global minima of Ψ is equal to $\gamma(M)$; hence it has at least k weakly connected components.

By applying Theorem A we deduce for every $r > \|\alpha\|_{L^1} \inf_{\mathbb{R}^N} H$ the existence of $\lambda_r > 0$ such that, for every $\lambda \in]0, \lambda_r[$, the functional $\Psi + \lambda \Phi$ has at least k τ_{Ψ} -local minimalying in $\Psi^{-1}(]-\infty, r[)$.

Since Ψ is continuous, the topology τ_{Ψ} is weaker than the strong topology in X, and every τ_{Ψ} -local minimum is also a strong local minimum, and so a critical point of $\Psi + \lambda \Phi$. The proof is now complete.

Theorem 2.2. Let α , A, F, G be as in $\S 1$, and let assumptions (i) and (ii) of Theorem 2.1 be satisfied. Moreover, assume that

$$\text{(iii)} \ \liminf_{|x|\to +\infty} \frac{\mathrm{ess\ inf}_{[0,T]}\,G(t,x)}{|x|^2} > -\infty.$$

Then, for every $r > \inf_{\mathbb{R}^N} H \|\alpha\|_{L^1}$ there exists $\lambda_r^* > 0$ such that, for every $\lambda \in]0, \lambda_r^*[$, (P_{λ}) has at least k+1 solutions, k of which lie in $\Psi^{-1}(]-\infty, r[)$.

Proof. Let us show that, for $\lambda > 0$ small enough, $\Psi + \lambda \Phi$ is coercive. From the proof of Theorem 2.1 we already know that

$$\varPsi(u)\geqslant \left(\frac{1}{2}-\frac{\sigma}{c}\right)\lVert u\rVert^2-m\lVert \alpha\rVert_{L^1}.$$

Then, there exist b < 0 and s > 0 such that

$$G(t,x) > b|x|^2$$

for |x| > s and a.e. $t \in [0, T]$, while

$$g = \sup_{|x| \le s} |G(\cdot, x)| \in L^1([0, T]).$$

Summarizing, for all $x \in \mathbb{R}^N$ and a.e. $t \in [0, T]$ we have

$$G(t,x) \geqslant b|x|^2 - g(t),$$

which implies that

$$\begin{split} \varPhi(u) &\geqslant \int_0^T (b|u(t)|^2 - g(t)) \, \mathrm{d}t \\ &\geqslant \frac{b}{ac} \int_0^T \alpha(t) A u(t) \cdot u(t) \, \mathrm{d}t - \|g\|_{L^1} \\ &\geqslant \frac{b}{ac} \|u\|^2 - \|g\|_{L^1} \end{split}$$

and so

$$\varPsi(u) + \lambda \varPhi(u) \geqslant \left[\left(\frac{1}{2} - \frac{\sigma}{c} \right) + \lambda \frac{b}{ac} \right] \lVert u \rVert^2 - m \lVert \alpha \rVert_{L^1} - \lambda \lVert g \rVert_{L^1}.$$

Set

$$\lambda_r^* = \min \left\{ \lambda_r, -\frac{ac}{b} \left(\frac{1}{2} - \frac{\sigma}{c} \right) \right\},\,$$

where λ_r is as in Theorem 2.1. Then, for all $\lambda \in]0, \lambda_r^*[$, the functional $\Psi + \lambda \Phi$ admits at least k local minima and is coercive. Thus, $\Psi + \lambda \Phi$ satisfies the Palais–Smale condition, as it is the sum of $\frac{1}{2}||u||^2$, whose derivative is a homeomorphism between H_T^1 and its dual, and of a functional with compact derivative. From [2] it follows that $\Psi + \lambda \Phi$ admits one more critical point.

Remark 2.3. As seen in the proof of Theorem 2.2, the existence of k+1 solutions follows essentially from the Palais–Smale condition, and the latter is proved through the coercivity of the functional. By using another standard argument, we could assume that there exist q > 2 and R > 0 such that, for λ small enough,

$$0 < q[\alpha(t)F(x) - \lambda G(t,x)] \le [\alpha(t)\nabla F(x) - \lambda \nabla_x G(t,x)] \cdot x \tag{2.1}$$

for a.e. $t \in [0,T]$ and for every x with |x| > R. This implies, as λ tends to zero, that

$$0 \le qF(x) \le \nabla F(x) \cdot x$$
.

Now, if there is some x_1 such that $|x_1| > R$, $F(x_1) > 0$ and

$$F(x) < \frac{1}{2}c|x|^2 \tag{2.2}$$

for all $|x| > |x_1|$, then it is easy to prove that the function

$$\mu \to |\mu x_1|^{-q} F(\mu x_1)$$

is non-decreasing for $\mu \geqslant 1$ and so

$$F(\mu x_1) \geqslant |x_1|^{-q} F(x_1) |\mu x_1|^q$$

which together with (2.2) gives a contradiction.

No contradiction arises, however, if we assume that F(x) = 0 for all $x \in \mathbb{R}^N$, |x| > R (so condition (i) is obviously satisfied), together with (ii) and condition (2.1), which becomes

$$\nabla_x G(t,x) \cdot x \leqslant qG(t,x) < 0.$$

In this case we get k+1 solutions for $\lambda > 0$ small enough.

In the case N=1, (P_{λ}) becomes

$$\begin{cases} u'' = \alpha(t)(u - F'(u)) + \lambda G_x(t, u), & \text{a.e. in } [0, T], \\ u(0) - u(T) = u'(0) - u'(T) = 0. \end{cases}$$
 (P'_{λ})

The following result, whose proof is analogous (with minor changes) to that of Theorem 1 in [5], yields the existence of k+1 solutions with no additional hypotheses on G.

Theorem 2.4. Let α , F, G be as in § 1 (with N=1). Assume that

(iv)
$$\lim_{|x| \to +\infty} \frac{F'(x)}{x} = 0;$$

(v) the set of global minima of the function $H(x) = \frac{1}{2}x^2 - F(x)$ has at least k connected components in \mathbb{R} $(k \ge 2)$.

Then, for every $r > \|\alpha\|_{L^1} \inf_{\mathbb{R}} H$ there exists $\lambda_r > 0$ such that, for every $\lambda \in]0, \lambda_r[$, (P'_{λ}) has at least k+1 solutions, k of which satisfy

$$\frac{1}{2} \int_0^T |u'(t)|^2 dt + \int_0^T \alpha(t) \left(\frac{1}{2} |u(t)|^2 - F(u(t))\right) dt < r.$$
 (2.3)

3. Examples

In the following examples α and G are as in §1, while the function F is chosen in order to satisfy assumptions (i) and (ii).

Example 3.1. Let A be the identity matrix (c = 1), let $f \in C^1([0, +\infty[)$ be a periodic function such that $f(0) > b = \inf_{\mathbb{R}} f$, and let $q \in]0,1[$ and $p \in [2, +\infty[$. Define F as follows:

$$F(x) = \begin{cases} \frac{1}{2}|x|^2 - (f(|x|^{-q}) - b)|x|^p & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

Clearly, $F \in C^1(\mathbb{R}^N)$. If p = 2, we get

$$\lim_{|x| \to +\infty} \sup_{|x| \to +\infty} \frac{F(x)}{|x|^2} = \frac{1}{2} - f(0) + b < \frac{1}{2},$$

while, if p > 2,

$$\lim_{|x| \to +\infty} \frac{F(x)}{|x|^2} = -\infty.$$

So (i) is satisfied.

The function H, here, is given by

$$H(x) = (f(|x|^{-q}) - b)|x|^{p}.$$

H is non-negative and the set of its global minima is $\{x \in \mathbb{R}^N : f(|x|^{-q}) = b\} \cup \{0\}$, which has infinitely many connected components.

Then, for every $k \ge 2$, (P_{λ}) has at least k solutions for λ small enough.

Remark 3.2. The function F in Example 3.1 depends only on the norm of vector x. The thesis holds if we replace $|x|^p$ with $(|x_1| + |x_2| + \cdots + |x_N|)^p$ in the definition of F.

Remark 3.3. It is also clear that the problem considered in Example 3.1 does not satisfy condition (1.4). In fact, in this case, $\phi(t,x) = \alpha(t)(\frac{1}{2}|x|^2 - F(x))$. So, specifically, for all $x \in \mathbb{R}^N$, $x \neq 0$,

$$\frac{\phi(t,x) - \phi(t,0)}{|x|^2} \geqslant a(f(|x|^{-q}) - b)|x|^{p-2} \geqslant 0.$$

Example 3.4. Let $\varphi_1, \varphi_2, \dots, \varphi_k \in C^1([0, +\infty[, \mathbb{R})])$ be functions such that

- (1) for all $i \in \{1, 2, \dots k\}, \varphi_i^{-1}(0) \neq \emptyset$;
- (2) for all $i, j \in \{1, 2, \dots k\}, i \neq j, \varphi_i^{-1}(0) \cap \varphi_i^{-1}(0) = \emptyset;$

(3)
$$\lim_{\rho \to \infty} \frac{1}{\rho} \prod_{i=1}^{k} (\varphi_i(\rho))^2 = +\infty.$$

Then the problem

$$\begin{cases} \ddot{u} = 4\alpha(t) \left(\sum_{i=1}^{k} \varphi_i(|u|^2) \varphi_i'(|u|^2) \prod_{j \neq i} (\varphi_j(|u|^2))^2 \right) u + \lambda \nabla_x G(t, u), & \text{a.e. in } [0, T], \\ u(0) - u(T) = \dot{u}(0) - \dot{u}(T) = 0 \end{cases}$$
(P_{\lambda})

has at least k solutions for $\lambda > 0$ small enough. It can immediately be seen that parts (i) and (ii) of Theorem 2.1 are satisfied: specifically, $x \in \mathbb{R}^N$ is a global minimum of the function $H(x) = \prod_{i=1}^k (\varphi_i(|x|^2))^2$ if and only if $\varphi_i(|x|^2) = 0$ for some $i \in \{1, 2, \dots k\}$.

We would like to emphasize that, for λ not sufficiently small, with all the other assumptions of our theorem fulfilled, the thesis may fail, as the following counterexample shows.

Example 3.5. Let us consider the one-dimensional problem

$$\begin{cases} u'' = u - F'(u) + \lambda G'(u), & \text{a.e. in } [0, T], \\ u(0) - u(T) = u'(0) - u'(T) = 0, \end{cases}$$
 (Q_{\lambda})

where the function F is defined by

$$F(x) = \frac{1}{2}x^2 - \frac{1}{4}d_1x^4 - \frac{1}{2}d_2x^2$$

and $d_1 > 0$, $d_2 < 0$. Clearly, F satisfies (i), as

$$\lim_{|x| \to +\infty} \frac{F(x)}{x^2} = -\infty.$$

The function

$$H(x) = \frac{1}{4}d_1x^4 + \frac{1}{2}d_2x^2$$

admits two global minima. Choose

$$G(x) = \frac{1}{2}x^2.$$

The problem (Q_{λ}) reads as follows:

$$\begin{cases} u'' = d_1 u^3 + (d_2 + \lambda)u, & \text{a.e. in } [0, T], \\ u(0) - u(T) = u'(0) - u'(T) = 0. \end{cases}$$

Theorem 2.2 provides the existence of at least three solutions for λ small enough. Specifically, if $\lambda < -d_2$, (Q_{λ}) has at least three solutions (the constant functions corresponding to the critical points of $H + \lambda G$). If $\lambda \ge -d_2$, (Q_{λ}) has only the trivial solution u = 0, since no non-constant function u can be a solution. In fact, if there exists $t_1 \in]0, T[$ such that $u(t_1) > 0$, then we get

$$\max_{[0,T]} u = u(t^*) > 0,$$

hence

$$0 \geqslant u''(t^*) = u(t^*)[d_1u(t^*)^2 + (d_2 + \lambda)] > 0,$$

a contradiction (analogously, a contradiction is reached if $u(t_1) < 0$).

Acknowledgements. The authors thank Professor Ricceri for useful suggestions.

References

- H. Brezis and L. Nirenberg, Remarks on finding critical points, Commun. Pure Appl. Math. 44 (1991), 939–963.
- N. Ghoussoub and D. Preiss, A general mountain pass principle for locating and classifying critical points, Annls Inst. H. Poincaré Analyse Non Linéaire 6 (1989), 321– 330.
- 3. J. MAWHIN AND M. WILLEM, Critical point theory and Hamiltonian systems (Springer, 1989).
- 4. B. RICCERI, Sublevel sets and global minima of coercive functionals and local minima of their perturbations, *J. Nonlin. Convex Analysis* 5(2) (2004), 157–168.
- B. RICCERI, A multiplicty theorem for the Neumann problem, Proc. Am. Math. Soc., in press.
- C. L. Tang, Existence and multiplicity of periodic solutions of nonautonomous second order systems, *Nonlin. Analysis* 32 (1998), 299–304.
- C. L. TANG, Periodic solutions of nonautonomous second order systems with sublinear nonlinearity, Proc. Am. Math. Soc. 126(11) (1998), 3263–3270.
- 8. C. L. Tang, Multiplicity of periodic solutions for second order systems with a small forcing term, *Nonlin. Analysis* **38**(4) (1999), 471–479.
- 9. C. L. TANG AND X. P. Wu, Periodic solutions for second order systems with not uniformly coercive potential, *J. Math. Analysis Applic.* **259**(2) (2001), 386–397.

