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Genomic profiling of cortical neurons following exposure to β-amyloid
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Abstract

In vitro and in vivo studies have shown that β-amyloid peptide induces neuronal cell death. To explore the molecular basis underlying β-
amyloid-induced toxicity, we analyzed gene expression profiles of cultured rat cortical neurons treated for 24 and 48 h with synthetic β-amyloid
peptide. From the 8740 genes interrogated by oligonucleotide microarray analysis, 241 genes were found to be differentially expressed and
segregated into distinct clusters. Functional clustering based on gene ontologies showed coordinated expression of genes with common biological
functions and metabolic pathways. The comparison with genes differentially expressed in cerebellar granule neurons following serum and
potassium deprivation indicates the existence of common regulatory mechanisms underlying neuronal cell death. Our results offer a genomic view
of the changes that accompany β-amyloid-induced neurodegeneration.
© 2006 Elsevier Inc. All rights reserved.
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During normal nervous system development, physiologi-
cally appropriate neuronal loss contributes to a sculpting
process that removes approximately one-half of all neurons
born during neurogenesis [1]. Neuronal loss subsequent to this
developmental window is physiologically inappropriate for
most systems and can contribute to neurological deficits, e.g.,
neurodegenerative diseases such as Alzheimer disease (AD).
Elucidating the molecular mechanisms underlying neuronal
death hence will contribute to our understanding of basic
developmental biology and human neuropathology.

Changes in the generation or degradation of the β-amyloid
peptide (Aβ) are considered the triggering molecular events in
the pathogenic cascade that leads to neuronal loss in AD. Aβ, in
particular, has been shown to induce neuronal cell death in
many in vitro and in vivo studies [2–12]. Because Aβ-induced
neuronal cell death may be facilitated by altered gene
expression and because genes induced by Aβ may be integral
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to neuropathological changes observed in AD brain, elucidating
patterns of gene expression during neuronal death may be
critical to our understanding of Aβ-induced neurotoxicity.
Although previous studies implicated individual genes or
genetic pathways following exposure to Aβ, their collective
behavior is mostly unknown.

In view of the broad variety of genes and the cross talk of
genetic pathways, gene expression profiles by microarray
technology today offer a new dynamic and functional dimen-
sion to the exploration of neurodegeneration. In a previous
study we used genome-scale screening by oligonucleotide
microarrays to characterize the multigenic program underlying
degeneration of cerebellar granule neurons following serum and
potassium deprivation [13]. In the present study we used a
similar approach to investigate gene expression profiles of
cultured cortical neurons exposed to Aβ.

Results

To study the neurotoxic effect of Aβ we used enriched
neuronal cultures containing less than 5% astrocytes (Fig. 1A).
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Fig. 1. Primary cultures of rat cortical neurons used to study the neurotoxic effect of Aβ. (A) Double labeling for NeuN and GFAP. To determine the purity of primary
cultures of cortical neurons, cells were double labeled for neuron-specific NeuN (Texas red, red signal) and astrocyte-specific GFAP (fluorescein, green signal). (B)
Neurons showing typical morphological features of apoptotic degeneration following Aβ 1–40 treatment were analyzed with the nuclear dye Hoechst 33258. (C and
D). Viability of neurons assessed by fluorescein/propidium staining. Neurons exposed to 20 μM Aβ 1–40 were not able to sequester fluorescein but showed staining
with propidium iodide, an effect consistent with cell degeneration. Exposure of neurons to the reversed Aβ peptide (Aβ 40–1) did not cause any significant
degenerative change. In total, 400 cells were counted for each treatment. Data are means±SE. *p<0.05 vs control (vehicle and Aβ 40–1-treated neurons). (E)
Induction of the apoptosis-related Bax. Western blot analysis was used to assess the expression of the proapoptotic Bax and the structural protein β-actin in neurons
treated with Aβ 1–40 for 40 h. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Some neurons exposed to 20 μM Aβ 1–40 showed typical
features of apoptotic degeneration, including chromatin con-
densation and fragmentation, when analyzed by fluorescence
microscopy with the nuclear dye Hoechst 33258 (Fig. 1B). A
significant reduction in their ability to sequester fluorescein and
an increased staining with propidium iodide, two effects that are
consistent with cell death, were also evident after Aβ 1–40
treatment (Figs. 1C and D). Exposure of neurons to vehicle or
the reversed peptide (Aβ 40–1) did not cause any significant
degenerative change (Figs. 1C and D). Finally, another cell-
death-related effect was the induction of the proapoptotic Bax
40 h after Aβ 1–40 treatment (Fig. 1E).

By using oligonucleotide microarrays we monitored mRNA
expression profiles in cortical neurons exposed for 24 or 48 h to
vehicle, 20 μMAβ 1–40, or 20 μMAβ 40–1. Among the 8740
genes interrogated by the microarrays, 241 genes showed
significant changes following Aβ 1–40 but not Aβ 40–1
treatment. Among these, 71 were down-regulated and 34 up-
regulated at 24 h, whereas 80 genes were down-regulated and
59 were up-regulated at 48 h.

Although our data represented the average gene expression from
three separate microarray analyses, we confirmed the reliability of
the array data by quantitatively validating the differential
expression of five genes under each of the six experimental
conditions using real-time quantitative reverse transcription–
polymerase chain reaction (RT-PCR) (Table 1). Remarkably, the
pattern of gene expression from sample to sample observed by
microarrays closely paralleled the pattern observed using real-time
RT-PCR. The mean±STD of the correlation coefficients between
the two profiles is 0.97±0.01 (Table 1).

A hierarchical clustering method was used to group genes
differentially expressed after exposure to Aβ on the basis of
similarity in their expression patterns (Fig. 2). Genes segregat-
ing into four major branches of the dendrogram were assigned
to four clusters. Clusters 1 and 2 represent those genes that were
up-regulated, whereas clusters 3 and 4 differentiate those genes
that were down-regulated after exposure to Aβ.

Among the 241 genes differentially expressed in cortical
neurons after exposure to Aβ, 190 were assigned to functional
categories and subcategories (Fig. 3) and to subcellular
compartments (Fig. 4) based on their translated products.

Discussion

Some of the genes implicated in the present study have been
previously associated with neuronal cell death, whereas others
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provide a significant number of unique and novel entry points. In
many cases, genes with common biological functions or in the
samemetabolic pathway showed coordinated expression. For this
reason, in the following paragraphs we will discuss some of the
genes implicated bymicroarray analysis, givingmore emphasis to
functional clusters of coregulated genes and pathways.

Apoptosis regulators

Among those genes that are conventionally designated as
apoptosis regulators, we observed the differential expression of
Bcl-2 and BTB (POZ) domain-containing 14B, two genes
involved in triggering apoptosis [14]; annexin A5, which binds
to cells undergoing programmed cell death [15]; and death-
associated protein [16].

Cell-to-cell contact

A large number of genes encoding extracellular matrix
proteins were differentially expressed in apoptotic cortical
neurons and may reflect an extensive morphological remodel-
ing that neurons undergo when exposed to β-amyloid. Some of
the up-regulated genes (biglycan, tenascin-C, and lysyl oxidase)
have been previously linked to neuronal survival, repair
processes, and peripheral nerve regeneration [17,18], whereas
those down-regulated (syndecan-4, neogenin, chondroitin
sulfate proteoglycan 2, collagen type V α1, and integrin β4)
were previously involved in apoptosis [19,20], neurological
diseases, and plasticity [21,22].

Cellular cycle

The increase in growth arrest-specific 5 and growth arrest
and DNA-damage-inducible 45α (gadd45) is consistent with
the role of these gene families (gas and gadd) in the regulation
of the cell death program and DNA repair [23,24]. The up-
regulation of gadd45 has been previously reported in neurons
exposed to Aβ [25] and in brain tissue obtained from patients
suffering from Alzheimer disease [24]. Additionally, cell lines
overexpressing this protein confer resistance to apoptosis [24].
Taken together, therefore, these data substantiate a role for
gadd45 in the response (damage/recovery) to Aβ neurotoxicity.

Metabolism

Glutathione metabolism
Differential expression of genes involved in glutathione

metabolism (glutathione reductase, glutamate-cysteine ligase,
and 5-oxoprolinase) is concordant with the hypothesis of an
altered glutathione-dependent antioxidant capacity during
apoptosis and neurodegeneration [26–28].

Heme metabolism
Altered expression of two genes, heme oxygenase-1 and

hydroxymethylbilane synthase, in cortical neurons exposed to
Aβ confirms previous findings showing a relationship between
heme turnover and neurodegeneration [29–31]. Increase in



471S. Paratore et al. / Genomics 88 (2006) 468–479
heme oxygenase-1, in particular, has been also found in
Alzheimer disease [32].

Fatty acid and lipid metabolism
The increased expression of carnitine palmitoyltransferase

1b, an enzyme involved in β-oxidation of fatty acid, may
reflect an increased demand for energy production and
parallels similar changes we have previously observed in
cerebellar granule cells undergoing apoptosis following serum
and potassium deprivation [13].

In neurons exposed to Aβ we also observed the increased
expression of three genes involved in lipid metabolism
(phospholipid scramblase 3, sialyltransferase 4B, and apolipo-
protein L3) that have been previously linked to neurodegenera-
tion and Alzheimer disease [33–35]. Conversely, down-
regulation of carboxyl ester lipase and carboxylesterase 1 is
concordant with their protecting role [36,37].

Metal binding
Increased expression of metallothionein 1a is consistent with

its ability to protect neurons in CNS injury and repair [38].

Protein folding
Heat shock proteins act as molecular chaperones by

assisting other proteins in folding, transport, and assembly
into complexes. Differential expression of heat shock proteins
constitutes a fundamental protective mechanism that allow
cells to escape the otherwise inevitable engagement of cell
death [39]. Consistent with this hypothesis, we observed al-
tered expression of crystallin βA4, crystallin γE, α-crystallin-
related B6, and DnaJ homolog, which are known to regulate
apoptosis and underlie the pathogenesis of degenerative dis-
eases [40,41].

Sterol biosynthesis
Altered expression of genes involved in sterol biosynthesis,

such as mevalonate kinase, may reflect alteration of cholesterol
homeostasis that has been related to the pathogenesis of
Alzheimer disease [42].

Thyroid hormone
Intracellular concentrations of the thyroid hormones T4 and T3

are influenced by the activity of thyroxine deiodinases (TD). TD-
III, in particular, catalyzes the degradation of both T4 and T3 to
inactive derivatives. The observed increase in TD-III in cortical
neurons exposed toAβmay facilitate cell death by influencing the
intracellular rates of T4-to-T3 conversion and confirms our
previous findings in apoptotic cerebellar granule cells [13,43].

Signal transduction

G-protein-coupled receptors
Differential expression of several genes encoding G-protein-

coupled receptors was observed in cortical neurons following
Aβ treatment. Among these are the adrenergic receptor α2c and
five different olfactory receptors that have been previously
associated with programmed cell death [44,13].
Intracellular signaling
Decreased expression of inositol 1,4,5-triphosphate receptor

1 has been reported in several neurodegenerative diseases,
including Alzheimer disease, Huntington chorea, and ischemia
[45–47], all conditions in which neuronal loss occurs.

Differential expression of various kinases that are known to
modulate cellular growth and cell death was observed in
neurons exposed to Aβ. Reduced expression of PKC-γ, for
example, confirms its protective role against cell death [48].
Increased expression of MAP kinase-activated protein kinase 2
has been previously reported following Aβ overproduction
[49]. Decreased expression of GTP cyclohydrolase I has been
previously linked to Alzheimer and Parkinson disease [50,51].

Reduced expression of afamin is in agreement with its
protective role against Aβ-induced cell death of cortical
neurons [52].

Ion homeostasis and ligand-gated ion channels
We observed the differential expression of a number of genes

encoding proteins involved with potassium (Kctd13, Kcnj4),
sodium (Scn11a), calcium (Cacnb1, Cacnb3, Chrna9, P2rx3),
and chloride (Glra2, Clcn5) transport. As previously indicated,
alterations in the transmembrane gradients of these ions may
influence programmed cell death [53].

Secreted peptides and their receptors
Four genes (leukemia-inhibitory factor, secreted phospho-

protein 1, transforming growth factor-β receptor 3, and noggin)
encoding key proteins implicated in the transforming growth
factor-β (TGF-β) signaling pathway were differentially
expressed in neurons exposed to Aβ. Activity of these proteins
[54–59] and the TGF-β signaling pathway [60–64] is known to
exert neuroprotective effects and prevent cell death.

Decreased expression of somatostatin has been previously
related to Alzheimer disease [65]. Reduced expression of
neurotrophin-5 and neurotrophic tyrosine kinase receptor type 3
is consistent with their neuroprotective role [66,54].

Increased expression of lipocalin 2 is in agreement with other
studies showing its proapoptotic effect [67–69].

The coordinated reduction of glucose-dependent insulino-
tropic peptide (GIP) and its receptor mRNAs was observed in
cortical neurons 48 h after Aβ treatment. Although mitogenic
and antiapoptotic signaling of GIP has been demonstrated only
in pancreatic β cells [70], their wide expression in brain [71,72]
may support a neuroprotective role.

Transcription or translation regulation

Among transcription factors we observed the altered
expression of USF1 [73], Max [74], Ciao1 [75], Mdm2 [76],
and Nr3c2 [77], which have been previously involved in
apoptotic cell death in the nervous system.

Conclusions

While demonstrating the utility of a cDNA-microarray
system as a means of dissecting the multigenic program
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underlying Aβ-induced cell death, the data presented represent
just a glimpse of this complex phenomenon. It should be
emphasized that the microarray provides estimates of changes
in mRNA levels that cannot be correlated with the amount and
function of the gene products. Translation and posttranslational
modifications of many gene products and protein turnover have
dramatic effects on function, and these cannot be inferred from
expression analysis alone.

Most of the gene expression changes observed in the present
study, having a larger or smaller specific weight,may contribute to
the development of life or death. The exact role and functional
relationships of the genes implicated are presumably those we
cannot yet recognize. Gene expression profiles unlock virtually
unexplored frontiers and we will learn as we explore them.
Systematic characterization of expression patterns associatedwith
neuronal cell death under different pathophysiological conditions
and in distinct temporal domains will provide a framework for
interpreting the biological significance of the expression patterns
observed in the present study. We have just begun such a
challenging task by characterizing gene expression profiles in
cerebellar granule cells following serum and potassium depriva-
tion [13]. Among the genes implicated in this model of neuronal
cell death, 33 were in commonwith those differentially expressed
in cortical neurons following Aβ exposure (shown in bold in Fig.
3 and in Supplementary, Table 1). Although preliminary, these
data suggest the existence of both common and diverse
mechanisms responsible for neuronal cell death. Knowledge of
the mechanisms and pathways that are associated with neuronal
cell death and are aberrant in pathological conditionswill pave the
way to new and effective therapeutic approaches.
Materials and methods

Materials

All the substances were obtained from Sigma unless otherwise specified.
Aβ 1–40 and Aβ 40–1 were obtained from Bachem (Bachem, Torrance, CA,
USA). Peptides were dissolved in water at a 1 mM concentration; 3 days
before the experiment they were diluted with phosphate-buffered saline (PBS)
at 500 mM and kept at 37°C until added to the cultures.

Animals

Pregnant Wistar rats (Charles River, Lecco, Italy) were sacrificed by
exposure to CO2. Experiments were approved in advance by the Animal Care
and Use Committee and are consistent with the European Communities Council
Directive of November 24, 1986 (86/609/EEC).

Neuronal cultures

Neurons were prepared from 17-day-old fetuses, according to a previously
published protocol [78]. In brief, the fetuses were decapitated, and the brains
Fig. 2. Genes differentially expressed in cortical neurons after Aβ treatment. A hier
differentially expressed 24 and/or 48 h after Aβ treatment. Genes were arranged in a d
of the expression levels under four different experimental conditions. Data are prese
experimental condition. The averaged normalized intensity from two replicates is repr
cells, respectively, represent transcript levels below, equal to, or above the median
deviation from the median (see scale at the bottom). The graphs on the right of the
genes in four major clusters. (For interpretation of the references to colour in this fi
were dissected and placed in PBS containing 4.5 g/L glucose. Hemispheres were
separated, and meninges were carefully removed. Cortical tissues were freed
from subcortical structures and cut into small fragments. Tissues were incubated
with papain activated with cysteine for 10 min at 37°C. Papain was neutralized
with a solution of ovomucoid and bovine serum albumin. Finally, tissues were
mechanically dissociated until a single-cell suspension was obtained. Cells were
plated in poly-D-lysine-coated 3.5-cm-diameter petri dishes, 48-multiwell plates,
or tissue culture flasks. After 48 h, 1 μM cytosine arabinoside was added to the
cells to inhibit glial cell growth.

Purity of cultures

To determine the purity of neuronal culture, we performed indirect
immunofluorescence for a neuron-specific marker (neuron-specific nuclear
protein, NeuN) and an astrocyte-specific marker (glial fibrillary acidic protein,
GFAP) using a method previously described [79]. Primary antibodies against
NeuN (1:250; Chemicon International, Temecula, CA, USA) were raised in
mouse and diluted 1:250, whereas primary antibodies against GFAP (1:500;
Chemicon International) were raised in rabbit. Secondary antibodies used were
Texas red-conjugated anti-mouse (1:200; Santa Cruz Biotechnology, Heidelberg,
Germany) and FITC-conjugated anti-rabbit (1:200; Chemicon International).

Viability assessment

Viability of cortical neurons was assessed with a propidium iodide exclusion
test and fluorescein diacetate incorporation assessment, according to a
previously published protocol [80]. Rat cortical neurons seeded on 3.5-cm-
diameter dishes were treated, washed with PBS, and incubated with a PBS
solution containing 36 μM fluorescein diacetate and 7 μM propidium iodide for
3 min at room temperature. Cell viability was assessed by counting 100 cells per
microscope field (using a 20× lens) for the number of fluorescein-labeled
neurons versus propidium-positive cells. Experiments were conducted in
duplicate and repeated at least three times. Statistical validity was assessed by
ANOVA followed by a post hoc test.

Analysis of apoptotic neuronal death

The typical morphological features of apoptotic degeneration were analyzed
by fluorescence microscopy with the nuclear dye Hoechst 33258 as previously
described [81]. Forty-eight hours after Aβ 1–40 exposure, neuronal cultures
were washed once in PBS and then fixed in 2% paraformaldehyde. Apoptotic
death was quantified after staining the cultures with the fluorescent chromatin
dye Hoechst 33258 (0.4 μg/ml). Both normal and apoptotic neurons were scored
from three random fields per dish in three individual dishes under an Olympus
fluorescence microscope with a 60× magnification objective. Normal neurons
exhibited a regularly dispersed chromatin, whereas apoptotic neurons were
recognized by nuclear condensation and/or fragmented chromatin. To examine
apoptosis-related effects we measured the expression of the proapoptotic Bax
[82] by Western blot analysis as previously described [83].

Microarray analysis

Total RNA extracted from three biological replicates for each experimental
condition (control 24 h, Aβ 40–1 24 h, Aβ 1–40 24 h, control 48 h, Aβ 40–1 48 h,
Aβ 1–40 48 h) was reverse transcribed, biotinylated, and hybridized to Affymetrix
GeneChip Rat Genome U34A arrays with the protocol outlined in the GeneChip
Expression Analysis Technical Manual (Affymetrix, Santa Clara, CA, USA). The
arrays were washed and stained by using a fluidics system with streptavidin–
archical clustering algorithm (Pearson correlation) was used to order 241 genes
endrogram in which the pattern and length of the branches reflect the relatedness
nted in a matrix format: each row represents a single gene and each column an
esented by the color of the corresponding cell in the matrix. Green, black, and red
abundance across all conditions. Color intensity reflects the magnitude of the
dendrogram represent the averaged natural log of normalized data±SEM of the
gure legend, the reader is referred to the web version of this article.)
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Fig. 3. Functional clustering of genes differentially expressed in cortical neurons after Aβ treatment. Genes whose translated products have a recognized function were
clustered into different functional categories and subcategories. Shown in bold are those genes that are also differentially expressed in apoptotic cerebellar granule
neurons following serum and potassium deprivation [13].
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Fig. 4. Subcellular localization of proteins encoded by genes differentially expressed in cortical neurons after Aβ treatment. Some of the genes whose translated products
have a recognized function and subcellular localization are represented in different functional groups and subcellular compartments. In the plasmamembrane are cell-to-
cell contact proteins; ion channels Cacnb1 (calcium channel, voltage-dependent, β1 subunit), Cacnb3 (calcium channel, voltage-dependent, β3 subunit), Chrna9
(cholinergic receptor, nicotinic, α polypeptide 9), Clcn5 (chloride channel 5), Glra2 (glycine receptor, α2 subunit), Kcnj4 (potassium inwardly rectifying channel,
subfamily J, member 4), Kctd13 (potassium channel tetramerization domain-containing 13), P2rx3 (purinergic receptor P2X, ligand-gated ion channel, 3), Scn11a
(sodium channel, voltage-gated, type11, α polypeptide); G-protein-coupled receptors (GPCR) Adra2c (adrenergic receptor, α2c), Olr (olfactory receptors 1346, 1346,
1504, 1530, 1696, 837); secreted peptides and their receptors Fgf5 (fibroblast growth factor 5), Gip (glucose-dependent insulinotropic peptide), Gipr (gastric inhibitory
polypeptide receptor), Igf2r (insulin-like growth factor 2 receptor), Lcn2 (lipocalin 2), Lif (leukemia-inhibitory factor), Nog (noggin), Ntf5 (neurotrophin 5), Ntrk3
(neurotrophic tyrosine kinase, receptor, type 3), Sst (somatostatin), Tgfbr3 (transforming growth factor, β receptor 3), Tnfrsf21 (TNFR-related death receptor 6); DG
(diacylglycerol); PLC (phospholipase-C); and AC (adenylate cyclase). In the endoplasmic reticulum is IP3 (inositol 1,4,5-triphosphate receptor 1). In the cytosol are
PKC (protein kinase Cγ); heat shock proteins (crystallinβA4; crystallinγE; DnaJ, Hsp40, homolog, subfamily B,member 9; heat shock proteinα-crystallin-related B6;
peptidylprolyl isomerase G); MAPK superfamily (MAP kinase-activated protein kinase 2, mitogen-activated protein kinase 7); ROS (reactive oxygen species);
glutathione metabolism proteins Gclm (glutamate cysteine ligase, modifier subunit), GSH (reduced glutathione), GSSG (oxidized glutathione), Gsr (glutathione
reductase) L-Glu (L-glutamate); Hmox1 (heme oxygenase 1); thyroid hormone metabolism proteins Dio3 (deiodinase, iodothyronine, type III), T4 (thyroxine), and T3
(triiodothyronine). In themitochondria are fatty acid metabolism proteins carnitine palmitoyltransferase 1b, palmitoyl-protein thioesterase 2; lipid metabolism proteins
apolipoprotein L3 carboxyl ester lipase, carboxylesterase 1, glycerol-3-phosphate acyltransferase (mitochondrial), phospholipid scramblase 3, sialyltransferase 4B;
electron transport proteins Cytb (cytochrome b,mitochondrial), Cyp2c (cytochrome P450, subfamily IIC); and Bcl2 (B-cell leukemia/lymphoma 2). In the nucleus are
cell cycle proteins Gadd45a (growth arrest and DNA-damage-inducible 45α), Gas5 (growth arrest-specific 5); transcription factors Egr4 (early growth response 4),
Ciao1 (WD40 protein Ciao1), Max, Msh2 (mutS homolog 2), Nr3c2 (nuclear receptor subfamily 3, group C, member 2), and Usf1 (upstream transcription factor 1).
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phycoerythrin (Molecular Probes, Eugene, OR, USA), amplified with biotinylated
anti-streptavidin antibody (Vector Laboratories, Burlingame, CA, USA), and then
scanned with a GeneArray Scanner (Affymetrix). To determine the quality of
labeled targets prior to analysis on GeneChip Rat Genome U34A arrays, each
samplewas hybridized to oneGeneChip Test3 array. The image data were analyzed
by the MicroArray Suite 4.0 gene expression analysis program (Affymetrix).
Normalization, filtering, and cluster analysis of the data were performed with the
GeneSpring 7.2 software (Silicon Genetics, Redwood City, CA, USA). Each gene
was normalized to itself by making a synthetic positive control for that gene and
dividing all measurements for that gene by this positive control. This synthetic
control was the median of the gene's expression values over all the samples.
Average difference values of less than 0 represent probe sets for which the intensity
of the mismatched probe was on average greater than that of the perfect matched
probe and, thus, the probe set was performing poorly. For this reason, normalized
values below0were set to 0.01. To test for statistically significant changes in signal
intensity, genes with an average change greater than twofold were screened by the
Mann–Whitney U test (p value <0.05) using the Benjamini and Hochberg False
Discovery Rate procedure to adjust for multiple comparisons. A complete list of
differentially expressed genes is available online as Supplementary Table 2 and at
http://web.tiscali.it/sebastiano_cavallaro.
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Real-time quantitative RT-PCR

Following extraction, total RNA samples (three/experimental condition)
were reverse transcribed with oligo(dT)12–18 and SuperScript II RNase H−

reverse transcriptase (Invitrogen Life Technologies, Carlsbad, CA, USA).
Aliquots of cDNA (0.1 and 0.2 μg) and known amounts of external standard
(purified PCR product, 102 to 108 copies) were amplified in parallel reactions
using primers indicated in Table 1. To control for the integrity of RNA and for
differences attributable to errors in experimental manipulation, mRNA levels of
mouse ribosomal S18 and phosphoglycerate kinase 1 were measured in similar
reactions. Each PCR (final volume 20 μl) contained 0.5 μM primers, 2.5 mM
Mg2+, and 1× DNA SYBR green master mix (Roche Molecular Biochemicals,
Mannheim, Germany). PCR amplifications were performed with a Light-Cycler
(Roche Molecular Biochemicals) using the following cycle program: (i)
denaturation of cDNA (1 cycle, 95°C for 1 min), (ii) amplification (40 cycles,
95°C for 0 s, 57°C for 5 s, 72°C for 10 s), (iii) melting curve analysis (1 cycle,
95°C for 0 s, 67°C for 10 s, 95°C for 0 s), (iv) cooling (1 cycle, 40°C for 3 min).
Temperature transition rate was 20°C/s except for the third segment of the
melting curve analysis, for which it was 0.2°C/s. Fluorimeter gain value was 7.
Real-time detection of fluorimetric intensity of SYBR Green I, indicating the
amount of PCR product formed, was measured at the end of each elongation
phase. Quantification was performed by comparing the fluorescence of PCR
products of unknown concentration with the fluorescence of the external
standards. For this analysis, fluorescence values measured in the log-linear
phase of amplification were considered using the second derivative maximum
method of the Light-Cycler data analysis software (Roche Molecular
Biochemicals). Specificity of PCR products obtained was characterized by
melting curve analysis followed by gel electrophoresis and DNA sequencing.
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