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Abstract

A classical critical point theorem in presence of splitting established by Brézis–Nirenberg is ex-
tended to functionals which are the sum of a locally Lipschitz continuous term and of a convex,
proper, lower semicontinuous function. The obtained result is then exploited to prove a multiplicity
theorem for a family of elliptic variational–hemivariational eigenvalue problems.
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1. Introduction

A meaningful consequence of Ghoussoub’s min–max principle (see, for instance,
[11, Theorem 5.2]) is the critical point theorem in presence of splitting established by
Brézis–Nirenberg in 1991, i.e., [5, Theorem 4]. Roughly speaking, it is assumed that
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there exist a Banach space X with a direct sum decomposition X = X1 ⊕ X2, where
dim(X2) < +∞, and a bounded below function f ∈ C1(X,R) having a local linking at 0,
namely

(f) f |Br∩X2
� 0 as well as f |Br∩X1

� 0 for some r > 0.

If infx∈X f (x) < 0, f (0) = 0, and the Palais–Smale condition holds true, then f admits
at least two nonzero critical points.

Very recently, in [14], Ghoussoub’s result has been extended to functions f on a Banach
space X fulfilling a structural hypothesis of the type

(Hf ) f (x) := Φ(x) + ψ(x) for all x ∈ X, where Φ :X → R is locally Lipschitz continu-
ous and ψ :X → R ∪ {+∞} is convex, proper, and lower semicontinuous.

Critical points of f are defined as solutions to the problem:
Find x ∈ X such that

Φ0(x; z − x) + ψ(z) − ψ(x) � 0 ∀z ∈ X, (1)

with Φ0(x; z − x) being the generalized directional derivative [7, p. 25] of Φ in x along
the direction z − x. The Palais–Smale condition for C1 functions becomes here

(PS)f Every sequence {xn} ⊆ X such that {f (xn)} is bounded and

Φ0(xn; z − xn) + ψ(z) − ψ(xn) � −εn‖z − xn‖ ∀n ∈ N, z ∈ X,

where εn → 0+, possesses a convergent subsequence.

This abstract framework was previously introduced and developed by Motreanu and
Panagiotopoulos [17]. Inequality (1) is usually called a variational–hemivaritional in-
equality. It has been exploited for mathematically formulating several engineering, besides
mechanical, questions, and extensively studied from many points of view in the latest years
[17–19]. If ψ ≡ 0, then (1) coincides with the problem treated by Chang [6], who also
exploits various abstract results to study elliptic equations having discontinuous nonlinear
terms. When Φ ∈ C1(X,R), problem (1) reduces to a variational inequality, and significant
applications as well as the relevant critical point theory are developed in [21]. Finally, if
both Φ ∈ C1(X,R) and ψ ≡ 0, then (1) simplifies to the Euler equation, which is classical.

In this paper we first extend the above-mentioned Brézis–Nirenberg critical point theo-
rem to Motreanu–Panagiotopoulos’ setting (see Theorem 3.1 below) by using the structural
hypothesis, previously introduced in [14],

(H′
f ) f (x) := Φ(x) + ψ(x) for all x ∈ X, where Φ :X → R is locally Lipschitz continu-

ous and ψ :X → R∪{+∞} is convex, proper, and lower semicontinuous. Moreover,
ψ is continuous on any nonempty compact set A ⊆ X such that supx∈A ψ(x) < +∞.
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Although less general than (Hf ), this condition still works in all the most important con-
crete situations. For instance, ψ := IK , with IK being the indicator function of some
nonempty, convex, closed set K ⊆ X, represents a standard but meaningful case of ψ .
The Banach space X is supposed to be reflexive and with a direct sum decomposition
X = X1 ⊕ X2, where 0 < dim(X2) < +∞, while assumption (f) is replaced by the more
restrictive one

(f′) f |Br∩X1
� 0, f |Br∩X2

� 0, and f |∂Br∩X2 < 0 for some r > 0 small enough,

which arises from the different construction of the pseudo-gradient vector field in our ab-
stract situation. We do not know at present whether (f′) can be weakened to (f). The locally
Lipschitz continuous case, i.e., ψ ≡ 0, has been recently treated in [13].

One application to an elliptic variational–hemivariational inequality patterned after
problem (38) in [5] (see also [15, problem (5.7)]) is then presented. Let Ω be a bounded
domain in R

N , N � 3, let X := H 1
0 (Ω), and let

G(u) :=
∫
Ω

G
(
u(x)

)
dx ∀u ∈ X,

where G(ξ) := ∫ ξ

0 −g(t) dt , ξ ∈ R, with g : R → R measurable. Given λ > 0 and a non-
empty, convex, closed set Kλ ⊆ X depending on λ, we prove that if g satisfies suitable
growth conditions then the problem:

Find u ∈ Kλ fulfilling

−
∫
Ω

∇u(x) · ∇(v − u)(x) dx −
∫
Ω

a(x)u(x)(v − u)(x) dx � λG0(u;v − u)

for all v ∈ Kλ, where a ∈ L∞(Ω), possesses at least two nontrivial solutions provided λ is
sufficiently large.

2. Basic definitions and preliminary results

Let (X,‖ · ‖) be a real Banach space. If V is a subset of X, we write int(V ) for the
interior of V , V for the closure of V , ∂V for the boundary of V . When V is nonempty,
x ∈ X, and δ > 0, we define B(x, δ) := {z ∈ X: ‖z − x‖ < δ} as well as Bδ := B(0, δ).
Given x, z ∈ X, the symbol [x, z] indicates the line segment joining x to z, namely

[x, z] := {
(1 − t)x + tz: t ∈ [0,1]}.

Moreover, ]x, z] := [x, z] \ {x}. We denote by X∗ the dual space of X, while 〈·,·〉 stands for
the duality pairing between X and X∗. A function Φ :X → R is called locally Lipschitz
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continuous when to every x ∈ X there correspond a neighbourhood Vx of x and a constant
Lx � 0 such that ∣∣Φ(z) − Φ(w)

∣∣ � Lx‖z − w‖ ∀z,w ∈ Vx.

If x, z ∈ X, we write Φ0(x; z) for the generalized directional derivative of Φ at the point x

along the direction z, i.e.,

Φ0(x; z) := lim sup
w→x, t→0+

Φ(w + tz) − Φ(w)

t
.

It is known [7, Proposition 2.1.1] that Φ0 is upper semicontinuous on X × X. The gener-
alized gradient of the function Φ in x, denoted by ∂Φ(x), is the set

∂Φ(x) := {
x∗ ∈ X∗:

〈
x∗, z

〉
� Φ0(x; z) ∀z ∈ X

}
.

Proposition 2.1.2 of [7] ensures that ∂Φ(x) turns out nonempty, convex, in addition to
weak* compact.

Let f be a function on X satisfying the structural hypothesis (Hf ) in Section 1. Put
Dψ := {x ∈ X: ψ(x) < +∞}. Since ψ turns out continuous on int(Dψ) (see, for instance,
[8, Exercise 1, p. 296]) the same holds regarding f . To simplify notation, always denote
by ∂ψ(x) the subdifferential of ψ at x in the sense of convex analysis, while

D∂ψ := {
x ∈ X: ∂ψ(x) �= ∅}

.

Theorem 23.5 of [8] gives int(Dψ) = int(D∂ψ). Moreover, by [8, Theorems 23.5 and 23.3],
∂ψ(x) is always convex and weak* closed. We say that x ∈ Dψ is a critical point of f when
(1) holds true. The symbol K(f ) indicates the set of all critical points for f . Given a real
number c, we write

fc := {
x ∈ X: f (x) � c

}
, f c := {

x ∈ X: f (x) � c
}
,

and

Kc(f ) := K(f ) ∩ f −1(c).

If Kc(f ) �= ∅ then c ∈ R is called a critical value of f .
The following variant [10, pp. 444, 456] of the famous variational principle of Ekeland

will be repeatedly employed.

Theorem 2.1. Let (Z,d) be a complete metric space and let Π be a proper, lower semi-
continuous, bounded below function from Z into R ∪ {+∞}. Then to every ε, δ > 0 and
every z̄ ∈ Z satisfying Π(z̄) � infz∈Z Π(z) + ε there corresponds a point z0 ∈ Z such that

Π(z0) � Π(z̄), d(z0, z̄) � 1

δ
, Π(z) − Π(z0) � −εδd(z, z0) ∀z ∈ Z.



708 R. Livrea et al. / J. Differential Equations 226 (2006) 704–725
Propositions 2.1 and 2.2 below are established via Theorem 2.1. The first of them rep-
resents a nonsmooth version of [5, Proposition 2].

Proposition 2.1. Assume f is bounded below and satisfies (PS)f in addition to (Hf ). Then
each minimizing sequence for f possesses a convergent subsequence.

Proof. Let {xn} ⊆ X fulfils limn→+∞ f (xn) = infx∈X f (x). Passing to a subsequence if
necessary, we may suppose f (xn) � infx∈X f (x) + 1/n2, n ∈ N. By Theorem 2.1, for
every n ∈ N there exists a point zn ∈ X enjoying the following properties:

f (zn) � f (xn), (2)

‖zn − xn‖ � 1

n
, (3)

f (z) − f (zn) � −1

n
‖z − zn‖ ∀z ∈ X. (4)

Through (2) we obtain that {f (zn)} is bounded, while (4) leads to

Φ0(zn;x − zn) + ψ(x) − ψ(zn) � −1

n
‖x − zn‖ ∀x ∈ X. (5)

Indeed, if x ∈ X and z := zn + t (x − zn), with t ∈ ]0,1[, then from (4), besides (Hf ), it
follows

Φ
(
zn + t (x − zn)

) − Φ(zn) + t
[
ψ(x) − ψ(zn)

]
� − t

n
‖x − zn‖.

Dividing by t and letting t → 0+ we achieve (5). At this point, condition (PS)f forces
zn → x0 for suitable x0 ∈ X, where a subsequence is considered when necessary, and thus,
by (3), also xn → x0. �
Remark 2.1. The preceding result guarantees that every function f which is bounded
below and satisfies (Hf ) as well as (PS)f attains its minimum at some x0 ∈ X.

Proposition 2.2. Let f be bounded below and fulfil (PS)f in addition to (Hf ). Assume the
global minimum point x0 is unique. Then, for every ρ0 > 0 there exists a ρ > 0 such that

Uρ := {
x ∈ X: f (x) < f (x0) + ρ

} ⊆ B(x0, ρ0).

Proof. Arguing by contradiction one can find a ρ0 > 0 and a sequence {xn} ⊆ X such that

f (xn) < f (x0) + 1

n2
, ‖xn − x0‖ � ρ0 ∀n ∈ N.

Now, Theorem 2.1 provides a point zn ∈ X satisfying (2)–(4). Set z := zn + t (x − zn),
with x ∈ X and t ∈ ]0,1[. As in the proof of Proposition 2.1, inequality (4), besides the
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convexity of ψ , lead to (5). Thus, by condition (PS)f , there exists a subsequence {zkn} of
{zn} strongly converging to some z ∈ X. Since f (zkn) → f (x0) in view of (2), we have
f (z) = f (x0), which forces z = x0 taking into account the uniqueness of x0. On the other
hand, xkn → x0 due to (3). However, this is impossible because ‖xkn − x0‖ � ρ0 for all
n ∈ N, and the conclusion follows. �

Finally, the next result will play a basic role in establishing the abstract theorem of this
paper. For its proof we refer to [14, Theorem 3.3]. Here, Q indicates a compact set in X,
Q0 is a nonempty closed subset of Q, γ0 belongs to C0(Q0,X), while

Γ := {
γ ∈ C0(Q,X): γ |Q0 = γ0

}
.

Theorem 2.2. Suppose the function f satisfies the assumptions below in addition to (H′
f )

and (PS)f .

(a1) supx∈Q f (γ̂ (x)) < +∞ for some γ̂ ∈ Γ .
(a2) There exists a closed subset S of X such that supx∈Q0

f (γ0(x)) � infx∈S f (x) and
(γ (Q) ∩ S) \ γ0(Q0) �= ∅ for all γ ∈ Γ .

Put c := infγ∈Γ supx∈Q f (γ (x)). Then the set Kc(f ) is nonempty. If, moreover,
infx∈S f (x) = c then Kc(f ) ∩ S �= ∅.

3. Critical points in presence of splitting

Throughout this section, (X,‖ · ‖) is a real reflexive Banach space while f denotes
a function from X into R ∪ {+∞}. The following hypotheses will be posited in the sequel:

(f1) f is bounded below and fulfils (PS)f besides (Hf ).
(f2) x0 ∈ X is a global minimum point of the function f .

Observe that if (f1) holds then f attains its minimum; see Remark 2.1. We shall further
assume:

(f3) x0 �= 0. Moreover, x0 and eventually 0 are the only critical points for f .
(f4) There exist two disjoint open neighbourhoods U0 and N0 of x0 and 0, respectively, as

well as a constant b > infx∈X f (x), satisfying fb \ (U0 ∪ N0) ⊆ D∂ψ .
(f5) If {xn} ⊆ fb \ (U0 ∪ N0), xn → x in X, and x∗

n ∈ ∂ψ(xn) for all n ∈ N, then to each
z ∈ X there corresponds an x∗ ∈ ∂ψ(x) such that 〈x∗, z〉 � lim supn→+∞〈x∗

n, z〉.

Proposition 3.1. Suppose (f1)–(f4) hold true. Then there exists a constant σ > 0 such that
for every x ∈ fb \ (U0 ∪ N0), x∗ ∈ ∂Φ(x), z∗ ∈ ∂ψ(x) one has ‖x∗ + z∗‖X∗ � σ .
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Proof. Arguing by contradiction one could construct three sequences {xn} ⊆ X, {x∗
n},

{z∗
n} ⊆ X∗ with the following properties:

xn ∈ fb \ (U0 ∪ N0), n ∈ N, (6)

x∗
n ∈ ∂Φ(xn) and z∗

n ∈ ∂ψ(xn) ∀n ∈ N, (7)∥∥x∗
n + z∗

n

∥∥
X∗ → 0 as n → +∞. (8)

From (7) we obtain easily

Φ0(xn;x − xn) + ψ(x) − ψ(xn) �
〈
x∗
n, x − xn

〉 + 〈
z∗
n, x − xn

〉
� −∥∥x∗

n + z∗
n

∥∥
X∗‖x − xn‖

for all n ∈ N, x ∈ X. Thanks to (PS)f , setting εn := ‖x∗
n + z∗

n‖X∗ and using (8) produces
xn → x̄ in X, where a subsequence is considered when necessary. Moreover, by (6), the
point x̄ lies in fb \ (U0 ∪ N0). Since Φ0 and −ψ are upper semicontinuous, this forces
both x̄ ∈ Dψ and

Φ0(x̄;x − x̄) + ψ(x) − ψ(x̄) � 0 ∀x ∈ X,

namely x̄ turns out a critical point of f different from x0 and 0, against hypothesis (f3). �
Proposition 3.2. Let (f1)–(f5) be satisfied and let σ be as in Proposition 3.1. Then there
exists a locally Lipschitz continuous function F :fb \ (U0 ∪ N0) → X such that, for every
x ∈ fb \ (U0 ∪ N0), ‖F(x)‖ � 1 and〈

x∗ + z∗,F (x)
〉
>

σ

2
∀x∗ ∈ ∂Φ(x), z∗ ∈ ∂ψ(x). (9)

Proof. From now on, W denotes the set fb \ (U0 ∪ N0). Pick x ∈ W . We first claim that
the infimum

δ(x) := inf
{∥∥x∗ + z∗∥∥

X∗ : x∗ ∈ ∂Φ(x), z∗ ∈ ∂ψ(x)
}

(10)

is attained. To show this, fix {x∗
n} ⊆ ∂Φ(x) and {z∗

n} ⊆ ∂ψ(x) fulfilling

lim
n→+∞

∥∥x∗
n + z∗

n

∥∥
X∗ = δ(x). (11)

Since X is reflexive while ∂Φ(x) is weak* compact, we can find an x̄∗ ∈ ∂Φ(x) such that,
along a subsequence if necessary, x∗

n ⇀ x̄∗. By (11) the sequence {z∗
n} turns out bounded.

So, as before, z∗
n ⇀ z̄∗ for some z̄∗ ∈ ∂ψ(x). One clearly has∥∥x̄∗ + z̄∗∥∥

X∗ � lim inf
n→+∞

∥∥x∗
n + z∗

n

∥∥
X∗,

which implies ‖x̄∗ + z̄∗‖X∗ = δ(x).
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Proposition 3.1 ensures that δ(x) � σ > 0. Hence, Bδ(x) is nonempty and, on account
of (10),

Bδ(x) ∩ (
∂Φ(x) + ∂ψ(x)

) = ∅.

Now, the Hahn–Banach Theorem [4, Theorem I.6] provides a point ξx ∈ X with the prop-
erties ‖ξx‖ = 1 and, whenever x∗ ∈ ∂Φ(x), z∗ ∈ ∂ψ(x),〈

x∗ + z∗, ξx

〉
�

〈
w∗, ξx

〉 ∀w∗ ∈ Bδ(x).

This inequality and Proposition 3.1 lead to〈
x∗ + z∗, ξx

〉
� δ(x) � σ (12)

for all x∗ ∈ ∂Φ(x), z∗ ∈ ∂ψ(x).
We next show that to each x ∈ W there corresponds an open neighbourhood Vx of x

such that as soon as v ∈ Vx ∩ W one has〈
x∗ + z∗, ξx

〉
>

σ

2
∀x∗ ∈ ∂Φ(v), z∗ ∈ ∂ψ(v). (13)

Indeed, if the assertion were false then we could find x ∈ W , {xn} ⊆ W , and {x∗
n},

{z∗
n} ⊆ X∗ satisfying the following conditions:

xn → x, x∗
n ∈ ∂Φ(xn), z∗

n ∈ ∂ψ(xn), n ∈ N, (14)〈
x∗
n + z∗

n, ξx

〉
� σ

2
∀n ∈ N. (15)

Due to the reflexivity of X and (14), Proposition 2.1.2 in [7] yields an x∗ ∈ X∗ such
that x∗

n ⇀ x∗ in X∗, where a subsequence is considered when necessary, while Propo-
sition 2.1.5 of the same reference forces x∗ ∈ ∂Φ(x). From (15) we thus get

lim sup
n→+∞

〈
z∗
n, ξx

〉
� σ

2
− 〈

x∗, ξx

〉
.

Now, exploiting (f5) provides a point z∗ ∈ ∂ψ(x) such that〈
z∗, ξx

〉
� σ

2
− 〈

x∗, ξx

〉
,

which contradicts (12).
The family V := {Vx : x ∈ W } represents an open covering of W . Since, by [9, The-

orem VIII.2.4], this set is paracompact, V possesses an open locally finite refinement
{Vi : i ∈ I }. Moreover, on account of (13), to each i ∈ I there corresponds a ξi ∈ X fulfilling
‖ξi‖ = 1 as well as, whenever x ∈ Vi ∩ W ,〈

x∗ + z∗, ξi

〉
>

σ ∀x∗ ∈ ∂Φ(x), z∗ ∈ ∂ψ(x). (16)

2
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Let {ρi : i ∈ I } be a partition of unity subordinated to {Vi : i ∈ I } such that each ρi turns out
locally Lipschitz continuous; for a possible construction we refer to [16, p. 145]. Define

F(x) :=
∑
i∈I

ρi(x)ξi, x ∈ W. (17)

The function F is evidently locally Lipschitz continuous and one has ‖F(x)‖ � 1 because∑
i∈I ρi(x) = 1 in W . Exploiting (16) we then see at once that

〈
x∗ + z∗,F (x)

〉
>

σ

2
∀x∗ ∈ ∂Φ(x), z∗ ∈ ∂ψ(x),

which completes the proof. �
We are in a position now to establish the main result of this paper. It can be regarded as a

nonsmooth version of the famous Brézis–Nirenberg critical point theorem [5, Theorem 4];
vide also [11, Theorem 5.18] and [15, Theorem 1]. Suppose

X := X1 ⊕ X2,

where dim(X1) > 0, while 0 < dim(X2) < ∞. The symbol (f′1) will denote (f1) with (Hf )

replaced by (H′
f ).

Theorem 3.1. Assume (f′1) and (f2) are satisfied, infx∈X f (x) < f (0), f (0) = 0, and,
moreover,

(f6) the set {x ∈ X: f (x) < a} is open for some constant a > 0,

(f7) there exists an r ∈ ]0,
‖x0‖

2 [ such that f |Br∩X1
� 0, f |Br∩X2

� 0, and f |∂Br∩X2 < 0.

Then the function f possesses at least two nontrivial critical points.

Proof. One clearly has x0 �= 0 because f (x0) = infx∈X f (x) < f (0). Suppose (f3) holds
true, since otherwise we are done. It is not restrictive to write (f7) for r = 1. Let us first
note that

f (x0) < inf
x∈B1∩X2

f (x). (18)

Indeed, B1 ∩ X2 turns out a compact subset of {x ∈ X: f (x) < a} while, due to (f6),
f is locally Lipschitz continuous on this set. Thus, one can find an x1 ∈ B1 ∩ X2 fulfilling
f (x1) = infx∈B1∩X2

f (x). If f (x1) = f (x0) then x1 would be a global minimum point
for f . Since ‖x1‖ � 1 < ‖x0‖ and f (x0) < f (0), we would get x1 ∈ K(f ) \ {0, x0}, which
contradicts (f3).

Now, from f (x0) < 0 < a it easily follows

f (x) < 0 in B(x0, ρ0) (19)
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for some ρ0 ∈ ]0,
‖x0‖

2 [. Let ρ > 0 be as in Proposition 2.2. On account of (18), we may
assume that

2ρ < min{ρ0,1} and f (x0) + ρ < inf
x∈B1∩X2

f (x). (20)

Moreover, by decreasing ρ when necessary, hypothesis (f7) leads to

sup
x∈∂B1∩X2

f (x) < −2ρL < 0, (21)

where L denotes a Lipschitz constant for f on a suitable closed ball centered at 0, which
contains B2ρ . Pick any b ∈ ]0, a[. Through (f7) and (20) we obtain

∂B1 ∩ X2 ⊆ {
x ∈ X: f (x) < b

} \ Uρ ∪ B2ρ. (22)

Observe next that (f4) is satisfied with U0 := Uρ , N0 := B2ρ because, in view of Proposi-
tion 2.2,

Uρ ∩ B2ρ ⊆ B(x0, ρ0) ∩ B2ρ = ∅ (23)

while, due to the choice of b besides (f6),

fb ⊆ {
x ∈ X: f (x) < a

} ⊆ int(Dψ) = int(D∂ψ). (24)

Exploiting this inclusion we also see that (f5) holds true. Indeed, since the set
{x ∈ X: f (x) < a} is open, ψ turns out locally Lipschitz continuous on a neighbour-
hood of fb . If {xn} ⊆ fb \ (U0 ∪ N0), xn → x in X, x∗

n ∈ ∂ψ(xn) for all n ∈ N, and z ∈ X

then, by [6, Proposition 6], there exists a relabelled sequence {w∗
n} ⊆ ∂ψ(x) fulfilling

lim
n→+∞

〈
x∗
n − w∗

n, z
〉 = 0. (25)

We may suppose w∗
n ⇀ x∗ for some x∗ ∈ ∂ψ(x), where a subsequence is considered when

necessary. Consequently, owing to (25),

〈x∗, z〉 = lim
n→+∞

〈
w∗

n, z
〉 = lim

n→+∞
〈
w∗

n − x∗
n + x∗

n, z
〉
� lim sup

n→+∞
〈
x∗
n, z

〉
,

as desired. At this point, Proposition 3.2 can be applied, and we get a locally Lipschitz
continuous function F :fb \ (U0 ∪ N0) → X enjoying property (9), besides ‖F(x)‖ � 1.
In particular, (9) evidently forces F(x) �= 0 for all x ∈ fb \ (U0 ∪ N0).

Fix any z ∈ ∂B1 ∩X2. On account of (22) it makes sense to consider the Cauchy problem{
dηz(t)

dt
= −F(ηz(t)),

η (0) = z.
(26)
z
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By the basic existence-uniqueness theorem for ordinary differential equations in Ba-
nach spaces it possesses a unique local solution ηz. Let Tz be the maximum of
{T ∈ ]0,+∞]: ηz is defined on [0, T [}. We claim that Tz < +∞. In fact, since f turns
out locally Lipschitz continuous on a neighbourhood of fb, Proposition 9 in [6] yields

d

dt
f

(
ηz(t)

)
� max

x∗∈∂Φ(ηz(t)), z∗∈∂ψ(ηz(t))

〈
x∗ + z∗,−F

(
ηz(t)

)〉
for almost every t ∈ [0, Tz[. Thanks to (9) we thus have

d

dt
f

(
ηz(t)

)
� −σ

2
. (27)

Integrating over [0, t], t ∈ ]0, Tz[, provides

f
(
ηz(t)

) − f (z) � −σ

2
t, (28)

which clearly leads to

Tz � 2

σ

(
f (z) − inf

x∈X
f (x)

)
< +∞.

Observe next that

ηz(t) = z −
t∫

0

F
(
ηz(τ )

)
dτ ∀t ∈ [0, Tz[. (29)

Consequently, due to the boundedness of F , ηz(t) converges as t → Tz. Setting

wz := lim
t→Tz

ηz(t) (30)

it results in wz ∈ ∂(fb \ (U0 ∪ N0)), because [0, Tz[ is maximal. By (28) and (22), the
point wz cannot belong to the boundary of fb. Therefore, wz ∈ ∂(U0 ∪ N0). If wz ∈ ∂N0
then ‖wz‖ = 2ρ. Using (28) again, (30), besides (21), one has

f (wz) < f (z) < −2ρL. (31)

Since f is Lipschitz continuous on B2ρ , we also obtain

f (wz) = f (wz) − f (0) � −L‖wz‖ = −2ρL,

which contradicts (31). Hence,

wz ∈ ∂U0 ∀z ∈ ∂B1 ∩ X2. (32)
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Now, pick an e ∈ ∂B1 ∩ X1 and define

Q := ([0, e] ⊕ (B1 ∩ X2)
) ∩ B1. (33)

The boundary Q0 of Q relative to span{e} ⊕ X2 is given by

Q0 = {e} ∪ (B1 ∩ X2) ∪ (
∂B1 ∩ (]0, e] ⊕ {

μz: μ ∈ ]0,1], z ∈ ∂B1 ∩ X2
}))

.

Write γ0(e) := x0, γ0(x) := x for all x ∈ B1 ∩ X2, as well as

γ0(x) :=

⎧⎪⎨⎪⎩
ηz(2λTz) if 0 < λ < 1

2 ,

wz if λ = 1
2 ,

(2λ − 1)x0 + (2 − 2λ)wz if 1
2 < λ � 1,

(34)

provided x := λe + μz, with λ,μ ∈ ]0,1], z ∈ ∂B1 ∩ X2, and ‖x‖ = 1. A simple computa-
tion ensures that γ0 :Q0 → X turns out continuous. Moreover,

f
(
γ0(x)

)
� 0 ∀x ∈ Q0. (35)

Indeed, we evidently have f (γ0(e)) = f (x0) < 0 while, in view of (f7), f (γ0(x)) =
f (x) � 0 for any x ∈ B1 ∩ X2. Put x := λe + μz, where λ,μ ∈ ]0,1], z ∈ ∂B1 ∩ X2.
If λ < 1/2 then, thanks to (27),

f
(
γ0(x)

) = f
(
ηz(2λTz)

)
� f

(
ηz(0)

) = f (z) � 0.

The same reasoning yields (35) for λ = 1/2. So, suppose λ > 1/2. Because of (32), besides
Proposition 2.2, it results in∥∥(2λ − 1)x0 + (2 − 2λ)wz − x0

∥∥ � ‖x0 − wz‖ � ρ0. (36)

From (19) we thus achieve

f
(
γ0(x)

) = f
(
(2λ − 1)x0 + (2 − 2λ)wz

)
< 0,

and (35) is proved. Let us next verify that∥∥γ0(x)
∥∥ � 2ρ ∀x ∈ ∂B1 ∩ Q. (37)

When x := e or x ∈ B1 ∩ X2, this inequality is an immediate consequence of the choice
of ρ0 and (20). Pick x := λe + μz, with ‖x‖ = 1, λ,μ ∈ ]0,1], z ∈ B1 ∩ X2. Since ηz(t),
t ∈ ]0, Tz[, does not belong to N0, (37) holds true for 0 < λ < 1/2. If 1/2 � λ � 1 then
exploiting (36), besides (20), we infer

γ0(x) ∈ B(x0, ρ0) ⊆ X \ B2ρ,

namely, ‖γ0(x)‖ � 2ρ, as desired.
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Now, define

Γ := {
γ ∈ C0(Q,X): γ |Q0 = γ0

}
, c := inf

γ∈Γ
sup
x∈Q

f
(
γ (x)

)
,

in addition to S := ∂Bρ ∩ X1. Gathering (35), (f7), the inequality ρ < 1 together one has

sup
x∈Q0

f
(
γ0(x)

)
� 0 � inf

x∈S
f (x).

Through (37) and [5, Lemma 3] we then get (γ (Q) ∩ S) \ γ0(Q0) �= ∅ for all γ ∈ Γ .
Hence, assumption (a2) of Theorem 2.2 is satisfied. To verify (a1), observe at first that the
set conv(γ0(Q0)) turns out compact, because so is Q0, while from (35), (24) it follows
conv(γ0(Q0)) ⊆ int(Dψ). Thus, by the Generalized Theorem of Tietze [3, p. 77], there
exists a γ̂ ∈ Γ such that γ̂ (Q) ⊆ conv(γ0(Q0)). Since f is continuous on int(Dψ), this
implies supx∈Q f (γ̂ (x)) < +∞, i.e., hypothesis (a1) holds true too. Therefore, thanks to
Theorem 2.2, Kc(f ) �= ∅. One clearly has infx∈S f (x) � c. If infx∈S f (x) < c then the
function f possesses a critical point different from x0 and 0. Otherwise, Kc(f ) ∩ S �= ∅,
which again leads to the same conclusion. However, this contradicts condition (f3). �
Remark 3.1. Hypothesis (f7) is obviously fulfilled in the meaningful special case:

(f′7) For some r > 0 one has f |Br∩X1
� 0 as well as f |Br∩X2\{0} < 0,

namely, 0 turns out a local minimum of f |X1 and a proper local maximum for f |X2 .

Remark 3.2. When dim(X2) � 2 assumption (f7) can be replaced by the one below, which
is more general:

(f′′7) There exists an r ∈ ]0,
‖x0‖

2 [ such that f |Br∩X1
� 0, f |Br∩X2

� 0, and f |Br∩X2
�≡ 0.

Indeed, in such a case, f (z̄) < 0 for some z̄ ∈ Br ∩ X2. It is not restrictive to suppose
both z̄ ∈ ∂Br ∩ X2 and r = 1. Thus, inequality (21) becomes

f (z̄) < −2ρL < 0.

Arguing exactly as in the proof of Theorem 3.1 we get

wz ∈ ∂(U0 ∪ N0) ∀z ∈ ∂B1 ∩ X2,

besides wz̄ ∈ ∂U0. Define

A := {z ∈ ∂B1 ∩ X2: wz ∈ ∂U0}, B := {z ∈ ∂B1 ∩ X2: wz ∈ ∂N0}.

One clearly has A �= ∅, A ∪ B = ∂B1 ∩ X2, and A ∩ B = ∅ because, due to (23),
U0 ∩N0 = ∅. Let us next verify that the sets A, B turn out closed. Pick a sequence {zn} ⊆ A
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satisfying zn → z. By continuous dependence on the initial data it follows Tzn → Tz.
Hence, to any ε > 0 sufficiently small there corresponds a ν ∈ N such that

‖zn − z‖ < ε, 0 < Tz − ε < Tzn < Tz + ε ∀n > ν.

Exploiting (29), the pointwise convergence of {F(ηzn(t))} to F(ηz(t)) in [0, Tz − ε], and
the inequality ‖F(x)‖ � 1, we achieve

‖wzn − wz‖ � ‖zn − z‖ +
∥∥∥∥∥

Tz−ε∫
0

[
F

(
ηzn(t)

) − F
(
ηz(t)

)]
dt

∥∥∥∥∥
+

∥∥∥∥∥
Tzn∫

Tz−ε

F
(
ηzn(t)

)
dt

∥∥∥∥∥ +
∥∥∥∥∥

Tz∫
Tz−ε

F
(
ηz(t)

)
dt

∥∥∥∥∥ < 5ε

provided n > ν is large enough. Consequently, wzn → wz, which implies wz ∈ ∂U0, i.e.,
z ∈ A. A similar reasoning ensures that B turns out closed. Since ∂B1 ∩ X2 is connected,
we must have ∂B1 ∩ X2 = A, and (32) holds true. At this point, the proof goes on exactly
as the one of Theorem 3.1.

Let x1 be the critical point of f different from x0 and 0 given by Theorem 3.1. Write

ĉ := inf
γ∈Γ̂

sup
x∈[x0,x1]

f
(
γ (x)

)
,

where

Γ̂ := {
γ ∈ C0([x0, x1],X

)
: γ (xi) = xi, i = 0,1

}
,

and observe that ĉ < +∞ because x0, x1 ∈ Dψ . Combining the above result with
[14, Theorem 4.2] yields the following:

Theorem 3.2. Suppose the assumptions of Theorem 3.1 are fulfilled, f (x1) � 0 whenever
x1 is a local minimum, while f ĉ turns out closed. Then either f possesses a nonzero
critical point, which is not a local minimum, or ĉ = f (x1) and f admits a continuum of
local minima at the level ĉ.

4. An application

In this section we shall exploit Theorem 3.1 to solve an elliptic variational–hemivaria-
tional inequality, in the sense of Panagiotopoulos [19], patterned after problem (38) in [5];
see besides [11, Theorem 5.22] and [15, Theorem 6].
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Let Ω be a nonempty, bounded, open subset of the real Euclidean N -space
(RN, | · |), N � 3, having a smooth boundary ∂Ω . The symbol H 1

0 (Ω) indicates the closure
of C∞

0 (Ω) in W 1,2(Ω). On H 1
0 (Ω) we introduce the norm

‖u‖ :=
(∫

Ω

∣∣∇u(x)
∣∣2

dx

)1/2

.

Denote by 2∗ the critical exponent for the Sobolev embedding H 1
0 (Ω) ↪→ Lp(Ω). Recall

that 2∗ = 2N/(N − 2), if p ∈ [1,2∗] then there exists a positive constant cp such that

‖u‖Lp(Ω) � cp‖u‖, u ∈ H 1
0 (Ω), (38)

and, in particular, the embedding is compact whenever p ∈ [1,2∗[; see, e.g., [20, Proposi-
tion B.7].

Given a function a ∈ L∞(Ω), consider the eigenvalue problem{−�u + a(x)u = λu in Ω,

u = 0 on ∂Ω.
(39)

It is well known [12, Section 8.12] that (39) possesses a sequence {λn} of eigenvalues
fulfilling λ1 < λ2 � · · · � λn � · · · (the number of times an eigenvalue appears in the
sequence equals its multiplicity) and, moreover, that (vide [1, p. 14])

λ1 > ess inf
x∈Ω

a(x). (40)

Let {φn} be a corresponding sequence of eigenfunctions normalized as follows:∫
Ω

(∣∣∇φn(x)
∣∣2 + a(x)φn(x)2)dx = λn

∫
Ω

φn(x)2 dx = λn (41)

for every n ∈ N;∫
Ω

(∇φm(x) · ∇φn(x) + a(x)φm(x)φn(x)
)
dx =

∫
Ω

φm(x)φn(x) dx = 0 (42)

provided m,n ∈ N and m �= n.
To avoid technicalities, we shall examine below only the case when

λs < 0 < λs+1 for some s ∈ N. (43)

If g : R → R satisfies the conditions:

(g1) g is measurable,
(g2) there exist a1 > 0, p ∈ ]2,2∗[ such that |g(t)| � a1(1 + |t |p−1) for every t ∈ R,
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then the functions G : R → R and G :H 1
0 (Ω) → R given by

G(ξ) :=
ξ∫

0

−g(t) dt ∀ξ ∈ R, G(u) :=
∫
Ω

G
(
u(x)

)
dx ∀u ∈ H 1

0 (Ω),

respectively, are well defined and locally Lipschitz continuous. So, it makes sense to con-
sider their generalized directional derivatives G0 and G0. On account of [7, formula (9),
p. 84] one has

G0(u;v) �
∫
Ω

G0(u(x);v(x)
)
dx, u, v ∈ H 1

0 (Ω). (44)

For our application, we will further assume

(g3) limt→0
g(t)
t

= 0,

(g4) lim sup|t |→+∞
g(t)
t

< 0, and
(g5) there exists a ξ0 ∈ R such that G(ξ0) < 0.

Through (g4) one can easily find two positive constants β,γ satisfying

g(t) � −βt − γ ∀t � 0, g(t) � −βt + γ ∀t � 0. (45)

Now, let λ,μ > 0. Define

rλ,μ := λγ c1 +
√

(λγ c1)
2 + 2μ, (46)

with c1 as in (38) written for p = 1. A set Kλ ⊆ H 1
0 (Ω) is called of type (Kg

λ) provided

(Kg
λ) Kλ is convex and closed in H 1

0 (Ω). Moreover, there exists a μ > 0 such that
Brλ,μ ⊆ Kλ.

Given λ > 0 and Kλ satisfying (Kg
λ), denote by (Pλ) the elliptic variational–hemivariational

inequality problem:
Find u ∈ Kλ such that

−
∫
Ω

∇u(x) · ∇(v − u)(x) dx −
∫
Ω

a(x)u(x)(v − u)(x) dx � λG0(u;v − u)

for all v ∈ Kλ.
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Due to (44), any solution u of (Pλ) also fulfils the inequality

−
∫
Ω

∇u(x) · ∇(v − u)(x) dx −
∫
Ω

a(x)u(x)(v − u)(x) dx

� λ

∫
Ω

G0(u(x); (v − u)(x)
)
dx ∀v ∈ Kλ.

When g is continuous, while Kλ := H 1
0 (Ω), the function u ∈ H 1

0 (Ω) turns out a weak
solution to the Dirichlet problem

−�u + a(x)u = λg(u) in Ω, u = 0 on ∂Ω,

which has been previously investigated in [5] under more restrictive conditions; see also
[15, Theorem 6].

Theorem 4.1. Suppose (g1)–(g5) hold true. Then, for every λ sufficiently large, prob-
lem (Pλ) possesses at least two nontrivial solutions.

Proof. Write X := H 1
0 (Ω) and define, whenever u ∈ X,

Φ(u) := 1

2

∫
Ω

(∣∣∇u(x)
∣∣2 + a(x)u(x)2)dx + λG(u)

as well as

ψ(u) :=
{

0 if u ∈ Kλ,
+∞ otherwise,

f (u) := Φ(u) + ψ(u),

where λ > 0 while Kλ ⊆ H 1
0 (Ω) is of type (Kg

λ). Owing to (g1), (g2) the function
Φ :X → R turns out locally Lipschitz continuous. Consequently, f satisfies condi-
tion (H′

f ). We shall prove that

f is bounded below and coercive for any λ > −α

β
, (47)

with α := ess infx∈Ω a(x). Fix λ > −α/β . If u ∈ X then from (45) it follows that

∫
Ω(u(x)�0)

dx

u(x)∫
0

g(t) dt �
∫

Ω(u(x)�0)

(
−β

2
u(x)2 + γ u(x)

)
dx,
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besides

∫
Ω(u(x)�0)

dx

u(x)∫
0

g(t) dt �
∫

Ω(u(x)�0)

0∫
u(x)

(βt + γ )dt

=
∫

Ω(u(x)�0)

(
−β

2
u(x)2 − γ u(x)

)
dx.

Gathering these inequalities together yields

∫
Ω

dx

u(x)∫
0

g(t) dt � −β

2
‖u‖2

L2(Ω)
+ γ ‖u‖L1(Ω),

which clearly means

G(u) � β

2
‖u‖2

L2(Ω)
− γ ‖u‖L1(Ω) ∀u ∈ X. (48)

Now, through (38) and (48) we obtain

f (u) � Φ(u) � 1

2
‖u‖2 + 1

2
(α + λβ)‖u‖2

L2(Ω)
− λγ ‖u‖L1(Ω)

� 1

2
‖u‖2 + 1

2
(α + λβ)‖u‖2

L2(Ω)
− λγ c1‖u‖,

i.e., due to the choice of λ,

f (u) � 1

2
‖u‖2 − λγ c1‖u‖, u ∈ X. (49)

Therefore, (47) holds true. Let us next show that the function f satisfies condition (PS)f
provided λ > −α/β . So, pick a sequence {un} ⊆ X such that {f (un)} is bounded and

Φ0(un;v − un) + ψ(v) − ψ(un) � −εn‖v − un‖ (50)

for all n ∈ N, v ∈ X, where εn → 0+. By (50) one evidently has {un} ⊆ Kλ. Since f is
coercive, the sequence {un} turns out bounded. Thus, passing to a subsequence if necessary,
we may suppose both un ⇀ u in X and un → u in L2(Ω). The point u belongs to Kλ

because this set is weakly closed. Exploiting (50) with v := u we then get∫
Ω

∇un(x) · ∇(u − un)(x) dx +
∫
Ω

a(x)un(x)(u − un)(x) dx

+ λG0(un;u − un) � −εn‖u − un‖ ∀n ∈ N. (51)
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From un → u in L2(Ω) it follows

lim
n→+∞

∫
Ω

a(x)un(x)(u − un)(x) dx = 0. (52)

The upper semicontinuity of G0 on L2(Ω) × L2(Ω) forces

lim sup
n→+∞

G0(un;u − un) � G0(u;0) = 0. (53)

Taking account of (52), (53), besides the weak convergence of {un} to u, and letting n →
+∞ in (51) yields

lim sup
n→∞

∫
Ω

∣∣∇un(x)
∣∣2

dx �
∫
Ω

∣∣∇u(x)
∣∣2

dx,

namely, by [4, Proposition III.30], un → u in X. Hence, hypothesis (f′1) in Theorem 3.1 is
fulfilled.

Through (g5) we can construct an u0 ∈ X such that G(u0) < 0. Moreover, u0 ∈ Brλ,μ

for any λ � 1
2γ c1

‖u0‖. Therefore, infu∈X f (u) < 0 provided

λ > max

{
1

2γ c1
‖u0‖,− 1

2G(u0)

∫
Ω

(∣∣∇u0(x)
∣∣2 + a(x)u0(x)2)dx

}
,

while f (0) = λG(0) = 0.
Our next objective is to verify (f6). Since Kλ is of type (Kg

λ), the set{
u ∈ X: f (u) < μ

}
is open. (54)

Indeed, inequality (49) ensures that{
u ∈ X: f (u) < μ

} ⊆ Brλ,μ ⊆ Kλ.

Consequently,{
u ∈ X: f (u) < μ

} = {
u ∈ Kλ: Φ(u) < μ

} = {
u ∈ X: Φ(u) < μ

}
which leads to (54).

Finally, reasoning as in [2, p. 137] we obtain

lim
G(u)

2
= 0 (55)
u→0 ‖u‖
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while to any ε > 0 there corresponds a δ ∈ ]0,1[ such that

G(u) � −‖u‖2
(

ε

2
c2

2 + 2a1c
p
p

δp
‖u‖p−2

)
∀u ∈ X, (56)

with c2, cp given by (38). Write X2 := span{φ1, . . . , φs} and X1 := X⊥
2 , where the or-

thogonal complement is taken in X. One clearly has X = X1 ⊕ X2, dim(X1) > 0, besides
0 < dim(X2) < +∞. Moreover, if u ∈ X2 then u = ∑s

i=1 tiφi for some t1, . . . , ts ∈ R.
A simple computation shows that

‖u‖2 � (λs − α)‖u‖2
L2(Ω)

, u ∈ X2, (57)

with λs − α � λ1 − α > 0 because of (40). Thanks to (Kg
λ) and (41)–(43) we get

f (u) = Φ(u) = 1

2

s∑
i=1

t2
i λi + λG(u) � 1

2
λs‖u‖2

L2(Ω)
+ λG(u)

whenever ‖u‖ � rλ,μ. By (55), the above inequality, and (57), for every σ > 0 there exists
a ρ ∈ ]0, rλ,μ[ satisfying

f (u) �
[
λs

2
+ λσ(λs − α)

]
‖u‖2

L2(Ω)
∀u ∈ Bρ ∩ X2.

At this point, choose σ > 0 so small that λs/2 + λσ(λs − α) < 0, which is possible on
account of (43). Bearing in mind (57) we have

f (u) < 0 ∀u ∈ Bρ ∩ X2 \ {0}. (58)

Let us next prove that∫
Ω

(∣∣∇u(x)
∣∣2 + a(x)u(x)2)dx � θ‖u‖2 in X1 (59)

for a suitable constant θ > 0. Indeed, if the assertion were false then there would exist a
sequence {un} ⊆ X1 enjoying the properties

‖un‖ = 1, n ∈ N, (60)∫ (∣∣∇un(x)
∣∣2 + a(x)un(x)2)dx <

1

n
∀n ∈ N. (61)
Ω
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Passing to a subsequence when necessary, we may suppose un ⇀ u in X as well as un → u

in L2(Ω), with u ∈ X1. Thus, letting n → +∞ in (61) yields∫
Ω

(∣∣∇u(x)
∣∣2 + a(x)u(x)2)dx � 0. (62)

From u ∈ X1 it follows u = ∑+∞
i=s+1 tiφi , where ti ∈ R, i � s + 1. Through (41)–(43) we

obtain

λs+1‖u‖2
L2(Ω)

�
∫
Ω

(∣∣∇u(x)
∣∣2 + a(x)u(x)2)dx. (63)

Gathering (62) and (63) together leads to u = 0. By (61) this forces un → 0 in X,
against (60). Combining (59) with (56) provides

f (u) � ‖u‖2
[
θ

2
− λ

(
ε

2
c2

2 + 2a1c
p
p

δp
‖u‖p−2

)]
(64)

for all u ∈ X1. Pick ε > 0 and r ∈ ]0, ρ[ such that

θ

2
− λ

(
ε

2
c2

2 + 2a1c
p
p

δp
rp−2

)
> 0.

Then, thanks to (64) we have

f (u) � 0 ∀u ∈ Br ∩ X1. (65)

Finally, taking account of Remark 3.1, (58) and (65) immediately yield condition (f7).
We are now in a position to apply Theorem 3.1. So, there exist at least two points

u1, u2 ∈ X \ {0} such that

Φ0(ui;v − ui) + ψ(v) − ψ(ui) � 0

for all v ∈ X, i = 1,2. The choice of ψ gives both ui ∈ Kλ and Φ0(ui;v−ui) � 0, v ∈ Kλ,
i = 1,2, namely u1, u2 turn out nontrivial solutions to problem (Pλ), which completes the
proof. �
Remark 4.1. Reading the above arguments we realize that the conclusion of Theorem 4.1
holds true as soon as

λ > max

{
−α

β
,

1

2γ c1
‖u0‖,− 1

2G(u0)

∫
Ω

(∣∣∇u0(x)
∣∣2 + a(x)u0(x)2)dx

}
,

where α := ess infx∈Ω a(x), β and γ are given by (45), c1 comes from (38) written for
p = 1, while u0 ∈ X fulfils G(u0) < 0.
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