

Available online at www.sciencedirect.com

J. Differential Equations 226 (2006) 704-725

Journal of Differential Equations

www.elsevier.com/locate/jde

Critical points for nondifferentiable functions in presence of splitting

R. Livrea^a, S.A. Marano^{a,*}, D. Motreanu^b

 ^a Dipartimento di Patrimonio Architettonico e Urbanistico, Università degli Studi Mediterranea di Reggio Calabria, Salita Melissari, 89100 Reggio Calabria, Italy
 ^b Département de Mathématiques, Université de Perpignan, Avenue de Villeneuve 52, 66860 Perpignan cedex, France

Received 6 May 2005; revised 28 October 2005

Available online 13 December 2005

Abstract

A classical critical point theorem in presence of splitting established by Brézis–Nirenberg is extended to functionals which are the sum of a locally Lipschitz continuous term and of a convex, proper, lower semicontinuous function. The obtained result is then exploited to prove a multiplicity theorem for a family of elliptic variational–hemivariational eigenvalue problems. © 2005 Elsevier Inc. All rights reserved.

MSC: 58E05; 49J40; 35J85

Keywords: Critical points; Nonsmooth functions; Splittings; Elliptic variational-hemivariational eigenvalue problems; Multiple solutions

1. Introduction

A meaningful consequence of Ghoussoub's min-max principle (see, for instance, [11, Theorem 5.2]) is the critical point theorem in presence of splitting established by Brézis-Nirenberg in 1991, i.e., [5, Theorem 4]. Roughly speaking, it is assumed that

^{*} Corresponding author.

E-mail addresses: roberto.livrea@unirc.it (R. Livrea), marano@unirc.it, samarano@mail.gte.it (S.A. Marano), motreanu@univ-perp.fr (D. Motreanu).

^{0022-0396/} $\ensuremath{\$}$ – see front matter $\ensuremath{\$}$ 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.jde.2005.11.001

there exist a Banach space X with a direct sum decomposition $X = X_1 \oplus X_2$, where $\dim(X_2) < +\infty$, and a bounded below function $f \in C^1(X, \mathbb{R})$ having a local linking at 0, namely

(f) $f|_{\overline{B}_r \cap X_2} \leq 0$ as well as $f|_{\overline{B}_r \cap X_1} \geq 0$ for some r > 0.

If $\inf_{x \in X} f(x) < 0$, f(0) = 0, and the Palais–Smale condition holds true, then f admits at least two nonzero critical points.

Very recently, in [14], Ghoussoub's result has been extended to functions f on a Banach space X fulfilling a structural hypothesis of the type

(H_f) $f(x) := \Phi(x) + \psi(x)$ for all $x \in X$, where $\Phi : X \to \mathbb{R}$ is locally Lipschitz continuous and $\psi : X \to \mathbb{R} \cup \{+\infty\}$ is convex, proper, and lower semicontinuous.

Critical points of f are defined as solutions to the problem:

Find $x \in X$ such that

$$\Phi^0(x; z - x) + \psi(z) - \psi(x) \ge 0 \quad \forall z \in X,$$
(1)

with $\Phi^0(x; z - x)$ being the generalized directional derivative [7, p. 25] of Φ in x along the direction z - x. The Palais–Smale condition for C^1 functions becomes here

 $(PS)_f$ Every sequence $\{x_n\} \subseteq X$ such that $\{f(x_n)\}$ is bounded and

$$\Phi^{0}(x_{n}; z - x_{n}) + \psi(z) - \psi(x_{n}) \ge -\epsilon_{n} \|z - x_{n}\| \quad \forall n \in \mathbb{N}, \ z \in X,$$

where $\epsilon_n \rightarrow 0^+$, possesses a convergent subsequence.

This abstract framework was previously introduced and developed by Motreanu and Panagiotopoulos [17]. Inequality (1) is usually called a *variational–hemivaritional inequality*. It has been exploited for mathematically formulating several engineering, besides mechanical, questions, and extensively studied from many points of view in the latest years [17–19]. If $\psi \equiv 0$, then (1) coincides with the problem treated by Chang [6], who also exploits various abstract results to study elliptic equations having discontinuous nonlinear terms. When $\Phi \in C^1(X, \mathbb{R})$, problem (1) reduces to a variational inequality, and significant applications as well as the relevant critical point theory are developed in [21]. Finally, if both $\Phi \in C^1(X, \mathbb{R})$ and $\psi \equiv 0$, then (1) simplifies to the Euler equation, which is classical.

In this paper we first extend the above-mentioned Brézis–Nirenberg critical point theorem to Motreanu–Panagiotopoulos' setting (see Theorem 3.1 below) by using the structural hypothesis, previously introduced in [14],

(H'_f) $f(x) := \Phi(x) + \psi(x)$ for all $x \in X$, where $\Phi: X \to \mathbb{R}$ is locally Lipschitz continuous and $\psi: X \to \mathbb{R} \cup \{+\infty\}$ is convex, proper, and lower semicontinuous. Moreover, ψ is continuous on any nonempty compact set $A \subseteq X$ such that $\sup_{x \in A} \psi(x) < +\infty$.

Although less general than (H_f) , this condition still works in all the most important concrete situations. For instance, $\psi := I_K$, with I_K being the indicator function of some nonempty, convex, closed set $K \subseteq X$, represents a standard but meaningful case of ψ . The Banach space X is supposed to be reflexive and with a direct sum decomposition $X = X_1 \oplus X_2$, where $0 < \dim(X_2) < +\infty$, while assumption (f) is replaced by the more restrictive one

(f')
$$f|_{\overline{B}_r \cap X_1} \ge 0$$
, $f|_{\overline{B}_r \cap X_2} \le 0$, and $f|_{\partial B_r \cap X_2} < 0$ for some $r > 0$ small enough,

which arises from the different construction of the pseudo-gradient vector field in our abstract situation. We do not know at present whether (f') can be weakened to (f). The locally Lipschitz continuous case, i.e., $\psi \equiv 0$, has been recently treated in [13].

One application to an elliptic variational–hemivariational inequality patterned after problem (38) in [5] (see also [15, problem (5.7)]) is then presented. Let Ω be a bounded domain in \mathbb{R}^N , $N \ge 3$, let $X := H_0^1(\Omega)$, and let

$$\mathcal{G}(u) := \int_{\Omega} G(u(x)) dx \quad \forall u \in X,$$

where $G(\xi) := \int_0^{\xi} -g(t) dt$, $\xi \in \mathbb{R}$, with $g : \mathbb{R} \to \mathbb{R}$ measurable. Given $\lambda > 0$ and a nonempty, convex, closed set $K_{\lambda} \subseteq X$ depending on λ , we prove that if g satisfies suitable growth conditions then the problem:

Find $u \in K_{\lambda}$ fulfilling

$$-\int_{\Omega} \nabla u(x) \cdot \nabla (v-u)(x) \, dx - \int_{\Omega} a(x)u(x)(v-u)(x) \, dx \leq \lambda \mathcal{G}^0(u;v-u)$$

for all $v \in K_{\lambda}$, where $a \in L^{\infty}(\Omega)$, possesses at least two nontrivial solutions provided λ is sufficiently large.

2. Basic definitions and preliminary results

Let $(X, \|\cdot\|)$ be a real Banach space. If *V* is a subset of *X*, we write int(V) for the interior of *V*, \overline{V} for the closure of *V*, ∂V for the boundary of *V*. When *V* is nonempty, $x \in X$, and $\delta > 0$, we define $B(x, \delta) := \{z \in X : \|z - x\| < \delta\}$ as well as $B_{\delta} := B(0, \delta)$. Given $x, z \in X$, the symbol [x, z] indicates the line segment joining *x* to *z*, namely

$$[x, z] := \{ (1-t)x + tz: t \in [0, 1] \}.$$

Moreover, $[x, z] := [x, z] \setminus \{x\}$. We denote by X^* the dual space of X, while $\langle \cdot, \cdot \rangle$ stands for the duality pairing between X and X^* . A function $\Phi : X \to \mathbb{R}$ is called locally Lipschitz

continuous when to every $x \in X$ there correspond a neighbourhood V_x of x and a constant $L_x \ge 0$ such that

$$|\Phi(z) - \Phi(w)| \leq L_x ||z - w|| \quad \forall z, w \in V_x.$$

If $x, z \in X$, we write $\Phi^0(x; z)$ for the generalized directional derivative of Φ at the point x along the direction z, i.e.,

$$\Phi^0(x;z) := \limsup_{w \to x, \ t \to 0^+} \frac{\Phi(w+tz) - \Phi(w)}{t}.$$

It is known [7, Proposition 2.1.1] that Φ^0 is upper semicontinuous on $X \times X$. The generalized gradient of the function Φ in *x*, denoted by $\partial \Phi(x)$, is the set

$$\partial \Phi(x) := \left\{ x^* \in X^* \colon \langle x^*, z \rangle \leqslant \Phi^0(x; z) \; \forall z \in X \right\}.$$

Proposition 2.1.2 of [7] ensures that $\partial \Phi(x)$ turns out nonempty, convex, in addition to weak* compact.

Let f be a function on X satisfying the structural hypothesis (H_f) in Section 1. Put $D_{\psi} := \{x \in X : \psi(x) < +\infty\}$. Since ψ turns out continuous on $int(D_{\psi})$ (see, for instance, [8, Exercise 1, p. 296]) the same holds regarding f. To simplify notation, always denote by $\partial \psi(x)$ the subdifferential of ψ at x in the sense of convex analysis, while

$$D_{\partial \psi} := \{ x \in X \colon \partial \psi(x) \neq \emptyset \}.$$

Theorem 23.5 of [8] gives $int(D_{\psi}) = int(D_{\partial\psi})$. Moreover, by [8, Theorems 23.5 and 23.3], $\partial \psi(x)$ is always convex and weak* closed. We say that $x \in D_{\psi}$ is a critical point of f when (1) holds true. The symbol K(f) indicates the set of all critical points for f. Given a real number c, we write

$$f_c := \{ x \in X \colon f(x) \leq c \}, \qquad f^c := \{ x \in X \colon f(x) \geq c \},$$

and

$$K_c(f) := K(f) \cap f^{-1}(c).$$

If $K_c(f) \neq \emptyset$ then $c \in \mathbb{R}$ is called a critical value of f.

The following variant [10, pp. 444, 456] of the famous variational principle of Ekeland will be repeatedly employed.

Theorem 2.1. Let (Z, d) be a complete metric space and let Π be a proper, lower semicontinuous, bounded below function from Z into $\mathbb{R} \cup \{+\infty\}$. Then to every $\epsilon, \delta > 0$ and every $\overline{z} \in Z$ satisfying $\Pi(\overline{z}) \leq \inf_{z \in Z} \Pi(z) + \epsilon$ there corresponds a point $z_0 \in Z$ such that

$$\Pi(z_0) \leqslant \Pi(\bar{z}), \qquad d(z_0, \bar{z}) \leqslant \frac{1}{\delta}, \qquad \Pi(z) - \Pi(z_0) \geqslant -\epsilon \delta d(z, z_0) \quad \forall z \in \mathbb{Z}.$$

Propositions 2.1 and 2.2 below are established via Theorem 2.1. The first of them represents a nonsmooth version of [5, Proposition 2].

Proposition 2.1. Assume f is bounded below and satisfies $(PS)_f$ in addition to (H_f) . Then each minimizing sequence for f possesses a convergent subsequence.

Proof. Let $\{x_n\} \subseteq X$ fulfils $\lim_{n \to +\infty} f(x_n) = \inf_{x \in X} f(x)$. Passing to a subsequence if necessary, we may suppose $f(x_n) \leq \inf_{x \in X} f(x) + 1/n^2$, $n \in \mathbb{N}$. By Theorem 2.1, for every $n \in \mathbb{N}$ there exists a point $z_n \in X$ enjoying the following properties:

$$f(z_n) \leqslant f(x_n),\tag{2}$$

$$\|z_n - x_n\| \leqslant \frac{1}{n},\tag{3}$$

$$f(z) - f(z_n) \ge -\frac{1}{n} \|z - z_n\| \quad \forall z \in X.$$

$$\tag{4}$$

Through (2) we obtain that $\{f(z_n)\}$ is bounded, while (4) leads to

$$\Phi^{0}(z_{n}; x - z_{n}) + \psi(x) - \psi(z_{n}) \ge -\frac{1}{n} \|x - z_{n}\| \quad \forall x \in X.$$
(5)

Indeed, if $x \in X$ and $z := z_n + t(x - z_n)$, with $t \in [0, 1[$, then from (4), besides (H_f), it follows

$$\Phi(z_n + t(x - z_n)) - \Phi(z_n) + t[\psi(x) - \psi(z_n)] \ge -\frac{t}{n} ||x - z_n||$$

Dividing by *t* and letting $t \to 0^+$ we achieve (5). At this point, condition $(PS)_f$ forces $z_n \to x_0$ for suitable $x_0 \in X$, where a subsequence is considered when necessary, and thus, by (3), also $x_n \to x_0$. \Box

Remark 2.1. The preceding result guarantees that every function f which is bounded below and satisfies (H_f) as well as $(PS)_f$ attains its minimum at some $x_0 \in X$.

Proposition 2.2. Let f be bounded below and fulfil (PS)_f in addition to (H_f). Assume the global minimum point x_0 is unique. Then, for every $\rho_0 > 0$ there exists a $\rho > 0$ such that

$$U_{\rho} := \{ x \in X \colon f(x) < f(x_0) + \rho \} \subseteq B(x_0, \rho_0).$$

Proof. Arguing by contradiction one can find a $\rho_0 > 0$ and a sequence $\{x_n\} \subseteq X$ such that

$$f(x_n) < f(x_0) + \frac{1}{n^2}, \qquad ||x_n - x_0|| \ge \rho_0 \quad \forall n \in \mathbb{N}.$$

Now, Theorem 2.1 provides a point $z_n \in X$ satisfying (2)–(4). Set $z := z_n + t(x - z_n)$, with $x \in X$ and $t \in [0, 1[$. As in the proof of Proposition 2.1, inequality (4), besides the

convexity of ψ , lead to (5). Thus, by condition $(PS)_f$, there exists a subsequence $\{z_{k_n}\}$ of $\{z_n\}$ strongly converging to some $z \in X$. Since $f(z_{k_n}) \to f(x_0)$ in view of (2), we have $f(z) = f(x_0)$, which forces $z = x_0$ taking into account the uniqueness of x_0 . On the other hand, $x_{k_n} \to x_0$ due to (3). However, this is impossible because $||x_{k_n} - x_0|| \ge \rho_0$ for all $n \in \mathbb{N}$, and the conclusion follows. \Box

Finally, the next result will play a basic role in establishing the abstract theorem of this paper. For its proof we refer to [14, Theorem 3.3]. Here, Q indicates a compact set in X, Q_0 is a nonempty closed subset of Q, γ_0 belongs to $C^0(Q_0, X)$, while

$$\Gamma := \left\{ \gamma \in C^0(Q, X) \colon \gamma |_{Q_0} = \gamma_0 \right\}.$$

Theorem 2.2. Suppose the function f satisfies the assumptions below in addition to (H'_f) and $(PS)_f$.

- (a₁) $\sup_{x \in O} f(\hat{\gamma}(x)) < +\infty$ for some $\hat{\gamma} \in \Gamma$.
- (a₂) There exists a closed subset S of X such that $\sup_{x \in Q_0} f(\gamma_0(x)) \leq \inf_{x \in S} f(x)$ and $(\gamma(Q) \cap S) \setminus \gamma_0(Q_0) \neq \emptyset$ for all $\gamma \in \Gamma$.

Put $c := \inf_{\gamma \in \Gamma} \sup_{x \in Q} f(\gamma(x))$. Then the set $K_c(f)$ is nonempty. If, moreover, $\inf_{x \in S} f(x) = c$ then $K_c(f) \cap S \neq \emptyset$.

3. Critical points in presence of splitting

Throughout this section, $(X, \|\cdot\|)$ is a real reflexive Banach space while f denotes a function from X into $\mathbb{R} \cup \{+\infty\}$. The following hypotheses will be posited in the sequel:

- (f₁) f is bounded below and fulfils (PS) f besides (H $_f$).
- (f₂) $x_0 \in X$ is a global minimum point of the function f.

Observe that if (f_1) holds then f attains its minimum; see Remark 2.1. We shall further assume:

- (f₃) $x_0 \neq 0$. Moreover, x_0 and eventually 0 are the only critical points for f.
- (f₄) There exist two disjoint open neighbourhoods U_0 and N_0 of x_0 and 0, respectively, as well as a constant $b > \inf_{x \in X} f(x)$, satisfying $f_b \setminus (U_0 \cup N_0) \subseteq D_{\partial \psi}$.
- (f₅) If $\{x_n\} \subseteq f_b \setminus (U_0 \cup N_0), x_n \to x \text{ in } X$, and $x_n^* \in \partial \psi(x_n)$ for all $n \in \mathbb{N}$, then to each $z \in X$ there corresponds an $x^* \in \partial \psi(x)$ such that $\langle x^*, z \rangle \leq \limsup_{n \to +\infty} \langle x_n^*, z \rangle$.

Proposition 3.1. Suppose $(f_1)-(f_4)$ hold true. Then there exists a constant $\sigma > 0$ such that for every $x \in f_b \setminus (U_0 \cup N_0)$, $x^* \in \partial \Phi(x)$, $z^* \in \partial \psi(x)$ one has $||x^* + z^*||_{X^*} \ge \sigma$.

Proof. Arguing by contradiction one could construct three sequences $\{x_n\} \subseteq X$, $\{x_n^*\}$, $\{z_n^*\} \subseteq X^*$ with the following properties:

$$x_n \in f_b \setminus (U_0 \cup N_0), \quad n \in \mathbb{N}, \tag{6}$$

$$x_n^* \in \partial \Phi(x_n) \quad \text{and} \quad z_n^* \in \partial \psi(x_n) \quad \forall n \in \mathbb{N},$$
 (7)

$$\|x_n^* + z_n^*\|_{X^*} \to 0 \quad \text{as } n \to +\infty.$$
(8)

From (7) we obtain easily

$$\Phi^{0}(x_{n}; x - x_{n}) + \psi(x) - \psi(x_{n}) \ge \langle x_{n}^{*}, x - x_{n} \rangle + \langle z_{n}^{*}, x - x_{n} \rangle$$
$$\ge - \left\| x_{n}^{*} + z_{n}^{*} \right\|_{X^{*}} \left\| x - x_{n} \right\|$$

for all $n \in \mathbb{N}$, $x \in X$. Thanks to $(PS)_f$, setting $\epsilon_n := ||x_n^* + z_n^*||_{X^*}$ and using (8) produces $x_n \to \bar{x}$ in X, where a subsequence is considered when necessary. Moreover, by (6), the point \bar{x} lies in $f_b \setminus (U_0 \cup N_0)$. Since Φ^0 and $-\psi$ are upper semicontinuous, this forces both $\bar{x} \in D_{\psi}$ and

$$\Phi^0(\bar{x}; x - \bar{x}) + \psi(x) - \psi(\bar{x}) \ge 0 \quad \forall x \in X,$$

namely \bar{x} turns out a critical point of f different from x_0 and 0, against hypothesis (f₃). \Box

Proposition 3.2. Let $(f_1)-(f_5)$ be satisfied and let σ be as in Proposition 3.1. Then there exists a locally Lipschitz continuous function $F: f_b \setminus (U_0 \cup N_0) \to X$ such that, for every $x \in f_b \setminus (U_0 \cup N_0), ||F(x)|| \leq 1$ and

$$\langle x^* + z^*, F(x) \rangle > \frac{\sigma}{2} \quad \forall x^* \in \partial \Phi(x), \ z^* \in \partial \psi(x).$$
 (9)

Proof. From now on, W denotes the set $f_b \setminus (U_0 \cup N_0)$. Pick $x \in W$. We first claim that the infimum

$$\delta(x) := \inf\{\|x^* + z^*\|_{X^*} : x^* \in \partial \Phi(x), \ z^* \in \partial \psi(x)\}$$
(10)

is attained. To show this, fix $\{x_n^*\} \subseteq \partial \Phi(x)$ and $\{z_n^*\} \subseteq \partial \psi(x)$ fulfilling

$$\lim_{n \to +\infty} \|x_n^* + z_n^*\|_{X^*} = \delta(x).$$
(11)

Since X is reflexive while $\partial \Phi(x)$ is weak* compact, we can find an $\bar{x}^* \in \partial \Phi(x)$ such that, along a subsequence if necessary, $x_n^* \rightarrow \bar{x}^*$. By (11) the sequence $\{z_n^*\}$ turns out bounded. So, as before, $z_n^* \rightarrow \bar{z}^*$ for some $\bar{z}^* \in \partial \psi(x)$. One clearly has

$$\|\bar{x}^* + \bar{z}^*\|_{X^*} \leq \liminf_{n \to +\infty} \|x_n^* + z_n^*\|_{X^*},$$

which implies $\|\bar{x}^* + \bar{z}^*\|_{X^*} = \delta(x)$.

Proposition 3.1 ensures that $\delta(x) \ge \sigma > 0$. Hence, $B_{\delta(x)}$ is nonempty and, on account of (10),

$$B_{\delta(x)} \cap \left(\partial \Phi(x) + \partial \psi(x)\right) = \emptyset.$$

Now, the Hahn–Banach Theorem [4, Theorem I.6] provides a point $\xi_x \in X$ with the properties $\|\xi_x\| = 1$ and, whenever $x^* \in \partial \Phi(x), z^* \in \partial \psi(x)$,

$$\langle x^* + z^*, \xi_x \rangle \geqslant \langle w^*, \xi_x \rangle \quad \forall w^* \in B_{\delta(x)}.$$

This inequality and Proposition 3.1 lead to

$$\left\langle x^* + z^*, \xi_x \right\rangle \geqslant \delta(x) \geqslant \sigma \tag{12}$$

for all $x^* \in \partial \Phi(x), z^* \in \partial \psi(x)$.

We next show that to each $x \in W$ there corresponds an open neighbourhood V_x of x such that as soon as $v \in V_x \cap W$ one has

$$\langle x^* + z^*, \xi_x \rangle > \frac{\sigma}{2} \quad \forall x^* \in \partial \Phi(v), \ z^* \in \partial \psi(v).$$
 (13)

Indeed, if the assertion were false then we could find $x \in W$, $\{x_n\} \subseteq W$, and $\{x_n^*\}$, $\{z_n^*\} \subseteq X^*$ satisfying the following conditions:

$$x_n \to x, \qquad x_n^* \in \partial \Phi(x_n), \qquad z_n^* \in \partial \psi(x_n), \quad n \in \mathbb{N},$$
 (14)

$$\left\langle x_{n}^{*}+z_{n}^{*},\xi_{x}\right\rangle \leqslant \frac{\sigma}{2} \quad \forall n\in\mathbb{N}.$$
(15)

Due to the reflexivity of X and (14), Proposition 2.1.2 in [7] yields an $x^* \in X^*$ such that $x_n^* \rightharpoonup x^*$ in X^* , where a subsequence is considered when necessary, while Proposition 2.1.5 of the same reference forces $x^* \in \partial \Phi(x)$. From (15) we thus get

$$\limsup_{n\to+\infty} \langle z_n^*, \xi_x \rangle \leqslant \frac{\sigma}{2} - \langle x^*, \xi_x \rangle.$$

Now, exploiting (f₅) provides a point $z^* \in \partial \psi(x)$ such that

$$\langle z^*, \xi_x \rangle \leqslant \frac{\sigma}{2} - \langle x^*, \xi_x \rangle,$$

which contradicts (12).

The family $\mathcal{V} := \{V_x : x \in W\}$ represents an open covering of W. Since, by [9, Theorem VIII.2.4], this set is paracompact, \mathcal{V} possesses an open locally finite refinement $\{V_i : i \in I\}$. Moreover, on account of (13), to each $i \in I$ there corresponds a $\xi_i \in X$ fulfilling $\|\xi_i\| = 1$ as well as, whenever $x \in V_i \cap W$,

$$\langle x^* + z^*, \xi_i \rangle > \frac{\sigma}{2} \quad \forall x^* \in \partial \Phi(x), \ z^* \in \partial \psi(x).$$
 (16)

Let $\{\rho_i : i \in I\}$ be a partition of unity subordinated to $\{V_i : i \in I\}$ such that each ρ_i turns out locally Lipschitz continuous; for a possible construction we refer to [16, p. 145]. Define

$$F(x) := \sum_{i \in I} \rho_i(x)\xi_i, \quad x \in W.$$
(17)

The function *F* is evidently locally Lipschitz continuous and one has $||F(x)|| \le 1$ because $\sum_{i \in I} \rho_i(x) = 1$ in *W*. Exploiting (16) we then see at once that

$$\langle x^* + z^*, F(x) \rangle > \frac{\sigma}{2} \quad \forall x^* \in \partial \Phi(x), \ z^* \in \partial \psi(x),$$

which completes the proof. \Box

We are in a position now to establish the main result of this paper. It can be regarded as a nonsmooth version of the famous Brézis–Nirenberg critical point theorem [5, Theorem 4]; vide also [11, Theorem 5.18] and [15, Theorem 1]. Suppose

$$X := X_1 \oplus X_2,$$

where dim $(X_1) > 0$, while $0 < \dim(X_2) < \infty$. The symbol (f'_1) will denote (f_1) with (H_f) replaced by (H'_f) .

Theorem 3.1. Assume (f'_1) and (f_2) are satisfied, $\inf_{x \in X} f(x) < f(0)$, f(0) = 0, and, moreover,

- (f₆) the set { $x \in X$: f(x) < a} is open for some constant a > 0,
- (f₇) there exists an $r \in [0, \frac{\|x_0\|}{2}]$ such that $f|_{\overline{B}_r \cap X_1} \ge 0$, $f|_{\overline{B}_r \cap X_2} \le 0$, and $f|_{\partial B_r \cap X_2} < 0$.

Then the function f possesses at least two nontrivial critical points.

Proof. One clearly has $x_0 \neq 0$ because $f(x_0) = \inf_{x \in X} f(x) < f(0)$. Suppose (f₃) holds true, since otherwise we are done. It is not restrictive to write (f₇) for r = 1. Let us first note that

$$f(x_0) < \inf_{x \in \overline{B}_1 \cap X_2} f(x).$$
 (18)

Indeed, $\overline{B}_1 \cap X_2$ turns out a compact subset of $\{x \in X: f(x) < a\}$ while, due to (f₆), f is locally Lipschitz continuous on this set. Thus, one can find an $x_1 \in \overline{B}_1 \cap X_2$ fulfilling $f(x_1) = \inf_{x \in \overline{B}_1 \cap X_2} f(x)$. If $f(x_1) = f(x_0)$ then x_1 would be a global minimum point for f. Since $||x_1|| \leq 1 < ||x_0||$ and $f(x_0) < f(0)$, we would get $x_1 \in K(f) \setminus \{0, x_0\}$, which contradicts (f₃).

Now, from $f(x_0) < 0 < a$ it easily follows

$$f(x) < 0 \quad \text{in } B(x_0, \rho_0)$$
 (19)

for some $\rho_0 \in [0, \frac{\|x_0\|}{2}]$. Let $\rho > 0$ be as in Proposition 2.2. On account of (18), we may assume that

$$2\rho < \min\{\rho_0, 1\}$$
 and $f(x_0) + \rho < \inf_{x \in \overline{B}_1 \cap X_2} f(x).$ (20)

Moreover, by decreasing ρ when necessary, hypothesis (f₇) leads to

$$\sup_{x \in \partial B_1 \cap X_2} f(x) < -2\rho L < 0, \tag{21}$$

where L denotes a Lipschitz constant for f on a suitable closed ball centered at 0, which contains $\overline{B}_{2\rho}$. Pick any $b \in [0, a[$. Through (f₇) and (20) we obtain

$$\partial B_1 \cap X_2 \subseteq \left\{ x \in X \colon f(x) < b \right\} \setminus \overline{U_\rho \cup B_{2\rho}}.$$
(22)

Observe next that (f₄) is satisfied with $U_0 := U_\rho$, $N_0 := B_{2\rho}$ because, in view of Proposition 2.2,

$$U_{\rho} \cap B_{2\rho} \subseteq B(x_0, \rho_0) \cap B_{2\rho} = \emptyset$$
(23)

while, due to the choice of b besides (f₆),

$$f_b \subseteq \left\{ x \in X \colon f(x) < a \right\} \subseteq \operatorname{int}(D_{\psi}) = \operatorname{int}(D_{\partial \psi}).$$
(24)

Exploiting this inclusion we also see that (f₅) holds true. Indeed, since the set $\{x \in X: f(x) < a\}$ is open, ψ turns out locally Lipschitz continuous on a neighbourhood of f_b . If $\{x_n\} \subseteq f_b \setminus (U_0 \cup N_0), x_n \to x$ in $X, x_n^* \in \partial \psi(x_n)$ for all $n \in \mathbb{N}$, and $z \in X$ then, by [6, Proposition 6], there exists a relabelled sequence $\{w_n^*\} \subseteq \partial \psi(x)$ fulfilling

$$\lim_{n \to +\infty} \langle x_n^* - w_n^*, z \rangle = 0.$$
⁽²⁵⁾

We may suppose $w_n^* \rightarrow x^*$ for some $x^* \in \partial \psi(x)$, where a subsequence is considered when necessary. Consequently, owing to (25),

$$\langle x^*, z \rangle = \lim_{n \to +\infty} \langle w_n^*, z \rangle = \lim_{n \to +\infty} \langle w_n^* - x_n^* + x_n^*, z \rangle \leqslant \limsup_{n \to +\infty} \langle x_n^*, z \rangle,$$

as desired. At this point, Proposition 3.2 can be applied, and we get a locally Lipschitz continuous function $F: f_b \setminus (U_0 \cup N_0) \to X$ enjoying property (9), besides $||F(x)|| \leq 1$. In particular, (9) evidently forces $F(x) \neq 0$ for all $x \in f_b \setminus (U_0 \cup N_0)$.

Fix any $z \in \partial B_1 \cap X_2$. On account of (22) it makes sense to consider the Cauchy problem

$$\begin{aligned} \frac{d\eta_z(t)}{dt} &= -F(\eta_z(t)),\\ \eta_z(0) &= z. \end{aligned}$$
(26)

By the basic existence-uniqueness theorem for ordinary differential equations in Banach spaces it possesses a unique local solution η_z . Let T_z be the maximum of $\{T \in [0, +\infty]: \eta_z \text{ is defined on } [0, T[]\}$. We claim that $T_z < +\infty$. In fact, since f turns out locally Lipschitz continuous on a neighbourhood of f_b , Proposition 9 in [6] yields

$$\frac{d}{dt}f(\eta_{z}(t)) \leqslant \max_{x^{*} \in \partial \Phi(\eta_{z}(t)), \ z^{*} \in \partial \psi(\eta_{z}(t))} \langle x^{*} + z^{*}, -F(\eta_{z}(t)) \rangle$$

for almost every $t \in [0, T_z[$. Thanks to (9) we thus have

$$\frac{d}{dt}f(\eta_z(t)) \leqslant -\frac{\sigma}{2}.$$
(27)

Integrating over $[0, t], t \in (0, T_z)$, provides

$$f(\eta_z(t)) - f(z) \leqslant -\frac{\sigma}{2}t, \qquad (28)$$

which clearly leads to

$$T_z \leq \frac{2}{\sigma} \Big(f(z) - \inf_{x \in X} f(x) \Big) < +\infty.$$

Observe next that

$$\eta_z(t) = z - \int_0^t F(\eta_z(\tau)) d\tau \quad \forall t \in [0, T_z[.$$
(29)

Consequently, due to the boundedness of F, $\eta_z(t)$ converges as $t \to T_z$. Setting

$$w_z := \lim_{t \to T_z} \eta_z(t) \tag{30}$$

it results in $w_z \in \partial(f_b \setminus (U_0 \cup N_0))$, because [0, T_z [is maximal. By (28) and (22), the point w_z cannot belong to the boundary of f_b . Therefore, $w_z \in \partial(U_0 \cup N_0)$. If $w_z \in \partial N_0$ then $||w_z|| = 2\rho$. Using (28) again, (30), besides (21), one has

$$f(w_z) < f(z) < -2\rho L. \tag{31}$$

Since f is Lipschitz continuous on $\overline{B}_{2\rho}$, we also obtain

$$f(w_z) = f(w_z) - f(0) \ge -L ||w_z|| = -2\rho L,$$

which contradicts (31). Hence,

$$w_z \in \partial U_0 \quad \forall z \in \partial B_1 \cap X_2. \tag{32}$$

Now, pick an $e \in \partial B_1 \cap X_1$ and define

$$Q := \left([0, e] \oplus (\overline{B}_1 \cap X_2) \right) \cap \overline{B}_1.$$
(33)

The boundary Q_0 of Q relative to span $\{e\} \oplus X_2$ is given by

$$Q_0 = \{e\} \cup (\overline{B}_1 \cap X_2) \cup \left(\partial B_1 \cap \left(]0, e\right] \oplus \left\{\mu z \colon \mu \in]0, 1], z \in \partial B_1 \cap X_2\right\}\right)\right).$$

Write $\gamma_0(e) := x_0, \gamma_0(x) := x$ for all $x \in \overline{B}_1 \cap X_2$, as well as

$$\gamma_{0}(x) := \begin{cases} \eta_{z}(2\lambda T_{z}) & \text{if } 0 < \lambda < \frac{1}{2}, \\ w_{z} & \text{if } \lambda = \frac{1}{2}, \\ (2\lambda - 1)x_{0} + (2 - 2\lambda)w_{z} & \text{if } \frac{1}{2} < \lambda \leq 1, \end{cases}$$
(34)

provided $x := \lambda e + \mu z$, with $\lambda, \mu \in [0, 1], z \in \partial B_1 \cap X_2$, and ||x|| = 1. A simple computation ensures that $\gamma_0 : Q_0 \to X$ turns out continuous. Moreover,

$$f(\gamma_0(x)) \leqslant 0 \quad \forall x \in Q_0.$$
(35)

Indeed, we evidently have $f(\gamma_0(e)) = f(x_0) < 0$ while, in view of (f₇), $f(\gamma_0(x)) = f(x) \leq 0$ for any $x \in \overline{B}_1 \cap X_2$. Put $x := \lambda e + \mu z$, where $\lambda, \mu \in [0, 1], z \in \partial B_1 \cap X_2$. If $\lambda < 1/2$ then, thanks to (27),

$$f(\gamma_0(x)) = f(\eta_z(2\lambda T_z)) \leqslant f(\eta_z(0)) = f(z) \leqslant 0.$$

The same reasoning yields (35) for $\lambda = 1/2$. So, suppose $\lambda > 1/2$. Because of (32), besides Proposition 2.2, it results in

$$\|(2\lambda - 1)x_0 + (2 - 2\lambda)w_z - x_0\| \le \|x_0 - w_z\| \le \rho_0.$$
(36)

From (19) we thus achieve

$$f(\gamma_0(x)) = f((2\lambda - 1)x_0 + (2 - 2\lambda)w_z) < 0,$$

and (35) is proved. Let us next verify that

$$\|\gamma_0(x)\| \ge 2\rho \quad \forall x \in \partial B_1 \cap Q.$$
(37)

When x := e or $x \in \overline{B}_1 \cap X_2$, this inequality is an immediate consequence of the choice of ρ_0 and (20). Pick $x := \lambda e + \mu z$, with ||x|| = 1, $\lambda, \mu \in [0, 1]$, $z \in \overline{B}_1 \cap X_2$. Since $\eta_z(t)$, $t \in [0, T_z[$, does not belong to N_0 , (37) holds true for $0 < \lambda < 1/2$. If $1/2 \le \lambda \le 1$ then exploiting (36), besides (20), we infer

$$\gamma_0(x) \in B(x_0, \rho_0) \subseteq X \setminus B_{2\rho},$$

namely, $\|\gamma_0(x)\| \ge 2\rho$, as desired.

Now, define

$$\Gamma := \left\{ \gamma \in C^0(\mathcal{Q}, X) \colon \gamma |_{\mathcal{Q}_0} = \gamma_0 \right\}, \qquad c := \inf_{\gamma \in \Gamma} \sup_{x \in \mathcal{Q}} f\left(\gamma(x)\right),$$

in addition to $S := \partial B_{\rho} \cap X_1$. Gathering (35), (f₇), the inequality $\rho < 1$ together one has

$$\sup_{x\in Q_0} f(\gamma_0(x)) \leqslant 0 \leqslant \inf_{x\in S} f(x).$$

Through (37) and [5, Lemma 3] we then get $(\gamma(Q) \cap S) \setminus \gamma_0(Q_0) \neq \emptyset$ for all $\gamma \in \Gamma$. Hence, assumption (a₂) of Theorem 2.2 is satisfied. To verify (a₁), observe at first that the set conv $(\gamma_0(Q_0))$ turns out compact, because so is Q_0 , while from (35), (24) it follows conv $(\gamma_0(Q_0)) \subseteq \operatorname{int}(D_{\psi})$. Thus, by the Generalized Theorem of Tietze [3, p. 77], there exists a $\hat{\gamma} \in \Gamma$ such that $\hat{\gamma}(Q) \subseteq \operatorname{conv}(\gamma_0(Q_0))$. Since f is continuous on $\operatorname{int}(D_{\psi})$, this implies $\sup_{x \in Q} f(\hat{\gamma}(x)) < +\infty$, i.e., hypothesis (a₁) holds true too. Therefore, thanks to Theorem 2.2, $K_c(f) \neq \emptyset$. One clearly has $\inf_{x \in S} f(x) \leq c$. If $\inf_{x \in S} f(x) < c$ then the function f possesses a critical point different from x_0 and 0. Otherwise, $K_c(f) \cap S \neq \emptyset$, which again leads to the same conclusion. However, this contradicts condition (f₃). \Box

Remark 3.1. Hypothesis (f₇) is obviously fulfilled in the meaningful special case:

(f'_7) For some r > 0 one has $f|_{\overline{B}_r \cap X_1} \ge 0$ as well as $f|_{\overline{B}_r \cap X_2 \setminus \{0\}} < 0$,

namely, 0 turns out a local minimum of $f|_{X_1}$ and a proper local maximum for $f|_{X_2}$.

Remark 3.2. When dim(X_2) \ge 2 assumption (f₇) can be replaced by the one below, which is more general:

(f₇") There exists an
$$r \in [0, \frac{\|x_0\|}{2}[$$
 such that $f|_{\overline{B}_r \cap X_1} \ge 0, f|_{\overline{B}_r \cap X_2} \le 0$, and $f|_{\overline{B}_r \cap X_2} \ne 0$.

Indeed, in such a case, $f(\bar{z}) < 0$ for some $\bar{z} \in \overline{B}_r \cap X_2$. It is not restrictive to suppose both $\bar{z} \in \partial B_r \cap X_2$ and r = 1. Thus, inequality (21) becomes

$$f(\bar{z}) < -2\rho L < 0.$$

Arguing exactly as in the proof of Theorem 3.1 we get

$$w_z \in \partial (U_0 \cup N_0) \quad \forall z \in \partial B_1 \cap X_2,$$

besides $w_{\bar{z}} \in \partial U_0$. Define

$$A := \{ z \in \partial B_1 \cap X_2 \colon w_z \in \partial U_0 \}, \qquad B := \{ z \in \partial B_1 \cap X_2 \colon w_z \in \partial N_0 \}.$$

One clearly has $A \neq \emptyset$, $A \cup B = \partial B_1 \cap X_2$, and $A \cap B = \emptyset$ because, due to (23), $\overline{U}_0 \cap \overline{N}_0 = \emptyset$. Let us next verify that the sets A, B turn out closed. Pick a sequence $\{z_n\} \subseteq A$

716

satisfying $z_n \to z$. By continuous dependence on the initial data it follows $T_{z_n} \to T_z$. Hence, to any $\epsilon > 0$ sufficiently small there corresponds a $\nu \in \mathbb{N}$ such that

$$||z_n - z|| < \epsilon, \qquad 0 < T_z - \epsilon < T_{z_n} < T_z + \epsilon \quad \forall n > \nu.$$

Exploiting (29), the pointwise convergence of $\{F(\eta_{z_n}(t))\}$ to $F(\eta_z(t))$ in $[0, T_z - \epsilon]$, and the inequality $||F(x)|| \leq 1$, we achieve

$$\|w_{z_n} - w_z\| \leq \|z_n - z\| + \left\| \int_0^{T_z - \epsilon} \left[F\left(\eta_{z_n}(t)\right) - F\left(\eta_z(t)\right) \right] dt \right\|$$
$$+ \left\| \int_{T_z - \epsilon}^{T_{z_n}} F\left(\eta_{z_n}(t)\right) dt \right\| + \left\| \int_{T_z - \epsilon}^{T_z} F\left(\eta_z(t)\right) dt \right\| < 5\epsilon$$

provided n > v is large enough. Consequently, $w_{z_n} \to w_z$, which implies $w_z \in \partial U_0$, i.e., $z \in A$. A similar reasoning ensures that *B* turns out closed. Since $\partial B_1 \cap X_2$ is connected, we must have $\partial B_1 \cap X_2 = A$, and (32) holds true. At this point, the proof goes on exactly as the one of Theorem 3.1.

Let x_1 be the critical point of f different from x_0 and 0 given by Theorem 3.1. Write

$$\hat{c} := \inf_{\gamma \in \widehat{\Gamma}} \sup_{x \in [x_0, x_1]} f(\gamma(x)),$$

where

$$\widehat{\Gamma} := \{ \gamma \in C^0([x_0, x_1], X) : \gamma(x_i) = x_i, i = 0, 1 \},\$$

and observe that $\hat{c} < +\infty$ because $x_0, x_1 \in D_{\psi}$. Combining the above result with [14, Theorem 4.2] yields the following:

Theorem 3.2. Suppose the assumptions of Theorem 3.1 are fulfilled, $f(x_1) \ge 0$ whenever x_1 is a local minimum, while $f^{\hat{c}}$ turns out closed. Then either f possesses a nonzero critical point, which is not a local minimum, or $\hat{c} = f(x_1)$ and f admits a continuum of local minima at the level \hat{c} .

4. An application

In this section we shall exploit Theorem 3.1 to solve an elliptic variational–hemivariational inequality, in the sense of Panagiotopoulos [19], patterned after problem (38) in [5]; see besides [11, Theorem 5.22] and [15, Theorem 6]. Let Ω be a nonempty, bounded, open subset of the real Euclidean *N*-space $(\mathbb{R}^N, |\cdot|), N \ge 3$, having a smooth boundary $\partial \Omega$. The symbol $H_0^1(\Omega)$ indicates the closure of $C_0^{\infty}(\Omega)$ in $W^{1,2}(\Omega)$. On $H_0^1(\Omega)$ we introduce the norm

$$\|u\| := \left(\int_{\Omega} \left|\nabla u(x)\right|^2 dx\right)^{1/2}$$

Denote by 2^{*} the critical exponent for the Sobolev embedding $H_0^1(\Omega) \hookrightarrow L^p(\Omega)$. Recall that 2^{*} = 2N/(N-2), if $p \in [1, 2^*]$ then there exists a positive constant c_p such that

$$\|u\|_{L^p(\Omega)} \leqslant c_p \|u\|, \quad u \in H^1_0(\Omega), \tag{38}$$

and, in particular, the embedding is compact whenever $p \in [1, 2^*[; \text{see, e.g., } [20, \text{Proposition B.7}].$

Given a function $a \in L^{\infty}(\Omega)$, consider the eigenvalue problem

$$\begin{cases} -\Delta u + a(x)u = \lambda u & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$
(39)

It is well known [12, Section 8.12] that (39) possesses a sequence $\{\lambda_n\}$ of eigenvalues fulfilling $\lambda_1 < \lambda_2 \leq \cdots \leq \lambda_n \leq \cdots$ (the number of times an eigenvalue appears in the sequence equals its multiplicity) and, moreover, that (vide [1, p. 14])

$$\lambda_1 > \operatorname{essinf}_{x \in \Omega} a(x). \tag{40}$$

Let $\{\phi_n\}$ be a corresponding sequence of eigenfunctions normalized as follows:

$$\int_{\Omega} \left(\left| \nabla \phi_n(x) \right|^2 + a(x)\phi_n(x)^2 \right) dx = \lambda_n \int_{\Omega} \phi_n(x)^2 dx = \lambda_n$$
(41)

for every $n \in \mathbb{N}$;

$$\int_{\Omega} \left(\nabla \phi_m(x) \cdot \nabla \phi_n(x) + a(x)\phi_m(x)\phi_n(x) \right) dx = \int_{\Omega} \phi_m(x)\phi_n(x) dx = 0$$
(42)

provided $m, n \in \mathbb{N}$ and $m \neq n$.

To avoid technicalities, we shall examine below only the case when

$$\lambda_s < 0 < \lambda_{s+1} \quad \text{for some } s \in \mathbb{N}. \tag{43}$$

If $g : \mathbb{R} \to \mathbb{R}$ satisfies the conditions:

 (g_1) g is measurable,

(g₂) there exist $a_1 > 0$, $p \in [2, 2^*[$ such that $|g(t)| \leq a_1(1 + |t|^{p-1})$ for every $t \in \mathbb{R}$,

then the functions $G: \mathbb{R} \to \mathbb{R}$ and $\mathcal{G}: H_0^1(\Omega) \to \mathbb{R}$ given by

$$G(\xi) := \int_{0}^{\xi} -g(t) dt \quad \forall \xi \in \mathbb{R}, \qquad \mathcal{G}(u) := \int_{\Omega} G(u(x)) dx \quad \forall u \in H_{0}^{1}(\Omega),$$

respectively, are well defined and locally Lipschitz continuous. So, it makes sense to consider their generalized directional derivatives G^0 and \mathcal{G}^0 . On account of [7, formula (9), p. 84] one has

$$\mathcal{G}^{0}(u;v) \leqslant \int_{\Omega} G^{0}(u(x);v(x)) dx, \quad u,v \in H^{1}_{0}(\Omega).$$

$$\tag{44}$$

For our application, we will further assume

(g₃) $\lim_{t\to 0} \frac{g(t)}{t} = 0,$ (g₄) $\limsup_{|t|\to+\infty} \frac{g(t)}{t} < 0,$ and (g₅) there exists a $\xi_0 \in \mathbb{R}$ such that $G(\xi_0) < 0.$

Through (g₄) one can easily find two positive constants β , γ satisfying

$$g(t) \ge -\beta t - \gamma \quad \forall t \le 0, \qquad g(t) \le -\beta t + \gamma \quad \forall t \ge 0.$$
 (45)

Now, let λ , $\mu > 0$. Define

$$r_{\lambda,\mu} := \lambda \gamma c_1 + \sqrt{(\lambda \gamma c_1)^2 + 2\mu},\tag{46}$$

with c_1 as in (38) written for p = 1. A set $K_{\lambda} \subseteq H_0^1(\Omega)$ is called of type (\mathbf{K}_{λ}^g) provided

 (K_{λ}^{g}) K_{λ} is convex and closed in $H_{0}^{1}(\Omega)$. Moreover, there exists a $\mu > 0$ such that $\overline{B}_{r_{\lambda,\mu}} \subseteq K_{\lambda}$.

Given $\lambda > 0$ and K_{λ} satisfying (K_{λ}^{g}) , denote by (P_{λ}) the elliptic variational-hemivariational inequality problem:

Find $u \in K_{\lambda}$ such that

$$-\int_{\Omega} \nabla u(x) \cdot \nabla (v-u)(x) \, dx - \int_{\Omega} a(x)u(x)(v-u)(x) \, dx \leqslant \lambda \mathcal{G}^0(u;v-u)$$

for all $v \in K_{\lambda}$.

Due to (44), any solution u of (P_{λ}) also fulfils the inequality

$$-\int_{\Omega} \nabla u(x) \cdot \nabla (v-u)(x) \, dx - \int_{\Omega} a(x)u(x)(v-u)(x) \, dx$$
$$\leqslant \lambda \int_{\Omega} G^0(u(x); (v-u)(x)) \, dx \quad \forall v \in K_{\lambda}.$$

When g is continuous, while $K_{\lambda} := H_0^1(\Omega)$, the function $u \in H_0^1(\Omega)$ turns out a weak solution to the Dirichlet problem

$$-\Delta u + a(x)u = \lambda g(u)$$
 in Ω , $u = 0$ on $\partial \Omega$,

which has been previously investigated in [5] under more restrictive conditions; see also [15, Theorem 6].

Theorem 4.1. Suppose $(g_1)-(g_5)$ hold true. Then, for every λ sufficiently large, problem (P_{λ}) possesses at least two nontrivial solutions.

Proof. Write $X := H_0^1(\Omega)$ and define, whenever $u \in X$,

$$\Phi(u) := \frac{1}{2} \int_{\Omega} \left(\left| \nabla u(x) \right|^2 + a(x)u(x)^2 \right) dx + \lambda \mathcal{G}(u)$$

as well as

$$\psi(u) := \begin{cases} 0 & \text{if } u \in K_{\lambda}, \\ +\infty & \text{otherwise,} \end{cases} \qquad f(u) := \Phi(u) + \psi(u),$$

where $\lambda > 0$ while $K_{\lambda} \subseteq H_0^1(\Omega)$ is of type (K_{λ}^g) . Owing to (g_1) , (g_2) the function $\Phi: X \to \mathbb{R}$ turns out locally Lipschitz continuous. Consequently, f satisfies condition (H'_f) . We shall prove that

f is bounded below and coercive for any
$$\lambda > -\frac{\alpha}{\beta}$$
, (47)

with $\alpha := \operatorname{ess\,inf}_{x \in \Omega} a(x)$. Fix $\lambda > -\alpha/\beta$. If $u \in X$ then from (45) it follows that

$$\int_{\Omega(u(x)\geq 0)} dx \int_{0}^{u(x)} g(t) dt \leq \int_{\Omega(u(x)\geq 0)} \left(-\frac{\beta}{2}u(x)^2 + \gamma u(x)\right) dx,$$

720

besides

$$\int_{\Omega(u(x)\leqslant 0)} dx \int_{0}^{u(x)} g(t) dt \leqslant \int_{\Omega(u(x)\leqslant 0)} \int_{u(x)}^{0} (\beta t + \gamma) dt$$
$$= \int_{\Omega(u(x)\leqslant 0)} \left(-\frac{\beta}{2} u(x)^2 - \gamma u(x) \right) dx$$

Gathering these inequalities together yields

$$\int_{\Omega} dx \int_{0}^{u(x)} g(t) dt \leq -\frac{\beta}{2} \|u\|_{L^{2}(\Omega)}^{2} + \gamma \|u\|_{L^{1}(\Omega)},$$

which clearly means

$$\mathcal{G}(u) \ge \frac{\beta}{2} \|u\|_{L^2(\Omega)}^2 - \gamma \|u\|_{L^1(\Omega)} \quad \forall u \in X.$$

$$(48)$$

Now, through (38) and (48) we obtain

$$f(u) \ge \Phi(u) \ge \frac{1}{2} ||u||^2 + \frac{1}{2} (\alpha + \lambda \beta) ||u||^2_{L^2(\Omega)} - \lambda \gamma ||u||_{L^1(\Omega)}$$

$$\ge \frac{1}{2} ||u||^2 + \frac{1}{2} (\alpha + \lambda \beta) ||u||^2_{L^2(\Omega)} - \lambda \gamma c_1 ||u||,$$

i.e., due to the choice of λ ,

$$f(u) \ge \frac{1}{2} \|u\|^2 - \lambda \gamma c_1 \|u\|, \quad u \in X.$$
(49)

Therefore, (47) holds true. Let us next show that the function f satisfies condition $(PS)_f$ provided $\lambda > -\alpha/\beta$. So, pick a sequence $\{u_n\} \subseteq X$ such that $\{f(u_n)\}$ is bounded and

$$\Phi^{0}(u_{n}; v - u_{n}) + \psi(v) - \psi(u_{n}) \ge -\epsilon_{n} \|v - u_{n}\|$$
(50)

for all $n \in \mathbb{N}$, $v \in X$, where $\epsilon_n \to 0^+$. By (50) one evidently has $\{u_n\} \subseteq K_{\lambda}$. Since f is coercive, the sequence $\{u_n\}$ turns out bounded. Thus, passing to a subsequence if necessary, we may suppose both $u_n \to u$ in X and $u_n \to u$ in $L^2(\Omega)$. The point u belongs to K_{λ} because this set is weakly closed. Exploiting (50) with v := u we then get

$$\int_{\Omega} \nabla u_n(x) \cdot \nabla (u - u_n)(x) \, dx + \int_{\Omega} a(x) u_n(x) (u - u_n)(x) \, dx$$
$$+ \lambda \mathcal{G}^0(u_n; u - u_n) \ge -\epsilon_n \|u - u_n\| \quad \forall n \in \mathbb{N}.$$
(51)

From $u_n \to u$ in $L^2(\Omega)$ it follows

$$\lim_{n \to +\infty} \int_{\Omega} a(x)u_n(x)(u-u_n)(x) \, dx = 0.$$
(52)

The upper semicontinuity of \mathcal{G}^0 on $L^2(\Omega) \times L^2(\Omega)$ forces

$$\limsup_{n \to +\infty} \mathcal{G}^0(u_n; u - u_n) \leqslant \mathcal{G}^0(u; 0) = 0.$$
(53)

Taking account of (52), (53), besides the weak convergence of $\{u_n\}$ to u, and letting $n \rightarrow +\infty$ in (51) yields

$$\limsup_{n\to\infty}\int_{\Omega}\left|\nabla u_n(x)\right|^2 dx \leqslant \int_{\Omega}\left|\nabla u(x)\right|^2 dx,$$

namely, by [4, Proposition III.30], $u_n \rightarrow u$ in X. Hence, hypothesis (f'_1) in Theorem 3.1 is fulfilled.

Through (g₅) we can construct an $u_0 \in X$ such that $\mathcal{G}(u_0) < 0$. Moreover, $u_0 \in \overline{B}_{r_{\lambda,\mu}}$ for any $\lambda \ge \frac{1}{2\gamma c_1} ||u_0||$. Therefore, $\inf_{u \in X} f(u) < 0$ provided

$$\lambda > \max\left\{\frac{1}{2\gamma c_1} \|u_0\|, -\frac{1}{2\mathcal{G}(u_0)} \int_{\Omega} \left(\left|\nabla u_0(x)\right|^2 + a(x)u_0(x)^2 \right) dx \right\},\$$

while $f(0) = \lambda \mathcal{G}(0) = 0$.

Our next objective is to verify (f₆). Since K_{λ} is of type (K_{λ}^{g}), the set

$$\left\{ u \in X: \ f(u) < \mu \right\} \quad \text{is open.} \tag{54}$$

Indeed, inequality (49) ensures that

$$\{u \in X: f(u) < \mu\} \subseteq B_{r_{\lambda,\mu}} \subseteq K_{\lambda}$$

Consequently,

$$\left\{u\in X\colon\,f(u)<\mu\right\}=\left\{u\in K_\lambda\colon\,\varPhi(u)<\mu\right\}=\left\{u\in X\colon\,\varPhi(u)<\mu\right\}$$

which leads to (54).

Finally, reasoning as in [2, p. 137] we obtain

$$\lim_{u \to 0} \frac{\mathcal{G}(u)}{\|u\|^2} = 0 \tag{55}$$

while to any $\epsilon > 0$ there corresponds a $\delta \in [0, 1[$ such that

$$\mathcal{G}(u) \ge -\|u\|^2 \left(\frac{\epsilon}{2}c_2^2 + \frac{2a_1c_p^p}{\delta^p}\|u\|^{p-2}\right) \quad \forall u \in X,$$
(56)

with c_2 , c_p given by (38). Write $X_2 := \operatorname{span}\{\phi_1, \ldots, \phi_s\}$ and $X_1 := X_2^{\perp}$, where the orthogonal complement is taken in X. One clearly has $X = X_1 \oplus X_2$, dim $(X_1) > 0$, besides $0 < \dim(X_2) < +\infty$. Moreover, if $u \in X_2$ then $u = \sum_{i=1}^{s} t_i \phi_i$ for some $t_1, \ldots, t_s \in \mathbb{R}$. A simple computation shows that

$$\|u\|^{2} \leq (\lambda_{s} - \alpha) \|u\|^{2}_{L^{2}(\Omega)}, \quad u \in X_{2},$$
 (57)

with $\lambda_s - \alpha \ge \lambda_1 - \alpha > 0$ because of (40). Thanks to (K_{λ}^g) and (41)–(43) we get

$$f(u) = \Phi(u) = \frac{1}{2} \sum_{i=1}^{s} t_i^2 \lambda_i + \lambda \mathcal{G}(u) \leq \frac{1}{2} \lambda_s ||u||_{L^2(\Omega)}^2 + \lambda \mathcal{G}(u)$$

whenever $||u|| \leq r_{\lambda,\mu}$. By (55), the above inequality, and (57), for every $\sigma > 0$ there exists a $\rho \in [0, r_{\lambda,\mu}[$ satisfying

$$f(u) \leqslant \left[\frac{\lambda_s}{2} + \lambda \sigma(\lambda_s - \alpha)\right] \|u\|_{L^2(\Omega)}^2 \quad \forall u \in \overline{B}_\rho \cap X_2.$$

At this point, choose $\sigma > 0$ so small that $\lambda_s/2 + \lambda\sigma(\lambda_s - \alpha) < 0$, which is possible on account of (43). Bearing in mind (57) we have

$$f(u) < 0 \quad \forall u \in B_{\rho} \cap X_2 \setminus \{0\}.$$
(58)

Let us next prove that

$$\int_{\Omega} \left(\left| \nabla u(x) \right|^2 + a(x)u(x)^2 \right) dx \ge \theta \|u\|^2 \quad \text{in } X_1$$
(59)

for a suitable constant $\theta > 0$. Indeed, if the assertion were false then there would exist a sequence $\{u_n\} \subseteq X_1$ enjoying the properties

$$\|u_n\| = 1, \quad n \in \mathbb{N},\tag{60}$$

$$\int_{\Omega} \left(\left| \nabla u_n(x) \right|^2 + a(x)u_n(x)^2 \right) dx < \frac{1}{n} \quad \forall n \in \mathbb{N}.$$
(61)

Passing to a subsequence when necessary, we may suppose $u_n \rightharpoonup u$ in X as well as $u_n \rightarrow u$ in $L^2(\Omega)$, with $u \in X_1$. Thus, letting $n \rightarrow +\infty$ in (61) yields

$$\int_{\Omega} \left(\left| \nabla u(x) \right|^2 + a(x)u(x)^2 \right) dx \leqslant 0.$$
(62)

From $u \in X_1$ it follows $u = \sum_{i=s+1}^{+\infty} t_i \phi_i$, where $t_i \in \mathbb{R}$, $i \ge s + 1$. Through (41)–(43) we obtain

$$\lambda_{s+1} \|u\|_{L^2(\Omega)}^2 \leqslant \int_{\Omega} \left(\left| \nabla u(x) \right|^2 + a(x)u(x)^2 \right) dx.$$
(63)

Gathering (62) and (63) together leads to u = 0. By (61) this forces $u_n \to 0$ in X, against (60). Combining (59) with (56) provides

$$f(u) \ge \|u\|^2 \left[\frac{\theta}{2} - \lambda \left(\frac{\varepsilon}{2}c_2^2 + \frac{2a_1c_p^p}{\delta^p}\|u\|^{p-2}\right)\right]$$
(64)

for all $u \in X_1$. Pick $\epsilon > 0$ and $r \in [0, \rho[$ such that

$$\frac{\theta}{2} - \lambda \left(\frac{\epsilon}{2} c_2^2 + \frac{2a_1 c_p^p}{\delta^p} r^{p-2} \right) > 0$$

Then, thanks to (64) we have

$$f(u) \ge 0 \quad \forall u \in \overline{B}_r \cap X_1.$$
(65)

Finally, taking account of Remark 3.1, (58) and (65) immediately yield condition (f7).

We are now in a position to apply Theorem 3.1. So, there exist at least two points $u_1, u_2 \in X \setminus \{0\}$ such that

$$\Phi^0(u_i; v - u_i) + \psi(v) - \psi(u_i) \ge 0$$

for all $v \in X$, i = 1, 2. The choice of ψ gives both $u_i \in K_\lambda$ and $\Phi^0(u_i; v - u_i) \ge 0$, $v \in K_\lambda$, i = 1, 2, namely u_1, u_2 turn out nontrivial solutions to problem (P_{λ}), which completes the proof. \Box

Remark 4.1. Reading the above arguments we realize that the conclusion of Theorem 4.1 holds true as soon as

$$\lambda > \max\left\{-\frac{\alpha}{\beta}, \frac{1}{2\gamma c_1} \|u_0\|, -\frac{1}{2\mathcal{G}(u_0)} \int\limits_{\Omega} \left(\left|\nabla u_0(x)\right|^2 + a(x)u_0(x)^2\right) dx\right\},\$$

where $\alpha := \operatorname{ess\,inf}_{x \in \Omega} a(x)$, β and γ are given by (45), c_1 comes from (38) written for p = 1, while $u_0 \in X$ fulfils $\mathcal{G}(u_0) < 0$.

References

- H. Amann, Nonlinear operators in ordered Banach spaces and some applications to nonlinear boundary value problems, in: Lecture Notes in Math., vol. 543, Springer, New York, 1976, pp. 1–55.
- [2] G. Barletta, S.A. Marano, Some remarks on critical point theory for locally Lipschitz functions, Glasg. Math. J. 45 (2003) 131–141.
- [3] K. Borsuk, Theory of Retracts, PWN, Warsaw, 1967.
- [4] H. Brézis, Analyse Fonctionelle—Théorie et Applications, Masson, Paris, 1983.
- [5] H. Brézis, L. Nirenberg, Remarks on finding critical points, Comm. Pure Appl. Math. 44 (1991) 939–963.
- [6] K.-C. Chang, Variational methods for nondifferentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl. 80 (1981) 102–129.
- [7] F.H. Clarke, Optimization and Nonsmooth Analysis, Classics Appl. Math., vol. 5, SIAM, Philadelphia, PA, 1990.
- [8] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985.
- [9] J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.
- [10] I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc. 1 (1979) 443-474.
- [11] N. Ghoussoub, Duality and Perturbation Methods in Critical Point Theory, Cambridge Tracts in Math., vol. 107, Cambridge Univ. Press, Cambridge, 1993.
- [12] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, second ed., Springer, Berlin, 1983.
- [13] D. Kandilakis, N.C. Kourogenis, N.S. Papageorgiou, Two nontrivial critical points for nonsmooth functionals via local linking and applications, J. Global Optim., submitted for publication.
- [14] R. Livrea, S.A. Marano, Existence and classification of critical points for nondifferentiable functions, Adv. Differential Equations 9 (2004) 961–978.
- [15] S.J. Li, M. Willem, Applications of local linking to critical point theory, J. Math. Anal. Appl. 189 (1995) 6–32.
- [16] S.A. Marano, D. Motreanu, A deformation theorem and some critical point results for nondifferentiable functions, Topol. Methods Nonlinear Anal. 22 (2003) 139–158.
- [17] D. Motreanu, P.D. Panagiotopoulos, Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities, Nonconvex Optim. Appl., vol. 29, Kluwer Acad., Dordrecht, 1998.
- [18] D. Motreanu, V. Radulescu, Variational and Non-variational Methods in Nonlinear Analysis and Boundary Value Problems, Nonconvex Optim. Appl., vol. 67, Kluwer Acad., Dordrecht, 2003.
- [19] P.D. Panagiotopoulos, Hemivariational Inequalities. Applications in Mechanics and Engineering, Springer, Berlin, 1993.
- [20] P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math., vol. 65, Amer. Math. Soc., Providence, RI, 1986.
- [21] A. Szulkin, Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. Inst. H. Poincaré 3 (1986) 77–109.