Journal of Differential Equations

Critical points for nondifferentiable functions in presence of splitting

R. Livrea ${ }^{\text {a }}$, S.A. Marano ${ }^{\text {a,* }}$, D. Motreanu ${ }^{\text {b }}$
${ }^{\text {a }}$ Dipartimento di Patrimonio Architettonico e Urbanistico, Università degli Studi Mediterranea di Reggio Calabria, Salita Melissari, 89100 Reggio Calabria, Italy
b Département de Mathématiques, Université de Perpignan, Avenue de Villeneuve 52, 66860 Perpignan cedex, France

Received 6 May 2005; revised 28 October 2005
Available online 13 December 2005

Abstract

A classical critical point theorem in presence of splitting established by Brézis-Nirenberg is extended to functionals which are the sum of a locally Lipschitz continuous term and of a convex, proper, lower semicontinuous function. The obtained result is then exploited to prove a multiplicity theorem for a family of elliptic variational-hemivariational eigenvalue problems. © 2005 Elsevier Inc. All rights reserved.

MSC: 58E05; 49J40; 35J85
Keywords: Critical points; Nonsmooth functions; Splittings; Elliptic variational-hemivariational eigenvalue problems; Multiple solutions

1. Introduction

A meaningful consequence of Ghoussoub's min-max principle (see, for instance, [11, Theorem 5.2]) is the critical point theorem in presence of splitting established by Brézis-Nirenberg in 1991, i.e., [5, Theorem 4]. Roughly speaking, it is assumed that

[^0]there exist a Banach space X with a direct sum decomposition $X=X_{1} \oplus X_{2}$, where $\operatorname{dim}\left(X_{2}\right)<+\infty$, and a bounded below function $f \in C^{1}(X, \mathbb{R})$ having a local linking at 0 , namely
(f) $\left.f\right|_{\bar{B}_{r} \cap X_{2}} \leqslant 0$ as well as $\left.f\right|_{\bar{B}_{r} \cap X_{1}} \geqslant 0$ for some $r>0$.

If $\inf _{x \in X} f(x)<0, f(0)=0$, and the Palais-Smale condition holds true, then f admits at least two nonzero critical points.

Very recently, in [14], Ghoussoub's result has been extended to functions f on a Banach space X fulfilling a structural hypothesis of the type
$\left(\mathrm{H}_{f}\right) f(x):=\Phi(x)+\psi(x)$ for all $x \in X$, where $\Phi: X \rightarrow \mathbb{R}$ is locally Lipschitz continuous and $\psi: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is convex, proper, and lower semicontinuous.

Critical points of f are defined as solutions to the problem:
Find $x \in X$ such that

$$
\begin{equation*}
\Phi^{0}(x ; z-x)+\psi(z)-\psi(x) \geqslant 0 \quad \forall z \in X, \tag{1}
\end{equation*}
$$

with $\Phi^{0}(x ; z-x)$ being the generalized directional derivative [7, p. 25] of Φ in x along the direction $z-x$. The Palais-Smale condition for C^{1} functions becomes here
$(\mathrm{PS})_{f}$ Every sequence $\left\{x_{n}\right\} \subseteq X$ such that $\left\{f\left(x_{n}\right)\right\}$ is bounded and

$$
\Phi^{0}\left(x_{n} ; z-x_{n}\right)+\psi(z)-\psi\left(x_{n}\right) \geqslant-\epsilon_{n}\left\|z-x_{n}\right\| \quad \forall n \in \mathbb{N}, z \in X
$$

where $\epsilon_{n} \rightarrow 0^{+}$, possesses a convergent subsequence.
This abstract framework was previously introduced and developed by Motreanu and Panagiotopoulos [17]. Inequality (1) is usually called a variational-hemivaritional inequality. It has been exploited for mathematically formulating several engineering, besides mechanical, questions, and extensively studied from many points of view in the latest years [17-19]. If $\psi \equiv 0$, then (1) coincides with the problem treated by Chang [6], who also exploits various abstract results to study elliptic equations having discontinuous nonlinear terms. When $\Phi \in C^{1}(X, \mathbb{R})$, problem (1) reduces to a variational inequality, and significant applications as well as the relevant critical point theory are developed in [21]. Finally, if both $\Phi \in C^{1}(X, \mathbb{R})$ and $\psi \equiv 0$, then (1) simplifies to the Euler equation, which is classical.

In this paper we first extend the above-mentioned Brézis-Nirenberg critical point theorem to Motreanu-Panagiotopoulos' setting (see Theorem 3.1 below) by using the structural hypothesis, previously introduced in [14],
$\left(\mathrm{H}_{f}^{\prime}\right) f(x):=\Phi(x)+\psi(x)$ for all $x \in X$, where $\Phi: X \rightarrow \mathbb{R}$ is locally Lipschitz continuous and $\psi: X \rightarrow \mathbb{R} \cup\{+\infty\}$ is convex, proper, and lower semicontinuous. Moreover, ψ is continuous on any nonempty compact set $A \subseteq X$ such that $\sup _{x \in A} \psi(x)<+\infty$.

Although less general than $\left(\mathrm{H}_{f}\right)$, this condition still works in all the most important concrete situations. For instance, $\psi:=I_{K}$, with I_{K} being the indicator function of some nonempty, convex, closed set $K \subseteq X$, represents a standard but meaningful case of ψ. The Banach space X is supposed to be reflexive and with a direct sum decomposition $X=X_{1} \oplus X_{2}$, where $0<\operatorname{dim}\left(X_{2}\right)<+\infty$, while assumption (f) is replaced by the more restrictive one
(f') $\left.f\right|_{\bar{B}_{r} \cap X_{1}} \geqslant 0,\left.f\right|_{\bar{B}_{r} \cap X_{2}} \leqslant 0$, and $\left.f\right|_{{ }_{\partial B_{r} \cap X_{2}}}<0$ for some $r>0$ small enough,
which arises from the different construction of the pseudo-gradient vector field in our abstract situation. We do not know at present whether (f^{\prime}) can be weakened to (f). The locally Lipschitz continuous case, i.e., $\psi \equiv 0$, has been recently treated in [13].

One application to an elliptic variational-hemivariational inequality patterned after problem (38) in [5] (see also [15, problem (5.7)]) is then presented. Let Ω be a bounded domain in $\mathbb{R}^{N}, N \geqslant 3$, let $X:=H_{0}^{1}(\Omega)$, and let

$$
\mathcal{G}(u):=\int_{\Omega} G(u(x)) d x \quad \forall u \in X,
$$

where $G(\xi):=\int_{0}^{\xi}-g(t) d t, \xi \in \mathbb{R}$, with $g: \mathbb{R} \rightarrow \mathbb{R}$ measurable. Given $\lambda>0$ and a nonempty, convex, closed set $K_{\lambda} \subseteq X$ depending on λ, we prove that if g satisfies suitable growth conditions then the problem:

Find $u \in K_{\lambda}$ fulfilling

$$
-\int_{\Omega} \nabla u(x) \cdot \nabla(v-u)(x) d x-\int_{\Omega} a(x) u(x)(v-u)(x) d x \leqslant \lambda \mathcal{G}^{0}(u ; v-u)
$$

for all $v \in K_{\lambda}$, where $a \in L^{\infty}(\Omega)$, possesses at least two nontrivial solutions provided λ is sufficiently large.

2. Basic definitions and preliminary results

Let $(X,\|\cdot\|)$ be a real Banach space. If V is a subset of X, we write $\operatorname{int}(V)$ for the interior of V, \bar{V} for the closure of $V, \partial V$ for the boundary of V. When V is nonempty, $x \in X$, and $\delta>0$, we define $B(x, \delta):=\{z \in X:\|z-x\|<\delta\}$ as well as $B_{\delta}:=B(0, \delta)$. Given $x, z \in X$, the symbol $[x, z]$ indicates the line segment joining x to z, namely

$$
[x, z]:=\{(1-t) x+t z: t \in[0,1]\} .
$$

Moreover, $] x, z]:=[x, z] \backslash\{x\}$. We denote by X^{*} the dual space of X, while $\langle\cdot, \cdot\rangle$ stands for the duality pairing between X and X^{*}. A function $\Phi: X \rightarrow \mathbb{R}$ is called locally Lipschitz
continuous when to every $x \in X$ there correspond a neighbourhood V_{x} of x and a constant $L_{x} \geqslant 0$ such that

$$
|\Phi(z)-\Phi(w)| \leqslant L_{x}\|z-w\| \quad \forall z, w \in V_{x} .
$$

If $x, z \in X$, we write $\Phi^{0}(x ; z)$ for the generalized directional derivative of Φ at the point x along the direction z, i.e.,

$$
\Phi^{0}(x ; z):=\limsup _{w \rightarrow x, t \rightarrow 0^{+}} \frac{\Phi(w+t z)-\Phi(w)}{t}
$$

It is known [7, Proposition 2.1.1] that Φ^{0} is upper semicontinuous on $X \times X$. The generalized gradient of the function Φ in x, denoted by $\partial \Phi(x)$, is the set

$$
\partial \Phi(x):=\left\{x^{*} \in X^{*}:\left\langle x^{*}, z\right\rangle \leqslant \Phi^{0}(x ; z) \forall z \in X\right\} .
$$

Proposition 2.1.2 of [7] ensures that $\partial \Phi(x)$ turns out nonempty, convex, in addition to weak* compact.

Let f be a function on X satisfying the structural hypothesis $\left(\mathrm{H}_{f}\right)$ in Section 1. Put $D_{\psi}:=\{x \in X: \psi(x)<+\infty\}$. Since ψ turns out continuous on int $\left(D_{\psi}\right)$ (see, for instance, [8, Exercise 1, p. 296]) the same holds regarding f. To simplify notation, always denote by $\partial \psi(x)$ the subdifferential of ψ at x in the sense of convex analysis, while

$$
D_{\partial \psi}:=\{x \in X: \partial \psi(x) \neq \emptyset\} .
$$

Theorem 23.5 of [8] gives $\operatorname{int}\left(D_{\psi}\right)=\operatorname{int}\left(D_{\partial \psi}\right)$. Moreover, by [8, Theorems 23.5 and 23.3], $\partial \psi(x)$ is always convex and weak* closed. We say that $x \in D_{\psi}$ is a critical point of f when (1) holds true. The symbol $K(f)$ indicates the set of all critical points for f. Given a real number c, we write

$$
f_{c}:=\{x \in X: f(x) \leqslant c\}, \quad f^{c}:=\{x \in X: f(x) \geqslant c\}
$$

and

$$
K_{c}(f):=K(f) \cap f^{-1}(c)
$$

If $K_{c}(f) \neq \emptyset$ then $c \in \mathbb{R}$ is called a critical value of f.
The following variant [10, pp. 444, 456] of the famous variational principle of Ekeland will be repeatedly employed.

Theorem 2.1. Let (Z, d) be a complete metric space and let Π be a proper, lower semicontinuous, bounded below function from Z into $\mathbb{R} \cup\{+\infty\}$. Then to every $\epsilon, \delta>0$ and every $\bar{z} \in Z$ satisfying $\Pi(\bar{z}) \leqslant \inf _{z \in Z} \Pi(z)+\epsilon$ there corresponds a point $z_{0} \in Z$ such that

$$
\Pi\left(z_{0}\right) \leqslant \Pi(\bar{z}), \quad d\left(z_{0}, \bar{z}\right) \leqslant \frac{1}{\delta}, \quad \Pi(z)-\Pi\left(z_{0}\right) \geqslant-\epsilon \delta d\left(z, z_{0}\right) \quad \forall z \in Z
$$

Propositions 2.1 and 2.2 below are established via Theorem 2.1. The first of them represents a nonsmooth version of [5, Proposition 2].

Proposition 2.1. Assume f is bounded below and satisfies $(\mathrm{PS})_{f}$ in addition to $\left(\mathrm{H}_{f}\right)$. Then each minimizing sequence for f possesses a convergent subsequence.

Proof. Let $\left\{x_{n}\right\} \subseteq X$ fulfils $\lim _{n \rightarrow+\infty} f\left(x_{n}\right)=\inf _{x \in X} f(x)$. Passing to a subsequence if necessary, we may suppose $f\left(x_{n}\right) \leqslant \inf _{x \in X} f(x)+1 / n^{2}, n \in \mathbb{N}$. By Theorem 2.1, for every $n \in \mathbb{N}$ there exists a point $z_{n} \in X$ enjoying the following properties:

$$
\begin{gather*}
f\left(z_{n}\right) \leqslant f\left(x_{n}\right), \tag{2}\\
\left\|z_{n}-x_{n}\right\| \leqslant \frac{1}{n}, \tag{3}\\
f(z)-f\left(z_{n}\right) \geqslant-\frac{1}{n}\left\|z-z_{n}\right\| \quad \forall z \in X . \tag{4}
\end{gather*}
$$

Through (2) we obtain that $\left\{f\left(z_{n}\right)\right\}$ is bounded, while (4) leads to

$$
\begin{equation*}
\Phi^{0}\left(z_{n} ; x-z_{n}\right)+\psi(x)-\psi\left(z_{n}\right) \geqslant-\frac{1}{n}\left\|x-z_{n}\right\| \quad \forall x \in X \tag{5}
\end{equation*}
$$

Indeed, if $x \in X$ and $z:=z_{n}+t\left(x-z_{n}\right)$, with $\left.t \in\right] 0,1\left[\right.$, then from (4), besides $\left(\mathrm{H}_{f}\right)$, it follows

$$
\Phi\left(z_{n}+t\left(x-z_{n}\right)\right)-\Phi\left(z_{n}\right)+t\left[\psi(x)-\psi\left(z_{n}\right)\right] \geqslant-\frac{t}{n}\left\|x-z_{n}\right\| .
$$

Dividing by t and letting $t \rightarrow 0^{+}$we achieve (5). At this point, condition (PS) f_{f} forces $z_{n} \rightarrow x_{0}$ for suitable $x_{0} \in X$, where a subsequence is considered when necessary, and thus, by (3), also $x_{n} \rightarrow x_{0}$.

Remark 2.1. The preceding result guarantees that every function f which is bounded below and satisfies $\left(\mathrm{H}_{f}\right)$ as well as $(\mathrm{PS})_{f}$ attains its minimum at some $x_{0} \in X$.

Proposition 2.2. Let f be bounded below and fulfil (PS) ${ }_{f}$ in addition to $\left(\mathrm{H}_{f}\right)$. Assume the global minimum point x_{0} is unique. Then, for every $\rho_{0}>0$ there exists a $\rho>0$ such that

$$
U_{\rho}:=\left\{x \in X: f(x)<f\left(x_{0}\right)+\rho\right\} \subseteq B\left(x_{0}, \rho_{0}\right)
$$

Proof. Arguing by contradiction one can find a $\rho_{0}>0$ and a sequence $\left\{x_{n}\right\} \subseteq X$ such that

$$
f\left(x_{n}\right)<f\left(x_{0}\right)+\frac{1}{n^{2}}, \quad\left\|x_{n}-x_{0}\right\| \geqslant \rho_{0} \quad \forall n \in \mathbb{N}
$$

Now, Theorem 2.1 provides a point $z_{n} \in X$ satisfying (2)-(4). Set $z:=z_{n}+t\left(x-z_{n}\right)$, with $x \in X$ and $t \in] 0,1[$. As in the proof of Proposition 2.1, inequality (4), besides the
convexity of ψ, lead to (5). Thus, by condition (PS $)_{f}$, there exists a subsequence $\left\{z_{k_{n}}\right\}$ of $\left\{z_{n}\right\}$ strongly converging to some $z \in X$. Since $f\left(z_{k_{n}}\right) \rightarrow f\left(x_{0}\right)$ in view of (2), we have $f(z)=f\left(x_{0}\right)$, which forces $z=x_{0}$ taking into account the uniqueness of x_{0}. On the other hand, $x_{k_{n}} \rightarrow x_{0}$ due to (3). However, this is impossible because $\left\|x_{k_{n}}-x_{0}\right\| \geqslant \rho_{0}$ for all $n \in \mathbb{N}$, and the conclusion follows.

Finally, the next result will play a basic role in establishing the abstract theorem of this paper. For its proof we refer to [14, Theorem 3.3]. Here, Q indicates a compact set in X, Q_{0} is a nonempty closed subset of Q, γ_{0} belongs to $C^{0}\left(Q_{0}, X\right)$, while

$$
\Gamma:=\left\{\gamma \in C^{0}(Q, X):\left.\gamma\right|_{Q_{0}}=\gamma_{0}\right\} .
$$

Theorem 2.2. Suppose the function f satisfies the assumptions below in addition to $\left(\mathrm{H}_{f}^{\prime}\right)$ and (PS) f_{f}.
$\left(\mathrm{a}_{1}\right) \sup _{x \in Q} f(\hat{\gamma}(x))<+\infty$ for some $\hat{\gamma} \in \Gamma$.
(a) There exists a closed subset S of X such that $\sup _{x \in Q_{0}} f\left(\gamma_{0}(x)\right) \leqslant \inf _{x \in S} f(x)$ and $(\gamma(Q) \cap S) \backslash \gamma_{0}\left(Q_{0}\right) \neq \emptyset$ for all $\gamma \in \Gamma$.

Put $c:=\inf _{\gamma \in \Gamma} \sup _{x \in Q} f(\gamma(x))$. Then the set $K_{c}(f)$ is nonempty. If, moreover, $\inf _{x \in S} f(x)=c$ then $K_{c}(f) \cap S \neq \emptyset$.

3. Critical points in presence of splitting

Throughout this section, $(X,\|\cdot\|)$ is a real reflexive Banach space while f denotes a function from X into $\mathbb{R} \cup\{+\infty\}$. The following hypotheses will be posited in the sequel:
$\left(\mathrm{f}_{1}\right) f$ is bounded below and fulfils $(\mathrm{PS})_{f}$ besides $\left(\mathrm{H}_{f}\right)$.
(f_{2}) $x_{0} \in X$ is a global minimum point of the function f.
Observe that if $\left(\mathrm{f}_{1}\right)$ holds then f attains its minimum; see Remark 2.1. We shall further assume:
$\left(\mathrm{f}_{3}\right) x_{0} \neq 0$. Moreover, x_{0} and eventually 0 are the only critical points for f.
(f4) There exist two disjoint open neighbourhoods U_{0} and N_{0} of x_{0} and 0 , respectively, as well as a constant $b>\inf _{x \in X} f(x)$, satisfying $f_{b} \backslash\left(U_{0} \cup N_{0}\right) \subseteq D_{\partial \psi}$.
(f5) If $\left\{x_{n}\right\} \subseteq f_{b} \backslash\left(U_{0} \cup N_{0}\right), x_{n} \rightarrow x$ in X, and $x_{n}^{*} \in \partial \psi\left(x_{n}\right)$ for all $n \in \mathbb{N}$, then to each $z \in X$ there corresponds an $x^{*} \in \partial \psi(x)$ such that $\left\langle x^{*}, z\right\rangle \leqslant \lim \sup _{n \rightarrow+\infty}\left\langle x_{n}^{*}, z\right\rangle$.

Proposition 3.1. Suppose $\left(f_{1}\right)-\left(f_{4}\right)$ hold true. Then there exists a constant $\sigma>0$ such that for every $x \in f_{b} \backslash\left(U_{0} \cup N_{0}\right), x^{*} \in \partial \Phi(x), z^{*} \in \partial \psi(x)$ one has $\left\|x^{*}+z^{*}\right\|_{X^{*}} \geqslant \sigma$.

Proof. Arguing by contradiction one could construct three sequences $\left\{x_{n}\right\} \subseteq X,\left\{x_{n}^{*}\right\}$, $\left\{z_{n}^{*}\right\} \subseteq X^{*}$ with the following properties:

$$
\begin{gather*}
x_{n} \in f_{b} \backslash\left(U_{0} \cup N_{0}\right), \quad n \in \mathbb{N} \tag{6}\\
x_{n}^{*} \in \partial \Phi\left(x_{n}\right) \quad \text { and } \quad z_{n}^{*} \in \partial \psi\left(x_{n}\right) \quad \forall n \in \mathbb{N} \tag{7}\\
\left\|x_{n}^{*}+z_{n}^{*}\right\|_{X^{*}} \rightarrow 0 \quad \text { as } n \rightarrow+\infty \tag{8}
\end{gather*}
$$

From (7) we obtain easily

$$
\begin{aligned}
\Phi^{0}\left(x_{n} ; x-x_{n}\right)+\psi(x)-\psi\left(x_{n}\right) & \geqslant\left\langle x_{n}^{*}, x-x_{n}\right\rangle+\left\langle z_{n}^{*}, x-x_{n}\right\rangle \\
& \geqslant-\left\|x_{n}^{*}+z_{n}^{*}\right\|_{X^{*}}\left\|x-x_{n}\right\|
\end{aligned}
$$

for all $n \in \mathbb{N}, x \in X$. Thanks to (PS) ${ }_{f}$, setting $\epsilon_{n}:=\left\|x_{n}^{*}+z_{n}^{*}\right\|_{X^{*}}$ and using (8) produces $x_{n} \rightarrow \bar{x}$ in X, where a subsequence is considered when necessary. Moreover, by (6), the point \bar{x} lies in $f_{b} \backslash\left(U_{0} \cup N_{0}\right)$. Since Φ^{0} and $-\psi$ are upper semicontinuous, this forces both $\bar{x} \in D_{\psi}$ and

$$
\Phi^{0}(\bar{x} ; x-\bar{x})+\psi(x)-\psi(\bar{x}) \geqslant 0 \quad \forall x \in X
$$

namely \bar{x} turns out a critical point of f different from x_{0} and 0 , against hypothesis $\left(\mathrm{f}_{3}\right)$.
Proposition 3.2. Let $\left(\mathrm{f}_{1}\right)-\left(\mathrm{f}_{5}\right)$ be satisfied and let σ be as in Proposition 3.1. Then there exists a locally Lipschitz continuous function $F: f_{b} \backslash\left(U_{0} \cup N_{0}\right) \rightarrow X$ such that, for every $x \in f_{b} \backslash\left(U_{0} \cup N_{0}\right),\|F(x)\| \leqslant 1$ and

$$
\begin{equation*}
\left\langle x^{*}+z^{*}, F(x)\right\rangle>\frac{\sigma}{2} \quad \forall x^{*} \in \partial \Phi(x), z^{*} \in \partial \psi(x) \tag{9}
\end{equation*}
$$

Proof. From now on, W denotes the set $f_{b} \backslash\left(U_{0} \cup N_{0}\right)$. Pick $x \in W$. We first claim that the infimum

$$
\begin{equation*}
\delta(x):=\inf \left\{\left\|x^{*}+z^{*}\right\|_{X^{*}}: x^{*} \in \partial \Phi(x), z^{*} \in \partial \psi(x)\right\} \tag{10}
\end{equation*}
$$

is attained. To show this, fix $\left\{x_{n}^{*}\right\} \subseteq \partial \Phi(x)$ and $\left\{z_{n}^{*}\right\} \subseteq \partial \psi(x)$ fulfilling

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left\|x_{n}^{*}+z_{n}^{*}\right\|_{X^{*}}=\delta(x) \tag{11}
\end{equation*}
$$

Since X is reflexive while $\partial \Phi(x)$ is weak* compact, we can find an $\bar{x}^{*} \in \partial \Phi(x)$ such that, along a subsequence if necessary, $x_{n}^{*} \rightharpoonup \bar{x}^{*}$. By (11) the sequence $\left\{z_{n}^{*}\right\}$ turns out bounded. So, as before, $z_{n}^{*} \rightharpoonup \bar{z}^{*}$ for some $\bar{z}^{*} \in \partial \psi(x)$. One clearly has

$$
\left\|\bar{x}^{*}+\bar{z}^{*}\right\|_{X^{*}} \leqslant \liminf _{n \rightarrow+\infty}\left\|x_{n}^{*}+z_{n}^{*}\right\|_{X^{*}}
$$

which implies $\left\|\bar{x}^{*}+\bar{z}^{*}\right\|_{X^{*}}=\delta(x)$.

Proposition 3.1 ensures that $\delta(x) \geqslant \sigma>0$. Hence, $B_{\delta(x)}$ is nonempty and, on account of (10),

$$
B_{\delta(x)} \cap(\partial \Phi(x)+\partial \psi(x))=\emptyset
$$

Now, the Hahn-Banach Theorem [4, Theorem I.6] provides a point $\xi_{x} \in X$ with the properties $\left\|\xi_{x}\right\|=1$ and, whenever $x^{*} \in \partial \Phi(x), z^{*} \in \partial \psi(x)$,

$$
\left\langle x^{*}+z^{*}, \xi_{x}\right\rangle \geqslant\left\langle w^{*}, \xi_{x}\right\rangle \quad \forall w^{*} \in B_{\delta(x)}
$$

This inequality and Proposition 3.1 lead to

$$
\begin{equation*}
\left\langle x^{*}+z^{*}, \xi_{x}\right\rangle \geqslant \delta(x) \geqslant \sigma \tag{12}
\end{equation*}
$$

for all $x^{*} \in \partial \Phi(x), z^{*} \in \partial \psi(x)$.
We next show that to each $x \in W$ there corresponds an open neighbourhood V_{x} of x such that as soon as $v \in V_{x} \cap W$ one has

$$
\begin{equation*}
\left\langle x^{*}+z^{*}, \xi_{x}\right\rangle>\frac{\sigma}{2} \quad \forall x^{*} \in \partial \Phi(v), z^{*} \in \partial \psi(v) \tag{13}
\end{equation*}
$$

Indeed, if the assertion were false then we could find $x \in W,\left\{x_{n}\right\} \subseteq W$, and $\left\{x_{n}^{*}\right\}$, $\left\{z_{n}^{*}\right\} \subseteq X^{*}$ satisfying the following conditions:

$$
\begin{array}{ll}
x_{n} \rightarrow x, \quad & x_{n}^{*} \in \partial \Phi\left(x_{n}\right), \quad z_{n}^{*} \in \partial \psi\left(x_{n}\right), \quad n \in \mathbb{N} \\
& \left\langle x_{n}^{*}+z_{n}^{*}, \xi_{x}\right\rangle \leqslant \frac{\sigma}{2} \quad \forall n \in \mathbb{N} . \tag{15}
\end{array}
$$

Due to the reflexivity of X and (14), Proposition 2.1.2 in [7] yields an $x^{*} \in X^{*}$ such that $x_{n}^{*} \rightharpoonup x^{*}$ in X^{*}, where a subsequence is considered when necessary, while Proposition 2.1.5 of the same reference forces $x^{*} \in \partial \Phi(x)$. From (15) we thus get

$$
\limsup _{n \rightarrow+\infty}\left\langle z_{n}^{*}, \xi_{x}\right\rangle \leqslant \frac{\sigma}{2}-\left\langle x^{*}, \xi_{x}\right\rangle
$$

Now, exploiting (f_{5}) provides a point $z^{*} \in \partial \psi(x)$ such that

$$
\left\langle z^{*}, \xi_{x}\right\rangle \leqslant \frac{\sigma}{2}-\left\langle x^{*}, \xi_{x}\right\rangle,
$$

which contradicts (12).
The family $\mathcal{V}:=\left\{V_{x}: x \in W\right\}$ represents an open covering of W. Since, by [9, Theorem VIII.2.4], this set is paracompact, \mathcal{V} possesses an open locally finite refinement $\left\{V_{i}: i \in I\right\}$. Moreover, on account of (13), to each $i \in I$ there corresponds a $\xi_{i} \in X$ fulfilling $\left\|\xi_{i}\right\|=1$ as well as, whenever $x \in V_{i} \cap W$,

$$
\begin{equation*}
\left\langle x^{*}+z^{*}, \xi_{i}\right\rangle>\frac{\sigma}{2} \quad \forall x^{*} \in \partial \Phi(x), z^{*} \in \partial \psi(x) \tag{16}
\end{equation*}
$$

Let $\left\{\rho_{i}: i \in I\right\}$ be a partition of unity subordinated to $\left\{V_{i}: i \in I\right\}$ such that each ρ_{i} turns out locally Lipschitz continuous; for a possible construction we refer to [16, p. 145]. Define

$$
\begin{equation*}
F(x):=\sum_{i \in I} \rho_{i}(x) \xi_{i}, \quad x \in W . \tag{17}
\end{equation*}
$$

The function F is evidently locally Lipschitz continuous and one has $\|F(x)\| \leqslant 1$ because $\sum_{i \in I} \rho_{i}(x)=1$ in W. Exploiting (16) we then see at once that

$$
\left\langle x^{*}+z^{*}, F(x)\right\rangle>\frac{\sigma}{2} \quad \forall x^{*} \in \partial \Phi(x), z^{*} \in \partial \psi(x)
$$

which completes the proof.
We are in a position now to establish the main result of this paper. It can be regarded as a nonsmooth version of the famous Brézis-Nirenberg critical point theorem [5, Theorem 4]; vide also [11, Theorem 5.18] and [15, Theorem 1]. Suppose

$$
X:=X_{1} \oplus X_{2}
$$

where $\operatorname{dim}\left(X_{1}\right)>0$, while $0<\operatorname{dim}\left(X_{2}\right)<\infty$. The symbol (f_{1}^{\prime}) will denote $\left(\mathrm{f}_{1}\right)$ with $\left(\mathrm{H}_{f}\right)$ replaced by $\left(\mathrm{H}_{f}^{\prime}\right)$.

Theorem 3.1. Assume $\left(\mathrm{f}_{1}^{\prime}\right)$ and $\left(\mathrm{f}_{2}\right)$ are satisfied, $\inf _{x \in X} f(x)<f(0), f(0)=0$, and, moreover,
(f_{6}) the set $\{x \in X: f(x)<a\}$ is open for some constant $a>0$,
(f f_{7}) there exists an $\left.r \in\right] 0, \frac{\left\|x_{0}\right\|}{2}\left[\right.$ such that $\left.f\right|_{\bar{B}_{r} \cap X_{1}} \geqslant 0,\left.f\right|_{\bar{B}_{r} \cap X_{2}} \leqslant 0$, and $\left.f\right|_{\partial B_{r} \cap X_{2}}<0$.
Then the function f possesses at least two nontrivial critical points.
Proof. One clearly has $x_{0} \neq 0$ because $f\left(x_{0}\right)=\inf _{x \in X} f(x)<f(0)$. Suppose (f_{3}) holds true, since otherwise we are done. It is not restrictive to write (f_{7}) for $r=1$. Let us first note that

$$
\begin{equation*}
f\left(x_{0}\right)<\inf _{x \in \bar{B}_{1} \cap X_{2}} f(x) \tag{18}
\end{equation*}
$$

Indeed, $\bar{B}_{1} \cap X_{2}$ turns out a compact subset of $\{x \in X: f(x)<a\}$ while, due to (f_{6}), f is locally Lipschitz continuous on this set. Thus, one can find an $x_{1} \in \bar{B}_{1} \cap X_{2}$ fulfilling $f\left(x_{1}\right)=\inf _{x \in \bar{B}_{1} \cap X_{2}} f(x)$. If $f\left(x_{1}\right)=f\left(x_{0}\right)$ then x_{1} would be a global minimum point for f. Since $\left\|x_{1}\right\| \leqslant 1<\left\|x_{0}\right\|$ and $f\left(x_{0}\right)<f(0)$, we would get $x_{1} \in K(f) \backslash\left\{0, x_{0}\right\}$, which contradicts (f_{3}).

Now, from $f\left(x_{0}\right)<0<a$ it easily follows

$$
\begin{equation*}
f(x)<0 \quad \text { in } \overline{B\left(x_{0}, \rho_{0}\right)} \tag{19}
\end{equation*}
$$

for some $\left.\rho_{0} \in\right] 0, \frac{\left\|x_{0}\right\|}{2}[$. Let $\rho>0$ be as in Proposition 2.2. On account of (18), we may assume that

$$
\begin{equation*}
2 \rho<\min \left\{\rho_{0}, 1\right\} \quad \text { and } \quad f\left(x_{0}\right)+\rho<\inf _{x \in \bar{B}_{1} \cap X_{2}} f(x) \tag{20}
\end{equation*}
$$

Moreover, by decreasing ρ when necessary, hypothesis (f_{7}) leads to

$$
\begin{equation*}
\sup _{x \in \partial B_{1} \cap X_{2}} f(x)<-2 \rho L<0 \tag{21}
\end{equation*}
$$

where L denotes a Lipschitz constant for f on a suitable closed ball centered at 0 , which contains $\bar{B}_{2 \rho}$. Pick any $\left.b \in\right] 0, a\left[\right.$. Through (f_{7}) and (20) we obtain

$$
\begin{equation*}
\partial B_{1} \cap X_{2} \subseteq\{x \in X: f(x)<b\} \backslash \overline{U_{\rho} \cup B_{2 \rho}} \tag{22}
\end{equation*}
$$

Observe next that (f_{4}) is satisfied with $U_{0}:=U_{\rho}, N_{0}:=B_{2 \rho}$ because, in view of Proposition 2.2,

$$
\begin{equation*}
U_{\rho} \cap B_{2 \rho} \subseteq B\left(x_{0}, \rho_{0}\right) \cap B_{2 \rho}=\emptyset \tag{23}
\end{equation*}
$$

while, due to the choice of b besides $\left(\mathrm{f}_{6}\right)$,

$$
\begin{equation*}
f_{b} \subseteq\{x \in X: f(x)<a\} \subseteq \operatorname{int}\left(D_{\psi}\right)=\operatorname{int}\left(D_{\partial \psi}\right) \tag{24}
\end{equation*}
$$

Exploiting this inclusion we also see that (f_{5}) holds true. Indeed, since the set $\{x \in X: f(x)<a\}$ is open, ψ turns out locally Lipschitz continuous on a neighbourhood of f_{b}. If $\left\{x_{n}\right\} \subseteq f_{b} \backslash\left(U_{0} \cup N_{0}\right), x_{n} \rightarrow x$ in $X, x_{n}^{*} \in \partial \psi\left(x_{n}\right)$ for all $n \in \mathbb{N}$, and $z \in X$ then, by [6, Proposition 6], there exists a relabelled sequence $\left\{w_{n}^{*}\right\} \subseteq \partial \psi(x)$ fulfilling

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left\langle x_{n}^{*}-w_{n}^{*}, z\right\rangle=0 \tag{25}
\end{equation*}
$$

We may suppose $w_{n}^{*} \rightharpoonup x^{*}$ for some $x^{*} \in \partial \psi(x)$, where a subsequence is considered when necessary. Consequently, owing to (25),

$$
\left\langle x^{*}, z\right\rangle=\lim _{n \rightarrow+\infty}\left\langle w_{n}^{*}, z\right\rangle=\lim _{n \rightarrow+\infty}\left\langle w_{n}^{*}-x_{n}^{*}+x_{n}^{*}, z\right\rangle \leqslant \limsup _{n \rightarrow+\infty}\left\langle x_{n}^{*}, z\right\rangle,
$$

as desired. At this point, Proposition 3.2 can be applied, and we get a locally Lipschitz continuous function $F: f_{b} \backslash\left(U_{0} \cup N_{0}\right) \rightarrow X$ enjoying property (9), besides $\|F(x)\| \leqslant 1$. In particular, (9) evidently forces $F(x) \neq 0$ for all $x \in f_{b} \backslash\left(U_{0} \cup N_{0}\right)$.

Fix any $z \in \partial B_{1} \cap X_{2}$. On account of (22) it makes sense to consider the Cauchy problem

$$
\left\{\begin{array}{l}
\frac{d \eta_{z}(t)}{d t}=-F\left(\eta_{z}(t)\right) \tag{26}\\
\eta_{z}(0)=z
\end{array}\right.
$$

By the basic existence-uniqueness theorem for ordinary differential equations in Ba nach spaces it possesses a unique local solution η_{z}. Let T_{z} be the maximum of $\{T \in] 0,+\infty]: \eta_{z}$ is defined on $\left[0, T[\}\right.$. We claim that $T_{z}<+\infty$. In fact, since f turns out locally Lipschitz continuous on a neighbourhood of f_{b}, Proposition 9 in [6] yields

$$
\frac{d}{d t} f\left(\eta_{z}(t)\right) \leqslant \max _{x^{*} \in \partial \Phi\left(\eta_{z}(t)\right), z^{*} \in \partial \psi\left(\eta_{z}(t)\right)}\left\langle x^{*}+z^{*},-F\left(\eta_{z}(t)\right)\right\rangle
$$

for almost every $t \in\left[0, T_{z}[\right.$. Thanks to (9) we thus have

$$
\begin{equation*}
\frac{d}{d t} f\left(\eta_{z}(t)\right) \leqslant-\frac{\sigma}{2} \tag{27}
\end{equation*}
$$

Integrating over $[0, t], t \in] 0, T_{z}[$, provides

$$
\begin{equation*}
f\left(\eta_{z}(t)\right)-f(z) \leqslant-\frac{\sigma}{2} t \tag{28}
\end{equation*}
$$

which clearly leads to

$$
T_{z} \leqslant \frac{2}{\sigma}\left(f(z)-\inf _{x \in X} f(x)\right)<+\infty
$$

Observe next that

$$
\begin{equation*}
\eta_{z}(t)=z-\int_{0}^{t} F\left(\eta_{z}(\tau)\right) d \tau \quad \forall t \in\left[0, T_{z}[\right. \tag{29}
\end{equation*}
$$

Consequently, due to the boundedness of $F, \eta_{z}(t)$ converges as $t \rightarrow T_{z}$. Setting

$$
\begin{equation*}
w_{z}:=\lim _{t \rightarrow T_{z}} \eta_{z}(t) \tag{30}
\end{equation*}
$$

it results in $w_{z} \in \partial\left(f_{b} \backslash\left(U_{0} \cup N_{0}\right)\right)$, because [$0, T_{z}$ [is maximal. By (28) and (22), the point w_{z} cannot belong to the boundary of f_{b}. Therefore, $w_{z} \in \partial\left(U_{0} \cup N_{0}\right)$. If $w_{z} \in \partial N_{0}$ then $\left\|w_{z}\right\|=2 \rho$. Using (28) again, (30), besides (21), one has

$$
\begin{equation*}
f\left(w_{z}\right)<f(z)<-2 \rho L \tag{31}
\end{equation*}
$$

Since f is Lipschitz continuous on $\bar{B}_{2 \rho}$, we also obtain

$$
f\left(w_{z}\right)=f\left(w_{z}\right)-f(0) \geqslant-L\left\|w_{z}\right\|=-2 \rho L,
$$

which contradicts (31). Hence,

$$
\begin{equation*}
w_{z} \in \partial U_{0} \quad \forall z \in \partial B_{1} \cap X_{2} . \tag{32}
\end{equation*}
$$

Now, pick an $e \in \partial B_{1} \cap X_{1}$ and define

$$
\begin{equation*}
Q:=\left([0, e] \oplus\left(\bar{B}_{1} \cap X_{2}\right)\right) \cap \bar{B}_{1} . \tag{33}
\end{equation*}
$$

The boundary Q_{0} of Q relative to $\operatorname{span}\{e\} \oplus X_{2}$ is given by

$$
\left.\left.\left.\left.Q_{0}=\{e\} \cup\left(\bar{B}_{1} \cap X_{2}\right) \cup\left(\partial B_{1} \cap(] 0, e\right] \oplus\{\mu z: \mu \in] 0,1\right], z \in \partial B_{1} \cap X_{2}\right\}\right)\right)
$$

Write $\gamma_{0}(e):=x_{0}, \gamma_{0}(x):=x$ for all $x \in \bar{B}_{1} \cap X_{2}$, as well as

$$
\gamma_{0}(x):= \begin{cases}\eta_{z}\left(2 \lambda T_{z}\right) & \text { if } 0<\lambda<\frac{1}{2} \tag{34}\\ w_{z} & \text { if } \lambda=\frac{1}{2} \\ (2 \lambda-1) x_{0}+(2-2 \lambda) w_{z} & \text { if } \frac{1}{2}<\lambda \leqslant 1\end{cases}
$$

provided $x:=\lambda e+\mu z$, with $\lambda, \mu \in] 0,1], z \in \partial B_{1} \cap X_{2}$, and $\|x\|=1$. A simple computation ensures that $\gamma_{0}: Q_{0} \rightarrow X$ turns out continuous. Moreover,

$$
\begin{equation*}
f\left(\gamma_{0}(x)\right) \leqslant 0 \quad \forall x \in Q_{0} . \tag{35}
\end{equation*}
$$

Indeed, we evidently have $f\left(\gamma_{0}(e)\right)=f\left(x_{0}\right)<0$ while, in view of $\left(\mathrm{f}_{7}\right), f\left(\gamma_{0}(x)\right)=$ $f(x) \leqslant 0$ for any $x \in \bar{B}_{1} \cap X_{2}$. Put $x:=\lambda e+\mu z$, where $\left.\left.\lambda, \mu \in\right] 0,1\right], z \in \partial B_{1} \cap X_{2}$. If $\lambda<1 / 2$ then, thanks to (27),

$$
f\left(\gamma_{0}(x)\right)=f\left(\eta_{z}\left(2 \lambda T_{z}\right)\right) \leqslant f\left(\eta_{z}(0)\right)=f(z) \leqslant 0
$$

The same reasoning yields (35) for $\lambda=1 / 2$. So, suppose $\lambda>1 / 2$. Because of (32), besides Proposition 2.2, it results in

$$
\begin{equation*}
\left\|(2 \lambda-1) x_{0}+(2-2 \lambda) w_{z}-x_{0}\right\| \leqslant\left\|x_{0}-w_{z}\right\| \leqslant \rho_{0} \tag{36}
\end{equation*}
$$

From (19) we thus achieve

$$
f\left(\gamma_{0}(x)\right)=f\left((2 \lambda-1) x_{0}+(2-2 \lambda) w_{z}\right)<0,
$$

and (35) is proved. Let us next verify that

$$
\begin{equation*}
\left\|\gamma_{0}(x)\right\| \geqslant 2 \rho \quad \forall x \in \partial B_{1} \cap Q \tag{37}
\end{equation*}
$$

When $x:=e$ or $x \in \bar{B}_{1} \cap X_{2}$, this inequality is an immediate consequence of the choice of ρ_{0} and (20). Pick $x:=\lambda e+\mu z$, with $\left.\left.\|x\|=1, \lambda, \mu \in\right] 0,1\right], z \in \bar{B}_{1} \cap X_{2}$. Since $\eta_{z}(t)$, $t \in] 0, T_{z}$ [, does not belong to N_{0}, (37) holds true for $0<\lambda<1 / 2$. If $1 / 2 \leqslant \lambda \leqslant 1$ then exploiting (36), besides (20), we infer

$$
\gamma_{0}(x) \in \overline{B\left(x_{0}, \rho_{0}\right)} \subseteq X \backslash B_{2 \rho}
$$

namely, $\left\|\gamma_{0}(x)\right\| \geqslant 2 \rho$, as desired.

Now, define

$$
\Gamma:=\left\{\gamma \in C^{0}(Q, X): \gamma \mid Q_{0}=\gamma_{0}\right\}, \quad c:=\inf _{\gamma \in \Gamma} \sup _{x \in Q} f(\gamma(x)),
$$

in addition to $S:=\partial B_{\rho} \cap X_{1}$. Gathering (35), (f_{7}), the inequality $\rho<1$ together one has

$$
\sup _{x \in Q_{0}} f\left(\gamma_{0}(x)\right) \leqslant 0 \leqslant \inf _{x \in S} f(x)
$$

Through (37) and [5, Lemma 3] we then get $(\gamma(Q) \cap S) \backslash \gamma_{0}\left(Q_{0}\right) \neq \emptyset$ for all $\gamma \in \Gamma$. Hence, assumption (a_{2}) of Theorem 2.2 is satisfied. To verify (a_{1}), observe at first that the set $\operatorname{conv}\left(\gamma_{0}\left(Q_{0}\right)\right)$ turns out compact, because so is Q_{0}, while from (35), (24) it follows $\operatorname{conv}\left(\gamma_{0}\left(Q_{0}\right)\right) \subseteq \operatorname{int}\left(D_{\psi}\right)$. Thus, by the Generalized Theorem of Tietze [3, p. 77], there exists a $\hat{\gamma} \in \Gamma$ such that $\hat{\gamma}(Q) \subseteq \operatorname{conv}\left(\gamma_{0}\left(Q_{0}\right)\right)$. Since f is continuous on $\operatorname{int}\left(D_{\psi}\right)$, this implies $\sup _{x \in Q} f(\hat{\gamma}(x))<+\infty$, i.e., hypothesis (a_{1}) holds true too. Therefore, thanks to Theorem 2.2, $K_{c}(f) \neq \emptyset$. One clearly has $\inf _{x \in S} f(x) \leqslant c$. If $\inf _{x \in S} f(x)<c$ then the function f possesses a critical point different from x_{0} and 0 . Otherwise, $K_{c}(f) \cap S \neq \emptyset$, which again leads to the same conclusion. However, this contradicts condition (f_{3}).

Remark 3.1. Hypothesis (f_{7}) is obviously fulfilled in the meaningful special case:
(f f_{7}^{\prime}) For some $r>0$ one has $\left.f\right|_{\bar{B}_{r} \cap X_{1}} \geqslant 0$ as well as $\left.f\right|_{\bar{B}_{r} \cap X_{2} \backslash\{0\}}<0$,
namely, 0 turns out a local minimum of $\left.f\right|_{X_{1}}$ and a proper local maximum for $\left.f\right|_{X_{2}}$.
Remark 3.2. When $\operatorname{dim}\left(X_{2}\right) \geqslant 2$ assumption (f_{7}) can be replaced by the one below, which is more general:
$\left(\mathrm{f}_{7}^{\prime \prime}\right)$ There exists an $\left.r \in\right] 0, \frac{\left\|x_{0}\right\|}{2}\left[\right.$ such that $\left.f\right|_{\bar{B}_{r} \cap X_{1}} \geqslant 0,\left.f\right|_{\bar{B}_{r} \cap X_{2}} \leqslant 0$, and $\left.f\right|_{\bar{B}_{r} \cap X_{2}} \neq 0$.
Indeed, in such a case, $f(\bar{z})<0$ for some $\bar{z} \in \bar{B}_{r} \cap X_{2}$. It is not restrictive to suppose both $\bar{z} \in \partial B_{r} \cap X_{2}$ and $r=1$. Thus, inequality (21) becomes

$$
f(\bar{z})<-2 \rho L<0 .
$$

Arguing exactly as in the proof of Theorem 3.1 we get

$$
w_{z} \in \partial\left(U_{0} \cup N_{0}\right) \quad \forall z \in \partial B_{1} \cap X_{2}
$$

besides $w_{\bar{z}} \in \partial U_{0}$. Define

$$
A:=\left\{z \in \partial B_{1} \cap X_{2}: w_{z} \in \partial U_{0}\right\}, \quad B:=\left\{z \in \partial B_{1} \cap X_{2}: w_{z} \in \partial N_{0}\right\}
$$

One clearly has $A \neq \emptyset, A \cup B=\partial B_{1} \cap X_{2}$, and $A \cap B=\emptyset$ because, due to (23), $\bar{U}_{0} \cap \bar{N}_{0}=\emptyset$. Let us next verify that the sets A, B turn out closed. Pick a sequence $\left\{z_{n}\right\} \subseteq A$
satisfying $z_{n} \rightarrow z$. By continuous dependence on the initial data it follows $T_{z_{n}} \rightarrow T_{z}$. Hence, to any $\epsilon>0$ sufficiently small there corresponds a $\nu \in \mathbb{N}$ such that

$$
\left\|z_{n}-z\right\|<\epsilon, \quad 0<T_{z}-\epsilon<T_{z_{n}}<T_{z}+\epsilon \quad \forall n>v
$$

Exploiting (29), the pointwise convergence of $\left\{F\left(\eta_{z_{n}}(t)\right)\right\}$ to $F\left(\eta_{z}(t)\right)$ in $\left[0, T_{z}-\epsilon\right]$, and the inequality $\|F(x)\| \leqslant 1$, we achieve

$$
\begin{aligned}
\left\|w_{z_{n}}-w_{z}\right\| \leqslant & \left\|z_{n}-z\right\|+\left\|\int_{0}^{T_{z}-\epsilon}\left[F\left(\eta_{z_{n}}(t)\right)-F\left(\eta_{z}(t)\right)\right] d t\right\| \\
& +\left\|\int_{T_{z}-\epsilon}^{T_{z_{n}}} F\left(\eta_{z_{n}}(t)\right) d t\right\|+\left\|\int_{T_{z}-\epsilon}^{T_{z}} F\left(\eta_{z}(t)\right) d t\right\|<5 \epsilon
\end{aligned}
$$

provided $n>v$ is large enough. Consequently, $w_{z_{n}} \rightarrow w_{z}$, which implies $w_{z} \in \partial U_{0}$, i.e., $z \in A$. A similar reasoning ensures that B turns out closed. Since $\partial B_{1} \cap X_{2}$ is connected, we must have $\partial B_{1} \cap X_{2}=A$, and (32) holds true. At this point, the proof goes on exactly as the one of Theorem 3.1.

Let x_{1} be the critical point of f different from x_{0} and 0 given by Theorem 3.1. Write

$$
\hat{c}:=\inf _{\gamma \in \widehat{\Gamma}} \sup _{x \in\left[x_{0}, x_{1}\right]} f(\gamma(x)),
$$

where

$$
\widehat{\Gamma}:=\left\{\gamma \in C^{0}\left(\left[x_{0}, x_{1}\right], X\right): \gamma\left(x_{i}\right)=x_{i}, i=0,1\right\}
$$

and observe that $\hat{c}<+\infty$ because $x_{0}, x_{1} \in D_{\psi}$. Combining the above result with [14, Theorem 4.2] yields the following:

Theorem 3.2. Suppose the assumptions of Theorem 3.1 are fulfilled, $f\left(x_{1}\right) \geqslant 0$ whenever x_{1} is a local minimum, while $f^{\hat{c}}$ turns out closed. Then either f possesses a nonzero critical point, which is not a local minimum, or $\hat{c}=f\left(x_{1}\right)$ and f admits a continuum of local minima at the level \hat{c}.

4. An application

In this section we shall exploit Theorem 3.1 to solve an elliptic variational-hemivariational inequality, in the sense of Panagiotopoulos [19], patterned after problem (38) in [5]; see besides [11, Theorem 5.22] and [15, Theorem 6].

Let Ω be a nonempty, bounded, open subset of the real Euclidean N-space $\left(\mathbb{R}^{N},|\cdot|\right), N \geqslant 3$, having a smooth boundary $\partial \Omega$. The symbol $H_{0}^{1}(\Omega)$ indicates the closure of $C_{0}^{\infty}(\Omega)$ in $W^{1,2}(\Omega)$. On $H_{0}^{1}(\Omega)$ we introduce the norm

$$
\|u\|:=\left(\int_{\Omega}|\nabla u(x)|^{2} d x\right)^{1 / 2}
$$

Denote by 2^{*} the critical exponent for the Sobolev embedding $H_{0}^{1}(\Omega) \hookrightarrow L^{p}(\Omega)$. Recall that $2^{*}=2 N /(N-2)$, if $p \in\left[1,2^{*}\right]$ then there exists a positive constant c_{p} such that

$$
\begin{equation*}
\|u\|_{L^{p}(\Omega)} \leqslant c_{p}\|u\|, \quad u \in H_{0}^{1}(\Omega) \tag{38}
\end{equation*}
$$

and, in particular, the embedding is compact whenever $p \in\left[1,2^{*}[\right.$; see, e.g., [20, Proposition B.7].

Given a function $a \in L^{\infty}(\Omega)$, consider the eigenvalue problem

$$
\begin{cases}-\Delta u+a(x) u=\lambda u & \text { in } \Omega \tag{39}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

It is well known [12, Section 8.12] that (39) possesses a sequence $\left\{\lambda_{n}\right\}$ of eigenvalues fulfilling $\lambda_{1}<\lambda_{2} \leqslant \cdots \leqslant \lambda_{n} \leqslant \cdots$ (the number of times an eigenvalue appears in the sequence equals its multiplicity) and, moreover, that (vide [1, p. 14])

$$
\begin{equation*}
\lambda_{1}>\underset{x \in \Omega}{\operatorname{essinf}} a(x) \tag{40}
\end{equation*}
$$

Let $\left\{\phi_{n}\right\}$ be a corresponding sequence of eigenfunctions normalized as follows:

$$
\begin{equation*}
\int_{\Omega}\left(\left|\nabla \phi_{n}(x)\right|^{2}+a(x) \phi_{n}(x)^{2}\right) d x=\lambda_{n} \int_{\Omega} \phi_{n}(x)^{2} d x=\lambda_{n} \tag{41}
\end{equation*}
$$

for every $n \in \mathbb{N}$;

$$
\begin{equation*}
\int_{\Omega}\left(\nabla \phi_{m}(x) \cdot \nabla \phi_{n}(x)+a(x) \phi_{m}(x) \phi_{n}(x)\right) d x=\int_{\Omega} \phi_{m}(x) \phi_{n}(x) d x=0 \tag{42}
\end{equation*}
$$

provided $m, n \in \mathbb{N}$ and $m \neq n$.
To avoid technicalities, we shall examine below only the case when

$$
\begin{equation*}
\lambda_{s}<0<\lambda_{s+1} \quad \text { for some } s \in \mathbb{N} \text {. } \tag{43}
\end{equation*}
$$

If $g: \mathbb{R} \rightarrow \mathbb{R}$ satisfies the conditions:
$\left(g_{1}\right) g$ is measurable,
(g_{2}) there exist $\left.a_{1}>0, p \in\right] 2,2^{*}\left[\right.$ such that $|g(t)| \leqslant a_{1}\left(1+|t|^{p-1}\right)$ for every $t \in \mathbb{R}$,
then the functions $G: \mathbb{R} \rightarrow \mathbb{R}$ and $\mathcal{G}: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ given by

$$
G(\xi):=\int_{0}^{\xi}-g(t) d t \quad \forall \xi \in \mathbb{R}, \quad \mathcal{G}(u):=\int_{\Omega} G(u(x)) d x \quad \forall u \in H_{0}^{1}(\Omega)
$$

respectively, are well defined and locally Lipschitz continuous. So, it makes sense to consider their generalized directional derivatives G^{0} and \mathcal{G}^{0}. On account of [7, formula (9), p. 84] one has

$$
\begin{equation*}
\mathcal{G}^{0}(u ; v) \leqslant \int_{\Omega} G^{0}(u(x) ; v(x)) d x, \quad u, v \in H_{0}^{1}(\Omega) \tag{44}
\end{equation*}
$$

For our application, we will further assume
($\left.\mathrm{g}_{3}\right) \lim _{t \rightarrow 0} \frac{g(t)}{t}=0$,
(g_{4}) $\lim \sup _{|t| \rightarrow+\infty} \frac{g(t)}{t}<0$, and
(g_{5}) there exists a $\xi_{0} \in \mathbb{R}$ such that $G\left(\xi_{0}\right)<0$.
Through (g_{4}) one can easily find two positive constants β, γ satisfying

$$
\begin{equation*}
g(t) \geqslant-\beta t-\gamma \quad \forall t \leqslant 0, \quad g(t) \leqslant-\beta t+\gamma \quad \forall t \geqslant 0 \tag{45}
\end{equation*}
$$

Now, let $\lambda, \mu>0$. Define

$$
\begin{equation*}
r_{\lambda, \mu}:=\lambda \gamma c_{1}+\sqrt{\left(\lambda \gamma c_{1}\right)^{2}+2 \mu} \tag{46}
\end{equation*}
$$

with c_{1} as in (38) written for $p=1$. A set $K_{\lambda} \subseteq H_{0}^{1}(\Omega)$ is called of type (K_{λ}^{g}) provided $\left(\mathrm{K}_{\lambda}^{g}\right) K_{\lambda}$ is convex and closed in $H_{0}^{1}(\Omega)$. Moreover, there exists a $\mu>0$ such that $\bar{B}_{r_{\lambda, \mu}} \subseteq K_{\lambda}$.

Given $\lambda>0$ and K_{λ} satisfying $\left(\mathrm{K}_{\lambda}^{g}\right)$, denote by $\left(\mathrm{P}_{\lambda}\right)$ the elliptic variational-hemivariational inequality problem:

Find $u \in K_{\lambda}$ such that

$$
-\int_{\Omega} \nabla u(x) \cdot \nabla(v-u)(x) d x-\int_{\Omega} a(x) u(x)(v-u)(x) d x \leqslant \lambda \mathcal{G}^{0}(u ; v-u)
$$

for all $v \in K_{\lambda}$.

Due to (44), any solution u of $\left(\mathrm{P}_{\lambda}\right)$ also fulfils the inequality

$$
\begin{aligned}
& -\int_{\Omega} \nabla u(x) \cdot \nabla(v-u)(x) d x-\int_{\Omega} a(x) u(x)(v-u)(x) d x \\
& \quad \leqslant \lambda \int_{\Omega} G^{0}(u(x) ;(v-u)(x)) d x \quad \forall v \in K_{\lambda}
\end{aligned}
$$

When g is continuous, while $K_{\lambda}:=H_{0}^{1}(\Omega)$, the function $u \in H_{0}^{1}(\Omega)$ turns out a weak solution to the Dirichlet problem

$$
-\Delta u+a(x) u=\lambda g(u) \quad \text { in } \Omega, \quad u=0 \quad \text { on } \partial \Omega
$$

which has been previously investigated in [5] under more restrictive conditions; see also [15, Theorem 6].

Theorem 4.1. Suppose $\left(\mathrm{g}_{1}\right)-\left(\mathrm{g}_{5}\right)$ hold true. Then, for every λ sufficiently large, problem $\left(\mathrm{P}_{\lambda}\right)$ possesses at least two nontrivial solutions.

Proof. Write $X:=H_{0}^{1}(\Omega)$ and define, whenever $u \in X$,

$$
\Phi(u):=\frac{1}{2} \int_{\Omega}\left(|\nabla u(x)|^{2}+a(x) u(x)^{2}\right) d x+\lambda \mathcal{G}(u)
$$

as well as

$$
\psi(u):=\left\{\begin{array}{ll}
0 & \text { if } u \in K_{\lambda}, \\
+\infty & \text { otherwise, }
\end{array} \quad f(u):=\Phi(u)+\psi(u)\right.
$$

where $\lambda>0$ while $K_{\lambda} \subseteq H_{0}^{1}(\Omega)$ is of type $\left(\mathrm{K}_{\lambda}^{g}\right)$. Owing to $\left(\mathrm{g}_{1}\right)$, $\left(\mathrm{g}_{2}\right)$ the function $\Phi: X \rightarrow \mathbb{R}$ turns out locally Lipschitz continuous. Consequently, f satisfies condition $\left(\mathrm{H}_{f}^{\prime}\right)$. We shall prove that

$$
\begin{equation*}
f \text { is bounded below and coercive for any } \lambda>-\frac{\alpha}{\beta} \text {, } \tag{47}
\end{equation*}
$$

with $\alpha:=\operatorname{essinf}_{x \in \Omega} a(x)$. Fix $\lambda>-\alpha / \beta$. If $u \in X$ then from (45) it follows that

$$
\int_{\Omega(u(x) \geqslant 0)} d x \int_{0}^{u(x)} g(t) d t \leqslant \int_{\Omega(u(x) \geqslant 0)}\left(-\frac{\beta}{2} u(x)^{2}+\gamma u(x)\right) d x
$$

besides

$$
\begin{aligned}
\int_{\Omega(u(x) \leqslant 0)} d x \int_{0}^{u(x)} g(t) d t & \leqslant \int_{\Omega(u(x) \leqslant 0)} \int_{u(x)}^{0}(\beta t+\gamma) d t \\
& =\int_{\Omega(u(x) \leqslant 0)}\left(-\frac{\beta}{2} u(x)^{2}-\gamma u(x)\right) d x .
\end{aligned}
$$

Gathering these inequalities together yields

$$
\int_{\Omega} d x \int_{0}^{u(x)} g(t) d t \leqslant-\frac{\beta}{2}\|u\|_{L^{2}(\Omega)}^{2}+\gamma\|u\|_{L^{1}(\Omega)}
$$

which clearly means

$$
\begin{equation*}
\mathcal{G}(u) \geqslant \frac{\beta}{2}\|u\|_{L^{2}(\Omega)}^{2}-\gamma\|u\|_{L^{1}(\Omega)} \quad \forall u \in X \tag{48}
\end{equation*}
$$

Now, through (38) and (48) we obtain

$$
\begin{aligned}
f(u) & \geqslant \Phi(u) \geqslant \frac{1}{2}\|u\|^{2}+\frac{1}{2}(\alpha+\lambda \beta)\|u\|_{L^{2}(\Omega)}^{2}-\lambda \gamma\|u\|_{L^{1}(\Omega)} \\
& \geqslant \frac{1}{2}\|u\|^{2}+\frac{1}{2}(\alpha+\lambda \beta)\|u\|_{L^{2}(\Omega)}^{2}-\lambda \gamma c_{1}\|u\|
\end{aligned}
$$

i.e., due to the choice of λ,

$$
\begin{equation*}
f(u) \geqslant \frac{1}{2}\|u\|^{2}-\lambda \gamma c_{1}\|u\|, \quad u \in X . \tag{49}
\end{equation*}
$$

Therefore, (47) holds true. Let us next show that the function f satisfies condition (PS) ${ }_{f}$ provided $\lambda>-\alpha / \beta$. So, pick a sequence $\left\{u_{n}\right\} \subseteq X$ such that $\left\{f\left(u_{n}\right)\right\}$ is bounded and

$$
\begin{equation*}
\Phi^{0}\left(u_{n} ; v-u_{n}\right)+\psi(v)-\psi\left(u_{n}\right) \geqslant-\epsilon_{n}\left\|v-u_{n}\right\| \tag{50}
\end{equation*}
$$

for all $n \in \mathbb{N}, v \in X$, where $\epsilon_{n} \rightarrow 0^{+}$. By (50) one evidently has $\left\{u_{n}\right\} \subseteq K_{\lambda}$. Since f is coercive, the sequence $\left\{u_{n}\right\}$ turns out bounded. Thus, passing to a subsequence if necessary, we may suppose both $u_{n} \rightharpoonup u$ in X and $u_{n} \rightarrow u$ in $L^{2}(\Omega)$. The point u belongs to K_{λ} because this set is weakly closed. Exploiting (50) with $v:=u$ we then get

$$
\begin{align*}
& \int_{\Omega} \nabla u_{n}(x) \cdot \nabla\left(u-u_{n}\right)(x) d x+\int_{\Omega} a(x) u_{n}(x)\left(u-u_{n}\right)(x) d x \\
& \quad+\lambda \mathcal{G}^{0}\left(u_{n} ; u-u_{n}\right) \geqslant-\epsilon_{n}\left\|u-u_{n}\right\| \quad \forall n \in \mathbb{N} . \tag{51}
\end{align*}
$$

From $u_{n} \rightarrow u$ in $L^{2}(\Omega)$ it follows

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \int_{\Omega} a(x) u_{n}(x)\left(u-u_{n}\right)(x) d x=0 \tag{52}
\end{equation*}
$$

The upper semicontinuity of \mathcal{G}^{0} on $L^{2}(\Omega) \times L^{2}(\Omega)$ forces

$$
\begin{equation*}
\limsup _{n \rightarrow+\infty} \mathcal{G}^{0}\left(u_{n} ; u-u_{n}\right) \leqslant \mathcal{G}^{0}(u ; 0)=0 \tag{53}
\end{equation*}
$$

Taking account of (52), (53), besides the weak convergence of $\left\{u_{n}\right\}$ to u, and letting $n \rightarrow$ $+\infty$ in (51) yields

$$
\limsup _{n \rightarrow \infty} \int_{\Omega}\left|\nabla u_{n}(x)\right|^{2} d x \leqslant \int_{\Omega}|\nabla u(x)|^{2} d x
$$

namely, by [4, Proposition III.30], $u_{n} \rightarrow u$ in X. Hence, hypothesis $\left(\mathrm{f}_{1}^{\prime}\right)$ in Theorem 3.1 is fulfilled.

Through (g_{5}) we can construct an $u_{0} \in X$ such that $\mathcal{G}\left(u_{0}\right)<0$. Moreover, $u_{0} \in \bar{B}_{r_{\lambda, \mu}}$ for any $\lambda \geqslant \frac{1}{2 \gamma c_{1}}\left\|u_{0}\right\|$. Therefore, $\inf _{u \in X} f(u)<0$ provided

$$
\lambda>\max \left\{\frac{1}{2 \gamma c_{1}}\left\|u_{0}\right\|,-\frac{1}{2 \mathcal{G}\left(u_{0}\right)} \int_{\Omega}\left(\left|\nabla u_{0}(x)\right|^{2}+a(x) u_{0}(x)^{2}\right) d x\right\}
$$

while $f(0)=\lambda \mathcal{G}(0)=0$.
Our next objective is to verify $\left(\mathrm{f}_{6}\right)$. Since K_{λ} is of type $\left(\mathrm{K}_{\lambda}^{g}\right)$, the set

$$
\begin{equation*}
\{u \in X: f(u)<\mu\} \quad \text { is open. } \tag{54}
\end{equation*}
$$

Indeed, inequality (49) ensures that

$$
\{u \in X: f(u)<\mu\} \subseteq B_{r_{\lambda, \mu}} \subseteq K_{\lambda}
$$

Consequently,

$$
\{u \in X: f(u)<\mu\}=\left\{u \in K_{\lambda}: \Phi(u)<\mu\right\}=\{u \in X: \Phi(u)<\mu\}
$$

which leads to (54).
Finally, reasoning as in [2, p. 137] we obtain

$$
\begin{equation*}
\lim _{u \rightarrow 0} \frac{\mathcal{G}(u)}{\|u\|^{2}}=0 \tag{55}
\end{equation*}
$$

while to any $\epsilon>0$ there corresponds a $\delta \in] 0,1[$ such that

$$
\begin{equation*}
\mathcal{G}(u) \geqslant-\|u\|^{2}\left(\frac{\epsilon}{2} c_{2}^{2}+\frac{2 a_{1} c_{p}^{p}}{\delta^{p}}\|u\|^{p-2}\right) \quad \forall u \in X \tag{56}
\end{equation*}
$$

with c_{2}, c_{p} given by (38). Write $X_{2}:=\operatorname{span}\left\{\phi_{1}, \ldots, \phi_{s}\right\}$ and $X_{1}:=X_{2}^{\perp}$, where the orthogonal complement is taken in X. One clearly has $X=X_{1} \oplus X_{2}, \operatorname{dim}\left(X_{1}\right)>0$, besides $0<\operatorname{dim}\left(X_{2}\right)<+\infty$. Moreover, if $u \in X_{2}$ then $u=\sum_{i=1}^{s} t_{i} \phi_{i}$ for some $t_{1}, \ldots, t_{s} \in \mathbb{R}$. A simple computation shows that

$$
\begin{equation*}
\|u\|^{2} \leqslant\left(\lambda_{s}-\alpha\right)\|u\|_{L^{2}(\Omega)}^{2}, \quad u \in X_{2} \tag{57}
\end{equation*}
$$

with $\lambda_{s}-\alpha \geqslant \lambda_{1}-\alpha>0$ because of (40). Thanks to $\left(\mathrm{K}_{\lambda}^{g}\right)$ and (41)-(43) we get

$$
f(u)=\Phi(u)=\frac{1}{2} \sum_{i=1}^{s} t_{i}^{2} \lambda_{i}+\lambda \mathcal{G}(u) \leqslant \frac{1}{2} \lambda_{s}\|u\|_{L^{2}(\Omega)}^{2}+\lambda \mathcal{G}(u)
$$

whenever $\|u\| \leqslant r_{\lambda, \mu}$. By (55), the above inequality, and (57), for every $\sigma>0$ there exists a $\rho \in] 0, r_{\lambda, \mu}[$ satisfying

$$
f(u) \leqslant\left[\frac{\lambda_{s}}{2}+\lambda \sigma\left(\lambda_{s}-\alpha\right)\right]\|u\|_{L^{2}(\Omega)}^{2} \quad \forall u \in \bar{B}_{\rho} \cap X_{2} .
$$

At this point, choose $\sigma>0$ so small that $\lambda_{s} / 2+\lambda \sigma\left(\lambda_{s}-\alpha\right)<0$, which is possible on account of (43). Bearing in mind (57) we have

$$
\begin{equation*}
f(u)<0 \quad \forall u \in \bar{B}_{\rho} \cap X_{2} \backslash\{0\} . \tag{58}
\end{equation*}
$$

Let us next prove that

$$
\begin{equation*}
\int_{\Omega}\left(|\nabla u(x)|^{2}+a(x) u(x)^{2}\right) d x \geqslant \theta\|u\|^{2} \quad \text { in } X_{1} \tag{59}
\end{equation*}
$$

for a suitable constant $\theta>0$. Indeed, if the assertion were false then there would exist a sequence $\left\{u_{n}\right\} \subseteq X_{1}$ enjoying the properties

$$
\begin{gather*}
\left\|u_{n}\right\|=1, \quad n \in \mathbb{N} \tag{60}\\
\int_{\Omega}\left(\left|\nabla u_{n}(x)\right|^{2}+a(x) u_{n}(x)^{2}\right) d x<\frac{1}{n} \quad \forall n \in \mathbb{N} . \tag{61}
\end{gather*}
$$

Passing to a subsequence when necessary, we may suppose $u_{n} \rightharpoonup u$ in X as well as $u_{n} \rightarrow u$ in $L^{2}(\Omega)$, with $u \in X_{1}$. Thus, letting $n \rightarrow+\infty$ in (61) yields

$$
\begin{equation*}
\int_{\Omega}\left(|\nabla u(x)|^{2}+a(x) u(x)^{2}\right) d x \leqslant 0 \tag{62}
\end{equation*}
$$

From $u \in X_{1}$ it follows $u=\sum_{i=s+1}^{+\infty} t_{i} \phi_{i}$, where $t_{i} \in \mathbb{R}, i \geqslant s+1$. Through (41)-(43) we obtain

$$
\begin{equation*}
\lambda_{s+1}\|u\|_{L^{2}(\Omega)}^{2} \leqslant \int_{\Omega}\left(|\nabla u(x)|^{2}+a(x) u(x)^{2}\right) d x \tag{63}
\end{equation*}
$$

Gathering (62) and (63) together leads to $u=0$. By (61) this forces $u_{n} \rightarrow 0$ in X, against (60). Combining (59) with (56) provides

$$
\begin{equation*}
f(u) \geqslant\|u\|^{2}\left[\frac{\theta}{2}-\lambda\left(\frac{\varepsilon}{2} c_{2}^{2}+\frac{2 a_{1} c_{p}^{p}}{\delta^{p}}\|u\|^{p-2}\right)\right] \tag{64}
\end{equation*}
$$

for all $u \in X_{1}$. Pick $\epsilon>0$ and $\left.r \in\right] 0, \rho[$ such that

$$
\frac{\theta}{2}-\lambda\left(\frac{\epsilon}{2} c_{2}^{2}+\frac{2 a_{1} c_{p}^{p}}{\delta^{p}} r^{p-2}\right)>0
$$

Then, thanks to (64) we have

$$
\begin{equation*}
f(u) \geqslant 0 \quad \forall u \in \bar{B}_{r} \cap X_{1} \tag{65}
\end{equation*}
$$

Finally, taking account of Remark 3.1, (58) and (65) immediately yield condition (f_{7}).
We are now in a position to apply Theorem 3.1. So, there exist at least two points $u_{1}, u_{2} \in X \backslash\{0\}$ such that

$$
\Phi^{0}\left(u_{i} ; v-u_{i}\right)+\psi(v)-\psi\left(u_{i}\right) \geqslant 0
$$

for all $v \in X, i=1,2$. The choice of ψ gives both $u_{i} \in K_{\lambda}$ and $\Phi^{0}\left(u_{i} ; v-u_{i}\right) \geqslant 0, v \in K_{\lambda}$, $i=1,2$, namely u_{1}, u_{2} turn out nontrivial solutions to problem $\left(\mathrm{P}_{\lambda}\right)$, which completes the proof.

Remark 4.1. Reading the above arguments we realize that the conclusion of Theorem 4.1 holds true as soon as

$$
\lambda>\max \left\{-\frac{\alpha}{\beta}, \frac{1}{2 \gamma c_{1}}\left\|u_{0}\right\|,-\frac{1}{2 \mathcal{G}\left(u_{0}\right)} \int_{\Omega}\left(\left|\nabla u_{0}(x)\right|^{2}+a(x) u_{0}(x)^{2}\right) d x\right\}
$$

where $\alpha:=\operatorname{essinf}_{x \in \Omega} a(x), \beta$ and γ are given by (45), c_{1} comes from (38) written for $p=1$, while $u_{0} \in X$ fulfils $\mathcal{G}\left(u_{0}\right)<0$.

References

[1] H. Amann, Nonlinear operators in ordered Banach spaces and some applications to nonlinear boundary value problems, in: Lecture Notes in Math., vol. 543, Springer, New York, 1976, pp. 1-55.
[2] G. Barletta, S.A. Marano, Some remarks on critical point theory for locally Lipschitz functions, Glasg. Math. J. 45 (2003) 131-141.
[3] K. Borsuk, Theory of Retracts, PWN, Warsaw, 1967.
[4] H. Brézis, Analyse Fonctionelle-Théorie et Applications, Masson, Paris, 1983.
[5] H. Brézis, L. Nirenberg, Remarks on finding critical points, Comm. Pure Appl. Math. 44 (1991) 939-963.
[6] K.-C. Chang, Variational methods for nondifferentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl. 80 (1981) 102-129.
[7] F.H. Clarke, Optimization and Nonsmooth Analysis, Classics Appl. Math., vol. 5, SIAM, Philadelphia, PA, 1990.
[8] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985.
[9] J. Dugundji, Topology, Allyn and Bacon, Boston, 1966.
[10] I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc. 1 (1979) 443-474.
[11] N. Ghoussoub, Duality and Perturbation Methods in Critical Point Theory, Cambridge Tracts in Math., vol. 107, Cambridge Univ. Press, Cambridge, 1993.
[12] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, second ed., Springer, Berlin, 1983.
[13] D. Kandilakis, N.C. Kourogenis, N.S. Papageorgiou, Two nontrivial critical points for nonsmooth functionals via local linking and applications, J. Global Optim., submitted for publication.
[14] R. Livrea, S.A. Marano, Existence and classification of critical points for nondifferentiable functions, Adv. Differential Equations 9 (2004) 961-978.
[15] S.J. Li, M. Willem, Applications of local linking to critical point theory, J. Math. Anal. Appl. 189 (1995) 6-32.
[16] S.A. Marano, D. Motreanu, A deformation theorem and some critical point results for nondifferentiable functions, Topol. Methods Nonlinear Anal. 22 (2003) 139-158.
[17] D. Motreanu, P.D. Panagiotopoulos, Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities, Nonconvex Optim. Appl., vol. 29, Kluwer Acad., Dordrecht, 1998.
[18] D. Motreanu, V. Radulescu, Variational and Non-variational Methods in Nonlinear Analysis and Boundary Value Problems, Nonconvex Optim. Appl., vol. 67, Kluwer Acad., Dordrecht, 2003.
[19] P.D. Panagiotopoulos, Hemivariational Inequalities. Applications in Mechanics and Engineering, Springer, Berlin, 1993.
[20] P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math., vol. 65, Amer. Math. Soc., Providence, RI, 1986.
[21] A. Szulkin, Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. Inst. H. Poincaré 3 (1986) 77-109.

[^0]: * Corresponding author.

 E-mail addresses: roberto.livrea@unirc.it (R. Livrea), marano@unirc.it, samarano@mail.gte.it (S.A. Marano), motreanu@univ-perp.fr (D. Motreanu).

 0022-0396/\$ - see front matter © 2005 Elsevier Inc. All rights reserved.
 doi:10.1016/j.jde.2005.11.001

