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Abstract
Background: Backtranslation is the process of decoding a sequence of amino acids into the
corresponding codons. All synthetic gene design systems include a backtranslation module. The
degeneracy of the genetic code makes backtranslation potentially ambiguous since most amino
acids are encoded by multiple codons. The common approach to overcome this difficulty is based
on imitation of codon usage within the target species.

Results: This paper describes EasyBack, a new parameter-free, fully-automated software for
backtranslation using Hidden Markov Models. EasyBack is not based on imitation of codon usage
within the target species, but instead uses a sequence-similarity criterion. The model is trained with
a set of proteins with known cDNA coding sequences, constructed from the input protein by
querying the NCBI databases with BLAST. Unlike existing software, the proposed method allows
the quality of prediction to be estimated. When tested on a group of proteins that show different
degrees of sequence conservation, EasyBack outperforms other published methods in terms of
precision.

Conclusion: The prediction quality of a protein backtranslation methis markedly increased by
replacing the criterion of most used codon in the same species with a Hidden Markov Model
trained with a set of most similar sequences from all species. Moreover, the proposed method
allows the quality of prediction to be estimated probabilistically.

Background
In natural systems, proteins are synthesized using tem-
plate mRNA derived from molecules transcribed from the
encoding genes. Backtranslation (reverse translation)
reverses the normal flow of information, exploiting the
primary structure of a protein to deduce the nucleotide
sequence of the encoding mRNA. Backtranslation tools

are basic to the construction of synthetic DNA segments
(gene design systems) [1]. Such systems use suitable mod-
ules to optimize backtranslated segments to be used for
expression by a host organism, or to be changed com-
pletely to accommodate various constraints [2-4].
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The degeneracy of the genetic code makes backtranslation
potentially ambiguous since most amino acids are
encoded by multiple codons. Extensive studies have been
conducted on synonymous codon usage in different spe-
cies and its influence in biological processes such as struc-
ture prediction [5-9].

The approach to backtranslation common to all commer-
cial and non-commercial software (BBOCUS [10], BACK-
TRANSEQ of the EMBOSS software suite [11]) is based on
imitation of codon usage within the target species. For
some of these methods, expert supervision is required to
construct the codon usage tables. Several methods are
based on the hypothesis that specific genomic contexts
may influence codon usage (TIP [12,13], LBT [14]). The
genetic algorithm TIP uses a set of "coding statistics",
whereas LBT exploits Multiple Sequence Alignment
(MSA) of the class of proteins under analysis. Both soft-
ware packages give high-precision results. However, their
users must set a number of parameters if the results are to
be reliable.

In this paper, a parameter-free and fully-automated soft-
ware called EasyBack is proposed. Given an amino acid
sequence as input, EasyBack tries to reconstruct the codon
usage of the gene under analysis using a Hidden Markov
Model (HMM) [15]. The model is trained with an "input-
driven" training set. This set of proteins is constructed
from the input protein by querying the NCBI [16] data-
bases with BLAST. The training set will be the "smallest"
subset of the query output needed for HMM to make a
prediction. The prediction is made by classical Viterbi or
posterior decoding algorithms [15]. Prediction quality
can be estimated by analyzing the posterior and forward
probabilities. Experiments on eukaryotic and prokaryotic
proteins showing different degrees of conservation dem-
onstrate that EasyBack outperforms TIP and BACK-
TRANSEQ in terms of precision (i.e. number of codons
properly decoded). Consequently, sequence similarity
applied to all species yields better results than imitation of
codon usage within the target species.

Implementation
EasyBack is an Open-Source backtranlsation tool imple-
mented as a Java application. The Java package JFreeChart
[17] has been used to depict graphs (see Figure 1 and Fig-
ure 2 for EasyBack application interface). EasyBack system
is based on a Hidden Markov Model (briefly described
below).

Hidden Markov Models overview
A Hidden Markov Model (HMM) is composed of:

1. A set S = {S1, S2,…,SN} of hidden states. The state at
time t is denoted by qt;

2. A set V = {V1, V2,…,VM} of observation symbols;

3. A state transition probability distribution A, repre-
sented as an N × N matrix where the generic element is aij

= P[qt+1 = Sj|qt = Si], the probability that Sj is the state at

time t + 1 if Si is the state at a previous time t. Notice that

aij ≥ 0 and ;

4. An observation symbol probability distribution B, rep-
resented as an N × M matrix where the generic element is
bj(k) = P[Vk at t|qt = Sj], the probability that Vk is observed
at time t in the hidden state Sj;

5. An initial state distribution π represented as a vector of
which the generic element is πi = P[q1 = Si], probability
that the initial state is Si.

Given a HMM, λ = (A, B, π), three basic problems arise in
real applications (see [15,18] for details).

1. Given an observation sequence O = O1 O2…OT (where
each Ot is a symbol in V), compute the most likely corre-
sponding hidden state sequence Q = q1q2…qT. In this
paper we deal with this problem. It can be solved by a clas-
sical Viterbi algorithm or a posterior decoding technique
based on a forward-backword algorithm. Both methods
are used to make prediction.

2. Given an observation sequence O = O1 O2…OT, com-
pute the probability P(O|λ) of the observation O in the
model λ. Together with the posterior probability, this will
be used to determine the reliability of back translation.

3. Given an observation sequence O = O1 O2…OT, tune
the model's parameters in order to maximize P(O|λ).

EasyBack
Let q be an input sequence with unknown backtransla-
tion, and let T be the training set of sequences. The set of
states of the HMM will be S = {s1, s2,…,s64} of all possible
codons. A transition from state si to state sj corresponds to
a pair of consecutive amino acids coded by si and sj,
respectively. The alphabet of the HMM comprises the 20
amino acids. The transition probability of two codons si
and sj is the number of occurrences of the pair of consecu-
tive codons "sisj" in the training set divided by the number
of occurrences of si not followed by a stop codon. The
probability that a codon si generates an amino acid a
(emission probability) is the number of times a is
decoded by si in the training set divided by the number of
occurrences of a in such a set. Since stop codons do not
encode an amino acid, then their emission probability is
zero.

aijj
N ==∑ 1

1
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Three different ways to apply EasyBack have been consid-
ered: simple (using the simple BLAST-similarity strategy),
binary (trying to reduce the training set size), reliable
(using forward and posterior probability diagrams to opti-
mize prediction quality).

EasyBack uses a protein sequence to deduce cDNA (nucle-
otide) sequences from NCBI database. In the simple strat-
egy, given a query q, a BLAST query to NCBI is performed
with input q. Let T be the output of the query. The model
is trained with T and eventually a prediction is returned
(see Figure 3 for the pseudo-code and Figure 1 for the
application interface).

In the binary strategy, the model is trained with the small-
est set needed to make a prediction. More precisely, a
BLAST query is submitted to NCBI with input q and the
best 100 distinct matches are selected. Let T1 be such a set
of sequences. If the HMM fails to make a prediction with
training set T1 then add to T1 the next best 100 (the choice
of 100 matches was sufficient to make a prediction in all
experimental groups of proteins, chosen with variable
degree of conservation) matches, and so on until a predic-
tion can be made. The failure condition is that for a given
amino acid in the input sequence, the corresponding
entry in the transition probability matrix is undefined.

Otherwise, if the HMM is able to make a prediction with
T1, then repeat the process using the best |T1|/2 matches.

EasyBack main application interfaceFigure 1
EasyBack main application interface.
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EasyBack interface (probabilities graphs)Figure 2
EasyBack interface (probabilities graphs). EasyBack computes a forward and posterior probabilities plots. Forward prob-
ability function can suggest the smallest size of the training set needed for a reliable prediction. Oscillation of the posterior 
probability indicates that a low percentage of amino acids has been correctly decoded.
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Let T2 be such a set. If the HMM fails with T2 then amend
T2 to be the best (|T1| + |T2|)/2 matches. If T2 succeeds

then amend it to the best |T2|/2 matches. This binary
search process stops in O(log(|T1|) producing the final
HMM prediction, which is the approximate backtransla-
tion of the input q (see Figure 4 for the pseudo-code and
Figure 1 for the application interface).

In the reliable strategy, a probabilistic estimation of predic-
tion quality is made. Given a query q, a BLAST query to
NCBI is performed with input q. Let T be the output of the
query. The model is trained |T| times, starting with a train-
ing set that contains only the first element of T and adding
the next element of T iteratively. A prediction is made for
each iteration and the forward and posterior probabilities
are computed. The graphs of these probabilities are ana-
lyzed and the most reliable prediction is selected (see Fig-
ure 5 for the pseudo-code and Figure 1 and Figure 2 for the
application interface). More precisely, the forward proba-
bility function can suggest the smallest size of the training
set needed for a reliable prediction. Finally, unusual oscil-
lation of the posterior probability indicates that a low per-
centage of amino acids has been correctly decoded.

Results and Discussion
Approach
EasyBack is a backtranslation tool based on a Hidden
Markov Model trained with an "input-driven" training set.
A HMM (for more details see [15]) describes a system
comprising N different hidden states with transition prob-

Core EasyBack algorithmFigure 3
Core EasyBack algorithm. Description of EasyBack algo-
rithm.

Let M be a HMM model
Let q be a sequence to be backtranslated

EASY BACK(M ,q, ORGANISM)
//biggest possible training set creation

1 T ←− BLAST(q,ORGANISM);
2 return EASY BACK CORE(M ,q, T )
3 END EASY BACK.

EASY BACK CORE(M ,q, T )
// train the HMM model M using the training set T

1 TRAIN(M ,T );
// make a back translation of q using M
// by using Viterbi or Posterior decoding

2 qback ←− PREDICT(M ,q);
3 if (qback = φ) then

// prediction failed
4 return φ;
5 else
6 return qback;
7 END EASY BACK CORE.

Binary EasyBack algorithmFigure 4
Binary EasyBack algorithm. Description of EasyBack algorithm with the smallest training set needed for the model to make 
a prediction.

Let M be a HMM model
Let q be a sequence to be backtranslated

EASY BACK BINARY(M ,q,ORGANISM)
1 T1 ←− ∅;

//biggest possible training set creation
2 T ←− BLAST(q,ORGANISM);
3 size ←− 0;

// repeat until a backtranslation is obtained
// or all suitable subsets of T have been used as training set

4 do
// set the size of the training set

5 size ←− min(size + 100, |T |);
// get the first size elements in the set T

6 T1 ←− GET(T, size);
7 qback ←− EASY BACK CORE(M ,q,T1);
8 while(qback = φ AND size < |T |);
9 if (qback = φ) then

// prediction failed
10 return φ;

// in the case that a backtranslation has been found
// a binary search strategy is used to find the minimum
// suitable training set

11 l←− 1;
12 u←− |T1|;
13 currentSolution←− qback;
14 T2 ←− ∅;
15 while (l + 1 < u) do
16 step ←− �u−l+1

2 �;
17 size ←− l + step;
18 T2 ←− GET(T1, size);
19 qback ←− EASY BACK CORE(M ,q,T2);
20 if (qback = φ) then
21 l ←− size;
22 size ←− size + step;
23 else
24 currentSolution ←− qback;
25 u ←− size;
26 end if
27 end while
28 return currentSolution;
29 END EASY BACK BINARY.
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abilities associated with each pair of states. The states gen-
erate observable symbols with probabilities computed
from a training set. Given a series of observable symbols,
the HMM can decode the most probable corresponding
sequence of hidden states. In the proposed model, the
hidden states are all possible codons and the observable
symbols are the amino acids decoded by them. The tran-
sition probability of two codons si and sj is the number of
occurrences of the pair of consecutive codons sisj in the
training set divided by the number of the occurrences of si
not followed by a stop codon. The probability that a
codon si generates an amino acid a, the emission probabil-
ity, is the number of times a is decoded by si in the training
set divided by the number of occurrences of a in such a set.
The training set is constructed by applying a criterion of
similarity between the input protein sequence q to be
backtranslated and sequences in the NCBI database. More
precisely, a BLAST query is submitted to NCBI with input
q and the "smallest" subset of the query output that ena-
bles HMM to make a prediction is chosen as the training

set. Therefore, the size of the training set is related to the
number of non-zero values contained in the matrix of
transition probabilities. More precisely, when the system
fails to make a prediction, this means that at least one nec-
essary transition probability value in the matrix is zero. In
this case the training set must be enlarged with more
sequences. The backtranslation of q is obtained by apply-
ing either the Viterbi or the Forward-Backward algorithm
to the model (posterior decoding) [15]. One useful aspect
of HMM is the ability to choose several strategies for pos-
terior estimation of the reliability of a prediction (e.g. see
[19] for multiple sequence alignment). The forward prob-
ability function can suggest the size of the smallest train-
ing-set needed for reliable prediction. The higher this
probability, the better the prediction obtained from the
training set. Furthermore, analysis of the posterior proba-
bility allows the quality of prediction to be established.
More precisely, if the probability oscillates unusually as a
function of the training set size, then a low percentage of
amino acids has been correctly decoded.

Reliable EasyBack algorithmFigure 5
Reliable EasyBack algorithm. Description of EasyBack algorithm in which forward and posterior probabilities are stored 
and analyzed to determine the most reliable backtranslation.

Let M be a HMM model
Let q be a sequence to be backtranslated

RELIABLE EASY BACK(M ,q,ORGANISM)
1 T1 ←− ∅;

//biggest possible training set creation
2 T ←− BLAST(q,ORGANISM);
3 size ←− 0;

// repeat |T | times
4 do

// set the size of the training set
5 size ←− size + 1;

// get the first size elements in the set T
6 T1 ←− GET(T, size);
7 qback[size] ←− EASY BACK CORE(M ,q,T1);
8 F [size] ←− COMPUTE FORWARD PROB(M ,q);
9 P [size] ←− COMPUTE POSTERIOR PROB(M ,q);

10 while(size < |T |);
// this is a supervised step performed by the user

11 qbest
back ←− analyze the functions F and P to get the most reliable prediction qback;

12 return qbest
back;

13 END RELIABLE EASY BACK.
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EasyBack Performace Analysis on FGA, TYR, MYH9 and HIST4H4Figure 6
EasyBack Performace Analysis on FGA, TYR, MYH9 and HIST4H4. Left column: EasyBack prediction performance 
(percentage of amino acids correctly decoded). Input proteins are: FGA (fibrinopeptide), TYR (tyrosinase), MYH9 (myosin), 
HIST4H4 (histone H4). Right column: forward probability. The quality of prediction using BLAST All-Species training sets is 
higher than both Random Species-Specific (sequences belonging to the same organism) and BLAST Invertebrates (distant organ-
isms). The forward probability can be used to estimate the best training set size. In almost all cases a high forward probability 
corresponds to a high quality backtranslation.
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EasyBack Performace Analysis on HBA2, HBB and SOD2Figure 7
EasyBack Performace Analysis on HBA2, HBB and SOD2. Left column: EasyBack prediction performance (percentage 
of amino acids correctly decoded). Right column: forward probability. (See caption of Figure 6). Input proteins are: HBA2 
(alpha globin), HBB (beta globin), and SOD2.
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EasyBack Performace Analysis on YWHAE, YWHAG and TBPFigure 8
EasyBack Performace Analysis on YWHAE, YWHAG and TBP. Left column: EasyBack prediction performance (per-
centage of amino acids correctly decoded). Right column: forward probability. (See caption of Figure 6). Input proteins are: 
YWHAE (NP_036611.2), YWHAG (NP_006752.1), and TBP.
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EasyBack Performace Analysis on NP_438418.1, RPL36A and RPS6KA1Figure 9
EasyBack Performace Analysis on NP_438418.1, RPL36A and RPS6KA1. Left column: EasyBack prediction perform-
ance (percentage of amino acids correctly decoded). Right column: forward probability. The quality of prediction using BLAST 
All-Species training sets is higher than both Random Species-Specific (sequences belonging to the same organism) and BLAST Inver-
tebrates for RPL36A and RPS6KA1 and BLAST Eukaryotes for NP_438418.1 (distant organisms). The forward probability can be 
used to estimate the best training set size. In almost all cases a high forward probability corresponds to a high quality back-
translation. Input proteins are: NP_438418.1 (from Haemophilus influenzae species), RPL36A (ribosomal protein L36a), 
RPS6KA1 (ribosomal protein S6 kinase, 90 kDa).
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EasyBack posterior probabilitiesFigure 10
EasyBack posterior probabilities. The oscillating behavior of the posterior probability of histone H4 corresponds empiri-
cally to the low quality of its backtranslation (see the graph reporting the correctly decoded codon percentage of HIST4H4 in 
Figure 6).
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EasyBack posterior probabilitiesFigure 11
EasyBack posterior probabilities. In these cases non-oscillating behavior is reported. This is associated with high quality 
backtranslation (see graphs reporting their correctly decoded codon percentages in Figure 7, Figure 8 and Figure 9).
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Test sets
To assess the efficiency of the proposed method, a set of
Homo sapiens and prokaryotic proteins with various
degrees of primary structure conservation was backtrans-
lated (the conservation degree of the experimental set of
proteins was obtained by calculating the proportion of
amino acid sites at which the two sequences under study
were identical [20]):

• Proteins present in all eukaryotes: histone H4
(HIST4H4) (97.7%), SOD2 [21] (67.1%), NP_006752.1
(YWHAG), and NP_036611.2 (YWHAE).

• Proteins present in all metazoa: TBP (81%), fibrinopep-
tide (FGA) (60.9%), and myosin (MYH9) (59.7%).

• Proteins present only in vertebrates: tyrosinase (TYR)
(73.9%), alpha globin (HBA2) (65.2%), and beta globin
(HBB) (62.5%).

• Proteins present in prokaryotes: NP_438418.1 (Haemo-
philus influenzae).

• Ribosomal proteins: ribosomal protein L36a (RPL36A),
ribosomal protein S6 kinase, 90 kDa (RPS6KA1).

EasyBack was trained with three different kinds of training
sets:

• BLAST All-Species. This training set was obtained by que-
rying the NCBI all-species database with the input
sequence, using BLAST;

• Random Species-Specific. This training set was obtained by
randomly choosing sequences that belong to species
expressing the input protein;

EasyBack Performace Analysis on SPCC16C4.18cFigure 12
EasyBack Performace Analysis on SPCC16C4.18c. SPCC16C4.18c shows oscillating posterior probabilities correspond-
ing to low quality decoding.
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• BLAST Invertebrates: for Homo sapiens proteins, the train-
ing set was obtained by querying the NCBI invertebrates
database with the input sequence, using BLAST;

• BLAST Eukaryote: for prokaryotic proteins, the training
set was obtained by querying the NCBI eukaryote data-
base with the input sequence, using BLAST.

Since biological sequence databases are notorious for hav-
ing multiple copies of sequence fragments in different
entries, homologous found with BLAST that contained
portions of the sequence under test were carefully manu-
ally eliminated to make the testing process fair. On the
other hand this manual filtering is not necessary for an
unknown input amino acid sequence. This was the reason
for not considering BLAST Species-Specific training sets
(insufficient numbers of sequences were returned). BLAST
Species-Specific training set was obtained by querying with
the input sequence, using BLAST, the sequences of NCBI
database belonging to species of the input protein.

The results show that EasyBack clearly performs better, in
terms of percentage of correctly decoded codons, when
trained with BLAST All-Species (see left column of Figures
6, 7, 8, 9). However, the prediction quality is degraded if
sequences belonging to a distantly-related organism are
chosen as training set (e.g. Homo sapiens SOD2 on Inver-

tebrates data set, Bacteria NP_438418.1 on Eukaryotes).
Moreover, HMM trained only with sequences from organ-
isms other than the one from which the sequence under
test was obtained showed no decrease in prediction qual-
ity (these experiments are not reported here since the per-
formance was very close to that with BLAST All-Species).

The results summarized in the right column of Figure 6
and in Figure 7, 8, 9 show that, for all cases except
HISTH4, the most reliable prediction is obtained using
the training set with the highest forward probability.
Moreover, the quality of the prediction can be estimated
by analyzing posterior probability. The unusual oscilla-
tion of posterior probability in Figure 10 and 11 for His-
ton H4 and Figure 12 for SPCC16C4.18c from
Schizosaccharomyces pombe indicates that only a low
percentage of the amino acids were correctly decoded.

Despite experiments show that similarity is more relevant
than species specificity, a reliable prediction depends on
how the training set is "biologically related" to the input
sequence. Acquiring knowledge able to correlate the qual-
ity of prediction to the composition of the training set is a
hard problem and will be subject of future research. For
example, prediction quality for RPL36A was significantly
higher than Hist4H4. On the other hand for both proteins
prediction quality did not decrease by augmenting the

Table 1: Comparison of existing backtranslation tools.

Training Set Learning Method Unsupervised

BBOCUS [10] Species specific Clustering and codon frequencies No
EasyBack Any HMM Yes

BACKTRANSEQ [11] Species specific Codon frequencies Yes
LBT [14] Any Alignment and local codon 

frequencies
Yes

TIP [12] Any Genetic algorithm and statistics Yes

Table 2: Comparisons of EasyBack with TIP and BACKTRANSEQ based on percentages of amino acids correctly decoded.

Test ID EasyBack-FB EasyBack-Vit TIP BACKTRANSEQ

YWHAG 0.64 0.66 0.53 0.66
YWHAE 0.53 0.55 0.37 0.38
HIST4H4 0.57 0.55 0.46 0.48

TBP 0.68 0.68 0.43 0.44
SOD2 0.72 0.70 0.44 0.49
MYH9 0.59 0.58 0.45 0.53
TYR 0.75 0.76 0.45 0.39

HBA2 0.82 0.83 0.70 0.75
HBB 0.84 0.84 0.63 0.59
FGA 0.57 0.54 0.35 0.39

RPL36A 0.92 0.92 0.52 0.51
RPS6KA1 0.66 0.65 0.42 0.59

NP_438418.1 0.49 0.47 0.05 0.18

Easyback and TIP were tested using BLAST All-Species training sets. BACKTRANSEQ used Species-Specific training sets. For all systems, each training 
set comprised 100 sequences. EasyBack-FB and EasyBack-Vit denote Forward-Backward and Viterbi, respectively. See Figure 13.
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training set. The mathematical explanation of this phe-
nomenon can by expressed in terms of a better agrement
in RPL36A vs Hist4H4 in the Markovian codon transition/
emission probabilities among the elements in the training
set. In any case EasyBack is able to estimate prediction
quality and optimal training set size by forward and pos-
terior probability computation respectively.

Comparisons
EasyBack was successfully compared with TIP [12] and
BACKTRANSEQ [11] (see Table 1 for details). In all the
experiments described below, the same training sets
obtained using BLAST All-Species criteria for EasyBack and
TIP were used. In contrast BACKTRANSEQ was designed
to be used only with Species-Specific training sets (each
amino acid is decoded by the most frequent coding codon
in the species). In the first comparison (Figure 13, Table 2)
a training set of a fixed size (100 sequences) was used. In
the second comparison (Figure 14, Table 3), the binary
strategy procedure described in the Methods section was
applied to generate the "smallest" training set needed for
prediction. EasyBack, TIP and BACKTRANSEQ were also

compared using species-specific training sets. For TIP and
EasyBack, the training sets were chosen randomly; for
BACKTRANSEQ, the most frequent codon criterion was
used. The results show that species-specific training sets
give lower-quality predictions. Once again, EasyBack out-
performed TIP and BACKTRANSEQ. Moreover, a statisti-
cal analysis was performed to support the quality of
EasyBack predictions. Table 4 contains Friedman Rank
test for all pairwise comparisons of EasyBack, TIP and
BACKTRANSEQ. Moreover, a statistical analysis was per-
formed to support the quality of EasyBack predictions.
Table 4 contains Friedman rank test for all pairwise com-
parisons of EasyBack, TIP and BACKTRANSEQ.

Conclusion
In this paper, a backtranslation tool using a Hidden
Markov Model, trained with a set of sequences most sim-
ilar to the input, has been shown to outperform other
published methods. All-species similarity gives better
results than species-specific similarity. Furthermore, the
proposed system is parameter-free and fully automated

Table 3: Comparisons of EasyBack with TIP and BACKTRANSEQ based on the percentages of amino acids correctly decoded.

Test ID EasyBack-FB EasyBack-Vit TIP BACKTRANSEQ

YWHAG 0.77 0.77 0.58 0.66
YWHAE 0.98 0.98 0.51 0.38
HIST4H4 0.44 0.44 0.45 0.48

TBP 0.73 0.73 0.43 0.44
SOD2 0.82 0.83 0.49 0.49
MYH9 0.81 0.80 0.49 0.53
TYR 0.82 0.81 0.46 0.39

HBA2 0.89 0.88 0.63 0.75
HBB 0.86 0.86 0.59 0.59
FGA 0.86 0.86 0.47 0.39

RPL36A 0.83 0.83 0.51 0.51
RPS6KA1 0.71 0.71 0.5 0.59

NP_438418.1 0.47 0.46 0.05 0.18

The training set is the minimal subset of the query output sufficient to make a prediction obtained by a binary search strategy. EasyBack-FB and 
EasyBack-Vit denote Forward-Backward and Viterbi, respectively. See Figure 14.

Table 4: Significance test for differences in experiments reported in Figures 13 and 14.

EasyBack-FB EasyBack-Vit TIP BACKTRANSEQ

EasyBack-FB - -(0.57) +0.0003 +0.0023
EasyBack-Vit -(0.29) - +0.0003 +0.0008

TIP -0.0023 -0.0023 - -(0.05)
BACKTRANSEQ -0.0023 -0.0023 +(0.4) -

Entries show the p-values indicating the significance of comparisons between two backtranslation methods using the Friedman rank test. Entries 
above the diagonal refer to experiments in Figure 13. Entries below the diagonal refer to experiments in Figure 14. The (+) method on the left had 
lower average rank (better performance); the (-) method had higher average rank (worse performance); parentheses denote non-significant p-
values > 0.05.
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and allows the quality of prediction to be estimated (that
is a clear advantage of the proposed method).

The results demonstrate that the performance of Easy-
Back, in terms of the percentage of amino acids correctly
decoded, is considerably better than compared systems.

Availability and requirements
• Project name: EasyBack

• Project home page: http://alpha.dmi.unict.it/~ctnyu/
easyback.html

• Operating system(s): e.g. Platform independent

• Programming language: Java

• Other requirements: Java 1.5.0_05 or higher

• License: Free for academic and commercial users under
the GNU Lesser General Public License (LGPL)
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lyzed, implemented and tested the proposed algorithm.
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EasyBack vs TIP and BACKTRANSEQFigure 13
EasyBack vs TIP and BACKTRANSEQ. Performance of EasyBack compared with TIP and BACK-TRANSEQ based on 
percentages of amino acids correctly decoded. Easyback and TIP were tested using BLAST All-Species training sets. BACK-
TRANSEQ used Species-Specific training sets. For all systems each training set comprised 100 sequences. Classical Viterbi algo-
rithm (EasyBack-Vit) and a posterior decoding technique based on a forward-backword algorithm (EasyBack-FB) were used to 
make predition.
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