IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Dynamics of a qubit coupled to a broadened harmonic mode at finite detuning

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2007 New J. Phys. 9 316
(http://iopscience.iop.org/1367-2630/9/9/316)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 151.97.12.203
The article was downloaded on 13/01/2012 at 17:46

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/9/9
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

New Journal of Physics

The open-access journal for physics

Dynamics of a qubit coupled to a broadened
harmonic mode at finite detuning

F Nesil, M Grifoni 1 and E Paladino 2

LInstitut fur Theoretische Physik, Universitat Regensburg, 93035 Regensburg,
Germany

2MATIS INFM-CNR and Dipartimento di Metodologie Fisiche e Chimiche,
Universita di Catania, 95125 Catania, Italy

E-mail: milena.grifoni@physik.uni-regensburg.de

New Journal of Physics 9 (2007) 316
Received 24 June 2007
Published 10 September 2007
Online athttp://www.njp.org/
doi:10.1088/1367-2630/9/9/316

Abstract. We study the dynamics of a symmetric two-level system strongly
coupled to a broadened harmonic mode. Upon mapping the problem on to a
spin—boson model with peaked spectral density, we show how analytic solutions
can be obtained, at arbitrary detuning and finite temperatures, in the case of large
Q-factors of the oscillator. One, two or more dominating oscillation frequencies
of the two-level particle can be observed as a consequence of the entanglement
with the oscillator. Our approximated analytical solution agrees well with
numerical predictions obtained within the non-interacting blip approximation.
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1. Introduction

A prominent physical model to study dissipative and decoherence effects in quantum mechanics
is the spin—boson model]H[3]. Currently, we are witnessing its revival since it allows a
guantitative description of solid-state quantum bits (qubi$) A more realistic description
requires the inclusion of external control fields as well as of a detector. In the spin—boson model,
the environment is characterized by a spectral der@Giwy). If the environment is formed by

a quantum detector which itself is damped by Ohmic fluctuations, the form of the spectral
density can become nontrivial, as it also reflects internal resonances of the detector. An example
is provided by a flux-qubit read out by a dc-SQUID (superconducting quantum interference
device) b]-[7] which gives rise to an effective spectral dend@y;(w) for the qubit with a

peak at the dc-SQUID plasma frequerfey[8, 9] of width I", cf equation 2) below. As shown

in [10] under general grounds, such a spin—boson Hamiltonian can be exactly mapped on to that
of a two-state-system (TSS) coupled to a single harmonic oscillator (HO) mode of frequency
Q with coupling strengthg. The HO itself interacts with a set of harmonic oscillators with
spectral density of the continuous bath mo@kgm(w) = kw. The mapping between the two
models is completed with' = 27« Q anda = lim,_¢Gefr(w) /2w = 8k g?/ Q2. Thus, besides

the case of a damped dc-SQUID inductively coupled to a flux qubit, the spin—boson model
with peaked spectral densit@.+ can describe the generic situation of a two-level-particle
coupled to a damped harmonic mode. This is realized e.g. in atom-based cavity quantum
electrodynamics][1], circuit quantum electrodynamics with superconducting systé#slfj],
semiconducting quantum dots in nanocaviti&4] and in nanomechanical resonatoi$][ In
particular, in the seminal experimerit? the vacuum Rabi splitting was demonstrated in a
Cooper-pair-box resonantly coupled to a cavity mode (i.es f&r g, where the detuningis the
difference between the HO frequer@yand the TSS transition frequency). Recently, in the same
system Schustest al [13] demonstrated, in the dispersive regite g, the so-called ‘number
splitting’, i.e. the qubit dephasing spectrum was used to probe the photon number distribution.
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From the theoretical point of view, a large amount of literature exists, in which a coupled
TSS-HO is considered as the central quantum system, and the effects of the Ohmic bath are
treated perturbatively. However, in these works one usually does not solve the original coupled
TSS—-HO Hamiltonian, but rather approximated forms to it expected to be valid e.g. in the
resonant regime’(« g) [11, 16], or in the dispersive regime (large detunihg> g) [17]-[21].
Specifically, for the case e.g. of circuit QED (at the charge degeneracy point), a rotating wave
approximation (RWA) expected to be valid for small detuning yields the Jaynes—Cummings
Hamiltonian R2]. On the other hand, in the dispersive regime neglecting terms of 6fdgf
yields the quantum version of the ac-Stark Hamiltonib®) L 7]. Recently, exact real-time path-
integral calculations have been perform&d][ based on the numerical QUAPI (quasiadiabatic
propagator path-integral) method, covering the resonant, as well as the dispersive regime, and
testing the reliability of the RWA in the resonant regime. The case of a (damped) TSS-HO
dynamics was treated beyond the RWA 24[25], upon truncation of the number of relevant
states of the central TSS—HO system.

An alternative, equivalent, point of view, is the spin—boson model with peaked spectrum.
The advantage of this approach is that the reduced density matrix has rank 2. Moreover, no
RWA approximations are required to reduce the problem to simpler effective Hamiltonians.
The peculiar feature of the peaked spectrinig reflected in the form of the bath correlation
functions, cf @@ and @b) below. Until now, the effects of such a structured spectral density
on the decoherence properties of a qubit have been studi@®]#{28] within a perturbative
approach inGgg. It was shown in 23] that such a perturbative scheme breaks down for
strong qubit-detector coupling > I', and when the qubit and detector frequencies are
comparable. Hence, nonperturbative schemes, aateitio QUAPI [23], the non-interacting
blip approximation (NIBA) R§], the flow-equation method2B, 29| or a generalized polaron
transformation 30] have been used. However, a closed form analytic expression for the qubit
population has not been provided so far.

In this work, we show how to investigate the dynamics of a spin—boson system with a
structured environment, in the case of a strong coupling between qubit and oscillator and for
small detector—bath coupling strength=I' /27 Q2 < 1, corresponding to large quality factors
of the oscillator. We evaluate the dynamics upon starting from the (nonperturba®yg)inon-
interacting blip approximation (NIBA)], 2]. Analytical results, valid also arbitrary detuning,
are obtained by approximating the NIBA kernels up to first-order in the detector—bath coupling
strengthx. It is shown that the coupling to the damped oscillator yields the possibility of a
multiple-peaks structure of the TSS spectrum. The position and height of the peaks depend in a
nontrivial way on the temperature, as well as on the TSS coupling strgndsthparticular, in
the regimd” « g <« Q2 andkg T < h2 only two oscillation frequencies dominate the spectrum.
Notice that this result encompasses the coherent splitting also obtained in the Jaynes—Cumming
approximation, as well as the number splitting effect discussed for the dispersive regime
[13, 21], as our theory holds true for arbitrary detuning as long aQHactor of the oscillator
is large.

The paper is organized as follows: in the next section, we will introduce the model. Then
in section3, we discuss the well-known and widely used NIBA and its predictions. Analytical
results for the dynamics are derived in seclo®onclusions are drawn in sectién
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2. The model

Let us consider the spin—boson Hamiltonian describing the interaction of a symmetric TSS with
a structured environment. It reads P]

ha 1 . e
Hss(t) = ——-ox+ 5oz > kb +b) +> " haybby. (1)
k k

whereo; are Pauli matrices anblA is the tunnel splitting. Moreovely is the annihilation
operator of théth bath mode with frequenay . In the spin—boson model, the influence of the
environment is fully characterized by a so-called spectral function, which we assume to be of
the form

20002*

(@ =22+ (Tw)?

Ge(@) = ) Ad(w — ) = 2
k
It has a Lorentzian peak of widih at the characteristic frequen&y, and behaves ohmically at
low frequencies with the dimensionless coupling strergthlim,, . oGer(w) /2w. Specifically,
in the spin—boson model, the environmental effects are captured in the so-called bath correlation
function

Q) =Q () +iQ"(v) :/ da)Geﬁgw) [coth(h%ﬁ>(1— coswt) +isinwt] , (3)
0 w
which for the effective spectral densit§)(takes the form7]
Q'(v) =Xt +L (67?7 cosQr — 1) + Ze" /27 SinQT + Q}e(T), (4a)
Q'(v) =mwa —e @ o (N sinQr +cosQr). (4b)

The quantity Q =,/Q2— (I'2/4) corresponds in the underdamped regifie< Q to a
renormalized oscillator frequency of the oscillator, while in the overdamped Case&?
describes an exponential decay. The temperature dependent prefactors are
2o
X=—", 5
= (5)
T 1
~ I'Qcosh(8hQ) — cos(B(hT"/2))

2
K% _ s‘zZ) sinh(8h<) +T'% Sin(ﬁ(hF/Z))] . ®

2

[—FQ sinh(BhQ) + (% — s‘zz> sin(ﬂ(hr/z))] , (D

_me !
"~ I'Qcosh(BhQ) — cos(B(hI'/2))

and N = Z5(I'2/4—Q?). Finally, Q),,«(t) is a function of Matsubara frequencies =
(27 /hB)n, and it has the form

Qf & 1 e —1
Qlyae(T) = —47104% > [ ] . (8)

pr (Q2+v2)2 -T2 Vn

For temperature&sT > (hI'/27), contributions coming from the Matsubara term can be
neglected 73, as done in the rest of this work. We notice that since we are interested in the

3 In the low temperature regimeT < (hI'/2r) the bath-correlation function decays on a timescale set by the
first Matsubara frequenay;.
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large Q-factors limit, i.e.I'/27 Q2 « 1, this constraint still allows investigation of the high
temperature regimis T > hQ2, as well as the low temperature regiim@ > kg T > hI'/2 7.

The qubit dynamics is described by the reduced density opesétpobtained by tracing
out the environmental degrees of freedom. We investigate the population diffelPétice=
(o)1 = Tr{p(t)o,}. Such a dynamical quanti®y(t) obeys the exact generalized master equation
(GME) [2]

t
F’(t):—/dt’K(t—t’)P(t/) t>0, (9)
0

with the kernelsK (t) being a series expression in the number of tunneling transitions. Since
equation 9) involves only convolutions, it can be solved by using Laplace transforms. The
GME yields as

P() = KO

where the same symboli¥(1) andK (1) for the Laplace transform d®(t) andK () have been
used, respectively. From equatidl(), it follows that in order to obtairP(t) one has to solve
the pole equation

A+ K A = 0, (11)

and then inverse transform to the time space. Due to the intricate form of the exactikérnel
(or K(4)), equations9) or (10) cannot be solved neither numerically nor analytically. We must
therefore invoke some approximations. For the symmetric spin—boson nmigdelg so-called
NIBA discussed in the next section is expected to yield reliable results ovesibleregime of
parameters.

(10)

3. Non-interacting blip approximation (NIBA)

Within the NIBA [1, 2], of the exact series expression fid(1), only the first term of second-

order in the tunneling frequency is retained. This amounts to neglecting bath-induced inter-
blip correlations, where the ‘blips’ denote time intervals spent in off-diagonal states of the TSS
reduced density matrixl]. This approximation has been commonly used over the whole range
of temperatures and coupling strength to describe the dynamics of a symmetric spin—boson
system. In the symmetric case in fact, terms linear in the (weak) inter-blip correlations®vanish

In the NIBA, the kernel has the very simple form

K(t) = A% 90 cos(Q” (1)), (12)
or in the Laplace space

K (1) = A? / Oodr e e ¥ cos(Q” (1)), (13)
0

where the bath correlation functiori®(z) and Q”(r) have been introduced in equatiof).(
Typical results forP(t) obtained from the numerical integration of the NIBA master equation
for the resonant cas@ = A and at finite detuning2 = 1.5A are shown in figured and 2,

4 From inspection of4a) it follows that the inter-blip correlations, being expressed as difference of @ur
functions p], are long ranged but weak, as they are solely determined by the (bounded) decaying oscillatory parts

of Q'(t).
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Figure 1. Time evolution of the population differencB(t) of a symmetric

TSS in the resonant case= 1. The parameters ar&€:= 0.097, T = 0.1 (all
frequencies are expressed in unitsAdfanda = 4 x 1073 (yielding g = 0.18).

In this range of parameters, one clearly sees that the dynamics is dominated
by two frequencies. Inset: the Fourier transfoi®w) of P(t) displays two
peaks, centered symmetrically aroutd The distance between the peaks is
approximately 8.

respectively. In the resonant caBé) exhibits a very pronounced beating pattern. The analysis
of the corresponding spectrum

S(w) =2 / oodt cos(wt) P(t), (14)
0

for the parameters choice of figufe (resonant case) clearly reveals the presence of two
frequencies, which lie aroung. ~ Q2+ g, whereg is the coupling strength in the TSS +

HO model. This is in agreement with the expectations obtained from a Jaynes—Cummings
model R2]. However, as shown in the next section, for our case of a thermalized oscillator,
and beyond the RWA approximation, the dependence of TSS frequencies on temperature,
as well as on the coupling parametgand on the frequencg is nontrivial, cf equation47).

The Fourier spectrum for the detuned case in figushows a more pronounced oscillation
frequency, the relative magnitude of the two peaks becoming larger when the detuning is
increased. Finally, as one raises the coupling stremgtietween TSS and HO, multiple
resonances appear, see figBr&hese beating patterns clearly originate from the peaked nature
of the environmental spectrum and are thus absent in the more frequently investigated cases of
unstructured environmentg,[2], i.e. G(w) x w®e~*/*¢, s > 0. The nature of the beatings, as

well as an analytical approximation #t) are discussed in the following section. The starting
point is equationX0) and its related pole equatiohl).
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Figure 2. Time evolution of the population differencB(t) of a symmetric
TSS in the case of a finite detunirigg= 1.5. The parameters ar€: = 0.145,

T = 0.1 (all frequencies are expressed in unitayfande = 5 x 1073 (g = 0.3).

For this case of the TSS being off-resonance with the HO, one oscillation
frequency dominates. Notice the relative magnitude of the two peaks of the
Fourier transform shown in the inset.

1.0

P

“o 40 80 120

Figure 3. Time evolution of the population differencB(t) of a symmetric
TSS in the resonant case= 1. The parameters ar&€:= 0.097, T = 0.1 (all
frequencies are expressed in units/f as in figurel, but nowa =3 x 1072
(yielding g = 0.5). In this range of parameters the dynamics is dominated by
four frequencies. Inset: the Fourier transfo8tw) of P(t) displays four peaks.

4. Weak-damping approximation (WDA) for a symmetric TSS

In the following, we shall derive an analytical expression Rit), based on the NIBA, valid
for arbitrary detuning|A — Q| =§. The key idea is that, since we are looking to a sharply
peaked spectral density, i.e=T/27Q < 1, an expansion of the NIBA kerneld) up to

New Journal of Physics 9 (2007) 316 (http://www.njp.org/)
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first-order ink is justified. Since the bath-correlation functio@ and Q” (equation 4b))
depend in a nontrivial way o, this requires some attention. In the end, we obtain

Q1) Qi(m)
Q'(r) =Y (cosQt — 1) + Ar cosQt + Bt + C sinQrt +0[«?], (15a)
i H Q H
Q'(r) =WsinQr +V (1 — COSQT — 57 smSZr) +0[k?], (150)
QgD
Qj(v)
with the zero-order terms
4¢? shQ 4¢?
Y = —— coth——, W=—, 16
Q2 2 Q2 (16)
and first-order terms
Y 89°
A=-T—, B=I"——, 17
2 Q3hp (17)
202 BhQ + 2 sinhghQ 49?2
c=_r9F nhghss 29 (18)

Q3  coshghQ —1

Notice that the contribution coming from the Matsubara frequen@géds been neglected.
We will here discuss first the simpler undamped case- Q) and later perform the WDA on
the NIBA kernels.

93

4.1. Undamped case & 0)

In this subsection, we discuss the case of a TSS coupled with an undamped HO initially prepared
in a thermal equilibrium state. The pole equation now reads

Ao+ Ko(hp) =0, (19)
with
Ko(h) = A2 / dre ™" e ™ cos(Qy(r)), (20)
0

where we denoted withy, the solution of the undamped pole equation. Notice kit ) has the
same expression as in equatidg)( if one replace®)’ andQ” with Qy andQg, respectively. In
order to investigate equatioB@), we replace caf); (7)) with Re{exp(i Qg (7))} and we perform
the Jacobi—Anger expansiod]]

€7 = Jo(2) +2) " i"Jn(2) cos(ny), (21)

n=1

where J,(z) are Bessel functions of a complex argument. We also make use of Graf’s addition
theorem

3 W K) k) = Jw) (0, (22)

k=—00
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where

w=+/U2+v2—2Uv COSa, (23)
and

U — v COSa = w COSY, (24a)

{vsina:wsinx. (24b)
We finally obtain (see appendix)
Ko(h) = A%e" /Ooodre‘“Re[Jo(uo) + Zf i" Jn (Uo) cos[n (Qt — 7+ |ﬁhTQ)H : (25)

n=1

where

. 492 1
Up=ivY2—W2= T (26)

'@sinh(ﬂhsz/z)'
After expanding the cosine which appears in equatiZ) and after noticing thady(ug) and

i"Jn(up) are always real, the expression for the symmetric kernel in the undamped case finally
reads

Ko(1) = A%e" /Ooodre‘“ [Jo(uo) + Zi(—i)”Jn(uo) cos(nQ7) cosh(nMTQﬂ . (27)
=1
In order to enhance the readability :)f the kernel, we define the dressed frequencies
Ang = AeY/z\/ (2—8n,0) (—1)"Jn(Uo) cosh(nhﬂTQ>, (28)
such that we can rewrite equatid?v’f in the very compact form
KoL) = f: Ad fo oodre"\r cos(nQ21). (29)
=0
The population differer:c@o(k) in the undamped case becomes
PU) = S (30)
_ ! (31)
143005 82, k|
- ey 07 @)

A []‘[‘;‘; W02+ PR + 3020 A7 T (12+ n2s22)]

and it is clear that the pole in= 0 is not a physical one, sind& (1 = 0) vanishes. This means
that the dissipation-frea: (= 0) pole equation reads

E)

Mt Kop) =0 — [Jaa+n?@)+) A2 T[a+n’Q@)=0. (33)
n=0 m=0 n=0
n#m
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Notice that being the pole equation of infinite ordemﬁn equation 83) implies that annfinite

set of frequencies enters the dynamics, which can be attributed to the entanglement of the
TSS with the HO. Their temperature dependence, included in the dressed frequengies
reflects in a nontrivial way the initial thermal state of the HO. We shall show below that in some
parameter regimes only few of these frequencies dominate the dynamics.

4.2. The weak-damping population differencé )P

The weak-damping kerndpa (1) is obtained from equatiorl8) by retaining only terms up
to first order in the linearized ik bath correlation function®’; and Q7. It reads

Kwoa (1) = Azfo dre " e % {cos(Qy(r)) [1— Qy(1)] — sin(Q(x) QY (r)} - (34)

The WDA kernel will be used in equationll) to solve the pole equation and finally
obtain Pypa (t). Consistent with the previous prescriptionrg 1, we can expand the solutions
A* of the pole equation around the solutiogsof the non-interacting pole equation up to first-
order ink. In other terms

where), satisfies the undamped pole equati®8) (By inserting equationslg) and @5) in (34),
one finds the following expressions for the WDA kernel evaluated at the poles:

o
Kwpa(A™) = AZ/ dre " e Q®
0

x {€os(Qg(1)) [1+kypt — ket — Qy(r)] —sin(Qg(1) Q1 (1)} + O[«?]. (36)
According to equation36), the pole equationl(l) now reads

o0
—kypFikp + A? / dre " g ™
0

x {€0s(Qq(1)) [k ypt — kgt — Qy(v)] —sin(Qy()Q;(v)} =0, (37)
where we used the pole equation for the undamped d&@3eAfter isolating the real and the
imaginary terms from the above equafipwe find

—KVp [1 — AZ/ dre ™" e" %™ cos(Qj (1)) r]

0

= A? /0 dre™" e %™ [cos(Qy(1)) Q(v) +sin(Qy(r) Q1 (v)]. (38a)

iKQ |:1 — AZ/ dre " g Q@ cos(Qq(7)) T] =0. (38b)
0

if the term between brackets is different from zero, one easily gets0 and, after some
rearrangements,

A2 [dre " e %) [cos(Qg(r)) Qi) +sin(Qg(1) Q1(1)]

(39)
G [1+ 2 Ko0)] |

Vo= —
A=hp

5 Note that the Laplace transform of an odd functiorr & even ink and vice versa. In this case, the integrand is
odd int, thus the corresponding Laplace transform is eveh iRor pure-imaginary values af, the result of the
integral is real.
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Once we have obtained the expression for the decay ygtesrresponding to each polg,
we have all the ingredients to get the population differeR¢e with the help of the residue
theorem. In fact,

1

PtH)=)» é'Pl=) e'—89"——
© é @) % A+ Kwpa(2)
1
_ pt A=k Vp(Ap)t H _ _ - -
— %:é g H'A',Twp[k (hp Kyp)]k+ Koo O (40)

holds, as follows from equatior36).

4.3. Series expression for the weakly-damped symmetric kernel and decay rate

In this subsection, we show how to obtain a compact analytical form for the kkxag{ (1)

and the decay ratg, equations §4) and 39), respectively. To this end let us start from the
kernelKwpa (1), the generalization to the decay rate being straightforward. As in the undamped
case, in equation3@) we replace caf;(r)) with Re{exp(iQg(r))} and sifQg(r)) with
Im{exp(iQy(r))}. Analogously to the procedure followed for the undamped ker2@), by

using the Jacobi—Anger expansid@i) we obtain

Kwoa(X) = Z f Oodre—M {Aﬁ@ cos(nQr) [1— Qi(x)]+Ah, Sin(nQ‘E)Q/l/(‘L')} , (41)
n=0 0

where the dressed tunneling elemefits have been already defined in equati@fd and

Ang = AeY/Z\/ (2 —8n.0) (—)"Jn(Uo) sinh(n%). (42)

The expression foP (1) follows from (41) (see the discussion in the sectib® below). Along
similar lines, the decay ratg, cf equation 89), may also be written as

1 g o dretr [Aﬁ«» cos(nQt) Qi(r) + Aﬁ(s) sin(nQ27) Q/l/(r)]

Ve K 212 ' (43)
+00 A2 p

n=0 "N ()\% +n22)2

4.4. Thecaser-0,n=1

In the following, we investigate the regime of temperatupds2/2 > 1, and of coupling

I' < g <« €, such that the quantity, entering the argument of the Bessel functions is smaller
than one. Then, because the amplitudesin (41) depend on Bessel functiords(x), which
roughly behave as" as soon as the argument becomes small, we can restrict our analysis to the
termsn = 0, n = 1 in equations41) and @3). We identify hereA, with A, andA; with Ay

for the sake of clarity, which in the considered regime are approximately given by

AZ = A% Jy(Up) ~ A%e' = A% @I/9° (44)
and
2 2, ; h,BQ 2 2
AT = A€’ (—2i)Ji(up) cosh > ~ A§(29/ Q)°. (45)
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The undamped pole equatiod3j becomes
(A2+QH(A2+ AY +22AZ =0, (46)

A2+ A2+ Q2 A2 — Q2 A2 A2
xgz_%i\« 02 ) 2(A2 21+Q2>Exi. (47)

As becomes clear from the definition of the dressed frequergjea? these quantities, and in
turn the frequencies Q2 = A2 depend on oscillator frequen€y, TSS splittingA and coupling
strengthg.

We notice that only terms quadraticip appear in the formal expression of the decay rate
(cf equation B.1)). Hence, it is enough to express the poles as in equatign@iven the poles
in the undamped case, we can substitute each of them in equé&B)dor(y, with sum restricted
ton=0,n= 1. We will refer to them as.. = y(A.), the explicit form of the decay rate being
given inappendix B

yielding

4.5. Analytical expression for @)

In order to obtain the analytical expression f¢t) in the symmetric case, let us start again
from equation 40). By summing up all residues contributions, we end up with

A2+ Q2 A2+ Q2
P(t) =g COS(Q_t) — L= sin(Q_t)]+e <t 2 Q
) 2 [ (€2_t) Q (Q-1)] 22 Az[ oS
(48)
where Q. = —iiy, as follows from equation4(/). Notice that the expression fdP(t) is

invariant upon exchanging the frequencies — .. The analytical formula equatiod ) for

P(t) is compared in figureél with the outcomes of a numerical solution of the NIBA GME
and with the conventional weak-coupling approximation (WCA). The latter is obtained by
performing an expansion of the NIBA kernel to first-order in the coupling stremd#). The
analytical form for the probability difference reads in the WCA case

P(t) = {cosAt 4+ Ye
A

sin At} RGS (49)

wherey, = (r/4)S(A) is the dephasing rate. Moreoved(w) = Gefi(w)coth(hw/2ksT) is a

spectral contribution which represents emission and absorption of a single phonon. The choice
of parameters in figure$ and5 is the same as in figureand as in 23], under the resonance
condition2 = A. One can notice a very good agreement between NIBA and analytical WDA,
whereas equatior4@) completely fails in describing the oscillatory behaviour Bft). In

figure5 the corresponding Fourier transform of the probability difference is shown. There, one
can see the missing oscillation frequency of the conventional WCA given by equé8iocand

the excellent agreement between the numerical NIBA and our analytical solution WDA. The
WCA in factis not applicable since the bath is not short-time correlated whei' [23]. Notice

also that in the resonant case the WCA overestimates dephasing because there are coherent
exchange processes between the TSS and the resonant HO which cannot be captured by such a
weak-coupling scheme.
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1.0

— WDA
NIBA
--- Conventional WCA

0 50 100 150 200
t[A]

Figure 4. Time evolution ofP (t) within the NIBA as well as the analytical WDA.
The parameters are as in figurenamelyQ =1, =0.097,0 =4 x 103 (g =
0.18), T =0.1 (in units of A). Notice the perfect agreement between the
numerical NIBA and the analytical WDA. A perturbative approactGig(w),
denoted here as ‘conventional WCA (se®)), completely fails to account for
the two main oscillation frequencies. In the inset the short-time dynamics is
magnified.

30 - T T T T T

25F — WDA .
NIBA |
- Conventional WCA

20

15+

S(w)

10 -

O RN . I"”‘]‘ et e ey PP
0 0.5 1 15 2.0

w[A]

Figure 5. Spectral function oP(t), corresponding to the same regime as in the
previous case. One clearly sees that the Fourier transforms of NIBA and WDA
exhibit a double peak structure. In contrast, the WCA predicts a single broadened
oscillation peak.

Equation §7) together with equationstf) and @5) enable us to estimate the oscillation
frequency. Specifically, let us observe that the resonance conditibga-id o rather tharf2 = A,
though the two frequencied and Aq are very close in the chosen regime of parameters.

New Journal of Physics 9 (2007) 316 (http://www.njp.org/)


http://www.njp.org/

14 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT
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Figure 6. Time evolution of P(t) at finite detuning within the NIBA and
the analytical WDA. The parameters are as in figy@mamelyQ =1.5T =
0.145 T =0.1 (in units of A), anda =5x 10~2 corresponding tag = 0.3.
Again, the agreement between the numerical NIBA and the analytical WDA is
striking. Inset: the conventional WCAL9) also in this case, as expected, fails in
describing the correct dynamics.

ForQ = Ap and withA; <« A, we obtain to lowest order in; the expression

such that2_ — Q. = 2g as in the simple Jaynes—Cummings model.

Finally, in figure6 we show a comparison among the WDA and the NIBA in the presence
of finite detunings = |A — Q| = 0.5A for a higher coupling strength between qubit and HO
(g =0.3A), keeping the coupling between detector and environment constant. Also in this case,
the WDA fully agrees with the numerical solution of the NIBA. FroaY)| we find, neglecting
terms of ordeA}, and assuming e.§ > Ao

AZ
Q_%Q<l+%), (51)
2(Q2 — A2)
83
%~ (1- g ) 2
g? 245

yielding @ — Q. = §(1+5;52). The frequency2_ is nicely interpreted as the Stark-shifted
gubit frequency due to the coupling with the harmonic mode; the frequ@acccounts for
processes involving absorption of a single oscillator quantum whose amplitude, however, is
strongly suppressed, see figirehich shows the Fourier transform Bft). In the inset one can

also notice the disagreement of the WDA predictions with the conventional WCA, characterized
by a single oscillation frequency at= A.
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Figure 7. Spectral function ofP(t) for the NIBA and the analytical WDA
(same parameters as in figuile The oscillation frequencies of WDA and NIBA
coincide, whereas in the inset one can at first glance see the occurrence of a
single peak only in the Fourier transform of the conventional WCA.

5. Conclusions

In conclusion, we discussed the dynamics of a symmetric TSS interacting with an effective
structured environment described by a spectral de&igy This models e.g. a qubit interacting

with a dissipative detectoB] 7], or a TSS interacting with a cavity mod#&7, 13]. Focussing

on the regime of small coupling between the oscillator and an Ohmic bath, i.e. of la@e
factors of the damped harmonic mode, we derived a GME for the TSS occupation probabilities
within a novelweak damping approximatiorin contrast to ‘conventional’ weak-coupling
approaches 7], perturbative inGey, the WDA is able to reproduce multiple oscillation
frequencies in the TSS dynamics resulting from the entanglement with the oscillator. The
starting point of our analysis is the NIBA, which for a symmetric spin—boson model is valid
over thewholerange of parameters. The NIBA is perturbative in the TSS tunneling frequency,
but nonperturbative in the bath effective spectral denGty. The WDA approach is then

based on an expansion @.;z up to first-order in the coupling. The zeroth order term
describes the effects of the entanglement between the TSS and the undamped thermalized
mode; the linear term is responsible for the dephasing. As a result of the entanglement with
the damped mode, the TSS is generally characterized by a multiple set of frequencies, as
detailed in sectiort. However, for small enough temperatures (kT < hQ2) and moderate
TSS-harmonic mode coupling < g <« © only two frequencies dominate, whose values, as
well as those of the associated dephasing rates, are determined analytically. In the resonant
regime the two frequencies are those expected from a simple Jaynes—Cummings model, apart
from the fact that the resonance condition now re@ds Ag, where Ay is the dressedTSS
frequency in equationdd). At finite detuning the one that is associated with a Stark-shifted
TSS frequency splitting dominates, see equatif). (The less dominant frequency occurs due

to processes related to the absorption of a single oscillator quantum. The agreement of our
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analytical solution for the TSS occupation probability, valicdiitrary detuning|A — | # 0,
with the numerical outcomes of the NIBA is striking.

Due to the generality of the model, we expect our results to be of interest in many
experimental applications.
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Appendix A. Bessel function expansion of the NIBA kernels

Here we are interested in finding a series expression for the WDA kernel which contains Bessel
functions. We start from equatio34), which we rewrite for clarity:

K(L) = A2 / dre™ e %™ {cos(Q;()) [1— Qi(1)] —sin(Qy () QL (1)} . (A.1)
0
Let us examine, to fix the ideas, the term gxQ,(r)}cogQ"o(7)):
e—Qé)(r) COS(Qg(T)) = eYRe{e—Y COSQfe+iWSian} (AZ)
— eY Re{ei[iY cosQr+WsinQr]} (A.3)
—e'Re {ei VWV g cosee i i | } : (A.4)
It could be now convenient to interpret
COSX = Y =+ Y (A.5a)
_sz_yz_ JYZ-wW? '
sinx=——"___ W (A.5b)
TUWEY2 YW ‘
so that the exponent can be rewritten as
e~ ™ cos(Qy(r)) = eYRe{eiv WE-Y2 cos(QT + x)} . (A.6)

At this point, we can use the Jacobi—Anger expansii) {0 expand the exponent in series of
Bessel functions. We finally obtain

K@) =A%’ /Oodfe_“ {[Jo(uo) +2 "(—=i)"Jn(uo) cOS(NQ7) cosh(nﬁhTQ)}

0

n=1
/ o nn 1 H ﬂhQ 1
x [1- Qu(0)]+2 (=) In(Uo) sin(nQr) smh(nT) 1(1)}, (A7)
n=1

which coincides with equatiort{), once we introduce the amplitudes,,, Ans). Here,up is
given by

. 492 1
= J/W2—VY2—iJ/Y2_We—j 2~
U= vVW2—Y2=iy/Y2Z— W2 =] 7 ST (A.8)
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sinceY = —Wcoth(8h2/2) (note thatw > 0 and hencé&’ < 0). Notice that the argument of
the Bessel functions is small wheneyr2 /2 > 1 andg < €.

We would like now to obtain the exact value xfwhich is easily performed. Let us start
from equation A.5) and let us rewrite the tangent as

tanx = g = —itanh(ﬂhTQ) =tan (—ﬂhTQ) (A.9)
We assume to be complex, therefore we write it @&s= a +ib. In general, it holds that

cos(a+ib) = cosacoshb —isinasinhb, (A.10)

sin(a+ib) = sinacoshb +icosasinhb. (A.11)

From (A.10), in order to have co@ +ib) = +Y/+/Y2 — W2 namely a real number, it must be
that

a=nm. (A.12)
From equationsA.10) and A.11), we can write the tangent as

tana+itanhb W
tan(a+ib) = — 2" +itanhb = +i— (A.13)
1—itanatanhb a=nxz Y

as we get by calculating the tangent from equatidi). Hence,

w
tanhb = v (A.14)

We can eventually writ& as

Bho

W
an+ib=nn+iarctanh\?=nn— (A.15)

In order to decide whether to assume- 0 orn = 1, one must look at the cosine or sine:

equation(A.10) 1 1 |Y|
coSX — (-)"———=(-1])"——x = (- )" ——— A.16
— (=D FERYPTT =D T—‘\’("—f (=D NT W ( )
+Y
S — ) =n=1 (A.17)
Y2 _ WZ
or, equivalently,
. equation(A.11) . tanhb , W/Y

sinX — i(=1)"————==i(-1D" A.18
a=nr V1—tanitb V1-(W2)Y2) (A.18)

. W/Y)|Y]| _ W +HW
=i(-1)"——— = —i(=D)" = , == n=1 A.19
Y Nrmwe = Y Nemwe T vewe (A-19)
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Appendix B. Explicit form for the decay rate Yo

In this appendix, we wish to give the analytical result for the decayygbg,) as function of

the solutionk,, of the undamped pole equatiofd):

1 1
yp()\'p) - ; 2 2 2\2 2 2
2)2 [(,\p +Q2)24 A2 Q

1 1 1o Tl

ﬂxﬁ(mqﬁ +1AZ +UAZ A2 +TAL

2 2 2 2 2 2
+Q <S+ wAl(c) +tA1(s)> +)\'p (Al(c)g()\'p) + A1(s)h()\p)> ]’

with
p= (2A— B)Q?A%+(B— D)Ag,
A A
= A2(=+2B-D |+Q?(2B—- =),
= 2(52-0) va?(22-3)
VQ
= —T<92+3AS>,
VQ
u= —3—,
4
A
r= —+B,
2
s= —Q*A3B+Aj(B-D),
A A
= A2(=+B|)—-Q*=
N 0(2 ) 2
and
2 2\2 2 2
g(A)EM CQ+éw ’
P A2+4Q2 2 A2+4Q2
hh) = (g + Q2% vV Q 34+ 2007
p ==

A2+4AQ2 4 p2+4Q2

As already seen, the physical poles afe= —A%,=A3. Correspondingly, the decay rates

v+ = y(Ay) follow according to equatior(.1).
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