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Abstract. We study the dynamics of a symmetric two-level system strongly
coupled to a broadened harmonic mode. Upon mapping the problem on to a
spin–boson model with peaked spectral density, we show how analytic solutions
can be obtained, at arbitrary detuning and finite temperatures, in the case of large
Q-factors of the oscillator. One, two or more dominating oscillation frequencies
of the two-level particle can be observed as a consequence of the entanglement
with the oscillator. Our approximated analytical solution agrees well with
numerical predictions obtained within the non-interacting blip approximation.
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1. Introduction

A prominent physical model to study dissipative and decoherence effects in quantum mechanics
is the spin–boson model [1]–[3]. Currently, we are witnessing its revival since it allows a
quantitative description of solid-state quantum bits (qubits) [4]. A more realistic description
requires the inclusion of external control fields as well as of a detector. In the spin–boson model,
the environment is characterized by a spectral densityG(ω). If the environment is formed by
a quantum detector which itself is damped by Ohmic fluctuations, the form of the spectral
density can become nontrivial, as it also reflects internal resonances of the detector. An example
is provided by a flux-qubit read out by a dc-SQUID (superconducting quantum interference
device) [5]–[7] which gives rise to an effective spectral densityGeff(ω) for the qubit with a
peak at the dc-SQUID plasma frequency� [8, 9] of width 0, cf equation (2) below. As shown
in [10] under general grounds, such a spin–boson Hamiltonian can be exactly mapped on to that
of a two-state-system (TSS) coupled to a single harmonic oscillator (HO) mode of frequency
� with coupling strengthg. The HO itself interacts with a set of harmonic oscillators with
spectral density of the continuous bath modesGOhm(ω) = κω. The mapping between the two
models is completed with0 = 2πκ� andα = limω→0Geff(ω)/2ω = 8κg2/�2. Thus, besides
the case of a damped dc-SQUID inductively coupled to a flux qubit, the spin–boson model
with peaked spectral densityGeff can describe the generic situation of a two-level-particle
coupled to a damped harmonic mode. This is realized e.g. in atom-based cavity quantum
electrodynamics [11], circuit quantum electrodynamics with superconducting systems [12, 13],
semiconducting quantum dots in nanocavities [14] and in nanomechanical resonators [15]. In
particular, in the seminal experiment [12] the vacuum Rabi splitting was demonstrated in a
Cooper-pair-box resonantly coupled to a cavity mode (i.e. forδ � g, where the detuningδ is the
difference between the HO frequency� and the TSS transition frequency). Recently, in the same
system Schusteret al [13] demonstrated, in the dispersive regimeδ > g, the so-called ‘number
splitting’, i.e. the qubit dephasing spectrum was used to probe the photon number distribution.
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From the theoretical point of view, a large amount of literature exists, in which a coupled
TSS–HO is considered as the central quantum system, and the effects of the Ohmic bath are
treated perturbatively. However, in these works one usually does not solve the original coupled
TSS–HO Hamiltonian, but rather approximated forms to it expected to be valid e.g. in the
resonant regime (δ � g) [11, 16], or in the dispersive regime (large detuningδ � g) [17]–[21].
Specifically, for the case e.g. of circuit QED (at the charge degeneracy point), a rotating wave
approximation (RWA) expected to be valid for small detuning yields the Jaynes–Cummings
Hamiltonian [22]. On the other hand, in the dispersive regime neglecting terms of orderδ2/g2

yields the quantum version of the ac-Stark Hamiltonian [16, 17]. Recently, exact real-time path-
integral calculations have been performed [23], based on the numerical QUAPI (quasiadiabatic
propagator path-integral) method, covering the resonant, as well as the dispersive regime, and
testing the reliability of the RWA in the resonant regime. The case of a (damped) TSS–HO
dynamics was treated beyond the RWA in [24, 25], upon truncation of the number of relevant
states of the central TSS–HO system.

An alternative, equivalent, point of view, is the spin–boson model with peaked spectrum.
The advantage of this approach is that the reduced density matrix has rank 2. Moreover, no
RWA approximations are required to reduce the problem to simpler effective Hamiltonians.
The peculiar feature of the peaked spectrum (2) is reflected in the form of the bath correlation
functions, cf (4a) and (4b) below. Until now, the effects of such a structured spectral density
on the decoherence properties of a qubit have been studied in [26]–[28] within a perturbative
approach inGeff. It was shown in [23] that such a perturbative scheme breaks down for
strong qubit-detector couplingg � 0, and when the qubit and detector frequencies are
comparable. Hence, nonperturbative schemes, as theab-initio QUAPI [23], the non-interacting
blip approximation (NIBA) [28], the flow-equation method [28, 29] or a generalized polaron
transformation [30] have been used. However, a closed form analytic expression for the qubit
population has not been provided so far.

In this work, we show how to investigate the dynamics of a spin–boson system with a
structured environment, in the case of a strong coupling between qubit and oscillator and for
small detector–bath coupling strength,κ = 0/2π� � 1, corresponding to large quality factors
of the oscillator. We evaluate the dynamics upon starting from the (nonperturbative inGeff) non-
interacting blip approximation (NIBA) [1, 2]. Analytical results, valid also atarbitrary detuning,
are obtained by approximating the NIBA kernels up to first-order in the detector–bath coupling
strengthκ. It is shown that the coupling to the damped oscillator yields the possibility of a
multiple-peaks structure of the TSS spectrum. The position and height of the peaks depend in a
nontrivial way on the temperature, as well as on the TSS coupling strengthg. In particular, in
the regime0 � g � � andkBT < h̄� only two oscillation frequencies dominate the spectrum.
Notice that this result encompasses the coherent splitting also obtained in the Jaynes–Cumming
approximation, as well as the number splitting effect discussed for the dispersive regime
[13, 21], as our theory holds true for arbitrary detuning as long as theQ-factor of the oscillator
is large.

The paper is organized as follows: in the next section, we will introduce the model. Then
in section3, we discuss the well-known and widely used NIBA and its predictions. Analytical
results for the dynamics are derived in section4. Conclusions are drawn in section5.
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2. The model

Let us consider the spin–boson Hamiltonian describing the interaction of a symmetric TSS with
a structured environment. It reads [1, 2]

HSB(t) = −
h̄1

2
σx +

1

2
σzh̄

∑
k

λ̃k(b̃
†
k + b̃k) +

∑
k

h̄ω̃kb̃
†
kb̃k, (1)

whereσi are Pauli matrices and̄h1 is the tunnel splitting. Moreover,̃bk is the annihilation
operator of thekth bath mode with frequencỹωk . In the spin–boson model, the influence of the
environment is fully characterized by a so-called spectral function, which we assume to be of
the form

Geff(ω) =

∑
k

λ̃2
kδ(ω − ω̃k) =

2αω�4

(�2 − ω2)2 + (0ω)2
. (2)

It has a Lorentzian peak of width0 at the characteristic frequency�, and behaves ohmically at
low frequencies with the dimensionless coupling strengthα = limω→0Geff(ω)/2ω. Specifically,
in the spin–boson model, the environmental effects are captured in the so-called bath correlation
function

Q(τ ) ≡ Q′(τ ) + iQ′′(τ ) =

∫
∞

0
dω

Geff(ω)

ω2

[
coth

(
h̄ωβ

2

)
(1− cosωt) + i sinωt

]
, (3)

which for the effective spectral density (2) takes the form [2]

Q′(τ ) = Xτ + L
(
e−(0/2)τ cos�̄τ − 1

)
+ Ze−(0/2)τ sin�̄τ + Q′

Mats(τ ), (4a)

Q′′(τ ) = πα − e−(0/2)τπα
(
N sin�̄τ + cos�̄τ

)
. (4b)

The quantity �̄ =
√

�2 − (02/4) corresponds in the underdamped regime0 < � to a
renormalized oscillator frequency of the oscillator, while in the overdamped case0 > �

describes an exponential decay. The temperature dependent prefactors are

X =
2πα

h̄β
, (5)

L =
πα

0�̄

1

cosh(βh̄�̄) − cos(β(h̄0/2))

[(
02

4
− �̄2

)
sinh(βh̄�̄) +0�̄ sin(β(h̄0/2))

]
, (6)

Z =
πα

0�̄

1

cosh(βh̄�̄) − cos(β(h̄0/2))

[
−0�̄ sinh(βh̄�̄) +

(
02

4
− �̄2

)
sin(β(h̄0/2))

]
, (7)

and N =
1

0�̄
(02/4− �̄2). Finally, Q′

Mats(τ ) is a function of Matsubara frequenciesνn ≡

(2π/hβ)n, and it has the form

Q′

Mats(τ ) = −4πα
�4

h̄β

+∞∑
n=1

1

(�2 + ν2
n)

2 − 02ν2
n

[
e−νnτ

− 1

νn

]
. (8)

For temperatureskBT > (h̄0/2π), contributions coming from the Matsubara term can be
neglected [2]3, as done in the rest of this work. We notice that since we are interested in the

3 In the low temperature regimekBT � (h̄0/2π) the bath-correlation function decays on a timescale set by the
first Matsubara frequencyν1.
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large Q-factors limit, i.e.0/2π� � 1, this constraint still allows investigation of the high
temperature regimekBT > h̄�, as well as the low temperature regimeh̄� > kBT � h̄0/2π .

The qubit dynamics is described by the reduced density operatorρ(t) obtained by tracing
out the environmental degrees of freedom. We investigate the population differenceP(t) :=
〈σz〉t = Tr{ρ(t)σz}. Such a dynamical quantityP(t) obeys the exact generalized master equation
(GME) [2]

Ṗ(t) = −

∫ t

0
dt ′ K (t − t ′)P(t ′) t > 0, (9)

with the kernelsK (t) being a series expression in the number of tunneling transitions. Since
equation (9) involves only convolutions, it can be solved by using Laplace transforms. The
GME yields as

P(λ) =
1

λ + K (λ)
, (10)

where the same symbolsP(λ) andK (λ) for the Laplace transform ofP(t) andK (τ ) have been
used, respectively. From equation (10), it follows that in order to obtainP(t) one has to solve
the pole equation

λ + K (λ) = 0, (11)

and then inverse transform to the time space. Due to the intricate form of the exact kernelK (t)
(or K (λ)), equations (9) or (10) cannot be solved neither numerically nor analytically. We must
therefore invoke some approximations. For the symmetric spin–boson model (1), the so-called
NIBA discussed in the next section is expected to yield reliable results over thewholeregime of
parameters.

3. Non-interacting blip approximation (NIBA)

Within the NIBA [1, 2], of the exact series expression forK (λ), only the first term of second-
order in the tunneling frequency1 is retained. This amounts to neglecting bath-induced inter-
blip correlations, where the ‘blips’ denote time intervals spent in off-diagonal states of the TSS
reduced density matrix [1]. This approximation has been commonly used over the whole range
of temperatures and coupling strength to describe the dynamics of a symmetric spin–boson
system. In the symmetric case in fact, terms linear in the (weak) inter-blip correlations vanish4.
In the NIBA, the kernel has the very simple form

K (t) = 12e−Q′(t) cos
(
Q′′ (t)

)
, (12)

or in the Laplace space

K (λ) = 12

∫
∞

0
dτ e−λτe−Q′(τ ) cos

(
Q′′ (τ )

)
, (13)

where the bath correlation functionsQ′(τ ) and Q′′(τ ) have been introduced in equation (4).
Typical results forP(t) obtained from the numerical integration of the NIBA master equation
for the resonant case� = 1 and at finite detuning� = 1.51 are shown in figures1 and 2,

4 From inspection of (4a) it follows that the inter-blip correlations, being expressed as difference of fourQ′

functions [2], are long ranged but weak, as they are solely determined by the (bounded) decaying oscillatory parts
of Q′(t).
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Figure 1. Time evolution of the population differenceP(t) of a symmetric
TSS in the resonant case� = 1. The parameters are:0 = 0.097, T = 0.1 (all
frequencies are expressed in units of1) andα = 4× 10−3 (yielding g = 0.18).
In this range of parameters, one clearly sees that the dynamics is dominated
by two frequencies. Inset: the Fourier transformS(ω) of P(t) displays two
peaks, centered symmetrically around�. The distance between the peaks is
approximately 2g.

respectively. In the resonant caseP(t) exhibits a very pronounced beating pattern. The analysis
of the corresponding spectrum

S(ω) ≡ 2
∫

∞

0
dt cos(ωt) P(t), (14)

for the parameters choice of figure1 (resonant case) clearly reveals the presence of two
frequencies, which lie around�± ≈ � ± g, where g is the coupling strength in the TSS +
HO model. This is in agreement with the expectations obtained from a Jaynes–Cummings
model [22]. However, as shown in the next section, for our case of a thermalized oscillator,
and beyond the RWA approximation, the dependence of TSS frequencies on temperature,
as well as on the coupling parameterg and on the frequency� is nontrivial, cf equation (47).
The Fourier spectrum for the detuned case in figure2 shows a more pronounced oscillation
frequency, the relative magnitude of the two peaks becoming larger when the detuning is
increased. Finally, as one raises the coupling strengthg between TSS and HO, multiple
resonances appear, see figure3. These beating patterns clearly originate from the peaked nature
of the environmental spectrum and are thus absent in the more frequently investigated cases of
unstructured environments [1, 2], i.e. G(ω) ∝ ωse−ω/ωc, s > 0. The nature of the beatings, as
well as an analytical approximation toP(t) are discussed in the following section. The starting
point is equation (10) and its related pole equation (11).
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Figure 2. Time evolution of the population differenceP(t) of a symmetric
TSS in the case of a finite detuning� = 1.5. The parameters are:0 = 0.145,
T = 0.1 (all frequencies are expressed in units of1) andα = 5× 10−3 (g = 0.3).
For this case of the TSS being off-resonance with the HO, one oscillation
frequency dominates. Notice the relative magnitude of the two peaks of the
Fourier transform shown in the inset.
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Figure 3. Time evolution of the population differenceP(t) of a symmetric
TSS in the resonant case� = 1. The parameters are:0 = 0.097, T = 0.1 (all
frequencies are expressed in units of1) as in figure1, but nowα = 3× 10−2

(yielding g = 0.5). In this range of parameters the dynamics is dominated by
four frequencies. Inset: the Fourier transformS(ω) of P(t) displays four peaks.

4. Weak-damping approximation (WDA) for a symmetric TSS

In the following, we shall derive an analytical expression forP(t), based on the NIBA, valid
for arbitrary detuning|1 − �| = δ. The key idea is that, since we are looking to a sharply
peaked spectral density, i.e.κ = 0/2π� � 1, an expansion of the NIBA kernel (13) up to
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first-order inκ is justified. Since the bath-correlation functionsQ′ and Q′′ (equation (4b))
depend in a nontrivial way onκ, this requires some attention. In the end, we obtain

Q′(τ ) =

Q′

0(τ )︷ ︸︸ ︷
Y (cos�τ − 1) +

Q′

1(τ )︷ ︸︸ ︷
Aτ cos�τ + Bτ + C sin�τ +O[κ2], (15a)

Q′′(τ ) = W sin�τ︸ ︷︷ ︸
Q′′

0(τ )

+ V

(
1− cos�τ −

�

2
τ sin�τ

)
︸ ︷︷ ︸

Q′′

1(τ )

+O[κ2], (15b)

with the zero-order terms

Y = −
4g2

�2
coth

βh̄�

2
, W =

4g2

�2
, (16)

and first-order terms

A = −0
Y

2
, B = 0

8g2

�3h̄β
, (17)

C = −0
2g2

�3

βh̄� + 2 sinhβh̄�

coshβh̄� − 1
, V = 0

4g2

�3
. (18)

Notice that the contribution coming from the Matsubara frequencies (8) has been neglected.
We will here discuss first the simpler undamped case (κ = 0) and later perform the WDA on
the NIBA kernels.

4.1. Undamped case (κ = 0)

In this subsection, we discuss the case of a TSS coupled with an undamped HO initially prepared
in a thermal equilibrium state. The pole equation now reads

λp + K0(λp) = 0 , (19)

with

K0(λ) = 12

∫
∞

0
dτe−λτ e−Q′

0(τ ) cos(Q′′

0(τ )), (20)

where we denoted withλp the solution of the undamped pole equation. Notice thatK0(λ) has the
same expression as in equation (13), if one replacesQ′ andQ′′ with Q′

0 andQ′′

0, respectively. In
order to investigate equation (20), we replace cos(Q′′

0(τ )) with Re{exp(iQ′′

0(τ ))} and we perform
the Jacobi–Anger expansion [31]

eizcosy
≡ J0(z) + 2

+∞∑
n=1

in Jn(z) cos(ny), (21)

whereJn(z) are Bessel functions of a complex argument. We also make use of Graf’s addition
theorem

∞∑
k=−∞

Jn+k(u)Jk(v)
cos

sin
(kα) = Jn(w)

cos

sin
(nχ), (22)
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where

w =

√
u2 + v2 − 2u v cosα, (23)

and {
u − v cosα = w cosχ, (24a)

v sinα = w sinχ. (24b)

We finally obtain (see appendixA)

K0(λ) = 12eY

∫
∞

0
dτe−λτRe

[
J0(u0) + 2

+∞∑
n=1

in Jn(u0) cos

[
n

(
�t − π + i

βh̄�

2

)]]
, (25)

where

u0 = i
√

Y2 − W2 = i
4g2

�2

1

sinh(βh̄�/2)
. (26)

After expanding the cosine which appears in equation (25) and after noticing thatJ0(u0) and
in Jn(u0) are always real, the expression for the symmetric kernel in the undamped case finally
reads

K0(λ) = 12eY

∫
∞

0
dτe−λτ

[
J0(u0) + 2

+∞∑
n=1

(−i)n Jn(u0) cos(n�τ) cosh

(
n

h̄β�

2

)]
. (27)

In order to enhance the readability of the kernel, we define the dressed frequencies

1n(c) ≡ 1eY/2

√
(2− δn,0) (−i)n Jn(u0) cosh

(
n

h̄β�

2

)
, (28)

such that we can rewrite equation (27) in the very compact form

K0(λ) =

+∞∑
n=0

12
n(c)

∫
∞

0
dτe−λτ cos(n�τ). (29)

The population differenceP0(λ) in the undamped case becomes

P0(λ) =
1

λ + K0(λ)
(30)

=
1

λ
[
1 +

∑+∞

n=0 12
n(c)

1
λ2+n2�2

] (31)

=
λ2
∏

∞

n=1(λ
2 + n2�2)

λ
[∏

∞

n=0(λ
2 + n2�2) +

∑+∞

m=0 12
m(c)

∏+∞
n=0
n6=m

(λ2 + n2�2)
] , (32)

and it is clear that the pole inλ = 0 is not a physical one, sinceP0(λ = 0) vanishes. This means
that the dissipation-free (κ = 0) pole equation reads

λp + K0(λp) = 0 →

∞∏
n=0

(λ2
p + n2�2) +

+∞∑
m=0

12
m(c)

+∞∏
n=0
n6=m

(λ2
p + n2�2) = 0. (33)
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Notice that being the pole equation of infinite order inλ2
p, equation (33) implies that aninfinite

set of frequencies enters the dynamics, which can be attributed to the entanglement of the
TSS with the HO. Their temperature dependence, included in the dressed frequencies1n(c),
reflects in a nontrivial way the initial thermal state of the HO. We shall show below that in some
parameter regimes only few of these frequencies dominate the dynamics.

4.2. The weak-damping population difference P(t)

The weak-damping kernelKWDA(λ) is obtained from equation (13) by retaining only terms up
to first order in the linearized inκ bath correlation functionsQ′

1 andQ′′

1. It reads

KWDA(λ) = 12

∫
∞

0
dτe−λτ e−Q′

0(τ )
{
cos(Q′′

0(τ ))
[
1− Q′

1(τ )
]
− sin(Q′′

0(τ ))Q′′

1(τ )
}
. (34)

The WDA kernel will be used in equation (11) to solve the pole equation and finally
obtain PWDA(t). Consistent with the previous prescriptionκ � 1, we can expand the solutions
λ∗ of the pole equation around the solutionsλp of the non-interacting pole equation up to first-
order inκ. In other terms

λ∗
= λp − κγp + iκϕ, (35)

whereλp satisfies the undamped pole equation (33). By inserting equations (15) and (35) in (34),
one finds the following expressions for the WDA kernel evaluated at the poles:

KWDA(λ∗) = 12

∫
∞

0
dτe−λpτ e−Q′

0(τ )

×
{
cos(Q′′

0(τ ))
[
1 +κγpτ − iκϕτ − Q′

1(τ )
]
− sin(Q′′

0(τ ))Q′′

1(τ )
}

+O[κ2]. (36)

According to equation (36), the pole equation (11) now reads

−κγp + iκϕ +12

∫
∞

0
dτe−λpτ e−Q′

0(τ )

×
{
cos(Q′′

0(τ ))
[
κγpτ − iκϕτ − Q′

1(τ )
]
− sin(Q′′

0(τ ))Q′′

1(τ )
}

= 0, (37)

where we used the pole equation for the undamped case (19). After isolating the real and the
imaginary terms from the above equation5, we find

−κγp

[
1− 12

∫
∞

0
dτe−λpτ e−Q′

0(τ ) cos(Q′′

0(τ )) τ

]
= 12

∫
∞

0
dτe−λpτ e−Q′

0(τ )
[
cos(Q′′

0(τ )) Q′

1(τ ) + sin(Q′′

0(τ ))Q′′

1(τ )
]
, (38a)

iκϕ

[
1− 12

∫
∞

0
dτe−λpτ e−Q′

0(τ ) cos(Q′′

0(τ )) τ

]
= 0. (38b)

if the term between brackets is different from zero, one easily getsϕ = 0 and, after some
rearrangements,

γp = −
1

κ

2
∫

∞

0 dτe−λpτ e−Q′

0(τ )
[
cos(Q′′

0(τ )) Q′

1(τ ) + sin(Q′′

0(τ ))Q′′

1(τ )
][

1 + ∂

∂λ
K0(λ)

] ∣∣∣
λ=λp

. (39)

5 Note that the Laplace transform of an odd function ofτ is even inλ and vice versa. In this case, the integrand is
odd inτ , thus the corresponding Laplace transform is even inλ. For pure-imaginary values ofλ, the result of the
integral is real.
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Once we have obtained the expression for the decay ratesγp corresponding to each poleλp,
we have all the ingredients to get the population differenceP(t) with the help of the residue
theorem. In fact,

P(t) ≡

∑
Res

eλt P(λ) =

∑
Res

eλt 1

λ + KWDA(λ)

=

∑
λp

eλpte−κγp(λp)t lim
λ→λp−κγp

[λ − (λp − κγp)]
1

λ + KWDA(λ)
(40)

holds, as follows from equation (36).

4.3. Series expression for the weakly-damped symmetric kernel and decay rate

In this subsection, we show how to obtain a compact analytical form for the kernelKWDA(λ)

and the decay rateγp equations (34) and (39), respectively. To this end let us start from the
kernelKWDA(λ), the generalization to the decay rate being straightforward. As in the undamped
case, in equation (34) we replace cos(Q′′

0(τ )) with Re{exp(iQ′′

0(τ ))} and sin(Q′′

0(τ )) with
Im{exp(iQ′′

0(τ ))}. Analogously to the procedure followed for the undamped kernel (29), by
using the Jacobi–Anger expansion (21) we obtain

KWDA(λ) =

+∞∑
n=0

∫
∞

0
dτe−λτ

{
12

n(c)
cos(n�τ)

[
1− Q′

1(τ )
]

+12
n(s)

sin(n�τ)Q′′

1(τ )
}

, (41)

where the dressed tunneling elements1n(c) have been already defined in equation (28a) and

1n(s) ≡ 1eY/2

√
(2− δn,0) (−i)n Jn(u0) sinh

(
n
β�

2

)
. (42)

The expression forP(λ) follows from (41) (see the discussion in the section4.5below). Along
similar lines, the decay rateγp, cf equation (39), may also be written as

γp =
1

κ

∑+∞

n=0

∫
∞

0 dτe−λpτ
[
12

n(c)
cos(n�τ) Q′

1(τ ) +12
n(s)

sin(n�τ) Q′′

1(τ )
]

∑+∞

n=0 12
n(c)

2λ2
p

(λ2
p + n2�2)2

. (43)

4.4. The case n= 0, n = 1

In the following, we investigate the regime of temperaturesβh̄�/2& 1, and of coupling
0 < g � �, such that the quantityu0 entering the argument of the Bessel functions is smaller
than one. Then, because the amplitudes12

n in (41) depend on Bessel functionsJn(x), which
roughly behave asxn as soon as the argument becomes small, we can restrict our analysis to the
termsn = 0, n = 1 in equations (41) and (43). We identify here10 with 10(c) and11 with 11(c)

for the sake of clarity, which in the considered regime are approximately given by

12
0 = 12eY J0(u0) ≈ 12eY

= 12e−(2g/�)2
, (44)

and

12
1 = 12eY(−2i )J1(u0) cosh

(
h̄β�

2

)
≈ 12

0(2g/�)2. (45)
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The undamped pole equation (33) becomes

(λ2
p +�2)(λ2

p +12
0) +λ2

p1
2
1 = 0, (46)

yielding

λ2
p = −

12
0 +12

1 +�2

2
±

√(
12

0 − �2

2

)2

+
12

1

2

(
12

0 +
12

1

2
+�2

)
≡ λ2

±
. (47)

As becomes clear from the definition of the dressed frequencies12
0, 12

1 these quantities, and in
turn the frequencies−�2

±
≡ λ2

±
depend on oscillator frequency�, TSS splitting1 and coupling

strengthg.
We notice that only terms quadratic inλp appear in the formal expression of the decay rate

(cf equation (B.1)). Hence, it is enough to express the poles as in equation (47). Given the poles
in the undamped case, we can substitute each of them in equation (43) for γp with sum restricted
to n = 0, n = 1. We will refer to them asγ± = γ (λ±), the explicit form of the decay rate being
given inappendix B.

4.5. Analytical expression for P(t)

In order to obtain the analytical expression forP(t) in the symmetric case, let us start again
from equation (40). By summing up all residues contributions, we end up with

P(t)=e−κγ−t λ
2
−

+�2

λ2
− − λ2

+

[cos(�−t)−
κγ−

�−

sin(�−t)]+e−κγ+t λ2
+ +�2

λ2
+ − λ2

−

[cos(�+t) −
κγ+

�+
sin(�+t)],

(48)

where �± ≡ −iλ±, as follows from equation (47). Notice that the expression forP(t) is
invariant upon exchanging the frequencies�− → �+. The analytical formula equation (48) for
P(t) is compared in figure4 with the outcomes of a numerical solution of the NIBA GME
and with the conventional weak-coupling approximation (WCA). The latter is obtained by
performing an expansion of the NIBA kernel to first-order in the coupling strengthα [2]. The
analytical form for the probability difference reads in the WCA case

P(t) =

{
cos1t +

γϕ

1
sin1t

}
e−γϕ t , (49)

whereγϕ = (π/4)S(1) is the dephasing rate. Moreover,S(ω) ≡ Geff(ω)coth(h̄ω/2kBT) is a
spectral contribution which represents emission and absorption of a single phonon. The choice
of parameters in figures4 and5 is the same as in figure1 and as in [23], under the resonance
condition� = 1. One can notice a very good agreement between NIBA and analytical WDA,
whereas equation (49) completely fails in describing the oscillatory behaviour ofP(t). In
figure5 the corresponding Fourier transform of the probability difference is shown. There, one
can see the missing oscillation frequency of the conventional WCA given by equation (49) and
the excellent agreement between the numerical NIBA and our analytical solution WDA. The
WCA in fact is not applicable since the bath is not short-time correlated wheng > 0 [23]. Notice
also that in the resonant case the WCA overestimates dephasing because there are coherent
exchange processes between the TSS and the resonant HO which cannot be captured by such a
weak-coupling scheme.
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P
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NIBA
Conventional WCA

0 5 10 15 20
–1

–0.5

0

0.5

1.0

Figure 4. Time evolution ofP(t) within the NIBA as well as the analytical WDA.
The parameters are as in figure1, namely� = 1, 0 = 0.097,α = 4× 10−3 (g =

0.18), T = 0.1 (in units of 1). Notice the perfect agreement between the
numerical NIBA and the analytical WDA. A perturbative approach inGeff(ω),
denoted here as ‘conventional WCA’ (see (49)), completely fails to account for
the two main oscillation frequencies. In the inset the short-time dynamics is
magnified.

0 0.5 1 1.5 2.0

ω [∆]

0
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15
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25

30

S 
(ω

)

WDA
NIBA
Conventional WCA

Figure 5. Spectral function ofP(t), corresponding to the same regime as in the
previous case. One clearly sees that the Fourier transforms of NIBA and WDA
exhibit a double peak structure. In contrast, the WCA predicts a single broadened
oscillation peak.

Equation (47) together with equations (44) and (45) enable us to estimate the oscillation
frequency. Specifically, let us observe that the resonance condition is� = 10 rather than� = 1,
though the two frequencies1 and 10 are very close in the chosen regime of parameters.
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Figure 6. Time evolution of P(t) at finite detuning within the NIBA and
the analytical WDA. The parameters are as in figure2, namely� = 1.5, 0 =

0.145, T = 0.1 (in units of 1), and α = 5× 10−3 corresponding tog = 0.3.
Again, the agreement between the numerical NIBA and the analytical WDA is
striking. Inset: the conventional WCA (49) also in this case, as expected, fails in
describing the correct dynamics.

For� = 10 and with11 � 10, we obtain to lowest order in11 the expression

�± ≈ �

(
1∓

11

2�

)
, (50)

such that�− − �+ = 2g as in the simple Jaynes–Cummings model.
Finally, in figure6 we show a comparison among the WDA and the NIBA in the presence

of finite detuningδ ≡ |1 − �| = 0.51 for a higher coupling strength between qubit and HO
(g = 0.31), keeping the coupling between detector and environment constant. Also in this case,
the WDA fully agrees with the numerical solution of the NIBA. From (47) we find, neglecting
terms of order14

1, and assuming e.g.� > 10

�− ≈ �

(
1 +

12
1

2(�2 − 12
0)

)
, (51)

�+ ≈ 10

(
1−

12
1

2(�2 − 12
0)

)
, (52)

yielding �− − �+ = δ(1 + g2

δ2

212
0

�2 ). The frequency�− is nicely interpreted as the Stark-shifted
qubit frequency due to the coupling with the harmonic mode; the frequency�+ accounts for
processes involving absorption of a single oscillator quantum whose amplitude, however, is
strongly suppressed, see figure7 which shows the Fourier transform ofP(t). In the inset one can
also notice the disagreement of the WDA predictions with the conventional WCA, characterized
by a single oscillation frequency atω = 1.
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Figure 7. Spectral function ofP(t) for the NIBA and the analytical WDA
(same parameters as in figure6). The oscillation frequencies of WDA and NIBA
coincide, whereas in the inset one can at first glance see the occurrence of a
single peak only in the Fourier transform of the conventional WCA.

5. Conclusions

In conclusion, we discussed the dynamics of a symmetric TSS interacting with an effective
structured environment described by a spectral densityGeff. This models e.g. a qubit interacting
with a dissipative detector [6, 7], or a TSS interacting with a cavity mode [12, 13]. Focussing
on the regime of small couplingκ between the oscillator and an Ohmic bath, i.e. of largeQ
factors of the damped harmonic mode, we derived a GME for the TSS occupation probabilities
within a novel weak damping approximation. In contrast to ‘conventional’ weak-coupling
approaches [2], perturbative in Geff, the WDA is able to reproduce multiple oscillation
frequencies in the TSS dynamics resulting from the entanglement with the oscillator. The
starting point of our analysis is the NIBA, which for a symmetric spin–boson model is valid
over thewholerange of parameters. The NIBA is perturbative in the TSS tunneling frequency,
but nonperturbative in the bath effective spectral densityGeff. The WDA approach is then
based on an expansion ofGeff up to first-order in the couplingκ. The zeroth order term
describes the effects of the entanglement between the TSS and the undamped thermalized
mode; the linear term is responsible for the dephasing. As a result of the entanglement with
the damped mode, the TSS is generally characterized by a multiple set of frequencies, as
detailed in section4. However, for small enough temperatures (i.e.kBT . h̄�) and moderate
TSS-harmonic mode coupling0 < g � � only two frequencies dominate, whose values, as
well as those of the associated dephasing rates, are determined analytically. In the resonant
regime the two frequencies are those expected from a simple Jaynes–Cummings model, apart
from the fact that the resonance condition now reads� = 10, where10 is thedressedTSS
frequency in equation (44). At finite detuning the one that is associated with a Stark-shifted
TSS frequency splitting dominates, see equation (52). The less dominant frequency occurs due
to processes related to the absorption of a single oscillator quantum. The agreement of our

New Journal of Physics 9 (2007) 316 (http://www.njp.org/)

http://www.njp.org/


16

analytical solution for the TSS occupation probability, valid atarbitrary detuning|1 − �| 6= 0,
with the numerical outcomes of the NIBA is striking.

Due to the generality of the model, we expect our results to be of interest in many
experimental applications.
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Appendix A. Bessel function expansion of the NIBA kernels

Here we are interested in finding a series expression for the WDA kernel which contains Bessel
functions. We start from equation (34), which we rewrite for clarity:

K (λ) = 12

∫
∞

0
dτe−λτ e−Q′

0(τ )
{
cos(Q′′

0(τ ))
[
1− Q′

1(τ )
]
− sin(Q′′

0(τ ))Q′′

1(τ )
}
. (A.1)

Let us examine, to fix the ideas, the term exp{−Q′

0(τ )}cos(Q′′
0(τ )):

e−Q′

0(τ ) cos(Q′′

0(τ )) ≡ eYRe
{
e−Y cos�τe+iW sin�τ

}
(A.2)

= eYRe
{
ei[iY cos�τ+W sin�τ ]

}
(A.3)

= eYRe

{
e

i
√

W2−Y2

[
iY√

W2−Y2
cos�τ+ W√

W2−Y2
sin�τ

]}
. (A.4)

It could be now convenient to interpret
cosx ≡

iY
√

W2 − Y2
= +

Y
√

Y2 − W2
, (A.5a)

sinx ≡
−W

√
W2 − Y2

= +
iW

√
Y2 − W2

, (A.5b)

so that the exponent can be rewritten as

e−Q′

0(τ ) cos(Q′′

0(τ )) = eYRe
{
ei

√
W2−Y2

cos(�τ + x)
}

. (A.6)

At this point, we can use the Jacobi–Anger expansion (21) to expand the exponent in series of
Bessel functions. We finally obtain

K (λ) = 12eY

∫
∞

0
dτe−λτ

{[
J0(u0) + 2

+∞∑
n=1

(−i)n Jn(u0) cos(n�τ) cosh

(
n
βh̄�

2

)]

×
[
1− Q′

1(τ )
]

+ 2
+∞∑
n=1

(−i)n Jn(u0) sin(n�τ) sinh

(
n
βh̄�

2

)
Q′′

1(τ )

}
, (A.7)

which coincides with equation (41), once we introduce the amplitudes1n(c), 1n(s). Here,u0 is
given by

u0 ≡

√
W2 − Y2 = i

√
Y2 − W2 = i

4g2

�2

1

sinh(βh̄�/2)
, (A.8)

New Journal of Physics 9 (2007) 316 (http://www.njp.org/)

http://www.njp.org/


17

sinceY ≡ −Wcoth(βh̄�/2) (note thatW > 0 and henceY < 0). Notice that the argument of
the Bessel functions is small wheneverβh̄�/2& 1 andg.�.

We would like now to obtain the exact value ofx, which is easily performed. Let us start
from equation (A.5) and let us rewrite the tangent as

tanx =
+iW

Y
= −i tanh

(
βh̄�

2

)
= tan

(
−i

βh̄�

2

)
. (A.9)

We assumex to be complex, therefore we write it asx = a + ib. In general, it holds that

cos(a + ib) = cosa coshb− i sina sinhb, (A.10)

sin(a + ib) = sina coshb+ i cosa sinhb. (A.11)

From (A.10), in order to have cos(a + ib) = +Y/
√

Y2 − W2, namely a real number, it must be
that

a = nπ. (A.12)

From equations (A.10) and (A.11), we can write the tangent as

tan(a + ib) =
tana + i tanhb

1− i tana tanhb
−−−→
a=nπ

+i tanhb ≡ +i
W

Y
, (A.13)

as we get by calculating the tangent from equation (A.5). Hence,

tanhb =
W

Y
. (A.14)

We can eventually writex as

x ≡ a + ib = nπ + i arc tanh
W

Y
= nπ − i

βh̄�

2
. (A.15)

In order to decide whether to assumen = 0 orn = 1, one must look at the cosine or sine:

cosx
equation(A.10)
−−−−−−−→

a=nπ
(−1)n 1√

1− tanh2 b
= (−1)n 1√

1−
W2

Y2

= (−1)n |Y|
√

Y2 − W2
(A.16)

≡
+Y

√
Y2 − W2

< 0, ZH⇒ n = 1 (A.17)

or, equivalently,

sinx
equation(A.11)
−−−−−−−→

a=nπ
i(−1)n tanhb√

1− tanh2 b
= i(−1)n W/Y√

1− (W2/Y2)
(A.18)

= i(−1)n (W/Y)|Y|
√

Y2 − W2
= −i(−1)n W

√
Y2 − W2

≡
+iW

√
Y2 − W2

, ZH⇒ n = 1. (A.19)
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Appendix B. Explicit form for the decay rate γp

In this appendix, we wish to give the analytical result for the decay rateγp(λp) as function of
the solutionλp of the undamped pole equation (46):

γp(λp) =
1

κ

1

2λ2
p

[
(λ2

p +�2)2 +12
1(c)

�2
][λ2

p

(
p + q12

1(c)
+ t12

1(s)
+ u12

1(c)
12

1(s)
+ r 14

1(c)

)
+�2

(
s+w12

1(c)
+ t12

1(s)

)
+λ2

p

(
12

1(c)
g(λp) +12

1(s)
h(λp)

) ]
, (B.1)

with

p ≡ (2A− B)�212
0 + (B − D)14

0, (B.2)

q ≡ 12
0

(
A

2
+ 2B − D

)
+�2

(
2B −

A

2

)
, (B.3)

t ≡ −
V�

4
(�2 + 312

0), (B.4)

u ≡ −3
V�

4
, (B.5)

r ≡
A

2
+ B, (B.6)

s ≡ −�212
0B +14

0(B − D), (B.7)

w ≡ 12
0

(
A

2
+ B

)
− �2 A

2
(B.8)

and

g(λp) ≡
(λ2

p +�2)2

λ2
p + 4�2

(
C� +

A

2

λ2
p − 4�2

λ2
p + 4�2

)
, (B.9)

h(λp) ≡
(λ2

p +�2)2

λ2
p + 4�2

V�

4

3λ2
p + 20�2

λ2
p + 4�2

. (B.10)

As already seen, the physical poles areλ2
= −λ2

1,2 ≡ λ2
±

. Correspondingly, the decay rates
γ± = γ (λ±) follow according to equation (B.1).
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