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Abstract

This paper deals with the multiplicity of solutions of a second order nonautonomous system. We
extend a previous result of the author relaxing the assumptions on the sign of the potential.
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1. Introduction

In the present paper we consider the following second order nonautonomous system:

(S)

{
ü − A(t)u = ∇uF (t, u) a.e. in [0, T ],
u(0) − u(T ) = u̇(0) − u̇(T ) = 0,

where A(t) is a N × N positive definite matrix, F(t, u) : [0, T ] × R
N → R is measurable

in t and continuously differentiable in u.
We extend a multiplicity result obtained in [4] where we proved the existence of at least

three periodic solutions for system (S) when F(t, u) = b(t)V (u) with b nonnegative in
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[0, T ]. In the present paper we allow the potential F to have a more general expression,
and when F(t, u) = b(t)V (u), we do not require any sign condition on b.

It is worth to mention some recent results related to the topic.
The existence of at least three solutions for the problem

(S�)

{
ü = ∇uG(t, u) a.e. in [0, T ],
u(0) − u(T ) = u̇(0) − u̇(T ) = 0,

was already studied in [2,10–12]. As already noticed in [4], in these papers the main as-
sumption, first introduced by Brezis and Nirenberg is:

(BN) there exist r > 0 and an integer k � 0 such that

−1

2
(k + 1)2w2|u|2 � G(t,u) − G(t,0) � −1

2
k2w2|u|2

for all |u| � r , a.e. in [0, T ], where w = 2π
T

.

In [9] the author proves, for the problem with a nonnegative parameter λ,

(Sλ)

{
ü − A(t)u = λ∇uF (t, u) a.e. in [0, T ],
u(0) − u(T ) = u̇(0) − u̇(T ) = 0

the existence of three solutions assuming, among the other hypotheses, that

(Sh) there exists γ ∈ ]0, T [ such that F(t, u) � 0 for all (t, u) ∈ [γ,T ] × R
N .

We mention finally another interesting result on the topic recently obtained by Cordaro
in [3] where the author proves the existence of at least three periodic solutions for sys-
tem (Sλ). We notice that in the previous results it is not known whether λ can be taken
equal to 1.

Our aim is to provide a new contribution to the subject, under a set of hypotheses rather
different to those of the quoted papers.

Our approach is variational and it is similar to the one used in [4]: the existence of three
periodic solutions is proved by applying a suitable version of a local minimum principle
by B. Ricceri [8] and a well-known three critical points theorem by Pucci and Serrin [7].
In the next section we describe the variational setting of the problem, while Section 3 is
devoted to the proof of our results. Finally in the last section we present examples and
comparison with the results cited above.

2. The variational setting

Throughout the sequel T is a positive number, A : [0, T ] → R
N×N is a symmet-

ric matrix valued function with bounded coefficients aij and ‖A‖ = ∑
i,j ‖aij‖∞,

F(t, u) : [0, T ] × R
N → R is measurable in t for all u ∈ R

N and continuously differen-
tiable in u a.e. in [0, T ].
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Let suppose that A is positive definite, i.e., there exists a positive constant α such that

A(t)u · u � α|u|2
for every u ∈ R

N and a.e. in [0, T ].
Let us recall that a solution of (S) is a function u ∈ C1([0, T ],R

N) with u̇ absolutely
continuous, such that{

ü(t) − A(t)u(t) = ∇uF (t, u) a.e. in [0, T ],
u(0) − u(T ) = u̇(0) − u̇(T ) = 0.

That is, introduced the Sobolev space H
1
T of the functions u ∈ L

2([0, T ],R
N) having a

weak derivative u̇ ∈ L
2([0, T ],R

N) and such that u(0) = u(T ) (see [6]), we are looking
for functions u ∈ H

1
T such that

T∫
0

u̇(t) · v̇(t) dt +
T∫

0

A(t)u(t) · v(t) dt +
T∫

0

∇uF
(
t,

(
u(t)

) · v(t)
)
dt = 0

for all v ∈ H
1
T .

Consider H
1
T equipped with the norm

‖u‖ =
( T∫

0

∣∣u̇(t)
∣∣2

dt +
T∫

0

A(t)u(t) · u(t) dt

)1/2

that is equivalent to the usual one, that is

‖u‖∗ =
( T∫

0

∣∣u̇(t)
∣∣2

dt +
T∫

0

∣∣u(t)
∣∣2

dt

)1/2

.

It is well known that H
1
T , endowed with the norm ‖ · ‖∗, is compactly embedded in

C0([0, T ],R
N) and so, since the norms ‖ · ‖ and ‖ · ‖∗ are equivalent, the constant

c = sup
u∈H

1
T \{0}

‖u‖C0

‖u‖
is finite.

Our main tool is a variational principle of B. Ricceri [8] that can be stated as follows:

Theorem R. [8, Theorem 2.5] Let X be a Hilbert space, Φ,Ψ :X → R two sequentially
weakly lower semicontinuous functionals. Assume that Ψ is strongly continuous and coer-
cive. For each ρ > infX Ψ , set

ϕ(ρ) := inf
Ψ ρ

Φ(u) − infclw Ψ ρ Φ

ρ − Ψ (u)
, (1)

where Ψ ρ := {u ∈ X: Ψ (u) < ρ} and clw Ψ ρ is the closure of Ψ ρ in the weak topology
of X. Then, for each ρ > infX Ψ and each μ > ϕ(ρ), the restriction of the functional
Φ + μΨ to Ψ ρ has a global minimum point in Ψ ρ .
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Theorem R implies in particular that if there exists ρ > 0, such that ϕ(ρ) < 1
2 , then the

functional J = 1
2Ψ + Φ has a local minimum point in Ψ ρ .

Throughout the sequel we make the following assumptions on the potential:

(A) there exist functions a, ā ∈ C0(R+
0 ,R

+
0 ) and b, b̄ ∈ L

1([0, T ],R
+
0 ) such that∣∣F(t, u)

∣∣ � a
(|u|)b(t),

∣∣∇uF (t, u)
∣∣ � ā

(|u|)b̄(t)

for all u ∈ R
N and a.e. in [0, T ].

Define on the space H
1
T the functionals

Ψ (u) = ‖u‖2 and Φ(u) =
T∫

0

F(t, u) dt.

Lemma 1. Assume (A). Then, the functional Φ is well defined on H
1
T and sequentially

weakly continuous. Moreover, it is Gâteaux differentiable and its derivative is given by

Φ ′(u)v =
T∫

0

∇uF
(
t, u(t)

) · v(t) dt for all v ∈ H
1
T .

We deduce that any critical point of J is a solution of (S).

3. Results

Theorem 2. Assume (A) and

(A1) there exist ρ > 0 and v0 ∈ R
N such that

(i) max[0,cρ] ā <
ρ

c‖b̄‖1
;

(ii)
∫ T

0 F(t, v0) dt < −{(max[0,cρ] a)‖b‖1 + 1
2 |v0|2T ‖A‖};

(A2) there exist M > 0 and a function B ∈ L
1([0, T ],R

+
0 ) with ‖B‖1 < 1

2c2 such that

F(t, u) � −B(t)|u|2 for all u: |u| � M and a.e. in [0, T ].

Then, system (S) has at least three solutions.

Proof. Step 1. Existence of a local minimum for J . We are going to apply Theorem R to
the functionals Ψ and Φ introduced in the previous section. Rewriting (1), we deduce that,
if there exists ρ > 0 such that

ϕ
(
ρ2) = inf

ρ2

Φ(u) − inf
clw Ψ ρ2 Φ

ρ2 − Ψ (u)
= inf‖u‖<ρ

Φ(u) − inf‖u‖�ρ Φ

ρ2 − ‖u‖2
<

1

2
, (2)
Ψ
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then the energy functional J (u) = 1
2‖u‖2 + Φ(u) has a global minimum in H

1
T whose

norm is less than ρ. For ρ > 0 define

φ(ρ) := inf‖v‖�ρ

T∫
0

F
(
t, v(t)

)
dt,

that is well defined and not increasing. It is easy to prove that (2) is equivalent to

inf
ρ>0

inf
σ<ρ

φ(σ ) − φ(ρ)

ρ2 − σ 2
<

1

2
,

which is fulfilled if there exists ρ > 0 such that

lim inf
τ→0+

φ(ρ) − φ(ρ + τ)

τ
< ρ. (3)

We are going to estimate the left-hand side of (3). As in [1], if ρ > 0, 0 < τ < ρ then by
using (A), we obtain

φ(ρ) − φ(ρ + τ)

τ
= 1

τ

∣∣∣∣∣ inf‖v‖�ρ

T∫
0

[ 1∫
0

∇uF
(
t, sv(t)

) · v(t) ds + F(t,0)

]
dt

− inf‖v‖�ρ+τ

T∫
0

[ 1∫
0

∇uF
(
t, sv(t)

) · v(t)ds + F(t,0)

]
dt

∣∣∣∣∣
= 1

τ

∣∣∣∣∣ inf‖v‖�1

T∫
0

ρ∫
0

∇uF
(
t, sv(t)

) · v(t) ds dt

− inf‖v‖�1

T∫
0

ρ+τ∫
0

∇uF
(
t, sv(t)

) · v(t) ds dt

∣∣∣∣∣
� 1

τ
sup

‖v‖�1

∣∣∣∣∣
T∫

0

ρ∫
ρ+τ

∇uF
(
t, sv(t)

) · v(t) ds dt

∣∣∣∣∣
� 1

τ
sup

‖v‖�1

T∫
0

ρ+τ∫
ρ

∣∣∇uF
(
t, sv(t)

)∣∣∣∣v(t)
∣∣ds dt

� 1

τ
sup

‖v‖�1

T∫
0

ρ+τ∫
ρ

ā
(∣∣sv(t)

∣∣)b̄(t)
∣∣v(t)

∣∣ds dt

�
(

max
[0,(ρ+τ)c]

ā
)

sup
‖v‖�1

T∫
b̄(t)

∣∣v(t)
∣∣dt �

(
max

[0,(ρ+τ)c]
ā
)
c‖b̄‖1.
0
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Therefore

lim inf
τ→0+

φ(ρ) − φ(ρ + τ)

τ
�

(
max
[0,ρc]

ā
)
c‖b̄‖1,

since by the continuity of ā

lim
τ→0+ max

[0,(ρ+τ)c]
ā = max

[0,ρc]
ā.

Therefore J has a local minimum u0 ∈ H
1
T such that ‖u0‖ < ρ, provided that (A1)(i) holds.

Step 2. Existence of a global minimum for J . Following the arguments of [9], with
mild modifications, it is possible to prove that (A2) implies the coercivity of J . Due to
the weakly lower sequential semicontinuity of Ψ and Φ , the functional J has a global
minimum, let us say u1.

We claim that the global minimum is different to the local minimum. We have the
following estimate of J on the ball centered at zero of radius ρ:

1

2
‖u‖2 + Φ(u) �

T∫
0

F
(
t, u(t)

)
dt � −

T∫
0

a
(∣∣u(t)

∣∣)b(t) dt � −
(

max
[0,cρ]

a
)
‖b‖1.

From assumption (A1)(ii) if w0(t) = v0 for all t ∈ [0, T ], w0 ∈ H
1
T and

1

2
‖w0‖2 + Φ(w0) = 1

2

T∫
0

A(t)v0 · v0 dt +
T∫

0

F(t, v0) dt

� 1

2
T ‖A‖|v0|2 +

T∫
0

F(t, v0) dt < −
(

max
[0,cρ]

a
)
‖b‖1.

Hence, the global minimum is outside the ball of radius ρ, so it is different to u0.
Step 3. Existence of a third critical point of J . A third solution of (S) is obtained apply-

ing a well-known result due to Pucci and Serrin (see [7]): it is easily seen that Φ ′ is compact
and that Ψ ′ admits a continuous inverse on (H1

T )�. Therefore, by Proposition 38.25 of [13],
we deduce that Ψ/2 + Φ has the Palais–Smale property.

Our conclusion follows by Corollary 1 of [7] which proves our claim. �
In the next theorem we do not require the coercivity of the functional J .

Theorem 3. Assume (A) and

(A1)(i) there exists ρ > 0 such that max[0,cρ] ā <
ρ

c‖b̄‖1
;

(A3) there exist q > 2 and R0 > 0 such that

∇uF (t, u) · u � qF(t, u) < 0 for all u: |u| � R0 and a.e. in [0, T ].

Then, system (S) has at least two solutions.
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Proof. A first solution u0 with norm less than ρ is obtained as in Theorem 2.
In a standard way it is possible to prove that J has the Palais–Smale property, as it

follows from (A3).
J is unbounded from below. We have

u|u|q ∂

∂u

(|u|−qF (t, u)
)

= −qF(t, u) + ∇uF (t, u) · u � 0 a.e. in [0, T ], all |u| � R0;
and so, for all |u| � R0,

F(t, u) � −R
−q

0 min
{−F(t,−R0),−F(t,R0)

}|u|q = −k(t)|u|q,

with k(t) ≡ R
−q

0 min{−F(t,−R0),−F(t,R0)} > 0.
Now, the function k belongs to the space L

1([0, T ]) and it is positive a.e. in [0, T ] on
the strength of (A3).

If |u| � R0, F(t, u) � (max[0,R0] a)b(t) a.e. in [0, T ], so we obtain that

F(t, u) � −R
−q

0 k(t)|u|q +
(

max
[0,R0]

a
)
b(t) for all u and a.e. in [0, T ].

Therefore if τ > 0, and u ∈ H
1
T ,

J (τu) = 1

2
τ 2|u|2 − R

−q

0 τq

T∫
0

k(t)|u|q dt +
(

max
[0,R0]

a
)
‖b‖1

that goes to −∞ as τ tends to +∞.
Our conclusion follows by Theorem 1 of [7]: there exists u1 ∈ H

1
T different to u0, that

is a critical point of J , i.e. a second solution of (S). �

4. Examples and remarks

In Theorem 2, we propose a new set of conditions under which the existence of three
solutions for (S) is ensured. We underline that without the main assumption (A1) the result
does not hold as the following example shows:

Example 4. Let N = 1, T = 1, A = a11 = 1, and q ∈ ]1,2[.
Then, the problem{

u′′ − u = q|u|q−2u in [0,1],
u(0) − u(1) = u′(0) − u′(1) = 0

has only the trivial solution.

We notice that F(t, u) = |u|q is nonnegative and so it cannot satisfy (A1)(ii). It is easy
to see that the problem admits only the null solution. Indeed, if there exists a nontrivial
solution u(t), then max[0,1] u > 0 or min[0,1] u < 0. Now, if u(t�) = max[0,1] u > 0, for
some t� ∈ ]0,1[, then u′′(t�) < 0 although u(t�) + q|u(t�)|q−2u(t�) > 0. Analogously we
have a contradiction if we assume that min[0,1] u < 0.
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Remark 5. At the present stage we do not know whether Theorem 2 still holds without
assuming (A2).

Let us present an example of potential F satisfying the assumptions of Theorem 2.

Example 6. Let β ∈ L
1([0, T ],R) such that

T∫
0

β(t) dt 
= 0, ‖β‖1 <
m

4

(
max

{√
T ,

1√
T

})−2

,

where m = min{1, α}.
If

∫ T

0 β(t) dt > 0, choose n̄ such that

(
3

2
π + 2n̄π

)(
−

(
3

2
π + 2n̄π

)1/2 T∫
0

β(t) dt + 1

2
T ‖A‖

)
< −‖β‖1. (4)

If
∫ T

0 β(t) dt < 0, choose n̄ such that

(
π

2
+ 2n̄π

)((
π

2
+ 2n̄π

)1/2 T∫
0

β(t) dt + 1

2
T ‖A‖

)
< −‖β‖1. (5)

Define M2 = π
2 + 2(n̄ + 1)π and

γ (u) =
{ |u|3 sin |u|2 if |u| � M,

M3 + 3M2(|u| − M) if |u| > M.

Then the problem{
ü − A(t)u = β(t)∇γ (u) a.e. in [0, T ],
u(0) − u(T ) = u̇(0) − u̇(T ) = 0

has at least three solutions in H
1
T .

Let us notice that condition (A) is satisfied with b(t) = b̄(t) = |β(t)|,

a
(|u|) =

{ |u|3 if |u| � M,

M3 + 3M2(|u| − M) if |u| > M

and

ā
(|u|) =

{
3|u|2| sin |u|2| + 2|u|4| cos |u|2| if |u| � M,

3M2 if |u| > M

since γ is continuously differentiable with

∇γ (u) =
{

3u|u| sin |u|2 + 2u|u|3 cos |u|2 if |u| � M,

3M2 u if |u| > M.
|u|
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Condition (A1)(i) holds with ρ < min{ 1
5‖b‖1c

3 , 1
c
}. Let us verify (A1)(ii): let v0 ∈ R

N such
that

|v0|2 =
{

3
2π + 2n̄π if

∫ T

0 β(t) dt > 0,

π
2 + 2n̄π if

∫ T

0 β(t) dt < 0,

where n̄ is the integer chosen in (4), (5) according to the sign of
∫ T

0 β(t) dt . We have that
|v0|2 � M2 by the definition of M .

If
∫ T

0 β(t) dt > 0,

T∫
0

F(t, v0) dt = −|v0|3
T∫

0

β(t) dt,

and by the assumptions,

|v0|2
(

−|v0|
T∫

0

β(t) dt + 1

2
T ‖A‖

)
< −‖b‖1.

If
∫ T

0 β(t) dt < 0,

T∫
0

F(t, v0) dt = |v0|3
T∫

0

β(t) dt,

and by the assumptions,

|v0|2
(

|v0|
T∫

0

β(t) dt + 1

2
T ‖A‖

)
< −‖b‖1.

Let us verify now condition (A2). If |u| � M ,

F(t, u)

|u|2 = β(t)

[
M3 + 3M2(|u| − M)

|u|2
]

and

lim|u|→∞
M3 + 3M2(|u| − M)

|u|2 = 0.

Hence, there exists a δ > 0 such that |M3+3M2(|u|−M)

|u|2 | � 1, for |u| � δ. Therefore,

F(t, u)

|u|2 � −∣∣β(t)
∣∣ a.e. in [0, T ] and for all |u| � max{δ,M}.

(A2) follows by the estimate

c �
√

2

m
max

{√
T ,

1√
T

}
(see [5]). All the assumptions of Theorem 2 are satisfied and our claim follows.
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Remark 7. Example 6 shows that the sign condition (Sh) in [9], does not apply to our
case. Indeed if |u| � M , F(t, u) = β(t)|u|3 sin |u|2 changes sign for every t .

Remark 8. When the nonlinearity is G(t,u) = 1
2A(t)u ·u+F(t, u), the two problems (S�)

and (S) are equal and condition (BN) reads as follows:

−1

2
(k + 1)2w2|u|2 � 1

2
A(t)u · u + F(t, u) − F(t,0) � −1

2
k2w2|u|2.

We notice that the function F in Example 6 does not satisfy condition (BN):

1

2
A(t)u · u + F(t, u) − F(t,0) = 1

2
A(t)u · u + β(t)

[|u|3 sin |u|2]
and so

1

2|u|2 A(t)u · u + F(t, u) − F(t,0)

|u|2 � 1

2
α + β(t)

[|u| sin |u|2].
The right-hand side goes to 1

2α > 0 as |u| tends to zero, hence it cannot be bounded from
above by a negative constant.

Let us present now an example of potential satisfying the assumptions of Theorem 3.

Example 9. Let β ∈ L
1([0, T ],R

+), x0 ∈ R
N .

The problem{
ü − A(t)u = β(t)∇[−|u|4 + e−|u+x0|2|u|3] a.e. in [0, T ],
u(0) − u(T ) = u̇(0) − u̇(T ) = 0

has at least two solutions in H
1
T .

Put

F(t, u) = β(t)
[−|u|4 + e−|u+x0|2|u|3].

Let us prove that the function F satisfies all the assumptions of Theorem 3.
Differentiating F(t, u) with respect to u, we obtain

∇uF (t, u) = β(t)
[−4u|u|2 − (

2(u + x0)|u|3 + 3|u + x0|2u|u|)e−|u+x0|2|u|2]
and condition (A) is easily obtained taking b(t) = b̄(t) = β(t) for all t ∈ [0, T ],

a
(|u|) = ∣∣−|u|4 + 1

∣∣ for all u ∈ R
N

and

ā
(|u|) = 5|u|4 + 2

(
2 + 4|x0|

)|u|3 + 3|x0|2|u|2 for all u ∈ R
N.

It is easily seen that the maximum of ā in [0, cρ] is attained in cρ. Hence, for ρ sufficiently
small condition (A1)(i) is satisfied.

It is immediately seen that F(t, u) is negative for |u| big enough, i.e. there exists a
positive constant R1 such that F(t, u) < 0 for a.e. [0, T ] and all |u| � R1.
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Moreover,

∇uF (t, u) · u = b(t)
[−4|u|4 − (

2(u + x0) · u|u|3 + 3|u + x0|2|u|2)e−|u+x0|2|u|2].
So,

∇uF (t, u) · u � 4F(t, u)

iff −(
2(u + x0) · u|u|3 + 3|u + x0|2|u|2)e−|u+x0|2|u|2 � 4e−|u+x0|2|u|3,

that is equivalent to

4 + |u|3(5|u|2 + 3|x0|2 − 8x0 · u)
� 0,

that holds for |u| � R2, for some R2 > 0. Taking R0 = max{R1,R2}, we have (A3).

Remark 10. Example 9 shows that condition (BN) does not apply to our case. Indeed in
the previous example we have

1

2
A(t)u · u + F(t, u) − F(t,0) = 1

2
A(t)u · u + β(t)

[−|u|4 + e−|u+x0||u|3 − 1
]
,

and

1

|u|2
[

1

2
A(t)u · u + F(t, u) − F(t,0)

]

= 1

2|u|2 A(t)u · u + β(t)

[
−|u|2 + e−|u+x0||u|3 − 1

|u|2
]

� 1

2
α + β(t)

[
−|u|2 + e−|u+x0||u|3 − 1

|u|2
]

that tends to 1
2α > 0 as |u| tends to zero.
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