Multiple periodic solutions for second order systems with changing sign potential

Francesca Faraci *
Dipartimento di Matematica e Informatica, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy

Received 22 March 2005
Available online 27 July 2005
Submitted by J. Henderson

Abstract

This paper deals with the multiplicity of solutions of a second order nonautonomous system. We extend a previous result of the author relaxing the assumptions on the sign of the potential. © 2005 Elsevier Inc. All rights reserved.

Keywords: Periodic solutions; Second order nonautonomous system; Variational methods

1. Introduction

In the present paper we consider the following second order nonautonomous system:

$$
\left\{\begin{array}{l}
\ddot{u}-A(t) u=\nabla_{u} F(t, u) \quad \text { a.e. in }[0, T], \tag{S}\\
u(0)-u(T)=\dot{u}(0)-\dot{u}(T)=0,
\end{array}\right.
$$

where $A(t)$ is a $N \times N$ positive definite matrix, $F(t, u):[0, T] \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ is measurable in t and continuously differentiable in u.

We extend a multiplicity result obtained in [4] where we proved the existence of at least three periodic solutions for system (S) when $F(t, u)=b(t) V(u)$ with b nonnegative in

[^0]$[0, T]$. In the present paper we allow the potential F to have a more general expression, and when $F(t, u)=b(t) V(u)$, we do not require any sign condition on b.

It is worth to mention some recent results related to the topic.
The existence of at least three solutions for the problem

$$
\left\{\begin{array}{l}
\ddot{u}=\nabla_{u} G(t, u) \quad \text { a.e. in }[0, T] \\
u(0)-u(T)=\dot{u}(0)-\dot{u}(T)=0,
\end{array}\right.
$$

was already studied in [2,10-12]. As already noticed in [4], in these papers the main assumption, first introduced by Brezis and Nirenberg is:
($B N$) there exist $r>0$ and an integer $k \geqslant 0$ such that

$$
-\frac{1}{2}(k+1)^{2} w^{2}|u|^{2} \leqslant G(t, u)-G(t, 0) \leqslant-\frac{1}{2} k^{2} w^{2}|u|^{2}
$$

for all $|u| \leqslant r$, a.e. in $[0, T]$, where $w=\frac{2 \pi}{T}$.
In [9] the author proves, for the problem with a nonnegative parameter λ,

$$
\left(S_{\lambda}\right) \quad\left\{\begin{array}{l}
\ddot{u}-A(t) u=\lambda \nabla_{u} F(t, u) \quad \text { a.e. in }[0, T], \\
u(0)-u(T)=\dot{u}(0)-\dot{u}(T)=0
\end{array}\right.
$$

the existence of three solutions assuming, among the other hypotheses, that
(Sh) there exists $\gamma \in] 0, T$ [such that $F(t, u) \leqslant 0$ for all $(t, u) \in[\gamma, T] \times \mathbb{R}^{N}$.
We mention finally another interesting result on the topic recently obtained by Cordaro in [3] where the author proves the existence of at least three periodic solutions for system $\left(S_{\lambda}\right)$. We notice that in the previous results it is not known whether λ can be taken equal to 1 .

Our aim is to provide a new contribution to the subject, under a set of hypotheses rather different to those of the quoted papers.

Our approach is variational and it is similar to the one used in [4]: the existence of three periodic solutions is proved by applying a suitable version of a local minimum principle by B. Ricceri [8] and a well-known three critical points theorem by Pucci and Serrin [7]. In the next section we describe the variational setting of the problem, while Section 3 is devoted to the proof of our results. Finally in the last section we present examples and comparison with the results cited above.

2. The variational setting

Throughout the sequel T is a positive number, $A:[0, T] \rightarrow \mathbb{R}^{N \times N}$ is a symmetric matrix valued function with bounded coefficients $a_{i j}$ and $\|A\|=\sum_{i, j}\left\|a_{i j}\right\|_{\infty}$, $F(t, u):[0, T] \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ is measurable in t for all $u \in \mathbb{R}^{N}$ and continuously differentiable in u a.e. in $[0, T]$.

Let suppose that A is positive definite, i.e., there exists a positive constant α such that

$$
A(t) u \cdot u \geqslant \alpha|u|^{2}
$$

for every $u \in \mathbb{R}^{N}$ and a.e. in $[0, T]$.
Let us recall that a solution of (S) is a function $u \in C^{1}\left([0, T], \mathbb{R}^{N}\right)$ with \dot{u} absolutely continuous, such that

$$
\left\{\begin{array}{l}
\ddot{u}(t)-A(t) u(t)=\nabla_{u} F(t, u) \quad \text { a.e. in }[0, T] \\
u(0)-u(T)=\dot{u}(0)-\dot{u}(T)=0
\end{array}\right.
$$

That is, introduced the Sobolev space \mathbb{H}_{T}^{1} of the functions $u \in \mathbb{L}^{2}\left([0, T], \mathbb{R}^{N}\right)$ having a weak derivative $\dot{u} \in \mathbb{L}^{2}\left([0, T], \mathbb{R}^{N}\right)$ and such that $u(0)=u(T)$ (see [6]), we are looking for functions $u \in \mathbb{H}_{T}^{1}$ such that

$$
\int_{0}^{T} \dot{u}(t) \cdot \dot{v}(t) d t+\int_{0}^{T} A(t) u(t) \cdot v(t) d t+\int_{0}^{T} \nabla_{u} F(t,(u(t)) \cdot v(t)) d t=0
$$

for all $v \in \mathbb{H}_{T}^{1}$.
Consider \mathbb{H}_{T}^{1} equipped with the norm

$$
\|u\|=\left(\int_{0}^{T}|\dot{u}(t)|^{2} d t+\int_{0}^{T} A(t) u(t) \cdot u(t) d t\right)^{1 / 2}
$$

that is equivalent to the usual one, that is

$$
\|u\|_{*}=\left(\int_{0}^{T}|\dot{u}(t)|^{2} d t+\int_{0}^{T}|u(t)|^{2} d t\right)^{1 / 2}
$$

It is well known that \mathbb{H}_{T}^{1}, endowed with the norm $\|\cdot\|_{*}$, is compactly embedded in $C^{0}\left([0, T], \mathbb{R}^{N}\right)$ and so, since the norms $\|\cdot\|$ and $\|\cdot\|_{*}$ are equivalent, the constant

$$
c=\sup _{u \in \mathbb{H}_{T}^{1} \backslash\{0\}} \frac{\|u\|_{C^{0}}}{\|u\|}
$$

is finite.
Our main tool is a variational principle of B. Ricceri [8] that can be stated as follows:
Theorem R. [8, Theorem 2.5] Let X be a Hilbert space, $\Phi, \Psi: X \rightarrow \mathbb{R}$ two sequentially weakly lower semicontinuous functionals. Assume that Ψ is strongly continuous and coercive. For each $\rho>\inf _{X} \Psi$, set

$$
\begin{equation*}
\varphi(\rho):=\inf _{\Psi \rho} \frac{\Phi(u)-\inf _{\mathrm{cl}_{w} \Psi^{\rho}} \Phi}{\rho-\Psi(u)} \tag{1}
\end{equation*}
$$

where $\Psi^{\rho}:=\{u \in X: \Psi(u)<\rho\}$ and $\mathrm{cl}_{w} \Psi^{\rho}$ is the closure of Ψ^{ρ} in the weak topology of X. Then, for each $\rho>\inf _{X} \Psi$ and each $\mu>\varphi(\rho)$, the restriction of the functional $\Phi+\mu \Psi$ to Ψ^{ρ} has a global minimum point in Ψ^{ρ}.

Theorem R implies in particular that if there exists $\rho>0$, such that $\varphi(\rho)<\frac{1}{2}$, then the functional $J=\frac{1}{2} \Psi+\Phi$ has a local minimum point in Ψ^{ρ}.

Throughout the sequel we make the following assumptions on the potential:
(A) there exist functions $a, \bar{a} \in C^{0}\left(\mathbb{R}_{0}^{+}, \mathbb{R}_{0}^{+}\right)$and $b, \bar{b} \in \mathbb{L}^{1}\left([0, T], \mathbb{R}_{0}^{+}\right)$such that

$$
\begin{aligned}
& |F(t, u)| \leqslant a(|u|) b(t), \quad\left|\nabla_{u} F(t, u)\right| \leqslant \bar{a}(|u|) \bar{b}(t) \\
& \quad \text { for all } u \in \mathbb{R}^{N} \text { and a.e. in }[0, T] .
\end{aligned}
$$

Define on the space \mathbb{H}_{T}^{1} the functionals

$$
\Psi(u)=\|u\|^{2} \quad \text { and } \quad \Phi(u)=\int_{0}^{T} F(t, u) d t
$$

Lemma 1. Assume (A). Then, the functional Φ is well defined on \mathbb{H}_{T}^{1} and sequentially weakly continuous. Moreover, it is Gâteaux differentiable and its derivative is given by

$$
\Phi^{\prime}(u) v=\int_{0}^{T} \nabla_{u} F(t, u(t)) \cdot v(t) d t \quad \text { for all } v \in \mathbb{H}_{T}^{1}
$$

We deduce that any critical point of J is a solution of (S).

3. Results

Theorem 2. Assume (A) and
(A_{1}) there exist $\rho>0$ and $v_{0} \in \mathbb{R}^{N}$ such that
(i) $\max _{[0, c \rho]} \bar{a}<\frac{\rho}{c\|\bar{b}\|_{1}}$;
(ii) $\int_{0}^{T} F\left(t, v_{0}\right) d t<-\left\{\left(\max _{[0, c \rho]} a\right)\|b\|_{1}+\frac{1}{2}\left|v_{0}\right|^{2} T\|A\|\right\}$;
$\left(A_{2}\right)$ there exist $M>0$ and a function $B \in \mathbb{L}^{1}\left([0, T], \mathbb{R}_{0}^{+}\right)$with $\|B\|_{1}<\frac{1}{2 c^{2}}$ such that

$$
F(t, u) \geqslant-B(t)|u|^{2} \quad \text { for all } u:|u| \geqslant M \text { and a.e. in }[0, T] .
$$

Then, system (S) has at least three solutions.

Proof. Step 1. Existence of a local minimum for J. We are going to apply Theorem R to the functionals Ψ and Φ introduced in the previous section. Rewriting (1), we deduce that, if there exists $\rho>0$ such that

$$
\begin{equation*}
\varphi\left(\rho^{2}\right)=\inf _{\Psi \rho^{2}} \frac{\Phi(u)-\inf _{\operatorname{cl}_{w} \Psi^{\rho^{2}} \Phi}}{\rho^{2}-\Psi(u)}=\inf _{\|u\|<\rho} \frac{\Phi(u)-\inf _{\|u\| \leqslant \rho} \Phi}{\rho^{2}-\|u\|^{2}}<\frac{1}{2} \tag{2}
\end{equation*}
$$

then the energy functional $J(u)=\frac{1}{2}\|u\|^{2}+\Phi(u)$ has a global minimum in \mathbb{H}_{T}^{1} whose norm is less than ρ. For $\rho>0$ define

$$
\phi(\rho):=\inf _{\|v\| \leqslant \rho} \int_{0}^{T} F(t, v(t)) d t
$$

that is well defined and not increasing. It is easy to prove that (2) is equivalent to

$$
\inf _{\rho>0} \inf _{\sigma<\rho} \frac{\phi(\sigma)-\phi(\rho)}{\rho^{2}-\sigma^{2}}<\frac{1}{2},
$$

which is fulfilled if there exists $\rho>0$ such that

$$
\begin{equation*}
\liminf _{\tau \rightarrow 0+} \frac{\phi(\rho)-\phi(\rho+\tau)}{\tau}<\rho . \tag{3}
\end{equation*}
$$

We are going to estimate the left-hand side of (3). As in [1], if $\rho>0,0<\tau<\rho$ then by using (A), we obtain

$$
\begin{aligned}
\frac{\phi(\rho)-\phi(\rho+\tau)}{\tau}= & \left.\frac{1}{\tau} \right\rvert\, \inf _{\|v\| \leqslant \rho} \int_{0}^{T}\left[\int_{0}^{1} \nabla_{u} F(t, s v(t)) \cdot v(t) d s+F(t, 0)\right] d t \\
& -\inf _{\|v\| \leqslant \rho+\tau} \int_{0}^{T}\left[\int_{0}^{1} \nabla_{u} F(t, s v(t)) \cdot v(t) d s+F(t, 0)\right] d t \mid \\
= & \left.\frac{1}{\tau} \right\rvert\, \inf _{\|v\| \leqslant 1} \int_{0}^{T} \int_{0}^{\rho} \nabla_{u} F(t, s v(t)) \cdot v(t) d s d t \\
& -\inf _{\|v\| \leqslant 1} \int_{0}^{T} \int_{0}^{\rho+\tau} \nabla_{u} F(t, s v(t)) \cdot v(t) d s d t \mid \\
\leqslant & \left.\frac{1}{\tau} \sup _{\|v\| \leqslant 1} \int_{0}^{T} \int_{\rho+\tau}^{\rho} \nabla_{u} F(t, s v(t)) \cdot v(t) d s d t \right\rvert\, \\
\leqslant & \frac{1}{\tau} \sup _{\|v\| \leqslant 1} \int_{0}^{T} \int_{\rho}^{\rho+\tau}\left|\nabla_{u} F(t, s v(t)) \| v(t)\right| d s d t \\
\leqslant & \frac{1}{\tau} \sup _{\|v\| \leqslant 1} \int_{0}^{T} \int_{\rho}^{\rho+\tau} \bar{a}(|s v(t)|) \bar{b}(t)|v(t)| d s d t \\
\leqslant & \left(\max _{[0,(\rho+\tau) c]} \bar{a}\right) \sup _{\|v\| \leqslant 1} \int_{0}^{T} \bar{b}(t)|v(t)| d t \leqslant\left(\max _{[0,(\rho+\tau) c]} \bar{a}\right) c\|\bar{b}\|_{1} .
\end{aligned}
$$

Therefore

$$
\liminf _{\tau \rightarrow 0+} \frac{\phi(\rho)-\phi(\rho+\tau)}{\tau} \leqslant\left(\max _{[0, \rho c]} \bar{a}\right) c\|\bar{b}\|_{1}
$$

since by the continuity of \bar{a}

$$
\lim _{\tau \rightarrow 0+[0,(\rho+\tau) c]} \max _{[\rho, ~} \bar{a}=\max _{[0, \rho]} \bar{a} .
$$

Therefore J has a local minimum $u_{0} \in \mathbb{H}_{T}^{1}$ such that $\left\|u_{0}\right\|<\rho$, provided that $\left(A_{1}\right)(i)$ holds.
Step 2. Existence of a global minimum for J. Following the arguments of [9], with mild modifications, it is possible to prove that $\left(A_{2}\right)$ implies the coercivity of J. Due to the weakly lower sequential semicontinuity of Ψ and Φ, the functional J has a global minimum, let us say u_{1}.

We claim that the global minimum is different to the local minimum. We have the following estimate of J on the ball centered at zero of radius ρ :

$$
\frac{1}{2}\|u\|^{2}+\Phi(u) \geqslant \int_{0}^{T} F(t, u(t)) d t \geqslant-\int_{0}^{T} a(|u(t)|) b(t) d t \geqslant-\left(\max _{[0, c \rho]} a\right)\|b\|_{1}
$$

From assumption $\left(A_{1}\right)($ ii $)$ if $w_{0}(t)=v_{0}$ for all $t \in[0, T], w_{0} \in \mathbb{H}_{T}^{1}$ and

$$
\begin{aligned}
\frac{1}{2}\left\|w_{0}\right\|^{2}+\Phi\left(w_{0}\right) & =\frac{1}{2} \int_{0}^{T} A(t) v_{0} \cdot v_{0} d t+\int_{0}^{T} F\left(t, v_{0}\right) d t \\
& \leqslant \frac{1}{2} T\|A\|\left|v_{0}\right|^{2}+\int_{0}^{T} F\left(t, v_{0}\right) d t<-\left(\max _{[0, c \rho]} a\right)\|b\|_{1}
\end{aligned}
$$

Hence, the global minimum is outside the ball of radius ρ, so it is different to u_{0}.
Step 3. Existence of a third critical point of J. A third solution of (S) is obtained applying a well-known result due to Pucci and Serrin (see [7]): it is easily seen that Φ^{\prime} is compact and that Ψ^{\prime} admits a continuous inverse on $\left(\mathbb{H}_{T}^{1}\right)^{\star}$. Therefore, by Proposition 38.25 of [13], we deduce that $\Psi / 2+\Phi$ has the Palais-Smale property.

Our conclusion follows by Corollary 1 of [7] which proves our claim.
In the next theorem we do not require the coercivity of the functional J.
Theorem 3. Assume (A) and
$\left(A_{1}\right)$ (i) there exists $\rho>0$ such that $\max _{[0, c \rho]} \bar{a}<\frac{\rho}{c\|\bar{b}\|_{1}}$;
$\left(A_{3}\right)$ there exist $q>2$ and $R_{0}>0$ such that

$$
\nabla_{u} F(t, u) \cdot u \leqslant q F(t, u)<0 \quad \text { for all } u:|u| \geqslant R_{0} \text { and a.e. in }[0, T] .
$$

Then, system (S) has at least two solutions.

Proof. A first solution u_{0} with norm less than ρ is obtained as in Theorem 2.
In a standard way it is possible to prove that J has the Palais-Smale property, as it follows from $\left(A_{3}\right)$.
J is unbounded from below. We have

$$
\begin{aligned}
& u|u|^{q} \frac{\partial}{\partial u}\left(|u|^{-q} F(t, u)\right) \\
& \quad=-q F(t, u)+\nabla_{u} F(t, u) \cdot u \leqslant 0 \quad \text { a.e. in }[0, T], \text { all }|u| \geqslant R_{0} ;
\end{aligned}
$$

and so, for all $|u| \geqslant R_{0}$,

$$
F(t, u) \leqslant-R_{0}^{-q} \min \left\{-F\left(t,-R_{0}\right),-F\left(t, R_{0}\right)\right\}|u|^{q}=-k(t)|u|^{q}
$$

with $k(t) \equiv R_{0}^{-q} \min \left\{-F\left(t,-R_{0}\right),-F\left(t, R_{0}\right)\right\}>0$.
Now, the function k belongs to the space $\mathbb{L}^{1}([0, T])$ and it is positive a.e. in $[0, T]$ on the strength of $\left(A_{3}\right)$.

If $|u| \leqslant R_{0}, F(t, u) \leqslant\left(\max _{\left[0, R_{0}\right]} a\right) b(t)$ a.e. in $[0, T]$, so we obtain that

$$
F(t, u) \leqslant-R_{0}^{-q} k(t)|u|^{q}+\left(\max _{\left[0, R_{0}\right]} a\right) b(t) \quad \text { for all } u \text { and a.e. in }[0, T] .
$$

Therefore if $\tau>0$, and $u \in \mathbb{H}_{T}^{1}$,

$$
J(\tau u)=\frac{1}{2} \tau^{2}|u|^{2}-R_{0}^{-q} \tau^{q} \int_{0}^{T} k(t)|u|^{q} d t+\left(\max _{\left[0, R_{0}\right]} a\right)\|b\|_{1}
$$

that goes to $-\infty$ as τ tends to $+\infty$.
Our conclusion follows by Theorem 1 of [7]: there exists $u_{1} \in \mathbb{H}_{T}^{1}$ different to u_{0}, that is a critical point of J, i.e. a second solution of (S).

4. Examples and remarks

In Theorem 2, we propose a new set of conditions under which the existence of three solutions for (S) is ensured. We underline that without the main assumption $\left(A_{1}\right)$ the result does not hold as the following example shows:

Example 4. Let $N=1, T=1, A=a_{11}=1$, and $\left.q \in\right] 1,2[$.
Then, the problem

$$
\left\{\begin{array}{l}
u^{\prime \prime}-u=q|u|^{q-2} u \quad \text { in }[0,1] \\
u(0)-u(1)=u^{\prime}(0)-u^{\prime}(1)=0
\end{array}\right.
$$

has only the trivial solution.
We notice that $F(t, u)=|u|^{q}$ is nonnegative and so it cannot satisfy $\left(A_{1}\right)$ (ii). It is easy to see that the problem admits only the null solution. Indeed, if there exists a nontrivial solution $u(t)$, then $\max _{[0,1]} u>0$ or $\min _{[0,1]} u<0$. Now, if $u\left(t^{\star}\right)=\max _{[0,1]} u>0$, for some $\left.t^{\star} \in\right] 0,1\left[\right.$, then $u^{\prime \prime}\left(t^{\star}\right)<0$ although $u\left(t^{\star}\right)+q\left|u\left(t^{\star}\right)\right|^{q-2} u\left(t^{\star}\right)>0$. Analogously we have a contradiction if we assume that $\min _{[0,1]} u<0$.

Remark 5. At the present stage we do not know whether Theorem 2 still holds without assuming $\left(A_{2}\right)$.

Let us present an example of potential F satisfying the assumptions of Theorem 2.
Example 6. Let $\beta \in \mathbb{L}^{1}([0, T], \mathbb{R})$ such that

$$
\int_{0}^{T} \beta(t) d t \neq 0, \quad\|\beta\|_{1}<\frac{m}{4}\left(\max \left\{\sqrt{T}, \frac{1}{\sqrt{T}}\right\}\right)^{-2}
$$

where $m=\min \{1, \alpha\}$.
If $\int_{0}^{T} \beta(t) d t>0$, choose \bar{n} such that

$$
\begin{equation*}
\left(\frac{3}{2} \pi+2 \bar{n} \pi\right)\left(-\left(\frac{3}{2} \pi+2 \bar{n} \pi\right)^{1 / 2} \int_{0}^{T} \beta(t) d t+\frac{1}{2} T\|A\|\right)<-\|\beta\|_{1} \tag{4}
\end{equation*}
$$

If $\int_{0}^{T} \beta(t) d t<0$, choose \bar{n} such that

$$
\begin{equation*}
\left(\frac{\pi}{2}+2 \bar{n} \pi\right)\left(\left(\frac{\pi}{2}+2 \bar{n} \pi\right)^{1 / 2} \int_{0}^{T} \beta(t) d t+\frac{1}{2} T\|A\|\right)<-\|\beta\|_{1} \tag{5}
\end{equation*}
$$

Define $M^{2}=\frac{\pi}{2}+2(\bar{n}+1) \pi$ and

$$
\gamma(u)= \begin{cases}|u|^{3} \sin |u|^{2} & \text { if }|u| \leqslant M, \\ M^{3}+3 M^{2}(|u|-M) & \text { if }|u|>M .\end{cases}
$$

Then the problem

$$
\left\{\begin{array}{l}
\ddot{u}-A(t) u=\beta(t) \nabla \gamma(u) \quad \text { a.e. in }[0, T], \\
u(0)-u(T)=\dot{u}(0)-\dot{u}(T)=0
\end{array}\right.
$$

has at least three solutions in \mathbb{H}_{T}^{1}.
Let us notice that condition (A) is satisfied with $b(t)=\bar{b}(t)=|\beta(t)|$,

$$
a(|u|)= \begin{cases}|u|^{3} & \text { if }|u| \leqslant M \\ M^{3}+3 M^{2}(|u|-M) & \text { if }|u|>M\end{cases}
$$

and

$$
\bar{a}(|u|)= \begin{cases}\left.\left.\left.3|u|^{2}|\sin | u\right|^{2}|+2| u\right|^{4}|\cos | u\right|^{2} \mid & \text { if }|u| \leqslant M \\ 3 M^{2} & \text { if }|u|>M\end{cases}
$$

since γ is continuously differentiable with

$$
\nabla \gamma(u)= \begin{cases}3 u|u| \sin |u|^{2}+2 u|u|^{3} \cos |u|^{2} & \text { if }|u| \leqslant M \\ 3 M^{2} \frac{u}{|u|} & \text { if }|u|>M\end{cases}
$$

Condition $\left(A_{1}\right)($ i $)$ holds with $\rho<\min \left\{\frac{1}{5\|b\|_{1} c^{3}}, \frac{1}{c}\right\}$. Let us verify $\left(A_{1}\right)$ (ii): let $v_{0} \in \mathbb{R}^{N}$ such that

$$
\left|v_{0}\right|^{2}= \begin{cases}\frac{3}{2} \pi+2 \bar{n} \pi & \text { if } \int_{0}^{T} \beta(t) d t>0, \\ \frac{\pi}{2}+2 \bar{n} \pi & \text { if } \int_{0}^{T} \beta(t) d t<0,\end{cases}
$$

where \bar{n} is the integer chosen in (4), (5) according to the sign of $\int_{0}^{T} \beta(t) d t$. We have that $\left|v_{0}\right|^{2} \leqslant M^{2}$ by the definition of M.

If $\int_{0}^{T} \beta(t) d t>0$,

$$
\int_{0}^{T} F\left(t, v_{0}\right) d t=-\left|v_{0}\right|^{3} \int_{0}^{T} \beta(t) d t
$$

and by the assumptions,

$$
\left|v_{0}\right|^{2}\left(-\left|v_{0}\right| \int_{0}^{T} \beta(t) d t+\frac{1}{2} T\|A\|\right)<-\|b\|_{1}
$$

If $\int_{0}^{T} \beta(t) d t<0$,

$$
\int_{0}^{T} F\left(t, v_{0}\right) d t=\left|v_{0}\right|^{3} \int_{0}^{T} \beta(t) d t
$$

and by the assumptions,

$$
\left|v_{0}\right|^{2}\left(\left|v_{0}\right| \int_{0}^{T} \beta(t) d t+\frac{1}{2} T\|A\|\right)<-\|b\|_{1} .
$$

Let us verify now condition $\left(A_{2}\right)$. If $|u| \geqslant M$,

$$
\frac{F(t, u)}{|u|^{2}}=\beta(t)\left[\frac{M^{3}+3 M^{2}(|u|-M)}{|u|^{2}}\right]
$$

and

$$
\lim _{|u| \rightarrow \infty} \frac{M^{3}+3 M^{2}(|u|-M)}{|u|^{2}}=0 .
$$

Hence, there exists a $\delta>0$ such that $\left|\frac{M^{3}+3 M^{2}(|u|-M)}{|u|^{2}}\right| \leqslant 1$, for $|u| \geqslant \delta$. Therefore,

$$
\frac{F(t, u)}{|u|^{2}} \geqslant-|\beta(t)| \quad \text { a.e. in }[0, T] \text { and for all }|u| \geqslant \max \{\delta, M\} .
$$

$\left(A_{2}\right)$ follows by the estimate

$$
c \leqslant \sqrt{\frac{2}{m}} \max \left\{\sqrt{T}, \frac{1}{\sqrt{T}}\right\}
$$

(see [5]). All the assumptions of Theorem 2 are satisfied and our claim follows.

Remark 7. Example 6 shows that the sign condition (Sh) in [9], does not apply to our case. Indeed if $|u| \leqslant M, F(t, u)=\beta(t)|u|^{3} \sin |u|^{2}$ changes sign for every t.

Remark 8. When the nonlinearity is $G(t, u)=\frac{1}{2} A(t) u \cdot u+F(t, u)$, the two problems (S^{\star}) and (S) are equal and condition $(B N)$ reads as follows:

$$
-\frac{1}{2}(k+1)^{2} w^{2}|u|^{2} \leqslant \frac{1}{2} A(t) u \cdot u+F(t, u)-F(t, 0) \leqslant-\frac{1}{2} k^{2} w^{2}|u|^{2} .
$$

We notice that the function F in Example 6 does not satisfy condition $(B N)$:

$$
\frac{1}{2} A(t) u \cdot u+F(t, u)-F(t, 0)=\frac{1}{2} A(t) u \cdot u+\beta(t)\left[|u|^{3} \sin |u|^{2}\right]
$$

and so

$$
\frac{1}{2|u|^{2}} A(t) u \cdot u+\frac{F(t, u)-F(t, 0)}{|u|^{2}} \geqslant \frac{1}{2} \alpha+\beta(t)\left[|u| \sin |u|^{2}\right] .
$$

The right-hand side goes to $\frac{1}{2} \alpha>0$ as $|u|$ tends to zero, hence it cannot be bounded from above by a negative constant.

Let us present now an example of potential satisfying the assumptions of Theorem 3.
Example 9. Let $\beta \in \mathbb{L}^{1}\left([0, T], \mathbb{R}^{+}\right), x_{0} \in \mathbb{R}^{N}$.
The problem

$$
\left\{\begin{array}{l}
\ddot{u}-A(t) u=\beta(t) \nabla\left[-|u|^{4}+e^{-\left|u+x_{0}\right|^{2}|u|^{3}}\right] \quad \text { a.e. in }[0, T], \\
u(0)-u(T)=\dot{u}(0)-\dot{u}(T)=0
\end{array}\right.
$$

has at least two solutions in \mathbb{H}_{T}^{1}.
Put

$$
F(t, u)=\beta(t)\left[-|u|^{4}+e^{-\left|u+x_{0}\right|^{2}|u|^{3}}\right] .
$$

Let us prove that the function F satisfies all the assumptions of Theorem 3.
Differentiating $F(t, u)$ with respect to u, we obtain

$$
\nabla_{u} F(t, u)=\beta(t)\left[-4 u|u|^{2}-\left(2\left(u+x_{0}\right)|u|^{3}+3\left|u+x_{0}\right|^{2} u|u|\right) e^{-\left|u+x_{0}\right|^{2}|u|^{2}}\right]
$$

and condition (A) is easily obtained taking $b(t)=\bar{b}(t)=\beta(t)$ for all $t \in[0, T]$,

$$
a(|u|)=\left|-|u|^{4}+1\right| \quad \text { for all } u \in \mathbb{R}^{N}
$$

and

$$
\bar{a}(|u|)=5|u|^{4}+2\left(2+4\left|x_{0}\right|\right)|u|^{3}+3\left|x_{0}\right|^{2}|u|^{2} \quad \text { for all } u \in \mathbb{R}^{N}
$$

It is easily seen that the maximum of \bar{a} in $[0, c \rho]$ is attained in $c \rho$. Hence, for ρ sufficiently small condition $\left(A_{1}\right)(\mathrm{i})$ is satisfied.

It is immediately seen that $F(t, u)$ is negative for $|u|$ big enough, i.e. there exists a positive constant R_{1} such that $F(t, u)<0$ for a.e. $[0, T]$ and all $|u| \geqslant R_{1}$.

Moreover,

$$
\nabla_{u} F(t, u) \cdot u=b(t)\left[-4|u|^{4}-\left(2\left(u+x_{0}\right) \cdot u|u|^{3}+3\left|u+x_{0}\right|^{2}|u|^{2}\right) e^{-\left|u+x_{0}\right|^{2}|u|^{2}}\right]
$$

So,

$$
\begin{aligned}
& \nabla_{u} F(t, u) \cdot u \leqslant 4 F(t, u) \\
& \quad \text { iff } \quad-\left(2\left(u+x_{0}\right) \cdot u|u|^{3}+3\left|u+x_{0}\right|^{2}|u|^{2}\right) e^{-\left|u+x_{0}\right|^{2}|u|^{2}} \leqslant 4 e^{-\left|u+x_{0}\right|^{2}|u|^{3}},
\end{aligned}
$$

that is equivalent to

$$
4+|u|^{3}\left(5|u|^{2}+3\left|x_{0}\right|^{2}-8 x_{0} \cdot u\right) \geqslant 0
$$

that holds for $|u| \geqslant R_{2}$, for some $R_{2}>0$. Taking $R_{0}=\max \left\{R_{1}, R_{2}\right\}$, we have $\left(A_{3}\right)$.
Remark 10. Example 9 shows that condition ($B N$) does not apply to our case. Indeed in the previous example we have

$$
\frac{1}{2} A(t) u \cdot u+F(t, u)-F(t, 0)=\frac{1}{2} A(t) u \cdot u+\beta(t)\left[-|u|^{4}+e^{-\left|u+x_{0}\right||u|^{3}}-1\right]
$$

and

$$
\begin{aligned}
& \frac{1}{|u|^{2}}\left[\frac{1}{2} A(t) u \cdot u+F(t, u)-F(t, 0)\right] \\
& \quad=\frac{1}{2|u|^{2}} A(t) u \cdot u+\beta(t)\left[-|u|^{2}+\frac{e^{-\left|u+x_{0}\right||u|^{3}}-1}{|u|^{2}}\right] \\
& \quad \geqslant \frac{1}{2} \alpha+\beta(t)\left[-|u|^{2}+\frac{e^{-\left|u+x_{0}\right||u|^{3}}-1}{|u|^{2}}\right]
\end{aligned}
$$

that tends to $\frac{1}{2} \alpha>0$ as $|u|$ tends to zero.

References

[1] G. Anello, G. Cordaro, An existence and localization theorem for the solutions of a Dirichlet problem, Ann. Polon. Math. 83 (2004) 107-112.
[2] H. Brezis, L. Nirenberg, Remarks on finding critical points, Comm. Pure Appl. Math. 44 (1991) 939-963.
[3] G. Cordaro, Three periodic solutions to an eigenvalue problem for a class of second order Hamiltonian system, Abstr. Appl. Anal. 18 (2003) 1037-1045.
[4] F. Faraci, Three periodic solutions for a second order nonautonomous system, J. Nonlinear Convex Anal. 3 (2002) 393-399.
[5] F. Faraci, R. Livrea, Infinitely many periodic solutions for a second order nonautonomous system, Nonlinear Anal. 54 (2003) 417-429.
[6] J. Mawhin, M. Willem, Critical Point Theory and Hamiltonian Systems, Springer-Verlag, New York, 1989.
[7] P. Pucci, J. Serrin, A mountain pass theorem, J. Differential Equations 60 (1985) 142-149.
[8] B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math. 113 (2000) 401-410.
[9] L.K. Shilgba, Multiplicity of periodic solutions for a boundary eigenvalue problem, Dyn. Syst., in press.
[10] C.L. Tang, Existence and multiplicity of periodic solutions of nonautonomous second order systems, Nonlinear Anal. 32 (1998) 299-304.
[11] C.L. Tang, Periodic solutions of nonautonomous second order systems with sublinear nonlinearity, Proc. Amer. Math. Soc. 126 (1998) 3263-3270.
[12] C.L. Tang, X.P. Wu, Periodic solutions for second order systems with not uniformly coercive potential, J. Math. Anal. Appl. 259 (2001) 386-397.
[13] E. Zeidler, Nonlinear Functional Analysis and its Applications, vol. III, Springer, 1985.

[^0]: * Fax: +39 095330094.

 E-mail address: ffaraci@dmi.unict.it.

